1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGValue.h"
20 #include "CodeGenFunction.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>    // std::sort
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 // Helper for coercing an aggregate argument or return value into an integer
38 // array of the same size (including padding) and alignment.  This alternate
39 // coercion happens only for the RenderScript ABI and can be removed after
40 // runtimes that rely on it are no longer supported.
41 //
42 // RenderScript assumes that the size of the argument / return value in the IR
43 // is the same as the size of the corresponding qualified type. This helper
44 // coerces the aggregate type into an array of the same size (including
45 // padding).  This coercion is used in lieu of expansion of struct members or
46 // other canonical coercions that return a coerced-type of larger size.
47 //
48 // Ty          - The argument / return value type
49 // Context     - The associated ASTContext
50 // LLVMContext - The associated LLVMContext
51 static ABIArgInfo coerceToIntArray(QualType Ty,
52                                    ASTContext &Context,
53                                    llvm::LLVMContext &LLVMContext) {
54   // Alignment and Size are measured in bits.
55   const uint64_t Size = Context.getTypeSize(Ty);
56   const uint64_t Alignment = Context.getTypeAlign(Ty);
57   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
58   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
59   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
60 }
61 
62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
63                                llvm::Value *Array,
64                                llvm::Value *Value,
65                                unsigned FirstIndex,
66                                unsigned LastIndex) {
67   // Alternatively, we could emit this as a loop in the source.
68   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
69     llvm::Value *Cell =
70         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
71     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
72   }
73 }
74 
75 static bool isAggregateTypeForABI(QualType T) {
76   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
77          T->isMemberFunctionPointerType();
78 }
79 
80 ABIArgInfo
81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
82                                  llvm::Type *Padding) const {
83   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
84                                  ByRef, Realign, Padding);
85 }
86 
87 ABIArgInfo
88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
89   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
90                                       /*ByRef*/ false, Realign);
91 }
92 
93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
94                              QualType Ty) const {
95   return Address::invalid();
96 }
97 
98 ABIInfo::~ABIInfo() {}
99 
100 /// Does the given lowering require more than the given number of
101 /// registers when expanded?
102 ///
103 /// This is intended to be the basis of a reasonable basic implementation
104 /// of should{Pass,Return}IndirectlyForSwift.
105 ///
106 /// For most targets, a limit of four total registers is reasonable; this
107 /// limits the amount of code required in order to move around the value
108 /// in case it wasn't produced immediately prior to the call by the caller
109 /// (or wasn't produced in exactly the right registers) or isn't used
110 /// immediately within the callee.  But some targets may need to further
111 /// limit the register count due to an inability to support that many
112 /// return registers.
113 static bool occupiesMoreThan(CodeGenTypes &cgt,
114                              ArrayRef<llvm::Type*> scalarTypes,
115                              unsigned maxAllRegisters) {
116   unsigned intCount = 0, fpCount = 0;
117   for (llvm::Type *type : scalarTypes) {
118     if (type->isPointerTy()) {
119       intCount++;
120     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
121       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
122       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
123     } else {
124       assert(type->isVectorTy() || type->isFloatingPointTy());
125       fpCount++;
126     }
127   }
128 
129   return (intCount + fpCount > maxAllRegisters);
130 }
131 
132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
133                                              llvm::Type *eltTy,
134                                              unsigned numElts) const {
135   // The default implementation of this assumes that the target guarantees
136   // 128-bit SIMD support but nothing more.
137   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
138 }
139 
140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
141                                               CGCXXABI &CXXABI) {
142   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143   if (!RD) {
144     if (!RT->getDecl()->canPassInRegisters())
145       return CGCXXABI::RAA_Indirect;
146     return CGCXXABI::RAA_Default;
147   }
148   return CXXABI.getRecordArgABI(RD);
149 }
150 
151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
152                                               CGCXXABI &CXXABI) {
153   const RecordType *RT = T->getAs<RecordType>();
154   if (!RT)
155     return CGCXXABI::RAA_Default;
156   return getRecordArgABI(RT, CXXABI);
157 }
158 
159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
160                                const ABIInfo &Info) {
161   QualType Ty = FI.getReturnType();
162 
163   if (const auto *RT = Ty->getAs<RecordType>())
164     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
165         !RT->getDecl()->canPassInRegisters()) {
166       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
167       return true;
168     }
169 
170   return CXXABI.classifyReturnType(FI);
171 }
172 
173 /// Pass transparent unions as if they were the type of the first element. Sema
174 /// should ensure that all elements of the union have the same "machine type".
175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
176   if (const RecordType *UT = Ty->getAsUnionType()) {
177     const RecordDecl *UD = UT->getDecl();
178     if (UD->hasAttr<TransparentUnionAttr>()) {
179       assert(!UD->field_empty() && "sema created an empty transparent union");
180       return UD->field_begin()->getType();
181     }
182   }
183   return Ty;
184 }
185 
186 CGCXXABI &ABIInfo::getCXXABI() const {
187   return CGT.getCXXABI();
188 }
189 
190 ASTContext &ABIInfo::getContext() const {
191   return CGT.getContext();
192 }
193 
194 llvm::LLVMContext &ABIInfo::getVMContext() const {
195   return CGT.getLLVMContext();
196 }
197 
198 const llvm::DataLayout &ABIInfo::getDataLayout() const {
199   return CGT.getDataLayout();
200 }
201 
202 const TargetInfo &ABIInfo::getTarget() const {
203   return CGT.getTarget();
204 }
205 
206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
207   return CGT.getCodeGenOpts();
208 }
209 
210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
211 
212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
213   return false;
214 }
215 
216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
217                                                 uint64_t Members) const {
218   return false;
219 }
220 
221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
222   raw_ostream &OS = llvm::errs();
223   OS << "(ABIArgInfo Kind=";
224   switch (TheKind) {
225   case Direct:
226     OS << "Direct Type=";
227     if (llvm::Type *Ty = getCoerceToType())
228       Ty->print(OS);
229     else
230       OS << "null";
231     break;
232   case Extend:
233     OS << "Extend";
234     break;
235   case Ignore:
236     OS << "Ignore";
237     break;
238   case InAlloca:
239     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
240     break;
241   case Indirect:
242     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
243        << " ByVal=" << getIndirectByVal()
244        << " Realign=" << getIndirectRealign();
245     break;
246   case Expand:
247     OS << "Expand";
248     break;
249   case CoerceAndExpand:
250     OS << "CoerceAndExpand Type=";
251     getCoerceAndExpandType()->print(OS);
252     break;
253   }
254   OS << ")\n";
255 }
256 
257 // Dynamically round a pointer up to a multiple of the given alignment.
258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
259                                                   llvm::Value *Ptr,
260                                                   CharUnits Align) {
261   llvm::Value *PtrAsInt = Ptr;
262   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
263   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
264   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
265         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
266   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
267            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
268   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
269                                         Ptr->getType(),
270                                         Ptr->getName() + ".aligned");
271   return PtrAsInt;
272 }
273 
274 /// Emit va_arg for a platform using the common void* representation,
275 /// where arguments are simply emitted in an array of slots on the stack.
276 ///
277 /// This version implements the core direct-value passing rules.
278 ///
279 /// \param SlotSize - The size and alignment of a stack slot.
280 ///   Each argument will be allocated to a multiple of this number of
281 ///   slots, and all the slots will be aligned to this value.
282 /// \param AllowHigherAlign - The slot alignment is not a cap;
283 ///   an argument type with an alignment greater than the slot size
284 ///   will be emitted on a higher-alignment address, potentially
285 ///   leaving one or more empty slots behind as padding.  If this
286 ///   is false, the returned address might be less-aligned than
287 ///   DirectAlign.
288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
289                                       Address VAListAddr,
290                                       llvm::Type *DirectTy,
291                                       CharUnits DirectSize,
292                                       CharUnits DirectAlign,
293                                       CharUnits SlotSize,
294                                       bool AllowHigherAlign) {
295   // Cast the element type to i8* if necessary.  Some platforms define
296   // va_list as a struct containing an i8* instead of just an i8*.
297   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
298     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
299 
300   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
301 
302   // If the CC aligns values higher than the slot size, do so if needed.
303   Address Addr = Address::invalid();
304   if (AllowHigherAlign && DirectAlign > SlotSize) {
305     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
306                                                  DirectAlign);
307   } else {
308     Addr = Address(Ptr, SlotSize);
309   }
310 
311   // Advance the pointer past the argument, then store that back.
312   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
313   llvm::Value *NextPtr =
314     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
315                                            "argp.next");
316   CGF.Builder.CreateStore(NextPtr, VAListAddr);
317 
318   // If the argument is smaller than a slot, and this is a big-endian
319   // target, the argument will be right-adjusted in its slot.
320   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
321       !DirectTy->isStructTy()) {
322     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
323   }
324 
325   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
326   return Addr;
327 }
328 
329 /// Emit va_arg for a platform using the common void* representation,
330 /// where arguments are simply emitted in an array of slots on the stack.
331 ///
332 /// \param IsIndirect - Values of this type are passed indirectly.
333 /// \param ValueInfo - The size and alignment of this type, generally
334 ///   computed with getContext().getTypeInfoInChars(ValueTy).
335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
336 ///   Each argument will be allocated to a multiple of this number of
337 ///   slots, and all the slots will be aligned to this value.
338 /// \param AllowHigherAlign - The slot alignment is not a cap;
339 ///   an argument type with an alignment greater than the slot size
340 ///   will be emitted on a higher-alignment address, potentially
341 ///   leaving one or more empty slots behind as padding.
342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
343                                 QualType ValueTy, bool IsIndirect,
344                                 std::pair<CharUnits, CharUnits> ValueInfo,
345                                 CharUnits SlotSizeAndAlign,
346                                 bool AllowHigherAlign) {
347   // The size and alignment of the value that was passed directly.
348   CharUnits DirectSize, DirectAlign;
349   if (IsIndirect) {
350     DirectSize = CGF.getPointerSize();
351     DirectAlign = CGF.getPointerAlign();
352   } else {
353     DirectSize = ValueInfo.first;
354     DirectAlign = ValueInfo.second;
355   }
356 
357   // Cast the address we've calculated to the right type.
358   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
359   if (IsIndirect)
360     DirectTy = DirectTy->getPointerTo(0);
361 
362   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
363                                         DirectSize, DirectAlign,
364                                         SlotSizeAndAlign,
365                                         AllowHigherAlign);
366 
367   if (IsIndirect) {
368     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
369   }
370 
371   return Addr;
372 
373 }
374 
375 static Address emitMergePHI(CodeGenFunction &CGF,
376                             Address Addr1, llvm::BasicBlock *Block1,
377                             Address Addr2, llvm::BasicBlock *Block2,
378                             const llvm::Twine &Name = "") {
379   assert(Addr1.getType() == Addr2.getType());
380   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
381   PHI->addIncoming(Addr1.getPointer(), Block1);
382   PHI->addIncoming(Addr2.getPointer(), Block2);
383   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
384   return Address(PHI, Align);
385 }
386 
387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
388 
389 // If someone can figure out a general rule for this, that would be great.
390 // It's probably just doomed to be platform-dependent, though.
391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
392   // Verified for:
393   //   x86-64     FreeBSD, Linux, Darwin
394   //   x86-32     FreeBSD, Linux, Darwin
395   //   PowerPC    Linux, Darwin
396   //   ARM        Darwin (*not* EABI)
397   //   AArch64    Linux
398   return 32;
399 }
400 
401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
402                                      const FunctionNoProtoType *fnType) const {
403   // The following conventions are known to require this to be false:
404   //   x86_stdcall
405   //   MIPS
406   // For everything else, we just prefer false unless we opt out.
407   return false;
408 }
409 
410 void
411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
412                                              llvm::SmallString<24> &Opt) const {
413   // This assumes the user is passing a library name like "rt" instead of a
414   // filename like "librt.a/so", and that they don't care whether it's static or
415   // dynamic.
416   Opt = "-l";
417   Opt += Lib;
418 }
419 
420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
421   // OpenCL kernels are called via an explicit runtime API with arguments
422   // set with clSetKernelArg(), not as normal sub-functions.
423   // Return SPIR_KERNEL by default as the kernel calling convention to
424   // ensure the fingerprint is fixed such way that each OpenCL argument
425   // gets one matching argument in the produced kernel function argument
426   // list to enable feasible implementation of clSetKernelArg() with
427   // aggregates etc. In case we would use the default C calling conv here,
428   // clSetKernelArg() might break depending on the target-specific
429   // conventions; different targets might split structs passed as values
430   // to multiple function arguments etc.
431   return llvm::CallingConv::SPIR_KERNEL;
432 }
433 
434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
435     llvm::PointerType *T, QualType QT) const {
436   return llvm::ConstantPointerNull::get(T);
437 }
438 
439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
440                                                    const VarDecl *D) const {
441   assert(!CGM.getLangOpts().OpenCL &&
442          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
443          "Address space agnostic languages only");
444   return D ? D->getType().getAddressSpace() : LangAS::Default;
445 }
446 
447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
448     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
449     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
450   // Since target may map different address spaces in AST to the same address
451   // space, an address space conversion may end up as a bitcast.
452   if (auto *C = dyn_cast<llvm::Constant>(Src))
453     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
454   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
455 }
456 
457 llvm::Constant *
458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
459                                         LangAS SrcAddr, LangAS DestAddr,
460                                         llvm::Type *DestTy) const {
461   // Since target may map different address spaces in AST to the same address
462   // space, an address space conversion may end up as a bitcast.
463   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
464 }
465 
466 llvm::SyncScope::ID
467 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
468   return C.getOrInsertSyncScopeID(""); /* default sync scope */
469 }
470 
471 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
472 
473 /// isEmptyField - Return true iff a the field is "empty", that is it
474 /// is an unnamed bit-field or an (array of) empty record(s).
475 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
476                          bool AllowArrays) {
477   if (FD->isUnnamedBitfield())
478     return true;
479 
480   QualType FT = FD->getType();
481 
482   // Constant arrays of empty records count as empty, strip them off.
483   // Constant arrays of zero length always count as empty.
484   if (AllowArrays)
485     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
486       if (AT->getSize() == 0)
487         return true;
488       FT = AT->getElementType();
489     }
490 
491   const RecordType *RT = FT->getAs<RecordType>();
492   if (!RT)
493     return false;
494 
495   // C++ record fields are never empty, at least in the Itanium ABI.
496   //
497   // FIXME: We should use a predicate for whether this behavior is true in the
498   // current ABI.
499   if (isa<CXXRecordDecl>(RT->getDecl()))
500     return false;
501 
502   return isEmptyRecord(Context, FT, AllowArrays);
503 }
504 
505 /// isEmptyRecord - Return true iff a structure contains only empty
506 /// fields. Note that a structure with a flexible array member is not
507 /// considered empty.
508 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
509   const RecordType *RT = T->getAs<RecordType>();
510   if (!RT)
511     return false;
512   const RecordDecl *RD = RT->getDecl();
513   if (RD->hasFlexibleArrayMember())
514     return false;
515 
516   // If this is a C++ record, check the bases first.
517   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
518     for (const auto &I : CXXRD->bases())
519       if (!isEmptyRecord(Context, I.getType(), true))
520         return false;
521 
522   for (const auto *I : RD->fields())
523     if (!isEmptyField(Context, I, AllowArrays))
524       return false;
525   return true;
526 }
527 
528 /// isSingleElementStruct - Determine if a structure is a "single
529 /// element struct", i.e. it has exactly one non-empty field or
530 /// exactly one field which is itself a single element
531 /// struct. Structures with flexible array members are never
532 /// considered single element structs.
533 ///
534 /// \return The field declaration for the single non-empty field, if
535 /// it exists.
536 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
537   const RecordType *RT = T->getAs<RecordType>();
538   if (!RT)
539     return nullptr;
540 
541   const RecordDecl *RD = RT->getDecl();
542   if (RD->hasFlexibleArrayMember())
543     return nullptr;
544 
545   const Type *Found = nullptr;
546 
547   // If this is a C++ record, check the bases first.
548   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
549     for (const auto &I : CXXRD->bases()) {
550       // Ignore empty records.
551       if (isEmptyRecord(Context, I.getType(), true))
552         continue;
553 
554       // If we already found an element then this isn't a single-element struct.
555       if (Found)
556         return nullptr;
557 
558       // If this is non-empty and not a single element struct, the composite
559       // cannot be a single element struct.
560       Found = isSingleElementStruct(I.getType(), Context);
561       if (!Found)
562         return nullptr;
563     }
564   }
565 
566   // Check for single element.
567   for (const auto *FD : RD->fields()) {
568     QualType FT = FD->getType();
569 
570     // Ignore empty fields.
571     if (isEmptyField(Context, FD, true))
572       continue;
573 
574     // If we already found an element then this isn't a single-element
575     // struct.
576     if (Found)
577       return nullptr;
578 
579     // Treat single element arrays as the element.
580     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
581       if (AT->getSize().getZExtValue() != 1)
582         break;
583       FT = AT->getElementType();
584     }
585 
586     if (!isAggregateTypeForABI(FT)) {
587       Found = FT.getTypePtr();
588     } else {
589       Found = isSingleElementStruct(FT, Context);
590       if (!Found)
591         return nullptr;
592     }
593   }
594 
595   // We don't consider a struct a single-element struct if it has
596   // padding beyond the element type.
597   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
598     return nullptr;
599 
600   return Found;
601 }
602 
603 namespace {
604 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
605                        const ABIArgInfo &AI) {
606   // This default implementation defers to the llvm backend's va_arg
607   // instruction. It can handle only passing arguments directly
608   // (typically only handled in the backend for primitive types), or
609   // aggregates passed indirectly by pointer (NOTE: if the "byval"
610   // flag has ABI impact in the callee, this implementation cannot
611   // work.)
612 
613   // Only a few cases are covered here at the moment -- those needed
614   // by the default abi.
615   llvm::Value *Val;
616 
617   if (AI.isIndirect()) {
618     assert(!AI.getPaddingType() &&
619            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
620     assert(
621         !AI.getIndirectRealign() &&
622         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
623 
624     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
625     CharUnits TyAlignForABI = TyInfo.second;
626 
627     llvm::Type *BaseTy =
628         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
629     llvm::Value *Addr =
630         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
631     return Address(Addr, TyAlignForABI);
632   } else {
633     assert((AI.isDirect() || AI.isExtend()) &&
634            "Unexpected ArgInfo Kind in generic VAArg emitter!");
635 
636     assert(!AI.getInReg() &&
637            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
638     assert(!AI.getPaddingType() &&
639            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
640     assert(!AI.getDirectOffset() &&
641            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
642     assert(!AI.getCoerceToType() &&
643            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
644 
645     Address Temp = CGF.CreateMemTemp(Ty, "varet");
646     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
647     CGF.Builder.CreateStore(Val, Temp);
648     return Temp;
649   }
650 }
651 
652 /// DefaultABIInfo - The default implementation for ABI specific
653 /// details. This implementation provides information which results in
654 /// self-consistent and sensible LLVM IR generation, but does not
655 /// conform to any particular ABI.
656 class DefaultABIInfo : public ABIInfo {
657 public:
658   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
659 
660   ABIArgInfo classifyReturnType(QualType RetTy) const;
661   ABIArgInfo classifyArgumentType(QualType RetTy) const;
662 
663   void computeInfo(CGFunctionInfo &FI) const override {
664     if (!getCXXABI().classifyReturnType(FI))
665       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
666     for (auto &I : FI.arguments())
667       I.info = classifyArgumentType(I.type);
668   }
669 
670   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
671                     QualType Ty) const override {
672     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
673   }
674 };
675 
676 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
677 public:
678   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
679     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
680 };
681 
682 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
683   Ty = useFirstFieldIfTransparentUnion(Ty);
684 
685   if (isAggregateTypeForABI(Ty)) {
686     // Records with non-trivial destructors/copy-constructors should not be
687     // passed by value.
688     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
689       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
690 
691     return getNaturalAlignIndirect(Ty);
692   }
693 
694   // Treat an enum type as its underlying type.
695   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
696     Ty = EnumTy->getDecl()->getIntegerType();
697 
698   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
699                                         : ABIArgInfo::getDirect());
700 }
701 
702 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
703   if (RetTy->isVoidType())
704     return ABIArgInfo::getIgnore();
705 
706   if (isAggregateTypeForABI(RetTy))
707     return getNaturalAlignIndirect(RetTy);
708 
709   // Treat an enum type as its underlying type.
710   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711     RetTy = EnumTy->getDecl()->getIntegerType();
712 
713   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
714                                            : ABIArgInfo::getDirect());
715 }
716 
717 //===----------------------------------------------------------------------===//
718 // WebAssembly ABI Implementation
719 //
720 // This is a very simple ABI that relies a lot on DefaultABIInfo.
721 //===----------------------------------------------------------------------===//
722 
723 class WebAssemblyABIInfo final : public DefaultABIInfo {
724 public:
725   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
726       : DefaultABIInfo(CGT) {}
727 
728 private:
729   ABIArgInfo classifyReturnType(QualType RetTy) const;
730   ABIArgInfo classifyArgumentType(QualType Ty) const;
731 
732   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
733   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
734   // overload them.
735   void computeInfo(CGFunctionInfo &FI) const override {
736     if (!getCXXABI().classifyReturnType(FI))
737       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
738     for (auto &Arg : FI.arguments())
739       Arg.info = classifyArgumentType(Arg.type);
740   }
741 
742   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
743                     QualType Ty) const override;
744 };
745 
746 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
747 public:
748   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
749       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
750 };
751 
752 /// Classify argument of given type \p Ty.
753 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
754   Ty = useFirstFieldIfTransparentUnion(Ty);
755 
756   if (isAggregateTypeForABI(Ty)) {
757     // Records with non-trivial destructors/copy-constructors should not be
758     // passed by value.
759     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
760       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
761     // Ignore empty structs/unions.
762     if (isEmptyRecord(getContext(), Ty, true))
763       return ABIArgInfo::getIgnore();
764     // Lower single-element structs to just pass a regular value. TODO: We
765     // could do reasonable-size multiple-element structs too, using getExpand(),
766     // though watch out for things like bitfields.
767     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
768       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
769   }
770 
771   // Otherwise just do the default thing.
772   return DefaultABIInfo::classifyArgumentType(Ty);
773 }
774 
775 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
776   if (isAggregateTypeForABI(RetTy)) {
777     // Records with non-trivial destructors/copy-constructors should not be
778     // returned by value.
779     if (!getRecordArgABI(RetTy, getCXXABI())) {
780       // Ignore empty structs/unions.
781       if (isEmptyRecord(getContext(), RetTy, true))
782         return ABIArgInfo::getIgnore();
783       // Lower single-element structs to just return a regular value. TODO: We
784       // could do reasonable-size multiple-element structs too, using
785       // ABIArgInfo::getDirect().
786       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
787         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
788     }
789   }
790 
791   // Otherwise just do the default thing.
792   return DefaultABIInfo::classifyReturnType(RetTy);
793 }
794 
795 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
796                                       QualType Ty) const {
797   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
798                           getContext().getTypeInfoInChars(Ty),
799                           CharUnits::fromQuantity(4),
800                           /*AllowHigherAlign=*/ true);
801 }
802 
803 //===----------------------------------------------------------------------===//
804 // le32/PNaCl bitcode ABI Implementation
805 //
806 // This is a simplified version of the x86_32 ABI.  Arguments and return values
807 // are always passed on the stack.
808 //===----------------------------------------------------------------------===//
809 
810 class PNaClABIInfo : public ABIInfo {
811  public:
812   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
813 
814   ABIArgInfo classifyReturnType(QualType RetTy) const;
815   ABIArgInfo classifyArgumentType(QualType RetTy) const;
816 
817   void computeInfo(CGFunctionInfo &FI) const override;
818   Address EmitVAArg(CodeGenFunction &CGF,
819                     Address VAListAddr, QualType Ty) const override;
820 };
821 
822 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
823  public:
824   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
825     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
826 };
827 
828 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
829   if (!getCXXABI().classifyReturnType(FI))
830     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
831 
832   for (auto &I : FI.arguments())
833     I.info = classifyArgumentType(I.type);
834 }
835 
836 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
837                                 QualType Ty) const {
838   // The PNaCL ABI is a bit odd, in that varargs don't use normal
839   // function classification. Structs get passed directly for varargs
840   // functions, through a rewriting transform in
841   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
842   // this target to actually support a va_arg instructions with an
843   // aggregate type, unlike other targets.
844   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
845 }
846 
847 /// Classify argument of given type \p Ty.
848 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
849   if (isAggregateTypeForABI(Ty)) {
850     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
851       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
852     return getNaturalAlignIndirect(Ty);
853   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
854     // Treat an enum type as its underlying type.
855     Ty = EnumTy->getDecl()->getIntegerType();
856   } else if (Ty->isFloatingType()) {
857     // Floating-point types don't go inreg.
858     return ABIArgInfo::getDirect();
859   }
860 
861   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
862                                         : ABIArgInfo::getDirect());
863 }
864 
865 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
866   if (RetTy->isVoidType())
867     return ABIArgInfo::getIgnore();
868 
869   // In the PNaCl ABI we always return records/structures on the stack.
870   if (isAggregateTypeForABI(RetTy))
871     return getNaturalAlignIndirect(RetTy);
872 
873   // Treat an enum type as its underlying type.
874   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
875     RetTy = EnumTy->getDecl()->getIntegerType();
876 
877   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
878                                            : ABIArgInfo::getDirect());
879 }
880 
881 /// IsX86_MMXType - Return true if this is an MMX type.
882 bool IsX86_MMXType(llvm::Type *IRType) {
883   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
884   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
885     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
886     IRType->getScalarSizeInBits() != 64;
887 }
888 
889 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
890                                           StringRef Constraint,
891                                           llvm::Type* Ty) {
892   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
893                      .Cases("y", "&y", "^Ym", true)
894                      .Default(false);
895   if (IsMMXCons && Ty->isVectorTy()) {
896     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
897       // Invalid MMX constraint
898       return nullptr;
899     }
900 
901     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
902   }
903 
904   // No operation needed
905   return Ty;
906 }
907 
908 /// Returns true if this type can be passed in SSE registers with the
909 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
910 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
911   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
912     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
913       if (BT->getKind() == BuiltinType::LongDouble) {
914         if (&Context.getTargetInfo().getLongDoubleFormat() ==
915             &llvm::APFloat::x87DoubleExtended())
916           return false;
917       }
918       return true;
919     }
920   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
921     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
922     // registers specially.
923     unsigned VecSize = Context.getTypeSize(VT);
924     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
925       return true;
926   }
927   return false;
928 }
929 
930 /// Returns true if this aggregate is small enough to be passed in SSE registers
931 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
932 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
933   return NumMembers <= 4;
934 }
935 
936 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
937 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
938   auto AI = ABIArgInfo::getDirect(T);
939   AI.setInReg(true);
940   AI.setCanBeFlattened(false);
941   return AI;
942 }
943 
944 //===----------------------------------------------------------------------===//
945 // X86-32 ABI Implementation
946 //===----------------------------------------------------------------------===//
947 
948 /// Similar to llvm::CCState, but for Clang.
949 struct CCState {
950   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
951 
952   unsigned CC;
953   unsigned FreeRegs;
954   unsigned FreeSSERegs;
955 };
956 
957 enum {
958   // Vectorcall only allows the first 6 parameters to be passed in registers.
959   VectorcallMaxParamNumAsReg = 6
960 };
961 
962 /// X86_32ABIInfo - The X86-32 ABI information.
963 class X86_32ABIInfo : public SwiftABIInfo {
964   enum Class {
965     Integer,
966     Float
967   };
968 
969   static const unsigned MinABIStackAlignInBytes = 4;
970 
971   bool IsDarwinVectorABI;
972   bool IsRetSmallStructInRegABI;
973   bool IsWin32StructABI;
974   bool IsSoftFloatABI;
975   bool IsMCUABI;
976   unsigned DefaultNumRegisterParameters;
977 
978   static bool isRegisterSize(unsigned Size) {
979     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
980   }
981 
982   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
983     // FIXME: Assumes vectorcall is in use.
984     return isX86VectorTypeForVectorCall(getContext(), Ty);
985   }
986 
987   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
988                                          uint64_t NumMembers) const override {
989     // FIXME: Assumes vectorcall is in use.
990     return isX86VectorCallAggregateSmallEnough(NumMembers);
991   }
992 
993   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
994 
995   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
996   /// such that the argument will be passed in memory.
997   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
998 
999   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1000 
1001   /// Return the alignment to use for the given type on the stack.
1002   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1003 
1004   Class classify(QualType Ty) const;
1005   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1006   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1007 
1008   /// Updates the number of available free registers, returns
1009   /// true if any registers were allocated.
1010   bool updateFreeRegs(QualType Ty, CCState &State) const;
1011 
1012   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1013                                 bool &NeedsPadding) const;
1014   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1015 
1016   bool canExpandIndirectArgument(QualType Ty) const;
1017 
1018   /// Rewrite the function info so that all memory arguments use
1019   /// inalloca.
1020   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1021 
1022   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1023                            CharUnits &StackOffset, ABIArgInfo &Info,
1024                            QualType Type) const;
1025   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1026                              bool &UsedInAlloca) const;
1027 
1028 public:
1029 
1030   void computeInfo(CGFunctionInfo &FI) const override;
1031   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1032                     QualType Ty) const override;
1033 
1034   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1035                 bool RetSmallStructInRegABI, bool Win32StructABI,
1036                 unsigned NumRegisterParameters, bool SoftFloatABI)
1037     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1038       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1039       IsWin32StructABI(Win32StructABI),
1040       IsSoftFloatABI(SoftFloatABI),
1041       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1042       DefaultNumRegisterParameters(NumRegisterParameters) {}
1043 
1044   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1045                                     bool asReturnValue) const override {
1046     // LLVM's x86-32 lowering currently only assigns up to three
1047     // integer registers and three fp registers.  Oddly, it'll use up to
1048     // four vector registers for vectors, but those can overlap with the
1049     // scalar registers.
1050     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1051   }
1052 
1053   bool isSwiftErrorInRegister() const override {
1054     // x86-32 lowering does not support passing swifterror in a register.
1055     return false;
1056   }
1057 };
1058 
1059 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1060 public:
1061   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1062                           bool RetSmallStructInRegABI, bool Win32StructABI,
1063                           unsigned NumRegisterParameters, bool SoftFloatABI)
1064       : TargetCodeGenInfo(new X86_32ABIInfo(
1065             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1066             NumRegisterParameters, SoftFloatABI)) {}
1067 
1068   static bool isStructReturnInRegABI(
1069       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1070 
1071   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1072                            CodeGen::CodeGenModule &CGM) const override;
1073 
1074   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1075     // Darwin uses different dwarf register numbers for EH.
1076     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1077     return 4;
1078   }
1079 
1080   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1081                                llvm::Value *Address) const override;
1082 
1083   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1084                                   StringRef Constraint,
1085                                   llvm::Type* Ty) const override {
1086     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1087   }
1088 
1089   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1090                                 std::string &Constraints,
1091                                 std::vector<llvm::Type *> &ResultRegTypes,
1092                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1093                                 std::vector<LValue> &ResultRegDests,
1094                                 std::string &AsmString,
1095                                 unsigned NumOutputs) const override;
1096 
1097   llvm::Constant *
1098   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1099     unsigned Sig = (0xeb << 0) |  // jmp rel8
1100                    (0x06 << 8) |  //           .+0x08
1101                    ('v' << 16) |
1102                    ('2' << 24);
1103     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1104   }
1105 
1106   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1107     return "movl\t%ebp, %ebp"
1108            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1109   }
1110 };
1111 
1112 }
1113 
1114 /// Rewrite input constraint references after adding some output constraints.
1115 /// In the case where there is one output and one input and we add one output,
1116 /// we need to replace all operand references greater than or equal to 1:
1117 ///     mov $0, $1
1118 ///     mov eax, $1
1119 /// The result will be:
1120 ///     mov $0, $2
1121 ///     mov eax, $2
1122 static void rewriteInputConstraintReferences(unsigned FirstIn,
1123                                              unsigned NumNewOuts,
1124                                              std::string &AsmString) {
1125   std::string Buf;
1126   llvm::raw_string_ostream OS(Buf);
1127   size_t Pos = 0;
1128   while (Pos < AsmString.size()) {
1129     size_t DollarStart = AsmString.find('$', Pos);
1130     if (DollarStart == std::string::npos)
1131       DollarStart = AsmString.size();
1132     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1133     if (DollarEnd == std::string::npos)
1134       DollarEnd = AsmString.size();
1135     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1136     Pos = DollarEnd;
1137     size_t NumDollars = DollarEnd - DollarStart;
1138     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1139       // We have an operand reference.
1140       size_t DigitStart = Pos;
1141       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1142       if (DigitEnd == std::string::npos)
1143         DigitEnd = AsmString.size();
1144       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1145       unsigned OperandIndex;
1146       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1147         if (OperandIndex >= FirstIn)
1148           OperandIndex += NumNewOuts;
1149         OS << OperandIndex;
1150       } else {
1151         OS << OperandStr;
1152       }
1153       Pos = DigitEnd;
1154     }
1155   }
1156   AsmString = std::move(OS.str());
1157 }
1158 
1159 /// Add output constraints for EAX:EDX because they are return registers.
1160 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1161     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1162     std::vector<llvm::Type *> &ResultRegTypes,
1163     std::vector<llvm::Type *> &ResultTruncRegTypes,
1164     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1165     unsigned NumOutputs) const {
1166   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1167 
1168   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1169   // larger.
1170   if (!Constraints.empty())
1171     Constraints += ',';
1172   if (RetWidth <= 32) {
1173     Constraints += "={eax}";
1174     ResultRegTypes.push_back(CGF.Int32Ty);
1175   } else {
1176     // Use the 'A' constraint for EAX:EDX.
1177     Constraints += "=A";
1178     ResultRegTypes.push_back(CGF.Int64Ty);
1179   }
1180 
1181   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1182   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1183   ResultTruncRegTypes.push_back(CoerceTy);
1184 
1185   // Coerce the integer by bitcasting the return slot pointer.
1186   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1187                                                   CoerceTy->getPointerTo()));
1188   ResultRegDests.push_back(ReturnSlot);
1189 
1190   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1191 }
1192 
1193 /// shouldReturnTypeInRegister - Determine if the given type should be
1194 /// returned in a register (for the Darwin and MCU ABI).
1195 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1196                                                ASTContext &Context) const {
1197   uint64_t Size = Context.getTypeSize(Ty);
1198 
1199   // For i386, type must be register sized.
1200   // For the MCU ABI, it only needs to be <= 8-byte
1201   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1202    return false;
1203 
1204   if (Ty->isVectorType()) {
1205     // 64- and 128- bit vectors inside structures are not returned in
1206     // registers.
1207     if (Size == 64 || Size == 128)
1208       return false;
1209 
1210     return true;
1211   }
1212 
1213   // If this is a builtin, pointer, enum, complex type, member pointer, or
1214   // member function pointer it is ok.
1215   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1216       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1217       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1218     return true;
1219 
1220   // Arrays are treated like records.
1221   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1222     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1223 
1224   // Otherwise, it must be a record type.
1225   const RecordType *RT = Ty->getAs<RecordType>();
1226   if (!RT) return false;
1227 
1228   // FIXME: Traverse bases here too.
1229 
1230   // Structure types are passed in register if all fields would be
1231   // passed in a register.
1232   for (const auto *FD : RT->getDecl()->fields()) {
1233     // Empty fields are ignored.
1234     if (isEmptyField(Context, FD, true))
1235       continue;
1236 
1237     // Check fields recursively.
1238     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1239       return false;
1240   }
1241   return true;
1242 }
1243 
1244 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1245   // Treat complex types as the element type.
1246   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1247     Ty = CTy->getElementType();
1248 
1249   // Check for a type which we know has a simple scalar argument-passing
1250   // convention without any padding.  (We're specifically looking for 32
1251   // and 64-bit integer and integer-equivalents, float, and double.)
1252   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1253       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1254     return false;
1255 
1256   uint64_t Size = Context.getTypeSize(Ty);
1257   return Size == 32 || Size == 64;
1258 }
1259 
1260 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1261                           uint64_t &Size) {
1262   for (const auto *FD : RD->fields()) {
1263     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1264     // argument is smaller than 32-bits, expanding the struct will create
1265     // alignment padding.
1266     if (!is32Or64BitBasicType(FD->getType(), Context))
1267       return false;
1268 
1269     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1270     // how to expand them yet, and the predicate for telling if a bitfield still
1271     // counts as "basic" is more complicated than what we were doing previously.
1272     if (FD->isBitField())
1273       return false;
1274 
1275     Size += Context.getTypeSize(FD->getType());
1276   }
1277   return true;
1278 }
1279 
1280 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1281                                  uint64_t &Size) {
1282   // Don't do this if there are any non-empty bases.
1283   for (const CXXBaseSpecifier &Base : RD->bases()) {
1284     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1285                               Size))
1286       return false;
1287   }
1288   if (!addFieldSizes(Context, RD, Size))
1289     return false;
1290   return true;
1291 }
1292 
1293 /// Test whether an argument type which is to be passed indirectly (on the
1294 /// stack) would have the equivalent layout if it was expanded into separate
1295 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1296 /// optimizations.
1297 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1298   // We can only expand structure types.
1299   const RecordType *RT = Ty->getAs<RecordType>();
1300   if (!RT)
1301     return false;
1302   const RecordDecl *RD = RT->getDecl();
1303   uint64_t Size = 0;
1304   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1305     if (!IsWin32StructABI) {
1306       // On non-Windows, we have to conservatively match our old bitcode
1307       // prototypes in order to be ABI-compatible at the bitcode level.
1308       if (!CXXRD->isCLike())
1309         return false;
1310     } else {
1311       // Don't do this for dynamic classes.
1312       if (CXXRD->isDynamicClass())
1313         return false;
1314     }
1315     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1316       return false;
1317   } else {
1318     if (!addFieldSizes(getContext(), RD, Size))
1319       return false;
1320   }
1321 
1322   // We can do this if there was no alignment padding.
1323   return Size == getContext().getTypeSize(Ty);
1324 }
1325 
1326 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1327   // If the return value is indirect, then the hidden argument is consuming one
1328   // integer register.
1329   if (State.FreeRegs) {
1330     --State.FreeRegs;
1331     if (!IsMCUABI)
1332       return getNaturalAlignIndirectInReg(RetTy);
1333   }
1334   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1335 }
1336 
1337 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1338                                              CCState &State) const {
1339   if (RetTy->isVoidType())
1340     return ABIArgInfo::getIgnore();
1341 
1342   const Type *Base = nullptr;
1343   uint64_t NumElts = 0;
1344   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1345        State.CC == llvm::CallingConv::X86_RegCall) &&
1346       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1347     // The LLVM struct type for such an aggregate should lower properly.
1348     return ABIArgInfo::getDirect();
1349   }
1350 
1351   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1352     // On Darwin, some vectors are returned in registers.
1353     if (IsDarwinVectorABI) {
1354       uint64_t Size = getContext().getTypeSize(RetTy);
1355 
1356       // 128-bit vectors are a special case; they are returned in
1357       // registers and we need to make sure to pick a type the LLVM
1358       // backend will like.
1359       if (Size == 128)
1360         return ABIArgInfo::getDirect(llvm::VectorType::get(
1361                   llvm::Type::getInt64Ty(getVMContext()), 2));
1362 
1363       // Always return in register if it fits in a general purpose
1364       // register, or if it is 64 bits and has a single element.
1365       if ((Size == 8 || Size == 16 || Size == 32) ||
1366           (Size == 64 && VT->getNumElements() == 1))
1367         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1368                                                             Size));
1369 
1370       return getIndirectReturnResult(RetTy, State);
1371     }
1372 
1373     return ABIArgInfo::getDirect();
1374   }
1375 
1376   if (isAggregateTypeForABI(RetTy)) {
1377     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1378       // Structures with flexible arrays are always indirect.
1379       if (RT->getDecl()->hasFlexibleArrayMember())
1380         return getIndirectReturnResult(RetTy, State);
1381     }
1382 
1383     // If specified, structs and unions are always indirect.
1384     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1385       return getIndirectReturnResult(RetTy, State);
1386 
1387     // Ignore empty structs/unions.
1388     if (isEmptyRecord(getContext(), RetTy, true))
1389       return ABIArgInfo::getIgnore();
1390 
1391     // Small structures which are register sized are generally returned
1392     // in a register.
1393     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1394       uint64_t Size = getContext().getTypeSize(RetTy);
1395 
1396       // As a special-case, if the struct is a "single-element" struct, and
1397       // the field is of type "float" or "double", return it in a
1398       // floating-point register. (MSVC does not apply this special case.)
1399       // We apply a similar transformation for pointer types to improve the
1400       // quality of the generated IR.
1401       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1402         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1403             || SeltTy->hasPointerRepresentation())
1404           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1405 
1406       // FIXME: We should be able to narrow this integer in cases with dead
1407       // padding.
1408       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1409     }
1410 
1411     return getIndirectReturnResult(RetTy, State);
1412   }
1413 
1414   // Treat an enum type as its underlying type.
1415   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1416     RetTy = EnumTy->getDecl()->getIntegerType();
1417 
1418   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1419                                            : ABIArgInfo::getDirect());
1420 }
1421 
1422 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1423   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1424 }
1425 
1426 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1427   const RecordType *RT = Ty->getAs<RecordType>();
1428   if (!RT)
1429     return 0;
1430   const RecordDecl *RD = RT->getDecl();
1431 
1432   // If this is a C++ record, check the bases first.
1433   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1434     for (const auto &I : CXXRD->bases())
1435       if (!isRecordWithSSEVectorType(Context, I.getType()))
1436         return false;
1437 
1438   for (const auto *i : RD->fields()) {
1439     QualType FT = i->getType();
1440 
1441     if (isSSEVectorType(Context, FT))
1442       return true;
1443 
1444     if (isRecordWithSSEVectorType(Context, FT))
1445       return true;
1446   }
1447 
1448   return false;
1449 }
1450 
1451 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1452                                                  unsigned Align) const {
1453   // Otherwise, if the alignment is less than or equal to the minimum ABI
1454   // alignment, just use the default; the backend will handle this.
1455   if (Align <= MinABIStackAlignInBytes)
1456     return 0; // Use default alignment.
1457 
1458   // On non-Darwin, the stack type alignment is always 4.
1459   if (!IsDarwinVectorABI) {
1460     // Set explicit alignment, since we may need to realign the top.
1461     return MinABIStackAlignInBytes;
1462   }
1463 
1464   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1465   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1466                       isRecordWithSSEVectorType(getContext(), Ty)))
1467     return 16;
1468 
1469   return MinABIStackAlignInBytes;
1470 }
1471 
1472 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1473                                             CCState &State) const {
1474   if (!ByVal) {
1475     if (State.FreeRegs) {
1476       --State.FreeRegs; // Non-byval indirects just use one pointer.
1477       if (!IsMCUABI)
1478         return getNaturalAlignIndirectInReg(Ty);
1479     }
1480     return getNaturalAlignIndirect(Ty, false);
1481   }
1482 
1483   // Compute the byval alignment.
1484   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1485   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1486   if (StackAlign == 0)
1487     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1488 
1489   // If the stack alignment is less than the type alignment, realign the
1490   // argument.
1491   bool Realign = TypeAlign > StackAlign;
1492   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1493                                  /*ByVal=*/true, Realign);
1494 }
1495 
1496 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1497   const Type *T = isSingleElementStruct(Ty, getContext());
1498   if (!T)
1499     T = Ty.getTypePtr();
1500 
1501   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1502     BuiltinType::Kind K = BT->getKind();
1503     if (K == BuiltinType::Float || K == BuiltinType::Double)
1504       return Float;
1505   }
1506   return Integer;
1507 }
1508 
1509 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1510   if (!IsSoftFloatABI) {
1511     Class C = classify(Ty);
1512     if (C == Float)
1513       return false;
1514   }
1515 
1516   unsigned Size = getContext().getTypeSize(Ty);
1517   unsigned SizeInRegs = (Size + 31) / 32;
1518 
1519   if (SizeInRegs == 0)
1520     return false;
1521 
1522   if (!IsMCUABI) {
1523     if (SizeInRegs > State.FreeRegs) {
1524       State.FreeRegs = 0;
1525       return false;
1526     }
1527   } else {
1528     // The MCU psABI allows passing parameters in-reg even if there are
1529     // earlier parameters that are passed on the stack. Also,
1530     // it does not allow passing >8-byte structs in-register,
1531     // even if there are 3 free registers available.
1532     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1533       return false;
1534   }
1535 
1536   State.FreeRegs -= SizeInRegs;
1537   return true;
1538 }
1539 
1540 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1541                                              bool &InReg,
1542                                              bool &NeedsPadding) const {
1543   // On Windows, aggregates other than HFAs are never passed in registers, and
1544   // they do not consume register slots. Homogenous floating-point aggregates
1545   // (HFAs) have already been dealt with at this point.
1546   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1547     return false;
1548 
1549   NeedsPadding = false;
1550   InReg = !IsMCUABI;
1551 
1552   if (!updateFreeRegs(Ty, State))
1553     return false;
1554 
1555   if (IsMCUABI)
1556     return true;
1557 
1558   if (State.CC == llvm::CallingConv::X86_FastCall ||
1559       State.CC == llvm::CallingConv::X86_VectorCall ||
1560       State.CC == llvm::CallingConv::X86_RegCall) {
1561     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1562       NeedsPadding = true;
1563 
1564     return false;
1565   }
1566 
1567   return true;
1568 }
1569 
1570 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1571   if (!updateFreeRegs(Ty, State))
1572     return false;
1573 
1574   if (IsMCUABI)
1575     return false;
1576 
1577   if (State.CC == llvm::CallingConv::X86_FastCall ||
1578       State.CC == llvm::CallingConv::X86_VectorCall ||
1579       State.CC == llvm::CallingConv::X86_RegCall) {
1580     if (getContext().getTypeSize(Ty) > 32)
1581       return false;
1582 
1583     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1584         Ty->isReferenceType());
1585   }
1586 
1587   return true;
1588 }
1589 
1590 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1591                                                CCState &State) const {
1592   // FIXME: Set alignment on indirect arguments.
1593 
1594   Ty = useFirstFieldIfTransparentUnion(Ty);
1595 
1596   // Check with the C++ ABI first.
1597   const RecordType *RT = Ty->getAs<RecordType>();
1598   if (RT) {
1599     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1600     if (RAA == CGCXXABI::RAA_Indirect) {
1601       return getIndirectResult(Ty, false, State);
1602     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1603       // The field index doesn't matter, we'll fix it up later.
1604       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1605     }
1606   }
1607 
1608   // Regcall uses the concept of a homogenous vector aggregate, similar
1609   // to other targets.
1610   const Type *Base = nullptr;
1611   uint64_t NumElts = 0;
1612   if (State.CC == llvm::CallingConv::X86_RegCall &&
1613       isHomogeneousAggregate(Ty, Base, NumElts)) {
1614 
1615     if (State.FreeSSERegs >= NumElts) {
1616       State.FreeSSERegs -= NumElts;
1617       if (Ty->isBuiltinType() || Ty->isVectorType())
1618         return ABIArgInfo::getDirect();
1619       return ABIArgInfo::getExpand();
1620     }
1621     return getIndirectResult(Ty, /*ByVal=*/false, State);
1622   }
1623 
1624   if (isAggregateTypeForABI(Ty)) {
1625     // Structures with flexible arrays are always indirect.
1626     // FIXME: This should not be byval!
1627     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1628       return getIndirectResult(Ty, true, State);
1629 
1630     // Ignore empty structs/unions on non-Windows.
1631     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1632       return ABIArgInfo::getIgnore();
1633 
1634     llvm::LLVMContext &LLVMContext = getVMContext();
1635     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1636     bool NeedsPadding = false;
1637     bool InReg;
1638     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1639       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1640       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1641       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1642       if (InReg)
1643         return ABIArgInfo::getDirectInReg(Result);
1644       else
1645         return ABIArgInfo::getDirect(Result);
1646     }
1647     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1648 
1649     // Expand small (<= 128-bit) record types when we know that the stack layout
1650     // of those arguments will match the struct. This is important because the
1651     // LLVM backend isn't smart enough to remove byval, which inhibits many
1652     // optimizations.
1653     // Don't do this for the MCU if there are still free integer registers
1654     // (see X86_64 ABI for full explanation).
1655     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1656         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1657       return ABIArgInfo::getExpandWithPadding(
1658           State.CC == llvm::CallingConv::X86_FastCall ||
1659               State.CC == llvm::CallingConv::X86_VectorCall ||
1660               State.CC == llvm::CallingConv::X86_RegCall,
1661           PaddingType);
1662 
1663     return getIndirectResult(Ty, true, State);
1664   }
1665 
1666   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1667     // On Darwin, some vectors are passed in memory, we handle this by passing
1668     // it as an i8/i16/i32/i64.
1669     if (IsDarwinVectorABI) {
1670       uint64_t Size = getContext().getTypeSize(Ty);
1671       if ((Size == 8 || Size == 16 || Size == 32) ||
1672           (Size == 64 && VT->getNumElements() == 1))
1673         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1674                                                             Size));
1675     }
1676 
1677     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1678       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1679 
1680     return ABIArgInfo::getDirect();
1681   }
1682 
1683 
1684   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1685     Ty = EnumTy->getDecl()->getIntegerType();
1686 
1687   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1688 
1689   if (Ty->isPromotableIntegerType()) {
1690     if (InReg)
1691       return ABIArgInfo::getExtendInReg(Ty);
1692     return ABIArgInfo::getExtend(Ty);
1693   }
1694 
1695   if (InReg)
1696     return ABIArgInfo::getDirectInReg();
1697   return ABIArgInfo::getDirect();
1698 }
1699 
1700 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1701                                           bool &UsedInAlloca) const {
1702   // Vectorcall x86 works subtly different than in x64, so the format is
1703   // a bit different than the x64 version.  First, all vector types (not HVAs)
1704   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1705   // This differs from the x64 implementation, where the first 6 by INDEX get
1706   // registers.
1707   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1708   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1709   // first take up the remaining YMM/XMM registers. If insufficient registers
1710   // remain but an integer register (ECX/EDX) is available, it will be passed
1711   // in that, else, on the stack.
1712   for (auto &I : FI.arguments()) {
1713     // First pass do all the vector types.
1714     const Type *Base = nullptr;
1715     uint64_t NumElts = 0;
1716     const QualType& Ty = I.type;
1717     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1718         isHomogeneousAggregate(Ty, Base, NumElts)) {
1719       if (State.FreeSSERegs >= NumElts) {
1720         State.FreeSSERegs -= NumElts;
1721         I.info = ABIArgInfo::getDirect();
1722       } else {
1723         I.info = classifyArgumentType(Ty, State);
1724       }
1725       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1726     }
1727   }
1728 
1729   for (auto &I : FI.arguments()) {
1730     // Second pass, do the rest!
1731     const Type *Base = nullptr;
1732     uint64_t NumElts = 0;
1733     const QualType& Ty = I.type;
1734     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1735 
1736     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1737       // Assign true HVAs (non vector/native FP types).
1738       if (State.FreeSSERegs >= NumElts) {
1739         State.FreeSSERegs -= NumElts;
1740         I.info = getDirectX86Hva();
1741       } else {
1742         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1743       }
1744     } else if (!IsHva) {
1745       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1746       I.info = classifyArgumentType(Ty, State);
1747       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1748     }
1749   }
1750 }
1751 
1752 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1753   CCState State(FI.getCallingConvention());
1754   if (IsMCUABI)
1755     State.FreeRegs = 3;
1756   else if (State.CC == llvm::CallingConv::X86_FastCall)
1757     State.FreeRegs = 2;
1758   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1759     State.FreeRegs = 2;
1760     State.FreeSSERegs = 6;
1761   } else if (FI.getHasRegParm())
1762     State.FreeRegs = FI.getRegParm();
1763   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1764     State.FreeRegs = 5;
1765     State.FreeSSERegs = 8;
1766   } else
1767     State.FreeRegs = DefaultNumRegisterParameters;
1768 
1769   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1770     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1771   } else if (FI.getReturnInfo().isIndirect()) {
1772     // The C++ ABI is not aware of register usage, so we have to check if the
1773     // return value was sret and put it in a register ourselves if appropriate.
1774     if (State.FreeRegs) {
1775       --State.FreeRegs;  // The sret parameter consumes a register.
1776       if (!IsMCUABI)
1777         FI.getReturnInfo().setInReg(true);
1778     }
1779   }
1780 
1781   // The chain argument effectively gives us another free register.
1782   if (FI.isChainCall())
1783     ++State.FreeRegs;
1784 
1785   bool UsedInAlloca = false;
1786   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1787     computeVectorCallArgs(FI, State, UsedInAlloca);
1788   } else {
1789     // If not vectorcall, revert to normal behavior.
1790     for (auto &I : FI.arguments()) {
1791       I.info = classifyArgumentType(I.type, State);
1792       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1793     }
1794   }
1795 
1796   // If we needed to use inalloca for any argument, do a second pass and rewrite
1797   // all the memory arguments to use inalloca.
1798   if (UsedInAlloca)
1799     rewriteWithInAlloca(FI);
1800 }
1801 
1802 void
1803 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1804                                    CharUnits &StackOffset, ABIArgInfo &Info,
1805                                    QualType Type) const {
1806   // Arguments are always 4-byte-aligned.
1807   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1808 
1809   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1810   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1811   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1812   StackOffset += getContext().getTypeSizeInChars(Type);
1813 
1814   // Insert padding bytes to respect alignment.
1815   CharUnits FieldEnd = StackOffset;
1816   StackOffset = FieldEnd.alignTo(FieldAlign);
1817   if (StackOffset != FieldEnd) {
1818     CharUnits NumBytes = StackOffset - FieldEnd;
1819     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1820     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1821     FrameFields.push_back(Ty);
1822   }
1823 }
1824 
1825 static bool isArgInAlloca(const ABIArgInfo &Info) {
1826   // Leave ignored and inreg arguments alone.
1827   switch (Info.getKind()) {
1828   case ABIArgInfo::InAlloca:
1829     return true;
1830   case ABIArgInfo::Indirect:
1831     assert(Info.getIndirectByVal());
1832     return true;
1833   case ABIArgInfo::Ignore:
1834     return false;
1835   case ABIArgInfo::Direct:
1836   case ABIArgInfo::Extend:
1837     if (Info.getInReg())
1838       return false;
1839     return true;
1840   case ABIArgInfo::Expand:
1841   case ABIArgInfo::CoerceAndExpand:
1842     // These are aggregate types which are never passed in registers when
1843     // inalloca is involved.
1844     return true;
1845   }
1846   llvm_unreachable("invalid enum");
1847 }
1848 
1849 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1850   assert(IsWin32StructABI && "inalloca only supported on win32");
1851 
1852   // Build a packed struct type for all of the arguments in memory.
1853   SmallVector<llvm::Type *, 6> FrameFields;
1854 
1855   // The stack alignment is always 4.
1856   CharUnits StackAlign = CharUnits::fromQuantity(4);
1857 
1858   CharUnits StackOffset;
1859   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1860 
1861   // Put 'this' into the struct before 'sret', if necessary.
1862   bool IsThisCall =
1863       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1864   ABIArgInfo &Ret = FI.getReturnInfo();
1865   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1866       isArgInAlloca(I->info)) {
1867     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1868     ++I;
1869   }
1870 
1871   // Put the sret parameter into the inalloca struct if it's in memory.
1872   if (Ret.isIndirect() && !Ret.getInReg()) {
1873     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1874     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1875     // On Windows, the hidden sret parameter is always returned in eax.
1876     Ret.setInAllocaSRet(IsWin32StructABI);
1877   }
1878 
1879   // Skip the 'this' parameter in ecx.
1880   if (IsThisCall)
1881     ++I;
1882 
1883   // Put arguments passed in memory into the struct.
1884   for (; I != E; ++I) {
1885     if (isArgInAlloca(I->info))
1886       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1887   }
1888 
1889   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1890                                         /*isPacked=*/true),
1891                   StackAlign);
1892 }
1893 
1894 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1895                                  Address VAListAddr, QualType Ty) const {
1896 
1897   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1898 
1899   // x86-32 changes the alignment of certain arguments on the stack.
1900   //
1901   // Just messing with TypeInfo like this works because we never pass
1902   // anything indirectly.
1903   TypeInfo.second = CharUnits::fromQuantity(
1904                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1905 
1906   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1907                           TypeInfo, CharUnits::fromQuantity(4),
1908                           /*AllowHigherAlign*/ true);
1909 }
1910 
1911 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1912     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1913   assert(Triple.getArch() == llvm::Triple::x86);
1914 
1915   switch (Opts.getStructReturnConvention()) {
1916   case CodeGenOptions::SRCK_Default:
1917     break;
1918   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1919     return false;
1920   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1921     return true;
1922   }
1923 
1924   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1925     return true;
1926 
1927   switch (Triple.getOS()) {
1928   case llvm::Triple::DragonFly:
1929   case llvm::Triple::FreeBSD:
1930   case llvm::Triple::OpenBSD:
1931   case llvm::Triple::Win32:
1932     return true;
1933   default:
1934     return false;
1935   }
1936 }
1937 
1938 void X86_32TargetCodeGenInfo::setTargetAttributes(
1939     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1940   if (GV->isDeclaration())
1941     return;
1942   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1943     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1944       llvm::Function *Fn = cast<llvm::Function>(GV);
1945       Fn->addFnAttr("stackrealign");
1946     }
1947     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1948       llvm::Function *Fn = cast<llvm::Function>(GV);
1949       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1950     }
1951   }
1952 }
1953 
1954 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1955                                                CodeGen::CodeGenFunction &CGF,
1956                                                llvm::Value *Address) const {
1957   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1958 
1959   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1960 
1961   // 0-7 are the eight integer registers;  the order is different
1962   //   on Darwin (for EH), but the range is the same.
1963   // 8 is %eip.
1964   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1965 
1966   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1967     // 12-16 are st(0..4).  Not sure why we stop at 4.
1968     // These have size 16, which is sizeof(long double) on
1969     // platforms with 8-byte alignment for that type.
1970     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1971     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1972 
1973   } else {
1974     // 9 is %eflags, which doesn't get a size on Darwin for some
1975     // reason.
1976     Builder.CreateAlignedStore(
1977         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1978                                CharUnits::One());
1979 
1980     // 11-16 are st(0..5).  Not sure why we stop at 5.
1981     // These have size 12, which is sizeof(long double) on
1982     // platforms with 4-byte alignment for that type.
1983     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1984     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1985   }
1986 
1987   return false;
1988 }
1989 
1990 //===----------------------------------------------------------------------===//
1991 // X86-64 ABI Implementation
1992 //===----------------------------------------------------------------------===//
1993 
1994 
1995 namespace {
1996 /// The AVX ABI level for X86 targets.
1997 enum class X86AVXABILevel {
1998   None,
1999   AVX,
2000   AVX512
2001 };
2002 
2003 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2004 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2005   switch (AVXLevel) {
2006   case X86AVXABILevel::AVX512:
2007     return 512;
2008   case X86AVXABILevel::AVX:
2009     return 256;
2010   case X86AVXABILevel::None:
2011     return 128;
2012   }
2013   llvm_unreachable("Unknown AVXLevel");
2014 }
2015 
2016 /// X86_64ABIInfo - The X86_64 ABI information.
2017 class X86_64ABIInfo : public SwiftABIInfo {
2018   enum Class {
2019     Integer = 0,
2020     SSE,
2021     SSEUp,
2022     X87,
2023     X87Up,
2024     ComplexX87,
2025     NoClass,
2026     Memory
2027   };
2028 
2029   /// merge - Implement the X86_64 ABI merging algorithm.
2030   ///
2031   /// Merge an accumulating classification \arg Accum with a field
2032   /// classification \arg Field.
2033   ///
2034   /// \param Accum - The accumulating classification. This should
2035   /// always be either NoClass or the result of a previous merge
2036   /// call. In addition, this should never be Memory (the caller
2037   /// should just return Memory for the aggregate).
2038   static Class merge(Class Accum, Class Field);
2039 
2040   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2041   ///
2042   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2043   /// final MEMORY or SSE classes when necessary.
2044   ///
2045   /// \param AggregateSize - The size of the current aggregate in
2046   /// the classification process.
2047   ///
2048   /// \param Lo - The classification for the parts of the type
2049   /// residing in the low word of the containing object.
2050   ///
2051   /// \param Hi - The classification for the parts of the type
2052   /// residing in the higher words of the containing object.
2053   ///
2054   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2055 
2056   /// classify - Determine the x86_64 register classes in which the
2057   /// given type T should be passed.
2058   ///
2059   /// \param Lo - The classification for the parts of the type
2060   /// residing in the low word of the containing object.
2061   ///
2062   /// \param Hi - The classification for the parts of the type
2063   /// residing in the high word of the containing object.
2064   ///
2065   /// \param OffsetBase - The bit offset of this type in the
2066   /// containing object.  Some parameters are classified different
2067   /// depending on whether they straddle an eightbyte boundary.
2068   ///
2069   /// \param isNamedArg - Whether the argument in question is a "named"
2070   /// argument, as used in AMD64-ABI 3.5.7.
2071   ///
2072   /// If a word is unused its result will be NoClass; if a type should
2073   /// be passed in Memory then at least the classification of \arg Lo
2074   /// will be Memory.
2075   ///
2076   /// The \arg Lo class will be NoClass iff the argument is ignored.
2077   ///
2078   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2079   /// also be ComplexX87.
2080   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2081                 bool isNamedArg) const;
2082 
2083   llvm::Type *GetByteVectorType(QualType Ty) const;
2084   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2085                                  unsigned IROffset, QualType SourceTy,
2086                                  unsigned SourceOffset) const;
2087   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2088                                      unsigned IROffset, QualType SourceTy,
2089                                      unsigned SourceOffset) const;
2090 
2091   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2092   /// such that the argument will be returned in memory.
2093   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2094 
2095   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2096   /// such that the argument will be passed in memory.
2097   ///
2098   /// \param freeIntRegs - The number of free integer registers remaining
2099   /// available.
2100   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2101 
2102   ABIArgInfo classifyReturnType(QualType RetTy) const;
2103 
2104   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2105                                   unsigned &neededInt, unsigned &neededSSE,
2106                                   bool isNamedArg) const;
2107 
2108   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2109                                        unsigned &NeededSSE) const;
2110 
2111   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2112                                            unsigned &NeededSSE) const;
2113 
2114   bool IsIllegalVectorType(QualType Ty) const;
2115 
2116   /// The 0.98 ABI revision clarified a lot of ambiguities,
2117   /// unfortunately in ways that were not always consistent with
2118   /// certain previous compilers.  In particular, platforms which
2119   /// required strict binary compatibility with older versions of GCC
2120   /// may need to exempt themselves.
2121   bool honorsRevision0_98() const {
2122     return !getTarget().getTriple().isOSDarwin();
2123   }
2124 
2125   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2126   /// classify it as INTEGER (for compatibility with older clang compilers).
2127   bool classifyIntegerMMXAsSSE() const {
2128     // Clang <= 3.8 did not do this.
2129     if (getContext().getLangOpts().getClangABICompat() <=
2130         LangOptions::ClangABI::Ver3_8)
2131       return false;
2132 
2133     const llvm::Triple &Triple = getTarget().getTriple();
2134     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2135       return false;
2136     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2137       return false;
2138     return true;
2139   }
2140 
2141   X86AVXABILevel AVXLevel;
2142   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2143   // 64-bit hardware.
2144   bool Has64BitPointers;
2145 
2146 public:
2147   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2148       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2149       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2150   }
2151 
2152   bool isPassedUsingAVXType(QualType type) const {
2153     unsigned neededInt, neededSSE;
2154     // The freeIntRegs argument doesn't matter here.
2155     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2156                                            /*isNamedArg*/true);
2157     if (info.isDirect()) {
2158       llvm::Type *ty = info.getCoerceToType();
2159       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2160         return (vectorTy->getBitWidth() > 128);
2161     }
2162     return false;
2163   }
2164 
2165   void computeInfo(CGFunctionInfo &FI) const override;
2166 
2167   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2168                     QualType Ty) const override;
2169   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2170                       QualType Ty) const override;
2171 
2172   bool has64BitPointers() const {
2173     return Has64BitPointers;
2174   }
2175 
2176   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2177                                     bool asReturnValue) const override {
2178     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2179   }
2180   bool isSwiftErrorInRegister() const override {
2181     return true;
2182   }
2183 };
2184 
2185 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2186 class WinX86_64ABIInfo : public SwiftABIInfo {
2187 public:
2188   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2189       : SwiftABIInfo(CGT),
2190         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2191 
2192   void computeInfo(CGFunctionInfo &FI) const override;
2193 
2194   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2195                     QualType Ty) const override;
2196 
2197   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2198     // FIXME: Assumes vectorcall is in use.
2199     return isX86VectorTypeForVectorCall(getContext(), Ty);
2200   }
2201 
2202   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2203                                          uint64_t NumMembers) const override {
2204     // FIXME: Assumes vectorcall is in use.
2205     return isX86VectorCallAggregateSmallEnough(NumMembers);
2206   }
2207 
2208   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2209                                     bool asReturnValue) const override {
2210     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2211   }
2212 
2213   bool isSwiftErrorInRegister() const override {
2214     return true;
2215   }
2216 
2217 private:
2218   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2219                       bool IsVectorCall, bool IsRegCall) const;
2220   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2221                                       const ABIArgInfo &current) const;
2222   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2223                              bool IsVectorCall, bool IsRegCall) const;
2224 
2225     bool IsMingw64;
2226 };
2227 
2228 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2229 public:
2230   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2231       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2232 
2233   const X86_64ABIInfo &getABIInfo() const {
2234     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2235   }
2236 
2237   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2238     return 7;
2239   }
2240 
2241   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2242                                llvm::Value *Address) const override {
2243     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2244 
2245     // 0-15 are the 16 integer registers.
2246     // 16 is %rip.
2247     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2248     return false;
2249   }
2250 
2251   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2252                                   StringRef Constraint,
2253                                   llvm::Type* Ty) const override {
2254     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2255   }
2256 
2257   bool isNoProtoCallVariadic(const CallArgList &args,
2258                              const FunctionNoProtoType *fnType) const override {
2259     // The default CC on x86-64 sets %al to the number of SSA
2260     // registers used, and GCC sets this when calling an unprototyped
2261     // function, so we override the default behavior.  However, don't do
2262     // that when AVX types are involved: the ABI explicitly states it is
2263     // undefined, and it doesn't work in practice because of how the ABI
2264     // defines varargs anyway.
2265     if (fnType->getCallConv() == CC_C) {
2266       bool HasAVXType = false;
2267       for (CallArgList::const_iterator
2268              it = args.begin(), ie = args.end(); it != ie; ++it) {
2269         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2270           HasAVXType = true;
2271           break;
2272         }
2273       }
2274 
2275       if (!HasAVXType)
2276         return true;
2277     }
2278 
2279     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2280   }
2281 
2282   llvm::Constant *
2283   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2284     unsigned Sig = (0xeb << 0) | // jmp rel8
2285                    (0x06 << 8) | //           .+0x08
2286                    ('v' << 16) |
2287                    ('2' << 24);
2288     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2289   }
2290 
2291   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2292                            CodeGen::CodeGenModule &CGM) const override {
2293     if (GV->isDeclaration())
2294       return;
2295     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2296       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2297         llvm::Function *Fn = cast<llvm::Function>(GV);
2298         Fn->addFnAttr("stackrealign");
2299       }
2300       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2301         llvm::Function *Fn = cast<llvm::Function>(GV);
2302         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2303       }
2304     }
2305   }
2306 };
2307 
2308 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2309 public:
2310   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2311     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2312 
2313   void getDependentLibraryOption(llvm::StringRef Lib,
2314                                  llvm::SmallString<24> &Opt) const override {
2315     Opt = "\01";
2316     // If the argument contains a space, enclose it in quotes.
2317     if (Lib.find(" ") != StringRef::npos)
2318       Opt += "\"" + Lib.str() + "\"";
2319     else
2320       Opt += Lib;
2321   }
2322 };
2323 
2324 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2325   // If the argument does not end in .lib, automatically add the suffix.
2326   // If the argument contains a space, enclose it in quotes.
2327   // This matches the behavior of MSVC.
2328   bool Quote = (Lib.find(" ") != StringRef::npos);
2329   std::string ArgStr = Quote ? "\"" : "";
2330   ArgStr += Lib;
2331   if (!Lib.endswith_lower(".lib"))
2332     ArgStr += ".lib";
2333   ArgStr += Quote ? "\"" : "";
2334   return ArgStr;
2335 }
2336 
2337 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2338 public:
2339   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2340         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2341         unsigned NumRegisterParameters)
2342     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2343         Win32StructABI, NumRegisterParameters, false) {}
2344 
2345   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2346                            CodeGen::CodeGenModule &CGM) const override;
2347 
2348   void getDependentLibraryOption(llvm::StringRef Lib,
2349                                  llvm::SmallString<24> &Opt) const override {
2350     Opt = "/DEFAULTLIB:";
2351     Opt += qualifyWindowsLibrary(Lib);
2352   }
2353 
2354   void getDetectMismatchOption(llvm::StringRef Name,
2355                                llvm::StringRef Value,
2356                                llvm::SmallString<32> &Opt) const override {
2357     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2358   }
2359 };
2360 
2361 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2362                                           CodeGen::CodeGenModule &CGM) {
2363   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2364 
2365     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2366       Fn->addFnAttr("stack-probe-size",
2367                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2368     if (CGM.getCodeGenOpts().NoStackArgProbe)
2369       Fn->addFnAttr("no-stack-arg-probe");
2370   }
2371 }
2372 
2373 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2374     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2375   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2376   if (GV->isDeclaration())
2377     return;
2378   addStackProbeTargetAttributes(D, GV, CGM);
2379 }
2380 
2381 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2382 public:
2383   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2384                              X86AVXABILevel AVXLevel)
2385       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2386 
2387   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2388                            CodeGen::CodeGenModule &CGM) const override;
2389 
2390   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2391     return 7;
2392   }
2393 
2394   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2395                                llvm::Value *Address) const override {
2396     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2397 
2398     // 0-15 are the 16 integer registers.
2399     // 16 is %rip.
2400     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2401     return false;
2402   }
2403 
2404   void getDependentLibraryOption(llvm::StringRef Lib,
2405                                  llvm::SmallString<24> &Opt) const override {
2406     Opt = "/DEFAULTLIB:";
2407     Opt += qualifyWindowsLibrary(Lib);
2408   }
2409 
2410   void getDetectMismatchOption(llvm::StringRef Name,
2411                                llvm::StringRef Value,
2412                                llvm::SmallString<32> &Opt) const override {
2413     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2414   }
2415 };
2416 
2417 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2418     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2419   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2420   if (GV->isDeclaration())
2421     return;
2422   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2423     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2424       llvm::Function *Fn = cast<llvm::Function>(GV);
2425       Fn->addFnAttr("stackrealign");
2426     }
2427     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2428       llvm::Function *Fn = cast<llvm::Function>(GV);
2429       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2430     }
2431   }
2432 
2433   addStackProbeTargetAttributes(D, GV, CGM);
2434 }
2435 }
2436 
2437 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2438                               Class &Hi) const {
2439   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2440   //
2441   // (a) If one of the classes is Memory, the whole argument is passed in
2442   //     memory.
2443   //
2444   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2445   //     memory.
2446   //
2447   // (c) If the size of the aggregate exceeds two eightbytes and the first
2448   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2449   //     argument is passed in memory. NOTE: This is necessary to keep the
2450   //     ABI working for processors that don't support the __m256 type.
2451   //
2452   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2453   //
2454   // Some of these are enforced by the merging logic.  Others can arise
2455   // only with unions; for example:
2456   //   union { _Complex double; unsigned; }
2457   //
2458   // Note that clauses (b) and (c) were added in 0.98.
2459   //
2460   if (Hi == Memory)
2461     Lo = Memory;
2462   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2463     Lo = Memory;
2464   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2465     Lo = Memory;
2466   if (Hi == SSEUp && Lo != SSE)
2467     Hi = SSE;
2468 }
2469 
2470 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2471   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2472   // classified recursively so that always two fields are
2473   // considered. The resulting class is calculated according to
2474   // the classes of the fields in the eightbyte:
2475   //
2476   // (a) If both classes are equal, this is the resulting class.
2477   //
2478   // (b) If one of the classes is NO_CLASS, the resulting class is
2479   // the other class.
2480   //
2481   // (c) If one of the classes is MEMORY, the result is the MEMORY
2482   // class.
2483   //
2484   // (d) If one of the classes is INTEGER, the result is the
2485   // INTEGER.
2486   //
2487   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2488   // MEMORY is used as class.
2489   //
2490   // (f) Otherwise class SSE is used.
2491 
2492   // Accum should never be memory (we should have returned) or
2493   // ComplexX87 (because this cannot be passed in a structure).
2494   assert((Accum != Memory && Accum != ComplexX87) &&
2495          "Invalid accumulated classification during merge.");
2496   if (Accum == Field || Field == NoClass)
2497     return Accum;
2498   if (Field == Memory)
2499     return Memory;
2500   if (Accum == NoClass)
2501     return Field;
2502   if (Accum == Integer || Field == Integer)
2503     return Integer;
2504   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2505       Accum == X87 || Accum == X87Up)
2506     return Memory;
2507   return SSE;
2508 }
2509 
2510 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2511                              Class &Lo, Class &Hi, bool isNamedArg) const {
2512   // FIXME: This code can be simplified by introducing a simple value class for
2513   // Class pairs with appropriate constructor methods for the various
2514   // situations.
2515 
2516   // FIXME: Some of the split computations are wrong; unaligned vectors
2517   // shouldn't be passed in registers for example, so there is no chance they
2518   // can straddle an eightbyte. Verify & simplify.
2519 
2520   Lo = Hi = NoClass;
2521 
2522   Class &Current = OffsetBase < 64 ? Lo : Hi;
2523   Current = Memory;
2524 
2525   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2526     BuiltinType::Kind k = BT->getKind();
2527 
2528     if (k == BuiltinType::Void) {
2529       Current = NoClass;
2530     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2531       Lo = Integer;
2532       Hi = Integer;
2533     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2534       Current = Integer;
2535     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2536       Current = SSE;
2537     } else if (k == BuiltinType::LongDouble) {
2538       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2539       if (LDF == &llvm::APFloat::IEEEquad()) {
2540         Lo = SSE;
2541         Hi = SSEUp;
2542       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2543         Lo = X87;
2544         Hi = X87Up;
2545       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2546         Current = SSE;
2547       } else
2548         llvm_unreachable("unexpected long double representation!");
2549     }
2550     // FIXME: _Decimal32 and _Decimal64 are SSE.
2551     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2552     return;
2553   }
2554 
2555   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2556     // Classify the underlying integer type.
2557     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2558     return;
2559   }
2560 
2561   if (Ty->hasPointerRepresentation()) {
2562     Current = Integer;
2563     return;
2564   }
2565 
2566   if (Ty->isMemberPointerType()) {
2567     if (Ty->isMemberFunctionPointerType()) {
2568       if (Has64BitPointers) {
2569         // If Has64BitPointers, this is an {i64, i64}, so classify both
2570         // Lo and Hi now.
2571         Lo = Hi = Integer;
2572       } else {
2573         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2574         // straddles an eightbyte boundary, Hi should be classified as well.
2575         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2576         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2577         if (EB_FuncPtr != EB_ThisAdj) {
2578           Lo = Hi = Integer;
2579         } else {
2580           Current = Integer;
2581         }
2582       }
2583     } else {
2584       Current = Integer;
2585     }
2586     return;
2587   }
2588 
2589   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2590     uint64_t Size = getContext().getTypeSize(VT);
2591     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2592       // gcc passes the following as integer:
2593       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2594       // 2 bytes - <2 x char>, <1 x short>
2595       // 1 byte  - <1 x char>
2596       Current = Integer;
2597 
2598       // If this type crosses an eightbyte boundary, it should be
2599       // split.
2600       uint64_t EB_Lo = (OffsetBase) / 64;
2601       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2602       if (EB_Lo != EB_Hi)
2603         Hi = Lo;
2604     } else if (Size == 64) {
2605       QualType ElementType = VT->getElementType();
2606 
2607       // gcc passes <1 x double> in memory. :(
2608       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2609         return;
2610 
2611       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2612       // pass them as integer.  For platforms where clang is the de facto
2613       // platform compiler, we must continue to use integer.
2614       if (!classifyIntegerMMXAsSSE() &&
2615           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2616            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2617            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2618            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2619         Current = Integer;
2620       else
2621         Current = SSE;
2622 
2623       // If this type crosses an eightbyte boundary, it should be
2624       // split.
2625       if (OffsetBase && OffsetBase != 64)
2626         Hi = Lo;
2627     } else if (Size == 128 ||
2628                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2629       // Arguments of 256-bits are split into four eightbyte chunks. The
2630       // least significant one belongs to class SSE and all the others to class
2631       // SSEUP. The original Lo and Hi design considers that types can't be
2632       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2633       // This design isn't correct for 256-bits, but since there're no cases
2634       // where the upper parts would need to be inspected, avoid adding
2635       // complexity and just consider Hi to match the 64-256 part.
2636       //
2637       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2638       // registers if they are "named", i.e. not part of the "..." of a
2639       // variadic function.
2640       //
2641       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2642       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2643       Lo = SSE;
2644       Hi = SSEUp;
2645     }
2646     return;
2647   }
2648 
2649   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2650     QualType ET = getContext().getCanonicalType(CT->getElementType());
2651 
2652     uint64_t Size = getContext().getTypeSize(Ty);
2653     if (ET->isIntegralOrEnumerationType()) {
2654       if (Size <= 64)
2655         Current = Integer;
2656       else if (Size <= 128)
2657         Lo = Hi = Integer;
2658     } else if (ET == getContext().FloatTy) {
2659       Current = SSE;
2660     } else if (ET == getContext().DoubleTy) {
2661       Lo = Hi = SSE;
2662     } else if (ET == getContext().LongDoubleTy) {
2663       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2664       if (LDF == &llvm::APFloat::IEEEquad())
2665         Current = Memory;
2666       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2667         Current = ComplexX87;
2668       else if (LDF == &llvm::APFloat::IEEEdouble())
2669         Lo = Hi = SSE;
2670       else
2671         llvm_unreachable("unexpected long double representation!");
2672     }
2673 
2674     // If this complex type crosses an eightbyte boundary then it
2675     // should be split.
2676     uint64_t EB_Real = (OffsetBase) / 64;
2677     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2678     if (Hi == NoClass && EB_Real != EB_Imag)
2679       Hi = Lo;
2680 
2681     return;
2682   }
2683 
2684   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2685     // Arrays are treated like structures.
2686 
2687     uint64_t Size = getContext().getTypeSize(Ty);
2688 
2689     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2690     // than eight eightbytes, ..., it has class MEMORY.
2691     if (Size > 512)
2692       return;
2693 
2694     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2695     // fields, it has class MEMORY.
2696     //
2697     // Only need to check alignment of array base.
2698     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2699       return;
2700 
2701     // Otherwise implement simplified merge. We could be smarter about
2702     // this, but it isn't worth it and would be harder to verify.
2703     Current = NoClass;
2704     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2705     uint64_t ArraySize = AT->getSize().getZExtValue();
2706 
2707     // The only case a 256-bit wide vector could be used is when the array
2708     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2709     // to work for sizes wider than 128, early check and fallback to memory.
2710     //
2711     if (Size > 128 &&
2712         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2713       return;
2714 
2715     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2716       Class FieldLo, FieldHi;
2717       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2718       Lo = merge(Lo, FieldLo);
2719       Hi = merge(Hi, FieldHi);
2720       if (Lo == Memory || Hi == Memory)
2721         break;
2722     }
2723 
2724     postMerge(Size, Lo, Hi);
2725     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2726     return;
2727   }
2728 
2729   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2730     uint64_t Size = getContext().getTypeSize(Ty);
2731 
2732     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2733     // than eight eightbytes, ..., it has class MEMORY.
2734     if (Size > 512)
2735       return;
2736 
2737     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2738     // copy constructor or a non-trivial destructor, it is passed by invisible
2739     // reference.
2740     if (getRecordArgABI(RT, getCXXABI()))
2741       return;
2742 
2743     const RecordDecl *RD = RT->getDecl();
2744 
2745     // Assume variable sized types are passed in memory.
2746     if (RD->hasFlexibleArrayMember())
2747       return;
2748 
2749     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2750 
2751     // Reset Lo class, this will be recomputed.
2752     Current = NoClass;
2753 
2754     // If this is a C++ record, classify the bases first.
2755     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2756       for (const auto &I : CXXRD->bases()) {
2757         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2758                "Unexpected base class!");
2759         const CXXRecordDecl *Base =
2760           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2761 
2762         // Classify this field.
2763         //
2764         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2765         // single eightbyte, each is classified separately. Each eightbyte gets
2766         // initialized to class NO_CLASS.
2767         Class FieldLo, FieldHi;
2768         uint64_t Offset =
2769           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2770         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2771         Lo = merge(Lo, FieldLo);
2772         Hi = merge(Hi, FieldHi);
2773         if (Lo == Memory || Hi == Memory) {
2774           postMerge(Size, Lo, Hi);
2775           return;
2776         }
2777       }
2778     }
2779 
2780     // Classify the fields one at a time, merging the results.
2781     unsigned idx = 0;
2782     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2783            i != e; ++i, ++idx) {
2784       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2785       bool BitField = i->isBitField();
2786 
2787       // Ignore padding bit-fields.
2788       if (BitField && i->isUnnamedBitfield())
2789         continue;
2790 
2791       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2792       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2793       //
2794       // The only case a 256-bit wide vector could be used is when the struct
2795       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2796       // to work for sizes wider than 128, early check and fallback to memory.
2797       //
2798       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2799                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2800         Lo = Memory;
2801         postMerge(Size, Lo, Hi);
2802         return;
2803       }
2804       // Note, skip this test for bit-fields, see below.
2805       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2806         Lo = Memory;
2807         postMerge(Size, Lo, Hi);
2808         return;
2809       }
2810 
2811       // Classify this field.
2812       //
2813       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2814       // exceeds a single eightbyte, each is classified
2815       // separately. Each eightbyte gets initialized to class
2816       // NO_CLASS.
2817       Class FieldLo, FieldHi;
2818 
2819       // Bit-fields require special handling, they do not force the
2820       // structure to be passed in memory even if unaligned, and
2821       // therefore they can straddle an eightbyte.
2822       if (BitField) {
2823         assert(!i->isUnnamedBitfield());
2824         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2825         uint64_t Size = i->getBitWidthValue(getContext());
2826 
2827         uint64_t EB_Lo = Offset / 64;
2828         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2829 
2830         if (EB_Lo) {
2831           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2832           FieldLo = NoClass;
2833           FieldHi = Integer;
2834         } else {
2835           FieldLo = Integer;
2836           FieldHi = EB_Hi ? Integer : NoClass;
2837         }
2838       } else
2839         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2840       Lo = merge(Lo, FieldLo);
2841       Hi = merge(Hi, FieldHi);
2842       if (Lo == Memory || Hi == Memory)
2843         break;
2844     }
2845 
2846     postMerge(Size, Lo, Hi);
2847   }
2848 }
2849 
2850 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2851   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2852   // place naturally.
2853   if (!isAggregateTypeForABI(Ty)) {
2854     // Treat an enum type as its underlying type.
2855     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2856       Ty = EnumTy->getDecl()->getIntegerType();
2857 
2858     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2859                                           : ABIArgInfo::getDirect());
2860   }
2861 
2862   return getNaturalAlignIndirect(Ty);
2863 }
2864 
2865 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2866   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2867     uint64_t Size = getContext().getTypeSize(VecTy);
2868     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2869     if (Size <= 64 || Size > LargestVector)
2870       return true;
2871   }
2872 
2873   return false;
2874 }
2875 
2876 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2877                                             unsigned freeIntRegs) const {
2878   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2879   // place naturally.
2880   //
2881   // This assumption is optimistic, as there could be free registers available
2882   // when we need to pass this argument in memory, and LLVM could try to pass
2883   // the argument in the free register. This does not seem to happen currently,
2884   // but this code would be much safer if we could mark the argument with
2885   // 'onstack'. See PR12193.
2886   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2887     // Treat an enum type as its underlying type.
2888     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2889       Ty = EnumTy->getDecl()->getIntegerType();
2890 
2891     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2892                                           : ABIArgInfo::getDirect());
2893   }
2894 
2895   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2896     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2897 
2898   // Compute the byval alignment. We specify the alignment of the byval in all
2899   // cases so that the mid-level optimizer knows the alignment of the byval.
2900   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2901 
2902   // Attempt to avoid passing indirect results using byval when possible. This
2903   // is important for good codegen.
2904   //
2905   // We do this by coercing the value into a scalar type which the backend can
2906   // handle naturally (i.e., without using byval).
2907   //
2908   // For simplicity, we currently only do this when we have exhausted all of the
2909   // free integer registers. Doing this when there are free integer registers
2910   // would require more care, as we would have to ensure that the coerced value
2911   // did not claim the unused register. That would require either reording the
2912   // arguments to the function (so that any subsequent inreg values came first),
2913   // or only doing this optimization when there were no following arguments that
2914   // might be inreg.
2915   //
2916   // We currently expect it to be rare (particularly in well written code) for
2917   // arguments to be passed on the stack when there are still free integer
2918   // registers available (this would typically imply large structs being passed
2919   // by value), so this seems like a fair tradeoff for now.
2920   //
2921   // We can revisit this if the backend grows support for 'onstack' parameter
2922   // attributes. See PR12193.
2923   if (freeIntRegs == 0) {
2924     uint64_t Size = getContext().getTypeSize(Ty);
2925 
2926     // If this type fits in an eightbyte, coerce it into the matching integral
2927     // type, which will end up on the stack (with alignment 8).
2928     if (Align == 8 && Size <= 64)
2929       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2930                                                           Size));
2931   }
2932 
2933   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2934 }
2935 
2936 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2937 /// register. Pick an LLVM IR type that will be passed as a vector register.
2938 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2939   // Wrapper structs/arrays that only contain vectors are passed just like
2940   // vectors; strip them off if present.
2941   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2942     Ty = QualType(InnerTy, 0);
2943 
2944   llvm::Type *IRType = CGT.ConvertType(Ty);
2945   if (isa<llvm::VectorType>(IRType) ||
2946       IRType->getTypeID() == llvm::Type::FP128TyID)
2947     return IRType;
2948 
2949   // We couldn't find the preferred IR vector type for 'Ty'.
2950   uint64_t Size = getContext().getTypeSize(Ty);
2951   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2952 
2953   // Return a LLVM IR vector type based on the size of 'Ty'.
2954   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2955                                Size / 64);
2956 }
2957 
2958 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2959 /// is known to either be off the end of the specified type or being in
2960 /// alignment padding.  The user type specified is known to be at most 128 bits
2961 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2962 /// classification that put one of the two halves in the INTEGER class.
2963 ///
2964 /// It is conservatively correct to return false.
2965 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2966                                   unsigned EndBit, ASTContext &Context) {
2967   // If the bytes being queried are off the end of the type, there is no user
2968   // data hiding here.  This handles analysis of builtins, vectors and other
2969   // types that don't contain interesting padding.
2970   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2971   if (TySize <= StartBit)
2972     return true;
2973 
2974   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2975     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2976     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2977 
2978     // Check each element to see if the element overlaps with the queried range.
2979     for (unsigned i = 0; i != NumElts; ++i) {
2980       // If the element is after the span we care about, then we're done..
2981       unsigned EltOffset = i*EltSize;
2982       if (EltOffset >= EndBit) break;
2983 
2984       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2985       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2986                                  EndBit-EltOffset, Context))
2987         return false;
2988     }
2989     // If it overlaps no elements, then it is safe to process as padding.
2990     return true;
2991   }
2992 
2993   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2994     const RecordDecl *RD = RT->getDecl();
2995     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2996 
2997     // If this is a C++ record, check the bases first.
2998     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2999       for (const auto &I : CXXRD->bases()) {
3000         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3001                "Unexpected base class!");
3002         const CXXRecordDecl *Base =
3003           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3004 
3005         // If the base is after the span we care about, ignore it.
3006         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3007         if (BaseOffset >= EndBit) continue;
3008 
3009         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3010         if (!BitsContainNoUserData(I.getType(), BaseStart,
3011                                    EndBit-BaseOffset, Context))
3012           return false;
3013       }
3014     }
3015 
3016     // Verify that no field has data that overlaps the region of interest.  Yes
3017     // this could be sped up a lot by being smarter about queried fields,
3018     // however we're only looking at structs up to 16 bytes, so we don't care
3019     // much.
3020     unsigned idx = 0;
3021     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3022          i != e; ++i, ++idx) {
3023       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3024 
3025       // If we found a field after the region we care about, then we're done.
3026       if (FieldOffset >= EndBit) break;
3027 
3028       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3029       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3030                                  Context))
3031         return false;
3032     }
3033 
3034     // If nothing in this record overlapped the area of interest, then we're
3035     // clean.
3036     return true;
3037   }
3038 
3039   return false;
3040 }
3041 
3042 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3043 /// float member at the specified offset.  For example, {int,{float}} has a
3044 /// float at offset 4.  It is conservatively correct for this routine to return
3045 /// false.
3046 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3047                                   const llvm::DataLayout &TD) {
3048   // Base case if we find a float.
3049   if (IROffset == 0 && IRType->isFloatTy())
3050     return true;
3051 
3052   // If this is a struct, recurse into the field at the specified offset.
3053   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3054     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3055     unsigned Elt = SL->getElementContainingOffset(IROffset);
3056     IROffset -= SL->getElementOffset(Elt);
3057     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3058   }
3059 
3060   // If this is an array, recurse into the field at the specified offset.
3061   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3062     llvm::Type *EltTy = ATy->getElementType();
3063     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3064     IROffset -= IROffset/EltSize*EltSize;
3065     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3066   }
3067 
3068   return false;
3069 }
3070 
3071 
3072 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3073 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3074 llvm::Type *X86_64ABIInfo::
3075 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3076                    QualType SourceTy, unsigned SourceOffset) const {
3077   // The only three choices we have are either double, <2 x float>, or float. We
3078   // pass as float if the last 4 bytes is just padding.  This happens for
3079   // structs that contain 3 floats.
3080   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3081                             SourceOffset*8+64, getContext()))
3082     return llvm::Type::getFloatTy(getVMContext());
3083 
3084   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3085   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3086   // case.
3087   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3088       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3089     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3090 
3091   return llvm::Type::getDoubleTy(getVMContext());
3092 }
3093 
3094 
3095 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3096 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3097 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3098 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3099 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3100 /// etc).
3101 ///
3102 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3103 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3104 /// the 8-byte value references.  PrefType may be null.
3105 ///
3106 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3107 /// an offset into this that we're processing (which is always either 0 or 8).
3108 ///
3109 llvm::Type *X86_64ABIInfo::
3110 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3111                        QualType SourceTy, unsigned SourceOffset) const {
3112   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3113   // returning an 8-byte unit starting with it.  See if we can safely use it.
3114   if (IROffset == 0) {
3115     // Pointers and int64's always fill the 8-byte unit.
3116     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3117         IRType->isIntegerTy(64))
3118       return IRType;
3119 
3120     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3121     // goodness in the source type is just tail padding.  This is allowed to
3122     // kick in for struct {double,int} on the int, but not on
3123     // struct{double,int,int} because we wouldn't return the second int.  We
3124     // have to do this analysis on the source type because we can't depend on
3125     // unions being lowered a specific way etc.
3126     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3127         IRType->isIntegerTy(32) ||
3128         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3129       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3130           cast<llvm::IntegerType>(IRType)->getBitWidth();
3131 
3132       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3133                                 SourceOffset*8+64, getContext()))
3134         return IRType;
3135     }
3136   }
3137 
3138   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3139     // If this is a struct, recurse into the field at the specified offset.
3140     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3141     if (IROffset < SL->getSizeInBytes()) {
3142       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3143       IROffset -= SL->getElementOffset(FieldIdx);
3144 
3145       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3146                                     SourceTy, SourceOffset);
3147     }
3148   }
3149 
3150   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3151     llvm::Type *EltTy = ATy->getElementType();
3152     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3153     unsigned EltOffset = IROffset/EltSize*EltSize;
3154     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3155                                   SourceOffset);
3156   }
3157 
3158   // Okay, we don't have any better idea of what to pass, so we pass this in an
3159   // integer register that isn't too big to fit the rest of the struct.
3160   unsigned TySizeInBytes =
3161     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3162 
3163   assert(TySizeInBytes != SourceOffset && "Empty field?");
3164 
3165   // It is always safe to classify this as an integer type up to i64 that
3166   // isn't larger than the structure.
3167   return llvm::IntegerType::get(getVMContext(),
3168                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3169 }
3170 
3171 
3172 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3173 /// be used as elements of a two register pair to pass or return, return a
3174 /// first class aggregate to represent them.  For example, if the low part of
3175 /// a by-value argument should be passed as i32* and the high part as float,
3176 /// return {i32*, float}.
3177 static llvm::Type *
3178 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3179                            const llvm::DataLayout &TD) {
3180   // In order to correctly satisfy the ABI, we need to the high part to start
3181   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3182   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3183   // the second element at offset 8.  Check for this:
3184   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3185   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3186   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3187   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3188 
3189   // To handle this, we have to increase the size of the low part so that the
3190   // second element will start at an 8 byte offset.  We can't increase the size
3191   // of the second element because it might make us access off the end of the
3192   // struct.
3193   if (HiStart != 8) {
3194     // There are usually two sorts of types the ABI generation code can produce
3195     // for the low part of a pair that aren't 8 bytes in size: float or
3196     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3197     // NaCl).
3198     // Promote these to a larger type.
3199     if (Lo->isFloatTy())
3200       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3201     else {
3202       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3203              && "Invalid/unknown lo type");
3204       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3205     }
3206   }
3207 
3208   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3209 
3210   // Verify that the second element is at an 8-byte offset.
3211   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3212          "Invalid x86-64 argument pair!");
3213   return Result;
3214 }
3215 
3216 ABIArgInfo X86_64ABIInfo::
3217 classifyReturnType(QualType RetTy) const {
3218   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3219   // classification algorithm.
3220   X86_64ABIInfo::Class Lo, Hi;
3221   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3222 
3223   // Check some invariants.
3224   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3225   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3226 
3227   llvm::Type *ResType = nullptr;
3228   switch (Lo) {
3229   case NoClass:
3230     if (Hi == NoClass)
3231       return ABIArgInfo::getIgnore();
3232     // If the low part is just padding, it takes no register, leave ResType
3233     // null.
3234     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3235            "Unknown missing lo part");
3236     break;
3237 
3238   case SSEUp:
3239   case X87Up:
3240     llvm_unreachable("Invalid classification for lo word.");
3241 
3242     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3243     // hidden argument.
3244   case Memory:
3245     return getIndirectReturnResult(RetTy);
3246 
3247     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3248     // available register of the sequence %rax, %rdx is used.
3249   case Integer:
3250     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3251 
3252     // If we have a sign or zero extended integer, make sure to return Extend
3253     // so that the parameter gets the right LLVM IR attributes.
3254     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3255       // Treat an enum type as its underlying type.
3256       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3257         RetTy = EnumTy->getDecl()->getIntegerType();
3258 
3259       if (RetTy->isIntegralOrEnumerationType() &&
3260           RetTy->isPromotableIntegerType())
3261         return ABIArgInfo::getExtend(RetTy);
3262     }
3263     break;
3264 
3265     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3266     // available SSE register of the sequence %xmm0, %xmm1 is used.
3267   case SSE:
3268     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3269     break;
3270 
3271     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3272     // returned on the X87 stack in %st0 as 80-bit x87 number.
3273   case X87:
3274     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3275     break;
3276 
3277     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3278     // part of the value is returned in %st0 and the imaginary part in
3279     // %st1.
3280   case ComplexX87:
3281     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3282     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3283                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3284     break;
3285   }
3286 
3287   llvm::Type *HighPart = nullptr;
3288   switch (Hi) {
3289     // Memory was handled previously and X87 should
3290     // never occur as a hi class.
3291   case Memory:
3292   case X87:
3293     llvm_unreachable("Invalid classification for hi word.");
3294 
3295   case ComplexX87: // Previously handled.
3296   case NoClass:
3297     break;
3298 
3299   case Integer:
3300     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3301     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3302       return ABIArgInfo::getDirect(HighPart, 8);
3303     break;
3304   case SSE:
3305     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3306     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3307       return ABIArgInfo::getDirect(HighPart, 8);
3308     break;
3309 
3310     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3311     // is passed in the next available eightbyte chunk if the last used
3312     // vector register.
3313     //
3314     // SSEUP should always be preceded by SSE, just widen.
3315   case SSEUp:
3316     assert(Lo == SSE && "Unexpected SSEUp classification.");
3317     ResType = GetByteVectorType(RetTy);
3318     break;
3319 
3320     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3321     // returned together with the previous X87 value in %st0.
3322   case X87Up:
3323     // If X87Up is preceded by X87, we don't need to do
3324     // anything. However, in some cases with unions it may not be
3325     // preceded by X87. In such situations we follow gcc and pass the
3326     // extra bits in an SSE reg.
3327     if (Lo != X87) {
3328       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3329       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3330         return ABIArgInfo::getDirect(HighPart, 8);
3331     }
3332     break;
3333   }
3334 
3335   // If a high part was specified, merge it together with the low part.  It is
3336   // known to pass in the high eightbyte of the result.  We do this by forming a
3337   // first class struct aggregate with the high and low part: {low, high}
3338   if (HighPart)
3339     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3340 
3341   return ABIArgInfo::getDirect(ResType);
3342 }
3343 
3344 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3345   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3346   bool isNamedArg)
3347   const
3348 {
3349   Ty = useFirstFieldIfTransparentUnion(Ty);
3350 
3351   X86_64ABIInfo::Class Lo, Hi;
3352   classify(Ty, 0, Lo, Hi, isNamedArg);
3353 
3354   // Check some invariants.
3355   // FIXME: Enforce these by construction.
3356   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3357   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3358 
3359   neededInt = 0;
3360   neededSSE = 0;
3361   llvm::Type *ResType = nullptr;
3362   switch (Lo) {
3363   case NoClass:
3364     if (Hi == NoClass)
3365       return ABIArgInfo::getIgnore();
3366     // If the low part is just padding, it takes no register, leave ResType
3367     // null.
3368     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3369            "Unknown missing lo part");
3370     break;
3371 
3372     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3373     // on the stack.
3374   case Memory:
3375 
3376     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3377     // COMPLEX_X87, it is passed in memory.
3378   case X87:
3379   case ComplexX87:
3380     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3381       ++neededInt;
3382     return getIndirectResult(Ty, freeIntRegs);
3383 
3384   case SSEUp:
3385   case X87Up:
3386     llvm_unreachable("Invalid classification for lo word.");
3387 
3388     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3389     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3390     // and %r9 is used.
3391   case Integer:
3392     ++neededInt;
3393 
3394     // Pick an 8-byte type based on the preferred type.
3395     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3396 
3397     // If we have a sign or zero extended integer, make sure to return Extend
3398     // so that the parameter gets the right LLVM IR attributes.
3399     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3400       // Treat an enum type as its underlying type.
3401       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3402         Ty = EnumTy->getDecl()->getIntegerType();
3403 
3404       if (Ty->isIntegralOrEnumerationType() &&
3405           Ty->isPromotableIntegerType())
3406         return ABIArgInfo::getExtend(Ty);
3407     }
3408 
3409     break;
3410 
3411     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3412     // available SSE register is used, the registers are taken in the
3413     // order from %xmm0 to %xmm7.
3414   case SSE: {
3415     llvm::Type *IRType = CGT.ConvertType(Ty);
3416     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3417     ++neededSSE;
3418     break;
3419   }
3420   }
3421 
3422   llvm::Type *HighPart = nullptr;
3423   switch (Hi) {
3424     // Memory was handled previously, ComplexX87 and X87 should
3425     // never occur as hi classes, and X87Up must be preceded by X87,
3426     // which is passed in memory.
3427   case Memory:
3428   case X87:
3429   case ComplexX87:
3430     llvm_unreachable("Invalid classification for hi word.");
3431 
3432   case NoClass: break;
3433 
3434   case Integer:
3435     ++neededInt;
3436     // Pick an 8-byte type based on the preferred type.
3437     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3438 
3439     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3440       return ABIArgInfo::getDirect(HighPart, 8);
3441     break;
3442 
3443     // X87Up generally doesn't occur here (long double is passed in
3444     // memory), except in situations involving unions.
3445   case X87Up:
3446   case SSE:
3447     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3448 
3449     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3450       return ABIArgInfo::getDirect(HighPart, 8);
3451 
3452     ++neededSSE;
3453     break;
3454 
3455     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3456     // eightbyte is passed in the upper half of the last used SSE
3457     // register.  This only happens when 128-bit vectors are passed.
3458   case SSEUp:
3459     assert(Lo == SSE && "Unexpected SSEUp classification");
3460     ResType = GetByteVectorType(Ty);
3461     break;
3462   }
3463 
3464   // If a high part was specified, merge it together with the low part.  It is
3465   // known to pass in the high eightbyte of the result.  We do this by forming a
3466   // first class struct aggregate with the high and low part: {low, high}
3467   if (HighPart)
3468     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3469 
3470   return ABIArgInfo::getDirect(ResType);
3471 }
3472 
3473 ABIArgInfo
3474 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3475                                              unsigned &NeededSSE) const {
3476   auto RT = Ty->getAs<RecordType>();
3477   assert(RT && "classifyRegCallStructType only valid with struct types");
3478 
3479   if (RT->getDecl()->hasFlexibleArrayMember())
3480     return getIndirectReturnResult(Ty);
3481 
3482   // Sum up bases
3483   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3484     if (CXXRD->isDynamicClass()) {
3485       NeededInt = NeededSSE = 0;
3486       return getIndirectReturnResult(Ty);
3487     }
3488 
3489     for (const auto &I : CXXRD->bases())
3490       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3491               .isIndirect()) {
3492         NeededInt = NeededSSE = 0;
3493         return getIndirectReturnResult(Ty);
3494       }
3495   }
3496 
3497   // Sum up members
3498   for (const auto *FD : RT->getDecl()->fields()) {
3499     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3500       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3501               .isIndirect()) {
3502         NeededInt = NeededSSE = 0;
3503         return getIndirectReturnResult(Ty);
3504       }
3505     } else {
3506       unsigned LocalNeededInt, LocalNeededSSE;
3507       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3508                                LocalNeededSSE, true)
3509               .isIndirect()) {
3510         NeededInt = NeededSSE = 0;
3511         return getIndirectReturnResult(Ty);
3512       }
3513       NeededInt += LocalNeededInt;
3514       NeededSSE += LocalNeededSSE;
3515     }
3516   }
3517 
3518   return ABIArgInfo::getDirect();
3519 }
3520 
3521 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3522                                                     unsigned &NeededInt,
3523                                                     unsigned &NeededSSE) const {
3524 
3525   NeededInt = 0;
3526   NeededSSE = 0;
3527 
3528   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3529 }
3530 
3531 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3532 
3533   const unsigned CallingConv = FI.getCallingConvention();
3534   // It is possible to force Win64 calling convention on any x86_64 target by
3535   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3536   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3537   if (CallingConv == llvm::CallingConv::Win64) {
3538     WinX86_64ABIInfo Win64ABIInfo(CGT);
3539     Win64ABIInfo.computeInfo(FI);
3540     return;
3541   }
3542 
3543   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3544 
3545   // Keep track of the number of assigned registers.
3546   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3547   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3548   unsigned NeededInt, NeededSSE;
3549 
3550   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3551     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3552         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3553       FI.getReturnInfo() =
3554           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3555       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3556         FreeIntRegs -= NeededInt;
3557         FreeSSERegs -= NeededSSE;
3558       } else {
3559         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3560       }
3561     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3562       // Complex Long Double Type is passed in Memory when Regcall
3563       // calling convention is used.
3564       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3565       if (getContext().getCanonicalType(CT->getElementType()) ==
3566           getContext().LongDoubleTy)
3567         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3568     } else
3569       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3570   }
3571 
3572   // If the return value is indirect, then the hidden argument is consuming one
3573   // integer register.
3574   if (FI.getReturnInfo().isIndirect())
3575     --FreeIntRegs;
3576 
3577   // The chain argument effectively gives us another free register.
3578   if (FI.isChainCall())
3579     ++FreeIntRegs;
3580 
3581   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3582   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3583   // get assigned (in left-to-right order) for passing as follows...
3584   unsigned ArgNo = 0;
3585   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3586        it != ie; ++it, ++ArgNo) {
3587     bool IsNamedArg = ArgNo < NumRequiredArgs;
3588 
3589     if (IsRegCall && it->type->isStructureOrClassType())
3590       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3591     else
3592       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3593                                       NeededSSE, IsNamedArg);
3594 
3595     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3596     // eightbyte of an argument, the whole argument is passed on the
3597     // stack. If registers have already been assigned for some
3598     // eightbytes of such an argument, the assignments get reverted.
3599     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3600       FreeIntRegs -= NeededInt;
3601       FreeSSERegs -= NeededSSE;
3602     } else {
3603       it->info = getIndirectResult(it->type, FreeIntRegs);
3604     }
3605   }
3606 }
3607 
3608 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3609                                          Address VAListAddr, QualType Ty) {
3610   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3611       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3612   llvm::Value *overflow_arg_area =
3613     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3614 
3615   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3616   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3617   // It isn't stated explicitly in the standard, but in practice we use
3618   // alignment greater than 16 where necessary.
3619   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3620   if (Align > CharUnits::fromQuantity(8)) {
3621     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3622                                                       Align);
3623   }
3624 
3625   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3626   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3627   llvm::Value *Res =
3628     CGF.Builder.CreateBitCast(overflow_arg_area,
3629                               llvm::PointerType::getUnqual(LTy));
3630 
3631   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3632   // l->overflow_arg_area + sizeof(type).
3633   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3634   // an 8 byte boundary.
3635 
3636   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3637   llvm::Value *Offset =
3638       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3639   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3640                                             "overflow_arg_area.next");
3641   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3642 
3643   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3644   return Address(Res, Align);
3645 }
3646 
3647 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3648                                  QualType Ty) const {
3649   // Assume that va_list type is correct; should be pointer to LLVM type:
3650   // struct {
3651   //   i32 gp_offset;
3652   //   i32 fp_offset;
3653   //   i8* overflow_arg_area;
3654   //   i8* reg_save_area;
3655   // };
3656   unsigned neededInt, neededSSE;
3657 
3658   Ty = getContext().getCanonicalType(Ty);
3659   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3660                                        /*isNamedArg*/false);
3661 
3662   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3663   // in the registers. If not go to step 7.
3664   if (!neededInt && !neededSSE)
3665     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3666 
3667   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3668   // general purpose registers needed to pass type and num_fp to hold
3669   // the number of floating point registers needed.
3670 
3671   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3672   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3673   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3674   //
3675   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3676   // register save space).
3677 
3678   llvm::Value *InRegs = nullptr;
3679   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3680   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3681   if (neededInt) {
3682     gp_offset_p =
3683         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3684                                     "gp_offset_p");
3685     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3686     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3687     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3688   }
3689 
3690   if (neededSSE) {
3691     fp_offset_p =
3692         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3693                                     "fp_offset_p");
3694     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3695     llvm::Value *FitsInFP =
3696       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3697     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3698     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3699   }
3700 
3701   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3702   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3703   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3704   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3705 
3706   // Emit code to load the value if it was passed in registers.
3707 
3708   CGF.EmitBlock(InRegBlock);
3709 
3710   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3711   // an offset of l->gp_offset and/or l->fp_offset. This may require
3712   // copying to a temporary location in case the parameter is passed
3713   // in different register classes or requires an alignment greater
3714   // than 8 for general purpose registers and 16 for XMM registers.
3715   //
3716   // FIXME: This really results in shameful code when we end up needing to
3717   // collect arguments from different places; often what should result in a
3718   // simple assembling of a structure from scattered addresses has many more
3719   // loads than necessary. Can we clean this up?
3720   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3721   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3722       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3723                                   "reg_save_area");
3724 
3725   Address RegAddr = Address::invalid();
3726   if (neededInt && neededSSE) {
3727     // FIXME: Cleanup.
3728     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3729     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3730     Address Tmp = CGF.CreateMemTemp(Ty);
3731     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3732     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3733     llvm::Type *TyLo = ST->getElementType(0);
3734     llvm::Type *TyHi = ST->getElementType(1);
3735     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3736            "Unexpected ABI info for mixed regs");
3737     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3738     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3739     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3740     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3741     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3742     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3743 
3744     // Copy the first element.
3745     // FIXME: Our choice of alignment here and below is probably pessimistic.
3746     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3747         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3748         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3749     CGF.Builder.CreateStore(V,
3750                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3751 
3752     // Copy the second element.
3753     V = CGF.Builder.CreateAlignedLoad(
3754         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3755         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3756     CharUnits Offset = CharUnits::fromQuantity(
3757                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3758     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3759 
3760     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3761   } else if (neededInt) {
3762     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3763                       CharUnits::fromQuantity(8));
3764     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3765 
3766     // Copy to a temporary if necessary to ensure the appropriate alignment.
3767     std::pair<CharUnits, CharUnits> SizeAlign =
3768         getContext().getTypeInfoInChars(Ty);
3769     uint64_t TySize = SizeAlign.first.getQuantity();
3770     CharUnits TyAlign = SizeAlign.second;
3771 
3772     // Copy into a temporary if the type is more aligned than the
3773     // register save area.
3774     if (TyAlign.getQuantity() > 8) {
3775       Address Tmp = CGF.CreateMemTemp(Ty);
3776       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3777       RegAddr = Tmp;
3778     }
3779 
3780   } else if (neededSSE == 1) {
3781     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3782                       CharUnits::fromQuantity(16));
3783     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3784   } else {
3785     assert(neededSSE == 2 && "Invalid number of needed registers!");
3786     // SSE registers are spaced 16 bytes apart in the register save
3787     // area, we need to collect the two eightbytes together.
3788     // The ABI isn't explicit about this, but it seems reasonable
3789     // to assume that the slots are 16-byte aligned, since the stack is
3790     // naturally 16-byte aligned and the prologue is expected to store
3791     // all the SSE registers to the RSA.
3792     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3793                                 CharUnits::fromQuantity(16));
3794     Address RegAddrHi =
3795       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3796                                              CharUnits::fromQuantity(16));
3797     llvm::Type *ST = AI.canHaveCoerceToType()
3798                          ? AI.getCoerceToType()
3799                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3800     llvm::Value *V;
3801     Address Tmp = CGF.CreateMemTemp(Ty);
3802     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3803     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3804         RegAddrLo, ST->getStructElementType(0)));
3805     CGF.Builder.CreateStore(V,
3806                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3807     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3808         RegAddrHi, ST->getStructElementType(1)));
3809     CGF.Builder.CreateStore(V,
3810           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3811 
3812     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3813   }
3814 
3815   // AMD64-ABI 3.5.7p5: Step 5. Set:
3816   // l->gp_offset = l->gp_offset + num_gp * 8
3817   // l->fp_offset = l->fp_offset + num_fp * 16.
3818   if (neededInt) {
3819     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3820     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3821                             gp_offset_p);
3822   }
3823   if (neededSSE) {
3824     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3825     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3826                             fp_offset_p);
3827   }
3828   CGF.EmitBranch(ContBlock);
3829 
3830   // Emit code to load the value if it was passed in memory.
3831 
3832   CGF.EmitBlock(InMemBlock);
3833   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3834 
3835   // Return the appropriate result.
3836 
3837   CGF.EmitBlock(ContBlock);
3838   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3839                                  "vaarg.addr");
3840   return ResAddr;
3841 }
3842 
3843 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3844                                    QualType Ty) const {
3845   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3846                           CGF.getContext().getTypeInfoInChars(Ty),
3847                           CharUnits::fromQuantity(8),
3848                           /*allowHigherAlign*/ false);
3849 }
3850 
3851 ABIArgInfo
3852 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3853                                     const ABIArgInfo &current) const {
3854   // Assumes vectorCall calling convention.
3855   const Type *Base = nullptr;
3856   uint64_t NumElts = 0;
3857 
3858   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3859       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3860     FreeSSERegs -= NumElts;
3861     return getDirectX86Hva();
3862   }
3863   return current;
3864 }
3865 
3866 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3867                                       bool IsReturnType, bool IsVectorCall,
3868                                       bool IsRegCall) const {
3869 
3870   if (Ty->isVoidType())
3871     return ABIArgInfo::getIgnore();
3872 
3873   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3874     Ty = EnumTy->getDecl()->getIntegerType();
3875 
3876   TypeInfo Info = getContext().getTypeInfo(Ty);
3877   uint64_t Width = Info.Width;
3878   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3879 
3880   const RecordType *RT = Ty->getAs<RecordType>();
3881   if (RT) {
3882     if (!IsReturnType) {
3883       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3884         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3885     }
3886 
3887     if (RT->getDecl()->hasFlexibleArrayMember())
3888       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3889 
3890   }
3891 
3892   const Type *Base = nullptr;
3893   uint64_t NumElts = 0;
3894   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3895   // other targets.
3896   if ((IsVectorCall || IsRegCall) &&
3897       isHomogeneousAggregate(Ty, Base, NumElts)) {
3898     if (IsRegCall) {
3899       if (FreeSSERegs >= NumElts) {
3900         FreeSSERegs -= NumElts;
3901         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3902           return ABIArgInfo::getDirect();
3903         return ABIArgInfo::getExpand();
3904       }
3905       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3906     } else if (IsVectorCall) {
3907       if (FreeSSERegs >= NumElts &&
3908           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3909         FreeSSERegs -= NumElts;
3910         return ABIArgInfo::getDirect();
3911       } else if (IsReturnType) {
3912         return ABIArgInfo::getExpand();
3913       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3914         // HVAs are delayed and reclassified in the 2nd step.
3915         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3916       }
3917     }
3918   }
3919 
3920   if (Ty->isMemberPointerType()) {
3921     // If the member pointer is represented by an LLVM int or ptr, pass it
3922     // directly.
3923     llvm::Type *LLTy = CGT.ConvertType(Ty);
3924     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3925       return ABIArgInfo::getDirect();
3926   }
3927 
3928   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3929     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3930     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3931     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3932       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3933 
3934     // Otherwise, coerce it to a small integer.
3935     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3936   }
3937 
3938   // Bool type is always extended to the ABI, other builtin types are not
3939   // extended.
3940   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3941   if (BT && BT->getKind() == BuiltinType::Bool)
3942     return ABIArgInfo::getExtend(Ty);
3943 
3944   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3945   // passes them indirectly through memory.
3946   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3947     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3948     if (LDF == &llvm::APFloat::x87DoubleExtended())
3949       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3950   }
3951 
3952   return ABIArgInfo::getDirect();
3953 }
3954 
3955 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3956                                              unsigned FreeSSERegs,
3957                                              bool IsVectorCall,
3958                                              bool IsRegCall) const {
3959   unsigned Count = 0;
3960   for (auto &I : FI.arguments()) {
3961     // Vectorcall in x64 only permits the first 6 arguments to be passed
3962     // as XMM/YMM registers.
3963     if (Count < VectorcallMaxParamNumAsReg)
3964       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3965     else {
3966       // Since these cannot be passed in registers, pretend no registers
3967       // are left.
3968       unsigned ZeroSSERegsAvail = 0;
3969       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
3970                         IsVectorCall, IsRegCall);
3971     }
3972     ++Count;
3973   }
3974 
3975   for (auto &I : FI.arguments()) {
3976     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
3977   }
3978 }
3979 
3980 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3981   bool IsVectorCall =
3982       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3983   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3984 
3985   unsigned FreeSSERegs = 0;
3986   if (IsVectorCall) {
3987     // We can use up to 4 SSE return registers with vectorcall.
3988     FreeSSERegs = 4;
3989   } else if (IsRegCall) {
3990     // RegCall gives us 16 SSE registers.
3991     FreeSSERegs = 16;
3992   }
3993 
3994   if (!getCXXABI().classifyReturnType(FI))
3995     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3996                                   IsVectorCall, IsRegCall);
3997 
3998   if (IsVectorCall) {
3999     // We can use up to 6 SSE register parameters with vectorcall.
4000     FreeSSERegs = 6;
4001   } else if (IsRegCall) {
4002     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4003     FreeSSERegs = 16;
4004   }
4005 
4006   if (IsVectorCall) {
4007     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4008   } else {
4009     for (auto &I : FI.arguments())
4010       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4011   }
4012 
4013 }
4014 
4015 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4016                                     QualType Ty) const {
4017 
4018   bool IsIndirect = false;
4019 
4020   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4021   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4022   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4023     uint64_t Width = getContext().getTypeSize(Ty);
4024     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4025   }
4026 
4027   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4028                           CGF.getContext().getTypeInfoInChars(Ty),
4029                           CharUnits::fromQuantity(8),
4030                           /*allowHigherAlign*/ false);
4031 }
4032 
4033 // PowerPC-32
4034 namespace {
4035 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4036 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4037   bool IsSoftFloatABI;
4038 
4039   CharUnits getParamTypeAlignment(QualType Ty) const;
4040 
4041 public:
4042   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4043       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4044 
4045   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4046                     QualType Ty) const override;
4047 };
4048 
4049 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4050 public:
4051   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4052       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4053 
4054   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4055     // This is recovered from gcc output.
4056     return 1; // r1 is the dedicated stack pointer
4057   }
4058 
4059   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4060                                llvm::Value *Address) const override;
4061 };
4062 }
4063 
4064 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4065   // Complex types are passed just like their elements
4066   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4067     Ty = CTy->getElementType();
4068 
4069   if (Ty->isVectorType())
4070     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4071                                                                        : 4);
4072 
4073   // For single-element float/vector structs, we consider the whole type
4074   // to have the same alignment requirements as its single element.
4075   const Type *AlignTy = nullptr;
4076   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4077     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4078     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4079         (BT && BT->isFloatingPoint()))
4080       AlignTy = EltType;
4081   }
4082 
4083   if (AlignTy)
4084     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4085   return CharUnits::fromQuantity(4);
4086 }
4087 
4088 // TODO: this implementation is now likely redundant with
4089 // DefaultABIInfo::EmitVAArg.
4090 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4091                                       QualType Ty) const {
4092   if (getTarget().getTriple().isOSDarwin()) {
4093     auto TI = getContext().getTypeInfoInChars(Ty);
4094     TI.second = getParamTypeAlignment(Ty);
4095 
4096     CharUnits SlotSize = CharUnits::fromQuantity(4);
4097     return emitVoidPtrVAArg(CGF, VAList, Ty,
4098                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4099                             /*AllowHigherAlign=*/true);
4100   }
4101 
4102   const unsigned OverflowLimit = 8;
4103   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4104     // TODO: Implement this. For now ignore.
4105     (void)CTy;
4106     return Address::invalid(); // FIXME?
4107   }
4108 
4109   // struct __va_list_tag {
4110   //   unsigned char gpr;
4111   //   unsigned char fpr;
4112   //   unsigned short reserved;
4113   //   void *overflow_arg_area;
4114   //   void *reg_save_area;
4115   // };
4116 
4117   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4118   bool isInt =
4119       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4120   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4121 
4122   // All aggregates are passed indirectly?  That doesn't seem consistent
4123   // with the argument-lowering code.
4124   bool isIndirect = Ty->isAggregateType();
4125 
4126   CGBuilderTy &Builder = CGF.Builder;
4127 
4128   // The calling convention either uses 1-2 GPRs or 1 FPR.
4129   Address NumRegsAddr = Address::invalid();
4130   if (isInt || IsSoftFloatABI) {
4131     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4132   } else {
4133     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4134   }
4135 
4136   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4137 
4138   // "Align" the register count when TY is i64.
4139   if (isI64 || (isF64 && IsSoftFloatABI)) {
4140     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4141     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4142   }
4143 
4144   llvm::Value *CC =
4145       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4146 
4147   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4148   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4149   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4150 
4151   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4152 
4153   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4154   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4155 
4156   // Case 1: consume registers.
4157   Address RegAddr = Address::invalid();
4158   {
4159     CGF.EmitBlock(UsingRegs);
4160 
4161     Address RegSaveAreaPtr =
4162       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4163     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4164                       CharUnits::fromQuantity(8));
4165     assert(RegAddr.getElementType() == CGF.Int8Ty);
4166 
4167     // Floating-point registers start after the general-purpose registers.
4168     if (!(isInt || IsSoftFloatABI)) {
4169       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4170                                                    CharUnits::fromQuantity(32));
4171     }
4172 
4173     // Get the address of the saved value by scaling the number of
4174     // registers we've used by the number of
4175     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4176     llvm::Value *RegOffset =
4177       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4178     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4179                                             RegAddr.getPointer(), RegOffset),
4180                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4181     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4182 
4183     // Increase the used-register count.
4184     NumRegs =
4185       Builder.CreateAdd(NumRegs,
4186                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4187     Builder.CreateStore(NumRegs, NumRegsAddr);
4188 
4189     CGF.EmitBranch(Cont);
4190   }
4191 
4192   // Case 2: consume space in the overflow area.
4193   Address MemAddr = Address::invalid();
4194   {
4195     CGF.EmitBlock(UsingOverflow);
4196 
4197     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4198 
4199     // Everything in the overflow area is rounded up to a size of at least 4.
4200     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4201 
4202     CharUnits Size;
4203     if (!isIndirect) {
4204       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4205       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4206     } else {
4207       Size = CGF.getPointerSize();
4208     }
4209 
4210     Address OverflowAreaAddr =
4211       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4212     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4213                          OverflowAreaAlign);
4214     // Round up address of argument to alignment
4215     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4216     if (Align > OverflowAreaAlign) {
4217       llvm::Value *Ptr = OverflowArea.getPointer();
4218       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4219                                                            Align);
4220     }
4221 
4222     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4223 
4224     // Increase the overflow area.
4225     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4226     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4227     CGF.EmitBranch(Cont);
4228   }
4229 
4230   CGF.EmitBlock(Cont);
4231 
4232   // Merge the cases with a phi.
4233   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4234                                 "vaarg.addr");
4235 
4236   // Load the pointer if the argument was passed indirectly.
4237   if (isIndirect) {
4238     Result = Address(Builder.CreateLoad(Result, "aggr"),
4239                      getContext().getTypeAlignInChars(Ty));
4240   }
4241 
4242   return Result;
4243 }
4244 
4245 bool
4246 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4247                                                 llvm::Value *Address) const {
4248   // This is calculated from the LLVM and GCC tables and verified
4249   // against gcc output.  AFAIK all ABIs use the same encoding.
4250 
4251   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4252 
4253   llvm::IntegerType *i8 = CGF.Int8Ty;
4254   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4255   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4256   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4257 
4258   // 0-31: r0-31, the 4-byte general-purpose registers
4259   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4260 
4261   // 32-63: fp0-31, the 8-byte floating-point registers
4262   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4263 
4264   // 64-76 are various 4-byte special-purpose registers:
4265   // 64: mq
4266   // 65: lr
4267   // 66: ctr
4268   // 67: ap
4269   // 68-75 cr0-7
4270   // 76: xer
4271   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4272 
4273   // 77-108: v0-31, the 16-byte vector registers
4274   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4275 
4276   // 109: vrsave
4277   // 110: vscr
4278   // 111: spe_acc
4279   // 112: spefscr
4280   // 113: sfp
4281   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4282 
4283   return false;
4284 }
4285 
4286 // PowerPC-64
4287 
4288 namespace {
4289 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4290 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4291 public:
4292   enum ABIKind {
4293     ELFv1 = 0,
4294     ELFv2
4295   };
4296 
4297 private:
4298   static const unsigned GPRBits = 64;
4299   ABIKind Kind;
4300   bool HasQPX;
4301   bool IsSoftFloatABI;
4302 
4303   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4304   // will be passed in a QPX register.
4305   bool IsQPXVectorTy(const Type *Ty) const {
4306     if (!HasQPX)
4307       return false;
4308 
4309     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4310       unsigned NumElements = VT->getNumElements();
4311       if (NumElements == 1)
4312         return false;
4313 
4314       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4315         if (getContext().getTypeSize(Ty) <= 256)
4316           return true;
4317       } else if (VT->getElementType()->
4318                    isSpecificBuiltinType(BuiltinType::Float)) {
4319         if (getContext().getTypeSize(Ty) <= 128)
4320           return true;
4321       }
4322     }
4323 
4324     return false;
4325   }
4326 
4327   bool IsQPXVectorTy(QualType Ty) const {
4328     return IsQPXVectorTy(Ty.getTypePtr());
4329   }
4330 
4331 public:
4332   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4333                      bool SoftFloatABI)
4334       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4335         IsSoftFloatABI(SoftFloatABI) {}
4336 
4337   bool isPromotableTypeForABI(QualType Ty) const;
4338   CharUnits getParamTypeAlignment(QualType Ty) const;
4339 
4340   ABIArgInfo classifyReturnType(QualType RetTy) const;
4341   ABIArgInfo classifyArgumentType(QualType Ty) const;
4342 
4343   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4344   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4345                                          uint64_t Members) const override;
4346 
4347   // TODO: We can add more logic to computeInfo to improve performance.
4348   // Example: For aggregate arguments that fit in a register, we could
4349   // use getDirectInReg (as is done below for structs containing a single
4350   // floating-point value) to avoid pushing them to memory on function
4351   // entry.  This would require changing the logic in PPCISelLowering
4352   // when lowering the parameters in the caller and args in the callee.
4353   void computeInfo(CGFunctionInfo &FI) const override {
4354     if (!getCXXABI().classifyReturnType(FI))
4355       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4356     for (auto &I : FI.arguments()) {
4357       // We rely on the default argument classification for the most part.
4358       // One exception:  An aggregate containing a single floating-point
4359       // or vector item must be passed in a register if one is available.
4360       const Type *T = isSingleElementStruct(I.type, getContext());
4361       if (T) {
4362         const BuiltinType *BT = T->getAs<BuiltinType>();
4363         if (IsQPXVectorTy(T) ||
4364             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4365             (BT && BT->isFloatingPoint())) {
4366           QualType QT(T, 0);
4367           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4368           continue;
4369         }
4370       }
4371       I.info = classifyArgumentType(I.type);
4372     }
4373   }
4374 
4375   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4376                     QualType Ty) const override;
4377 
4378   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4379                                     bool asReturnValue) const override {
4380     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4381   }
4382 
4383   bool isSwiftErrorInRegister() const override {
4384     return false;
4385   }
4386 };
4387 
4388 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4389 
4390 public:
4391   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4392                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4393                                bool SoftFloatABI)
4394       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4395                                                  SoftFloatABI)) {}
4396 
4397   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4398     // This is recovered from gcc output.
4399     return 1; // r1 is the dedicated stack pointer
4400   }
4401 
4402   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4403                                llvm::Value *Address) const override;
4404 };
4405 
4406 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4407 public:
4408   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4409 
4410   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4411     // This is recovered from gcc output.
4412     return 1; // r1 is the dedicated stack pointer
4413   }
4414 
4415   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4416                                llvm::Value *Address) const override;
4417 };
4418 
4419 }
4420 
4421 // Return true if the ABI requires Ty to be passed sign- or zero-
4422 // extended to 64 bits.
4423 bool
4424 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4425   // Treat an enum type as its underlying type.
4426   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4427     Ty = EnumTy->getDecl()->getIntegerType();
4428 
4429   // Promotable integer types are required to be promoted by the ABI.
4430   if (Ty->isPromotableIntegerType())
4431     return true;
4432 
4433   // In addition to the usual promotable integer types, we also need to
4434   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4435   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4436     switch (BT->getKind()) {
4437     case BuiltinType::Int:
4438     case BuiltinType::UInt:
4439       return true;
4440     default:
4441       break;
4442     }
4443 
4444   return false;
4445 }
4446 
4447 /// isAlignedParamType - Determine whether a type requires 16-byte or
4448 /// higher alignment in the parameter area.  Always returns at least 8.
4449 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4450   // Complex types are passed just like their elements.
4451   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4452     Ty = CTy->getElementType();
4453 
4454   // Only vector types of size 16 bytes need alignment (larger types are
4455   // passed via reference, smaller types are not aligned).
4456   if (IsQPXVectorTy(Ty)) {
4457     if (getContext().getTypeSize(Ty) > 128)
4458       return CharUnits::fromQuantity(32);
4459 
4460     return CharUnits::fromQuantity(16);
4461   } else if (Ty->isVectorType()) {
4462     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4463   }
4464 
4465   // For single-element float/vector structs, we consider the whole type
4466   // to have the same alignment requirements as its single element.
4467   const Type *AlignAsType = nullptr;
4468   const Type *EltType = isSingleElementStruct(Ty, getContext());
4469   if (EltType) {
4470     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4471     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4472          getContext().getTypeSize(EltType) == 128) ||
4473         (BT && BT->isFloatingPoint()))
4474       AlignAsType = EltType;
4475   }
4476 
4477   // Likewise for ELFv2 homogeneous aggregates.
4478   const Type *Base = nullptr;
4479   uint64_t Members = 0;
4480   if (!AlignAsType && Kind == ELFv2 &&
4481       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4482     AlignAsType = Base;
4483 
4484   // With special case aggregates, only vector base types need alignment.
4485   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4486     if (getContext().getTypeSize(AlignAsType) > 128)
4487       return CharUnits::fromQuantity(32);
4488 
4489     return CharUnits::fromQuantity(16);
4490   } else if (AlignAsType) {
4491     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4492   }
4493 
4494   // Otherwise, we only need alignment for any aggregate type that
4495   // has an alignment requirement of >= 16 bytes.
4496   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4497     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4498       return CharUnits::fromQuantity(32);
4499     return CharUnits::fromQuantity(16);
4500   }
4501 
4502   return CharUnits::fromQuantity(8);
4503 }
4504 
4505 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4506 /// aggregate.  Base is set to the base element type, and Members is set
4507 /// to the number of base elements.
4508 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4509                                      uint64_t &Members) const {
4510   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4511     uint64_t NElements = AT->getSize().getZExtValue();
4512     if (NElements == 0)
4513       return false;
4514     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4515       return false;
4516     Members *= NElements;
4517   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4518     const RecordDecl *RD = RT->getDecl();
4519     if (RD->hasFlexibleArrayMember())
4520       return false;
4521 
4522     Members = 0;
4523 
4524     // If this is a C++ record, check the bases first.
4525     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4526       for (const auto &I : CXXRD->bases()) {
4527         // Ignore empty records.
4528         if (isEmptyRecord(getContext(), I.getType(), true))
4529           continue;
4530 
4531         uint64_t FldMembers;
4532         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4533           return false;
4534 
4535         Members += FldMembers;
4536       }
4537     }
4538 
4539     for (const auto *FD : RD->fields()) {
4540       // Ignore (non-zero arrays of) empty records.
4541       QualType FT = FD->getType();
4542       while (const ConstantArrayType *AT =
4543              getContext().getAsConstantArrayType(FT)) {
4544         if (AT->getSize().getZExtValue() == 0)
4545           return false;
4546         FT = AT->getElementType();
4547       }
4548       if (isEmptyRecord(getContext(), FT, true))
4549         continue;
4550 
4551       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4552       if (getContext().getLangOpts().CPlusPlus &&
4553           FD->isZeroLengthBitField(getContext()))
4554         continue;
4555 
4556       uint64_t FldMembers;
4557       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4558         return false;
4559 
4560       Members = (RD->isUnion() ?
4561                  std::max(Members, FldMembers) : Members + FldMembers);
4562     }
4563 
4564     if (!Base)
4565       return false;
4566 
4567     // Ensure there is no padding.
4568     if (getContext().getTypeSize(Base) * Members !=
4569         getContext().getTypeSize(Ty))
4570       return false;
4571   } else {
4572     Members = 1;
4573     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4574       Members = 2;
4575       Ty = CT->getElementType();
4576     }
4577 
4578     // Most ABIs only support float, double, and some vector type widths.
4579     if (!isHomogeneousAggregateBaseType(Ty))
4580       return false;
4581 
4582     // The base type must be the same for all members.  Types that
4583     // agree in both total size and mode (float vs. vector) are
4584     // treated as being equivalent here.
4585     const Type *TyPtr = Ty.getTypePtr();
4586     if (!Base) {
4587       Base = TyPtr;
4588       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4589       // so make sure to widen it explicitly.
4590       if (const VectorType *VT = Base->getAs<VectorType>()) {
4591         QualType EltTy = VT->getElementType();
4592         unsigned NumElements =
4593             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4594         Base = getContext()
4595                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4596                    .getTypePtr();
4597       }
4598     }
4599 
4600     if (Base->isVectorType() != TyPtr->isVectorType() ||
4601         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4602       return false;
4603   }
4604   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4605 }
4606 
4607 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4608   // Homogeneous aggregates for ELFv2 must have base types of float,
4609   // double, long double, or 128-bit vectors.
4610   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4611     if (BT->getKind() == BuiltinType::Float ||
4612         BT->getKind() == BuiltinType::Double ||
4613         BT->getKind() == BuiltinType::LongDouble) {
4614       if (IsSoftFloatABI)
4615         return false;
4616       return true;
4617     }
4618   }
4619   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4620     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4621       return true;
4622   }
4623   return false;
4624 }
4625 
4626 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4627     const Type *Base, uint64_t Members) const {
4628   // Vector types require one register, floating point types require one
4629   // or two registers depending on their size.
4630   uint32_t NumRegs =
4631       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4632 
4633   // Homogeneous Aggregates may occupy at most 8 registers.
4634   return Members * NumRegs <= 8;
4635 }
4636 
4637 ABIArgInfo
4638 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4639   Ty = useFirstFieldIfTransparentUnion(Ty);
4640 
4641   if (Ty->isAnyComplexType())
4642     return ABIArgInfo::getDirect();
4643 
4644   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4645   // or via reference (larger than 16 bytes).
4646   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4647     uint64_t Size = getContext().getTypeSize(Ty);
4648     if (Size > 128)
4649       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4650     else if (Size < 128) {
4651       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4652       return ABIArgInfo::getDirect(CoerceTy);
4653     }
4654   }
4655 
4656   if (isAggregateTypeForABI(Ty)) {
4657     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4658       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4659 
4660     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4661     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4662 
4663     // ELFv2 homogeneous aggregates are passed as array types.
4664     const Type *Base = nullptr;
4665     uint64_t Members = 0;
4666     if (Kind == ELFv2 &&
4667         isHomogeneousAggregate(Ty, Base, Members)) {
4668       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4669       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4670       return ABIArgInfo::getDirect(CoerceTy);
4671     }
4672 
4673     // If an aggregate may end up fully in registers, we do not
4674     // use the ByVal method, but pass the aggregate as array.
4675     // This is usually beneficial since we avoid forcing the
4676     // back-end to store the argument to memory.
4677     uint64_t Bits = getContext().getTypeSize(Ty);
4678     if (Bits > 0 && Bits <= 8 * GPRBits) {
4679       llvm::Type *CoerceTy;
4680 
4681       // Types up to 8 bytes are passed as integer type (which will be
4682       // properly aligned in the argument save area doubleword).
4683       if (Bits <= GPRBits)
4684         CoerceTy =
4685             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4686       // Larger types are passed as arrays, with the base type selected
4687       // according to the required alignment in the save area.
4688       else {
4689         uint64_t RegBits = ABIAlign * 8;
4690         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4691         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4692         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4693       }
4694 
4695       return ABIArgInfo::getDirect(CoerceTy);
4696     }
4697 
4698     // All other aggregates are passed ByVal.
4699     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4700                                    /*ByVal=*/true,
4701                                    /*Realign=*/TyAlign > ABIAlign);
4702   }
4703 
4704   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4705                                      : ABIArgInfo::getDirect());
4706 }
4707 
4708 ABIArgInfo
4709 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4710   if (RetTy->isVoidType())
4711     return ABIArgInfo::getIgnore();
4712 
4713   if (RetTy->isAnyComplexType())
4714     return ABIArgInfo::getDirect();
4715 
4716   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4717   // or via reference (larger than 16 bytes).
4718   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4719     uint64_t Size = getContext().getTypeSize(RetTy);
4720     if (Size > 128)
4721       return getNaturalAlignIndirect(RetTy);
4722     else if (Size < 128) {
4723       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4724       return ABIArgInfo::getDirect(CoerceTy);
4725     }
4726   }
4727 
4728   if (isAggregateTypeForABI(RetTy)) {
4729     // ELFv2 homogeneous aggregates are returned as array types.
4730     const Type *Base = nullptr;
4731     uint64_t Members = 0;
4732     if (Kind == ELFv2 &&
4733         isHomogeneousAggregate(RetTy, Base, Members)) {
4734       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4735       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4736       return ABIArgInfo::getDirect(CoerceTy);
4737     }
4738 
4739     // ELFv2 small aggregates are returned in up to two registers.
4740     uint64_t Bits = getContext().getTypeSize(RetTy);
4741     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4742       if (Bits == 0)
4743         return ABIArgInfo::getIgnore();
4744 
4745       llvm::Type *CoerceTy;
4746       if (Bits > GPRBits) {
4747         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4748         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4749       } else
4750         CoerceTy =
4751             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4752       return ABIArgInfo::getDirect(CoerceTy);
4753     }
4754 
4755     // All other aggregates are returned indirectly.
4756     return getNaturalAlignIndirect(RetTy);
4757   }
4758 
4759   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4760                                         : ABIArgInfo::getDirect());
4761 }
4762 
4763 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4764 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4765                                       QualType Ty) const {
4766   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4767   TypeInfo.second = getParamTypeAlignment(Ty);
4768 
4769   CharUnits SlotSize = CharUnits::fromQuantity(8);
4770 
4771   // If we have a complex type and the base type is smaller than 8 bytes,
4772   // the ABI calls for the real and imaginary parts to be right-adjusted
4773   // in separate doublewords.  However, Clang expects us to produce a
4774   // pointer to a structure with the two parts packed tightly.  So generate
4775   // loads of the real and imaginary parts relative to the va_list pointer,
4776   // and store them to a temporary structure.
4777   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4778     CharUnits EltSize = TypeInfo.first / 2;
4779     if (EltSize < SlotSize) {
4780       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4781                                             SlotSize * 2, SlotSize,
4782                                             SlotSize, /*AllowHigher*/ true);
4783 
4784       Address RealAddr = Addr;
4785       Address ImagAddr = RealAddr;
4786       if (CGF.CGM.getDataLayout().isBigEndian()) {
4787         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4788                                                           SlotSize - EltSize);
4789         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4790                                                       2 * SlotSize - EltSize);
4791       } else {
4792         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4793       }
4794 
4795       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4796       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4797       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4798       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4799       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4800 
4801       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4802       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4803                              /*init*/ true);
4804       return Temp;
4805     }
4806   }
4807 
4808   // Otherwise, just use the general rule.
4809   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4810                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4811 }
4812 
4813 static bool
4814 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4815                               llvm::Value *Address) {
4816   // This is calculated from the LLVM and GCC tables and verified
4817   // against gcc output.  AFAIK all ABIs use the same encoding.
4818 
4819   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4820 
4821   llvm::IntegerType *i8 = CGF.Int8Ty;
4822   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4823   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4824   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4825 
4826   // 0-31: r0-31, the 8-byte general-purpose registers
4827   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4828 
4829   // 32-63: fp0-31, the 8-byte floating-point registers
4830   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4831 
4832   // 64-67 are various 8-byte special-purpose registers:
4833   // 64: mq
4834   // 65: lr
4835   // 66: ctr
4836   // 67: ap
4837   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4838 
4839   // 68-76 are various 4-byte special-purpose registers:
4840   // 68-75 cr0-7
4841   // 76: xer
4842   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4843 
4844   // 77-108: v0-31, the 16-byte vector registers
4845   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4846 
4847   // 109: vrsave
4848   // 110: vscr
4849   // 111: spe_acc
4850   // 112: spefscr
4851   // 113: sfp
4852   // 114: tfhar
4853   // 115: tfiar
4854   // 116: texasr
4855   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4856 
4857   return false;
4858 }
4859 
4860 bool
4861 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4862   CodeGen::CodeGenFunction &CGF,
4863   llvm::Value *Address) const {
4864 
4865   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4866 }
4867 
4868 bool
4869 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4870                                                 llvm::Value *Address) const {
4871 
4872   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4873 }
4874 
4875 //===----------------------------------------------------------------------===//
4876 // AArch64 ABI Implementation
4877 //===----------------------------------------------------------------------===//
4878 
4879 namespace {
4880 
4881 class AArch64ABIInfo : public SwiftABIInfo {
4882 public:
4883   enum ABIKind {
4884     AAPCS = 0,
4885     DarwinPCS,
4886     Win64
4887   };
4888 
4889 private:
4890   ABIKind Kind;
4891 
4892 public:
4893   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4894     : SwiftABIInfo(CGT), Kind(Kind) {}
4895 
4896 private:
4897   ABIKind getABIKind() const { return Kind; }
4898   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4899 
4900   ABIArgInfo classifyReturnType(QualType RetTy) const;
4901   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4902   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4903   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4904                                          uint64_t Members) const override;
4905 
4906   bool isIllegalVectorType(QualType Ty) const;
4907 
4908   void computeInfo(CGFunctionInfo &FI) const override {
4909     if (!::classifyReturnType(getCXXABI(), FI, *this))
4910       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4911 
4912     for (auto &it : FI.arguments())
4913       it.info = classifyArgumentType(it.type);
4914   }
4915 
4916   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4917                           CodeGenFunction &CGF) const;
4918 
4919   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4920                          CodeGenFunction &CGF) const;
4921 
4922   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4923                     QualType Ty) const override {
4924     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4925                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4926                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4927   }
4928 
4929   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4930                       QualType Ty) const override;
4931 
4932   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4933                                     bool asReturnValue) const override {
4934     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4935   }
4936   bool isSwiftErrorInRegister() const override {
4937     return true;
4938   }
4939 
4940   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4941                                  unsigned elts) const override;
4942 };
4943 
4944 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4945 public:
4946   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4947       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4948 
4949   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4950     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4951   }
4952 
4953   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4954     return 31;
4955   }
4956 
4957   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4958 };
4959 
4960 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
4961 public:
4962   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
4963       : AArch64TargetCodeGenInfo(CGT, K) {}
4964 
4965   void getDependentLibraryOption(llvm::StringRef Lib,
4966                                  llvm::SmallString<24> &Opt) const override {
4967     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
4968   }
4969 
4970   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
4971                                llvm::SmallString<32> &Opt) const override {
4972     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
4973   }
4974 };
4975 }
4976 
4977 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4978   Ty = useFirstFieldIfTransparentUnion(Ty);
4979 
4980   // Handle illegal vector types here.
4981   if (isIllegalVectorType(Ty)) {
4982     uint64_t Size = getContext().getTypeSize(Ty);
4983     // Android promotes <2 x i8> to i16, not i32
4984     if (isAndroid() && (Size <= 16)) {
4985       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4986       return ABIArgInfo::getDirect(ResType);
4987     }
4988     if (Size <= 32) {
4989       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4990       return ABIArgInfo::getDirect(ResType);
4991     }
4992     if (Size == 64) {
4993       llvm::Type *ResType =
4994           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4995       return ABIArgInfo::getDirect(ResType);
4996     }
4997     if (Size == 128) {
4998       llvm::Type *ResType =
4999           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5000       return ABIArgInfo::getDirect(ResType);
5001     }
5002     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5003   }
5004 
5005   if (!isAggregateTypeForABI(Ty)) {
5006     // Treat an enum type as its underlying type.
5007     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5008       Ty = EnumTy->getDecl()->getIntegerType();
5009 
5010     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5011                 ? ABIArgInfo::getExtend(Ty)
5012                 : ABIArgInfo::getDirect());
5013   }
5014 
5015   // Structures with either a non-trivial destructor or a non-trivial
5016   // copy constructor are always indirect.
5017   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5018     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5019                                      CGCXXABI::RAA_DirectInMemory);
5020   }
5021 
5022   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5023   // elsewhere for GNU compatibility.
5024   uint64_t Size = getContext().getTypeSize(Ty);
5025   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5026   if (IsEmpty || Size == 0) {
5027     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5028       return ABIArgInfo::getIgnore();
5029 
5030     // GNU C mode. The only argument that gets ignored is an empty one with size
5031     // 0.
5032     if (IsEmpty && Size == 0)
5033       return ABIArgInfo::getIgnore();
5034     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5035   }
5036 
5037   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5038   const Type *Base = nullptr;
5039   uint64_t Members = 0;
5040   if (isHomogeneousAggregate(Ty, Base, Members)) {
5041     return ABIArgInfo::getDirect(
5042         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5043   }
5044 
5045   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5046   if (Size <= 128) {
5047     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5048     // same size and alignment.
5049     if (getTarget().isRenderScriptTarget()) {
5050       return coerceToIntArray(Ty, getContext(), getVMContext());
5051     }
5052     unsigned Alignment = getContext().getTypeAlign(Ty);
5053     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5054 
5055     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5056     // For aggregates with 16-byte alignment, we use i128.
5057     if (Alignment < 128 && Size == 128) {
5058       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5059       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5060     }
5061     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5062   }
5063 
5064   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5065 }
5066 
5067 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5068   if (RetTy->isVoidType())
5069     return ABIArgInfo::getIgnore();
5070 
5071   // Large vector types should be returned via memory.
5072   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5073     return getNaturalAlignIndirect(RetTy);
5074 
5075   if (!isAggregateTypeForABI(RetTy)) {
5076     // Treat an enum type as its underlying type.
5077     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5078       RetTy = EnumTy->getDecl()->getIntegerType();
5079 
5080     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5081                 ? ABIArgInfo::getExtend(RetTy)
5082                 : ABIArgInfo::getDirect());
5083   }
5084 
5085   uint64_t Size = getContext().getTypeSize(RetTy);
5086   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5087     return ABIArgInfo::getIgnore();
5088 
5089   const Type *Base = nullptr;
5090   uint64_t Members = 0;
5091   if (isHomogeneousAggregate(RetTy, Base, Members))
5092     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5093     return ABIArgInfo::getDirect();
5094 
5095   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5096   if (Size <= 128) {
5097     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5098     // same size and alignment.
5099     if (getTarget().isRenderScriptTarget()) {
5100       return coerceToIntArray(RetTy, getContext(), getVMContext());
5101     }
5102     unsigned Alignment = getContext().getTypeAlign(RetTy);
5103     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5104 
5105     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5106     // For aggregates with 16-byte alignment, we use i128.
5107     if (Alignment < 128 && Size == 128) {
5108       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5109       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5110     }
5111     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5112   }
5113 
5114   return getNaturalAlignIndirect(RetTy);
5115 }
5116 
5117 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5118 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5119   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5120     // Check whether VT is legal.
5121     unsigned NumElements = VT->getNumElements();
5122     uint64_t Size = getContext().getTypeSize(VT);
5123     // NumElements should be power of 2.
5124     if (!llvm::isPowerOf2_32(NumElements))
5125       return true;
5126     return Size != 64 && (Size != 128 || NumElements == 1);
5127   }
5128   return false;
5129 }
5130 
5131 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5132                                                llvm::Type *eltTy,
5133                                                unsigned elts) const {
5134   if (!llvm::isPowerOf2_32(elts))
5135     return false;
5136   if (totalSize.getQuantity() != 8 &&
5137       (totalSize.getQuantity() != 16 || elts == 1))
5138     return false;
5139   return true;
5140 }
5141 
5142 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5143   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5144   // point type or a short-vector type. This is the same as the 32-bit ABI,
5145   // but with the difference that any floating-point type is allowed,
5146   // including __fp16.
5147   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5148     if (BT->isFloatingPoint())
5149       return true;
5150   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5151     unsigned VecSize = getContext().getTypeSize(VT);
5152     if (VecSize == 64 || VecSize == 128)
5153       return true;
5154   }
5155   return false;
5156 }
5157 
5158 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5159                                                        uint64_t Members) const {
5160   return Members <= 4;
5161 }
5162 
5163 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5164                                             QualType Ty,
5165                                             CodeGenFunction &CGF) const {
5166   ABIArgInfo AI = classifyArgumentType(Ty);
5167   bool IsIndirect = AI.isIndirect();
5168 
5169   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5170   if (IsIndirect)
5171     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5172   else if (AI.getCoerceToType())
5173     BaseTy = AI.getCoerceToType();
5174 
5175   unsigned NumRegs = 1;
5176   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5177     BaseTy = ArrTy->getElementType();
5178     NumRegs = ArrTy->getNumElements();
5179   }
5180   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5181 
5182   // The AArch64 va_list type and handling is specified in the Procedure Call
5183   // Standard, section B.4:
5184   //
5185   // struct {
5186   //   void *__stack;
5187   //   void *__gr_top;
5188   //   void *__vr_top;
5189   //   int __gr_offs;
5190   //   int __vr_offs;
5191   // };
5192 
5193   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5194   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5195   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5196   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5197 
5198   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5199   CharUnits TyAlign = TyInfo.second;
5200 
5201   Address reg_offs_p = Address::invalid();
5202   llvm::Value *reg_offs = nullptr;
5203   int reg_top_index;
5204   CharUnits reg_top_offset;
5205   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5206   if (!IsFPR) {
5207     // 3 is the field number of __gr_offs
5208     reg_offs_p =
5209         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5210                                     "gr_offs_p");
5211     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5212     reg_top_index = 1; // field number for __gr_top
5213     reg_top_offset = CharUnits::fromQuantity(8);
5214     RegSize = llvm::alignTo(RegSize, 8);
5215   } else {
5216     // 4 is the field number of __vr_offs.
5217     reg_offs_p =
5218         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5219                                     "vr_offs_p");
5220     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5221     reg_top_index = 2; // field number for __vr_top
5222     reg_top_offset = CharUnits::fromQuantity(16);
5223     RegSize = 16 * NumRegs;
5224   }
5225 
5226   //=======================================
5227   // Find out where argument was passed
5228   //=======================================
5229 
5230   // If reg_offs >= 0 we're already using the stack for this type of
5231   // argument. We don't want to keep updating reg_offs (in case it overflows,
5232   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5233   // whatever they get).
5234   llvm::Value *UsingStack = nullptr;
5235   UsingStack = CGF.Builder.CreateICmpSGE(
5236       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5237 
5238   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5239 
5240   // Otherwise, at least some kind of argument could go in these registers, the
5241   // question is whether this particular type is too big.
5242   CGF.EmitBlock(MaybeRegBlock);
5243 
5244   // Integer arguments may need to correct register alignment (for example a
5245   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5246   // align __gr_offs to calculate the potential address.
5247   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5248     int Align = TyAlign.getQuantity();
5249 
5250     reg_offs = CGF.Builder.CreateAdd(
5251         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5252         "align_regoffs");
5253     reg_offs = CGF.Builder.CreateAnd(
5254         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5255         "aligned_regoffs");
5256   }
5257 
5258   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5259   // The fact that this is done unconditionally reflects the fact that
5260   // allocating an argument to the stack also uses up all the remaining
5261   // registers of the appropriate kind.
5262   llvm::Value *NewOffset = nullptr;
5263   NewOffset = CGF.Builder.CreateAdd(
5264       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5265   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5266 
5267   // Now we're in a position to decide whether this argument really was in
5268   // registers or not.
5269   llvm::Value *InRegs = nullptr;
5270   InRegs = CGF.Builder.CreateICmpSLE(
5271       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5272 
5273   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5274 
5275   //=======================================
5276   // Argument was in registers
5277   //=======================================
5278 
5279   // Now we emit the code for if the argument was originally passed in
5280   // registers. First start the appropriate block:
5281   CGF.EmitBlock(InRegBlock);
5282 
5283   llvm::Value *reg_top = nullptr;
5284   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5285                                                   reg_top_offset, "reg_top_p");
5286   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5287   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5288                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5289   Address RegAddr = Address::invalid();
5290   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5291 
5292   if (IsIndirect) {
5293     // If it's been passed indirectly (actually a struct), whatever we find from
5294     // stored registers or on the stack will actually be a struct **.
5295     MemTy = llvm::PointerType::getUnqual(MemTy);
5296   }
5297 
5298   const Type *Base = nullptr;
5299   uint64_t NumMembers = 0;
5300   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5301   if (IsHFA && NumMembers > 1) {
5302     // Homogeneous aggregates passed in registers will have their elements split
5303     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5304     // qN+1, ...). We reload and store into a temporary local variable
5305     // contiguously.
5306     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5307     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5308     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5309     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5310     Address Tmp = CGF.CreateTempAlloca(HFATy,
5311                                        std::max(TyAlign, BaseTyInfo.second));
5312 
5313     // On big-endian platforms, the value will be right-aligned in its slot.
5314     int Offset = 0;
5315     if (CGF.CGM.getDataLayout().isBigEndian() &&
5316         BaseTyInfo.first.getQuantity() < 16)
5317       Offset = 16 - BaseTyInfo.first.getQuantity();
5318 
5319     for (unsigned i = 0; i < NumMembers; ++i) {
5320       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5321       Address LoadAddr =
5322         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5323       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5324 
5325       Address StoreAddr =
5326         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5327 
5328       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5329       CGF.Builder.CreateStore(Elem, StoreAddr);
5330     }
5331 
5332     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5333   } else {
5334     // Otherwise the object is contiguous in memory.
5335 
5336     // It might be right-aligned in its slot.
5337     CharUnits SlotSize = BaseAddr.getAlignment();
5338     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5339         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5340         TyInfo.first < SlotSize) {
5341       CharUnits Offset = SlotSize - TyInfo.first;
5342       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5343     }
5344 
5345     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5346   }
5347 
5348   CGF.EmitBranch(ContBlock);
5349 
5350   //=======================================
5351   // Argument was on the stack
5352   //=======================================
5353   CGF.EmitBlock(OnStackBlock);
5354 
5355   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5356                                                 CharUnits::Zero(), "stack_p");
5357   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5358 
5359   // Again, stack arguments may need realignment. In this case both integer and
5360   // floating-point ones might be affected.
5361   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5362     int Align = TyAlign.getQuantity();
5363 
5364     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5365 
5366     OnStackPtr = CGF.Builder.CreateAdd(
5367         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5368         "align_stack");
5369     OnStackPtr = CGF.Builder.CreateAnd(
5370         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5371         "align_stack");
5372 
5373     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5374   }
5375   Address OnStackAddr(OnStackPtr,
5376                       std::max(CharUnits::fromQuantity(8), TyAlign));
5377 
5378   // All stack slots are multiples of 8 bytes.
5379   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5380   CharUnits StackSize;
5381   if (IsIndirect)
5382     StackSize = StackSlotSize;
5383   else
5384     StackSize = TyInfo.first.alignTo(StackSlotSize);
5385 
5386   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5387   llvm::Value *NewStack =
5388       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5389 
5390   // Write the new value of __stack for the next call to va_arg
5391   CGF.Builder.CreateStore(NewStack, stack_p);
5392 
5393   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5394       TyInfo.first < StackSlotSize) {
5395     CharUnits Offset = StackSlotSize - TyInfo.first;
5396     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5397   }
5398 
5399   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5400 
5401   CGF.EmitBranch(ContBlock);
5402 
5403   //=======================================
5404   // Tidy up
5405   //=======================================
5406   CGF.EmitBlock(ContBlock);
5407 
5408   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5409                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5410 
5411   if (IsIndirect)
5412     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5413                    TyInfo.second);
5414 
5415   return ResAddr;
5416 }
5417 
5418 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5419                                         CodeGenFunction &CGF) const {
5420   // The backend's lowering doesn't support va_arg for aggregates or
5421   // illegal vector types.  Lower VAArg here for these cases and use
5422   // the LLVM va_arg instruction for everything else.
5423   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5424     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5425 
5426   CharUnits SlotSize = CharUnits::fromQuantity(8);
5427 
5428   // Empty records are ignored for parameter passing purposes.
5429   if (isEmptyRecord(getContext(), Ty, true)) {
5430     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5431     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5432     return Addr;
5433   }
5434 
5435   // The size of the actual thing passed, which might end up just
5436   // being a pointer for indirect types.
5437   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5438 
5439   // Arguments bigger than 16 bytes which aren't homogeneous
5440   // aggregates should be passed indirectly.
5441   bool IsIndirect = false;
5442   if (TyInfo.first.getQuantity() > 16) {
5443     const Type *Base = nullptr;
5444     uint64_t Members = 0;
5445     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5446   }
5447 
5448   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5449                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5450 }
5451 
5452 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5453                                     QualType Ty) const {
5454   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5455                           CGF.getContext().getTypeInfoInChars(Ty),
5456                           CharUnits::fromQuantity(8),
5457                           /*allowHigherAlign*/ false);
5458 }
5459 
5460 //===----------------------------------------------------------------------===//
5461 // ARM ABI Implementation
5462 //===----------------------------------------------------------------------===//
5463 
5464 namespace {
5465 
5466 class ARMABIInfo : public SwiftABIInfo {
5467 public:
5468   enum ABIKind {
5469     APCS = 0,
5470     AAPCS = 1,
5471     AAPCS_VFP = 2,
5472     AAPCS16_VFP = 3,
5473   };
5474 
5475 private:
5476   ABIKind Kind;
5477 
5478 public:
5479   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5480       : SwiftABIInfo(CGT), Kind(_Kind) {
5481     setCCs();
5482   }
5483 
5484   bool isEABI() const {
5485     switch (getTarget().getTriple().getEnvironment()) {
5486     case llvm::Triple::Android:
5487     case llvm::Triple::EABI:
5488     case llvm::Triple::EABIHF:
5489     case llvm::Triple::GNUEABI:
5490     case llvm::Triple::GNUEABIHF:
5491     case llvm::Triple::MuslEABI:
5492     case llvm::Triple::MuslEABIHF:
5493       return true;
5494     default:
5495       return false;
5496     }
5497   }
5498 
5499   bool isEABIHF() const {
5500     switch (getTarget().getTriple().getEnvironment()) {
5501     case llvm::Triple::EABIHF:
5502     case llvm::Triple::GNUEABIHF:
5503     case llvm::Triple::MuslEABIHF:
5504       return true;
5505     default:
5506       return false;
5507     }
5508   }
5509 
5510   ABIKind getABIKind() const { return Kind; }
5511 
5512 private:
5513   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5514   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5515   bool isIllegalVectorType(QualType Ty) const;
5516 
5517   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5518   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5519                                          uint64_t Members) const override;
5520 
5521   void computeInfo(CGFunctionInfo &FI) const override;
5522 
5523   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5524                     QualType Ty) const override;
5525 
5526   llvm::CallingConv::ID getLLVMDefaultCC() const;
5527   llvm::CallingConv::ID getABIDefaultCC() const;
5528   void setCCs();
5529 
5530   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5531                                     bool asReturnValue) const override {
5532     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5533   }
5534   bool isSwiftErrorInRegister() const override {
5535     return true;
5536   }
5537   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5538                                  unsigned elts) const override;
5539 };
5540 
5541 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5542 public:
5543   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5544     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5545 
5546   const ARMABIInfo &getABIInfo() const {
5547     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5548   }
5549 
5550   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5551     return 13;
5552   }
5553 
5554   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5555     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5556   }
5557 
5558   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5559                                llvm::Value *Address) const override {
5560     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5561 
5562     // 0-15 are the 16 integer registers.
5563     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5564     return false;
5565   }
5566 
5567   unsigned getSizeOfUnwindException() const override {
5568     if (getABIInfo().isEABI()) return 88;
5569     return TargetCodeGenInfo::getSizeOfUnwindException();
5570   }
5571 
5572   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5573                            CodeGen::CodeGenModule &CGM) const override {
5574     if (GV->isDeclaration())
5575       return;
5576     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5577     if (!FD)
5578       return;
5579 
5580     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5581     if (!Attr)
5582       return;
5583 
5584     const char *Kind;
5585     switch (Attr->getInterrupt()) {
5586     case ARMInterruptAttr::Generic: Kind = ""; break;
5587     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5588     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5589     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5590     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5591     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5592     }
5593 
5594     llvm::Function *Fn = cast<llvm::Function>(GV);
5595 
5596     Fn->addFnAttr("interrupt", Kind);
5597 
5598     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5599     if (ABI == ARMABIInfo::APCS)
5600       return;
5601 
5602     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5603     // however this is not necessarily true on taking any interrupt. Instruct
5604     // the backend to perform a realignment as part of the function prologue.
5605     llvm::AttrBuilder B;
5606     B.addStackAlignmentAttr(8);
5607     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5608   }
5609 };
5610 
5611 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5612 public:
5613   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5614       : ARMTargetCodeGenInfo(CGT, K) {}
5615 
5616   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5617                            CodeGen::CodeGenModule &CGM) const override;
5618 
5619   void getDependentLibraryOption(llvm::StringRef Lib,
5620                                  llvm::SmallString<24> &Opt) const override {
5621     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5622   }
5623 
5624   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5625                                llvm::SmallString<32> &Opt) const override {
5626     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5627   }
5628 };
5629 
5630 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5631     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5632   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5633   if (GV->isDeclaration())
5634     return;
5635   addStackProbeTargetAttributes(D, GV, CGM);
5636 }
5637 }
5638 
5639 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5640   if (!::classifyReturnType(getCXXABI(), FI, *this))
5641     FI.getReturnInfo() =
5642         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5643 
5644   for (auto &I : FI.arguments())
5645     I.info = classifyArgumentType(I.type, FI.isVariadic());
5646 
5647   // Always honor user-specified calling convention.
5648   if (FI.getCallingConvention() != llvm::CallingConv::C)
5649     return;
5650 
5651   llvm::CallingConv::ID cc = getRuntimeCC();
5652   if (cc != llvm::CallingConv::C)
5653     FI.setEffectiveCallingConvention(cc);
5654 }
5655 
5656 /// Return the default calling convention that LLVM will use.
5657 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5658   // The default calling convention that LLVM will infer.
5659   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5660     return llvm::CallingConv::ARM_AAPCS_VFP;
5661   else if (isEABI())
5662     return llvm::CallingConv::ARM_AAPCS;
5663   else
5664     return llvm::CallingConv::ARM_APCS;
5665 }
5666 
5667 /// Return the calling convention that our ABI would like us to use
5668 /// as the C calling convention.
5669 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5670   switch (getABIKind()) {
5671   case APCS: return llvm::CallingConv::ARM_APCS;
5672   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5673   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5674   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5675   }
5676   llvm_unreachable("bad ABI kind");
5677 }
5678 
5679 void ARMABIInfo::setCCs() {
5680   assert(getRuntimeCC() == llvm::CallingConv::C);
5681 
5682   // Don't muddy up the IR with a ton of explicit annotations if
5683   // they'd just match what LLVM will infer from the triple.
5684   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5685   if (abiCC != getLLVMDefaultCC())
5686     RuntimeCC = abiCC;
5687 }
5688 
5689 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5690                                             bool isVariadic) const {
5691   // 6.1.2.1 The following argument types are VFP CPRCs:
5692   //   A single-precision floating-point type (including promoted
5693   //   half-precision types); A double-precision floating-point type;
5694   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5695   //   with a Base Type of a single- or double-precision floating-point type,
5696   //   64-bit containerized vectors or 128-bit containerized vectors with one
5697   //   to four Elements.
5698   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5699 
5700   Ty = useFirstFieldIfTransparentUnion(Ty);
5701 
5702   // Handle illegal vector types here.
5703   if (isIllegalVectorType(Ty)) {
5704     uint64_t Size = getContext().getTypeSize(Ty);
5705     if (Size <= 32) {
5706       llvm::Type *ResType =
5707           llvm::Type::getInt32Ty(getVMContext());
5708       return ABIArgInfo::getDirect(ResType);
5709     }
5710     if (Size == 64) {
5711       llvm::Type *ResType = llvm::VectorType::get(
5712           llvm::Type::getInt32Ty(getVMContext()), 2);
5713       return ABIArgInfo::getDirect(ResType);
5714     }
5715     if (Size == 128) {
5716       llvm::Type *ResType = llvm::VectorType::get(
5717           llvm::Type::getInt32Ty(getVMContext()), 4);
5718       return ABIArgInfo::getDirect(ResType);
5719     }
5720     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5721   }
5722 
5723   // _Float16 and __fp16 get passed as if it were an int or float, but with
5724   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5725   // half type natively, and does not need to interwork with AAPCS code.
5726   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5727       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5728     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5729       llvm::Type::getFloatTy(getVMContext()) :
5730       llvm::Type::getInt32Ty(getVMContext());
5731     return ABIArgInfo::getDirect(ResType);
5732   }
5733 
5734   if (!isAggregateTypeForABI(Ty)) {
5735     // Treat an enum type as its underlying type.
5736     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5737       Ty = EnumTy->getDecl()->getIntegerType();
5738     }
5739 
5740     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5741                                           : ABIArgInfo::getDirect());
5742   }
5743 
5744   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5745     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5746   }
5747 
5748   // Ignore empty records.
5749   if (isEmptyRecord(getContext(), Ty, true))
5750     return ABIArgInfo::getIgnore();
5751 
5752   if (IsEffectivelyAAPCS_VFP) {
5753     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5754     // into VFP registers.
5755     const Type *Base = nullptr;
5756     uint64_t Members = 0;
5757     if (isHomogeneousAggregate(Ty, Base, Members)) {
5758       assert(Base && "Base class should be set for homogeneous aggregate");
5759       // Base can be a floating-point or a vector.
5760       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5761     }
5762   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5763     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5764     // this convention even for a variadic function: the backend will use GPRs
5765     // if needed.
5766     const Type *Base = nullptr;
5767     uint64_t Members = 0;
5768     if (isHomogeneousAggregate(Ty, Base, Members)) {
5769       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5770       llvm::Type *Ty =
5771         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5772       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5773     }
5774   }
5775 
5776   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5777       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5778     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5779     // bigger than 128-bits, they get placed in space allocated by the caller,
5780     // and a pointer is passed.
5781     return ABIArgInfo::getIndirect(
5782         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5783   }
5784 
5785   // Support byval for ARM.
5786   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5787   // most 8-byte. We realign the indirect argument if type alignment is bigger
5788   // than ABI alignment.
5789   uint64_t ABIAlign = 4;
5790   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5791   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5792        getABIKind() == ARMABIInfo::AAPCS)
5793     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5794 
5795   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5796     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5797     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5798                                    /*ByVal=*/true,
5799                                    /*Realign=*/TyAlign > ABIAlign);
5800   }
5801 
5802   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5803   // same size and alignment.
5804   if (getTarget().isRenderScriptTarget()) {
5805     return coerceToIntArray(Ty, getContext(), getVMContext());
5806   }
5807 
5808   // Otherwise, pass by coercing to a structure of the appropriate size.
5809   llvm::Type* ElemTy;
5810   unsigned SizeRegs;
5811   // FIXME: Try to match the types of the arguments more accurately where
5812   // we can.
5813   if (getContext().getTypeAlign(Ty) <= 32) {
5814     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5815     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5816   } else {
5817     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5818     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5819   }
5820 
5821   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5822 }
5823 
5824 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5825                               llvm::LLVMContext &VMContext) {
5826   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5827   // is called integer-like if its size is less than or equal to one word, and
5828   // the offset of each of its addressable sub-fields is zero.
5829 
5830   uint64_t Size = Context.getTypeSize(Ty);
5831 
5832   // Check that the type fits in a word.
5833   if (Size > 32)
5834     return false;
5835 
5836   // FIXME: Handle vector types!
5837   if (Ty->isVectorType())
5838     return false;
5839 
5840   // Float types are never treated as "integer like".
5841   if (Ty->isRealFloatingType())
5842     return false;
5843 
5844   // If this is a builtin or pointer type then it is ok.
5845   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5846     return true;
5847 
5848   // Small complex integer types are "integer like".
5849   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5850     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5851 
5852   // Single element and zero sized arrays should be allowed, by the definition
5853   // above, but they are not.
5854 
5855   // Otherwise, it must be a record type.
5856   const RecordType *RT = Ty->getAs<RecordType>();
5857   if (!RT) return false;
5858 
5859   // Ignore records with flexible arrays.
5860   const RecordDecl *RD = RT->getDecl();
5861   if (RD->hasFlexibleArrayMember())
5862     return false;
5863 
5864   // Check that all sub-fields are at offset 0, and are themselves "integer
5865   // like".
5866   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5867 
5868   bool HadField = false;
5869   unsigned idx = 0;
5870   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5871        i != e; ++i, ++idx) {
5872     const FieldDecl *FD = *i;
5873 
5874     // Bit-fields are not addressable, we only need to verify they are "integer
5875     // like". We still have to disallow a subsequent non-bitfield, for example:
5876     //   struct { int : 0; int x }
5877     // is non-integer like according to gcc.
5878     if (FD->isBitField()) {
5879       if (!RD->isUnion())
5880         HadField = true;
5881 
5882       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5883         return false;
5884 
5885       continue;
5886     }
5887 
5888     // Check if this field is at offset 0.
5889     if (Layout.getFieldOffset(idx) != 0)
5890       return false;
5891 
5892     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5893       return false;
5894 
5895     // Only allow at most one field in a structure. This doesn't match the
5896     // wording above, but follows gcc in situations with a field following an
5897     // empty structure.
5898     if (!RD->isUnion()) {
5899       if (HadField)
5900         return false;
5901 
5902       HadField = true;
5903     }
5904   }
5905 
5906   return true;
5907 }
5908 
5909 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5910                                           bool isVariadic) const {
5911   bool IsEffectivelyAAPCS_VFP =
5912       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5913 
5914   if (RetTy->isVoidType())
5915     return ABIArgInfo::getIgnore();
5916 
5917   // Large vector types should be returned via memory.
5918   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5919     return getNaturalAlignIndirect(RetTy);
5920   }
5921 
5922   // _Float16 and __fp16 get returned as if it were an int or float, but with
5923   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5924   // half type natively, and does not need to interwork with AAPCS code.
5925   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
5926       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5927     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5928       llvm::Type::getFloatTy(getVMContext()) :
5929       llvm::Type::getInt32Ty(getVMContext());
5930     return ABIArgInfo::getDirect(ResType);
5931   }
5932 
5933   if (!isAggregateTypeForABI(RetTy)) {
5934     // Treat an enum type as its underlying type.
5935     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5936       RetTy = EnumTy->getDecl()->getIntegerType();
5937 
5938     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
5939                                             : ABIArgInfo::getDirect();
5940   }
5941 
5942   // Are we following APCS?
5943   if (getABIKind() == APCS) {
5944     if (isEmptyRecord(getContext(), RetTy, false))
5945       return ABIArgInfo::getIgnore();
5946 
5947     // Complex types are all returned as packed integers.
5948     //
5949     // FIXME: Consider using 2 x vector types if the back end handles them
5950     // correctly.
5951     if (RetTy->isAnyComplexType())
5952       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5953           getVMContext(), getContext().getTypeSize(RetTy)));
5954 
5955     // Integer like structures are returned in r0.
5956     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5957       // Return in the smallest viable integer type.
5958       uint64_t Size = getContext().getTypeSize(RetTy);
5959       if (Size <= 8)
5960         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5961       if (Size <= 16)
5962         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5963       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5964     }
5965 
5966     // Otherwise return in memory.
5967     return getNaturalAlignIndirect(RetTy);
5968   }
5969 
5970   // Otherwise this is an AAPCS variant.
5971 
5972   if (isEmptyRecord(getContext(), RetTy, true))
5973     return ABIArgInfo::getIgnore();
5974 
5975   // Check for homogeneous aggregates with AAPCS-VFP.
5976   if (IsEffectivelyAAPCS_VFP) {
5977     const Type *Base = nullptr;
5978     uint64_t Members = 0;
5979     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5980       assert(Base && "Base class should be set for homogeneous aggregate");
5981       // Homogeneous Aggregates are returned directly.
5982       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5983     }
5984   }
5985 
5986   // Aggregates <= 4 bytes are returned in r0; other aggregates
5987   // are returned indirectly.
5988   uint64_t Size = getContext().getTypeSize(RetTy);
5989   if (Size <= 32) {
5990     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5991     // same size and alignment.
5992     if (getTarget().isRenderScriptTarget()) {
5993       return coerceToIntArray(RetTy, getContext(), getVMContext());
5994     }
5995     if (getDataLayout().isBigEndian())
5996       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5997       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5998 
5999     // Return in the smallest viable integer type.
6000     if (Size <= 8)
6001       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6002     if (Size <= 16)
6003       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6004     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6005   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6006     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6007     llvm::Type *CoerceTy =
6008         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6009     return ABIArgInfo::getDirect(CoerceTy);
6010   }
6011 
6012   return getNaturalAlignIndirect(RetTy);
6013 }
6014 
6015 /// isIllegalVector - check whether Ty is an illegal vector type.
6016 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6017   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6018     if (isAndroid()) {
6019       // Android shipped using Clang 3.1, which supported a slightly different
6020       // vector ABI. The primary differences were that 3-element vector types
6021       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6022       // accepts that legacy behavior for Android only.
6023       // Check whether VT is legal.
6024       unsigned NumElements = VT->getNumElements();
6025       // NumElements should be power of 2 or equal to 3.
6026       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6027         return true;
6028     } else {
6029       // Check whether VT is legal.
6030       unsigned NumElements = VT->getNumElements();
6031       uint64_t Size = getContext().getTypeSize(VT);
6032       // NumElements should be power of 2.
6033       if (!llvm::isPowerOf2_32(NumElements))
6034         return true;
6035       // Size should be greater than 32 bits.
6036       return Size <= 32;
6037     }
6038   }
6039   return false;
6040 }
6041 
6042 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6043                                            llvm::Type *eltTy,
6044                                            unsigned numElts) const {
6045   if (!llvm::isPowerOf2_32(numElts))
6046     return false;
6047   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6048   if (size > 64)
6049     return false;
6050   if (vectorSize.getQuantity() != 8 &&
6051       (vectorSize.getQuantity() != 16 || numElts == 1))
6052     return false;
6053   return true;
6054 }
6055 
6056 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6057   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6058   // double, or 64-bit or 128-bit vectors.
6059   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6060     if (BT->getKind() == BuiltinType::Float ||
6061         BT->getKind() == BuiltinType::Double ||
6062         BT->getKind() == BuiltinType::LongDouble)
6063       return true;
6064   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6065     unsigned VecSize = getContext().getTypeSize(VT);
6066     if (VecSize == 64 || VecSize == 128)
6067       return true;
6068   }
6069   return false;
6070 }
6071 
6072 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6073                                                    uint64_t Members) const {
6074   return Members <= 4;
6075 }
6076 
6077 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6078                               QualType Ty) const {
6079   CharUnits SlotSize = CharUnits::fromQuantity(4);
6080 
6081   // Empty records are ignored for parameter passing purposes.
6082   if (isEmptyRecord(getContext(), Ty, true)) {
6083     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6084     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6085     return Addr;
6086   }
6087 
6088   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6089   CharUnits TyAlignForABI = TyInfo.second;
6090 
6091   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6092   bool IsIndirect = false;
6093   const Type *Base = nullptr;
6094   uint64_t Members = 0;
6095   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6096     IsIndirect = true;
6097 
6098   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6099   // allocated by the caller.
6100   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6101              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6102              !isHomogeneousAggregate(Ty, Base, Members)) {
6103     IsIndirect = true;
6104 
6105   // Otherwise, bound the type's ABI alignment.
6106   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6107   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6108   // Our callers should be prepared to handle an under-aligned address.
6109   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6110              getABIKind() == ARMABIInfo::AAPCS) {
6111     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6112     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6113   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6114     // ARMv7k allows type alignment up to 16 bytes.
6115     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6116     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6117   } else {
6118     TyAlignForABI = CharUnits::fromQuantity(4);
6119   }
6120   TyInfo.second = TyAlignForABI;
6121 
6122   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6123                           SlotSize, /*AllowHigherAlign*/ true);
6124 }
6125 
6126 //===----------------------------------------------------------------------===//
6127 // NVPTX ABI Implementation
6128 //===----------------------------------------------------------------------===//
6129 
6130 namespace {
6131 
6132 class NVPTXABIInfo : public ABIInfo {
6133 public:
6134   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6135 
6136   ABIArgInfo classifyReturnType(QualType RetTy) const;
6137   ABIArgInfo classifyArgumentType(QualType Ty) const;
6138 
6139   void computeInfo(CGFunctionInfo &FI) const override;
6140   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6141                     QualType Ty) const override;
6142 };
6143 
6144 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6145 public:
6146   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6147     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6148 
6149   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6150                            CodeGen::CodeGenModule &M) const override;
6151   bool shouldEmitStaticExternCAliases() const override;
6152 
6153 private:
6154   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6155   // resulting MDNode to the nvvm.annotations MDNode.
6156   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6157 };
6158 
6159 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6160   if (RetTy->isVoidType())
6161     return ABIArgInfo::getIgnore();
6162 
6163   // note: this is different from default ABI
6164   if (!RetTy->isScalarType())
6165     return ABIArgInfo::getDirect();
6166 
6167   // Treat an enum type as its underlying type.
6168   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6169     RetTy = EnumTy->getDecl()->getIntegerType();
6170 
6171   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6172                                            : ABIArgInfo::getDirect());
6173 }
6174 
6175 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6176   // Treat an enum type as its underlying type.
6177   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6178     Ty = EnumTy->getDecl()->getIntegerType();
6179 
6180   // Return aggregates type as indirect by value
6181   if (isAggregateTypeForABI(Ty))
6182     return getNaturalAlignIndirect(Ty, /* byval */ true);
6183 
6184   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6185                                         : ABIArgInfo::getDirect());
6186 }
6187 
6188 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6189   if (!getCXXABI().classifyReturnType(FI))
6190     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6191   for (auto &I : FI.arguments())
6192     I.info = classifyArgumentType(I.type);
6193 
6194   // Always honor user-specified calling convention.
6195   if (FI.getCallingConvention() != llvm::CallingConv::C)
6196     return;
6197 
6198   FI.setEffectiveCallingConvention(getRuntimeCC());
6199 }
6200 
6201 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6202                                 QualType Ty) const {
6203   llvm_unreachable("NVPTX does not support varargs");
6204 }
6205 
6206 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6207     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6208   if (GV->isDeclaration())
6209     return;
6210   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6211   if (!FD) return;
6212 
6213   llvm::Function *F = cast<llvm::Function>(GV);
6214 
6215   // Perform special handling in OpenCL mode
6216   if (M.getLangOpts().OpenCL) {
6217     // Use OpenCL function attributes to check for kernel functions
6218     // By default, all functions are device functions
6219     if (FD->hasAttr<OpenCLKernelAttr>()) {
6220       // OpenCL __kernel functions get kernel metadata
6221       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6222       addNVVMMetadata(F, "kernel", 1);
6223       // And kernel functions are not subject to inlining
6224       F->addFnAttr(llvm::Attribute::NoInline);
6225     }
6226   }
6227 
6228   // Perform special handling in CUDA mode.
6229   if (M.getLangOpts().CUDA) {
6230     // CUDA __global__ functions get a kernel metadata entry.  Since
6231     // __global__ functions cannot be called from the device, we do not
6232     // need to set the noinline attribute.
6233     if (FD->hasAttr<CUDAGlobalAttr>()) {
6234       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6235       addNVVMMetadata(F, "kernel", 1);
6236     }
6237     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6238       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6239       llvm::APSInt MaxThreads(32);
6240       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6241       if (MaxThreads > 0)
6242         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6243 
6244       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6245       // not specified in __launch_bounds__ or if the user specified a 0 value,
6246       // we don't have to add a PTX directive.
6247       if (Attr->getMinBlocks()) {
6248         llvm::APSInt MinBlocks(32);
6249         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6250         if (MinBlocks > 0)
6251           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6252           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6253       }
6254     }
6255   }
6256 }
6257 
6258 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6259                                              int Operand) {
6260   llvm::Module *M = F->getParent();
6261   llvm::LLVMContext &Ctx = M->getContext();
6262 
6263   // Get "nvvm.annotations" metadata node
6264   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6265 
6266   llvm::Metadata *MDVals[] = {
6267       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6268       llvm::ConstantAsMetadata::get(
6269           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6270   // Append metadata to nvvm.annotations
6271   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6272 }
6273 
6274 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6275   return false;
6276 }
6277 }
6278 
6279 //===----------------------------------------------------------------------===//
6280 // SystemZ ABI Implementation
6281 //===----------------------------------------------------------------------===//
6282 
6283 namespace {
6284 
6285 class SystemZABIInfo : public SwiftABIInfo {
6286   bool HasVector;
6287 
6288 public:
6289   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6290     : SwiftABIInfo(CGT), HasVector(HV) {}
6291 
6292   bool isPromotableIntegerType(QualType Ty) const;
6293   bool isCompoundType(QualType Ty) const;
6294   bool isVectorArgumentType(QualType Ty) const;
6295   bool isFPArgumentType(QualType Ty) const;
6296   QualType GetSingleElementType(QualType Ty) const;
6297 
6298   ABIArgInfo classifyReturnType(QualType RetTy) const;
6299   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6300 
6301   void computeInfo(CGFunctionInfo &FI) const override {
6302     if (!getCXXABI().classifyReturnType(FI))
6303       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6304     for (auto &I : FI.arguments())
6305       I.info = classifyArgumentType(I.type);
6306   }
6307 
6308   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6309                     QualType Ty) const override;
6310 
6311   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6312                                     bool asReturnValue) const override {
6313     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6314   }
6315   bool isSwiftErrorInRegister() const override {
6316     return false;
6317   }
6318 };
6319 
6320 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6321 public:
6322   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6323     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6324 };
6325 
6326 }
6327 
6328 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6329   // Treat an enum type as its underlying type.
6330   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6331     Ty = EnumTy->getDecl()->getIntegerType();
6332 
6333   // Promotable integer types are required to be promoted by the ABI.
6334   if (Ty->isPromotableIntegerType())
6335     return true;
6336 
6337   // 32-bit values must also be promoted.
6338   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6339     switch (BT->getKind()) {
6340     case BuiltinType::Int:
6341     case BuiltinType::UInt:
6342       return true;
6343     default:
6344       return false;
6345     }
6346   return false;
6347 }
6348 
6349 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6350   return (Ty->isAnyComplexType() ||
6351           Ty->isVectorType() ||
6352           isAggregateTypeForABI(Ty));
6353 }
6354 
6355 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6356   return (HasVector &&
6357           Ty->isVectorType() &&
6358           getContext().getTypeSize(Ty) <= 128);
6359 }
6360 
6361 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6362   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6363     switch (BT->getKind()) {
6364     case BuiltinType::Float:
6365     case BuiltinType::Double:
6366       return true;
6367     default:
6368       return false;
6369     }
6370 
6371   return false;
6372 }
6373 
6374 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6375   if (const RecordType *RT = Ty->getAsStructureType()) {
6376     const RecordDecl *RD = RT->getDecl();
6377     QualType Found;
6378 
6379     // If this is a C++ record, check the bases first.
6380     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6381       for (const auto &I : CXXRD->bases()) {
6382         QualType Base = I.getType();
6383 
6384         // Empty bases don't affect things either way.
6385         if (isEmptyRecord(getContext(), Base, true))
6386           continue;
6387 
6388         if (!Found.isNull())
6389           return Ty;
6390         Found = GetSingleElementType(Base);
6391       }
6392 
6393     // Check the fields.
6394     for (const auto *FD : RD->fields()) {
6395       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6396       // Unlike isSingleElementStruct(), empty structure and array fields
6397       // do count.  So do anonymous bitfields that aren't zero-sized.
6398       if (getContext().getLangOpts().CPlusPlus &&
6399           FD->isZeroLengthBitField(getContext()))
6400         continue;
6401 
6402       // Unlike isSingleElementStruct(), arrays do not count.
6403       // Nested structures still do though.
6404       if (!Found.isNull())
6405         return Ty;
6406       Found = GetSingleElementType(FD->getType());
6407     }
6408 
6409     // Unlike isSingleElementStruct(), trailing padding is allowed.
6410     // An 8-byte aligned struct s { float f; } is passed as a double.
6411     if (!Found.isNull())
6412       return Found;
6413   }
6414 
6415   return Ty;
6416 }
6417 
6418 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6419                                   QualType Ty) const {
6420   // Assume that va_list type is correct; should be pointer to LLVM type:
6421   // struct {
6422   //   i64 __gpr;
6423   //   i64 __fpr;
6424   //   i8 *__overflow_arg_area;
6425   //   i8 *__reg_save_area;
6426   // };
6427 
6428   // Every non-vector argument occupies 8 bytes and is passed by preference
6429   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6430   // always passed on the stack.
6431   Ty = getContext().getCanonicalType(Ty);
6432   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6433   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6434   llvm::Type *DirectTy = ArgTy;
6435   ABIArgInfo AI = classifyArgumentType(Ty);
6436   bool IsIndirect = AI.isIndirect();
6437   bool InFPRs = false;
6438   bool IsVector = false;
6439   CharUnits UnpaddedSize;
6440   CharUnits DirectAlign;
6441   if (IsIndirect) {
6442     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6443     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6444   } else {
6445     if (AI.getCoerceToType())
6446       ArgTy = AI.getCoerceToType();
6447     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6448     IsVector = ArgTy->isVectorTy();
6449     UnpaddedSize = TyInfo.first;
6450     DirectAlign = TyInfo.second;
6451   }
6452   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6453   if (IsVector && UnpaddedSize > PaddedSize)
6454     PaddedSize = CharUnits::fromQuantity(16);
6455   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6456 
6457   CharUnits Padding = (PaddedSize - UnpaddedSize);
6458 
6459   llvm::Type *IndexTy = CGF.Int64Ty;
6460   llvm::Value *PaddedSizeV =
6461     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6462 
6463   if (IsVector) {
6464     // Work out the address of a vector argument on the stack.
6465     // Vector arguments are always passed in the high bits of a
6466     // single (8 byte) or double (16 byte) stack slot.
6467     Address OverflowArgAreaPtr =
6468       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6469                                   "overflow_arg_area_ptr");
6470     Address OverflowArgArea =
6471       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6472               TyInfo.second);
6473     Address MemAddr =
6474       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6475 
6476     // Update overflow_arg_area_ptr pointer
6477     llvm::Value *NewOverflowArgArea =
6478       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6479                             "overflow_arg_area");
6480     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6481 
6482     return MemAddr;
6483   }
6484 
6485   assert(PaddedSize.getQuantity() == 8);
6486 
6487   unsigned MaxRegs, RegCountField, RegSaveIndex;
6488   CharUnits RegPadding;
6489   if (InFPRs) {
6490     MaxRegs = 4; // Maximum of 4 FPR arguments
6491     RegCountField = 1; // __fpr
6492     RegSaveIndex = 16; // save offset for f0
6493     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6494   } else {
6495     MaxRegs = 5; // Maximum of 5 GPR arguments
6496     RegCountField = 0; // __gpr
6497     RegSaveIndex = 2; // save offset for r2
6498     RegPadding = Padding; // values are passed in the low bits of a GPR
6499   }
6500 
6501   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6502       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6503       "reg_count_ptr");
6504   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6505   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6506   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6507                                                  "fits_in_regs");
6508 
6509   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6510   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6511   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6512   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6513 
6514   // Emit code to load the value if it was passed in registers.
6515   CGF.EmitBlock(InRegBlock);
6516 
6517   // Work out the address of an argument register.
6518   llvm::Value *ScaledRegCount =
6519     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6520   llvm::Value *RegBase =
6521     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6522                                       + RegPadding.getQuantity());
6523   llvm::Value *RegOffset =
6524     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6525   Address RegSaveAreaPtr =
6526       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6527                                   "reg_save_area_ptr");
6528   llvm::Value *RegSaveArea =
6529     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6530   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6531                                            "raw_reg_addr"),
6532                      PaddedSize);
6533   Address RegAddr =
6534     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6535 
6536   // Update the register count
6537   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6538   llvm::Value *NewRegCount =
6539     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6540   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6541   CGF.EmitBranch(ContBlock);
6542 
6543   // Emit code to load the value if it was passed in memory.
6544   CGF.EmitBlock(InMemBlock);
6545 
6546   // Work out the address of a stack argument.
6547   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6548       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6549   Address OverflowArgArea =
6550     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6551             PaddedSize);
6552   Address RawMemAddr =
6553     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6554   Address MemAddr =
6555     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6556 
6557   // Update overflow_arg_area_ptr pointer
6558   llvm::Value *NewOverflowArgArea =
6559     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6560                           "overflow_arg_area");
6561   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6562   CGF.EmitBranch(ContBlock);
6563 
6564   // Return the appropriate result.
6565   CGF.EmitBlock(ContBlock);
6566   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6567                                  MemAddr, InMemBlock, "va_arg.addr");
6568 
6569   if (IsIndirect)
6570     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6571                       TyInfo.second);
6572 
6573   return ResAddr;
6574 }
6575 
6576 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6577   if (RetTy->isVoidType())
6578     return ABIArgInfo::getIgnore();
6579   if (isVectorArgumentType(RetTy))
6580     return ABIArgInfo::getDirect();
6581   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6582     return getNaturalAlignIndirect(RetTy);
6583   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6584                                          : ABIArgInfo::getDirect());
6585 }
6586 
6587 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6588   // Handle the generic C++ ABI.
6589   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6590     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6591 
6592   // Integers and enums are extended to full register width.
6593   if (isPromotableIntegerType(Ty))
6594     return ABIArgInfo::getExtend(Ty);
6595 
6596   // Handle vector types and vector-like structure types.  Note that
6597   // as opposed to float-like structure types, we do not allow any
6598   // padding for vector-like structures, so verify the sizes match.
6599   uint64_t Size = getContext().getTypeSize(Ty);
6600   QualType SingleElementTy = GetSingleElementType(Ty);
6601   if (isVectorArgumentType(SingleElementTy) &&
6602       getContext().getTypeSize(SingleElementTy) == Size)
6603     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6604 
6605   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6606   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6607     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6608 
6609   // Handle small structures.
6610   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6611     // Structures with flexible arrays have variable length, so really
6612     // fail the size test above.
6613     const RecordDecl *RD = RT->getDecl();
6614     if (RD->hasFlexibleArrayMember())
6615       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6616 
6617     // The structure is passed as an unextended integer, a float, or a double.
6618     llvm::Type *PassTy;
6619     if (isFPArgumentType(SingleElementTy)) {
6620       assert(Size == 32 || Size == 64);
6621       if (Size == 32)
6622         PassTy = llvm::Type::getFloatTy(getVMContext());
6623       else
6624         PassTy = llvm::Type::getDoubleTy(getVMContext());
6625     } else
6626       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6627     return ABIArgInfo::getDirect(PassTy);
6628   }
6629 
6630   // Non-structure compounds are passed indirectly.
6631   if (isCompoundType(Ty))
6632     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6633 
6634   return ABIArgInfo::getDirect(nullptr);
6635 }
6636 
6637 //===----------------------------------------------------------------------===//
6638 // MSP430 ABI Implementation
6639 //===----------------------------------------------------------------------===//
6640 
6641 namespace {
6642 
6643 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6644 public:
6645   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6646     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6647   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6648                            CodeGen::CodeGenModule &M) const override;
6649 };
6650 
6651 }
6652 
6653 void MSP430TargetCodeGenInfo::setTargetAttributes(
6654     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6655   if (GV->isDeclaration())
6656     return;
6657   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6658     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6659       // Handle 'interrupt' attribute:
6660       llvm::Function *F = cast<llvm::Function>(GV);
6661 
6662       // Step 1: Set ISR calling convention.
6663       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6664 
6665       // Step 2: Add attributes goodness.
6666       F->addFnAttr(llvm::Attribute::NoInline);
6667 
6668       // Step 3: Emit ISR vector alias.
6669       unsigned Num = attr->getNumber() / 2;
6670       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6671                                 "__isr_" + Twine(Num), F);
6672     }
6673   }
6674 }
6675 
6676 //===----------------------------------------------------------------------===//
6677 // MIPS ABI Implementation.  This works for both little-endian and
6678 // big-endian variants.
6679 //===----------------------------------------------------------------------===//
6680 
6681 namespace {
6682 class MipsABIInfo : public ABIInfo {
6683   bool IsO32;
6684   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6685   void CoerceToIntArgs(uint64_t TySize,
6686                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6687   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6688   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6689   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6690 public:
6691   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6692     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6693     StackAlignInBytes(IsO32 ? 8 : 16) {}
6694 
6695   ABIArgInfo classifyReturnType(QualType RetTy) const;
6696   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6697   void computeInfo(CGFunctionInfo &FI) const override;
6698   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6699                     QualType Ty) const override;
6700   ABIArgInfo extendType(QualType Ty) const;
6701 };
6702 
6703 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6704   unsigned SizeOfUnwindException;
6705 public:
6706   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6707     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6708       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6709 
6710   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6711     return 29;
6712   }
6713 
6714   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6715                            CodeGen::CodeGenModule &CGM) const override {
6716     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6717     if (!FD) return;
6718     llvm::Function *Fn = cast<llvm::Function>(GV);
6719 
6720     if (FD->hasAttr<MipsLongCallAttr>())
6721       Fn->addFnAttr("long-call");
6722     else if (FD->hasAttr<MipsShortCallAttr>())
6723       Fn->addFnAttr("short-call");
6724 
6725     // Other attributes do not have a meaning for declarations.
6726     if (GV->isDeclaration())
6727       return;
6728 
6729     if (FD->hasAttr<Mips16Attr>()) {
6730       Fn->addFnAttr("mips16");
6731     }
6732     else if (FD->hasAttr<NoMips16Attr>()) {
6733       Fn->addFnAttr("nomips16");
6734     }
6735 
6736     if (FD->hasAttr<MicroMipsAttr>())
6737       Fn->addFnAttr("micromips");
6738     else if (FD->hasAttr<NoMicroMipsAttr>())
6739       Fn->addFnAttr("nomicromips");
6740 
6741     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6742     if (!Attr)
6743       return;
6744 
6745     const char *Kind;
6746     switch (Attr->getInterrupt()) {
6747     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6748     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6749     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6750     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6751     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6752     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6753     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6754     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6755     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6756     }
6757 
6758     Fn->addFnAttr("interrupt", Kind);
6759 
6760   }
6761 
6762   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6763                                llvm::Value *Address) const override;
6764 
6765   unsigned getSizeOfUnwindException() const override {
6766     return SizeOfUnwindException;
6767   }
6768 };
6769 }
6770 
6771 void MipsABIInfo::CoerceToIntArgs(
6772     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6773   llvm::IntegerType *IntTy =
6774     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6775 
6776   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6777   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6778     ArgList.push_back(IntTy);
6779 
6780   // If necessary, add one more integer type to ArgList.
6781   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6782 
6783   if (R)
6784     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6785 }
6786 
6787 // In N32/64, an aligned double precision floating point field is passed in
6788 // a register.
6789 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6790   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6791 
6792   if (IsO32) {
6793     CoerceToIntArgs(TySize, ArgList);
6794     return llvm::StructType::get(getVMContext(), ArgList);
6795   }
6796 
6797   if (Ty->isComplexType())
6798     return CGT.ConvertType(Ty);
6799 
6800   const RecordType *RT = Ty->getAs<RecordType>();
6801 
6802   // Unions/vectors are passed in integer registers.
6803   if (!RT || !RT->isStructureOrClassType()) {
6804     CoerceToIntArgs(TySize, ArgList);
6805     return llvm::StructType::get(getVMContext(), ArgList);
6806   }
6807 
6808   const RecordDecl *RD = RT->getDecl();
6809   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6810   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6811 
6812   uint64_t LastOffset = 0;
6813   unsigned idx = 0;
6814   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6815 
6816   // Iterate over fields in the struct/class and check if there are any aligned
6817   // double fields.
6818   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6819        i != e; ++i, ++idx) {
6820     const QualType Ty = i->getType();
6821     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6822 
6823     if (!BT || BT->getKind() != BuiltinType::Double)
6824       continue;
6825 
6826     uint64_t Offset = Layout.getFieldOffset(idx);
6827     if (Offset % 64) // Ignore doubles that are not aligned.
6828       continue;
6829 
6830     // Add ((Offset - LastOffset) / 64) args of type i64.
6831     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6832       ArgList.push_back(I64);
6833 
6834     // Add double type.
6835     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6836     LastOffset = Offset + 64;
6837   }
6838 
6839   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6840   ArgList.append(IntArgList.begin(), IntArgList.end());
6841 
6842   return llvm::StructType::get(getVMContext(), ArgList);
6843 }
6844 
6845 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6846                                         uint64_t Offset) const {
6847   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6848     return nullptr;
6849 
6850   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6851 }
6852 
6853 ABIArgInfo
6854 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6855   Ty = useFirstFieldIfTransparentUnion(Ty);
6856 
6857   uint64_t OrigOffset = Offset;
6858   uint64_t TySize = getContext().getTypeSize(Ty);
6859   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6860 
6861   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6862                    (uint64_t)StackAlignInBytes);
6863   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6864   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6865 
6866   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6867     // Ignore empty aggregates.
6868     if (TySize == 0)
6869       return ABIArgInfo::getIgnore();
6870 
6871     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6872       Offset = OrigOffset + MinABIStackAlignInBytes;
6873       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6874     }
6875 
6876     // If we have reached here, aggregates are passed directly by coercing to
6877     // another structure type. Padding is inserted if the offset of the
6878     // aggregate is unaligned.
6879     ABIArgInfo ArgInfo =
6880         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6881                               getPaddingType(OrigOffset, CurrOffset));
6882     ArgInfo.setInReg(true);
6883     return ArgInfo;
6884   }
6885 
6886   // Treat an enum type as its underlying type.
6887   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6888     Ty = EnumTy->getDecl()->getIntegerType();
6889 
6890   // All integral types are promoted to the GPR width.
6891   if (Ty->isIntegralOrEnumerationType())
6892     return extendType(Ty);
6893 
6894   return ABIArgInfo::getDirect(
6895       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6896 }
6897 
6898 llvm::Type*
6899 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6900   const RecordType *RT = RetTy->getAs<RecordType>();
6901   SmallVector<llvm::Type*, 8> RTList;
6902 
6903   if (RT && RT->isStructureOrClassType()) {
6904     const RecordDecl *RD = RT->getDecl();
6905     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6906     unsigned FieldCnt = Layout.getFieldCount();
6907 
6908     // N32/64 returns struct/classes in floating point registers if the
6909     // following conditions are met:
6910     // 1. The size of the struct/class is no larger than 128-bit.
6911     // 2. The struct/class has one or two fields all of which are floating
6912     //    point types.
6913     // 3. The offset of the first field is zero (this follows what gcc does).
6914     //
6915     // Any other composite results are returned in integer registers.
6916     //
6917     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6918       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6919       for (; b != e; ++b) {
6920         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6921 
6922         if (!BT || !BT->isFloatingPoint())
6923           break;
6924 
6925         RTList.push_back(CGT.ConvertType(b->getType()));
6926       }
6927 
6928       if (b == e)
6929         return llvm::StructType::get(getVMContext(), RTList,
6930                                      RD->hasAttr<PackedAttr>());
6931 
6932       RTList.clear();
6933     }
6934   }
6935 
6936   CoerceToIntArgs(Size, RTList);
6937   return llvm::StructType::get(getVMContext(), RTList);
6938 }
6939 
6940 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6941   uint64_t Size = getContext().getTypeSize(RetTy);
6942 
6943   if (RetTy->isVoidType())
6944     return ABIArgInfo::getIgnore();
6945 
6946   // O32 doesn't treat zero-sized structs differently from other structs.
6947   // However, N32/N64 ignores zero sized return values.
6948   if (!IsO32 && Size == 0)
6949     return ABIArgInfo::getIgnore();
6950 
6951   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6952     if (Size <= 128) {
6953       if (RetTy->isAnyComplexType())
6954         return ABIArgInfo::getDirect();
6955 
6956       // O32 returns integer vectors in registers and N32/N64 returns all small
6957       // aggregates in registers.
6958       if (!IsO32 ||
6959           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6960         ABIArgInfo ArgInfo =
6961             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6962         ArgInfo.setInReg(true);
6963         return ArgInfo;
6964       }
6965     }
6966 
6967     return getNaturalAlignIndirect(RetTy);
6968   }
6969 
6970   // Treat an enum type as its underlying type.
6971   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6972     RetTy = EnumTy->getDecl()->getIntegerType();
6973 
6974   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6975                                            : ABIArgInfo::getDirect());
6976 }
6977 
6978 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6979   ABIArgInfo &RetInfo = FI.getReturnInfo();
6980   if (!getCXXABI().classifyReturnType(FI))
6981     RetInfo = classifyReturnType(FI.getReturnType());
6982 
6983   // Check if a pointer to an aggregate is passed as a hidden argument.
6984   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6985 
6986   for (auto &I : FI.arguments())
6987     I.info = classifyArgumentType(I.type, Offset);
6988 }
6989 
6990 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6991                                QualType OrigTy) const {
6992   QualType Ty = OrigTy;
6993 
6994   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6995   // Pointers are also promoted in the same way but this only matters for N32.
6996   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6997   unsigned PtrWidth = getTarget().getPointerWidth(0);
6998   bool DidPromote = false;
6999   if ((Ty->isIntegerType() &&
7000           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7001       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7002     DidPromote = true;
7003     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7004                                             Ty->isSignedIntegerType());
7005   }
7006 
7007   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7008 
7009   // The alignment of things in the argument area is never larger than
7010   // StackAlignInBytes.
7011   TyInfo.second =
7012     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7013 
7014   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7015   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7016 
7017   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7018                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7019 
7020 
7021   // If there was a promotion, "unpromote" into a temporary.
7022   // TODO: can we just use a pointer into a subset of the original slot?
7023   if (DidPromote) {
7024     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7025     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7026 
7027     // Truncate down to the right width.
7028     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7029                                                  : CGF.IntPtrTy);
7030     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7031     if (OrigTy->isPointerType())
7032       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7033 
7034     CGF.Builder.CreateStore(V, Temp);
7035     Addr = Temp;
7036   }
7037 
7038   return Addr;
7039 }
7040 
7041 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7042   int TySize = getContext().getTypeSize(Ty);
7043 
7044   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7045   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7046     return ABIArgInfo::getSignExtend(Ty);
7047 
7048   return ABIArgInfo::getExtend(Ty);
7049 }
7050 
7051 bool
7052 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7053                                                llvm::Value *Address) const {
7054   // This information comes from gcc's implementation, which seems to
7055   // as canonical as it gets.
7056 
7057   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7058   // are aliased to pairs of single-precision FP registers.
7059   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7060 
7061   // 0-31 are the general purpose registers, $0 - $31.
7062   // 32-63 are the floating-point registers, $f0 - $f31.
7063   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7064   // 66 is the (notional, I think) register for signal-handler return.
7065   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7066 
7067   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7068   // They are one bit wide and ignored here.
7069 
7070   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7071   // (coprocessor 1 is the FP unit)
7072   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7073   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7074   // 176-181 are the DSP accumulator registers.
7075   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7076   return false;
7077 }
7078 
7079 //===----------------------------------------------------------------------===//
7080 // AVR ABI Implementation.
7081 //===----------------------------------------------------------------------===//
7082 
7083 namespace {
7084 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7085 public:
7086   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7087     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7088 
7089   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7090                            CodeGen::CodeGenModule &CGM) const override {
7091     if (GV->isDeclaration())
7092       return;
7093     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7094     if (!FD) return;
7095     auto *Fn = cast<llvm::Function>(GV);
7096 
7097     if (FD->getAttr<AVRInterruptAttr>())
7098       Fn->addFnAttr("interrupt");
7099 
7100     if (FD->getAttr<AVRSignalAttr>())
7101       Fn->addFnAttr("signal");
7102   }
7103 };
7104 }
7105 
7106 //===----------------------------------------------------------------------===//
7107 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7108 // Currently subclassed only to implement custom OpenCL C function attribute
7109 // handling.
7110 //===----------------------------------------------------------------------===//
7111 
7112 namespace {
7113 
7114 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7115 public:
7116   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7117     : DefaultTargetCodeGenInfo(CGT) {}
7118 
7119   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7120                            CodeGen::CodeGenModule &M) const override;
7121 };
7122 
7123 void TCETargetCodeGenInfo::setTargetAttributes(
7124     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7125   if (GV->isDeclaration())
7126     return;
7127   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7128   if (!FD) return;
7129 
7130   llvm::Function *F = cast<llvm::Function>(GV);
7131 
7132   if (M.getLangOpts().OpenCL) {
7133     if (FD->hasAttr<OpenCLKernelAttr>()) {
7134       // OpenCL C Kernel functions are not subject to inlining
7135       F->addFnAttr(llvm::Attribute::NoInline);
7136       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7137       if (Attr) {
7138         // Convert the reqd_work_group_size() attributes to metadata.
7139         llvm::LLVMContext &Context = F->getContext();
7140         llvm::NamedMDNode *OpenCLMetadata =
7141             M.getModule().getOrInsertNamedMetadata(
7142                 "opencl.kernel_wg_size_info");
7143 
7144         SmallVector<llvm::Metadata *, 5> Operands;
7145         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7146 
7147         Operands.push_back(
7148             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7149                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7150         Operands.push_back(
7151             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7152                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7153         Operands.push_back(
7154             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7155                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7156 
7157         // Add a boolean constant operand for "required" (true) or "hint"
7158         // (false) for implementing the work_group_size_hint attr later.
7159         // Currently always true as the hint is not yet implemented.
7160         Operands.push_back(
7161             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7162         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7163       }
7164     }
7165   }
7166 }
7167 
7168 }
7169 
7170 //===----------------------------------------------------------------------===//
7171 // Hexagon ABI Implementation
7172 //===----------------------------------------------------------------------===//
7173 
7174 namespace {
7175 
7176 class HexagonABIInfo : public ABIInfo {
7177 
7178 
7179 public:
7180   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7181 
7182 private:
7183 
7184   ABIArgInfo classifyReturnType(QualType RetTy) const;
7185   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7186 
7187   void computeInfo(CGFunctionInfo &FI) const override;
7188 
7189   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7190                     QualType Ty) const override;
7191 };
7192 
7193 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7194 public:
7195   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7196     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7197 
7198   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7199     return 29;
7200   }
7201 };
7202 
7203 }
7204 
7205 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7206   if (!getCXXABI().classifyReturnType(FI))
7207     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7208   for (auto &I : FI.arguments())
7209     I.info = classifyArgumentType(I.type);
7210 }
7211 
7212 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7213   if (!isAggregateTypeForABI(Ty)) {
7214     // Treat an enum type as its underlying type.
7215     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7216       Ty = EnumTy->getDecl()->getIntegerType();
7217 
7218     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7219                                           : ABIArgInfo::getDirect());
7220   }
7221 
7222   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7223     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7224 
7225   // Ignore empty records.
7226   if (isEmptyRecord(getContext(), Ty, true))
7227     return ABIArgInfo::getIgnore();
7228 
7229   uint64_t Size = getContext().getTypeSize(Ty);
7230   if (Size > 64)
7231     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7232     // Pass in the smallest viable integer type.
7233   else if (Size > 32)
7234       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7235   else if (Size > 16)
7236       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7237   else if (Size > 8)
7238       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7239   else
7240       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7241 }
7242 
7243 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7244   if (RetTy->isVoidType())
7245     return ABIArgInfo::getIgnore();
7246 
7247   // Large vector types should be returned via memory.
7248   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7249     return getNaturalAlignIndirect(RetTy);
7250 
7251   if (!isAggregateTypeForABI(RetTy)) {
7252     // Treat an enum type as its underlying type.
7253     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7254       RetTy = EnumTy->getDecl()->getIntegerType();
7255 
7256     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7257                                              : ABIArgInfo::getDirect());
7258   }
7259 
7260   if (isEmptyRecord(getContext(), RetTy, true))
7261     return ABIArgInfo::getIgnore();
7262 
7263   // Aggregates <= 8 bytes are returned in r0; other aggregates
7264   // are returned indirectly.
7265   uint64_t Size = getContext().getTypeSize(RetTy);
7266   if (Size <= 64) {
7267     // Return in the smallest viable integer type.
7268     if (Size <= 8)
7269       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7270     if (Size <= 16)
7271       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7272     if (Size <= 32)
7273       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7274     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7275   }
7276 
7277   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7278 }
7279 
7280 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7281                                   QualType Ty) const {
7282   // FIXME: Someone needs to audit that this handle alignment correctly.
7283   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7284                           getContext().getTypeInfoInChars(Ty),
7285                           CharUnits::fromQuantity(4),
7286                           /*AllowHigherAlign*/ true);
7287 }
7288 
7289 //===----------------------------------------------------------------------===//
7290 // Lanai ABI Implementation
7291 //===----------------------------------------------------------------------===//
7292 
7293 namespace {
7294 class LanaiABIInfo : public DefaultABIInfo {
7295 public:
7296   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7297 
7298   bool shouldUseInReg(QualType Ty, CCState &State) const;
7299 
7300   void computeInfo(CGFunctionInfo &FI) const override {
7301     CCState State(FI.getCallingConvention());
7302     // Lanai uses 4 registers to pass arguments unless the function has the
7303     // regparm attribute set.
7304     if (FI.getHasRegParm()) {
7305       State.FreeRegs = FI.getRegParm();
7306     } else {
7307       State.FreeRegs = 4;
7308     }
7309 
7310     if (!getCXXABI().classifyReturnType(FI))
7311       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7312     for (auto &I : FI.arguments())
7313       I.info = classifyArgumentType(I.type, State);
7314   }
7315 
7316   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7317   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7318 };
7319 } // end anonymous namespace
7320 
7321 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7322   unsigned Size = getContext().getTypeSize(Ty);
7323   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7324 
7325   if (SizeInRegs == 0)
7326     return false;
7327 
7328   if (SizeInRegs > State.FreeRegs) {
7329     State.FreeRegs = 0;
7330     return false;
7331   }
7332 
7333   State.FreeRegs -= SizeInRegs;
7334 
7335   return true;
7336 }
7337 
7338 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7339                                            CCState &State) const {
7340   if (!ByVal) {
7341     if (State.FreeRegs) {
7342       --State.FreeRegs; // Non-byval indirects just use one pointer.
7343       return getNaturalAlignIndirectInReg(Ty);
7344     }
7345     return getNaturalAlignIndirect(Ty, false);
7346   }
7347 
7348   // Compute the byval alignment.
7349   const unsigned MinABIStackAlignInBytes = 4;
7350   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7351   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7352                                  /*Realign=*/TypeAlign >
7353                                      MinABIStackAlignInBytes);
7354 }
7355 
7356 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7357                                               CCState &State) const {
7358   // Check with the C++ ABI first.
7359   const RecordType *RT = Ty->getAs<RecordType>();
7360   if (RT) {
7361     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7362     if (RAA == CGCXXABI::RAA_Indirect) {
7363       return getIndirectResult(Ty, /*ByVal=*/false, State);
7364     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7365       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7366     }
7367   }
7368 
7369   if (isAggregateTypeForABI(Ty)) {
7370     // Structures with flexible arrays are always indirect.
7371     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7372       return getIndirectResult(Ty, /*ByVal=*/true, State);
7373 
7374     // Ignore empty structs/unions.
7375     if (isEmptyRecord(getContext(), Ty, true))
7376       return ABIArgInfo::getIgnore();
7377 
7378     llvm::LLVMContext &LLVMContext = getVMContext();
7379     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7380     if (SizeInRegs <= State.FreeRegs) {
7381       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7382       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7383       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7384       State.FreeRegs -= SizeInRegs;
7385       return ABIArgInfo::getDirectInReg(Result);
7386     } else {
7387       State.FreeRegs = 0;
7388     }
7389     return getIndirectResult(Ty, true, State);
7390   }
7391 
7392   // Treat an enum type as its underlying type.
7393   if (const auto *EnumTy = Ty->getAs<EnumType>())
7394     Ty = EnumTy->getDecl()->getIntegerType();
7395 
7396   bool InReg = shouldUseInReg(Ty, State);
7397   if (Ty->isPromotableIntegerType()) {
7398     if (InReg)
7399       return ABIArgInfo::getDirectInReg();
7400     return ABIArgInfo::getExtend(Ty);
7401   }
7402   if (InReg)
7403     return ABIArgInfo::getDirectInReg();
7404   return ABIArgInfo::getDirect();
7405 }
7406 
7407 namespace {
7408 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7409 public:
7410   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7411       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7412 };
7413 }
7414 
7415 //===----------------------------------------------------------------------===//
7416 // AMDGPU ABI Implementation
7417 //===----------------------------------------------------------------------===//
7418 
7419 namespace {
7420 
7421 class AMDGPUABIInfo final : public DefaultABIInfo {
7422 private:
7423   static const unsigned MaxNumRegsForArgsRet = 16;
7424 
7425   unsigned numRegsForType(QualType Ty) const;
7426 
7427   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7428   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7429                                          uint64_t Members) const override;
7430 
7431 public:
7432   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7433     DefaultABIInfo(CGT) {}
7434 
7435   ABIArgInfo classifyReturnType(QualType RetTy) const;
7436   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7437   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7438 
7439   void computeInfo(CGFunctionInfo &FI) const override;
7440 };
7441 
7442 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7443   return true;
7444 }
7445 
7446 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7447   const Type *Base, uint64_t Members) const {
7448   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7449 
7450   // Homogeneous Aggregates may occupy at most 16 registers.
7451   return Members * NumRegs <= MaxNumRegsForArgsRet;
7452 }
7453 
7454 /// Estimate number of registers the type will use when passed in registers.
7455 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7456   unsigned NumRegs = 0;
7457 
7458   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7459     // Compute from the number of elements. The reported size is based on the
7460     // in-memory size, which includes the padding 4th element for 3-vectors.
7461     QualType EltTy = VT->getElementType();
7462     unsigned EltSize = getContext().getTypeSize(EltTy);
7463 
7464     // 16-bit element vectors should be passed as packed.
7465     if (EltSize == 16)
7466       return (VT->getNumElements() + 1) / 2;
7467 
7468     unsigned EltNumRegs = (EltSize + 31) / 32;
7469     return EltNumRegs * VT->getNumElements();
7470   }
7471 
7472   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7473     const RecordDecl *RD = RT->getDecl();
7474     assert(!RD->hasFlexibleArrayMember());
7475 
7476     for (const FieldDecl *Field : RD->fields()) {
7477       QualType FieldTy = Field->getType();
7478       NumRegs += numRegsForType(FieldTy);
7479     }
7480 
7481     return NumRegs;
7482   }
7483 
7484   return (getContext().getTypeSize(Ty) + 31) / 32;
7485 }
7486 
7487 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7488   llvm::CallingConv::ID CC = FI.getCallingConvention();
7489 
7490   if (!getCXXABI().classifyReturnType(FI))
7491     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7492 
7493   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7494   for (auto &Arg : FI.arguments()) {
7495     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7496       Arg.info = classifyKernelArgumentType(Arg.type);
7497     } else {
7498       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7499     }
7500   }
7501 }
7502 
7503 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7504   if (isAggregateTypeForABI(RetTy)) {
7505     // Records with non-trivial destructors/copy-constructors should not be
7506     // returned by value.
7507     if (!getRecordArgABI(RetTy, getCXXABI())) {
7508       // Ignore empty structs/unions.
7509       if (isEmptyRecord(getContext(), RetTy, true))
7510         return ABIArgInfo::getIgnore();
7511 
7512       // Lower single-element structs to just return a regular value.
7513       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7514         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7515 
7516       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7517         const RecordDecl *RD = RT->getDecl();
7518         if (RD->hasFlexibleArrayMember())
7519           return DefaultABIInfo::classifyReturnType(RetTy);
7520       }
7521 
7522       // Pack aggregates <= 4 bytes into single VGPR or pair.
7523       uint64_t Size = getContext().getTypeSize(RetTy);
7524       if (Size <= 16)
7525         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7526 
7527       if (Size <= 32)
7528         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7529 
7530       if (Size <= 64) {
7531         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7532         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7533       }
7534 
7535       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7536         return ABIArgInfo::getDirect();
7537     }
7538   }
7539 
7540   // Otherwise just do the default thing.
7541   return DefaultABIInfo::classifyReturnType(RetTy);
7542 }
7543 
7544 /// For kernels all parameters are really passed in a special buffer. It doesn't
7545 /// make sense to pass anything byval, so everything must be direct.
7546 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7547   Ty = useFirstFieldIfTransparentUnion(Ty);
7548 
7549   // TODO: Can we omit empty structs?
7550 
7551   // Coerce single element structs to its element.
7552   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7553     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7554 
7555   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7556   // individual elements, which confuses the Clover OpenCL backend; therefore we
7557   // have to set it to false here. Other args of getDirect() are just defaults.
7558   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7559 }
7560 
7561 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7562                                                unsigned &NumRegsLeft) const {
7563   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7564 
7565   Ty = useFirstFieldIfTransparentUnion(Ty);
7566 
7567   if (isAggregateTypeForABI(Ty)) {
7568     // Records with non-trivial destructors/copy-constructors should not be
7569     // passed by value.
7570     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7571       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7572 
7573     // Ignore empty structs/unions.
7574     if (isEmptyRecord(getContext(), Ty, true))
7575       return ABIArgInfo::getIgnore();
7576 
7577     // Lower single-element structs to just pass a regular value. TODO: We
7578     // could do reasonable-size multiple-element structs too, using getExpand(),
7579     // though watch out for things like bitfields.
7580     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7581       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7582 
7583     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7584       const RecordDecl *RD = RT->getDecl();
7585       if (RD->hasFlexibleArrayMember())
7586         return DefaultABIInfo::classifyArgumentType(Ty);
7587     }
7588 
7589     // Pack aggregates <= 8 bytes into single VGPR or pair.
7590     uint64_t Size = getContext().getTypeSize(Ty);
7591     if (Size <= 64) {
7592       unsigned NumRegs = (Size + 31) / 32;
7593       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7594 
7595       if (Size <= 16)
7596         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7597 
7598       if (Size <= 32)
7599         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7600 
7601       // XXX: Should this be i64 instead, and should the limit increase?
7602       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7603       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7604     }
7605 
7606     if (NumRegsLeft > 0) {
7607       unsigned NumRegs = numRegsForType(Ty);
7608       if (NumRegsLeft >= NumRegs) {
7609         NumRegsLeft -= NumRegs;
7610         return ABIArgInfo::getDirect();
7611       }
7612     }
7613   }
7614 
7615   // Otherwise just do the default thing.
7616   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7617   if (!ArgInfo.isIndirect()) {
7618     unsigned NumRegs = numRegsForType(Ty);
7619     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7620   }
7621 
7622   return ArgInfo;
7623 }
7624 
7625 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7626 public:
7627   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7628     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7629   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7630                            CodeGen::CodeGenModule &M) const override;
7631   unsigned getOpenCLKernelCallingConv() const override;
7632 
7633   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7634       llvm::PointerType *T, QualType QT) const override;
7635 
7636   LangAS getASTAllocaAddressSpace() const override {
7637     return getLangASFromTargetAS(
7638         getABIInfo().getDataLayout().getAllocaAddrSpace());
7639   }
7640   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7641                                   const VarDecl *D) const override;
7642   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7643                                          llvm::LLVMContext &C) const override;
7644   llvm::Function *
7645   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7646                             llvm::Function *BlockInvokeFunc,
7647                             llvm::Value *BlockLiteral) const override;
7648   bool shouldEmitStaticExternCAliases() const override;
7649   void setCUDAKernelCallingConvention(llvm::Function *F) const override;
7650 };
7651 }
7652 
7653 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7654     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7655   if (GV->isDeclaration())
7656     return;
7657   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7658   if (!FD)
7659     return;
7660 
7661   llvm::Function *F = cast<llvm::Function>(GV);
7662 
7663   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7664     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7665 
7666   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7667       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7668     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7669 
7670   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7671   if (ReqdWGS || FlatWGS) {
7672     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7673     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7674     if (ReqdWGS && Min == 0 && Max == 0)
7675       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7676 
7677     if (Min != 0) {
7678       assert(Min <= Max && "Min must be less than or equal Max");
7679 
7680       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7681       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7682     } else
7683       assert(Max == 0 && "Max must be zero");
7684   }
7685 
7686   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7687     unsigned Min = Attr->getMin();
7688     unsigned Max = Attr->getMax();
7689 
7690     if (Min != 0) {
7691       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7692 
7693       std::string AttrVal = llvm::utostr(Min);
7694       if (Max != 0)
7695         AttrVal = AttrVal + "," + llvm::utostr(Max);
7696       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7697     } else
7698       assert(Max == 0 && "Max must be zero");
7699   }
7700 
7701   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7702     unsigned NumSGPR = Attr->getNumSGPR();
7703 
7704     if (NumSGPR != 0)
7705       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7706   }
7707 
7708   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7709     uint32_t NumVGPR = Attr->getNumVGPR();
7710 
7711     if (NumVGPR != 0)
7712       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7713   }
7714 }
7715 
7716 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7717   return llvm::CallingConv::AMDGPU_KERNEL;
7718 }
7719 
7720 // Currently LLVM assumes null pointers always have value 0,
7721 // which results in incorrectly transformed IR. Therefore, instead of
7722 // emitting null pointers in private and local address spaces, a null
7723 // pointer in generic address space is emitted which is casted to a
7724 // pointer in local or private address space.
7725 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7726     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7727     QualType QT) const {
7728   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7729     return llvm::ConstantPointerNull::get(PT);
7730 
7731   auto &Ctx = CGM.getContext();
7732   auto NPT = llvm::PointerType::get(PT->getElementType(),
7733       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7734   return llvm::ConstantExpr::getAddrSpaceCast(
7735       llvm::ConstantPointerNull::get(NPT), PT);
7736 }
7737 
7738 LangAS
7739 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7740                                                   const VarDecl *D) const {
7741   assert(!CGM.getLangOpts().OpenCL &&
7742          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7743          "Address space agnostic languages only");
7744   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7745       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7746   if (!D)
7747     return DefaultGlobalAS;
7748 
7749   LangAS AddrSpace = D->getType().getAddressSpace();
7750   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7751   if (AddrSpace != LangAS::Default)
7752     return AddrSpace;
7753 
7754   if (CGM.isTypeConstant(D->getType(), false)) {
7755     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7756       return ConstAS.getValue();
7757   }
7758   return DefaultGlobalAS;
7759 }
7760 
7761 llvm::SyncScope::ID
7762 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7763                                             llvm::LLVMContext &C) const {
7764   StringRef Name;
7765   switch (S) {
7766   case SyncScope::OpenCLWorkGroup:
7767     Name = "workgroup";
7768     break;
7769   case SyncScope::OpenCLDevice:
7770     Name = "agent";
7771     break;
7772   case SyncScope::OpenCLAllSVMDevices:
7773     Name = "";
7774     break;
7775   case SyncScope::OpenCLSubGroup:
7776     Name = "subgroup";
7777   }
7778   return C.getOrInsertSyncScopeID(Name);
7779 }
7780 
7781 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7782   return false;
7783 }
7784 
7785 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
7786     llvm::Function *F) const {
7787   F->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL);
7788 }
7789 
7790 //===----------------------------------------------------------------------===//
7791 // SPARC v8 ABI Implementation.
7792 // Based on the SPARC Compliance Definition version 2.4.1.
7793 //
7794 // Ensures that complex values are passed in registers.
7795 //
7796 namespace {
7797 class SparcV8ABIInfo : public DefaultABIInfo {
7798 public:
7799   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7800 
7801 private:
7802   ABIArgInfo classifyReturnType(QualType RetTy) const;
7803   void computeInfo(CGFunctionInfo &FI) const override;
7804 };
7805 } // end anonymous namespace
7806 
7807 
7808 ABIArgInfo
7809 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7810   if (Ty->isAnyComplexType()) {
7811     return ABIArgInfo::getDirect();
7812   }
7813   else {
7814     return DefaultABIInfo::classifyReturnType(Ty);
7815   }
7816 }
7817 
7818 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7819 
7820   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7821   for (auto &Arg : FI.arguments())
7822     Arg.info = classifyArgumentType(Arg.type);
7823 }
7824 
7825 namespace {
7826 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7827 public:
7828   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7829     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7830 };
7831 } // end anonymous namespace
7832 
7833 //===----------------------------------------------------------------------===//
7834 // SPARC v9 ABI Implementation.
7835 // Based on the SPARC Compliance Definition version 2.4.1.
7836 //
7837 // Function arguments a mapped to a nominal "parameter array" and promoted to
7838 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7839 // the array, structs larger than 16 bytes are passed indirectly.
7840 //
7841 // One case requires special care:
7842 //
7843 //   struct mixed {
7844 //     int i;
7845 //     float f;
7846 //   };
7847 //
7848 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7849 // parameter array, but the int is passed in an integer register, and the float
7850 // is passed in a floating point register. This is represented as two arguments
7851 // with the LLVM IR inreg attribute:
7852 //
7853 //   declare void f(i32 inreg %i, float inreg %f)
7854 //
7855 // The code generator will only allocate 4 bytes from the parameter array for
7856 // the inreg arguments. All other arguments are allocated a multiple of 8
7857 // bytes.
7858 //
7859 namespace {
7860 class SparcV9ABIInfo : public ABIInfo {
7861 public:
7862   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7863 
7864 private:
7865   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7866   void computeInfo(CGFunctionInfo &FI) const override;
7867   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7868                     QualType Ty) const override;
7869 
7870   // Coercion type builder for structs passed in registers. The coercion type
7871   // serves two purposes:
7872   //
7873   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7874   //    in registers.
7875   // 2. Expose aligned floating point elements as first-level elements, so the
7876   //    code generator knows to pass them in floating point registers.
7877   //
7878   // We also compute the InReg flag which indicates that the struct contains
7879   // aligned 32-bit floats.
7880   //
7881   struct CoerceBuilder {
7882     llvm::LLVMContext &Context;
7883     const llvm::DataLayout &DL;
7884     SmallVector<llvm::Type*, 8> Elems;
7885     uint64_t Size;
7886     bool InReg;
7887 
7888     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7889       : Context(c), DL(dl), Size(0), InReg(false) {}
7890 
7891     // Pad Elems with integers until Size is ToSize.
7892     void pad(uint64_t ToSize) {
7893       assert(ToSize >= Size && "Cannot remove elements");
7894       if (ToSize == Size)
7895         return;
7896 
7897       // Finish the current 64-bit word.
7898       uint64_t Aligned = llvm::alignTo(Size, 64);
7899       if (Aligned > Size && Aligned <= ToSize) {
7900         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7901         Size = Aligned;
7902       }
7903 
7904       // Add whole 64-bit words.
7905       while (Size + 64 <= ToSize) {
7906         Elems.push_back(llvm::Type::getInt64Ty(Context));
7907         Size += 64;
7908       }
7909 
7910       // Final in-word padding.
7911       if (Size < ToSize) {
7912         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7913         Size = ToSize;
7914       }
7915     }
7916 
7917     // Add a floating point element at Offset.
7918     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7919       // Unaligned floats are treated as integers.
7920       if (Offset % Bits)
7921         return;
7922       // The InReg flag is only required if there are any floats < 64 bits.
7923       if (Bits < 64)
7924         InReg = true;
7925       pad(Offset);
7926       Elems.push_back(Ty);
7927       Size = Offset + Bits;
7928     }
7929 
7930     // Add a struct type to the coercion type, starting at Offset (in bits).
7931     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7932       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7933       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7934         llvm::Type *ElemTy = StrTy->getElementType(i);
7935         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7936         switch (ElemTy->getTypeID()) {
7937         case llvm::Type::StructTyID:
7938           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7939           break;
7940         case llvm::Type::FloatTyID:
7941           addFloat(ElemOffset, ElemTy, 32);
7942           break;
7943         case llvm::Type::DoubleTyID:
7944           addFloat(ElemOffset, ElemTy, 64);
7945           break;
7946         case llvm::Type::FP128TyID:
7947           addFloat(ElemOffset, ElemTy, 128);
7948           break;
7949         case llvm::Type::PointerTyID:
7950           if (ElemOffset % 64 == 0) {
7951             pad(ElemOffset);
7952             Elems.push_back(ElemTy);
7953             Size += 64;
7954           }
7955           break;
7956         default:
7957           break;
7958         }
7959       }
7960     }
7961 
7962     // Check if Ty is a usable substitute for the coercion type.
7963     bool isUsableType(llvm::StructType *Ty) const {
7964       return llvm::makeArrayRef(Elems) == Ty->elements();
7965     }
7966 
7967     // Get the coercion type as a literal struct type.
7968     llvm::Type *getType() const {
7969       if (Elems.size() == 1)
7970         return Elems.front();
7971       else
7972         return llvm::StructType::get(Context, Elems);
7973     }
7974   };
7975 };
7976 } // end anonymous namespace
7977 
7978 ABIArgInfo
7979 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7980   if (Ty->isVoidType())
7981     return ABIArgInfo::getIgnore();
7982 
7983   uint64_t Size = getContext().getTypeSize(Ty);
7984 
7985   // Anything too big to fit in registers is passed with an explicit indirect
7986   // pointer / sret pointer.
7987   if (Size > SizeLimit)
7988     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7989 
7990   // Treat an enum type as its underlying type.
7991   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7992     Ty = EnumTy->getDecl()->getIntegerType();
7993 
7994   // Integer types smaller than a register are extended.
7995   if (Size < 64 && Ty->isIntegerType())
7996     return ABIArgInfo::getExtend(Ty);
7997 
7998   // Other non-aggregates go in registers.
7999   if (!isAggregateTypeForABI(Ty))
8000     return ABIArgInfo::getDirect();
8001 
8002   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8003   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8004   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8005     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8006 
8007   // This is a small aggregate type that should be passed in registers.
8008   // Build a coercion type from the LLVM struct type.
8009   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8010   if (!StrTy)
8011     return ABIArgInfo::getDirect();
8012 
8013   CoerceBuilder CB(getVMContext(), getDataLayout());
8014   CB.addStruct(0, StrTy);
8015   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8016 
8017   // Try to use the original type for coercion.
8018   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8019 
8020   if (CB.InReg)
8021     return ABIArgInfo::getDirectInReg(CoerceTy);
8022   else
8023     return ABIArgInfo::getDirect(CoerceTy);
8024 }
8025 
8026 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8027                                   QualType Ty) const {
8028   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8029   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8030   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8031     AI.setCoerceToType(ArgTy);
8032 
8033   CharUnits SlotSize = CharUnits::fromQuantity(8);
8034 
8035   CGBuilderTy &Builder = CGF.Builder;
8036   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8037   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8038 
8039   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8040 
8041   Address ArgAddr = Address::invalid();
8042   CharUnits Stride;
8043   switch (AI.getKind()) {
8044   case ABIArgInfo::Expand:
8045   case ABIArgInfo::CoerceAndExpand:
8046   case ABIArgInfo::InAlloca:
8047     llvm_unreachable("Unsupported ABI kind for va_arg");
8048 
8049   case ABIArgInfo::Extend: {
8050     Stride = SlotSize;
8051     CharUnits Offset = SlotSize - TypeInfo.first;
8052     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8053     break;
8054   }
8055 
8056   case ABIArgInfo::Direct: {
8057     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8058     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8059     ArgAddr = Addr;
8060     break;
8061   }
8062 
8063   case ABIArgInfo::Indirect:
8064     Stride = SlotSize;
8065     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8066     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8067                       TypeInfo.second);
8068     break;
8069 
8070   case ABIArgInfo::Ignore:
8071     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8072   }
8073 
8074   // Update VAList.
8075   llvm::Value *NextPtr =
8076     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8077   Builder.CreateStore(NextPtr, VAListAddr);
8078 
8079   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8080 }
8081 
8082 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8083   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8084   for (auto &I : FI.arguments())
8085     I.info = classifyType(I.type, 16 * 8);
8086 }
8087 
8088 namespace {
8089 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8090 public:
8091   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8092     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8093 
8094   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8095     return 14;
8096   }
8097 
8098   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8099                                llvm::Value *Address) const override;
8100 };
8101 } // end anonymous namespace
8102 
8103 bool
8104 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8105                                                 llvm::Value *Address) const {
8106   // This is calculated from the LLVM and GCC tables and verified
8107   // against gcc output.  AFAIK all ABIs use the same encoding.
8108 
8109   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8110 
8111   llvm::IntegerType *i8 = CGF.Int8Ty;
8112   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8113   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8114 
8115   // 0-31: the 8-byte general-purpose registers
8116   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8117 
8118   // 32-63: f0-31, the 4-byte floating-point registers
8119   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8120 
8121   //   Y   = 64
8122   //   PSR = 65
8123   //   WIM = 66
8124   //   TBR = 67
8125   //   PC  = 68
8126   //   NPC = 69
8127   //   FSR = 70
8128   //   CSR = 71
8129   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8130 
8131   // 72-87: d0-15, the 8-byte floating-point registers
8132   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8133 
8134   return false;
8135 }
8136 
8137 
8138 //===----------------------------------------------------------------------===//
8139 // XCore ABI Implementation
8140 //===----------------------------------------------------------------------===//
8141 
8142 namespace {
8143 
8144 /// A SmallStringEnc instance is used to build up the TypeString by passing
8145 /// it by reference between functions that append to it.
8146 typedef llvm::SmallString<128> SmallStringEnc;
8147 
8148 /// TypeStringCache caches the meta encodings of Types.
8149 ///
8150 /// The reason for caching TypeStrings is two fold:
8151 ///   1. To cache a type's encoding for later uses;
8152 ///   2. As a means to break recursive member type inclusion.
8153 ///
8154 /// A cache Entry can have a Status of:
8155 ///   NonRecursive:   The type encoding is not recursive;
8156 ///   Recursive:      The type encoding is recursive;
8157 ///   Incomplete:     An incomplete TypeString;
8158 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8159 ///                   Recursive type encoding.
8160 ///
8161 /// A NonRecursive entry will have all of its sub-members expanded as fully
8162 /// as possible. Whilst it may contain types which are recursive, the type
8163 /// itself is not recursive and thus its encoding may be safely used whenever
8164 /// the type is encountered.
8165 ///
8166 /// A Recursive entry will have all of its sub-members expanded as fully as
8167 /// possible. The type itself is recursive and it may contain other types which
8168 /// are recursive. The Recursive encoding must not be used during the expansion
8169 /// of a recursive type's recursive branch. For simplicity the code uses
8170 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8171 ///
8172 /// An Incomplete entry is always a RecordType and only encodes its
8173 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8174 /// are placed into the cache during type expansion as a means to identify and
8175 /// handle recursive inclusion of types as sub-members. If there is recursion
8176 /// the entry becomes IncompleteUsed.
8177 ///
8178 /// During the expansion of a RecordType's members:
8179 ///
8180 ///   If the cache contains a NonRecursive encoding for the member type, the
8181 ///   cached encoding is used;
8182 ///
8183 ///   If the cache contains a Recursive encoding for the member type, the
8184 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8185 ///
8186 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8187 ///   cache to break potential recursive inclusion of itself as a sub-member;
8188 ///
8189 ///   Once a member RecordType has been expanded, its temporary incomplete
8190 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8191 ///   it is swapped back in;
8192 ///
8193 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8194 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8195 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8196 ///
8197 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8198 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8199 ///   Else the member is part of a recursive type and thus the recursion has
8200 ///   been exited too soon for the encoding to be correct for the member.
8201 ///
8202 class TypeStringCache {
8203   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8204   struct Entry {
8205     std::string Str;     // The encoded TypeString for the type.
8206     enum Status State;   // Information about the encoding in 'Str'.
8207     std::string Swapped; // A temporary place holder for a Recursive encoding
8208                          // during the expansion of RecordType's members.
8209   };
8210   std::map<const IdentifierInfo *, struct Entry> Map;
8211   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8212   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8213 public:
8214   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8215   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8216   bool removeIncomplete(const IdentifierInfo *ID);
8217   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8218                      bool IsRecursive);
8219   StringRef lookupStr(const IdentifierInfo *ID);
8220 };
8221 
8222 /// TypeString encodings for enum & union fields must be order.
8223 /// FieldEncoding is a helper for this ordering process.
8224 class FieldEncoding {
8225   bool HasName;
8226   std::string Enc;
8227 public:
8228   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8229   StringRef str() { return Enc; }
8230   bool operator<(const FieldEncoding &rhs) const {
8231     if (HasName != rhs.HasName) return HasName;
8232     return Enc < rhs.Enc;
8233   }
8234 };
8235 
8236 class XCoreABIInfo : public DefaultABIInfo {
8237 public:
8238   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8239   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8240                     QualType Ty) const override;
8241 };
8242 
8243 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8244   mutable TypeStringCache TSC;
8245 public:
8246   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8247     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8248   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8249                     CodeGen::CodeGenModule &M) const override;
8250 };
8251 
8252 } // End anonymous namespace.
8253 
8254 // TODO: this implementation is likely now redundant with the default
8255 // EmitVAArg.
8256 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8257                                 QualType Ty) const {
8258   CGBuilderTy &Builder = CGF.Builder;
8259 
8260   // Get the VAList.
8261   CharUnits SlotSize = CharUnits::fromQuantity(4);
8262   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8263 
8264   // Handle the argument.
8265   ABIArgInfo AI = classifyArgumentType(Ty);
8266   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8267   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8268   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8269     AI.setCoerceToType(ArgTy);
8270   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8271 
8272   Address Val = Address::invalid();
8273   CharUnits ArgSize = CharUnits::Zero();
8274   switch (AI.getKind()) {
8275   case ABIArgInfo::Expand:
8276   case ABIArgInfo::CoerceAndExpand:
8277   case ABIArgInfo::InAlloca:
8278     llvm_unreachable("Unsupported ABI kind for va_arg");
8279   case ABIArgInfo::Ignore:
8280     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8281     ArgSize = CharUnits::Zero();
8282     break;
8283   case ABIArgInfo::Extend:
8284   case ABIArgInfo::Direct:
8285     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8286     ArgSize = CharUnits::fromQuantity(
8287                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8288     ArgSize = ArgSize.alignTo(SlotSize);
8289     break;
8290   case ABIArgInfo::Indirect:
8291     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8292     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8293     ArgSize = SlotSize;
8294     break;
8295   }
8296 
8297   // Increment the VAList.
8298   if (!ArgSize.isZero()) {
8299     llvm::Value *APN =
8300       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8301     Builder.CreateStore(APN, VAListAddr);
8302   }
8303 
8304   return Val;
8305 }
8306 
8307 /// During the expansion of a RecordType, an incomplete TypeString is placed
8308 /// into the cache as a means to identify and break recursion.
8309 /// If there is a Recursive encoding in the cache, it is swapped out and will
8310 /// be reinserted by removeIncomplete().
8311 /// All other types of encoding should have been used rather than arriving here.
8312 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8313                                     std::string StubEnc) {
8314   if (!ID)
8315     return;
8316   Entry &E = Map[ID];
8317   assert( (E.Str.empty() || E.State == Recursive) &&
8318          "Incorrectly use of addIncomplete");
8319   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8320   E.Swapped.swap(E.Str); // swap out the Recursive
8321   E.Str.swap(StubEnc);
8322   E.State = Incomplete;
8323   ++IncompleteCount;
8324 }
8325 
8326 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8327 /// must be removed from the cache.
8328 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8329 /// Returns true if the RecordType was defined recursively.
8330 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8331   if (!ID)
8332     return false;
8333   auto I = Map.find(ID);
8334   assert(I != Map.end() && "Entry not present");
8335   Entry &E = I->second;
8336   assert( (E.State == Incomplete ||
8337            E.State == IncompleteUsed) &&
8338          "Entry must be an incomplete type");
8339   bool IsRecursive = false;
8340   if (E.State == IncompleteUsed) {
8341     // We made use of our Incomplete encoding, thus we are recursive.
8342     IsRecursive = true;
8343     --IncompleteUsedCount;
8344   }
8345   if (E.Swapped.empty())
8346     Map.erase(I);
8347   else {
8348     // Swap the Recursive back.
8349     E.Swapped.swap(E.Str);
8350     E.Swapped.clear();
8351     E.State = Recursive;
8352   }
8353   --IncompleteCount;
8354   return IsRecursive;
8355 }
8356 
8357 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8358 /// Recursive (viz: all sub-members were expanded as fully as possible).
8359 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8360                                     bool IsRecursive) {
8361   if (!ID || IncompleteUsedCount)
8362     return; // No key or it is is an incomplete sub-type so don't add.
8363   Entry &E = Map[ID];
8364   if (IsRecursive && !E.Str.empty()) {
8365     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8366            "This is not the same Recursive entry");
8367     // The parent container was not recursive after all, so we could have used
8368     // this Recursive sub-member entry after all, but we assumed the worse when
8369     // we started viz: IncompleteCount!=0.
8370     return;
8371   }
8372   assert(E.Str.empty() && "Entry already present");
8373   E.Str = Str.str();
8374   E.State = IsRecursive? Recursive : NonRecursive;
8375 }
8376 
8377 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8378 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8379 /// encoding is Recursive, return an empty StringRef.
8380 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8381   if (!ID)
8382     return StringRef();   // We have no key.
8383   auto I = Map.find(ID);
8384   if (I == Map.end())
8385     return StringRef();   // We have no encoding.
8386   Entry &E = I->second;
8387   if (E.State == Recursive && IncompleteCount)
8388     return StringRef();   // We don't use Recursive encodings for member types.
8389 
8390   if (E.State == Incomplete) {
8391     // The incomplete type is being used to break out of recursion.
8392     E.State = IncompleteUsed;
8393     ++IncompleteUsedCount;
8394   }
8395   return E.Str;
8396 }
8397 
8398 /// The XCore ABI includes a type information section that communicates symbol
8399 /// type information to the linker. The linker uses this information to verify
8400 /// safety/correctness of things such as array bound and pointers et al.
8401 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8402 /// This type information (TypeString) is emitted into meta data for all global
8403 /// symbols: definitions, declarations, functions & variables.
8404 ///
8405 /// The TypeString carries type, qualifier, name, size & value details.
8406 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8407 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8408 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8409 ///
8410 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8411                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8412 
8413 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8414 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8415                                           CodeGen::CodeGenModule &CGM) const {
8416   SmallStringEnc Enc;
8417   if (getTypeString(Enc, D, CGM, TSC)) {
8418     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8419     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8420                                 llvm::MDString::get(Ctx, Enc.str())};
8421     llvm::NamedMDNode *MD =
8422       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8423     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8424   }
8425 }
8426 
8427 //===----------------------------------------------------------------------===//
8428 // SPIR ABI Implementation
8429 //===----------------------------------------------------------------------===//
8430 
8431 namespace {
8432 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8433 public:
8434   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8435     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8436   unsigned getOpenCLKernelCallingConv() const override;
8437 };
8438 
8439 } // End anonymous namespace.
8440 
8441 namespace clang {
8442 namespace CodeGen {
8443 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8444   DefaultABIInfo SPIRABI(CGM.getTypes());
8445   SPIRABI.computeInfo(FI);
8446 }
8447 }
8448 }
8449 
8450 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8451   return llvm::CallingConv::SPIR_KERNEL;
8452 }
8453 
8454 static bool appendType(SmallStringEnc &Enc, QualType QType,
8455                        const CodeGen::CodeGenModule &CGM,
8456                        TypeStringCache &TSC);
8457 
8458 /// Helper function for appendRecordType().
8459 /// Builds a SmallVector containing the encoded field types in declaration
8460 /// order.
8461 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8462                              const RecordDecl *RD,
8463                              const CodeGen::CodeGenModule &CGM,
8464                              TypeStringCache &TSC) {
8465   for (const auto *Field : RD->fields()) {
8466     SmallStringEnc Enc;
8467     Enc += "m(";
8468     Enc += Field->getName();
8469     Enc += "){";
8470     if (Field->isBitField()) {
8471       Enc += "b(";
8472       llvm::raw_svector_ostream OS(Enc);
8473       OS << Field->getBitWidthValue(CGM.getContext());
8474       Enc += ':';
8475     }
8476     if (!appendType(Enc, Field->getType(), CGM, TSC))
8477       return false;
8478     if (Field->isBitField())
8479       Enc += ')';
8480     Enc += '}';
8481     FE.emplace_back(!Field->getName().empty(), Enc);
8482   }
8483   return true;
8484 }
8485 
8486 /// Appends structure and union types to Enc and adds encoding to cache.
8487 /// Recursively calls appendType (via extractFieldType) for each field.
8488 /// Union types have their fields ordered according to the ABI.
8489 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8490                              const CodeGen::CodeGenModule &CGM,
8491                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8492   // Append the cached TypeString if we have one.
8493   StringRef TypeString = TSC.lookupStr(ID);
8494   if (!TypeString.empty()) {
8495     Enc += TypeString;
8496     return true;
8497   }
8498 
8499   // Start to emit an incomplete TypeString.
8500   size_t Start = Enc.size();
8501   Enc += (RT->isUnionType()? 'u' : 's');
8502   Enc += '(';
8503   if (ID)
8504     Enc += ID->getName();
8505   Enc += "){";
8506 
8507   // We collect all encoded fields and order as necessary.
8508   bool IsRecursive = false;
8509   const RecordDecl *RD = RT->getDecl()->getDefinition();
8510   if (RD && !RD->field_empty()) {
8511     // An incomplete TypeString stub is placed in the cache for this RecordType
8512     // so that recursive calls to this RecordType will use it whilst building a
8513     // complete TypeString for this RecordType.
8514     SmallVector<FieldEncoding, 16> FE;
8515     std::string StubEnc(Enc.substr(Start).str());
8516     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8517     TSC.addIncomplete(ID, std::move(StubEnc));
8518     if (!extractFieldType(FE, RD, CGM, TSC)) {
8519       (void) TSC.removeIncomplete(ID);
8520       return false;
8521     }
8522     IsRecursive = TSC.removeIncomplete(ID);
8523     // The ABI requires unions to be sorted but not structures.
8524     // See FieldEncoding::operator< for sort algorithm.
8525     if (RT->isUnionType())
8526       llvm::sort(FE.begin(), FE.end());
8527     // We can now complete the TypeString.
8528     unsigned E = FE.size();
8529     for (unsigned I = 0; I != E; ++I) {
8530       if (I)
8531         Enc += ',';
8532       Enc += FE[I].str();
8533     }
8534   }
8535   Enc += '}';
8536   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8537   return true;
8538 }
8539 
8540 /// Appends enum types to Enc and adds the encoding to the cache.
8541 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8542                            TypeStringCache &TSC,
8543                            const IdentifierInfo *ID) {
8544   // Append the cached TypeString if we have one.
8545   StringRef TypeString = TSC.lookupStr(ID);
8546   if (!TypeString.empty()) {
8547     Enc += TypeString;
8548     return true;
8549   }
8550 
8551   size_t Start = Enc.size();
8552   Enc += "e(";
8553   if (ID)
8554     Enc += ID->getName();
8555   Enc += "){";
8556 
8557   // We collect all encoded enumerations and order them alphanumerically.
8558   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8559     SmallVector<FieldEncoding, 16> FE;
8560     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8561          ++I) {
8562       SmallStringEnc EnumEnc;
8563       EnumEnc += "m(";
8564       EnumEnc += I->getName();
8565       EnumEnc += "){";
8566       I->getInitVal().toString(EnumEnc);
8567       EnumEnc += '}';
8568       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8569     }
8570     llvm::sort(FE.begin(), FE.end());
8571     unsigned E = FE.size();
8572     for (unsigned I = 0; I != E; ++I) {
8573       if (I)
8574         Enc += ',';
8575       Enc += FE[I].str();
8576     }
8577   }
8578   Enc += '}';
8579   TSC.addIfComplete(ID, Enc.substr(Start), false);
8580   return true;
8581 }
8582 
8583 /// Appends type's qualifier to Enc.
8584 /// This is done prior to appending the type's encoding.
8585 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8586   // Qualifiers are emitted in alphabetical order.
8587   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8588   int Lookup = 0;
8589   if (QT.isConstQualified())
8590     Lookup += 1<<0;
8591   if (QT.isRestrictQualified())
8592     Lookup += 1<<1;
8593   if (QT.isVolatileQualified())
8594     Lookup += 1<<2;
8595   Enc += Table[Lookup];
8596 }
8597 
8598 /// Appends built-in types to Enc.
8599 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8600   const char *EncType;
8601   switch (BT->getKind()) {
8602     case BuiltinType::Void:
8603       EncType = "0";
8604       break;
8605     case BuiltinType::Bool:
8606       EncType = "b";
8607       break;
8608     case BuiltinType::Char_U:
8609       EncType = "uc";
8610       break;
8611     case BuiltinType::UChar:
8612       EncType = "uc";
8613       break;
8614     case BuiltinType::SChar:
8615       EncType = "sc";
8616       break;
8617     case BuiltinType::UShort:
8618       EncType = "us";
8619       break;
8620     case BuiltinType::Short:
8621       EncType = "ss";
8622       break;
8623     case BuiltinType::UInt:
8624       EncType = "ui";
8625       break;
8626     case BuiltinType::Int:
8627       EncType = "si";
8628       break;
8629     case BuiltinType::ULong:
8630       EncType = "ul";
8631       break;
8632     case BuiltinType::Long:
8633       EncType = "sl";
8634       break;
8635     case BuiltinType::ULongLong:
8636       EncType = "ull";
8637       break;
8638     case BuiltinType::LongLong:
8639       EncType = "sll";
8640       break;
8641     case BuiltinType::Float:
8642       EncType = "ft";
8643       break;
8644     case BuiltinType::Double:
8645       EncType = "d";
8646       break;
8647     case BuiltinType::LongDouble:
8648       EncType = "ld";
8649       break;
8650     default:
8651       return false;
8652   }
8653   Enc += EncType;
8654   return true;
8655 }
8656 
8657 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8658 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8659                               const CodeGen::CodeGenModule &CGM,
8660                               TypeStringCache &TSC) {
8661   Enc += "p(";
8662   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8663     return false;
8664   Enc += ')';
8665   return true;
8666 }
8667 
8668 /// Appends array encoding to Enc before calling appendType for the element.
8669 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8670                             const ArrayType *AT,
8671                             const CodeGen::CodeGenModule &CGM,
8672                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8673   if (AT->getSizeModifier() != ArrayType::Normal)
8674     return false;
8675   Enc += "a(";
8676   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8677     CAT->getSize().toStringUnsigned(Enc);
8678   else
8679     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8680   Enc += ':';
8681   // The Qualifiers should be attached to the type rather than the array.
8682   appendQualifier(Enc, QT);
8683   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8684     return false;
8685   Enc += ')';
8686   return true;
8687 }
8688 
8689 /// Appends a function encoding to Enc, calling appendType for the return type
8690 /// and the arguments.
8691 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8692                              const CodeGen::CodeGenModule &CGM,
8693                              TypeStringCache &TSC) {
8694   Enc += "f{";
8695   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8696     return false;
8697   Enc += "}(";
8698   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8699     // N.B. we are only interested in the adjusted param types.
8700     auto I = FPT->param_type_begin();
8701     auto E = FPT->param_type_end();
8702     if (I != E) {
8703       do {
8704         if (!appendType(Enc, *I, CGM, TSC))
8705           return false;
8706         ++I;
8707         if (I != E)
8708           Enc += ',';
8709       } while (I != E);
8710       if (FPT->isVariadic())
8711         Enc += ",va";
8712     } else {
8713       if (FPT->isVariadic())
8714         Enc += "va";
8715       else
8716         Enc += '0';
8717     }
8718   }
8719   Enc += ')';
8720   return true;
8721 }
8722 
8723 /// Handles the type's qualifier before dispatching a call to handle specific
8724 /// type encodings.
8725 static bool appendType(SmallStringEnc &Enc, QualType QType,
8726                        const CodeGen::CodeGenModule &CGM,
8727                        TypeStringCache &TSC) {
8728 
8729   QualType QT = QType.getCanonicalType();
8730 
8731   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8732     // The Qualifiers should be attached to the type rather than the array.
8733     // Thus we don't call appendQualifier() here.
8734     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8735 
8736   appendQualifier(Enc, QT);
8737 
8738   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8739     return appendBuiltinType(Enc, BT);
8740 
8741   if (const PointerType *PT = QT->getAs<PointerType>())
8742     return appendPointerType(Enc, PT, CGM, TSC);
8743 
8744   if (const EnumType *ET = QT->getAs<EnumType>())
8745     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
8746 
8747   if (const RecordType *RT = QT->getAsStructureType())
8748     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8749 
8750   if (const RecordType *RT = QT->getAsUnionType())
8751     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8752 
8753   if (const FunctionType *FT = QT->getAs<FunctionType>())
8754     return appendFunctionType(Enc, FT, CGM, TSC);
8755 
8756   return false;
8757 }
8758 
8759 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8760                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
8761   if (!D)
8762     return false;
8763 
8764   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8765     if (FD->getLanguageLinkage() != CLanguageLinkage)
8766       return false;
8767     return appendType(Enc, FD->getType(), CGM, TSC);
8768   }
8769 
8770   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8771     if (VD->getLanguageLinkage() != CLanguageLinkage)
8772       return false;
8773     QualType QT = VD->getType().getCanonicalType();
8774     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
8775       // Global ArrayTypes are given a size of '*' if the size is unknown.
8776       // The Qualifiers should be attached to the type rather than the array.
8777       // Thus we don't call appendQualifier() here.
8778       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
8779     }
8780     return appendType(Enc, QT, CGM, TSC);
8781   }
8782   return false;
8783 }
8784 
8785 //===----------------------------------------------------------------------===//
8786 // RISCV ABI Implementation
8787 //===----------------------------------------------------------------------===//
8788 
8789 namespace {
8790 class RISCVABIInfo : public DefaultABIInfo {
8791 private:
8792   unsigned XLen; // Size of the integer ('x') registers in bits.
8793   static const int NumArgGPRs = 8;
8794 
8795 public:
8796   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
8797       : DefaultABIInfo(CGT), XLen(XLen) {}
8798 
8799   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
8800   // non-virtual, but computeInfo is virtual, so we overload it.
8801   void computeInfo(CGFunctionInfo &FI) const override;
8802 
8803   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
8804                                   int &ArgGPRsLeft) const;
8805   ABIArgInfo classifyReturnType(QualType RetTy) const;
8806 
8807   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8808                     QualType Ty) const override;
8809 
8810   ABIArgInfo extendType(QualType Ty) const;
8811 };
8812 } // end anonymous namespace
8813 
8814 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
8815   QualType RetTy = FI.getReturnType();
8816   if (!getCXXABI().classifyReturnType(FI))
8817     FI.getReturnInfo() = classifyReturnType(RetTy);
8818 
8819   // IsRetIndirect is true if classifyArgumentType indicated the value should
8820   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
8821   // is passed direct in LLVM IR, relying on the backend lowering code to
8822   // rewrite the argument list and pass indirectly on RV32.
8823   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
8824                        getContext().getTypeSize(RetTy) > (2 * XLen);
8825 
8826   // We must track the number of GPRs used in order to conform to the RISC-V
8827   // ABI, as integer scalars passed in registers should have signext/zeroext
8828   // when promoted, but are anyext if passed on the stack. As GPR usage is
8829   // different for variadic arguments, we must also track whether we are
8830   // examining a vararg or not.
8831   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
8832   int NumFixedArgs = FI.getNumRequiredArgs();
8833 
8834   int ArgNum = 0;
8835   for (auto &ArgInfo : FI.arguments()) {
8836     bool IsFixed = ArgNum < NumFixedArgs;
8837     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
8838     ArgNum++;
8839   }
8840 }
8841 
8842 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
8843                                               int &ArgGPRsLeft) const {
8844   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
8845   Ty = useFirstFieldIfTransparentUnion(Ty);
8846 
8847   // Structures with either a non-trivial destructor or a non-trivial
8848   // copy constructor are always passed indirectly.
8849   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
8850     if (ArgGPRsLeft)
8851       ArgGPRsLeft -= 1;
8852     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
8853                                            CGCXXABI::RAA_DirectInMemory);
8854   }
8855 
8856   // Ignore empty structs/unions.
8857   if (isEmptyRecord(getContext(), Ty, true))
8858     return ABIArgInfo::getIgnore();
8859 
8860   uint64_t Size = getContext().getTypeSize(Ty);
8861   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
8862   bool MustUseStack = false;
8863   // Determine the number of GPRs needed to pass the current argument
8864   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
8865   // register pairs, so may consume 3 registers.
8866   int NeededArgGPRs = 1;
8867   if (!IsFixed && NeededAlign == 2 * XLen)
8868     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
8869   else if (Size > XLen && Size <= 2 * XLen)
8870     NeededArgGPRs = 2;
8871 
8872   if (NeededArgGPRs > ArgGPRsLeft) {
8873     MustUseStack = true;
8874     NeededArgGPRs = ArgGPRsLeft;
8875   }
8876 
8877   ArgGPRsLeft -= NeededArgGPRs;
8878 
8879   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
8880     // Treat an enum type as its underlying type.
8881     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8882       Ty = EnumTy->getDecl()->getIntegerType();
8883 
8884     // All integral types are promoted to XLen width, unless passed on the
8885     // stack.
8886     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
8887       return extendType(Ty);
8888     }
8889 
8890     return ABIArgInfo::getDirect();
8891   }
8892 
8893   // Aggregates which are <= 2*XLen will be passed in registers if possible,
8894   // so coerce to integers.
8895   if (Size <= 2 * XLen) {
8896     unsigned Alignment = getContext().getTypeAlign(Ty);
8897 
8898     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
8899     // required, and a 2-element XLen array if only XLen alignment is required.
8900     if (Size <= XLen) {
8901       return ABIArgInfo::getDirect(
8902           llvm::IntegerType::get(getVMContext(), XLen));
8903     } else if (Alignment == 2 * XLen) {
8904       return ABIArgInfo::getDirect(
8905           llvm::IntegerType::get(getVMContext(), 2 * XLen));
8906     } else {
8907       return ABIArgInfo::getDirect(llvm::ArrayType::get(
8908           llvm::IntegerType::get(getVMContext(), XLen), 2));
8909     }
8910   }
8911   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8912 }
8913 
8914 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
8915   if (RetTy->isVoidType())
8916     return ABIArgInfo::getIgnore();
8917 
8918   int ArgGPRsLeft = 2;
8919 
8920   // The rules for return and argument types are the same, so defer to
8921   // classifyArgumentType.
8922   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
8923 }
8924 
8925 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8926                                 QualType Ty) const {
8927   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
8928 
8929   // Empty records are ignored for parameter passing purposes.
8930   if (isEmptyRecord(getContext(), Ty, true)) {
8931     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
8932     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
8933     return Addr;
8934   }
8935 
8936   std::pair<CharUnits, CharUnits> SizeAndAlign =
8937       getContext().getTypeInfoInChars(Ty);
8938 
8939   // Arguments bigger than 2*Xlen bytes are passed indirectly.
8940   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
8941 
8942   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
8943                           SlotSize, /*AllowHigherAlign=*/true);
8944 }
8945 
8946 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
8947   int TySize = getContext().getTypeSize(Ty);
8948   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
8949   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8950     return ABIArgInfo::getSignExtend(Ty);
8951   return ABIArgInfo::getExtend(Ty);
8952 }
8953 
8954 namespace {
8955 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
8956 public:
8957   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
8958       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
8959 };
8960 } // namespace
8961 
8962 //===----------------------------------------------------------------------===//
8963 // Driver code
8964 //===----------------------------------------------------------------------===//
8965 
8966 bool CodeGenModule::supportsCOMDAT() const {
8967   return getTriple().supportsCOMDAT();
8968 }
8969 
8970 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8971   if (TheTargetCodeGenInfo)
8972     return *TheTargetCodeGenInfo;
8973 
8974   // Helper to set the unique_ptr while still keeping the return value.
8975   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8976     this->TheTargetCodeGenInfo.reset(P);
8977     return *P;
8978   };
8979 
8980   const llvm::Triple &Triple = getTarget().getTriple();
8981   switch (Triple.getArch()) {
8982   default:
8983     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8984 
8985   case llvm::Triple::le32:
8986     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8987   case llvm::Triple::mips:
8988   case llvm::Triple::mipsel:
8989     if (Triple.getOS() == llvm::Triple::NaCl)
8990       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8991     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8992 
8993   case llvm::Triple::mips64:
8994   case llvm::Triple::mips64el:
8995     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8996 
8997   case llvm::Triple::avr:
8998     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
8999 
9000   case llvm::Triple::aarch64:
9001   case llvm::Triple::aarch64_be: {
9002     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9003     if (getTarget().getABI() == "darwinpcs")
9004       Kind = AArch64ABIInfo::DarwinPCS;
9005     else if (Triple.isOSWindows())
9006       return SetCGInfo(
9007           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9008 
9009     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9010   }
9011 
9012   case llvm::Triple::wasm32:
9013   case llvm::Triple::wasm64:
9014     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9015 
9016   case llvm::Triple::arm:
9017   case llvm::Triple::armeb:
9018   case llvm::Triple::thumb:
9019   case llvm::Triple::thumbeb: {
9020     if (Triple.getOS() == llvm::Triple::Win32) {
9021       return SetCGInfo(
9022           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9023     }
9024 
9025     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9026     StringRef ABIStr = getTarget().getABI();
9027     if (ABIStr == "apcs-gnu")
9028       Kind = ARMABIInfo::APCS;
9029     else if (ABIStr == "aapcs16")
9030       Kind = ARMABIInfo::AAPCS16_VFP;
9031     else if (CodeGenOpts.FloatABI == "hard" ||
9032              (CodeGenOpts.FloatABI != "soft" &&
9033               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9034                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9035                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9036       Kind = ARMABIInfo::AAPCS_VFP;
9037 
9038     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9039   }
9040 
9041   case llvm::Triple::ppc:
9042     return SetCGInfo(
9043         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9044   case llvm::Triple::ppc64:
9045     if (Triple.isOSBinFormatELF()) {
9046       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9047       if (getTarget().getABI() == "elfv2")
9048         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9049       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9050       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9051 
9052       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9053                                                         IsSoftFloat));
9054     } else
9055       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9056   case llvm::Triple::ppc64le: {
9057     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9058     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9059     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9060       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9061     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9062     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9063 
9064     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9065                                                       IsSoftFloat));
9066   }
9067 
9068   case llvm::Triple::nvptx:
9069   case llvm::Triple::nvptx64:
9070     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9071 
9072   case llvm::Triple::msp430:
9073     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9074 
9075   case llvm::Triple::riscv32:
9076     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9077   case llvm::Triple::riscv64:
9078     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9079 
9080   case llvm::Triple::systemz: {
9081     bool HasVector = getTarget().getABI() == "vector";
9082     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9083   }
9084 
9085   case llvm::Triple::tce:
9086   case llvm::Triple::tcele:
9087     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9088 
9089   case llvm::Triple::x86: {
9090     bool IsDarwinVectorABI = Triple.isOSDarwin();
9091     bool RetSmallStructInRegABI =
9092         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9093     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9094 
9095     if (Triple.getOS() == llvm::Triple::Win32) {
9096       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9097           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9098           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9099     } else {
9100       return SetCGInfo(new X86_32TargetCodeGenInfo(
9101           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9102           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9103           CodeGenOpts.FloatABI == "soft"));
9104     }
9105   }
9106 
9107   case llvm::Triple::x86_64: {
9108     StringRef ABI = getTarget().getABI();
9109     X86AVXABILevel AVXLevel =
9110         (ABI == "avx512"
9111              ? X86AVXABILevel::AVX512
9112              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9113 
9114     switch (Triple.getOS()) {
9115     case llvm::Triple::Win32:
9116       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9117     case llvm::Triple::PS4:
9118       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
9119     default:
9120       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9121     }
9122   }
9123   case llvm::Triple::hexagon:
9124     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9125   case llvm::Triple::lanai:
9126     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9127   case llvm::Triple::r600:
9128     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9129   case llvm::Triple::amdgcn:
9130     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9131   case llvm::Triple::sparc:
9132     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9133   case llvm::Triple::sparcv9:
9134     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9135   case llvm::Triple::xcore:
9136     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9137   case llvm::Triple::spir:
9138   case llvm::Triple::spir64:
9139     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9140   }
9141 }
9142 
9143 /// Create an OpenCL kernel for an enqueued block.
9144 ///
9145 /// The kernel has the same function type as the block invoke function. Its
9146 /// name is the name of the block invoke function postfixed with "_kernel".
9147 /// It simply calls the block invoke function then returns.
9148 llvm::Function *
9149 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9150                                              llvm::Function *Invoke,
9151                                              llvm::Value *BlockLiteral) const {
9152   auto *InvokeFT = Invoke->getFunctionType();
9153   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9154   for (auto &P : InvokeFT->params())
9155     ArgTys.push_back(P);
9156   auto &C = CGF.getLLVMContext();
9157   std::string Name = Invoke->getName().str() + "_kernel";
9158   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9159   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9160                                    &CGF.CGM.getModule());
9161   auto IP = CGF.Builder.saveIP();
9162   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9163   auto &Builder = CGF.Builder;
9164   Builder.SetInsertPoint(BB);
9165   llvm::SmallVector<llvm::Value *, 2> Args;
9166   for (auto &A : F->args())
9167     Args.push_back(&A);
9168   Builder.CreateCall(Invoke, Args);
9169   Builder.CreateRetVoid();
9170   Builder.restoreIP(IP);
9171   return F;
9172 }
9173 
9174 /// Create an OpenCL kernel for an enqueued block.
9175 ///
9176 /// The type of the first argument (the block literal) is the struct type
9177 /// of the block literal instead of a pointer type. The first argument
9178 /// (block literal) is passed directly by value to the kernel. The kernel
9179 /// allocates the same type of struct on stack and stores the block literal
9180 /// to it and passes its pointer to the block invoke function. The kernel
9181 /// has "enqueued-block" function attribute and kernel argument metadata.
9182 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9183     CodeGenFunction &CGF, llvm::Function *Invoke,
9184     llvm::Value *BlockLiteral) const {
9185   auto &Builder = CGF.Builder;
9186   auto &C = CGF.getLLVMContext();
9187 
9188   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9189   auto *InvokeFT = Invoke->getFunctionType();
9190   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9191   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9192   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9193   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9194   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9195   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9196   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9197 
9198   ArgTys.push_back(BlockTy);
9199   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9200   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9201   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9202   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9203   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9204   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9205   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9206     ArgTys.push_back(InvokeFT->getParamType(I));
9207     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9208     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9209     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9210     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9211     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9212     ArgNames.push_back(
9213         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9214   }
9215   std::string Name = Invoke->getName().str() + "_kernel";
9216   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9217   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9218                                    &CGF.CGM.getModule());
9219   F->addFnAttr("enqueued-block");
9220   auto IP = CGF.Builder.saveIP();
9221   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9222   Builder.SetInsertPoint(BB);
9223   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9224   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9225   BlockPtr->setAlignment(BlockAlign);
9226   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9227   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9228   llvm::SmallVector<llvm::Value *, 2> Args;
9229   Args.push_back(Cast);
9230   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9231     Args.push_back(I);
9232   Builder.CreateCall(Invoke, Args);
9233   Builder.CreateRetVoid();
9234   Builder.restoreIP(IP);
9235 
9236   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9237   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9238   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9239   F->setMetadata("kernel_arg_base_type",
9240                  llvm::MDNode::get(C, ArgBaseTypeNames));
9241   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9242   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9243     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9244 
9245   return F;
9246 }
9247