1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
29                                llvm::Value *Array,
30                                llvm::Value *Value,
31                                unsigned FirstIndex,
32                                unsigned LastIndex) {
33   // Alternatively, we could emit this as a loop in the source.
34   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
35     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
36     Builder.CreateStore(Value, Cell);
37   }
38 }
39 
40 static bool isAggregateTypeForABI(QualType T) {
41   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
42          T->isMemberFunctionPointerType();
43 }
44 
45 ABIInfo::~ABIInfo() {}
46 
47 static bool isRecordReturnIndirect(const RecordType *RT,
48                                    CGCXXABI &CXXABI) {
49   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
50   if (!RD)
51     return false;
52   return CXXABI.isReturnTypeIndirect(RD);
53 }
54 
55 
56 static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
57   const RecordType *RT = T->getAs<RecordType>();
58   if (!RT)
59     return false;
60   return isRecordReturnIndirect(RT, CXXABI);
61 }
62 
63 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
64                                               CGCXXABI &CXXABI) {
65   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
66   if (!RD)
67     return CGCXXABI::RAA_Default;
68   return CXXABI.getRecordArgABI(RD);
69 }
70 
71 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
72                                               CGCXXABI &CXXABI) {
73   const RecordType *RT = T->getAs<RecordType>();
74   if (!RT)
75     return CGCXXABI::RAA_Default;
76   return getRecordArgABI(RT, CXXABI);
77 }
78 
79 CGCXXABI &ABIInfo::getCXXABI() const {
80   return CGT.getCXXABI();
81 }
82 
83 ASTContext &ABIInfo::getContext() const {
84   return CGT.getContext();
85 }
86 
87 llvm::LLVMContext &ABIInfo::getVMContext() const {
88   return CGT.getLLVMContext();
89 }
90 
91 const llvm::DataLayout &ABIInfo::getDataLayout() const {
92   return CGT.getDataLayout();
93 }
94 
95 const TargetInfo &ABIInfo::getTarget() const {
96   return CGT.getTarget();
97 }
98 
99 void ABIArgInfo::dump() const {
100   raw_ostream &OS = llvm::errs();
101   OS << "(ABIArgInfo Kind=";
102   switch (TheKind) {
103   case Direct:
104     OS << "Direct Type=";
105     if (llvm::Type *Ty = getCoerceToType())
106       Ty->print(OS);
107     else
108       OS << "null";
109     break;
110   case Extend:
111     OS << "Extend";
112     break;
113   case Ignore:
114     OS << "Ignore";
115     break;
116   case Indirect:
117     OS << "Indirect Align=" << getIndirectAlign()
118        << " ByVal=" << getIndirectByVal()
119        << " Realign=" << getIndirectRealign();
120     break;
121   case Expand:
122     OS << "Expand";
123     break;
124   }
125   OS << ")\n";
126 }
127 
128 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
129 
130 // If someone can figure out a general rule for this, that would be great.
131 // It's probably just doomed to be platform-dependent, though.
132 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
133   // Verified for:
134   //   x86-64     FreeBSD, Linux, Darwin
135   //   x86-32     FreeBSD, Linux, Darwin
136   //   PowerPC    Linux, Darwin
137   //   ARM        Darwin (*not* EABI)
138   //   AArch64    Linux
139   return 32;
140 }
141 
142 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
143                                      const FunctionNoProtoType *fnType) const {
144   // The following conventions are known to require this to be false:
145   //   x86_stdcall
146   //   MIPS
147   // For everything else, we just prefer false unless we opt out.
148   return false;
149 }
150 
151 void
152 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
153                                              llvm::SmallString<24> &Opt) const {
154   // This assumes the user is passing a library name like "rt" instead of a
155   // filename like "librt.a/so", and that they don't care whether it's static or
156   // dynamic.
157   Opt = "-l";
158   Opt += Lib;
159 }
160 
161 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
162 
163 /// isEmptyField - Return true iff a the field is "empty", that is it
164 /// is an unnamed bit-field or an (array of) empty record(s).
165 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
166                          bool AllowArrays) {
167   if (FD->isUnnamedBitfield())
168     return true;
169 
170   QualType FT = FD->getType();
171 
172   // Constant arrays of empty records count as empty, strip them off.
173   // Constant arrays of zero length always count as empty.
174   if (AllowArrays)
175     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
176       if (AT->getSize() == 0)
177         return true;
178       FT = AT->getElementType();
179     }
180 
181   const RecordType *RT = FT->getAs<RecordType>();
182   if (!RT)
183     return false;
184 
185   // C++ record fields are never empty, at least in the Itanium ABI.
186   //
187   // FIXME: We should use a predicate for whether this behavior is true in the
188   // current ABI.
189   if (isa<CXXRecordDecl>(RT->getDecl()))
190     return false;
191 
192   return isEmptyRecord(Context, FT, AllowArrays);
193 }
194 
195 /// isEmptyRecord - Return true iff a structure contains only empty
196 /// fields. Note that a structure with a flexible array member is not
197 /// considered empty.
198 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
199   const RecordType *RT = T->getAs<RecordType>();
200   if (!RT)
201     return 0;
202   const RecordDecl *RD = RT->getDecl();
203   if (RD->hasFlexibleArrayMember())
204     return false;
205 
206   // If this is a C++ record, check the bases first.
207   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
208     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
209            e = CXXRD->bases_end(); i != e; ++i)
210       if (!isEmptyRecord(Context, i->getType(), true))
211         return false;
212 
213   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
214          i != e; ++i)
215     if (!isEmptyField(Context, *i, AllowArrays))
216       return false;
217   return true;
218 }
219 
220 /// isSingleElementStruct - Determine if a structure is a "single
221 /// element struct", i.e. it has exactly one non-empty field or
222 /// exactly one field which is itself a single element
223 /// struct. Structures with flexible array members are never
224 /// considered single element structs.
225 ///
226 /// \return The field declaration for the single non-empty field, if
227 /// it exists.
228 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
229   const RecordType *RT = T->getAsStructureType();
230   if (!RT)
231     return 0;
232 
233   const RecordDecl *RD = RT->getDecl();
234   if (RD->hasFlexibleArrayMember())
235     return 0;
236 
237   const Type *Found = 0;
238 
239   // If this is a C++ record, check the bases first.
240   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
241     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
242            e = CXXRD->bases_end(); i != e; ++i) {
243       // Ignore empty records.
244       if (isEmptyRecord(Context, i->getType(), true))
245         continue;
246 
247       // If we already found an element then this isn't a single-element struct.
248       if (Found)
249         return 0;
250 
251       // If this is non-empty and not a single element struct, the composite
252       // cannot be a single element struct.
253       Found = isSingleElementStruct(i->getType(), Context);
254       if (!Found)
255         return 0;
256     }
257   }
258 
259   // Check for single element.
260   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
261          i != e; ++i) {
262     const FieldDecl *FD = *i;
263     QualType FT = FD->getType();
264 
265     // Ignore empty fields.
266     if (isEmptyField(Context, FD, true))
267       continue;
268 
269     // If we already found an element then this isn't a single-element
270     // struct.
271     if (Found)
272       return 0;
273 
274     // Treat single element arrays as the element.
275     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
276       if (AT->getSize().getZExtValue() != 1)
277         break;
278       FT = AT->getElementType();
279     }
280 
281     if (!isAggregateTypeForABI(FT)) {
282       Found = FT.getTypePtr();
283     } else {
284       Found = isSingleElementStruct(FT, Context);
285       if (!Found)
286         return 0;
287     }
288   }
289 
290   // We don't consider a struct a single-element struct if it has
291   // padding beyond the element type.
292   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
293     return 0;
294 
295   return Found;
296 }
297 
298 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
299   // Treat complex types as the element type.
300   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
301     Ty = CTy->getElementType();
302 
303   // Check for a type which we know has a simple scalar argument-passing
304   // convention without any padding.  (We're specifically looking for 32
305   // and 64-bit integer and integer-equivalents, float, and double.)
306   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
307       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
308     return false;
309 
310   uint64_t Size = Context.getTypeSize(Ty);
311   return Size == 32 || Size == 64;
312 }
313 
314 /// canExpandIndirectArgument - Test whether an argument type which is to be
315 /// passed indirectly (on the stack) would have the equivalent layout if it was
316 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
317 /// inhibiting optimizations.
318 ///
319 // FIXME: This predicate is missing many cases, currently it just follows
320 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
321 // should probably make this smarter, or better yet make the LLVM backend
322 // capable of handling it.
323 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
324   // We can only expand structure types.
325   const RecordType *RT = Ty->getAs<RecordType>();
326   if (!RT)
327     return false;
328 
329   // We can only expand (C) structures.
330   //
331   // FIXME: This needs to be generalized to handle classes as well.
332   const RecordDecl *RD = RT->getDecl();
333   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
334     return false;
335 
336   uint64_t Size = 0;
337 
338   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
339          i != e; ++i) {
340     const FieldDecl *FD = *i;
341 
342     if (!is32Or64BitBasicType(FD->getType(), Context))
343       return false;
344 
345     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
346     // how to expand them yet, and the predicate for telling if a bitfield still
347     // counts as "basic" is more complicated than what we were doing previously.
348     if (FD->isBitField())
349       return false;
350 
351     Size += Context.getTypeSize(FD->getType());
352   }
353 
354   // Make sure there are not any holes in the struct.
355   if (Size != Context.getTypeSize(Ty))
356     return false;
357 
358   return true;
359 }
360 
361 namespace {
362 /// DefaultABIInfo - The default implementation for ABI specific
363 /// details. This implementation provides information which results in
364 /// self-consistent and sensible LLVM IR generation, but does not
365 /// conform to any particular ABI.
366 class DefaultABIInfo : public ABIInfo {
367 public:
368   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
369 
370   ABIArgInfo classifyReturnType(QualType RetTy) const;
371   ABIArgInfo classifyArgumentType(QualType RetTy) const;
372 
373   virtual void computeInfo(CGFunctionInfo &FI) const {
374     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
375     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
376          it != ie; ++it)
377       it->info = classifyArgumentType(it->type);
378   }
379 
380   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
381                                  CodeGenFunction &CGF) const;
382 };
383 
384 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
385 public:
386   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
387     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
388 };
389 
390 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
391                                        CodeGenFunction &CGF) const {
392   return 0;
393 }
394 
395 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
396   if (isAggregateTypeForABI(Ty)) {
397     // Records with non trivial destructors/constructors should not be passed
398     // by value.
399     if (isRecordReturnIndirect(Ty, getCXXABI()))
400       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
401 
402     return ABIArgInfo::getIndirect(0);
403   }
404 
405   // Treat an enum type as its underlying type.
406   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
407     Ty = EnumTy->getDecl()->getIntegerType();
408 
409   return (Ty->isPromotableIntegerType() ?
410           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
411 }
412 
413 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
414   if (RetTy->isVoidType())
415     return ABIArgInfo::getIgnore();
416 
417   if (isAggregateTypeForABI(RetTy))
418     return ABIArgInfo::getIndirect(0);
419 
420   // Treat an enum type as its underlying type.
421   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
422     RetTy = EnumTy->getDecl()->getIntegerType();
423 
424   return (RetTy->isPromotableIntegerType() ?
425           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
426 }
427 
428 //===----------------------------------------------------------------------===//
429 // le32/PNaCl bitcode ABI Implementation
430 //
431 // This is a simplified version of the x86_32 ABI.  Arguments and return values
432 // are always passed on the stack.
433 //===----------------------------------------------------------------------===//
434 
435 class PNaClABIInfo : public ABIInfo {
436  public:
437   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
438 
439   ABIArgInfo classifyReturnType(QualType RetTy) const;
440   ABIArgInfo classifyArgumentType(QualType RetTy) const;
441 
442   virtual void computeInfo(CGFunctionInfo &FI) const;
443   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
444                                  CodeGenFunction &CGF) const;
445 };
446 
447 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
448  public:
449   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
450     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
451 };
452 
453 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
454     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
455 
456     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
457          it != ie; ++it)
458       it->info = classifyArgumentType(it->type);
459   }
460 
461 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
462                                        CodeGenFunction &CGF) const {
463   return 0;
464 }
465 
466 /// \brief Classify argument of given type \p Ty.
467 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
468   if (isAggregateTypeForABI(Ty)) {
469     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
470       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
471     return ABIArgInfo::getIndirect(0);
472   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
473     // Treat an enum type as its underlying type.
474     Ty = EnumTy->getDecl()->getIntegerType();
475   } else if (Ty->isFloatingType()) {
476     // Floating-point types don't go inreg.
477     return ABIArgInfo::getDirect();
478   }
479 
480   return (Ty->isPromotableIntegerType() ?
481           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
482 }
483 
484 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
485   if (RetTy->isVoidType())
486     return ABIArgInfo::getIgnore();
487 
488   // In the PNaCl ABI we always return records/structures on the stack.
489   if (isAggregateTypeForABI(RetTy))
490     return ABIArgInfo::getIndirect(0);
491 
492   // Treat an enum type as its underlying type.
493   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
494     RetTy = EnumTy->getDecl()->getIntegerType();
495 
496   return (RetTy->isPromotableIntegerType() ?
497           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
498 }
499 
500 /// IsX86_MMXType - Return true if this is an MMX type.
501 bool IsX86_MMXType(llvm::Type *IRType) {
502   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
503   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
504     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
505     IRType->getScalarSizeInBits() != 64;
506 }
507 
508 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
509                                           StringRef Constraint,
510                                           llvm::Type* Ty) {
511   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
512     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
513       // Invalid MMX constraint
514       return 0;
515     }
516 
517     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
518   }
519 
520   // No operation needed
521   return Ty;
522 }
523 
524 //===----------------------------------------------------------------------===//
525 // X86-32 ABI Implementation
526 //===----------------------------------------------------------------------===//
527 
528 /// X86_32ABIInfo - The X86-32 ABI information.
529 class X86_32ABIInfo : public ABIInfo {
530   enum Class {
531     Integer,
532     Float
533   };
534 
535   static const unsigned MinABIStackAlignInBytes = 4;
536 
537   bool IsDarwinVectorABI;
538   bool IsSmallStructInRegABI;
539   bool IsWin32StructABI;
540   unsigned DefaultNumRegisterParameters;
541 
542   static bool isRegisterSize(unsigned Size) {
543     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
544   }
545 
546   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
547                                           unsigned callingConvention);
548 
549   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
550   /// such that the argument will be passed in memory.
551   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
552                                unsigned &FreeRegs) const;
553 
554   /// \brief Return the alignment to use for the given type on the stack.
555   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
556 
557   Class classify(QualType Ty) const;
558   ABIArgInfo classifyReturnType(QualType RetTy,
559                                 unsigned callingConvention) const;
560   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
561                                   bool IsFastCall) const;
562   bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
563                       bool IsFastCall, bool &NeedsPadding) const;
564 
565 public:
566 
567   virtual void computeInfo(CGFunctionInfo &FI) const;
568   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
569                                  CodeGenFunction &CGF) const;
570 
571   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
572                 unsigned r)
573     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
574       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
575 };
576 
577 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
578 public:
579   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
580       bool d, bool p, bool w, unsigned r)
581     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
582 
583   static bool isStructReturnInRegABI(
584       const llvm::Triple &Triple, const CodeGenOptions &Opts);
585 
586   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
587                            CodeGen::CodeGenModule &CGM) const;
588 
589   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
590     // Darwin uses different dwarf register numbers for EH.
591     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
592     return 4;
593   }
594 
595   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
596                                llvm::Value *Address) const;
597 
598   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
599                                   StringRef Constraint,
600                                   llvm::Type* Ty) const {
601     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
602   }
603 
604 };
605 
606 }
607 
608 /// shouldReturnTypeInRegister - Determine if the given type should be
609 /// passed in a register (for the Darwin ABI).
610 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
611                                                ASTContext &Context,
612                                                unsigned callingConvention) {
613   uint64_t Size = Context.getTypeSize(Ty);
614 
615   // Type must be register sized.
616   if (!isRegisterSize(Size))
617     return false;
618 
619   if (Ty->isVectorType()) {
620     // 64- and 128- bit vectors inside structures are not returned in
621     // registers.
622     if (Size == 64 || Size == 128)
623       return false;
624 
625     return true;
626   }
627 
628   // If this is a builtin, pointer, enum, complex type, member pointer, or
629   // member function pointer it is ok.
630   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
631       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
632       Ty->isBlockPointerType() || Ty->isMemberPointerType())
633     return true;
634 
635   // Arrays are treated like records.
636   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
637     return shouldReturnTypeInRegister(AT->getElementType(), Context,
638                                       callingConvention);
639 
640   // Otherwise, it must be a record type.
641   const RecordType *RT = Ty->getAs<RecordType>();
642   if (!RT) return false;
643 
644   // FIXME: Traverse bases here too.
645 
646   // For thiscall conventions, structures will never be returned in
647   // a register.  This is for compatibility with the MSVC ABI
648   if (callingConvention == llvm::CallingConv::X86_ThisCall &&
649       RT->isStructureType()) {
650     return false;
651   }
652 
653   // Structure types are passed in register if all fields would be
654   // passed in a register.
655   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
656          e = RT->getDecl()->field_end(); i != e; ++i) {
657     const FieldDecl *FD = *i;
658 
659     // Empty fields are ignored.
660     if (isEmptyField(Context, FD, true))
661       continue;
662 
663     // Check fields recursively.
664     if (!shouldReturnTypeInRegister(FD->getType(), Context,
665                                     callingConvention))
666       return false;
667   }
668   return true;
669 }
670 
671 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
672                                             unsigned callingConvention) const {
673   if (RetTy->isVoidType())
674     return ABIArgInfo::getIgnore();
675 
676   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
677     // On Darwin, some vectors are returned in registers.
678     if (IsDarwinVectorABI) {
679       uint64_t Size = getContext().getTypeSize(RetTy);
680 
681       // 128-bit vectors are a special case; they are returned in
682       // registers and we need to make sure to pick a type the LLVM
683       // backend will like.
684       if (Size == 128)
685         return ABIArgInfo::getDirect(llvm::VectorType::get(
686                   llvm::Type::getInt64Ty(getVMContext()), 2));
687 
688       // Always return in register if it fits in a general purpose
689       // register, or if it is 64 bits and has a single element.
690       if ((Size == 8 || Size == 16 || Size == 32) ||
691           (Size == 64 && VT->getNumElements() == 1))
692         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
693                                                             Size));
694 
695       return ABIArgInfo::getIndirect(0);
696     }
697 
698     return ABIArgInfo::getDirect();
699   }
700 
701   if (isAggregateTypeForABI(RetTy)) {
702     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
703       if (isRecordReturnIndirect(RT, getCXXABI()))
704         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
705 
706       // Structures with flexible arrays are always indirect.
707       if (RT->getDecl()->hasFlexibleArrayMember())
708         return ABIArgInfo::getIndirect(0);
709     }
710 
711     // If specified, structs and unions are always indirect.
712     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
713       return ABIArgInfo::getIndirect(0);
714 
715     // Small structures which are register sized are generally returned
716     // in a register.
717     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
718                                                   callingConvention)) {
719       uint64_t Size = getContext().getTypeSize(RetTy);
720 
721       // As a special-case, if the struct is a "single-element" struct, and
722       // the field is of type "float" or "double", return it in a
723       // floating-point register. (MSVC does not apply this special case.)
724       // We apply a similar transformation for pointer types to improve the
725       // quality of the generated IR.
726       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
727         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
728             || SeltTy->hasPointerRepresentation())
729           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
730 
731       // FIXME: We should be able to narrow this integer in cases with dead
732       // padding.
733       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
734     }
735 
736     return ABIArgInfo::getIndirect(0);
737   }
738 
739   // Treat an enum type as its underlying type.
740   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
741     RetTy = EnumTy->getDecl()->getIntegerType();
742 
743   return (RetTy->isPromotableIntegerType() ?
744           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
745 }
746 
747 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
748   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
749 }
750 
751 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
752   const RecordType *RT = Ty->getAs<RecordType>();
753   if (!RT)
754     return 0;
755   const RecordDecl *RD = RT->getDecl();
756 
757   // If this is a C++ record, check the bases first.
758   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
759     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
760            e = CXXRD->bases_end(); i != e; ++i)
761       if (!isRecordWithSSEVectorType(Context, i->getType()))
762         return false;
763 
764   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
765        i != e; ++i) {
766     QualType FT = i->getType();
767 
768     if (isSSEVectorType(Context, FT))
769       return true;
770 
771     if (isRecordWithSSEVectorType(Context, FT))
772       return true;
773   }
774 
775   return false;
776 }
777 
778 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
779                                                  unsigned Align) const {
780   // Otherwise, if the alignment is less than or equal to the minimum ABI
781   // alignment, just use the default; the backend will handle this.
782   if (Align <= MinABIStackAlignInBytes)
783     return 0; // Use default alignment.
784 
785   // On non-Darwin, the stack type alignment is always 4.
786   if (!IsDarwinVectorABI) {
787     // Set explicit alignment, since we may need to realign the top.
788     return MinABIStackAlignInBytes;
789   }
790 
791   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
792   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
793                       isRecordWithSSEVectorType(getContext(), Ty)))
794     return 16;
795 
796   return MinABIStackAlignInBytes;
797 }
798 
799 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
800                                             unsigned &FreeRegs) const {
801   if (!ByVal) {
802     if (FreeRegs) {
803       --FreeRegs; // Non byval indirects just use one pointer.
804       return ABIArgInfo::getIndirectInReg(0, false);
805     }
806     return ABIArgInfo::getIndirect(0, false);
807   }
808 
809   // Compute the byval alignment.
810   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
811   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
812   if (StackAlign == 0)
813     return ABIArgInfo::getIndirect(4);
814 
815   // If the stack alignment is less than the type alignment, realign the
816   // argument.
817   if (StackAlign < TypeAlign)
818     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
819                                    /*Realign=*/true);
820 
821   return ABIArgInfo::getIndirect(StackAlign);
822 }
823 
824 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
825   const Type *T = isSingleElementStruct(Ty, getContext());
826   if (!T)
827     T = Ty.getTypePtr();
828 
829   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
830     BuiltinType::Kind K = BT->getKind();
831     if (K == BuiltinType::Float || K == BuiltinType::Double)
832       return Float;
833   }
834   return Integer;
835 }
836 
837 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
838                                    bool IsFastCall, bool &NeedsPadding) const {
839   NeedsPadding = false;
840   Class C = classify(Ty);
841   if (C == Float)
842     return false;
843 
844   unsigned Size = getContext().getTypeSize(Ty);
845   unsigned SizeInRegs = (Size + 31) / 32;
846 
847   if (SizeInRegs == 0)
848     return false;
849 
850   if (SizeInRegs > FreeRegs) {
851     FreeRegs = 0;
852     return false;
853   }
854 
855   FreeRegs -= SizeInRegs;
856 
857   if (IsFastCall) {
858     if (Size > 32)
859       return false;
860 
861     if (Ty->isIntegralOrEnumerationType())
862       return true;
863 
864     if (Ty->isPointerType())
865       return true;
866 
867     if (Ty->isReferenceType())
868       return true;
869 
870     if (FreeRegs)
871       NeedsPadding = true;
872 
873     return false;
874   }
875 
876   return true;
877 }
878 
879 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
880                                                unsigned &FreeRegs,
881                                                bool IsFastCall) const {
882   // FIXME: Set alignment on indirect arguments.
883   if (isAggregateTypeForABI(Ty)) {
884     if (const RecordType *RT = Ty->getAs<RecordType>()) {
885       if (IsWin32StructABI)
886         return getIndirectResult(Ty, true, FreeRegs);
887 
888       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
889         return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
890 
891       // Structures with flexible arrays are always indirect.
892       if (RT->getDecl()->hasFlexibleArrayMember())
893         return getIndirectResult(Ty, true, FreeRegs);
894     }
895 
896     // Ignore empty structs/unions.
897     if (isEmptyRecord(getContext(), Ty, true))
898       return ABIArgInfo::getIgnore();
899 
900     llvm::LLVMContext &LLVMContext = getVMContext();
901     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
902     bool NeedsPadding;
903     if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
904       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
905       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
906       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
907       return ABIArgInfo::getDirectInReg(Result);
908     }
909     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
910 
911     // Expand small (<= 128-bit) record types when we know that the stack layout
912     // of those arguments will match the struct. This is important because the
913     // LLVM backend isn't smart enough to remove byval, which inhibits many
914     // optimizations.
915     if (getContext().getTypeSize(Ty) <= 4*32 &&
916         canExpandIndirectArgument(Ty, getContext()))
917       return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
918 
919     return getIndirectResult(Ty, true, FreeRegs);
920   }
921 
922   if (const VectorType *VT = Ty->getAs<VectorType>()) {
923     // On Darwin, some vectors are passed in memory, we handle this by passing
924     // it as an i8/i16/i32/i64.
925     if (IsDarwinVectorABI) {
926       uint64_t Size = getContext().getTypeSize(Ty);
927       if ((Size == 8 || Size == 16 || Size == 32) ||
928           (Size == 64 && VT->getNumElements() == 1))
929         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
930                                                             Size));
931     }
932 
933     if (IsX86_MMXType(CGT.ConvertType(Ty)))
934       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
935 
936     return ABIArgInfo::getDirect();
937   }
938 
939 
940   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
941     Ty = EnumTy->getDecl()->getIntegerType();
942 
943   bool NeedsPadding;
944   bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
945 
946   if (Ty->isPromotableIntegerType()) {
947     if (InReg)
948       return ABIArgInfo::getExtendInReg();
949     return ABIArgInfo::getExtend();
950   }
951   if (InReg)
952     return ABIArgInfo::getDirectInReg();
953   return ABIArgInfo::getDirect();
954 }
955 
956 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
957   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
958                                           FI.getCallingConvention());
959 
960   unsigned CC = FI.getCallingConvention();
961   bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
962   unsigned FreeRegs;
963   if (IsFastCall)
964     FreeRegs = 2;
965   else if (FI.getHasRegParm())
966     FreeRegs = FI.getRegParm();
967   else
968     FreeRegs = DefaultNumRegisterParameters;
969 
970   // If the return value is indirect, then the hidden argument is consuming one
971   // integer register.
972   if (FI.getReturnInfo().isIndirect() && FreeRegs) {
973     --FreeRegs;
974     ABIArgInfo &Old = FI.getReturnInfo();
975     Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
976                                        Old.getIndirectByVal(),
977                                        Old.getIndirectRealign());
978   }
979 
980   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
981        it != ie; ++it)
982     it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
983 }
984 
985 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
986                                       CodeGenFunction &CGF) const {
987   llvm::Type *BPP = CGF.Int8PtrPtrTy;
988 
989   CGBuilderTy &Builder = CGF.Builder;
990   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
991                                                        "ap");
992   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
993 
994   // Compute if the address needs to be aligned
995   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
996   Align = getTypeStackAlignInBytes(Ty, Align);
997   Align = std::max(Align, 4U);
998   if (Align > 4) {
999     // addr = (addr + align - 1) & -align;
1000     llvm::Value *Offset =
1001       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1002     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1003     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1004                                                     CGF.Int32Ty);
1005     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1006     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1007                                       Addr->getType(),
1008                                       "ap.cur.aligned");
1009   }
1010 
1011   llvm::Type *PTy =
1012     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1013   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1014 
1015   uint64_t Offset =
1016     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1017   llvm::Value *NextAddr =
1018     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1019                       "ap.next");
1020   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1021 
1022   return AddrTyped;
1023 }
1024 
1025 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1026                                                   llvm::GlobalValue *GV,
1027                                             CodeGen::CodeGenModule &CGM) const {
1028   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1029     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1030       // Get the LLVM function.
1031       llvm::Function *Fn = cast<llvm::Function>(GV);
1032 
1033       // Now add the 'alignstack' attribute with a value of 16.
1034       llvm::AttrBuilder B;
1035       B.addStackAlignmentAttr(16);
1036       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1037                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1038                                               llvm::AttributeSet::FunctionIndex,
1039                                               B));
1040     }
1041   }
1042 }
1043 
1044 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1045                                                CodeGen::CodeGenFunction &CGF,
1046                                                llvm::Value *Address) const {
1047   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1048 
1049   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1050 
1051   // 0-7 are the eight integer registers;  the order is different
1052   //   on Darwin (for EH), but the range is the same.
1053   // 8 is %eip.
1054   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1055 
1056   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1057     // 12-16 are st(0..4).  Not sure why we stop at 4.
1058     // These have size 16, which is sizeof(long double) on
1059     // platforms with 8-byte alignment for that type.
1060     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1061     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1062 
1063   } else {
1064     // 9 is %eflags, which doesn't get a size on Darwin for some
1065     // reason.
1066     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1067 
1068     // 11-16 are st(0..5).  Not sure why we stop at 5.
1069     // These have size 12, which is sizeof(long double) on
1070     // platforms with 4-byte alignment for that type.
1071     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1072     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1073   }
1074 
1075   return false;
1076 }
1077 
1078 //===----------------------------------------------------------------------===//
1079 // X86-64 ABI Implementation
1080 //===----------------------------------------------------------------------===//
1081 
1082 
1083 namespace {
1084 /// X86_64ABIInfo - The X86_64 ABI information.
1085 class X86_64ABIInfo : public ABIInfo {
1086   enum Class {
1087     Integer = 0,
1088     SSE,
1089     SSEUp,
1090     X87,
1091     X87Up,
1092     ComplexX87,
1093     NoClass,
1094     Memory
1095   };
1096 
1097   /// merge - Implement the X86_64 ABI merging algorithm.
1098   ///
1099   /// Merge an accumulating classification \arg Accum with a field
1100   /// classification \arg Field.
1101   ///
1102   /// \param Accum - The accumulating classification. This should
1103   /// always be either NoClass or the result of a previous merge
1104   /// call. In addition, this should never be Memory (the caller
1105   /// should just return Memory for the aggregate).
1106   static Class merge(Class Accum, Class Field);
1107 
1108   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1109   ///
1110   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1111   /// final MEMORY or SSE classes when necessary.
1112   ///
1113   /// \param AggregateSize - The size of the current aggregate in
1114   /// the classification process.
1115   ///
1116   /// \param Lo - The classification for the parts of the type
1117   /// residing in the low word of the containing object.
1118   ///
1119   /// \param Hi - The classification for the parts of the type
1120   /// residing in the higher words of the containing object.
1121   ///
1122   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1123 
1124   /// classify - Determine the x86_64 register classes in which the
1125   /// given type T should be passed.
1126   ///
1127   /// \param Lo - The classification for the parts of the type
1128   /// residing in the low word of the containing object.
1129   ///
1130   /// \param Hi - The classification for the parts of the type
1131   /// residing in the high word of the containing object.
1132   ///
1133   /// \param OffsetBase - The bit offset of this type in the
1134   /// containing object.  Some parameters are classified different
1135   /// depending on whether they straddle an eightbyte boundary.
1136   ///
1137   /// \param isNamedArg - Whether the argument in question is a "named"
1138   /// argument, as used in AMD64-ABI 3.5.7.
1139   ///
1140   /// If a word is unused its result will be NoClass; if a type should
1141   /// be passed in Memory then at least the classification of \arg Lo
1142   /// will be Memory.
1143   ///
1144   /// The \arg Lo class will be NoClass iff the argument is ignored.
1145   ///
1146   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1147   /// also be ComplexX87.
1148   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1149                 bool isNamedArg) const;
1150 
1151   llvm::Type *GetByteVectorType(QualType Ty) const;
1152   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1153                                  unsigned IROffset, QualType SourceTy,
1154                                  unsigned SourceOffset) const;
1155   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1156                                      unsigned IROffset, QualType SourceTy,
1157                                      unsigned SourceOffset) const;
1158 
1159   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1160   /// such that the argument will be returned in memory.
1161   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1162 
1163   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1164   /// such that the argument will be passed in memory.
1165   ///
1166   /// \param freeIntRegs - The number of free integer registers remaining
1167   /// available.
1168   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1169 
1170   ABIArgInfo classifyReturnType(QualType RetTy) const;
1171 
1172   ABIArgInfo classifyArgumentType(QualType Ty,
1173                                   unsigned freeIntRegs,
1174                                   unsigned &neededInt,
1175                                   unsigned &neededSSE,
1176                                   bool isNamedArg) const;
1177 
1178   bool IsIllegalVectorType(QualType Ty) const;
1179 
1180   /// The 0.98 ABI revision clarified a lot of ambiguities,
1181   /// unfortunately in ways that were not always consistent with
1182   /// certain previous compilers.  In particular, platforms which
1183   /// required strict binary compatibility with older versions of GCC
1184   /// may need to exempt themselves.
1185   bool honorsRevision0_98() const {
1186     return !getTarget().getTriple().isOSDarwin();
1187   }
1188 
1189   bool HasAVX;
1190   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1191   // 64-bit hardware.
1192   bool Has64BitPointers;
1193 
1194 public:
1195   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1196       ABIInfo(CGT), HasAVX(hasavx),
1197       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1198   }
1199 
1200   bool isPassedUsingAVXType(QualType type) const {
1201     unsigned neededInt, neededSSE;
1202     // The freeIntRegs argument doesn't matter here.
1203     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1204                                            /*isNamedArg*/true);
1205     if (info.isDirect()) {
1206       llvm::Type *ty = info.getCoerceToType();
1207       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1208         return (vectorTy->getBitWidth() > 128);
1209     }
1210     return false;
1211   }
1212 
1213   virtual void computeInfo(CGFunctionInfo &FI) const;
1214 
1215   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1216                                  CodeGenFunction &CGF) const;
1217 };
1218 
1219 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1220 class WinX86_64ABIInfo : public ABIInfo {
1221 
1222   ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1223 
1224 public:
1225   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1226 
1227   virtual void computeInfo(CGFunctionInfo &FI) const;
1228 
1229   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1230                                  CodeGenFunction &CGF) const;
1231 };
1232 
1233 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1234 public:
1235   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1236       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1237 
1238   const X86_64ABIInfo &getABIInfo() const {
1239     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1240   }
1241 
1242   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1243     return 7;
1244   }
1245 
1246   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1247                                llvm::Value *Address) const {
1248     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1249 
1250     // 0-15 are the 16 integer registers.
1251     // 16 is %rip.
1252     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1253     return false;
1254   }
1255 
1256   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1257                                   StringRef Constraint,
1258                                   llvm::Type* Ty) const {
1259     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1260   }
1261 
1262   bool isNoProtoCallVariadic(const CallArgList &args,
1263                              const FunctionNoProtoType *fnType) const {
1264     // The default CC on x86-64 sets %al to the number of SSA
1265     // registers used, and GCC sets this when calling an unprototyped
1266     // function, so we override the default behavior.  However, don't do
1267     // that when AVX types are involved: the ABI explicitly states it is
1268     // undefined, and it doesn't work in practice because of how the ABI
1269     // defines varargs anyway.
1270     if (fnType->getCallConv() == CC_C) {
1271       bool HasAVXType = false;
1272       for (CallArgList::const_iterator
1273              it = args.begin(), ie = args.end(); it != ie; ++it) {
1274         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1275           HasAVXType = true;
1276           break;
1277         }
1278       }
1279 
1280       if (!HasAVXType)
1281         return true;
1282     }
1283 
1284     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1285   }
1286 
1287 };
1288 
1289 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1290   // If the argument does not end in .lib, automatically add the suffix. This
1291   // matches the behavior of MSVC.
1292   std::string ArgStr = Lib;
1293   if (Lib.size() <= 4 ||
1294       Lib.substr(Lib.size() - 4).compare_lower(".lib") != 0) {
1295     ArgStr += ".lib";
1296   }
1297   return ArgStr;
1298 }
1299 
1300 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1301 public:
1302   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1303         bool d, bool p, bool w, unsigned RegParms)
1304     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1305 
1306   void getDependentLibraryOption(llvm::StringRef Lib,
1307                                  llvm::SmallString<24> &Opt) const {
1308     Opt = "/DEFAULTLIB:";
1309     Opt += qualifyWindowsLibrary(Lib);
1310   }
1311 
1312   void getDetectMismatchOption(llvm::StringRef Name,
1313                                llvm::StringRef Value,
1314                                llvm::SmallString<32> &Opt) const {
1315     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1316   }
1317 };
1318 
1319 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1320 public:
1321   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1322     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1323 
1324   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1325     return 7;
1326   }
1327 
1328   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1329                                llvm::Value *Address) const {
1330     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1331 
1332     // 0-15 are the 16 integer registers.
1333     // 16 is %rip.
1334     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1335     return false;
1336   }
1337 
1338   void getDependentLibraryOption(llvm::StringRef Lib,
1339                                  llvm::SmallString<24> &Opt) const {
1340     Opt = "/DEFAULTLIB:";
1341     Opt += qualifyWindowsLibrary(Lib);
1342   }
1343 
1344   void getDetectMismatchOption(llvm::StringRef Name,
1345                                llvm::StringRef Value,
1346                                llvm::SmallString<32> &Opt) const {
1347     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1348   }
1349 };
1350 
1351 }
1352 
1353 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1354                               Class &Hi) const {
1355   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1356   //
1357   // (a) If one of the classes is Memory, the whole argument is passed in
1358   //     memory.
1359   //
1360   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1361   //     memory.
1362   //
1363   // (c) If the size of the aggregate exceeds two eightbytes and the first
1364   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1365   //     argument is passed in memory. NOTE: This is necessary to keep the
1366   //     ABI working for processors that don't support the __m256 type.
1367   //
1368   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1369   //
1370   // Some of these are enforced by the merging logic.  Others can arise
1371   // only with unions; for example:
1372   //   union { _Complex double; unsigned; }
1373   //
1374   // Note that clauses (b) and (c) were added in 0.98.
1375   //
1376   if (Hi == Memory)
1377     Lo = Memory;
1378   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1379     Lo = Memory;
1380   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1381     Lo = Memory;
1382   if (Hi == SSEUp && Lo != SSE)
1383     Hi = SSE;
1384 }
1385 
1386 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1387   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1388   // classified recursively so that always two fields are
1389   // considered. The resulting class is calculated according to
1390   // the classes of the fields in the eightbyte:
1391   //
1392   // (a) If both classes are equal, this is the resulting class.
1393   //
1394   // (b) If one of the classes is NO_CLASS, the resulting class is
1395   // the other class.
1396   //
1397   // (c) If one of the classes is MEMORY, the result is the MEMORY
1398   // class.
1399   //
1400   // (d) If one of the classes is INTEGER, the result is the
1401   // INTEGER.
1402   //
1403   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1404   // MEMORY is used as class.
1405   //
1406   // (f) Otherwise class SSE is used.
1407 
1408   // Accum should never be memory (we should have returned) or
1409   // ComplexX87 (because this cannot be passed in a structure).
1410   assert((Accum != Memory && Accum != ComplexX87) &&
1411          "Invalid accumulated classification during merge.");
1412   if (Accum == Field || Field == NoClass)
1413     return Accum;
1414   if (Field == Memory)
1415     return Memory;
1416   if (Accum == NoClass)
1417     return Field;
1418   if (Accum == Integer || Field == Integer)
1419     return Integer;
1420   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1421       Accum == X87 || Accum == X87Up)
1422     return Memory;
1423   return SSE;
1424 }
1425 
1426 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1427                              Class &Lo, Class &Hi, bool isNamedArg) const {
1428   // FIXME: This code can be simplified by introducing a simple value class for
1429   // Class pairs with appropriate constructor methods for the various
1430   // situations.
1431 
1432   // FIXME: Some of the split computations are wrong; unaligned vectors
1433   // shouldn't be passed in registers for example, so there is no chance they
1434   // can straddle an eightbyte. Verify & simplify.
1435 
1436   Lo = Hi = NoClass;
1437 
1438   Class &Current = OffsetBase < 64 ? Lo : Hi;
1439   Current = Memory;
1440 
1441   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1442     BuiltinType::Kind k = BT->getKind();
1443 
1444     if (k == BuiltinType::Void) {
1445       Current = NoClass;
1446     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1447       Lo = Integer;
1448       Hi = Integer;
1449     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1450       Current = Integer;
1451     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1452                (k == BuiltinType::LongDouble &&
1453                 getTarget().getTriple().isOSNaCl())) {
1454       Current = SSE;
1455     } else if (k == BuiltinType::LongDouble) {
1456       Lo = X87;
1457       Hi = X87Up;
1458     }
1459     // FIXME: _Decimal32 and _Decimal64 are SSE.
1460     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1461     return;
1462   }
1463 
1464   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1465     // Classify the underlying integer type.
1466     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1467     return;
1468   }
1469 
1470   if (Ty->hasPointerRepresentation()) {
1471     Current = Integer;
1472     return;
1473   }
1474 
1475   if (Ty->isMemberPointerType()) {
1476     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1477       Lo = Hi = Integer;
1478     else
1479       Current = Integer;
1480     return;
1481   }
1482 
1483   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1484     uint64_t Size = getContext().getTypeSize(VT);
1485     if (Size == 32) {
1486       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1487       // float> as integer.
1488       Current = Integer;
1489 
1490       // If this type crosses an eightbyte boundary, it should be
1491       // split.
1492       uint64_t EB_Real = (OffsetBase) / 64;
1493       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1494       if (EB_Real != EB_Imag)
1495         Hi = Lo;
1496     } else if (Size == 64) {
1497       // gcc passes <1 x double> in memory. :(
1498       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1499         return;
1500 
1501       // gcc passes <1 x long long> as INTEGER.
1502       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1503           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1504           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1505           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1506         Current = Integer;
1507       else
1508         Current = SSE;
1509 
1510       // If this type crosses an eightbyte boundary, it should be
1511       // split.
1512       if (OffsetBase && OffsetBase != 64)
1513         Hi = Lo;
1514     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1515       // Arguments of 256-bits are split into four eightbyte chunks. The
1516       // least significant one belongs to class SSE and all the others to class
1517       // SSEUP. The original Lo and Hi design considers that types can't be
1518       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1519       // This design isn't correct for 256-bits, but since there're no cases
1520       // where the upper parts would need to be inspected, avoid adding
1521       // complexity and just consider Hi to match the 64-256 part.
1522       //
1523       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1524       // registers if they are "named", i.e. not part of the "..." of a
1525       // variadic function.
1526       Lo = SSE;
1527       Hi = SSEUp;
1528     }
1529     return;
1530   }
1531 
1532   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1533     QualType ET = getContext().getCanonicalType(CT->getElementType());
1534 
1535     uint64_t Size = getContext().getTypeSize(Ty);
1536     if (ET->isIntegralOrEnumerationType()) {
1537       if (Size <= 64)
1538         Current = Integer;
1539       else if (Size <= 128)
1540         Lo = Hi = Integer;
1541     } else if (ET == getContext().FloatTy)
1542       Current = SSE;
1543     else if (ET == getContext().DoubleTy ||
1544              (ET == getContext().LongDoubleTy &&
1545               getTarget().getTriple().isOSNaCl()))
1546       Lo = Hi = SSE;
1547     else if (ET == getContext().LongDoubleTy)
1548       Current = ComplexX87;
1549 
1550     // If this complex type crosses an eightbyte boundary then it
1551     // should be split.
1552     uint64_t EB_Real = (OffsetBase) / 64;
1553     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1554     if (Hi == NoClass && EB_Real != EB_Imag)
1555       Hi = Lo;
1556 
1557     return;
1558   }
1559 
1560   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1561     // Arrays are treated like structures.
1562 
1563     uint64_t Size = getContext().getTypeSize(Ty);
1564 
1565     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1566     // than four eightbytes, ..., it has class MEMORY.
1567     if (Size > 256)
1568       return;
1569 
1570     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1571     // fields, it has class MEMORY.
1572     //
1573     // Only need to check alignment of array base.
1574     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1575       return;
1576 
1577     // Otherwise implement simplified merge. We could be smarter about
1578     // this, but it isn't worth it and would be harder to verify.
1579     Current = NoClass;
1580     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1581     uint64_t ArraySize = AT->getSize().getZExtValue();
1582 
1583     // The only case a 256-bit wide vector could be used is when the array
1584     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1585     // to work for sizes wider than 128, early check and fallback to memory.
1586     if (Size > 128 && EltSize != 256)
1587       return;
1588 
1589     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1590       Class FieldLo, FieldHi;
1591       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1592       Lo = merge(Lo, FieldLo);
1593       Hi = merge(Hi, FieldHi);
1594       if (Lo == Memory || Hi == Memory)
1595         break;
1596     }
1597 
1598     postMerge(Size, Lo, Hi);
1599     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1600     return;
1601   }
1602 
1603   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1604     uint64_t Size = getContext().getTypeSize(Ty);
1605 
1606     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1607     // than four eightbytes, ..., it has class MEMORY.
1608     if (Size > 256)
1609       return;
1610 
1611     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1612     // copy constructor or a non-trivial destructor, it is passed by invisible
1613     // reference.
1614     if (getRecordArgABI(RT, getCXXABI()))
1615       return;
1616 
1617     const RecordDecl *RD = RT->getDecl();
1618 
1619     // Assume variable sized types are passed in memory.
1620     if (RD->hasFlexibleArrayMember())
1621       return;
1622 
1623     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1624 
1625     // Reset Lo class, this will be recomputed.
1626     Current = NoClass;
1627 
1628     // If this is a C++ record, classify the bases first.
1629     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1630       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1631              e = CXXRD->bases_end(); i != e; ++i) {
1632         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1633                "Unexpected base class!");
1634         const CXXRecordDecl *Base =
1635           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1636 
1637         // Classify this field.
1638         //
1639         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1640         // single eightbyte, each is classified separately. Each eightbyte gets
1641         // initialized to class NO_CLASS.
1642         Class FieldLo, FieldHi;
1643         uint64_t Offset =
1644           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1645         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1646         Lo = merge(Lo, FieldLo);
1647         Hi = merge(Hi, FieldHi);
1648         if (Lo == Memory || Hi == Memory)
1649           break;
1650       }
1651     }
1652 
1653     // Classify the fields one at a time, merging the results.
1654     unsigned idx = 0;
1655     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1656            i != e; ++i, ++idx) {
1657       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1658       bool BitField = i->isBitField();
1659 
1660       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1661       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1662       //
1663       // The only case a 256-bit wide vector could be used is when the struct
1664       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1665       // to work for sizes wider than 128, early check and fallback to memory.
1666       //
1667       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1668         Lo = Memory;
1669         return;
1670       }
1671       // Note, skip this test for bit-fields, see below.
1672       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1673         Lo = Memory;
1674         return;
1675       }
1676 
1677       // Classify this field.
1678       //
1679       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1680       // exceeds a single eightbyte, each is classified
1681       // separately. Each eightbyte gets initialized to class
1682       // NO_CLASS.
1683       Class FieldLo, FieldHi;
1684 
1685       // Bit-fields require special handling, they do not force the
1686       // structure to be passed in memory even if unaligned, and
1687       // therefore they can straddle an eightbyte.
1688       if (BitField) {
1689         // Ignore padding bit-fields.
1690         if (i->isUnnamedBitfield())
1691           continue;
1692 
1693         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1694         uint64_t Size = i->getBitWidthValue(getContext());
1695 
1696         uint64_t EB_Lo = Offset / 64;
1697         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1698 
1699         if (EB_Lo) {
1700           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1701           FieldLo = NoClass;
1702           FieldHi = Integer;
1703         } else {
1704           FieldLo = Integer;
1705           FieldHi = EB_Hi ? Integer : NoClass;
1706         }
1707       } else
1708         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1709       Lo = merge(Lo, FieldLo);
1710       Hi = merge(Hi, FieldHi);
1711       if (Lo == Memory || Hi == Memory)
1712         break;
1713     }
1714 
1715     postMerge(Size, Lo, Hi);
1716   }
1717 }
1718 
1719 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1720   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1721   // place naturally.
1722   if (!isAggregateTypeForABI(Ty)) {
1723     // Treat an enum type as its underlying type.
1724     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1725       Ty = EnumTy->getDecl()->getIntegerType();
1726 
1727     return (Ty->isPromotableIntegerType() ?
1728             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1729   }
1730 
1731   return ABIArgInfo::getIndirect(0);
1732 }
1733 
1734 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1735   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1736     uint64_t Size = getContext().getTypeSize(VecTy);
1737     unsigned LargestVector = HasAVX ? 256 : 128;
1738     if (Size <= 64 || Size > LargestVector)
1739       return true;
1740   }
1741 
1742   return false;
1743 }
1744 
1745 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1746                                             unsigned freeIntRegs) const {
1747   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1748   // place naturally.
1749   //
1750   // This assumption is optimistic, as there could be free registers available
1751   // when we need to pass this argument in memory, and LLVM could try to pass
1752   // the argument in the free register. This does not seem to happen currently,
1753   // but this code would be much safer if we could mark the argument with
1754   // 'onstack'. See PR12193.
1755   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1756     // Treat an enum type as its underlying type.
1757     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1758       Ty = EnumTy->getDecl()->getIntegerType();
1759 
1760     return (Ty->isPromotableIntegerType() ?
1761             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1762   }
1763 
1764   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1765     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1766 
1767   // Compute the byval alignment. We specify the alignment of the byval in all
1768   // cases so that the mid-level optimizer knows the alignment of the byval.
1769   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1770 
1771   // Attempt to avoid passing indirect results using byval when possible. This
1772   // is important for good codegen.
1773   //
1774   // We do this by coercing the value into a scalar type which the backend can
1775   // handle naturally (i.e., without using byval).
1776   //
1777   // For simplicity, we currently only do this when we have exhausted all of the
1778   // free integer registers. Doing this when there are free integer registers
1779   // would require more care, as we would have to ensure that the coerced value
1780   // did not claim the unused register. That would require either reording the
1781   // arguments to the function (so that any subsequent inreg values came first),
1782   // or only doing this optimization when there were no following arguments that
1783   // might be inreg.
1784   //
1785   // We currently expect it to be rare (particularly in well written code) for
1786   // arguments to be passed on the stack when there are still free integer
1787   // registers available (this would typically imply large structs being passed
1788   // by value), so this seems like a fair tradeoff for now.
1789   //
1790   // We can revisit this if the backend grows support for 'onstack' parameter
1791   // attributes. See PR12193.
1792   if (freeIntRegs == 0) {
1793     uint64_t Size = getContext().getTypeSize(Ty);
1794 
1795     // If this type fits in an eightbyte, coerce it into the matching integral
1796     // type, which will end up on the stack (with alignment 8).
1797     if (Align == 8 && Size <= 64)
1798       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1799                                                           Size));
1800   }
1801 
1802   return ABIArgInfo::getIndirect(Align);
1803 }
1804 
1805 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1806 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1807 /// vector register.
1808 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1809   llvm::Type *IRType = CGT.ConvertType(Ty);
1810 
1811   // Wrapper structs that just contain vectors are passed just like vectors,
1812   // strip them off if present.
1813   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1814   while (STy && STy->getNumElements() == 1) {
1815     IRType = STy->getElementType(0);
1816     STy = dyn_cast<llvm::StructType>(IRType);
1817   }
1818 
1819   // If the preferred type is a 16-byte vector, prefer to pass it.
1820   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1821     llvm::Type *EltTy = VT->getElementType();
1822     unsigned BitWidth = VT->getBitWidth();
1823     if ((BitWidth >= 128 && BitWidth <= 256) &&
1824         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1825          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1826          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1827          EltTy->isIntegerTy(128)))
1828       return VT;
1829   }
1830 
1831   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1832 }
1833 
1834 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1835 /// is known to either be off the end of the specified type or being in
1836 /// alignment padding.  The user type specified is known to be at most 128 bits
1837 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1838 /// classification that put one of the two halves in the INTEGER class.
1839 ///
1840 /// It is conservatively correct to return false.
1841 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1842                                   unsigned EndBit, ASTContext &Context) {
1843   // If the bytes being queried are off the end of the type, there is no user
1844   // data hiding here.  This handles analysis of builtins, vectors and other
1845   // types that don't contain interesting padding.
1846   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1847   if (TySize <= StartBit)
1848     return true;
1849 
1850   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1851     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1852     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1853 
1854     // Check each element to see if the element overlaps with the queried range.
1855     for (unsigned i = 0; i != NumElts; ++i) {
1856       // If the element is after the span we care about, then we're done..
1857       unsigned EltOffset = i*EltSize;
1858       if (EltOffset >= EndBit) break;
1859 
1860       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1861       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1862                                  EndBit-EltOffset, Context))
1863         return false;
1864     }
1865     // If it overlaps no elements, then it is safe to process as padding.
1866     return true;
1867   }
1868 
1869   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1870     const RecordDecl *RD = RT->getDecl();
1871     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1872 
1873     // If this is a C++ record, check the bases first.
1874     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1875       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1876            e = CXXRD->bases_end(); i != e; ++i) {
1877         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1878                "Unexpected base class!");
1879         const CXXRecordDecl *Base =
1880           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1881 
1882         // If the base is after the span we care about, ignore it.
1883         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1884         if (BaseOffset >= EndBit) continue;
1885 
1886         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1887         if (!BitsContainNoUserData(i->getType(), BaseStart,
1888                                    EndBit-BaseOffset, Context))
1889           return false;
1890       }
1891     }
1892 
1893     // Verify that no field has data that overlaps the region of interest.  Yes
1894     // this could be sped up a lot by being smarter about queried fields,
1895     // however we're only looking at structs up to 16 bytes, so we don't care
1896     // much.
1897     unsigned idx = 0;
1898     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1899          i != e; ++i, ++idx) {
1900       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1901 
1902       // If we found a field after the region we care about, then we're done.
1903       if (FieldOffset >= EndBit) break;
1904 
1905       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1906       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1907                                  Context))
1908         return false;
1909     }
1910 
1911     // If nothing in this record overlapped the area of interest, then we're
1912     // clean.
1913     return true;
1914   }
1915 
1916   return false;
1917 }
1918 
1919 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1920 /// float member at the specified offset.  For example, {int,{float}} has a
1921 /// float at offset 4.  It is conservatively correct for this routine to return
1922 /// false.
1923 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1924                                   const llvm::DataLayout &TD) {
1925   // Base case if we find a float.
1926   if (IROffset == 0 && IRType->isFloatTy())
1927     return true;
1928 
1929   // If this is a struct, recurse into the field at the specified offset.
1930   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1931     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1932     unsigned Elt = SL->getElementContainingOffset(IROffset);
1933     IROffset -= SL->getElementOffset(Elt);
1934     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1935   }
1936 
1937   // If this is an array, recurse into the field at the specified offset.
1938   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1939     llvm::Type *EltTy = ATy->getElementType();
1940     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1941     IROffset -= IROffset/EltSize*EltSize;
1942     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1943   }
1944 
1945   return false;
1946 }
1947 
1948 
1949 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1950 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1951 llvm::Type *X86_64ABIInfo::
1952 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1953                    QualType SourceTy, unsigned SourceOffset) const {
1954   // The only three choices we have are either double, <2 x float>, or float. We
1955   // pass as float if the last 4 bytes is just padding.  This happens for
1956   // structs that contain 3 floats.
1957   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1958                             SourceOffset*8+64, getContext()))
1959     return llvm::Type::getFloatTy(getVMContext());
1960 
1961   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1962   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1963   // case.
1964   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1965       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1966     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1967 
1968   return llvm::Type::getDoubleTy(getVMContext());
1969 }
1970 
1971 
1972 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1973 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1974 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1975 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1976 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1977 /// etc).
1978 ///
1979 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1980 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1981 /// the 8-byte value references.  PrefType may be null.
1982 ///
1983 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1984 /// an offset into this that we're processing (which is always either 0 or 8).
1985 ///
1986 llvm::Type *X86_64ABIInfo::
1987 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1988                        QualType SourceTy, unsigned SourceOffset) const {
1989   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1990   // returning an 8-byte unit starting with it.  See if we can safely use it.
1991   if (IROffset == 0) {
1992     // Pointers and int64's always fill the 8-byte unit.
1993     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1994         IRType->isIntegerTy(64))
1995       return IRType;
1996 
1997     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1998     // goodness in the source type is just tail padding.  This is allowed to
1999     // kick in for struct {double,int} on the int, but not on
2000     // struct{double,int,int} because we wouldn't return the second int.  We
2001     // have to do this analysis on the source type because we can't depend on
2002     // unions being lowered a specific way etc.
2003     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2004         IRType->isIntegerTy(32) ||
2005         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2006       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2007           cast<llvm::IntegerType>(IRType)->getBitWidth();
2008 
2009       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2010                                 SourceOffset*8+64, getContext()))
2011         return IRType;
2012     }
2013   }
2014 
2015   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2016     // If this is a struct, recurse into the field at the specified offset.
2017     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2018     if (IROffset < SL->getSizeInBytes()) {
2019       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2020       IROffset -= SL->getElementOffset(FieldIdx);
2021 
2022       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2023                                     SourceTy, SourceOffset);
2024     }
2025   }
2026 
2027   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2028     llvm::Type *EltTy = ATy->getElementType();
2029     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2030     unsigned EltOffset = IROffset/EltSize*EltSize;
2031     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2032                                   SourceOffset);
2033   }
2034 
2035   // Okay, we don't have any better idea of what to pass, so we pass this in an
2036   // integer register that isn't too big to fit the rest of the struct.
2037   unsigned TySizeInBytes =
2038     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2039 
2040   assert(TySizeInBytes != SourceOffset && "Empty field?");
2041 
2042   // It is always safe to classify this as an integer type up to i64 that
2043   // isn't larger than the structure.
2044   return llvm::IntegerType::get(getVMContext(),
2045                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2046 }
2047 
2048 
2049 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2050 /// be used as elements of a two register pair to pass or return, return a
2051 /// first class aggregate to represent them.  For example, if the low part of
2052 /// a by-value argument should be passed as i32* and the high part as float,
2053 /// return {i32*, float}.
2054 static llvm::Type *
2055 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2056                            const llvm::DataLayout &TD) {
2057   // In order to correctly satisfy the ABI, we need to the high part to start
2058   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2059   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2060   // the second element at offset 8.  Check for this:
2061   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2062   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2063   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2064   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2065 
2066   // To handle this, we have to increase the size of the low part so that the
2067   // second element will start at an 8 byte offset.  We can't increase the size
2068   // of the second element because it might make us access off the end of the
2069   // struct.
2070   if (HiStart != 8) {
2071     // There are only two sorts of types the ABI generation code can produce for
2072     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2073     // Promote these to a larger type.
2074     if (Lo->isFloatTy())
2075       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2076     else {
2077       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2078       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2079     }
2080   }
2081 
2082   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2083 
2084 
2085   // Verify that the second element is at an 8-byte offset.
2086   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2087          "Invalid x86-64 argument pair!");
2088   return Result;
2089 }
2090 
2091 ABIArgInfo X86_64ABIInfo::
2092 classifyReturnType(QualType RetTy) const {
2093   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2094   // classification algorithm.
2095   X86_64ABIInfo::Class Lo, Hi;
2096   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2097 
2098   // Check some invariants.
2099   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2100   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2101 
2102   llvm::Type *ResType = 0;
2103   switch (Lo) {
2104   case NoClass:
2105     if (Hi == NoClass)
2106       return ABIArgInfo::getIgnore();
2107     // If the low part is just padding, it takes no register, leave ResType
2108     // null.
2109     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2110            "Unknown missing lo part");
2111     break;
2112 
2113   case SSEUp:
2114   case X87Up:
2115     llvm_unreachable("Invalid classification for lo word.");
2116 
2117     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2118     // hidden argument.
2119   case Memory:
2120     return getIndirectReturnResult(RetTy);
2121 
2122     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2123     // available register of the sequence %rax, %rdx is used.
2124   case Integer:
2125     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2126 
2127     // If we have a sign or zero extended integer, make sure to return Extend
2128     // so that the parameter gets the right LLVM IR attributes.
2129     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2130       // Treat an enum type as its underlying type.
2131       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2132         RetTy = EnumTy->getDecl()->getIntegerType();
2133 
2134       if (RetTy->isIntegralOrEnumerationType() &&
2135           RetTy->isPromotableIntegerType())
2136         return ABIArgInfo::getExtend();
2137     }
2138     break;
2139 
2140     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2141     // available SSE register of the sequence %xmm0, %xmm1 is used.
2142   case SSE:
2143     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2144     break;
2145 
2146     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2147     // returned on the X87 stack in %st0 as 80-bit x87 number.
2148   case X87:
2149     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2150     break;
2151 
2152     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2153     // part of the value is returned in %st0 and the imaginary part in
2154     // %st1.
2155   case ComplexX87:
2156     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2157     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2158                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2159                                     NULL);
2160     break;
2161   }
2162 
2163   llvm::Type *HighPart = 0;
2164   switch (Hi) {
2165     // Memory was handled previously and X87 should
2166     // never occur as a hi class.
2167   case Memory:
2168   case X87:
2169     llvm_unreachable("Invalid classification for hi word.");
2170 
2171   case ComplexX87: // Previously handled.
2172   case NoClass:
2173     break;
2174 
2175   case Integer:
2176     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2177     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2178       return ABIArgInfo::getDirect(HighPart, 8);
2179     break;
2180   case SSE:
2181     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2182     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2183       return ABIArgInfo::getDirect(HighPart, 8);
2184     break;
2185 
2186     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2187     // is passed in the next available eightbyte chunk if the last used
2188     // vector register.
2189     //
2190     // SSEUP should always be preceded by SSE, just widen.
2191   case SSEUp:
2192     assert(Lo == SSE && "Unexpected SSEUp classification.");
2193     ResType = GetByteVectorType(RetTy);
2194     break;
2195 
2196     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2197     // returned together with the previous X87 value in %st0.
2198   case X87Up:
2199     // If X87Up is preceded by X87, we don't need to do
2200     // anything. However, in some cases with unions it may not be
2201     // preceded by X87. In such situations we follow gcc and pass the
2202     // extra bits in an SSE reg.
2203     if (Lo != X87) {
2204       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2205       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2206         return ABIArgInfo::getDirect(HighPart, 8);
2207     }
2208     break;
2209   }
2210 
2211   // If a high part was specified, merge it together with the low part.  It is
2212   // known to pass in the high eightbyte of the result.  We do this by forming a
2213   // first class struct aggregate with the high and low part: {low, high}
2214   if (HighPart)
2215     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2216 
2217   return ABIArgInfo::getDirect(ResType);
2218 }
2219 
2220 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2221   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2222   bool isNamedArg)
2223   const
2224 {
2225   X86_64ABIInfo::Class Lo, Hi;
2226   classify(Ty, 0, Lo, Hi, isNamedArg);
2227 
2228   // Check some invariants.
2229   // FIXME: Enforce these by construction.
2230   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2231   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2232 
2233   neededInt = 0;
2234   neededSSE = 0;
2235   llvm::Type *ResType = 0;
2236   switch (Lo) {
2237   case NoClass:
2238     if (Hi == NoClass)
2239       return ABIArgInfo::getIgnore();
2240     // If the low part is just padding, it takes no register, leave ResType
2241     // null.
2242     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2243            "Unknown missing lo part");
2244     break;
2245 
2246     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2247     // on the stack.
2248   case Memory:
2249 
2250     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2251     // COMPLEX_X87, it is passed in memory.
2252   case X87:
2253   case ComplexX87:
2254     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2255       ++neededInt;
2256     return getIndirectResult(Ty, freeIntRegs);
2257 
2258   case SSEUp:
2259   case X87Up:
2260     llvm_unreachable("Invalid classification for lo word.");
2261 
2262     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2263     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2264     // and %r9 is used.
2265   case Integer:
2266     ++neededInt;
2267 
2268     // Pick an 8-byte type based on the preferred type.
2269     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2270 
2271     // If we have a sign or zero extended integer, make sure to return Extend
2272     // so that the parameter gets the right LLVM IR attributes.
2273     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2274       // Treat an enum type as its underlying type.
2275       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2276         Ty = EnumTy->getDecl()->getIntegerType();
2277 
2278       if (Ty->isIntegralOrEnumerationType() &&
2279           Ty->isPromotableIntegerType())
2280         return ABIArgInfo::getExtend();
2281     }
2282 
2283     break;
2284 
2285     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2286     // available SSE register is used, the registers are taken in the
2287     // order from %xmm0 to %xmm7.
2288   case SSE: {
2289     llvm::Type *IRType = CGT.ConvertType(Ty);
2290     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2291     ++neededSSE;
2292     break;
2293   }
2294   }
2295 
2296   llvm::Type *HighPart = 0;
2297   switch (Hi) {
2298     // Memory was handled previously, ComplexX87 and X87 should
2299     // never occur as hi classes, and X87Up must be preceded by X87,
2300     // which is passed in memory.
2301   case Memory:
2302   case X87:
2303   case ComplexX87:
2304     llvm_unreachable("Invalid classification for hi word.");
2305 
2306   case NoClass: break;
2307 
2308   case Integer:
2309     ++neededInt;
2310     // Pick an 8-byte type based on the preferred type.
2311     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2312 
2313     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2314       return ABIArgInfo::getDirect(HighPart, 8);
2315     break;
2316 
2317     // X87Up generally doesn't occur here (long double is passed in
2318     // memory), except in situations involving unions.
2319   case X87Up:
2320   case SSE:
2321     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2322 
2323     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2324       return ABIArgInfo::getDirect(HighPart, 8);
2325 
2326     ++neededSSE;
2327     break;
2328 
2329     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2330     // eightbyte is passed in the upper half of the last used SSE
2331     // register.  This only happens when 128-bit vectors are passed.
2332   case SSEUp:
2333     assert(Lo == SSE && "Unexpected SSEUp classification");
2334     ResType = GetByteVectorType(Ty);
2335     break;
2336   }
2337 
2338   // If a high part was specified, merge it together with the low part.  It is
2339   // known to pass in the high eightbyte of the result.  We do this by forming a
2340   // first class struct aggregate with the high and low part: {low, high}
2341   if (HighPart)
2342     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2343 
2344   return ABIArgInfo::getDirect(ResType);
2345 }
2346 
2347 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2348 
2349   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2350 
2351   // Keep track of the number of assigned registers.
2352   unsigned freeIntRegs = 6, freeSSERegs = 8;
2353 
2354   // If the return value is indirect, then the hidden argument is consuming one
2355   // integer register.
2356   if (FI.getReturnInfo().isIndirect())
2357     --freeIntRegs;
2358 
2359   bool isVariadic = FI.isVariadic();
2360   unsigned numRequiredArgs = 0;
2361   if (isVariadic)
2362     numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2363 
2364   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2365   // get assigned (in left-to-right order) for passing as follows...
2366   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2367        it != ie; ++it) {
2368     bool isNamedArg = true;
2369     if (isVariadic)
2370       isNamedArg = (it - FI.arg_begin()) <
2371                     static_cast<signed>(numRequiredArgs);
2372 
2373     unsigned neededInt, neededSSE;
2374     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2375                                     neededSSE, isNamedArg);
2376 
2377     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2378     // eightbyte of an argument, the whole argument is passed on the
2379     // stack. If registers have already been assigned for some
2380     // eightbytes of such an argument, the assignments get reverted.
2381     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2382       freeIntRegs -= neededInt;
2383       freeSSERegs -= neededSSE;
2384     } else {
2385       it->info = getIndirectResult(it->type, freeIntRegs);
2386     }
2387   }
2388 }
2389 
2390 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2391                                         QualType Ty,
2392                                         CodeGenFunction &CGF) {
2393   llvm::Value *overflow_arg_area_p =
2394     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2395   llvm::Value *overflow_arg_area =
2396     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2397 
2398   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2399   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2400   // It isn't stated explicitly in the standard, but in practice we use
2401   // alignment greater than 16 where necessary.
2402   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2403   if (Align > 8) {
2404     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2405     llvm::Value *Offset =
2406       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2407     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2408     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2409                                                     CGF.Int64Ty);
2410     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2411     overflow_arg_area =
2412       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2413                                  overflow_arg_area->getType(),
2414                                  "overflow_arg_area.align");
2415   }
2416 
2417   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2418   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2419   llvm::Value *Res =
2420     CGF.Builder.CreateBitCast(overflow_arg_area,
2421                               llvm::PointerType::getUnqual(LTy));
2422 
2423   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2424   // l->overflow_arg_area + sizeof(type).
2425   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2426   // an 8 byte boundary.
2427 
2428   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2429   llvm::Value *Offset =
2430       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2431   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2432                                             "overflow_arg_area.next");
2433   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2434 
2435   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2436   return Res;
2437 }
2438 
2439 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2440                                       CodeGenFunction &CGF) const {
2441   // Assume that va_list type is correct; should be pointer to LLVM type:
2442   // struct {
2443   //   i32 gp_offset;
2444   //   i32 fp_offset;
2445   //   i8* overflow_arg_area;
2446   //   i8* reg_save_area;
2447   // };
2448   unsigned neededInt, neededSSE;
2449 
2450   Ty = CGF.getContext().getCanonicalType(Ty);
2451   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2452                                        /*isNamedArg*/false);
2453 
2454   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2455   // in the registers. If not go to step 7.
2456   if (!neededInt && !neededSSE)
2457     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2458 
2459   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2460   // general purpose registers needed to pass type and num_fp to hold
2461   // the number of floating point registers needed.
2462 
2463   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2464   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2465   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2466   //
2467   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2468   // register save space).
2469 
2470   llvm::Value *InRegs = 0;
2471   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2472   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2473   if (neededInt) {
2474     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2475     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2476     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2477     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2478   }
2479 
2480   if (neededSSE) {
2481     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2482     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2483     llvm::Value *FitsInFP =
2484       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2485     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2486     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2487   }
2488 
2489   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2490   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2491   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2492   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2493 
2494   // Emit code to load the value if it was passed in registers.
2495 
2496   CGF.EmitBlock(InRegBlock);
2497 
2498   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2499   // an offset of l->gp_offset and/or l->fp_offset. This may require
2500   // copying to a temporary location in case the parameter is passed
2501   // in different register classes or requires an alignment greater
2502   // than 8 for general purpose registers and 16 for XMM registers.
2503   //
2504   // FIXME: This really results in shameful code when we end up needing to
2505   // collect arguments from different places; often what should result in a
2506   // simple assembling of a structure from scattered addresses has many more
2507   // loads than necessary. Can we clean this up?
2508   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2509   llvm::Value *RegAddr =
2510     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2511                            "reg_save_area");
2512   if (neededInt && neededSSE) {
2513     // FIXME: Cleanup.
2514     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2515     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2516     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2517     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2518     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2519     llvm::Type *TyLo = ST->getElementType(0);
2520     llvm::Type *TyHi = ST->getElementType(1);
2521     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2522            "Unexpected ABI info for mixed regs");
2523     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2524     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2525     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2526     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2527     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2528     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2529     llvm::Value *V =
2530       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2531     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2532     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2533     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2534 
2535     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2536                                         llvm::PointerType::getUnqual(LTy));
2537   } else if (neededInt) {
2538     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2539     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2540                                         llvm::PointerType::getUnqual(LTy));
2541 
2542     // Copy to a temporary if necessary to ensure the appropriate alignment.
2543     std::pair<CharUnits, CharUnits> SizeAlign =
2544         CGF.getContext().getTypeInfoInChars(Ty);
2545     uint64_t TySize = SizeAlign.first.getQuantity();
2546     unsigned TyAlign = SizeAlign.second.getQuantity();
2547     if (TyAlign > 8) {
2548       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2549       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2550       RegAddr = Tmp;
2551     }
2552   } else if (neededSSE == 1) {
2553     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2554     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2555                                         llvm::PointerType::getUnqual(LTy));
2556   } else {
2557     assert(neededSSE == 2 && "Invalid number of needed registers!");
2558     // SSE registers are spaced 16 bytes apart in the register save
2559     // area, we need to collect the two eightbytes together.
2560     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2561     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2562     llvm::Type *DoubleTy = CGF.DoubleTy;
2563     llvm::Type *DblPtrTy =
2564       llvm::PointerType::getUnqual(DoubleTy);
2565     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2566     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2567     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2568     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2569                                                          DblPtrTy));
2570     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2571     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2572                                                          DblPtrTy));
2573     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2574     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2575                                         llvm::PointerType::getUnqual(LTy));
2576   }
2577 
2578   // AMD64-ABI 3.5.7p5: Step 5. Set:
2579   // l->gp_offset = l->gp_offset + num_gp * 8
2580   // l->fp_offset = l->fp_offset + num_fp * 16.
2581   if (neededInt) {
2582     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2583     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2584                             gp_offset_p);
2585   }
2586   if (neededSSE) {
2587     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2588     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2589                             fp_offset_p);
2590   }
2591   CGF.EmitBranch(ContBlock);
2592 
2593   // Emit code to load the value if it was passed in memory.
2594 
2595   CGF.EmitBlock(InMemBlock);
2596   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2597 
2598   // Return the appropriate result.
2599 
2600   CGF.EmitBlock(ContBlock);
2601   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2602                                                  "vaarg.addr");
2603   ResAddr->addIncoming(RegAddr, InRegBlock);
2604   ResAddr->addIncoming(MemAddr, InMemBlock);
2605   return ResAddr;
2606 }
2607 
2608 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2609 
2610   if (Ty->isVoidType())
2611     return ABIArgInfo::getIgnore();
2612 
2613   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2614     Ty = EnumTy->getDecl()->getIntegerType();
2615 
2616   uint64_t Size = getContext().getTypeSize(Ty);
2617 
2618   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2619     if (IsReturnType) {
2620       if (isRecordReturnIndirect(RT, getCXXABI()))
2621         return ABIArgInfo::getIndirect(0, false);
2622     } else {
2623       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2624         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2625     }
2626 
2627     if (RT->getDecl()->hasFlexibleArrayMember())
2628       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2629 
2630     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2631     if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2632       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2633                                                           Size));
2634 
2635     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2636     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2637     if (Size <= 64 &&
2638         (Size & (Size - 1)) == 0)
2639       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2640                                                           Size));
2641 
2642     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2643   }
2644 
2645   if (Ty->isPromotableIntegerType())
2646     return ABIArgInfo::getExtend();
2647 
2648   return ABIArgInfo::getDirect();
2649 }
2650 
2651 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2652 
2653   QualType RetTy = FI.getReturnType();
2654   FI.getReturnInfo() = classify(RetTy, true);
2655 
2656   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2657        it != ie; ++it)
2658     it->info = classify(it->type, false);
2659 }
2660 
2661 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2662                                       CodeGenFunction &CGF) const {
2663   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2664 
2665   CGBuilderTy &Builder = CGF.Builder;
2666   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2667                                                        "ap");
2668   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2669   llvm::Type *PTy =
2670     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2671   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2672 
2673   uint64_t Offset =
2674     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2675   llvm::Value *NextAddr =
2676     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2677                       "ap.next");
2678   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2679 
2680   return AddrTyped;
2681 }
2682 
2683 namespace {
2684 
2685 class NaClX86_64ABIInfo : public ABIInfo {
2686  public:
2687   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2688       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2689   virtual void computeInfo(CGFunctionInfo &FI) const;
2690   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2691                                  CodeGenFunction &CGF) const;
2692  private:
2693   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2694   X86_64ABIInfo NInfo; // Used for everything else.
2695 };
2696 
2697 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2698  public:
2699   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2700       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2701 };
2702 
2703 }
2704 
2705 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2706   if (FI.getASTCallingConvention() == CC_PnaclCall)
2707     PInfo.computeInfo(FI);
2708   else
2709     NInfo.computeInfo(FI);
2710 }
2711 
2712 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2713                                           CodeGenFunction &CGF) const {
2714   // Always use the native convention; calling pnacl-style varargs functions
2715   // is unuspported.
2716   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2717 }
2718 
2719 
2720 // PowerPC-32
2721 
2722 namespace {
2723 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2724 public:
2725   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2726 
2727   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2728     // This is recovered from gcc output.
2729     return 1; // r1 is the dedicated stack pointer
2730   }
2731 
2732   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2733                                llvm::Value *Address) const;
2734 };
2735 
2736 }
2737 
2738 bool
2739 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2740                                                 llvm::Value *Address) const {
2741   // This is calculated from the LLVM and GCC tables and verified
2742   // against gcc output.  AFAIK all ABIs use the same encoding.
2743 
2744   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2745 
2746   llvm::IntegerType *i8 = CGF.Int8Ty;
2747   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2748   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2749   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2750 
2751   // 0-31: r0-31, the 4-byte general-purpose registers
2752   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2753 
2754   // 32-63: fp0-31, the 8-byte floating-point registers
2755   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2756 
2757   // 64-76 are various 4-byte special-purpose registers:
2758   // 64: mq
2759   // 65: lr
2760   // 66: ctr
2761   // 67: ap
2762   // 68-75 cr0-7
2763   // 76: xer
2764   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2765 
2766   // 77-108: v0-31, the 16-byte vector registers
2767   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2768 
2769   // 109: vrsave
2770   // 110: vscr
2771   // 111: spe_acc
2772   // 112: spefscr
2773   // 113: sfp
2774   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2775 
2776   return false;
2777 }
2778 
2779 // PowerPC-64
2780 
2781 namespace {
2782 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2783 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2784 
2785 public:
2786   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2787 
2788   bool isPromotableTypeForABI(QualType Ty) const;
2789 
2790   ABIArgInfo classifyReturnType(QualType RetTy) const;
2791   ABIArgInfo classifyArgumentType(QualType Ty) const;
2792 
2793   // TODO: We can add more logic to computeInfo to improve performance.
2794   // Example: For aggregate arguments that fit in a register, we could
2795   // use getDirectInReg (as is done below for structs containing a single
2796   // floating-point value) to avoid pushing them to memory on function
2797   // entry.  This would require changing the logic in PPCISelLowering
2798   // when lowering the parameters in the caller and args in the callee.
2799   virtual void computeInfo(CGFunctionInfo &FI) const {
2800     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2801     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2802          it != ie; ++it) {
2803       // We rely on the default argument classification for the most part.
2804       // One exception:  An aggregate containing a single floating-point
2805       // or vector item must be passed in a register if one is available.
2806       const Type *T = isSingleElementStruct(it->type, getContext());
2807       if (T) {
2808         const BuiltinType *BT = T->getAs<BuiltinType>();
2809         if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2810           QualType QT(T, 0);
2811           it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2812           continue;
2813         }
2814       }
2815       it->info = classifyArgumentType(it->type);
2816     }
2817   }
2818 
2819   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2820                                  QualType Ty,
2821                                  CodeGenFunction &CGF) const;
2822 };
2823 
2824 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2825 public:
2826   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2827     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2828 
2829   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2830     // This is recovered from gcc output.
2831     return 1; // r1 is the dedicated stack pointer
2832   }
2833 
2834   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2835                                llvm::Value *Address) const;
2836 };
2837 
2838 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2839 public:
2840   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2841 
2842   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2843     // This is recovered from gcc output.
2844     return 1; // r1 is the dedicated stack pointer
2845   }
2846 
2847   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2848                                llvm::Value *Address) const;
2849 };
2850 
2851 }
2852 
2853 // Return true if the ABI requires Ty to be passed sign- or zero-
2854 // extended to 64 bits.
2855 bool
2856 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2857   // Treat an enum type as its underlying type.
2858   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2859     Ty = EnumTy->getDecl()->getIntegerType();
2860 
2861   // Promotable integer types are required to be promoted by the ABI.
2862   if (Ty->isPromotableIntegerType())
2863     return true;
2864 
2865   // In addition to the usual promotable integer types, we also need to
2866   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2867   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2868     switch (BT->getKind()) {
2869     case BuiltinType::Int:
2870     case BuiltinType::UInt:
2871       return true;
2872     default:
2873       break;
2874     }
2875 
2876   return false;
2877 }
2878 
2879 ABIArgInfo
2880 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2881   if (Ty->isAnyComplexType())
2882     return ABIArgInfo::getDirect();
2883 
2884   if (isAggregateTypeForABI(Ty)) {
2885     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2886       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2887 
2888     return ABIArgInfo::getIndirect(0);
2889   }
2890 
2891   return (isPromotableTypeForABI(Ty) ?
2892           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2893 }
2894 
2895 ABIArgInfo
2896 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2897   if (RetTy->isVoidType())
2898     return ABIArgInfo::getIgnore();
2899 
2900   if (RetTy->isAnyComplexType())
2901     return ABIArgInfo::getDirect();
2902 
2903   if (isAggregateTypeForABI(RetTy))
2904     return ABIArgInfo::getIndirect(0);
2905 
2906   return (isPromotableTypeForABI(RetTy) ?
2907           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2908 }
2909 
2910 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2911 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2912                                            QualType Ty,
2913                                            CodeGenFunction &CGF) const {
2914   llvm::Type *BP = CGF.Int8PtrTy;
2915   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2916 
2917   CGBuilderTy &Builder = CGF.Builder;
2918   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2919   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2920 
2921   // Update the va_list pointer.  The pointer should be bumped by the
2922   // size of the object.  We can trust getTypeSize() except for a complex
2923   // type whose base type is smaller than a doubleword.  For these, the
2924   // size of the object is 16 bytes; see below for further explanation.
2925   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2926   QualType BaseTy;
2927   unsigned CplxBaseSize = 0;
2928 
2929   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2930     BaseTy = CTy->getElementType();
2931     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2932     if (CplxBaseSize < 8)
2933       SizeInBytes = 16;
2934   }
2935 
2936   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2937   llvm::Value *NextAddr =
2938     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2939                       "ap.next");
2940   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2941 
2942   // If we have a complex type and the base type is smaller than 8 bytes,
2943   // the ABI calls for the real and imaginary parts to be right-adjusted
2944   // in separate doublewords.  However, Clang expects us to produce a
2945   // pointer to a structure with the two parts packed tightly.  So generate
2946   // loads of the real and imaginary parts relative to the va_list pointer,
2947   // and store them to a temporary structure.
2948   if (CplxBaseSize && CplxBaseSize < 8) {
2949     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2950     llvm::Value *ImagAddr = RealAddr;
2951     RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2952     ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2953     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2954     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2955     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2956     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2957     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2958     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2959                                             "vacplx");
2960     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2961     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2962     Builder.CreateStore(Real, RealPtr, false);
2963     Builder.CreateStore(Imag, ImagPtr, false);
2964     return Ptr;
2965   }
2966 
2967   // If the argument is smaller than 8 bytes, it is right-adjusted in
2968   // its doubleword slot.  Adjust the pointer to pick it up from the
2969   // correct offset.
2970   if (SizeInBytes < 8) {
2971     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2972     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2973     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2974   }
2975 
2976   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2977   return Builder.CreateBitCast(Addr, PTy);
2978 }
2979 
2980 static bool
2981 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2982                               llvm::Value *Address) {
2983   // This is calculated from the LLVM and GCC tables and verified
2984   // against gcc output.  AFAIK all ABIs use the same encoding.
2985 
2986   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2987 
2988   llvm::IntegerType *i8 = CGF.Int8Ty;
2989   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2990   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2991   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2992 
2993   // 0-31: r0-31, the 8-byte general-purpose registers
2994   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2995 
2996   // 32-63: fp0-31, the 8-byte floating-point registers
2997   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2998 
2999   // 64-76 are various 4-byte special-purpose registers:
3000   // 64: mq
3001   // 65: lr
3002   // 66: ctr
3003   // 67: ap
3004   // 68-75 cr0-7
3005   // 76: xer
3006   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3007 
3008   // 77-108: v0-31, the 16-byte vector registers
3009   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3010 
3011   // 109: vrsave
3012   // 110: vscr
3013   // 111: spe_acc
3014   // 112: spefscr
3015   // 113: sfp
3016   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3017 
3018   return false;
3019 }
3020 
3021 bool
3022 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3023   CodeGen::CodeGenFunction &CGF,
3024   llvm::Value *Address) const {
3025 
3026   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3027 }
3028 
3029 bool
3030 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3031                                                 llvm::Value *Address) const {
3032 
3033   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3034 }
3035 
3036 //===----------------------------------------------------------------------===//
3037 // ARM ABI Implementation
3038 //===----------------------------------------------------------------------===//
3039 
3040 namespace {
3041 
3042 class ARMABIInfo : public ABIInfo {
3043 public:
3044   enum ABIKind {
3045     APCS = 0,
3046     AAPCS = 1,
3047     AAPCS_VFP
3048   };
3049 
3050 private:
3051   ABIKind Kind;
3052 
3053 public:
3054   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3055     setRuntimeCC();
3056   }
3057 
3058   bool isEABI() const {
3059     StringRef Env = getTarget().getTriple().getEnvironmentName();
3060     return (Env == "gnueabi" || Env == "eabi" ||
3061             Env == "android" || Env == "androideabi");
3062   }
3063 
3064   ABIKind getABIKind() const { return Kind; }
3065 
3066 private:
3067   ABIArgInfo classifyReturnType(QualType RetTy) const;
3068   ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3069                                   unsigned &AllocatedVFP,
3070                                   bool &IsHA) const;
3071   bool isIllegalVectorType(QualType Ty) const;
3072 
3073   virtual void computeInfo(CGFunctionInfo &FI) const;
3074 
3075   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3076                                  CodeGenFunction &CGF) const;
3077 
3078   llvm::CallingConv::ID getLLVMDefaultCC() const;
3079   llvm::CallingConv::ID getABIDefaultCC() const;
3080   void setRuntimeCC();
3081 };
3082 
3083 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3084 public:
3085   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3086     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3087 
3088   const ARMABIInfo &getABIInfo() const {
3089     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3090   }
3091 
3092   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3093     return 13;
3094   }
3095 
3096   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3097     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3098   }
3099 
3100   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3101                                llvm::Value *Address) const {
3102     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3103 
3104     // 0-15 are the 16 integer registers.
3105     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3106     return false;
3107   }
3108 
3109   unsigned getSizeOfUnwindException() const {
3110     if (getABIInfo().isEABI()) return 88;
3111     return TargetCodeGenInfo::getSizeOfUnwindException();
3112   }
3113 
3114   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3115                            CodeGen::CodeGenModule &CGM) const {
3116     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3117     if (!FD)
3118       return;
3119 
3120     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3121     if (!Attr)
3122       return;
3123 
3124     const char *Kind;
3125     switch (Attr->getInterrupt()) {
3126     case ARMInterruptAttr::Generic: Kind = ""; break;
3127     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3128     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3129     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3130     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3131     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3132     }
3133 
3134     llvm::Function *Fn = cast<llvm::Function>(GV);
3135 
3136     Fn->addFnAttr("interrupt", Kind);
3137 
3138     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3139       return;
3140 
3141     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3142     // however this is not necessarily true on taking any interrupt. Instruct
3143     // the backend to perform a realignment as part of the function prologue.
3144     llvm::AttrBuilder B;
3145     B.addStackAlignmentAttr(8);
3146     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3147                       llvm::AttributeSet::get(CGM.getLLVMContext(),
3148                                               llvm::AttributeSet::FunctionIndex,
3149                                               B));
3150   }
3151 
3152 };
3153 
3154 }
3155 
3156 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3157   // To correctly handle Homogeneous Aggregate, we need to keep track of the
3158   // VFP registers allocated so far.
3159   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3160   // VFP registers of the appropriate type unallocated then the argument is
3161   // allocated to the lowest-numbered sequence of such registers.
3162   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3163   // unallocated are marked as unavailable.
3164   unsigned AllocatedVFP = 0;
3165   int VFPRegs[16] = { 0 };
3166   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3167   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3168        it != ie; ++it) {
3169     unsigned PreAllocation = AllocatedVFP;
3170     bool IsHA = false;
3171     // 6.1.2.3 There is one VFP co-processor register class using registers
3172     // s0-s15 (d0-d7) for passing arguments.
3173     const unsigned NumVFPs = 16;
3174     it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3175     // If we do not have enough VFP registers for the HA, any VFP registers
3176     // that are unallocated are marked as unavailable. To achieve this, we add
3177     // padding of (NumVFPs - PreAllocation) floats.
3178     if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3179       llvm::Type *PaddingTy = llvm::ArrayType::get(
3180           llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3181       it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3182     }
3183   }
3184 
3185   // Always honor user-specified calling convention.
3186   if (FI.getCallingConvention() != llvm::CallingConv::C)
3187     return;
3188 
3189   llvm::CallingConv::ID cc = getRuntimeCC();
3190   if (cc != llvm::CallingConv::C)
3191     FI.setEffectiveCallingConvention(cc);
3192 }
3193 
3194 /// Return the default calling convention that LLVM will use.
3195 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3196   // The default calling convention that LLVM will infer.
3197   if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
3198     return llvm::CallingConv::ARM_AAPCS_VFP;
3199   else if (isEABI())
3200     return llvm::CallingConv::ARM_AAPCS;
3201   else
3202     return llvm::CallingConv::ARM_APCS;
3203 }
3204 
3205 /// Return the calling convention that our ABI would like us to use
3206 /// as the C calling convention.
3207 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3208   switch (getABIKind()) {
3209   case APCS: return llvm::CallingConv::ARM_APCS;
3210   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3211   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3212   }
3213   llvm_unreachable("bad ABI kind");
3214 }
3215 
3216 void ARMABIInfo::setRuntimeCC() {
3217   assert(getRuntimeCC() == llvm::CallingConv::C);
3218 
3219   // Don't muddy up the IR with a ton of explicit annotations if
3220   // they'd just match what LLVM will infer from the triple.
3221   llvm::CallingConv::ID abiCC = getABIDefaultCC();
3222   if (abiCC != getLLVMDefaultCC())
3223     RuntimeCC = abiCC;
3224 }
3225 
3226 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3227 /// aggregate.  If HAMembers is non-null, the number of base elements
3228 /// contained in the type is returned through it; this is used for the
3229 /// recursive calls that check aggregate component types.
3230 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3231                                    ASTContext &Context,
3232                                    uint64_t *HAMembers = 0) {
3233   uint64_t Members = 0;
3234   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3235     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3236       return false;
3237     Members *= AT->getSize().getZExtValue();
3238   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3239     const RecordDecl *RD = RT->getDecl();
3240     if (RD->hasFlexibleArrayMember())
3241       return false;
3242 
3243     Members = 0;
3244     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3245          i != e; ++i) {
3246       const FieldDecl *FD = *i;
3247       uint64_t FldMembers;
3248       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3249         return false;
3250 
3251       Members = (RD->isUnion() ?
3252                  std::max(Members, FldMembers) : Members + FldMembers);
3253     }
3254   } else {
3255     Members = 1;
3256     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3257       Members = 2;
3258       Ty = CT->getElementType();
3259     }
3260 
3261     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3262     // double, or 64-bit or 128-bit vectors.
3263     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3264       if (BT->getKind() != BuiltinType::Float &&
3265           BT->getKind() != BuiltinType::Double &&
3266           BT->getKind() != BuiltinType::LongDouble)
3267         return false;
3268     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3269       unsigned VecSize = Context.getTypeSize(VT);
3270       if (VecSize != 64 && VecSize != 128)
3271         return false;
3272     } else {
3273       return false;
3274     }
3275 
3276     // The base type must be the same for all members.  Vector types of the
3277     // same total size are treated as being equivalent here.
3278     const Type *TyPtr = Ty.getTypePtr();
3279     if (!Base)
3280       Base = TyPtr;
3281     if (Base != TyPtr &&
3282         (!Base->isVectorType() || !TyPtr->isVectorType() ||
3283          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3284       return false;
3285   }
3286 
3287   // Homogeneous Aggregates can have at most 4 members of the base type.
3288   if (HAMembers)
3289     *HAMembers = Members;
3290 
3291   return (Members > 0 && Members <= 4);
3292 }
3293 
3294 /// markAllocatedVFPs - update VFPRegs according to the alignment and
3295 /// number of VFP registers (unit is S register) requested.
3296 static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3297                               unsigned Alignment,
3298                               unsigned NumRequired) {
3299   // Early Exit.
3300   if (AllocatedVFP >= 16)
3301     return;
3302   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3303   // VFP registers of the appropriate type unallocated then the argument is
3304   // allocated to the lowest-numbered sequence of such registers.
3305   for (unsigned I = 0; I < 16; I += Alignment) {
3306     bool FoundSlot = true;
3307     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3308       if (J >= 16 || VFPRegs[J]) {
3309          FoundSlot = false;
3310          break;
3311       }
3312     if (FoundSlot) {
3313       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3314         VFPRegs[J] = 1;
3315       AllocatedVFP += NumRequired;
3316       return;
3317     }
3318   }
3319   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3320   // unallocated are marked as unavailable.
3321   for (unsigned I = 0; I < 16; I++)
3322     VFPRegs[I] = 1;
3323   AllocatedVFP = 17; // We do not have enough VFP registers.
3324 }
3325 
3326 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3327                                             unsigned &AllocatedVFP,
3328                                             bool &IsHA) const {
3329   // We update number of allocated VFPs according to
3330   // 6.1.2.1 The following argument types are VFP CPRCs:
3331   //   A single-precision floating-point type (including promoted
3332   //   half-precision types); A double-precision floating-point type;
3333   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3334   //   with a Base Type of a single- or double-precision floating-point type,
3335   //   64-bit containerized vectors or 128-bit containerized vectors with one
3336   //   to four Elements.
3337 
3338   // Handle illegal vector types here.
3339   if (isIllegalVectorType(Ty)) {
3340     uint64_t Size = getContext().getTypeSize(Ty);
3341     if (Size <= 32) {
3342       llvm::Type *ResType =
3343           llvm::Type::getInt32Ty(getVMContext());
3344       return ABIArgInfo::getDirect(ResType);
3345     }
3346     if (Size == 64) {
3347       llvm::Type *ResType = llvm::VectorType::get(
3348           llvm::Type::getInt32Ty(getVMContext()), 2);
3349       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3350       return ABIArgInfo::getDirect(ResType);
3351     }
3352     if (Size == 128) {
3353       llvm::Type *ResType = llvm::VectorType::get(
3354           llvm::Type::getInt32Ty(getVMContext()), 4);
3355       markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3356       return ABIArgInfo::getDirect(ResType);
3357     }
3358     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3359   }
3360   // Update VFPRegs for legal vector types.
3361   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3362     uint64_t Size = getContext().getTypeSize(VT);
3363     // Size of a legal vector should be power of 2 and above 64.
3364     markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3365   }
3366   // Update VFPRegs for floating point types.
3367   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3368     if (BT->getKind() == BuiltinType::Half ||
3369         BT->getKind() == BuiltinType::Float)
3370       markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3371     if (BT->getKind() == BuiltinType::Double ||
3372         BT->getKind() == BuiltinType::LongDouble)
3373       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3374   }
3375 
3376   if (!isAggregateTypeForABI(Ty)) {
3377     // Treat an enum type as its underlying type.
3378     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3379       Ty = EnumTy->getDecl()->getIntegerType();
3380 
3381     return (Ty->isPromotableIntegerType() ?
3382             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3383   }
3384 
3385   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3386     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3387 
3388   // Ignore empty records.
3389   if (isEmptyRecord(getContext(), Ty, true))
3390     return ABIArgInfo::getIgnore();
3391 
3392   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3393     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3394     // into VFP registers.
3395     const Type *Base = 0;
3396     uint64_t Members = 0;
3397     if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3398       assert(Base && "Base class should be set for homogeneous aggregate");
3399       // Base can be a floating-point or a vector.
3400       if (Base->isVectorType()) {
3401         // ElementSize is in number of floats.
3402         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3403         markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3404                           Members * ElementSize);
3405       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3406         markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3407       else {
3408         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3409                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3410         markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3411       }
3412       IsHA = true;
3413       return ABIArgInfo::getExpand();
3414     }
3415   }
3416 
3417   // Support byval for ARM.
3418   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3419   // most 8-byte. We realign the indirect argument if type alignment is bigger
3420   // than ABI alignment.
3421   uint64_t ABIAlign = 4;
3422   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3423   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3424       getABIKind() == ARMABIInfo::AAPCS)
3425     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3426   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3427     return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3428            /*Realign=*/TyAlign > ABIAlign);
3429   }
3430 
3431   // Otherwise, pass by coercing to a structure of the appropriate size.
3432   llvm::Type* ElemTy;
3433   unsigned SizeRegs;
3434   // FIXME: Try to match the types of the arguments more accurately where
3435   // we can.
3436   if (getContext().getTypeAlign(Ty) <= 32) {
3437     ElemTy = llvm::Type::getInt32Ty(getVMContext());
3438     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3439   } else {
3440     ElemTy = llvm::Type::getInt64Ty(getVMContext());
3441     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3442   }
3443 
3444   llvm::Type *STy =
3445     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3446   return ABIArgInfo::getDirect(STy);
3447 }
3448 
3449 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3450                               llvm::LLVMContext &VMContext) {
3451   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3452   // is called integer-like if its size is less than or equal to one word, and
3453   // the offset of each of its addressable sub-fields is zero.
3454 
3455   uint64_t Size = Context.getTypeSize(Ty);
3456 
3457   // Check that the type fits in a word.
3458   if (Size > 32)
3459     return false;
3460 
3461   // FIXME: Handle vector types!
3462   if (Ty->isVectorType())
3463     return false;
3464 
3465   // Float types are never treated as "integer like".
3466   if (Ty->isRealFloatingType())
3467     return false;
3468 
3469   // If this is a builtin or pointer type then it is ok.
3470   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3471     return true;
3472 
3473   // Small complex integer types are "integer like".
3474   if (const ComplexType *CT = Ty->getAs<ComplexType>())
3475     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3476 
3477   // Single element and zero sized arrays should be allowed, by the definition
3478   // above, but they are not.
3479 
3480   // Otherwise, it must be a record type.
3481   const RecordType *RT = Ty->getAs<RecordType>();
3482   if (!RT) return false;
3483 
3484   // Ignore records with flexible arrays.
3485   const RecordDecl *RD = RT->getDecl();
3486   if (RD->hasFlexibleArrayMember())
3487     return false;
3488 
3489   // Check that all sub-fields are at offset 0, and are themselves "integer
3490   // like".
3491   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3492 
3493   bool HadField = false;
3494   unsigned idx = 0;
3495   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3496        i != e; ++i, ++idx) {
3497     const FieldDecl *FD = *i;
3498 
3499     // Bit-fields are not addressable, we only need to verify they are "integer
3500     // like". We still have to disallow a subsequent non-bitfield, for example:
3501     //   struct { int : 0; int x }
3502     // is non-integer like according to gcc.
3503     if (FD->isBitField()) {
3504       if (!RD->isUnion())
3505         HadField = true;
3506 
3507       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3508         return false;
3509 
3510       continue;
3511     }
3512 
3513     // Check if this field is at offset 0.
3514     if (Layout.getFieldOffset(idx) != 0)
3515       return false;
3516 
3517     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3518       return false;
3519 
3520     // Only allow at most one field in a structure. This doesn't match the
3521     // wording above, but follows gcc in situations with a field following an
3522     // empty structure.
3523     if (!RD->isUnion()) {
3524       if (HadField)
3525         return false;
3526 
3527       HadField = true;
3528     }
3529   }
3530 
3531   return true;
3532 }
3533 
3534 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3535   if (RetTy->isVoidType())
3536     return ABIArgInfo::getIgnore();
3537 
3538   // Large vector types should be returned via memory.
3539   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3540     return ABIArgInfo::getIndirect(0);
3541 
3542   if (!isAggregateTypeForABI(RetTy)) {
3543     // Treat an enum type as its underlying type.
3544     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3545       RetTy = EnumTy->getDecl()->getIntegerType();
3546 
3547     return (RetTy->isPromotableIntegerType() ?
3548             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3549   }
3550 
3551   // Structures with either a non-trivial destructor or a non-trivial
3552   // copy constructor are always indirect.
3553   if (isRecordReturnIndirect(RetTy, getCXXABI()))
3554     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3555 
3556   // Are we following APCS?
3557   if (getABIKind() == APCS) {
3558     if (isEmptyRecord(getContext(), RetTy, false))
3559       return ABIArgInfo::getIgnore();
3560 
3561     // Complex types are all returned as packed integers.
3562     //
3563     // FIXME: Consider using 2 x vector types if the back end handles them
3564     // correctly.
3565     if (RetTy->isAnyComplexType())
3566       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3567                                               getContext().getTypeSize(RetTy)));
3568 
3569     // Integer like structures are returned in r0.
3570     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3571       // Return in the smallest viable integer type.
3572       uint64_t Size = getContext().getTypeSize(RetTy);
3573       if (Size <= 8)
3574         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3575       if (Size <= 16)
3576         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3577       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3578     }
3579 
3580     // Otherwise return in memory.
3581     return ABIArgInfo::getIndirect(0);
3582   }
3583 
3584   // Otherwise this is an AAPCS variant.
3585 
3586   if (isEmptyRecord(getContext(), RetTy, true))
3587     return ABIArgInfo::getIgnore();
3588 
3589   // Check for homogeneous aggregates with AAPCS-VFP.
3590   if (getABIKind() == AAPCS_VFP) {
3591     const Type *Base = 0;
3592     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3593       assert(Base && "Base class should be set for homogeneous aggregate");
3594       // Homogeneous Aggregates are returned directly.
3595       return ABIArgInfo::getDirect();
3596     }
3597   }
3598 
3599   // Aggregates <= 4 bytes are returned in r0; other aggregates
3600   // are returned indirectly.
3601   uint64_t Size = getContext().getTypeSize(RetTy);
3602   if (Size <= 32) {
3603     // Return in the smallest viable integer type.
3604     if (Size <= 8)
3605       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3606     if (Size <= 16)
3607       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3608     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3609   }
3610 
3611   return ABIArgInfo::getIndirect(0);
3612 }
3613 
3614 /// isIllegalVector - check whether Ty is an illegal vector type.
3615 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3616   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3617     // Check whether VT is legal.
3618     unsigned NumElements = VT->getNumElements();
3619     uint64_t Size = getContext().getTypeSize(VT);
3620     // NumElements should be power of 2.
3621     if ((NumElements & (NumElements - 1)) != 0)
3622       return true;
3623     // Size should be greater than 32 bits.
3624     return Size <= 32;
3625   }
3626   return false;
3627 }
3628 
3629 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3630                                    CodeGenFunction &CGF) const {
3631   llvm::Type *BP = CGF.Int8PtrTy;
3632   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3633 
3634   CGBuilderTy &Builder = CGF.Builder;
3635   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3636   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3637 
3638   if (isEmptyRecord(getContext(), Ty, true)) {
3639     // These are ignored for parameter passing purposes.
3640     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3641     return Builder.CreateBitCast(Addr, PTy);
3642   }
3643 
3644   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3645   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3646   bool IsIndirect = false;
3647 
3648   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3649   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3650   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3651       getABIKind() == ARMABIInfo::AAPCS)
3652     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3653   else
3654     TyAlign = 4;
3655   // Use indirect if size of the illegal vector is bigger than 16 bytes.
3656   if (isIllegalVectorType(Ty) && Size > 16) {
3657     IsIndirect = true;
3658     Size = 4;
3659     TyAlign = 4;
3660   }
3661 
3662   // Handle address alignment for ABI alignment > 4 bytes.
3663   if (TyAlign > 4) {
3664     assert((TyAlign & (TyAlign - 1)) == 0 &&
3665            "Alignment is not power of 2!");
3666     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3667     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3668     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3669     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3670   }
3671 
3672   uint64_t Offset =
3673     llvm::RoundUpToAlignment(Size, 4);
3674   llvm::Value *NextAddr =
3675     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3676                       "ap.next");
3677   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3678 
3679   if (IsIndirect)
3680     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3681   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3682     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3683     // may not be correctly aligned for the vector type. We create an aligned
3684     // temporary space and copy the content over from ap.cur to the temporary
3685     // space. This is necessary if the natural alignment of the type is greater
3686     // than the ABI alignment.
3687     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3688     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3689     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3690                                                     "var.align");
3691     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3692     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3693     Builder.CreateMemCpy(Dst, Src,
3694         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3695         TyAlign, false);
3696     Addr = AlignedTemp; //The content is in aligned location.
3697   }
3698   llvm::Type *PTy =
3699     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3700   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3701 
3702   return AddrTyped;
3703 }
3704 
3705 namespace {
3706 
3707 class NaClARMABIInfo : public ABIInfo {
3708  public:
3709   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3710       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3711   virtual void computeInfo(CGFunctionInfo &FI) const;
3712   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3713                                  CodeGenFunction &CGF) const;
3714  private:
3715   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3716   ARMABIInfo NInfo; // Used for everything else.
3717 };
3718 
3719 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3720  public:
3721   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3722       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3723 };
3724 
3725 }
3726 
3727 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3728   if (FI.getASTCallingConvention() == CC_PnaclCall)
3729     PInfo.computeInfo(FI);
3730   else
3731     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3732 }
3733 
3734 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3735                                        CodeGenFunction &CGF) const {
3736   // Always use the native convention; calling pnacl-style varargs functions
3737   // is unsupported.
3738   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3739 }
3740 
3741 //===----------------------------------------------------------------------===//
3742 // AArch64 ABI Implementation
3743 //===----------------------------------------------------------------------===//
3744 
3745 namespace {
3746 
3747 class AArch64ABIInfo : public ABIInfo {
3748 public:
3749   AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3750 
3751 private:
3752   // The AArch64 PCS is explicit about return types and argument types being
3753   // handled identically, so we don't need to draw a distinction between
3754   // Argument and Return classification.
3755   ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3756                                  int &FreeVFPRegs) const;
3757 
3758   ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3759                         llvm::Type *DirectTy = 0) const;
3760 
3761   virtual void computeInfo(CGFunctionInfo &FI) const;
3762 
3763   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3764                                  CodeGenFunction &CGF) const;
3765 };
3766 
3767 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3768 public:
3769   AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3770     :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3771 
3772   const AArch64ABIInfo &getABIInfo() const {
3773     return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3774   }
3775 
3776   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3777     return 31;
3778   }
3779 
3780   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3781                                llvm::Value *Address) const {
3782     // 0-31 are x0-x30 and sp: 8 bytes each
3783     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3784     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3785 
3786     // 64-95 are v0-v31: 16 bytes each
3787     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3788     AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3789 
3790     return false;
3791   }
3792 
3793 };
3794 
3795 }
3796 
3797 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3798   int FreeIntRegs = 8, FreeVFPRegs = 8;
3799 
3800   FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3801                                            FreeIntRegs, FreeVFPRegs);
3802 
3803   FreeIntRegs = FreeVFPRegs = 8;
3804   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3805        it != ie; ++it) {
3806     it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3807 
3808   }
3809 }
3810 
3811 ABIArgInfo
3812 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3813                            bool IsInt, llvm::Type *DirectTy) const {
3814   if (FreeRegs >= RegsNeeded) {
3815     FreeRegs -= RegsNeeded;
3816     return ABIArgInfo::getDirect(DirectTy);
3817   }
3818 
3819   llvm::Type *Padding = 0;
3820 
3821   // We need padding so that later arguments don't get filled in anyway. That
3822   // wouldn't happen if only ByVal arguments followed in the same category, but
3823   // a large structure will simply seem to be a pointer as far as LLVM is
3824   // concerned.
3825   if (FreeRegs > 0) {
3826     if (IsInt)
3827       Padding = llvm::Type::getInt64Ty(getVMContext());
3828     else
3829       Padding = llvm::Type::getFloatTy(getVMContext());
3830 
3831     // Either [N x i64] or [N x float].
3832     Padding = llvm::ArrayType::get(Padding, FreeRegs);
3833     FreeRegs = 0;
3834   }
3835 
3836   return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3837                                  /*IsByVal=*/ true, /*Realign=*/ false,
3838                                  Padding);
3839 }
3840 
3841 
3842 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3843                                                int &FreeIntRegs,
3844                                                int &FreeVFPRegs) const {
3845   // Can only occurs for return, but harmless otherwise.
3846   if (Ty->isVoidType())
3847     return ABIArgInfo::getIgnore();
3848 
3849   // Large vector types should be returned via memory. There's no such concept
3850   // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3851   // classified they'd go into memory (see B.3).
3852   if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3853     if (FreeIntRegs > 0)
3854       --FreeIntRegs;
3855     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3856   }
3857 
3858   // All non-aggregate LLVM types have a concrete ABI representation so they can
3859   // be passed directly. After this block we're guaranteed to be in a
3860   // complicated case.
3861   if (!isAggregateTypeForABI(Ty)) {
3862     // Treat an enum type as its underlying type.
3863     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3864       Ty = EnumTy->getDecl()->getIntegerType();
3865 
3866     if (Ty->isFloatingType() || Ty->isVectorType())
3867       return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3868 
3869     assert(getContext().getTypeSize(Ty) <= 128 &&
3870            "unexpectedly large scalar type");
3871 
3872     int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3873 
3874     // If the type may need padding registers to ensure "alignment", we must be
3875     // careful when this is accounted for. Increasing the effective size covers
3876     // all cases.
3877     if (getContext().getTypeAlign(Ty) == 128)
3878       RegsNeeded += FreeIntRegs % 2 != 0;
3879 
3880     return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3881   }
3882 
3883   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3884     if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3885       --FreeIntRegs;
3886     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3887   }
3888 
3889   if (isEmptyRecord(getContext(), Ty, true)) {
3890     if (!getContext().getLangOpts().CPlusPlus) {
3891       // Empty structs outside C++ mode are a GNU extension, so no ABI can
3892       // possibly tell us what to do. It turns out (I believe) that GCC ignores
3893       // the object for parameter-passsing purposes.
3894       return ABIArgInfo::getIgnore();
3895     }
3896 
3897     // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
3898     // description of va_arg in the PCS require that an empty struct does
3899     // actually occupy space for parameter-passing. I'm hoping for a
3900     // clarification giving an explicit paragraph to point to in future.
3901     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
3902                       llvm::Type::getInt8Ty(getVMContext()));
3903   }
3904 
3905   // Homogeneous vector aggregates get passed in registers or on the stack.
3906   const Type *Base = 0;
3907   uint64_t NumMembers = 0;
3908   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
3909     assert(Base && "Base class should be set for homogeneous aggregate");
3910     // Homogeneous aggregates are passed and returned directly.
3911     return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
3912                       /*IsInt=*/ false);
3913   }
3914 
3915   uint64_t Size = getContext().getTypeSize(Ty);
3916   if (Size <= 128) {
3917     // Small structs can use the same direct type whether they're in registers
3918     // or on the stack.
3919     llvm::Type *BaseTy;
3920     unsigned NumBases;
3921     int SizeInRegs = (Size + 63) / 64;
3922 
3923     if (getContext().getTypeAlign(Ty) == 128) {
3924       BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
3925       NumBases = 1;
3926 
3927       // If the type may need padding registers to ensure "alignment", we must
3928       // be careful when this is accounted for. Increasing the effective size
3929       // covers all cases.
3930       SizeInRegs += FreeIntRegs % 2 != 0;
3931     } else {
3932       BaseTy = llvm::Type::getInt64Ty(getVMContext());
3933       NumBases = SizeInRegs;
3934     }
3935     llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
3936 
3937     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
3938                       /*IsInt=*/ true, DirectTy);
3939   }
3940 
3941   // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
3942   // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
3943   --FreeIntRegs;
3944   return ABIArgInfo::getIndirect(0, /* byVal = */ false);
3945 }
3946 
3947 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3948                                        CodeGenFunction &CGF) const {
3949   // The AArch64 va_list type and handling is specified in the Procedure Call
3950   // Standard, section B.4:
3951   //
3952   // struct {
3953   //   void *__stack;
3954   //   void *__gr_top;
3955   //   void *__vr_top;
3956   //   int __gr_offs;
3957   //   int __vr_offs;
3958   // };
3959 
3960   assert(!CGF.CGM.getDataLayout().isBigEndian()
3961          && "va_arg not implemented for big-endian AArch64");
3962 
3963   int FreeIntRegs = 8, FreeVFPRegs = 8;
3964   Ty = CGF.getContext().getCanonicalType(Ty);
3965   ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
3966 
3967   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3968   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3969   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3970   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3971 
3972   llvm::Value *reg_offs_p = 0, *reg_offs = 0;
3973   int reg_top_index;
3974   int RegSize;
3975   if (FreeIntRegs < 8) {
3976     assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
3977     // 3 is the field number of __gr_offs
3978     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3979     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3980     reg_top_index = 1; // field number for __gr_top
3981     RegSize = 8 * (8 - FreeIntRegs);
3982   } else {
3983     assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
3984     // 4 is the field number of __vr_offs.
3985     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
3986     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
3987     reg_top_index = 2; // field number for __vr_top
3988     RegSize = 16 * (8 - FreeVFPRegs);
3989   }
3990 
3991   //=======================================
3992   // Find out where argument was passed
3993   //=======================================
3994 
3995   // If reg_offs >= 0 we're already using the stack for this type of
3996   // argument. We don't want to keep updating reg_offs (in case it overflows,
3997   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
3998   // whatever they get).
3999   llvm::Value *UsingStack = 0;
4000   UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4001                                          llvm::ConstantInt::get(CGF.Int32Ty, 0));
4002 
4003   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4004 
4005   // Otherwise, at least some kind of argument could go in these registers, the
4006   // quesiton is whether this particular type is too big.
4007   CGF.EmitBlock(MaybeRegBlock);
4008 
4009   // Integer arguments may need to correct register alignment (for example a
4010   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4011   // align __gr_offs to calculate the potential address.
4012   if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4013     int Align = getContext().getTypeAlign(Ty) / 8;
4014 
4015     reg_offs = CGF.Builder.CreateAdd(reg_offs,
4016                                  llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4017                                  "align_regoffs");
4018     reg_offs = CGF.Builder.CreateAnd(reg_offs,
4019                                     llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4020                                     "aligned_regoffs");
4021   }
4022 
4023   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4024   llvm::Value *NewOffset = 0;
4025   NewOffset = CGF.Builder.CreateAdd(reg_offs,
4026                                     llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4027                                     "new_reg_offs");
4028   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4029 
4030   // Now we're in a position to decide whether this argument really was in
4031   // registers or not.
4032   llvm::Value *InRegs = 0;
4033   InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4034                                      llvm::ConstantInt::get(CGF.Int32Ty, 0),
4035                                      "inreg");
4036 
4037   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4038 
4039   //=======================================
4040   // Argument was in registers
4041   //=======================================
4042 
4043   // Now we emit the code for if the argument was originally passed in
4044   // registers. First start the appropriate block:
4045   CGF.EmitBlock(InRegBlock);
4046 
4047   llvm::Value *reg_top_p = 0, *reg_top = 0;
4048   reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4049   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4050   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4051   llvm::Value *RegAddr = 0;
4052   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4053 
4054   if (!AI.isDirect()) {
4055     // If it's been passed indirectly (actually a struct), whatever we find from
4056     // stored registers or on the stack will actually be a struct **.
4057     MemTy = llvm::PointerType::getUnqual(MemTy);
4058   }
4059 
4060   const Type *Base = 0;
4061   uint64_t NumMembers;
4062   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4063       && NumMembers > 1) {
4064     // Homogeneous aggregates passed in registers will have their elements split
4065     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4066     // qN+1, ...). We reload and store into a temporary local variable
4067     // contiguously.
4068     assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4069     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4070     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4071     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4072 
4073     for (unsigned i = 0; i < NumMembers; ++i) {
4074       llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4075       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4076       LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4077                                            llvm::PointerType::getUnqual(BaseTy));
4078       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4079 
4080       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4081       CGF.Builder.CreateStore(Elem, StoreAddr);
4082     }
4083 
4084     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4085   } else {
4086     // Otherwise the object is contiguous in memory
4087     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4088   }
4089 
4090   CGF.EmitBranch(ContBlock);
4091 
4092   //=======================================
4093   // Argument was on the stack
4094   //=======================================
4095   CGF.EmitBlock(OnStackBlock);
4096 
4097   llvm::Value *stack_p = 0, *OnStackAddr = 0;
4098   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4099   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4100 
4101   // Again, stack arguments may need realigmnent. In this case both integer and
4102   // floating-point ones might be affected.
4103   if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4104     int Align = getContext().getTypeAlign(Ty) / 8;
4105 
4106     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4107 
4108     OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4109                                  llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4110                                  "align_stack");
4111     OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4112                                     llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4113                                     "align_stack");
4114 
4115     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4116   }
4117 
4118   uint64_t StackSize;
4119   if (AI.isDirect())
4120     StackSize = getContext().getTypeSize(Ty) / 8;
4121   else
4122     StackSize = 8;
4123 
4124   // All stack slots are 8 bytes
4125   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4126 
4127   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4128   llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4129                                                 "new_stack");
4130 
4131   // Write the new value of __stack for the next call to va_arg
4132   CGF.Builder.CreateStore(NewStack, stack_p);
4133 
4134   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4135 
4136   CGF.EmitBranch(ContBlock);
4137 
4138   //=======================================
4139   // Tidy up
4140   //=======================================
4141   CGF.EmitBlock(ContBlock);
4142 
4143   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4144   ResAddr->addIncoming(RegAddr, InRegBlock);
4145   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4146 
4147   if (AI.isDirect())
4148     return ResAddr;
4149 
4150   return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4151 }
4152 
4153 //===----------------------------------------------------------------------===//
4154 // NVPTX ABI Implementation
4155 //===----------------------------------------------------------------------===//
4156 
4157 namespace {
4158 
4159 class NVPTXABIInfo : public ABIInfo {
4160 public:
4161   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4162 
4163   ABIArgInfo classifyReturnType(QualType RetTy) const;
4164   ABIArgInfo classifyArgumentType(QualType Ty) const;
4165 
4166   virtual void computeInfo(CGFunctionInfo &FI) const;
4167   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4168                                  CodeGenFunction &CFG) const;
4169 };
4170 
4171 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4172 public:
4173   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4174     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4175 
4176   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4177                                    CodeGen::CodeGenModule &M) const;
4178 private:
4179   static void addKernelMetadata(llvm::Function *F);
4180 };
4181 
4182 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4183   if (RetTy->isVoidType())
4184     return ABIArgInfo::getIgnore();
4185   if (isAggregateTypeForABI(RetTy))
4186     return ABIArgInfo::getIndirect(0);
4187   return ABIArgInfo::getDirect();
4188 }
4189 
4190 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4191   if (isAggregateTypeForABI(Ty))
4192     return ABIArgInfo::getIndirect(0);
4193 
4194   return ABIArgInfo::getDirect();
4195 }
4196 
4197 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4198   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4199   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4200        it != ie; ++it)
4201     it->info = classifyArgumentType(it->type);
4202 
4203   // Always honor user-specified calling convention.
4204   if (FI.getCallingConvention() != llvm::CallingConv::C)
4205     return;
4206 
4207   FI.setEffectiveCallingConvention(getRuntimeCC());
4208 }
4209 
4210 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4211                                      CodeGenFunction &CFG) const {
4212   llvm_unreachable("NVPTX does not support varargs");
4213 }
4214 
4215 void NVPTXTargetCodeGenInfo::
4216 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4217                     CodeGen::CodeGenModule &M) const{
4218   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4219   if (!FD) return;
4220 
4221   llvm::Function *F = cast<llvm::Function>(GV);
4222 
4223   // Perform special handling in OpenCL mode
4224   if (M.getLangOpts().OpenCL) {
4225     // Use OpenCL function attributes to check for kernel functions
4226     // By default, all functions are device functions
4227     if (FD->hasAttr<OpenCLKernelAttr>()) {
4228       // OpenCL __kernel functions get kernel metadata
4229       addKernelMetadata(F);
4230       // And kernel functions are not subject to inlining
4231       F->addFnAttr(llvm::Attribute::NoInline);
4232     }
4233   }
4234 
4235   // Perform special handling in CUDA mode.
4236   if (M.getLangOpts().CUDA) {
4237     // CUDA __global__ functions get a kernel metadata entry.  Since
4238     // __global__ functions cannot be called from the device, we do not
4239     // need to set the noinline attribute.
4240     if (FD->getAttr<CUDAGlobalAttr>())
4241       addKernelMetadata(F);
4242   }
4243 }
4244 
4245 void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4246   llvm::Module *M = F->getParent();
4247   llvm::LLVMContext &Ctx = M->getContext();
4248 
4249   // Get "nvvm.annotations" metadata node
4250   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4251 
4252   // Create !{<func-ref>, metadata !"kernel", i32 1} node
4253   llvm::SmallVector<llvm::Value *, 3> MDVals;
4254   MDVals.push_back(F);
4255   MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4256   MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4257 
4258   // Append metadata to nvvm.annotations
4259   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4260 }
4261 
4262 }
4263 
4264 //===----------------------------------------------------------------------===//
4265 // SystemZ ABI Implementation
4266 //===----------------------------------------------------------------------===//
4267 
4268 namespace {
4269 
4270 class SystemZABIInfo : public ABIInfo {
4271 public:
4272   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4273 
4274   bool isPromotableIntegerType(QualType Ty) const;
4275   bool isCompoundType(QualType Ty) const;
4276   bool isFPArgumentType(QualType Ty) const;
4277 
4278   ABIArgInfo classifyReturnType(QualType RetTy) const;
4279   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4280 
4281   virtual void computeInfo(CGFunctionInfo &FI) const {
4282     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4283     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4284          it != ie; ++it)
4285       it->info = classifyArgumentType(it->type);
4286   }
4287 
4288   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4289                                  CodeGenFunction &CGF) const;
4290 };
4291 
4292 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4293 public:
4294   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4295     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4296 };
4297 
4298 }
4299 
4300 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4301   // Treat an enum type as its underlying type.
4302   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4303     Ty = EnumTy->getDecl()->getIntegerType();
4304 
4305   // Promotable integer types are required to be promoted by the ABI.
4306   if (Ty->isPromotableIntegerType())
4307     return true;
4308 
4309   // 32-bit values must also be promoted.
4310   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4311     switch (BT->getKind()) {
4312     case BuiltinType::Int:
4313     case BuiltinType::UInt:
4314       return true;
4315     default:
4316       return false;
4317     }
4318   return false;
4319 }
4320 
4321 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4322   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4323 }
4324 
4325 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4326   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4327     switch (BT->getKind()) {
4328     case BuiltinType::Float:
4329     case BuiltinType::Double:
4330       return true;
4331     default:
4332       return false;
4333     }
4334 
4335   if (const RecordType *RT = Ty->getAsStructureType()) {
4336     const RecordDecl *RD = RT->getDecl();
4337     bool Found = false;
4338 
4339     // If this is a C++ record, check the bases first.
4340     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4341       for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4342              E = CXXRD->bases_end(); I != E; ++I) {
4343         QualType Base = I->getType();
4344 
4345         // Empty bases don't affect things either way.
4346         if (isEmptyRecord(getContext(), Base, true))
4347           continue;
4348 
4349         if (Found)
4350           return false;
4351         Found = isFPArgumentType(Base);
4352         if (!Found)
4353           return false;
4354       }
4355 
4356     // Check the fields.
4357     for (RecordDecl::field_iterator I = RD->field_begin(),
4358            E = RD->field_end(); I != E; ++I) {
4359       const FieldDecl *FD = *I;
4360 
4361       // Empty bitfields don't affect things either way.
4362       // Unlike isSingleElementStruct(), empty structure and array fields
4363       // do count.  So do anonymous bitfields that aren't zero-sized.
4364       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4365         return true;
4366 
4367       // Unlike isSingleElementStruct(), arrays do not count.
4368       // Nested isFPArgumentType structures still do though.
4369       if (Found)
4370         return false;
4371       Found = isFPArgumentType(FD->getType());
4372       if (!Found)
4373         return false;
4374     }
4375 
4376     // Unlike isSingleElementStruct(), trailing padding is allowed.
4377     // An 8-byte aligned struct s { float f; } is passed as a double.
4378     return Found;
4379   }
4380 
4381   return false;
4382 }
4383 
4384 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4385                                        CodeGenFunction &CGF) const {
4386   // Assume that va_list type is correct; should be pointer to LLVM type:
4387   // struct {
4388   //   i64 __gpr;
4389   //   i64 __fpr;
4390   //   i8 *__overflow_arg_area;
4391   //   i8 *__reg_save_area;
4392   // };
4393 
4394   // Every argument occupies 8 bytes and is passed by preference in either
4395   // GPRs or FPRs.
4396   Ty = CGF.getContext().getCanonicalType(Ty);
4397   ABIArgInfo AI = classifyArgumentType(Ty);
4398   bool InFPRs = isFPArgumentType(Ty);
4399 
4400   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4401   bool IsIndirect = AI.isIndirect();
4402   unsigned UnpaddedBitSize;
4403   if (IsIndirect) {
4404     APTy = llvm::PointerType::getUnqual(APTy);
4405     UnpaddedBitSize = 64;
4406   } else
4407     UnpaddedBitSize = getContext().getTypeSize(Ty);
4408   unsigned PaddedBitSize = 64;
4409   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4410 
4411   unsigned PaddedSize = PaddedBitSize / 8;
4412   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4413 
4414   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4415   if (InFPRs) {
4416     MaxRegs = 4; // Maximum of 4 FPR arguments
4417     RegCountField = 1; // __fpr
4418     RegSaveIndex = 16; // save offset for f0
4419     RegPadding = 0; // floats are passed in the high bits of an FPR
4420   } else {
4421     MaxRegs = 5; // Maximum of 5 GPR arguments
4422     RegCountField = 0; // __gpr
4423     RegSaveIndex = 2; // save offset for r2
4424     RegPadding = Padding; // values are passed in the low bits of a GPR
4425   }
4426 
4427   llvm::Value *RegCountPtr =
4428     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4429   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4430   llvm::Type *IndexTy = RegCount->getType();
4431   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4432   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4433 						  "fits_in_regs");
4434 
4435   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4436   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4437   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4438   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4439 
4440   // Emit code to load the value if it was passed in registers.
4441   CGF.EmitBlock(InRegBlock);
4442 
4443   // Work out the address of an argument register.
4444   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4445   llvm::Value *ScaledRegCount =
4446     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4447   llvm::Value *RegBase =
4448     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4449   llvm::Value *RegOffset =
4450     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4451   llvm::Value *RegSaveAreaPtr =
4452     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4453   llvm::Value *RegSaveArea =
4454     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4455   llvm::Value *RawRegAddr =
4456     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4457   llvm::Value *RegAddr =
4458     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4459 
4460   // Update the register count
4461   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4462   llvm::Value *NewRegCount =
4463     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4464   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4465   CGF.EmitBranch(ContBlock);
4466 
4467   // Emit code to load the value if it was passed in memory.
4468   CGF.EmitBlock(InMemBlock);
4469 
4470   // Work out the address of a stack argument.
4471   llvm::Value *OverflowArgAreaPtr =
4472     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4473   llvm::Value *OverflowArgArea =
4474     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4475   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4476   llvm::Value *RawMemAddr =
4477     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4478   llvm::Value *MemAddr =
4479     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4480 
4481   // Update overflow_arg_area_ptr pointer
4482   llvm::Value *NewOverflowArgArea =
4483     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4484   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4485   CGF.EmitBranch(ContBlock);
4486 
4487   // Return the appropriate result.
4488   CGF.EmitBlock(ContBlock);
4489   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4490   ResAddr->addIncoming(RegAddr, InRegBlock);
4491   ResAddr->addIncoming(MemAddr, InMemBlock);
4492 
4493   if (IsIndirect)
4494     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4495 
4496   return ResAddr;
4497 }
4498 
4499 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4500     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4501   assert(Triple.getArch() == llvm::Triple::x86);
4502 
4503   switch (Opts.getStructReturnConvention()) {
4504   case CodeGenOptions::SRCK_Default:
4505     break;
4506   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4507     return false;
4508   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4509     return true;
4510   }
4511 
4512   if (Triple.isOSDarwin())
4513     return true;
4514 
4515   switch (Triple.getOS()) {
4516   case llvm::Triple::Cygwin:
4517   case llvm::Triple::MinGW32:
4518   case llvm::Triple::AuroraUX:
4519   case llvm::Triple::DragonFly:
4520   case llvm::Triple::FreeBSD:
4521   case llvm::Triple::OpenBSD:
4522   case llvm::Triple::Bitrig:
4523   case llvm::Triple::Win32:
4524     return true;
4525   default:
4526     return false;
4527   }
4528 }
4529 
4530 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4531   if (RetTy->isVoidType())
4532     return ABIArgInfo::getIgnore();
4533   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4534     return ABIArgInfo::getIndirect(0);
4535   return (isPromotableIntegerType(RetTy) ?
4536           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4537 }
4538 
4539 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4540   // Handle the generic C++ ABI.
4541   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4542     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4543 
4544   // Integers and enums are extended to full register width.
4545   if (isPromotableIntegerType(Ty))
4546     return ABIArgInfo::getExtend();
4547 
4548   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4549   uint64_t Size = getContext().getTypeSize(Ty);
4550   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4551     return ABIArgInfo::getIndirect(0);
4552 
4553   // Handle small structures.
4554   if (const RecordType *RT = Ty->getAs<RecordType>()) {
4555     // Structures with flexible arrays have variable length, so really
4556     // fail the size test above.
4557     const RecordDecl *RD = RT->getDecl();
4558     if (RD->hasFlexibleArrayMember())
4559       return ABIArgInfo::getIndirect(0);
4560 
4561     // The structure is passed as an unextended integer, a float, or a double.
4562     llvm::Type *PassTy;
4563     if (isFPArgumentType(Ty)) {
4564       assert(Size == 32 || Size == 64);
4565       if (Size == 32)
4566         PassTy = llvm::Type::getFloatTy(getVMContext());
4567       else
4568         PassTy = llvm::Type::getDoubleTy(getVMContext());
4569     } else
4570       PassTy = llvm::IntegerType::get(getVMContext(), Size);
4571     return ABIArgInfo::getDirect(PassTy);
4572   }
4573 
4574   // Non-structure compounds are passed indirectly.
4575   if (isCompoundType(Ty))
4576     return ABIArgInfo::getIndirect(0);
4577 
4578   return ABIArgInfo::getDirect(0);
4579 }
4580 
4581 //===----------------------------------------------------------------------===//
4582 // MSP430 ABI Implementation
4583 //===----------------------------------------------------------------------===//
4584 
4585 namespace {
4586 
4587 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4588 public:
4589   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4590     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4591   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4592                            CodeGen::CodeGenModule &M) const;
4593 };
4594 
4595 }
4596 
4597 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4598                                                   llvm::GlobalValue *GV,
4599                                              CodeGen::CodeGenModule &M) const {
4600   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4601     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4602       // Handle 'interrupt' attribute:
4603       llvm::Function *F = cast<llvm::Function>(GV);
4604 
4605       // Step 1: Set ISR calling convention.
4606       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4607 
4608       // Step 2: Add attributes goodness.
4609       F->addFnAttr(llvm::Attribute::NoInline);
4610 
4611       // Step 3: Emit ISR vector alias.
4612       unsigned Num = attr->getNumber() / 2;
4613       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4614                             "__isr_" + Twine(Num),
4615                             GV, &M.getModule());
4616     }
4617   }
4618 }
4619 
4620 //===----------------------------------------------------------------------===//
4621 // MIPS ABI Implementation.  This works for both little-endian and
4622 // big-endian variants.
4623 //===----------------------------------------------------------------------===//
4624 
4625 namespace {
4626 class MipsABIInfo : public ABIInfo {
4627   bool IsO32;
4628   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4629   void CoerceToIntArgs(uint64_t TySize,
4630                        SmallVectorImpl<llvm::Type *> &ArgList) const;
4631   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4632   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4633   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4634 public:
4635   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4636     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4637     StackAlignInBytes(IsO32 ? 8 : 16) {}
4638 
4639   ABIArgInfo classifyReturnType(QualType RetTy) const;
4640   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4641   virtual void computeInfo(CGFunctionInfo &FI) const;
4642   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4643                                  CodeGenFunction &CGF) const;
4644 };
4645 
4646 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4647   unsigned SizeOfUnwindException;
4648 public:
4649   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4650     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4651       SizeOfUnwindException(IsO32 ? 24 : 32) {}
4652 
4653   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4654     return 29;
4655   }
4656 
4657   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4658                            CodeGen::CodeGenModule &CGM) const {
4659     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4660     if (!FD) return;
4661     llvm::Function *Fn = cast<llvm::Function>(GV);
4662     if (FD->hasAttr<Mips16Attr>()) {
4663       Fn->addFnAttr("mips16");
4664     }
4665     else if (FD->hasAttr<NoMips16Attr>()) {
4666       Fn->addFnAttr("nomips16");
4667     }
4668   }
4669 
4670   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4671                                llvm::Value *Address) const;
4672 
4673   unsigned getSizeOfUnwindException() const {
4674     return SizeOfUnwindException;
4675   }
4676 };
4677 }
4678 
4679 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4680                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
4681   llvm::IntegerType *IntTy =
4682     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4683 
4684   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4685   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4686     ArgList.push_back(IntTy);
4687 
4688   // If necessary, add one more integer type to ArgList.
4689   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4690 
4691   if (R)
4692     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4693 }
4694 
4695 // In N32/64, an aligned double precision floating point field is passed in
4696 // a register.
4697 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4698   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4699 
4700   if (IsO32) {
4701     CoerceToIntArgs(TySize, ArgList);
4702     return llvm::StructType::get(getVMContext(), ArgList);
4703   }
4704 
4705   if (Ty->isComplexType())
4706     return CGT.ConvertType(Ty);
4707 
4708   const RecordType *RT = Ty->getAs<RecordType>();
4709 
4710   // Unions/vectors are passed in integer registers.
4711   if (!RT || !RT->isStructureOrClassType()) {
4712     CoerceToIntArgs(TySize, ArgList);
4713     return llvm::StructType::get(getVMContext(), ArgList);
4714   }
4715 
4716   const RecordDecl *RD = RT->getDecl();
4717   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4718   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4719 
4720   uint64_t LastOffset = 0;
4721   unsigned idx = 0;
4722   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4723 
4724   // Iterate over fields in the struct/class and check if there are any aligned
4725   // double fields.
4726   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4727        i != e; ++i, ++idx) {
4728     const QualType Ty = i->getType();
4729     const BuiltinType *BT = Ty->getAs<BuiltinType>();
4730 
4731     if (!BT || BT->getKind() != BuiltinType::Double)
4732       continue;
4733 
4734     uint64_t Offset = Layout.getFieldOffset(idx);
4735     if (Offset % 64) // Ignore doubles that are not aligned.
4736       continue;
4737 
4738     // Add ((Offset - LastOffset) / 64) args of type i64.
4739     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4740       ArgList.push_back(I64);
4741 
4742     // Add double type.
4743     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4744     LastOffset = Offset + 64;
4745   }
4746 
4747   CoerceToIntArgs(TySize - LastOffset, IntArgList);
4748   ArgList.append(IntArgList.begin(), IntArgList.end());
4749 
4750   return llvm::StructType::get(getVMContext(), ArgList);
4751 }
4752 
4753 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
4754   assert((Offset % MinABIStackAlignInBytes) == 0);
4755 
4756   if ((Align - 1) & Offset)
4757     return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4758 
4759   return 0;
4760 }
4761 
4762 ABIArgInfo
4763 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4764   uint64_t OrigOffset = Offset;
4765   uint64_t TySize = getContext().getTypeSize(Ty);
4766   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4767 
4768   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4769                    (uint64_t)StackAlignInBytes);
4770   Offset = llvm::RoundUpToAlignment(Offset, Align);
4771   Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4772 
4773   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4774     // Ignore empty aggregates.
4775     if (TySize == 0)
4776       return ABIArgInfo::getIgnore();
4777 
4778     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4779       Offset = OrigOffset + MinABIStackAlignInBytes;
4780       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4781     }
4782 
4783     // If we have reached here, aggregates are passed directly by coercing to
4784     // another structure type. Padding is inserted if the offset of the
4785     // aggregate is unaligned.
4786     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4787                                  getPaddingType(Align, OrigOffset));
4788   }
4789 
4790   // Treat an enum type as its underlying type.
4791   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4792     Ty = EnumTy->getDecl()->getIntegerType();
4793 
4794   if (Ty->isPromotableIntegerType())
4795     return ABIArgInfo::getExtend();
4796 
4797   return ABIArgInfo::getDirect(0, 0,
4798                                IsO32 ? 0 : getPaddingType(Align, OrigOffset));
4799 }
4800 
4801 llvm::Type*
4802 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4803   const RecordType *RT = RetTy->getAs<RecordType>();
4804   SmallVector<llvm::Type*, 8> RTList;
4805 
4806   if (RT && RT->isStructureOrClassType()) {
4807     const RecordDecl *RD = RT->getDecl();
4808     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4809     unsigned FieldCnt = Layout.getFieldCount();
4810 
4811     // N32/64 returns struct/classes in floating point registers if the
4812     // following conditions are met:
4813     // 1. The size of the struct/class is no larger than 128-bit.
4814     // 2. The struct/class has one or two fields all of which are floating
4815     //    point types.
4816     // 3. The offset of the first field is zero (this follows what gcc does).
4817     //
4818     // Any other composite results are returned in integer registers.
4819     //
4820     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4821       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4822       for (; b != e; ++b) {
4823         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4824 
4825         if (!BT || !BT->isFloatingPoint())
4826           break;
4827 
4828         RTList.push_back(CGT.ConvertType(b->getType()));
4829       }
4830 
4831       if (b == e)
4832         return llvm::StructType::get(getVMContext(), RTList,
4833                                      RD->hasAttr<PackedAttr>());
4834 
4835       RTList.clear();
4836     }
4837   }
4838 
4839   CoerceToIntArgs(Size, RTList);
4840   return llvm::StructType::get(getVMContext(), RTList);
4841 }
4842 
4843 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4844   uint64_t Size = getContext().getTypeSize(RetTy);
4845 
4846   if (RetTy->isVoidType() || Size == 0)
4847     return ABIArgInfo::getIgnore();
4848 
4849   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4850     if (isRecordReturnIndirect(RetTy, getCXXABI()))
4851       return ABIArgInfo::getIndirect(0);
4852 
4853     if (Size <= 128) {
4854       if (RetTy->isAnyComplexType())
4855         return ABIArgInfo::getDirect();
4856 
4857       // O32 returns integer vectors in registers.
4858       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4859         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4860 
4861       if (!IsO32)
4862         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4863     }
4864 
4865     return ABIArgInfo::getIndirect(0);
4866   }
4867 
4868   // Treat an enum type as its underlying type.
4869   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4870     RetTy = EnumTy->getDecl()->getIntegerType();
4871 
4872   return (RetTy->isPromotableIntegerType() ?
4873           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4874 }
4875 
4876 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4877   ABIArgInfo &RetInfo = FI.getReturnInfo();
4878   RetInfo = classifyReturnType(FI.getReturnType());
4879 
4880   // Check if a pointer to an aggregate is passed as a hidden argument.
4881   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4882 
4883   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4884        it != ie; ++it)
4885     it->info = classifyArgumentType(it->type, Offset);
4886 }
4887 
4888 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4889                                     CodeGenFunction &CGF) const {
4890   llvm::Type *BP = CGF.Int8PtrTy;
4891   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4892 
4893   CGBuilderTy &Builder = CGF.Builder;
4894   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4895   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4896   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4897   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4898   llvm::Value *AddrTyped;
4899   unsigned PtrWidth = getTarget().getPointerWidth(0);
4900   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4901 
4902   if (TypeAlign > MinABIStackAlignInBytes) {
4903     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4904     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4905     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4906     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4907     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4908     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4909   }
4910   else
4911     AddrTyped = Builder.CreateBitCast(Addr, PTy);
4912 
4913   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4914   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4915   uint64_t Offset =
4916     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4917   llvm::Value *NextAddr =
4918     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4919                       "ap.next");
4920   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4921 
4922   return AddrTyped;
4923 }
4924 
4925 bool
4926 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4927                                                llvm::Value *Address) const {
4928   // This information comes from gcc's implementation, which seems to
4929   // as canonical as it gets.
4930 
4931   // Everything on MIPS is 4 bytes.  Double-precision FP registers
4932   // are aliased to pairs of single-precision FP registers.
4933   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4934 
4935   // 0-31 are the general purpose registers, $0 - $31.
4936   // 32-63 are the floating-point registers, $f0 - $f31.
4937   // 64 and 65 are the multiply/divide registers, $hi and $lo.
4938   // 66 is the (notional, I think) register for signal-handler return.
4939   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4940 
4941   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4942   // They are one bit wide and ignored here.
4943 
4944   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4945   // (coprocessor 1 is the FP unit)
4946   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4947   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4948   // 176-181 are the DSP accumulator registers.
4949   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4950   return false;
4951 }
4952 
4953 //===----------------------------------------------------------------------===//
4954 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4955 // Currently subclassed only to implement custom OpenCL C function attribute
4956 // handling.
4957 //===----------------------------------------------------------------------===//
4958 
4959 namespace {
4960 
4961 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4962 public:
4963   TCETargetCodeGenInfo(CodeGenTypes &CGT)
4964     : DefaultTargetCodeGenInfo(CGT) {}
4965 
4966   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4967                                    CodeGen::CodeGenModule &M) const;
4968 };
4969 
4970 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4971                                                llvm::GlobalValue *GV,
4972                                                CodeGen::CodeGenModule &M) const {
4973   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4974   if (!FD) return;
4975 
4976   llvm::Function *F = cast<llvm::Function>(GV);
4977 
4978   if (M.getLangOpts().OpenCL) {
4979     if (FD->hasAttr<OpenCLKernelAttr>()) {
4980       // OpenCL C Kernel functions are not subject to inlining
4981       F->addFnAttr(llvm::Attribute::NoInline);
4982 
4983       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
4984 
4985         // Convert the reqd_work_group_size() attributes to metadata.
4986         llvm::LLVMContext &Context = F->getContext();
4987         llvm::NamedMDNode *OpenCLMetadata =
4988             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
4989 
4990         SmallVector<llvm::Value*, 5> Operands;
4991         Operands.push_back(F);
4992 
4993         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4994                              llvm::APInt(32,
4995                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
4996         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4997                              llvm::APInt(32,
4998                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
4999         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5000                              llvm::APInt(32,
5001                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
5002 
5003         // Add a boolean constant operand for "required" (true) or "hint" (false)
5004         // for implementing the work_group_size_hint attr later. Currently
5005         // always true as the hint is not yet implemented.
5006         Operands.push_back(llvm::ConstantInt::getTrue(Context));
5007         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5008       }
5009     }
5010   }
5011 }
5012 
5013 }
5014 
5015 //===----------------------------------------------------------------------===//
5016 // Hexagon ABI Implementation
5017 //===----------------------------------------------------------------------===//
5018 
5019 namespace {
5020 
5021 class HexagonABIInfo : public ABIInfo {
5022 
5023 
5024 public:
5025   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5026 
5027 private:
5028 
5029   ABIArgInfo classifyReturnType(QualType RetTy) const;
5030   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5031 
5032   virtual void computeInfo(CGFunctionInfo &FI) const;
5033 
5034   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5035                                  CodeGenFunction &CGF) const;
5036 };
5037 
5038 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5039 public:
5040   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5041     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5042 
5043   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5044     return 29;
5045   }
5046 };
5047 
5048 }
5049 
5050 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5051   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5052   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5053        it != ie; ++it)
5054     it->info = classifyArgumentType(it->type);
5055 }
5056 
5057 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5058   if (!isAggregateTypeForABI(Ty)) {
5059     // Treat an enum type as its underlying type.
5060     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5061       Ty = EnumTy->getDecl()->getIntegerType();
5062 
5063     return (Ty->isPromotableIntegerType() ?
5064             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5065   }
5066 
5067   // Ignore empty records.
5068   if (isEmptyRecord(getContext(), Ty, true))
5069     return ABIArgInfo::getIgnore();
5070 
5071   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5072     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5073 
5074   uint64_t Size = getContext().getTypeSize(Ty);
5075   if (Size > 64)
5076     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5077     // Pass in the smallest viable integer type.
5078   else if (Size > 32)
5079       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5080   else if (Size > 16)
5081       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5082   else if (Size > 8)
5083       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5084   else
5085       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5086 }
5087 
5088 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5089   if (RetTy->isVoidType())
5090     return ABIArgInfo::getIgnore();
5091 
5092   // Large vector types should be returned via memory.
5093   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5094     return ABIArgInfo::getIndirect(0);
5095 
5096   if (!isAggregateTypeForABI(RetTy)) {
5097     // Treat an enum type as its underlying type.
5098     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5099       RetTy = EnumTy->getDecl()->getIntegerType();
5100 
5101     return (RetTy->isPromotableIntegerType() ?
5102             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5103   }
5104 
5105   // Structures with either a non-trivial destructor or a non-trivial
5106   // copy constructor are always indirect.
5107   if (isRecordReturnIndirect(RetTy, getCXXABI()))
5108     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5109 
5110   if (isEmptyRecord(getContext(), RetTy, true))
5111     return ABIArgInfo::getIgnore();
5112 
5113   // Aggregates <= 8 bytes are returned in r0; other aggregates
5114   // are returned indirectly.
5115   uint64_t Size = getContext().getTypeSize(RetTy);
5116   if (Size <= 64) {
5117     // Return in the smallest viable integer type.
5118     if (Size <= 8)
5119       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5120     if (Size <= 16)
5121       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5122     if (Size <= 32)
5123       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5124     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5125   }
5126 
5127   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5128 }
5129 
5130 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5131                                        CodeGenFunction &CGF) const {
5132   // FIXME: Need to handle alignment
5133   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5134 
5135   CGBuilderTy &Builder = CGF.Builder;
5136   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5137                                                        "ap");
5138   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5139   llvm::Type *PTy =
5140     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5141   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5142 
5143   uint64_t Offset =
5144     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5145   llvm::Value *NextAddr =
5146     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5147                       "ap.next");
5148   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5149 
5150   return AddrTyped;
5151 }
5152 
5153 
5154 //===----------------------------------------------------------------------===//
5155 // SPARC v9 ABI Implementation.
5156 // Based on the SPARC Compliance Definition version 2.4.1.
5157 //
5158 // Function arguments a mapped to a nominal "parameter array" and promoted to
5159 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5160 // the array, structs larger than 16 bytes are passed indirectly.
5161 //
5162 // One case requires special care:
5163 //
5164 //   struct mixed {
5165 //     int i;
5166 //     float f;
5167 //   };
5168 //
5169 // When a struct mixed is passed by value, it only occupies 8 bytes in the
5170 // parameter array, but the int is passed in an integer register, and the float
5171 // is passed in a floating point register. This is represented as two arguments
5172 // with the LLVM IR inreg attribute:
5173 //
5174 //   declare void f(i32 inreg %i, float inreg %f)
5175 //
5176 // The code generator will only allocate 4 bytes from the parameter array for
5177 // the inreg arguments. All other arguments are allocated a multiple of 8
5178 // bytes.
5179 //
5180 namespace {
5181 class SparcV9ABIInfo : public ABIInfo {
5182 public:
5183   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5184 
5185 private:
5186   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5187   virtual void computeInfo(CGFunctionInfo &FI) const;
5188   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5189                                  CodeGenFunction &CGF) const;
5190 
5191   // Coercion type builder for structs passed in registers. The coercion type
5192   // serves two purposes:
5193   //
5194   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5195   //    in registers.
5196   // 2. Expose aligned floating point elements as first-level elements, so the
5197   //    code generator knows to pass them in floating point registers.
5198   //
5199   // We also compute the InReg flag which indicates that the struct contains
5200   // aligned 32-bit floats.
5201   //
5202   struct CoerceBuilder {
5203     llvm::LLVMContext &Context;
5204     const llvm::DataLayout &DL;
5205     SmallVector<llvm::Type*, 8> Elems;
5206     uint64_t Size;
5207     bool InReg;
5208 
5209     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5210       : Context(c), DL(dl), Size(0), InReg(false) {}
5211 
5212     // Pad Elems with integers until Size is ToSize.
5213     void pad(uint64_t ToSize) {
5214       assert(ToSize >= Size && "Cannot remove elements");
5215       if (ToSize == Size)
5216         return;
5217 
5218       // Finish the current 64-bit word.
5219       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5220       if (Aligned > Size && Aligned <= ToSize) {
5221         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5222         Size = Aligned;
5223       }
5224 
5225       // Add whole 64-bit words.
5226       while (Size + 64 <= ToSize) {
5227         Elems.push_back(llvm::Type::getInt64Ty(Context));
5228         Size += 64;
5229       }
5230 
5231       // Final in-word padding.
5232       if (Size < ToSize) {
5233         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5234         Size = ToSize;
5235       }
5236     }
5237 
5238     // Add a floating point element at Offset.
5239     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5240       // Unaligned floats are treated as integers.
5241       if (Offset % Bits)
5242         return;
5243       // The InReg flag is only required if there are any floats < 64 bits.
5244       if (Bits < 64)
5245         InReg = true;
5246       pad(Offset);
5247       Elems.push_back(Ty);
5248       Size = Offset + Bits;
5249     }
5250 
5251     // Add a struct type to the coercion type, starting at Offset (in bits).
5252     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5253       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5254       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5255         llvm::Type *ElemTy = StrTy->getElementType(i);
5256         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5257         switch (ElemTy->getTypeID()) {
5258         case llvm::Type::StructTyID:
5259           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5260           break;
5261         case llvm::Type::FloatTyID:
5262           addFloat(ElemOffset, ElemTy, 32);
5263           break;
5264         case llvm::Type::DoubleTyID:
5265           addFloat(ElemOffset, ElemTy, 64);
5266           break;
5267         case llvm::Type::FP128TyID:
5268           addFloat(ElemOffset, ElemTy, 128);
5269           break;
5270         case llvm::Type::PointerTyID:
5271           if (ElemOffset % 64 == 0) {
5272             pad(ElemOffset);
5273             Elems.push_back(ElemTy);
5274             Size += 64;
5275           }
5276           break;
5277         default:
5278           break;
5279         }
5280       }
5281     }
5282 
5283     // Check if Ty is a usable substitute for the coercion type.
5284     bool isUsableType(llvm::StructType *Ty) const {
5285       if (Ty->getNumElements() != Elems.size())
5286         return false;
5287       for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5288         if (Elems[i] != Ty->getElementType(i))
5289           return false;
5290       return true;
5291     }
5292 
5293     // Get the coercion type as a literal struct type.
5294     llvm::Type *getType() const {
5295       if (Elems.size() == 1)
5296         return Elems.front();
5297       else
5298         return llvm::StructType::get(Context, Elems);
5299     }
5300   };
5301 };
5302 } // end anonymous namespace
5303 
5304 ABIArgInfo
5305 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5306   if (Ty->isVoidType())
5307     return ABIArgInfo::getIgnore();
5308 
5309   uint64_t Size = getContext().getTypeSize(Ty);
5310 
5311   // Anything too big to fit in registers is passed with an explicit indirect
5312   // pointer / sret pointer.
5313   if (Size > SizeLimit)
5314     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5315 
5316   // Treat an enum type as its underlying type.
5317   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5318     Ty = EnumTy->getDecl()->getIntegerType();
5319 
5320   // Integer types smaller than a register are extended.
5321   if (Size < 64 && Ty->isIntegerType())
5322     return ABIArgInfo::getExtend();
5323 
5324   // Other non-aggregates go in registers.
5325   if (!isAggregateTypeForABI(Ty))
5326     return ABIArgInfo::getDirect();
5327 
5328   // This is a small aggregate type that should be passed in registers.
5329   // Build a coercion type from the LLVM struct type.
5330   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5331   if (!StrTy)
5332     return ABIArgInfo::getDirect();
5333 
5334   CoerceBuilder CB(getVMContext(), getDataLayout());
5335   CB.addStruct(0, StrTy);
5336   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5337 
5338   // Try to use the original type for coercion.
5339   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5340 
5341   if (CB.InReg)
5342     return ABIArgInfo::getDirectInReg(CoerceTy);
5343   else
5344     return ABIArgInfo::getDirect(CoerceTy);
5345 }
5346 
5347 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5348                                        CodeGenFunction &CGF) const {
5349   ABIArgInfo AI = classifyType(Ty, 16 * 8);
5350   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5351   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5352     AI.setCoerceToType(ArgTy);
5353 
5354   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5355   CGBuilderTy &Builder = CGF.Builder;
5356   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5357   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5358   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5359   llvm::Value *ArgAddr;
5360   unsigned Stride;
5361 
5362   switch (AI.getKind()) {
5363   case ABIArgInfo::Expand:
5364     llvm_unreachable("Unsupported ABI kind for va_arg");
5365 
5366   case ABIArgInfo::Extend:
5367     Stride = 8;
5368     ArgAddr = Builder
5369       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5370                           "extend");
5371     break;
5372 
5373   case ABIArgInfo::Direct:
5374     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5375     ArgAddr = Addr;
5376     break;
5377 
5378   case ABIArgInfo::Indirect:
5379     Stride = 8;
5380     ArgAddr = Builder.CreateBitCast(Addr,
5381                                     llvm::PointerType::getUnqual(ArgPtrTy),
5382                                     "indirect");
5383     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5384     break;
5385 
5386   case ABIArgInfo::Ignore:
5387     return llvm::UndefValue::get(ArgPtrTy);
5388   }
5389 
5390   // Update VAList.
5391   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5392   Builder.CreateStore(Addr, VAListAddrAsBPP);
5393 
5394   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5395 }
5396 
5397 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5398   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5399   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5400        it != ie; ++it)
5401     it->info = classifyType(it->type, 16 * 8);
5402 }
5403 
5404 namespace {
5405 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5406 public:
5407   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5408     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5409 };
5410 } // end anonymous namespace
5411 
5412 
5413 //===----------------------------------------------------------------------===//
5414 // Xcore ABI Implementation
5415 //===----------------------------------------------------------------------===//
5416 namespace {
5417 class XCoreABIInfo : public DefaultABIInfo {
5418 public:
5419   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5420   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5421                                  CodeGenFunction &CGF) const;
5422 };
5423 
5424 class XcoreTargetCodeGenInfo : public TargetCodeGenInfo {
5425 public:
5426   XcoreTargetCodeGenInfo(CodeGenTypes &CGT)
5427     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5428 };
5429 } // end anonymous namespace
5430 
5431 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5432                                      CodeGenFunction &CGF) const {
5433   ABIArgInfo AI = classifyArgumentType(Ty);
5434   CGBuilderTy &Builder = CGF.Builder;
5435   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5436   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5437     AI.setCoerceToType(ArgTy);
5438 
5439   // handle the VAList
5440   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5441                                                        CGF.Int8PtrPtrTy);
5442   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5443   llvm::Value *APN = Builder.CreateConstGEP1_32(AP, 4);
5444   Builder.CreateStore(APN, VAListAddrAsBPP);
5445 
5446   // handle the argument
5447   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5448   switch (AI.getKind()) {
5449   case ABIArgInfo::Expand:
5450     llvm_unreachable("Unsupported ABI kind for va_arg");
5451   case ABIArgInfo::Ignore:
5452     return llvm::UndefValue::get(ArgPtrTy);
5453   case ABIArgInfo::Extend:
5454   case ABIArgInfo::Direct:
5455     return Builder.CreatePointerCast(AP, ArgPtrTy);
5456   case ABIArgInfo::Indirect:
5457     llvm::Value *ArgAddr;
5458     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5459     ArgAddr = Builder.CreateLoad(ArgAddr);
5460     return Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5461   }
5462   llvm_unreachable("Unknown ABI kind");
5463 }
5464 
5465 //===----------------------------------------------------------------------===//
5466 // Driver code
5467 //===----------------------------------------------------------------------===//
5468 
5469 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5470   if (TheTargetCodeGenInfo)
5471     return *TheTargetCodeGenInfo;
5472 
5473   const llvm::Triple &Triple = getTarget().getTriple();
5474   switch (Triple.getArch()) {
5475   default:
5476     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5477 
5478   case llvm::Triple::le32:
5479     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5480   case llvm::Triple::mips:
5481   case llvm::Triple::mipsel:
5482     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5483 
5484   case llvm::Triple::mips64:
5485   case llvm::Triple::mips64el:
5486     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5487 
5488   case llvm::Triple::aarch64:
5489     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5490 
5491   case llvm::Triple::arm:
5492   case llvm::Triple::thumb:
5493     {
5494       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5495       if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5496         Kind = ARMABIInfo::APCS;
5497       else if (CodeGenOpts.FloatABI == "hard" ||
5498                (CodeGenOpts.FloatABI != "soft" &&
5499                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5500         Kind = ARMABIInfo::AAPCS_VFP;
5501 
5502       switch (Triple.getOS()) {
5503         case llvm::Triple::NaCl:
5504           return *(TheTargetCodeGenInfo =
5505                    new NaClARMTargetCodeGenInfo(Types, Kind));
5506         default:
5507           return *(TheTargetCodeGenInfo =
5508                    new ARMTargetCodeGenInfo(Types, Kind));
5509       }
5510     }
5511 
5512   case llvm::Triple::ppc:
5513     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5514   case llvm::Triple::ppc64:
5515     if (Triple.isOSBinFormatELF())
5516       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5517     else
5518       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5519   case llvm::Triple::ppc64le:
5520     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5521     return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5522 
5523   case llvm::Triple::nvptx:
5524   case llvm::Triple::nvptx64:
5525     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5526 
5527   case llvm::Triple::msp430:
5528     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5529 
5530   case llvm::Triple::systemz:
5531     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5532 
5533   case llvm::Triple::tce:
5534     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5535 
5536   case llvm::Triple::x86: {
5537     bool IsDarwinVectorABI = Triple.isOSDarwin();
5538     bool IsSmallStructInRegABI =
5539         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5540     bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5541 
5542     if (Triple.getOS() == llvm::Triple::Win32) {
5543       return *(TheTargetCodeGenInfo =
5544                new WinX86_32TargetCodeGenInfo(Types,
5545                                               IsDarwinVectorABI, IsSmallStructInRegABI,
5546                                               IsWin32FloatStructABI,
5547                                               CodeGenOpts.NumRegisterParameters));
5548     } else {
5549       return *(TheTargetCodeGenInfo =
5550                new X86_32TargetCodeGenInfo(Types,
5551                                            IsDarwinVectorABI, IsSmallStructInRegABI,
5552                                            IsWin32FloatStructABI,
5553                                            CodeGenOpts.NumRegisterParameters));
5554     }
5555   }
5556 
5557   case llvm::Triple::x86_64: {
5558     bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5559 
5560     switch (Triple.getOS()) {
5561     case llvm::Triple::Win32:
5562     case llvm::Triple::MinGW32:
5563     case llvm::Triple::Cygwin:
5564       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5565     case llvm::Triple::NaCl:
5566       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5567                                                                       HasAVX));
5568     default:
5569       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5570                                                                   HasAVX));
5571     }
5572   }
5573   case llvm::Triple::hexagon:
5574     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5575   case llvm::Triple::sparcv9:
5576     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5577   case llvm::Triple::xcore:
5578     return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types));
5579 
5580   }
5581 }
5582