1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address emitMergePHI(CodeGenFunction &CGF, 396 Address Addr1, llvm::BasicBlock *Block1, 397 Address Addr2, llvm::BasicBlock *Block2, 398 const llvm::Twine &Name = "") { 399 assert(Addr1.getType() == Addr2.getType()); 400 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 401 PHI->addIncoming(Addr1.getPointer(), Block1); 402 PHI->addIncoming(Addr2.getPointer(), Block2); 403 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 404 return Address(PHI, Align); 405 } 406 407 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 408 409 // If someone can figure out a general rule for this, that would be great. 410 // It's probably just doomed to be platform-dependent, though. 411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 412 // Verified for: 413 // x86-64 FreeBSD, Linux, Darwin 414 // x86-32 FreeBSD, Linux, Darwin 415 // PowerPC Linux, Darwin 416 // ARM Darwin (*not* EABI) 417 // AArch64 Linux 418 return 32; 419 } 420 421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 422 const FunctionNoProtoType *fnType) const { 423 // The following conventions are known to require this to be false: 424 // x86_stdcall 425 // MIPS 426 // For everything else, we just prefer false unless we opt out. 427 return false; 428 } 429 430 void 431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 432 llvm::SmallString<24> &Opt) const { 433 // This assumes the user is passing a library name like "rt" instead of a 434 // filename like "librt.a/so", and that they don't care whether it's static or 435 // dynamic. 436 Opt = "-l"; 437 Opt += Lib; 438 } 439 440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 441 // OpenCL kernels are called via an explicit runtime API with arguments 442 // set with clSetKernelArg(), not as normal sub-functions. 443 // Return SPIR_KERNEL by default as the kernel calling convention to 444 // ensure the fingerprint is fixed such way that each OpenCL argument 445 // gets one matching argument in the produced kernel function argument 446 // list to enable feasible implementation of clSetKernelArg() with 447 // aggregates etc. In case we would use the default C calling conv here, 448 // clSetKernelArg() might break depending on the target-specific 449 // conventions; different targets might split structs passed as values 450 // to multiple function arguments etc. 451 return llvm::CallingConv::SPIR_KERNEL; 452 } 453 454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 455 llvm::PointerType *T, QualType QT) const { 456 return llvm::ConstantPointerNull::get(T); 457 } 458 459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 460 const VarDecl *D) const { 461 assert(!CGM.getLangOpts().OpenCL && 462 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 463 "Address space agnostic languages only"); 464 return D ? D->getType().getAddressSpace() : LangAS::Default; 465 } 466 467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 468 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 469 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 470 // Since target may map different address spaces in AST to the same address 471 // space, an address space conversion may end up as a bitcast. 472 if (auto *C = dyn_cast<llvm::Constant>(Src)) 473 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 474 // Try to preserve the source's name to make IR more readable. 475 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 476 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 477 } 478 479 llvm::Constant * 480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 481 LangAS SrcAddr, LangAS DestAddr, 482 llvm::Type *DestTy) const { 483 // Since target may map different address spaces in AST to the same address 484 // space, an address space conversion may end up as a bitcast. 485 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 486 } 487 488 llvm::SyncScope::ID 489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 490 SyncScope Scope, 491 llvm::AtomicOrdering Ordering, 492 llvm::LLVMContext &Ctx) const { 493 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 494 } 495 496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 497 498 /// isEmptyField - Return true iff a the field is "empty", that is it 499 /// is an unnamed bit-field or an (array of) empty record(s). 500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 501 bool AllowArrays) { 502 if (FD->isUnnamedBitfield()) 503 return true; 504 505 QualType FT = FD->getType(); 506 507 // Constant arrays of empty records count as empty, strip them off. 508 // Constant arrays of zero length always count as empty. 509 bool WasArray = false; 510 if (AllowArrays) 511 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 512 if (AT->getSize() == 0) 513 return true; 514 FT = AT->getElementType(); 515 // The [[no_unique_address]] special case below does not apply to 516 // arrays of C++ empty records, so we need to remember this fact. 517 WasArray = true; 518 } 519 520 const RecordType *RT = FT->getAs<RecordType>(); 521 if (!RT) 522 return false; 523 524 // C++ record fields are never empty, at least in the Itanium ABI. 525 // 526 // FIXME: We should use a predicate for whether this behavior is true in the 527 // current ABI. 528 // 529 // The exception to the above rule are fields marked with the 530 // [[no_unique_address]] attribute (since C++20). Those do count as empty 531 // according to the Itanium ABI. The exception applies only to records, 532 // not arrays of records, so we must also check whether we stripped off an 533 // array type above. 534 if (isa<CXXRecordDecl>(RT->getDecl()) && 535 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 536 return false; 537 538 return isEmptyRecord(Context, FT, AllowArrays); 539 } 540 541 /// isEmptyRecord - Return true iff a structure contains only empty 542 /// fields. Note that a structure with a flexible array member is not 543 /// considered empty. 544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 545 const RecordType *RT = T->getAs<RecordType>(); 546 if (!RT) 547 return false; 548 const RecordDecl *RD = RT->getDecl(); 549 if (RD->hasFlexibleArrayMember()) 550 return false; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 554 for (const auto &I : CXXRD->bases()) 555 if (!isEmptyRecord(Context, I.getType(), true)) 556 return false; 557 558 for (const auto *I : RD->fields()) 559 if (!isEmptyField(Context, I, AllowArrays)) 560 return false; 561 return true; 562 } 563 564 /// isSingleElementStruct - Determine if a structure is a "single 565 /// element struct", i.e. it has exactly one non-empty field or 566 /// exactly one field which is itself a single element 567 /// struct. Structures with flexible array members are never 568 /// considered single element structs. 569 /// 570 /// \return The field declaration for the single non-empty field, if 571 /// it exists. 572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 573 const RecordType *RT = T->getAs<RecordType>(); 574 if (!RT) 575 return nullptr; 576 577 const RecordDecl *RD = RT->getDecl(); 578 if (RD->hasFlexibleArrayMember()) 579 return nullptr; 580 581 const Type *Found = nullptr; 582 583 // If this is a C++ record, check the bases first. 584 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 585 for (const auto &I : CXXRD->bases()) { 586 // Ignore empty records. 587 if (isEmptyRecord(Context, I.getType(), true)) 588 continue; 589 590 // If we already found an element then this isn't a single-element struct. 591 if (Found) 592 return nullptr; 593 594 // If this is non-empty and not a single element struct, the composite 595 // cannot be a single element struct. 596 Found = isSingleElementStruct(I.getType(), Context); 597 if (!Found) 598 return nullptr; 599 } 600 } 601 602 // Check for single element. 603 for (const auto *FD : RD->fields()) { 604 QualType FT = FD->getType(); 605 606 // Ignore empty fields. 607 if (isEmptyField(Context, FD, true)) 608 continue; 609 610 // If we already found an element then this isn't a single-element 611 // struct. 612 if (Found) 613 return nullptr; 614 615 // Treat single element arrays as the element. 616 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 617 if (AT->getSize().getZExtValue() != 1) 618 break; 619 FT = AT->getElementType(); 620 } 621 622 if (!isAggregateTypeForABI(FT)) { 623 Found = FT.getTypePtr(); 624 } else { 625 Found = isSingleElementStruct(FT, Context); 626 if (!Found) 627 return nullptr; 628 } 629 } 630 631 // We don't consider a struct a single-element struct if it has 632 // padding beyond the element type. 633 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 634 return nullptr; 635 636 return Found; 637 } 638 639 namespace { 640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 641 const ABIArgInfo &AI) { 642 // This default implementation defers to the llvm backend's va_arg 643 // instruction. It can handle only passing arguments directly 644 // (typically only handled in the backend for primitive types), or 645 // aggregates passed indirectly by pointer (NOTE: if the "byval" 646 // flag has ABI impact in the callee, this implementation cannot 647 // work.) 648 649 // Only a few cases are covered here at the moment -- those needed 650 // by the default abi. 651 llvm::Value *Val; 652 653 if (AI.isIndirect()) { 654 assert(!AI.getPaddingType() && 655 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 656 assert( 657 !AI.getIndirectRealign() && 658 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 659 660 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 661 CharUnits TyAlignForABI = TyInfo.Align; 662 663 llvm::Type *BaseTy = 664 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 665 llvm::Value *Addr = 666 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 667 return Address(Addr, TyAlignForABI); 668 } else { 669 assert((AI.isDirect() || AI.isExtend()) && 670 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 671 672 assert(!AI.getInReg() && 673 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getPaddingType() && 675 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getDirectOffset() && 677 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 678 assert(!AI.getCoerceToType() && 679 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 680 681 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 682 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 683 CGF.Builder.CreateStore(Val, Temp); 684 return Temp; 685 } 686 } 687 688 /// DefaultABIInfo - The default implementation for ABI specific 689 /// details. This implementation provides information which results in 690 /// self-consistent and sensible LLVM IR generation, but does not 691 /// conform to any particular ABI. 692 class DefaultABIInfo : public ABIInfo { 693 public: 694 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 695 696 ABIArgInfo classifyReturnType(QualType RetTy) const; 697 ABIArgInfo classifyArgumentType(QualType RetTy) const; 698 699 void computeInfo(CGFunctionInfo &FI) const override { 700 if (!getCXXABI().classifyReturnType(FI)) 701 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 702 for (auto &I : FI.arguments()) 703 I.info = classifyArgumentType(I.type); 704 } 705 706 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 707 QualType Ty) const override { 708 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 709 } 710 }; 711 712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 713 public: 714 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 715 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 716 }; 717 718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 719 Ty = useFirstFieldIfTransparentUnion(Ty); 720 721 if (isAggregateTypeForABI(Ty)) { 722 // Records with non-trivial destructors/copy-constructors should not be 723 // passed by value. 724 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 725 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 726 727 return getNaturalAlignIndirect(Ty); 728 } 729 730 // Treat an enum type as its underlying type. 731 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 732 Ty = EnumTy->getDecl()->getIntegerType(); 733 734 ASTContext &Context = getContext(); 735 if (const auto *EIT = Ty->getAs<ExtIntType>()) 736 if (EIT->getNumBits() > 737 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 738 ? Context.Int128Ty 739 : Context.LongLongTy)) 740 return getNaturalAlignIndirect(Ty); 741 742 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 743 : ABIArgInfo::getDirect()); 744 } 745 746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 747 if (RetTy->isVoidType()) 748 return ABIArgInfo::getIgnore(); 749 750 if (isAggregateTypeForABI(RetTy)) 751 return getNaturalAlignIndirect(RetTy); 752 753 // Treat an enum type as its underlying type. 754 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 755 RetTy = EnumTy->getDecl()->getIntegerType(); 756 757 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 758 if (EIT->getNumBits() > 759 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 760 ? getContext().Int128Ty 761 : getContext().LongLongTy)) 762 return getNaturalAlignIndirect(RetTy); 763 764 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 765 : ABIArgInfo::getDirect()); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // WebAssembly ABI Implementation 770 // 771 // This is a very simple ABI that relies a lot on DefaultABIInfo. 772 //===----------------------------------------------------------------------===// 773 774 class WebAssemblyABIInfo final : public SwiftABIInfo { 775 public: 776 enum ABIKind { 777 MVP = 0, 778 ExperimentalMV = 1, 779 }; 780 781 private: 782 DefaultABIInfo defaultInfo; 783 ABIKind Kind; 784 785 public: 786 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 787 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 788 789 private: 790 ABIArgInfo classifyReturnType(QualType RetTy) const; 791 ABIArgInfo classifyArgumentType(QualType Ty) const; 792 793 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 794 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 795 // overload them. 796 void computeInfo(CGFunctionInfo &FI) const override { 797 if (!getCXXABI().classifyReturnType(FI)) 798 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 799 for (auto &Arg : FI.arguments()) 800 Arg.info = classifyArgumentType(Arg.type); 801 } 802 803 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 804 QualType Ty) const override; 805 806 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 807 bool asReturnValue) const override { 808 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 809 } 810 811 bool isSwiftErrorInRegister() const override { 812 return false; 813 } 814 }; 815 816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 817 public: 818 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 819 WebAssemblyABIInfo::ABIKind K) 820 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 821 822 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 823 CodeGen::CodeGenModule &CGM) const override { 824 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 825 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 826 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 827 llvm::Function *Fn = cast<llvm::Function>(GV); 828 llvm::AttrBuilder B; 829 B.addAttribute("wasm-import-module", Attr->getImportModule()); 830 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 831 } 832 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 833 llvm::Function *Fn = cast<llvm::Function>(GV); 834 llvm::AttrBuilder B; 835 B.addAttribute("wasm-import-name", Attr->getImportName()); 836 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 837 } 838 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 839 llvm::Function *Fn = cast<llvm::Function>(GV); 840 llvm::AttrBuilder B; 841 B.addAttribute("wasm-export-name", Attr->getExportName()); 842 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 843 } 844 } 845 846 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 847 llvm::Function *Fn = cast<llvm::Function>(GV); 848 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 849 Fn->addFnAttr("no-prototype"); 850 } 851 } 852 }; 853 854 /// Classify argument of given type \p Ty. 855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 856 Ty = useFirstFieldIfTransparentUnion(Ty); 857 858 if (isAggregateTypeForABI(Ty)) { 859 // Records with non-trivial destructors/copy-constructors should not be 860 // passed by value. 861 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 862 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 863 // Ignore empty structs/unions. 864 if (isEmptyRecord(getContext(), Ty, true)) 865 return ABIArgInfo::getIgnore(); 866 // Lower single-element structs to just pass a regular value. TODO: We 867 // could do reasonable-size multiple-element structs too, using getExpand(), 868 // though watch out for things like bitfields. 869 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 870 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 871 // For the experimental multivalue ABI, fully expand all other aggregates 872 if (Kind == ABIKind::ExperimentalMV) { 873 const RecordType *RT = Ty->getAs<RecordType>(); 874 assert(RT); 875 bool HasBitField = false; 876 for (auto *Field : RT->getDecl()->fields()) { 877 if (Field->isBitField()) { 878 HasBitField = true; 879 break; 880 } 881 } 882 if (!HasBitField) 883 return ABIArgInfo::getExpand(); 884 } 885 } 886 887 // Otherwise just do the default thing. 888 return defaultInfo.classifyArgumentType(Ty); 889 } 890 891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 892 if (isAggregateTypeForABI(RetTy)) { 893 // Records with non-trivial destructors/copy-constructors should not be 894 // returned by value. 895 if (!getRecordArgABI(RetTy, getCXXABI())) { 896 // Ignore empty structs/unions. 897 if (isEmptyRecord(getContext(), RetTy, true)) 898 return ABIArgInfo::getIgnore(); 899 // Lower single-element structs to just return a regular value. TODO: We 900 // could do reasonable-size multiple-element structs too, using 901 // ABIArgInfo::getDirect(). 902 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 903 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 904 // For the experimental multivalue ABI, return all other aggregates 905 if (Kind == ABIKind::ExperimentalMV) 906 return ABIArgInfo::getDirect(); 907 } 908 } 909 910 // Otherwise just do the default thing. 911 return defaultInfo.classifyReturnType(RetTy); 912 } 913 914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 915 QualType Ty) const { 916 bool IsIndirect = isAggregateTypeForABI(Ty) && 917 !isEmptyRecord(getContext(), Ty, true) && 918 !isSingleElementStruct(Ty, getContext()); 919 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 920 getContext().getTypeInfoInChars(Ty), 921 CharUnits::fromQuantity(4), 922 /*AllowHigherAlign=*/true); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // le32/PNaCl bitcode ABI Implementation 927 // 928 // This is a simplified version of the x86_32 ABI. Arguments and return values 929 // are always passed on the stack. 930 //===----------------------------------------------------------------------===// 931 932 class PNaClABIInfo : public ABIInfo { 933 public: 934 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 935 936 ABIArgInfo classifyReturnType(QualType RetTy) const; 937 ABIArgInfo classifyArgumentType(QualType RetTy) const; 938 939 void computeInfo(CGFunctionInfo &FI) const override; 940 Address EmitVAArg(CodeGenFunction &CGF, 941 Address VAListAddr, QualType Ty) const override; 942 }; 943 944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 945 public: 946 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 947 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 948 }; 949 950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 951 if (!getCXXABI().classifyReturnType(FI)) 952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 953 954 for (auto &I : FI.arguments()) 955 I.info = classifyArgumentType(I.type); 956 } 957 958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 959 QualType Ty) const { 960 // The PNaCL ABI is a bit odd, in that varargs don't use normal 961 // function classification. Structs get passed directly for varargs 962 // functions, through a rewriting transform in 963 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 964 // this target to actually support a va_arg instructions with an 965 // aggregate type, unlike other targets. 966 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 967 } 968 969 /// Classify argument of given type \p Ty. 970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 971 if (isAggregateTypeForABI(Ty)) { 972 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 973 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 974 return getNaturalAlignIndirect(Ty); 975 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 976 // Treat an enum type as its underlying type. 977 Ty = EnumTy->getDecl()->getIntegerType(); 978 } else if (Ty->isFloatingType()) { 979 // Floating-point types don't go inreg. 980 return ABIArgInfo::getDirect(); 981 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 982 // Treat extended integers as integers if <=64, otherwise pass indirectly. 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(Ty); 985 return ABIArgInfo::getDirect(); 986 } 987 988 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 989 : ABIArgInfo::getDirect()); 990 } 991 992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 993 if (RetTy->isVoidType()) 994 return ABIArgInfo::getIgnore(); 995 996 // In the PNaCl ABI we always return records/structures on the stack. 997 if (isAggregateTypeForABI(RetTy)) 998 return getNaturalAlignIndirect(RetTy); 999 1000 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1001 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1002 if (EIT->getNumBits() > 64) 1003 return getNaturalAlignIndirect(RetTy); 1004 return ABIArgInfo::getDirect(); 1005 } 1006 1007 // Treat an enum type as its underlying type. 1008 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1009 RetTy = EnumTy->getDecl()->getIntegerType(); 1010 1011 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1012 : ABIArgInfo::getDirect()); 1013 } 1014 1015 /// IsX86_MMXType - Return true if this is an MMX type. 1016 bool IsX86_MMXType(llvm::Type *IRType) { 1017 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1018 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1019 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1020 IRType->getScalarSizeInBits() != 64; 1021 } 1022 1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) { 1026 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1027 .Cases("y", "&y", "^Ym", true) 1028 .Default(false); 1029 if (IsMMXCons && Ty->isVectorTy()) { 1030 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1031 64) { 1032 // Invalid MMX constraint 1033 return nullptr; 1034 } 1035 1036 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1037 } 1038 1039 // No operation needed 1040 return Ty; 1041 } 1042 1043 /// Returns true if this type can be passed in SSE registers with the 1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1046 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1047 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1048 if (BT->getKind() == BuiltinType::LongDouble) { 1049 if (&Context.getTargetInfo().getLongDoubleFormat() == 1050 &llvm::APFloat::x87DoubleExtended()) 1051 return false; 1052 } 1053 return true; 1054 } 1055 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1056 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1057 // registers specially. 1058 unsigned VecSize = Context.getTypeSize(VT); 1059 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1060 return true; 1061 } 1062 return false; 1063 } 1064 1065 /// Returns true if this aggregate is small enough to be passed in SSE registers 1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1068 return NumMembers <= 4; 1069 } 1070 1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1073 auto AI = ABIArgInfo::getDirect(T); 1074 AI.setInReg(true); 1075 AI.setCanBeFlattened(false); 1076 return AI; 1077 } 1078 1079 //===----------------------------------------------------------------------===// 1080 // X86-32 ABI Implementation 1081 //===----------------------------------------------------------------------===// 1082 1083 /// Similar to llvm::CCState, but for Clang. 1084 struct CCState { 1085 CCState(CGFunctionInfo &FI) 1086 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1087 1088 llvm::SmallBitVector IsPreassigned; 1089 unsigned CC = CallingConv::CC_C; 1090 unsigned FreeRegs = 0; 1091 unsigned FreeSSERegs = 0; 1092 }; 1093 1094 /// X86_32ABIInfo - The X86-32 ABI information. 1095 class X86_32ABIInfo : public SwiftABIInfo { 1096 enum Class { 1097 Integer, 1098 Float 1099 }; 1100 1101 static const unsigned MinABIStackAlignInBytes = 4; 1102 1103 bool IsDarwinVectorABI; 1104 bool IsRetSmallStructInRegABI; 1105 bool IsWin32StructABI; 1106 bool IsSoftFloatABI; 1107 bool IsMCUABI; 1108 unsigned DefaultNumRegisterParameters; 1109 1110 static bool isRegisterSize(unsigned Size) { 1111 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1112 } 1113 1114 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1115 // FIXME: Assumes vectorcall is in use. 1116 return isX86VectorTypeForVectorCall(getContext(), Ty); 1117 } 1118 1119 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1120 uint64_t NumMembers) const override { 1121 // FIXME: Assumes vectorcall is in use. 1122 return isX86VectorCallAggregateSmallEnough(NumMembers); 1123 } 1124 1125 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1126 1127 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1128 /// such that the argument will be passed in memory. 1129 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1130 1131 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1132 1133 /// Return the alignment to use for the given type on the stack. 1134 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1135 1136 Class classify(QualType Ty) const; 1137 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1138 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1139 1140 /// Updates the number of available free registers, returns 1141 /// true if any registers were allocated. 1142 bool updateFreeRegs(QualType Ty, CCState &State) const; 1143 1144 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1145 bool &NeedsPadding) const; 1146 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1147 1148 bool canExpandIndirectArgument(QualType Ty) const; 1149 1150 /// Rewrite the function info so that all memory arguments use 1151 /// inalloca. 1152 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1153 1154 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1155 CharUnits &StackOffset, ABIArgInfo &Info, 1156 QualType Type) const; 1157 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1158 1159 public: 1160 1161 void computeInfo(CGFunctionInfo &FI) const override; 1162 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1163 QualType Ty) const override; 1164 1165 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1166 bool RetSmallStructInRegABI, bool Win32StructABI, 1167 unsigned NumRegisterParameters, bool SoftFloatABI) 1168 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1169 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1170 IsWin32StructABI(Win32StructABI), 1171 IsSoftFloatABI(SoftFloatABI), 1172 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1173 DefaultNumRegisterParameters(NumRegisterParameters) {} 1174 1175 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1176 bool asReturnValue) const override { 1177 // LLVM's x86-32 lowering currently only assigns up to three 1178 // integer registers and three fp registers. Oddly, it'll use up to 1179 // four vector registers for vectors, but those can overlap with the 1180 // scalar registers. 1181 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1182 } 1183 1184 bool isSwiftErrorInRegister() const override { 1185 // x86-32 lowering does not support passing swifterror in a register. 1186 return false; 1187 } 1188 }; 1189 1190 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1191 public: 1192 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1193 bool RetSmallStructInRegABI, bool Win32StructABI, 1194 unsigned NumRegisterParameters, bool SoftFloatABI) 1195 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1196 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1197 NumRegisterParameters, SoftFloatABI)) {} 1198 1199 static bool isStructReturnInRegABI( 1200 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1201 1202 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1203 CodeGen::CodeGenModule &CGM) const override; 1204 1205 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1206 // Darwin uses different dwarf register numbers for EH. 1207 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1208 return 4; 1209 } 1210 1211 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1212 llvm::Value *Address) const override; 1213 1214 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1215 StringRef Constraint, 1216 llvm::Type* Ty) const override { 1217 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1218 } 1219 1220 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1221 std::string &Constraints, 1222 std::vector<llvm::Type *> &ResultRegTypes, 1223 std::vector<llvm::Type *> &ResultTruncRegTypes, 1224 std::vector<LValue> &ResultRegDests, 1225 std::string &AsmString, 1226 unsigned NumOutputs) const override; 1227 1228 llvm::Constant * 1229 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1230 unsigned Sig = (0xeb << 0) | // jmp rel8 1231 (0x06 << 8) | // .+0x08 1232 ('v' << 16) | 1233 ('2' << 24); 1234 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1235 } 1236 1237 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1238 return "movl\t%ebp, %ebp" 1239 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1240 } 1241 }; 1242 1243 } 1244 1245 /// Rewrite input constraint references after adding some output constraints. 1246 /// In the case where there is one output and one input and we add one output, 1247 /// we need to replace all operand references greater than or equal to 1: 1248 /// mov $0, $1 1249 /// mov eax, $1 1250 /// The result will be: 1251 /// mov $0, $2 1252 /// mov eax, $2 1253 static void rewriteInputConstraintReferences(unsigned FirstIn, 1254 unsigned NumNewOuts, 1255 std::string &AsmString) { 1256 std::string Buf; 1257 llvm::raw_string_ostream OS(Buf); 1258 size_t Pos = 0; 1259 while (Pos < AsmString.size()) { 1260 size_t DollarStart = AsmString.find('$', Pos); 1261 if (DollarStart == std::string::npos) 1262 DollarStart = AsmString.size(); 1263 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1264 if (DollarEnd == std::string::npos) 1265 DollarEnd = AsmString.size(); 1266 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1267 Pos = DollarEnd; 1268 size_t NumDollars = DollarEnd - DollarStart; 1269 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1270 // We have an operand reference. 1271 size_t DigitStart = Pos; 1272 if (AsmString[DigitStart] == '{') { 1273 OS << '{'; 1274 ++DigitStart; 1275 } 1276 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1277 if (DigitEnd == std::string::npos) 1278 DigitEnd = AsmString.size(); 1279 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1280 unsigned OperandIndex; 1281 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1282 if (OperandIndex >= FirstIn) 1283 OperandIndex += NumNewOuts; 1284 OS << OperandIndex; 1285 } else { 1286 OS << OperandStr; 1287 } 1288 Pos = DigitEnd; 1289 } 1290 } 1291 AsmString = std::move(OS.str()); 1292 } 1293 1294 /// Add output constraints for EAX:EDX because they are return registers. 1295 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1296 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1297 std::vector<llvm::Type *> &ResultRegTypes, 1298 std::vector<llvm::Type *> &ResultTruncRegTypes, 1299 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1300 unsigned NumOutputs) const { 1301 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1302 1303 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1304 // larger. 1305 if (!Constraints.empty()) 1306 Constraints += ','; 1307 if (RetWidth <= 32) { 1308 Constraints += "={eax}"; 1309 ResultRegTypes.push_back(CGF.Int32Ty); 1310 } else { 1311 // Use the 'A' constraint for EAX:EDX. 1312 Constraints += "=A"; 1313 ResultRegTypes.push_back(CGF.Int64Ty); 1314 } 1315 1316 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1317 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1318 ResultTruncRegTypes.push_back(CoerceTy); 1319 1320 // Coerce the integer by bitcasting the return slot pointer. 1321 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1322 CoerceTy->getPointerTo())); 1323 ResultRegDests.push_back(ReturnSlot); 1324 1325 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1326 } 1327 1328 /// shouldReturnTypeInRegister - Determine if the given type should be 1329 /// returned in a register (for the Darwin and MCU ABI). 1330 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1331 ASTContext &Context) const { 1332 uint64_t Size = Context.getTypeSize(Ty); 1333 1334 // For i386, type must be register sized. 1335 // For the MCU ABI, it only needs to be <= 8-byte 1336 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1337 return false; 1338 1339 if (Ty->isVectorType()) { 1340 // 64- and 128- bit vectors inside structures are not returned in 1341 // registers. 1342 if (Size == 64 || Size == 128) 1343 return false; 1344 1345 return true; 1346 } 1347 1348 // If this is a builtin, pointer, enum, complex type, member pointer, or 1349 // member function pointer it is ok. 1350 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1351 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1352 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1353 return true; 1354 1355 // Arrays are treated like records. 1356 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1357 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1358 1359 // Otherwise, it must be a record type. 1360 const RecordType *RT = Ty->getAs<RecordType>(); 1361 if (!RT) return false; 1362 1363 // FIXME: Traverse bases here too. 1364 1365 // Structure types are passed in register if all fields would be 1366 // passed in a register. 1367 for (const auto *FD : RT->getDecl()->fields()) { 1368 // Empty fields are ignored. 1369 if (isEmptyField(Context, FD, true)) 1370 continue; 1371 1372 // Check fields recursively. 1373 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1374 return false; 1375 } 1376 return true; 1377 } 1378 1379 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1380 // Treat complex types as the element type. 1381 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1382 Ty = CTy->getElementType(); 1383 1384 // Check for a type which we know has a simple scalar argument-passing 1385 // convention without any padding. (We're specifically looking for 32 1386 // and 64-bit integer and integer-equivalents, float, and double.) 1387 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1388 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1389 return false; 1390 1391 uint64_t Size = Context.getTypeSize(Ty); 1392 return Size == 32 || Size == 64; 1393 } 1394 1395 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1396 uint64_t &Size) { 1397 for (const auto *FD : RD->fields()) { 1398 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1399 // argument is smaller than 32-bits, expanding the struct will create 1400 // alignment padding. 1401 if (!is32Or64BitBasicType(FD->getType(), Context)) 1402 return false; 1403 1404 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1405 // how to expand them yet, and the predicate for telling if a bitfield still 1406 // counts as "basic" is more complicated than what we were doing previously. 1407 if (FD->isBitField()) 1408 return false; 1409 1410 Size += Context.getTypeSize(FD->getType()); 1411 } 1412 return true; 1413 } 1414 1415 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1416 uint64_t &Size) { 1417 // Don't do this if there are any non-empty bases. 1418 for (const CXXBaseSpecifier &Base : RD->bases()) { 1419 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1420 Size)) 1421 return false; 1422 } 1423 if (!addFieldSizes(Context, RD, Size)) 1424 return false; 1425 return true; 1426 } 1427 1428 /// Test whether an argument type which is to be passed indirectly (on the 1429 /// stack) would have the equivalent layout if it was expanded into separate 1430 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1431 /// optimizations. 1432 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1433 // We can only expand structure types. 1434 const RecordType *RT = Ty->getAs<RecordType>(); 1435 if (!RT) 1436 return false; 1437 const RecordDecl *RD = RT->getDecl(); 1438 uint64_t Size = 0; 1439 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1440 if (!IsWin32StructABI) { 1441 // On non-Windows, we have to conservatively match our old bitcode 1442 // prototypes in order to be ABI-compatible at the bitcode level. 1443 if (!CXXRD->isCLike()) 1444 return false; 1445 } else { 1446 // Don't do this for dynamic classes. 1447 if (CXXRD->isDynamicClass()) 1448 return false; 1449 } 1450 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1451 return false; 1452 } else { 1453 if (!addFieldSizes(getContext(), RD, Size)) 1454 return false; 1455 } 1456 1457 // We can do this if there was no alignment padding. 1458 return Size == getContext().getTypeSize(Ty); 1459 } 1460 1461 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1462 // If the return value is indirect, then the hidden argument is consuming one 1463 // integer register. 1464 if (State.FreeRegs) { 1465 --State.FreeRegs; 1466 if (!IsMCUABI) 1467 return getNaturalAlignIndirectInReg(RetTy); 1468 } 1469 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1470 } 1471 1472 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1473 CCState &State) const { 1474 if (RetTy->isVoidType()) 1475 return ABIArgInfo::getIgnore(); 1476 1477 const Type *Base = nullptr; 1478 uint64_t NumElts = 0; 1479 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1480 State.CC == llvm::CallingConv::X86_RegCall) && 1481 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1482 // The LLVM struct type for such an aggregate should lower properly. 1483 return ABIArgInfo::getDirect(); 1484 } 1485 1486 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1487 // On Darwin, some vectors are returned in registers. 1488 if (IsDarwinVectorABI) { 1489 uint64_t Size = getContext().getTypeSize(RetTy); 1490 1491 // 128-bit vectors are a special case; they are returned in 1492 // registers and we need to make sure to pick a type the LLVM 1493 // backend will like. 1494 if (Size == 128) 1495 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1496 llvm::Type::getInt64Ty(getVMContext()), 2)); 1497 1498 // Always return in register if it fits in a general purpose 1499 // register, or if it is 64 bits and has a single element. 1500 if ((Size == 8 || Size == 16 || Size == 32) || 1501 (Size == 64 && VT->getNumElements() == 1)) 1502 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1503 Size)); 1504 1505 return getIndirectReturnResult(RetTy, State); 1506 } 1507 1508 return ABIArgInfo::getDirect(); 1509 } 1510 1511 if (isAggregateTypeForABI(RetTy)) { 1512 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1513 // Structures with flexible arrays are always indirect. 1514 if (RT->getDecl()->hasFlexibleArrayMember()) 1515 return getIndirectReturnResult(RetTy, State); 1516 } 1517 1518 // If specified, structs and unions are always indirect. 1519 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1520 return getIndirectReturnResult(RetTy, State); 1521 1522 // Ignore empty structs/unions. 1523 if (isEmptyRecord(getContext(), RetTy, true)) 1524 return ABIArgInfo::getIgnore(); 1525 1526 // Small structures which are register sized are generally returned 1527 // in a register. 1528 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1529 uint64_t Size = getContext().getTypeSize(RetTy); 1530 1531 // As a special-case, if the struct is a "single-element" struct, and 1532 // the field is of type "float" or "double", return it in a 1533 // floating-point register. (MSVC does not apply this special case.) 1534 // We apply a similar transformation for pointer types to improve the 1535 // quality of the generated IR. 1536 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1537 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1538 || SeltTy->hasPointerRepresentation()) 1539 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1540 1541 // FIXME: We should be able to narrow this integer in cases with dead 1542 // padding. 1543 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1544 } 1545 1546 return getIndirectReturnResult(RetTy, State); 1547 } 1548 1549 // Treat an enum type as its underlying type. 1550 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1551 RetTy = EnumTy->getDecl()->getIntegerType(); 1552 1553 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1554 if (EIT->getNumBits() > 64) 1555 return getIndirectReturnResult(RetTy, State); 1556 1557 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1558 : ABIArgInfo::getDirect()); 1559 } 1560 1561 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1562 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1563 } 1564 1565 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1566 const RecordType *RT = Ty->getAs<RecordType>(); 1567 if (!RT) 1568 return 0; 1569 const RecordDecl *RD = RT->getDecl(); 1570 1571 // If this is a C++ record, check the bases first. 1572 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1573 for (const auto &I : CXXRD->bases()) 1574 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1575 return false; 1576 1577 for (const auto *i : RD->fields()) { 1578 QualType FT = i->getType(); 1579 1580 if (isSIMDVectorType(Context, FT)) 1581 return true; 1582 1583 if (isRecordWithSIMDVectorType(Context, FT)) 1584 return true; 1585 } 1586 1587 return false; 1588 } 1589 1590 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1591 unsigned Align) const { 1592 // Otherwise, if the alignment is less than or equal to the minimum ABI 1593 // alignment, just use the default; the backend will handle this. 1594 if (Align <= MinABIStackAlignInBytes) 1595 return 0; // Use default alignment. 1596 1597 // On non-Darwin, the stack type alignment is always 4. 1598 if (!IsDarwinVectorABI) { 1599 // Set explicit alignment, since we may need to realign the top. 1600 return MinABIStackAlignInBytes; 1601 } 1602 1603 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1604 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1605 isRecordWithSIMDVectorType(getContext(), Ty))) 1606 return 16; 1607 1608 return MinABIStackAlignInBytes; 1609 } 1610 1611 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1612 CCState &State) const { 1613 if (!ByVal) { 1614 if (State.FreeRegs) { 1615 --State.FreeRegs; // Non-byval indirects just use one pointer. 1616 if (!IsMCUABI) 1617 return getNaturalAlignIndirectInReg(Ty); 1618 } 1619 return getNaturalAlignIndirect(Ty, false); 1620 } 1621 1622 // Compute the byval alignment. 1623 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1624 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1625 if (StackAlign == 0) 1626 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1627 1628 // If the stack alignment is less than the type alignment, realign the 1629 // argument. 1630 bool Realign = TypeAlign > StackAlign; 1631 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1632 /*ByVal=*/true, Realign); 1633 } 1634 1635 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1636 const Type *T = isSingleElementStruct(Ty, getContext()); 1637 if (!T) 1638 T = Ty.getTypePtr(); 1639 1640 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1641 BuiltinType::Kind K = BT->getKind(); 1642 if (K == BuiltinType::Float || K == BuiltinType::Double) 1643 return Float; 1644 } 1645 return Integer; 1646 } 1647 1648 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1649 if (!IsSoftFloatABI) { 1650 Class C = classify(Ty); 1651 if (C == Float) 1652 return false; 1653 } 1654 1655 unsigned Size = getContext().getTypeSize(Ty); 1656 unsigned SizeInRegs = (Size + 31) / 32; 1657 1658 if (SizeInRegs == 0) 1659 return false; 1660 1661 if (!IsMCUABI) { 1662 if (SizeInRegs > State.FreeRegs) { 1663 State.FreeRegs = 0; 1664 return false; 1665 } 1666 } else { 1667 // The MCU psABI allows passing parameters in-reg even if there are 1668 // earlier parameters that are passed on the stack. Also, 1669 // it does not allow passing >8-byte structs in-register, 1670 // even if there are 3 free registers available. 1671 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1672 return false; 1673 } 1674 1675 State.FreeRegs -= SizeInRegs; 1676 return true; 1677 } 1678 1679 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1680 bool &InReg, 1681 bool &NeedsPadding) const { 1682 // On Windows, aggregates other than HFAs are never passed in registers, and 1683 // they do not consume register slots. Homogenous floating-point aggregates 1684 // (HFAs) have already been dealt with at this point. 1685 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1686 return false; 1687 1688 NeedsPadding = false; 1689 InReg = !IsMCUABI; 1690 1691 if (!updateFreeRegs(Ty, State)) 1692 return false; 1693 1694 if (IsMCUABI) 1695 return true; 1696 1697 if (State.CC == llvm::CallingConv::X86_FastCall || 1698 State.CC == llvm::CallingConv::X86_VectorCall || 1699 State.CC == llvm::CallingConv::X86_RegCall) { 1700 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1701 NeedsPadding = true; 1702 1703 return false; 1704 } 1705 1706 return true; 1707 } 1708 1709 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1710 if (!updateFreeRegs(Ty, State)) 1711 return false; 1712 1713 if (IsMCUABI) 1714 return false; 1715 1716 if (State.CC == llvm::CallingConv::X86_FastCall || 1717 State.CC == llvm::CallingConv::X86_VectorCall || 1718 State.CC == llvm::CallingConv::X86_RegCall) { 1719 if (getContext().getTypeSize(Ty) > 32) 1720 return false; 1721 1722 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1723 Ty->isReferenceType()); 1724 } 1725 1726 return true; 1727 } 1728 1729 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1730 // Vectorcall x86 works subtly different than in x64, so the format is 1731 // a bit different than the x64 version. First, all vector types (not HVAs) 1732 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1733 // This differs from the x64 implementation, where the first 6 by INDEX get 1734 // registers. 1735 // In the second pass over the arguments, HVAs are passed in the remaining 1736 // vector registers if possible, or indirectly by address. The address will be 1737 // passed in ECX/EDX if available. Any other arguments are passed according to 1738 // the usual fastcall rules. 1739 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1740 for (int I = 0, E = Args.size(); I < E; ++I) { 1741 const Type *Base = nullptr; 1742 uint64_t NumElts = 0; 1743 const QualType &Ty = Args[I].type; 1744 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1745 isHomogeneousAggregate(Ty, Base, NumElts)) { 1746 if (State.FreeSSERegs >= NumElts) { 1747 State.FreeSSERegs -= NumElts; 1748 Args[I].info = ABIArgInfo::getDirectInReg(); 1749 State.IsPreassigned.set(I); 1750 } 1751 } 1752 } 1753 } 1754 1755 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1756 CCState &State) const { 1757 // FIXME: Set alignment on indirect arguments. 1758 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1759 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1760 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1761 1762 Ty = useFirstFieldIfTransparentUnion(Ty); 1763 TypeInfo TI = getContext().getTypeInfo(Ty); 1764 1765 // Check with the C++ ABI first. 1766 const RecordType *RT = Ty->getAs<RecordType>(); 1767 if (RT) { 1768 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1769 if (RAA == CGCXXABI::RAA_Indirect) { 1770 return getIndirectResult(Ty, false, State); 1771 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1772 // The field index doesn't matter, we'll fix it up later. 1773 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1774 } 1775 } 1776 1777 // Regcall uses the concept of a homogenous vector aggregate, similar 1778 // to other targets. 1779 const Type *Base = nullptr; 1780 uint64_t NumElts = 0; 1781 if ((IsRegCall || IsVectorCall) && 1782 isHomogeneousAggregate(Ty, Base, NumElts)) { 1783 if (State.FreeSSERegs >= NumElts) { 1784 State.FreeSSERegs -= NumElts; 1785 1786 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1787 // does. 1788 if (IsVectorCall) 1789 return getDirectX86Hva(); 1790 1791 if (Ty->isBuiltinType() || Ty->isVectorType()) 1792 return ABIArgInfo::getDirect(); 1793 return ABIArgInfo::getExpand(); 1794 } 1795 return getIndirectResult(Ty, /*ByVal=*/false, State); 1796 } 1797 1798 if (isAggregateTypeForABI(Ty)) { 1799 // Structures with flexible arrays are always indirect. 1800 // FIXME: This should not be byval! 1801 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1802 return getIndirectResult(Ty, true, State); 1803 1804 // Ignore empty structs/unions on non-Windows. 1805 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1806 return ABIArgInfo::getIgnore(); 1807 1808 llvm::LLVMContext &LLVMContext = getVMContext(); 1809 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1810 bool NeedsPadding = false; 1811 bool InReg; 1812 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1813 unsigned SizeInRegs = (TI.Width + 31) / 32; 1814 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1815 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1816 if (InReg) 1817 return ABIArgInfo::getDirectInReg(Result); 1818 else 1819 return ABIArgInfo::getDirect(Result); 1820 } 1821 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1822 1823 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1824 // added in MSVC 2015. 1825 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1826 return getIndirectResult(Ty, /*ByVal=*/false, State); 1827 1828 // Expand small (<= 128-bit) record types when we know that the stack layout 1829 // of those arguments will match the struct. This is important because the 1830 // LLVM backend isn't smart enough to remove byval, which inhibits many 1831 // optimizations. 1832 // Don't do this for the MCU if there are still free integer registers 1833 // (see X86_64 ABI for full explanation). 1834 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1835 canExpandIndirectArgument(Ty)) 1836 return ABIArgInfo::getExpandWithPadding( 1837 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1838 1839 return getIndirectResult(Ty, true, State); 1840 } 1841 1842 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1843 // On Windows, vectors are passed directly if registers are available, or 1844 // indirectly if not. This avoids the need to align argument memory. Pass 1845 // user-defined vector types larger than 512 bits indirectly for simplicity. 1846 if (IsWin32StructABI) { 1847 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1848 --State.FreeSSERegs; 1849 return ABIArgInfo::getDirectInReg(); 1850 } 1851 return getIndirectResult(Ty, /*ByVal=*/false, State); 1852 } 1853 1854 // On Darwin, some vectors are passed in memory, we handle this by passing 1855 // it as an i8/i16/i32/i64. 1856 if (IsDarwinVectorABI) { 1857 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1858 (TI.Width == 64 && VT->getNumElements() == 1)) 1859 return ABIArgInfo::getDirect( 1860 llvm::IntegerType::get(getVMContext(), TI.Width)); 1861 } 1862 1863 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1864 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1865 1866 return ABIArgInfo::getDirect(); 1867 } 1868 1869 1870 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1871 Ty = EnumTy->getDecl()->getIntegerType(); 1872 1873 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1874 1875 if (isPromotableIntegerTypeForABI(Ty)) { 1876 if (InReg) 1877 return ABIArgInfo::getExtendInReg(Ty); 1878 return ABIArgInfo::getExtend(Ty); 1879 } 1880 1881 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1882 if (EIT->getNumBits() <= 64) { 1883 if (InReg) 1884 return ABIArgInfo::getDirectInReg(); 1885 return ABIArgInfo::getDirect(); 1886 } 1887 return getIndirectResult(Ty, /*ByVal=*/false, State); 1888 } 1889 1890 if (InReg) 1891 return ABIArgInfo::getDirectInReg(); 1892 return ABIArgInfo::getDirect(); 1893 } 1894 1895 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1896 CCState State(FI); 1897 if (IsMCUABI) 1898 State.FreeRegs = 3; 1899 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1900 State.FreeRegs = 2; 1901 State.FreeSSERegs = 3; 1902 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1903 State.FreeRegs = 2; 1904 State.FreeSSERegs = 6; 1905 } else if (FI.getHasRegParm()) 1906 State.FreeRegs = FI.getRegParm(); 1907 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1908 State.FreeRegs = 5; 1909 State.FreeSSERegs = 8; 1910 } else if (IsWin32StructABI) { 1911 // Since MSVC 2015, the first three SSE vectors have been passed in 1912 // registers. The rest are passed indirectly. 1913 State.FreeRegs = DefaultNumRegisterParameters; 1914 State.FreeSSERegs = 3; 1915 } else 1916 State.FreeRegs = DefaultNumRegisterParameters; 1917 1918 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1919 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1920 } else if (FI.getReturnInfo().isIndirect()) { 1921 // The C++ ABI is not aware of register usage, so we have to check if the 1922 // return value was sret and put it in a register ourselves if appropriate. 1923 if (State.FreeRegs) { 1924 --State.FreeRegs; // The sret parameter consumes a register. 1925 if (!IsMCUABI) 1926 FI.getReturnInfo().setInReg(true); 1927 } 1928 } 1929 1930 // The chain argument effectively gives us another free register. 1931 if (FI.isChainCall()) 1932 ++State.FreeRegs; 1933 1934 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1935 // arguments to XMM registers as available. 1936 if (State.CC == llvm::CallingConv::X86_VectorCall) 1937 runVectorCallFirstPass(FI, State); 1938 1939 bool UsedInAlloca = false; 1940 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1941 for (int I = 0, E = Args.size(); I < E; ++I) { 1942 // Skip arguments that have already been assigned. 1943 if (State.IsPreassigned.test(I)) 1944 continue; 1945 1946 Args[I].info = classifyArgumentType(Args[I].type, State); 1947 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1948 } 1949 1950 // If we needed to use inalloca for any argument, do a second pass and rewrite 1951 // all the memory arguments to use inalloca. 1952 if (UsedInAlloca) 1953 rewriteWithInAlloca(FI); 1954 } 1955 1956 void 1957 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1958 CharUnits &StackOffset, ABIArgInfo &Info, 1959 QualType Type) const { 1960 // Arguments are always 4-byte-aligned. 1961 CharUnits WordSize = CharUnits::fromQuantity(4); 1962 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1963 1964 // sret pointers and indirect things will require an extra pointer 1965 // indirection, unless they are byval. Most things are byval, and will not 1966 // require this indirection. 1967 bool IsIndirect = false; 1968 if (Info.isIndirect() && !Info.getIndirectByVal()) 1969 IsIndirect = true; 1970 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1971 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1972 if (IsIndirect) 1973 LLTy = LLTy->getPointerTo(0); 1974 FrameFields.push_back(LLTy); 1975 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1976 1977 // Insert padding bytes to respect alignment. 1978 CharUnits FieldEnd = StackOffset; 1979 StackOffset = FieldEnd.alignTo(WordSize); 1980 if (StackOffset != FieldEnd) { 1981 CharUnits NumBytes = StackOffset - FieldEnd; 1982 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1983 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1984 FrameFields.push_back(Ty); 1985 } 1986 } 1987 1988 static bool isArgInAlloca(const ABIArgInfo &Info) { 1989 // Leave ignored and inreg arguments alone. 1990 switch (Info.getKind()) { 1991 case ABIArgInfo::InAlloca: 1992 return true; 1993 case ABIArgInfo::Ignore: 1994 case ABIArgInfo::IndirectAliased: 1995 return false; 1996 case ABIArgInfo::Indirect: 1997 case ABIArgInfo::Direct: 1998 case ABIArgInfo::Extend: 1999 return !Info.getInReg(); 2000 case ABIArgInfo::Expand: 2001 case ABIArgInfo::CoerceAndExpand: 2002 // These are aggregate types which are never passed in registers when 2003 // inalloca is involved. 2004 return true; 2005 } 2006 llvm_unreachable("invalid enum"); 2007 } 2008 2009 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2010 assert(IsWin32StructABI && "inalloca only supported on win32"); 2011 2012 // Build a packed struct type for all of the arguments in memory. 2013 SmallVector<llvm::Type *, 6> FrameFields; 2014 2015 // The stack alignment is always 4. 2016 CharUnits StackAlign = CharUnits::fromQuantity(4); 2017 2018 CharUnits StackOffset; 2019 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2020 2021 // Put 'this' into the struct before 'sret', if necessary. 2022 bool IsThisCall = 2023 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2024 ABIArgInfo &Ret = FI.getReturnInfo(); 2025 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2026 isArgInAlloca(I->info)) { 2027 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2028 ++I; 2029 } 2030 2031 // Put the sret parameter into the inalloca struct if it's in memory. 2032 if (Ret.isIndirect() && !Ret.getInReg()) { 2033 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2034 // On Windows, the hidden sret parameter is always returned in eax. 2035 Ret.setInAllocaSRet(IsWin32StructABI); 2036 } 2037 2038 // Skip the 'this' parameter in ecx. 2039 if (IsThisCall) 2040 ++I; 2041 2042 // Put arguments passed in memory into the struct. 2043 for (; I != E; ++I) { 2044 if (isArgInAlloca(I->info)) 2045 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2046 } 2047 2048 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2049 /*isPacked=*/true), 2050 StackAlign); 2051 } 2052 2053 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2054 Address VAListAddr, QualType Ty) const { 2055 2056 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2057 2058 // x86-32 changes the alignment of certain arguments on the stack. 2059 // 2060 // Just messing with TypeInfo like this works because we never pass 2061 // anything indirectly. 2062 TypeInfo.Align = CharUnits::fromQuantity( 2063 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2064 2065 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2066 TypeInfo, CharUnits::fromQuantity(4), 2067 /*AllowHigherAlign*/ true); 2068 } 2069 2070 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2071 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2072 assert(Triple.getArch() == llvm::Triple::x86); 2073 2074 switch (Opts.getStructReturnConvention()) { 2075 case CodeGenOptions::SRCK_Default: 2076 break; 2077 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2078 return false; 2079 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2080 return true; 2081 } 2082 2083 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2084 return true; 2085 2086 switch (Triple.getOS()) { 2087 case llvm::Triple::DragonFly: 2088 case llvm::Triple::FreeBSD: 2089 case llvm::Triple::OpenBSD: 2090 case llvm::Triple::Win32: 2091 return true; 2092 default: 2093 return false; 2094 } 2095 } 2096 2097 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2098 CodeGen::CodeGenModule &CGM) { 2099 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2100 return; 2101 2102 llvm::Function *Fn = cast<llvm::Function>(GV); 2103 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2104 if (FD->getNumParams() == 0) 2105 return; 2106 2107 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2108 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2109 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2110 Fn->getContext(), ByValTy); 2111 Fn->addParamAttr(0, NewAttr); 2112 } 2113 2114 void X86_32TargetCodeGenInfo::setTargetAttributes( 2115 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2116 if (GV->isDeclaration()) 2117 return; 2118 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2119 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2120 llvm::Function *Fn = cast<llvm::Function>(GV); 2121 Fn->addFnAttr("stackrealign"); 2122 } 2123 2124 addX86InterruptAttrs(FD, GV, CGM); 2125 } 2126 } 2127 2128 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2129 CodeGen::CodeGenFunction &CGF, 2130 llvm::Value *Address) const { 2131 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2132 2133 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2134 2135 // 0-7 are the eight integer registers; the order is different 2136 // on Darwin (for EH), but the range is the same. 2137 // 8 is %eip. 2138 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2139 2140 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2141 // 12-16 are st(0..4). Not sure why we stop at 4. 2142 // These have size 16, which is sizeof(long double) on 2143 // platforms with 8-byte alignment for that type. 2144 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2145 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2146 2147 } else { 2148 // 9 is %eflags, which doesn't get a size on Darwin for some 2149 // reason. 2150 Builder.CreateAlignedStore( 2151 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2152 CharUnits::One()); 2153 2154 // 11-16 are st(0..5). Not sure why we stop at 5. 2155 // These have size 12, which is sizeof(long double) on 2156 // platforms with 4-byte alignment for that type. 2157 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2158 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2159 } 2160 2161 return false; 2162 } 2163 2164 //===----------------------------------------------------------------------===// 2165 // X86-64 ABI Implementation 2166 //===----------------------------------------------------------------------===// 2167 2168 2169 namespace { 2170 /// The AVX ABI level for X86 targets. 2171 enum class X86AVXABILevel { 2172 None, 2173 AVX, 2174 AVX512 2175 }; 2176 2177 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2178 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2179 switch (AVXLevel) { 2180 case X86AVXABILevel::AVX512: 2181 return 512; 2182 case X86AVXABILevel::AVX: 2183 return 256; 2184 case X86AVXABILevel::None: 2185 return 128; 2186 } 2187 llvm_unreachable("Unknown AVXLevel"); 2188 } 2189 2190 /// X86_64ABIInfo - The X86_64 ABI information. 2191 class X86_64ABIInfo : public SwiftABIInfo { 2192 enum Class { 2193 Integer = 0, 2194 SSE, 2195 SSEUp, 2196 X87, 2197 X87Up, 2198 ComplexX87, 2199 NoClass, 2200 Memory 2201 }; 2202 2203 /// merge - Implement the X86_64 ABI merging algorithm. 2204 /// 2205 /// Merge an accumulating classification \arg Accum with a field 2206 /// classification \arg Field. 2207 /// 2208 /// \param Accum - The accumulating classification. This should 2209 /// always be either NoClass or the result of a previous merge 2210 /// call. In addition, this should never be Memory (the caller 2211 /// should just return Memory for the aggregate). 2212 static Class merge(Class Accum, Class Field); 2213 2214 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2215 /// 2216 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2217 /// final MEMORY or SSE classes when necessary. 2218 /// 2219 /// \param AggregateSize - The size of the current aggregate in 2220 /// the classification process. 2221 /// 2222 /// \param Lo - The classification for the parts of the type 2223 /// residing in the low word of the containing object. 2224 /// 2225 /// \param Hi - The classification for the parts of the type 2226 /// residing in the higher words of the containing object. 2227 /// 2228 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2229 2230 /// classify - Determine the x86_64 register classes in which the 2231 /// given type T should be passed. 2232 /// 2233 /// \param Lo - The classification for the parts of the type 2234 /// residing in the low word of the containing object. 2235 /// 2236 /// \param Hi - The classification for the parts of the type 2237 /// residing in the high word of the containing object. 2238 /// 2239 /// \param OffsetBase - The bit offset of this type in the 2240 /// containing object. Some parameters are classified different 2241 /// depending on whether they straddle an eightbyte boundary. 2242 /// 2243 /// \param isNamedArg - Whether the argument in question is a "named" 2244 /// argument, as used in AMD64-ABI 3.5.7. 2245 /// 2246 /// If a word is unused its result will be NoClass; if a type should 2247 /// be passed in Memory then at least the classification of \arg Lo 2248 /// will be Memory. 2249 /// 2250 /// The \arg Lo class will be NoClass iff the argument is ignored. 2251 /// 2252 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2253 /// also be ComplexX87. 2254 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2255 bool isNamedArg) const; 2256 2257 llvm::Type *GetByteVectorType(QualType Ty) const; 2258 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2259 unsigned IROffset, QualType SourceTy, 2260 unsigned SourceOffset) const; 2261 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2262 unsigned IROffset, QualType SourceTy, 2263 unsigned SourceOffset) const; 2264 2265 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2266 /// such that the argument will be returned in memory. 2267 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2268 2269 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2270 /// such that the argument will be passed in memory. 2271 /// 2272 /// \param freeIntRegs - The number of free integer registers remaining 2273 /// available. 2274 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2275 2276 ABIArgInfo classifyReturnType(QualType RetTy) const; 2277 2278 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2279 unsigned &neededInt, unsigned &neededSSE, 2280 bool isNamedArg) const; 2281 2282 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2283 unsigned &NeededSSE) const; 2284 2285 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2286 unsigned &NeededSSE) const; 2287 2288 bool IsIllegalVectorType(QualType Ty) const; 2289 2290 /// The 0.98 ABI revision clarified a lot of ambiguities, 2291 /// unfortunately in ways that were not always consistent with 2292 /// certain previous compilers. In particular, platforms which 2293 /// required strict binary compatibility with older versions of GCC 2294 /// may need to exempt themselves. 2295 bool honorsRevision0_98() const { 2296 return !getTarget().getTriple().isOSDarwin(); 2297 } 2298 2299 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2300 /// classify it as INTEGER (for compatibility with older clang compilers). 2301 bool classifyIntegerMMXAsSSE() const { 2302 // Clang <= 3.8 did not do this. 2303 if (getContext().getLangOpts().getClangABICompat() <= 2304 LangOptions::ClangABI::Ver3_8) 2305 return false; 2306 2307 const llvm::Triple &Triple = getTarget().getTriple(); 2308 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2309 return false; 2310 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2311 return false; 2312 return true; 2313 } 2314 2315 // GCC classifies vectors of __int128 as memory. 2316 bool passInt128VectorsInMem() const { 2317 // Clang <= 9.0 did not do this. 2318 if (getContext().getLangOpts().getClangABICompat() <= 2319 LangOptions::ClangABI::Ver9) 2320 return false; 2321 2322 const llvm::Triple &T = getTarget().getTriple(); 2323 return T.isOSLinux() || T.isOSNetBSD(); 2324 } 2325 2326 X86AVXABILevel AVXLevel; 2327 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2328 // 64-bit hardware. 2329 bool Has64BitPointers; 2330 2331 public: 2332 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2333 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2334 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2335 } 2336 2337 bool isPassedUsingAVXType(QualType type) const { 2338 unsigned neededInt, neededSSE; 2339 // The freeIntRegs argument doesn't matter here. 2340 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2341 /*isNamedArg*/true); 2342 if (info.isDirect()) { 2343 llvm::Type *ty = info.getCoerceToType(); 2344 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2345 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2346 } 2347 return false; 2348 } 2349 2350 void computeInfo(CGFunctionInfo &FI) const override; 2351 2352 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2353 QualType Ty) const override; 2354 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2355 QualType Ty) const override; 2356 2357 bool has64BitPointers() const { 2358 return Has64BitPointers; 2359 } 2360 2361 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2362 bool asReturnValue) const override { 2363 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2364 } 2365 bool isSwiftErrorInRegister() const override { 2366 return true; 2367 } 2368 }; 2369 2370 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2371 class WinX86_64ABIInfo : public SwiftABIInfo { 2372 public: 2373 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2374 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2375 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2376 2377 void computeInfo(CGFunctionInfo &FI) const override; 2378 2379 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2380 QualType Ty) const override; 2381 2382 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2383 // FIXME: Assumes vectorcall is in use. 2384 return isX86VectorTypeForVectorCall(getContext(), Ty); 2385 } 2386 2387 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2388 uint64_t NumMembers) const override { 2389 // FIXME: Assumes vectorcall is in use. 2390 return isX86VectorCallAggregateSmallEnough(NumMembers); 2391 } 2392 2393 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2394 bool asReturnValue) const override { 2395 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2396 } 2397 2398 bool isSwiftErrorInRegister() const override { 2399 return true; 2400 } 2401 2402 private: 2403 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2404 bool IsVectorCall, bool IsRegCall) const; 2405 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2406 const ABIArgInfo ¤t) const; 2407 2408 X86AVXABILevel AVXLevel; 2409 2410 bool IsMingw64; 2411 }; 2412 2413 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2414 public: 2415 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2416 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2417 2418 const X86_64ABIInfo &getABIInfo() const { 2419 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2420 } 2421 2422 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2423 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2424 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2425 2426 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2427 return 7; 2428 } 2429 2430 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2431 llvm::Value *Address) const override { 2432 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2433 2434 // 0-15 are the 16 integer registers. 2435 // 16 is %rip. 2436 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2437 return false; 2438 } 2439 2440 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2441 StringRef Constraint, 2442 llvm::Type* Ty) const override { 2443 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2444 } 2445 2446 bool isNoProtoCallVariadic(const CallArgList &args, 2447 const FunctionNoProtoType *fnType) const override { 2448 // The default CC on x86-64 sets %al to the number of SSA 2449 // registers used, and GCC sets this when calling an unprototyped 2450 // function, so we override the default behavior. However, don't do 2451 // that when AVX types are involved: the ABI explicitly states it is 2452 // undefined, and it doesn't work in practice because of how the ABI 2453 // defines varargs anyway. 2454 if (fnType->getCallConv() == CC_C) { 2455 bool HasAVXType = false; 2456 for (CallArgList::const_iterator 2457 it = args.begin(), ie = args.end(); it != ie; ++it) { 2458 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2459 HasAVXType = true; 2460 break; 2461 } 2462 } 2463 2464 if (!HasAVXType) 2465 return true; 2466 } 2467 2468 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2469 } 2470 2471 llvm::Constant * 2472 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2473 unsigned Sig = (0xeb << 0) | // jmp rel8 2474 (0x06 << 8) | // .+0x08 2475 ('v' << 16) | 2476 ('2' << 24); 2477 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2478 } 2479 2480 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2481 CodeGen::CodeGenModule &CGM) const override { 2482 if (GV->isDeclaration()) 2483 return; 2484 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2485 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2486 llvm::Function *Fn = cast<llvm::Function>(GV); 2487 Fn->addFnAttr("stackrealign"); 2488 } 2489 2490 addX86InterruptAttrs(FD, GV, CGM); 2491 } 2492 } 2493 2494 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2495 const FunctionDecl *Caller, 2496 const FunctionDecl *Callee, 2497 const CallArgList &Args) const override; 2498 }; 2499 2500 static void initFeatureMaps(const ASTContext &Ctx, 2501 llvm::StringMap<bool> &CallerMap, 2502 const FunctionDecl *Caller, 2503 llvm::StringMap<bool> &CalleeMap, 2504 const FunctionDecl *Callee) { 2505 if (CalleeMap.empty() && CallerMap.empty()) { 2506 // The caller is potentially nullptr in the case where the call isn't in a 2507 // function. In this case, the getFunctionFeatureMap ensures we just get 2508 // the TU level setting (since it cannot be modified by 'target'.. 2509 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2510 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2511 } 2512 } 2513 2514 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2515 SourceLocation CallLoc, 2516 const llvm::StringMap<bool> &CallerMap, 2517 const llvm::StringMap<bool> &CalleeMap, 2518 QualType Ty, StringRef Feature, 2519 bool IsArgument) { 2520 bool CallerHasFeat = CallerMap.lookup(Feature); 2521 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2522 if (!CallerHasFeat && !CalleeHasFeat) 2523 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2524 << IsArgument << Ty << Feature; 2525 2526 // Mixing calling conventions here is very clearly an error. 2527 if (!CallerHasFeat || !CalleeHasFeat) 2528 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2529 << IsArgument << Ty << Feature; 2530 2531 // Else, both caller and callee have the required feature, so there is no need 2532 // to diagnose. 2533 return false; 2534 } 2535 2536 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2537 SourceLocation CallLoc, 2538 const llvm::StringMap<bool> &CallerMap, 2539 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2540 bool IsArgument) { 2541 uint64_t Size = Ctx.getTypeSize(Ty); 2542 if (Size > 256) 2543 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2544 "avx512f", IsArgument); 2545 2546 if (Size > 128) 2547 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2548 IsArgument); 2549 2550 return false; 2551 } 2552 2553 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2554 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2555 const FunctionDecl *Callee, const CallArgList &Args) const { 2556 llvm::StringMap<bool> CallerMap; 2557 llvm::StringMap<bool> CalleeMap; 2558 unsigned ArgIndex = 0; 2559 2560 // We need to loop through the actual call arguments rather than the the 2561 // function's parameters, in case this variadic. 2562 for (const CallArg &Arg : Args) { 2563 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2564 // additionally changes how vectors >256 in size are passed. Like GCC, we 2565 // warn when a function is called with an argument where this will change. 2566 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2567 // the caller and callee features are mismatched. 2568 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2569 // change its ABI with attribute-target after this call. 2570 if (Arg.getType()->isVectorType() && 2571 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2572 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2573 QualType Ty = Arg.getType(); 2574 // The CallArg seems to have desugared the type already, so for clearer 2575 // diagnostics, replace it with the type in the FunctionDecl if possible. 2576 if (ArgIndex < Callee->getNumParams()) 2577 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2578 2579 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2580 CalleeMap, Ty, /*IsArgument*/ true)) 2581 return; 2582 } 2583 ++ArgIndex; 2584 } 2585 2586 // Check return always, as we don't have a good way of knowing in codegen 2587 // whether this value is used, tail-called, etc. 2588 if (Callee->getReturnType()->isVectorType() && 2589 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2590 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2591 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2592 CalleeMap, Callee->getReturnType(), 2593 /*IsArgument*/ false); 2594 } 2595 } 2596 2597 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2598 // If the argument does not end in .lib, automatically add the suffix. 2599 // If the argument contains a space, enclose it in quotes. 2600 // This matches the behavior of MSVC. 2601 bool Quote = (Lib.find(' ') != StringRef::npos); 2602 std::string ArgStr = Quote ? "\"" : ""; 2603 ArgStr += Lib; 2604 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2605 ArgStr += ".lib"; 2606 ArgStr += Quote ? "\"" : ""; 2607 return ArgStr; 2608 } 2609 2610 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2611 public: 2612 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2613 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2614 unsigned NumRegisterParameters) 2615 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2616 Win32StructABI, NumRegisterParameters, false) {} 2617 2618 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2619 CodeGen::CodeGenModule &CGM) const override; 2620 2621 void getDependentLibraryOption(llvm::StringRef Lib, 2622 llvm::SmallString<24> &Opt) const override { 2623 Opt = "/DEFAULTLIB:"; 2624 Opt += qualifyWindowsLibrary(Lib); 2625 } 2626 2627 void getDetectMismatchOption(llvm::StringRef Name, 2628 llvm::StringRef Value, 2629 llvm::SmallString<32> &Opt) const override { 2630 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2631 } 2632 }; 2633 2634 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2635 CodeGen::CodeGenModule &CGM) { 2636 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2637 2638 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2639 Fn->addFnAttr("stack-probe-size", 2640 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2641 if (CGM.getCodeGenOpts().NoStackArgProbe) 2642 Fn->addFnAttr("no-stack-arg-probe"); 2643 } 2644 } 2645 2646 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2647 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2648 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2649 if (GV->isDeclaration()) 2650 return; 2651 addStackProbeTargetAttributes(D, GV, CGM); 2652 } 2653 2654 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2655 public: 2656 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2657 X86AVXABILevel AVXLevel) 2658 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2659 2660 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2661 CodeGen::CodeGenModule &CGM) const override; 2662 2663 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2664 return 7; 2665 } 2666 2667 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2668 llvm::Value *Address) const override { 2669 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2670 2671 // 0-15 are the 16 integer registers. 2672 // 16 is %rip. 2673 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2674 return false; 2675 } 2676 2677 void getDependentLibraryOption(llvm::StringRef Lib, 2678 llvm::SmallString<24> &Opt) const override { 2679 Opt = "/DEFAULTLIB:"; 2680 Opt += qualifyWindowsLibrary(Lib); 2681 } 2682 2683 void getDetectMismatchOption(llvm::StringRef Name, 2684 llvm::StringRef Value, 2685 llvm::SmallString<32> &Opt) const override { 2686 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2687 } 2688 }; 2689 2690 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2691 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2692 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2693 if (GV->isDeclaration()) 2694 return; 2695 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2696 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2697 llvm::Function *Fn = cast<llvm::Function>(GV); 2698 Fn->addFnAttr("stackrealign"); 2699 } 2700 2701 addX86InterruptAttrs(FD, GV, CGM); 2702 } 2703 2704 addStackProbeTargetAttributes(D, GV, CGM); 2705 } 2706 } 2707 2708 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2709 Class &Hi) const { 2710 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2711 // 2712 // (a) If one of the classes is Memory, the whole argument is passed in 2713 // memory. 2714 // 2715 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2716 // memory. 2717 // 2718 // (c) If the size of the aggregate exceeds two eightbytes and the first 2719 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2720 // argument is passed in memory. NOTE: This is necessary to keep the 2721 // ABI working for processors that don't support the __m256 type. 2722 // 2723 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2724 // 2725 // Some of these are enforced by the merging logic. Others can arise 2726 // only with unions; for example: 2727 // union { _Complex double; unsigned; } 2728 // 2729 // Note that clauses (b) and (c) were added in 0.98. 2730 // 2731 if (Hi == Memory) 2732 Lo = Memory; 2733 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2734 Lo = Memory; 2735 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2736 Lo = Memory; 2737 if (Hi == SSEUp && Lo != SSE) 2738 Hi = SSE; 2739 } 2740 2741 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2742 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2743 // classified recursively so that always two fields are 2744 // considered. The resulting class is calculated according to 2745 // the classes of the fields in the eightbyte: 2746 // 2747 // (a) If both classes are equal, this is the resulting class. 2748 // 2749 // (b) If one of the classes is NO_CLASS, the resulting class is 2750 // the other class. 2751 // 2752 // (c) If one of the classes is MEMORY, the result is the MEMORY 2753 // class. 2754 // 2755 // (d) If one of the classes is INTEGER, the result is the 2756 // INTEGER. 2757 // 2758 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2759 // MEMORY is used as class. 2760 // 2761 // (f) Otherwise class SSE is used. 2762 2763 // Accum should never be memory (we should have returned) or 2764 // ComplexX87 (because this cannot be passed in a structure). 2765 assert((Accum != Memory && Accum != ComplexX87) && 2766 "Invalid accumulated classification during merge."); 2767 if (Accum == Field || Field == NoClass) 2768 return Accum; 2769 if (Field == Memory) 2770 return Memory; 2771 if (Accum == NoClass) 2772 return Field; 2773 if (Accum == Integer || Field == Integer) 2774 return Integer; 2775 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2776 Accum == X87 || Accum == X87Up) 2777 return Memory; 2778 return SSE; 2779 } 2780 2781 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2782 Class &Lo, Class &Hi, bool isNamedArg) const { 2783 // FIXME: This code can be simplified by introducing a simple value class for 2784 // Class pairs with appropriate constructor methods for the various 2785 // situations. 2786 2787 // FIXME: Some of the split computations are wrong; unaligned vectors 2788 // shouldn't be passed in registers for example, so there is no chance they 2789 // can straddle an eightbyte. Verify & simplify. 2790 2791 Lo = Hi = NoClass; 2792 2793 Class &Current = OffsetBase < 64 ? Lo : Hi; 2794 Current = Memory; 2795 2796 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2797 BuiltinType::Kind k = BT->getKind(); 2798 2799 if (k == BuiltinType::Void) { 2800 Current = NoClass; 2801 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2802 Lo = Integer; 2803 Hi = Integer; 2804 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2805 Current = Integer; 2806 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2807 Current = SSE; 2808 } else if (k == BuiltinType::LongDouble) { 2809 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2810 if (LDF == &llvm::APFloat::IEEEquad()) { 2811 Lo = SSE; 2812 Hi = SSEUp; 2813 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2814 Lo = X87; 2815 Hi = X87Up; 2816 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2817 Current = SSE; 2818 } else 2819 llvm_unreachable("unexpected long double representation!"); 2820 } 2821 // FIXME: _Decimal32 and _Decimal64 are SSE. 2822 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2823 return; 2824 } 2825 2826 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2827 // Classify the underlying integer type. 2828 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2829 return; 2830 } 2831 2832 if (Ty->hasPointerRepresentation()) { 2833 Current = Integer; 2834 return; 2835 } 2836 2837 if (Ty->isMemberPointerType()) { 2838 if (Ty->isMemberFunctionPointerType()) { 2839 if (Has64BitPointers) { 2840 // If Has64BitPointers, this is an {i64, i64}, so classify both 2841 // Lo and Hi now. 2842 Lo = Hi = Integer; 2843 } else { 2844 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2845 // straddles an eightbyte boundary, Hi should be classified as well. 2846 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2847 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2848 if (EB_FuncPtr != EB_ThisAdj) { 2849 Lo = Hi = Integer; 2850 } else { 2851 Current = Integer; 2852 } 2853 } 2854 } else { 2855 Current = Integer; 2856 } 2857 return; 2858 } 2859 2860 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2861 uint64_t Size = getContext().getTypeSize(VT); 2862 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2863 // gcc passes the following as integer: 2864 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2865 // 2 bytes - <2 x char>, <1 x short> 2866 // 1 byte - <1 x char> 2867 Current = Integer; 2868 2869 // If this type crosses an eightbyte boundary, it should be 2870 // split. 2871 uint64_t EB_Lo = (OffsetBase) / 64; 2872 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2873 if (EB_Lo != EB_Hi) 2874 Hi = Lo; 2875 } else if (Size == 64) { 2876 QualType ElementType = VT->getElementType(); 2877 2878 // gcc passes <1 x double> in memory. :( 2879 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2880 return; 2881 2882 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2883 // pass them as integer. For platforms where clang is the de facto 2884 // platform compiler, we must continue to use integer. 2885 if (!classifyIntegerMMXAsSSE() && 2886 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2887 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2888 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2889 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2890 Current = Integer; 2891 else 2892 Current = SSE; 2893 2894 // If this type crosses an eightbyte boundary, it should be 2895 // split. 2896 if (OffsetBase && OffsetBase != 64) 2897 Hi = Lo; 2898 } else if (Size == 128 || 2899 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2900 QualType ElementType = VT->getElementType(); 2901 2902 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2903 if (passInt128VectorsInMem() && Size != 128 && 2904 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2905 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2906 return; 2907 2908 // Arguments of 256-bits are split into four eightbyte chunks. The 2909 // least significant one belongs to class SSE and all the others to class 2910 // SSEUP. The original Lo and Hi design considers that types can't be 2911 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2912 // This design isn't correct for 256-bits, but since there're no cases 2913 // where the upper parts would need to be inspected, avoid adding 2914 // complexity and just consider Hi to match the 64-256 part. 2915 // 2916 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2917 // registers if they are "named", i.e. not part of the "..." of a 2918 // variadic function. 2919 // 2920 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2921 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2922 Lo = SSE; 2923 Hi = SSEUp; 2924 } 2925 return; 2926 } 2927 2928 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2929 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2930 2931 uint64_t Size = getContext().getTypeSize(Ty); 2932 if (ET->isIntegralOrEnumerationType()) { 2933 if (Size <= 64) 2934 Current = Integer; 2935 else if (Size <= 128) 2936 Lo = Hi = Integer; 2937 } else if (ET == getContext().FloatTy) { 2938 Current = SSE; 2939 } else if (ET == getContext().DoubleTy) { 2940 Lo = Hi = SSE; 2941 } else if (ET == getContext().LongDoubleTy) { 2942 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2943 if (LDF == &llvm::APFloat::IEEEquad()) 2944 Current = Memory; 2945 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2946 Current = ComplexX87; 2947 else if (LDF == &llvm::APFloat::IEEEdouble()) 2948 Lo = Hi = SSE; 2949 else 2950 llvm_unreachable("unexpected long double representation!"); 2951 } 2952 2953 // If this complex type crosses an eightbyte boundary then it 2954 // should be split. 2955 uint64_t EB_Real = (OffsetBase) / 64; 2956 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2957 if (Hi == NoClass && EB_Real != EB_Imag) 2958 Hi = Lo; 2959 2960 return; 2961 } 2962 2963 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2964 if (EITy->getNumBits() <= 64) 2965 Current = Integer; 2966 else if (EITy->getNumBits() <= 128) 2967 Lo = Hi = Integer; 2968 // Larger values need to get passed in memory. 2969 return; 2970 } 2971 2972 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2973 // Arrays are treated like structures. 2974 2975 uint64_t Size = getContext().getTypeSize(Ty); 2976 2977 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2978 // than eight eightbytes, ..., it has class MEMORY. 2979 if (Size > 512) 2980 return; 2981 2982 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2983 // fields, it has class MEMORY. 2984 // 2985 // Only need to check alignment of array base. 2986 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2987 return; 2988 2989 // Otherwise implement simplified merge. We could be smarter about 2990 // this, but it isn't worth it and would be harder to verify. 2991 Current = NoClass; 2992 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2993 uint64_t ArraySize = AT->getSize().getZExtValue(); 2994 2995 // The only case a 256-bit wide vector could be used is when the array 2996 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2997 // to work for sizes wider than 128, early check and fallback to memory. 2998 // 2999 if (Size > 128 && 3000 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3001 return; 3002 3003 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3004 Class FieldLo, FieldHi; 3005 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3006 Lo = merge(Lo, FieldLo); 3007 Hi = merge(Hi, FieldHi); 3008 if (Lo == Memory || Hi == Memory) 3009 break; 3010 } 3011 3012 postMerge(Size, Lo, Hi); 3013 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3014 return; 3015 } 3016 3017 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3018 uint64_t Size = getContext().getTypeSize(Ty); 3019 3020 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3021 // than eight eightbytes, ..., it has class MEMORY. 3022 if (Size > 512) 3023 return; 3024 3025 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3026 // copy constructor or a non-trivial destructor, it is passed by invisible 3027 // reference. 3028 if (getRecordArgABI(RT, getCXXABI())) 3029 return; 3030 3031 const RecordDecl *RD = RT->getDecl(); 3032 3033 // Assume variable sized types are passed in memory. 3034 if (RD->hasFlexibleArrayMember()) 3035 return; 3036 3037 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3038 3039 // Reset Lo class, this will be recomputed. 3040 Current = NoClass; 3041 3042 // If this is a C++ record, classify the bases first. 3043 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3044 for (const auto &I : CXXRD->bases()) { 3045 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3046 "Unexpected base class!"); 3047 const auto *Base = 3048 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3049 3050 // Classify this field. 3051 // 3052 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3053 // single eightbyte, each is classified separately. Each eightbyte gets 3054 // initialized to class NO_CLASS. 3055 Class FieldLo, FieldHi; 3056 uint64_t Offset = 3057 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3058 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3059 Lo = merge(Lo, FieldLo); 3060 Hi = merge(Hi, FieldHi); 3061 if (Lo == Memory || Hi == Memory) { 3062 postMerge(Size, Lo, Hi); 3063 return; 3064 } 3065 } 3066 } 3067 3068 // Classify the fields one at a time, merging the results. 3069 unsigned idx = 0; 3070 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3071 LangOptions::ClangABI::Ver11 || 3072 getContext().getTargetInfo().getTriple().isPS4(); 3073 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3074 3075 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3076 i != e; ++i, ++idx) { 3077 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3078 bool BitField = i->isBitField(); 3079 3080 // Ignore padding bit-fields. 3081 if (BitField && i->isUnnamedBitfield()) 3082 continue; 3083 3084 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3085 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3086 // 3087 // The only case a 256-bit or a 512-bit wide vector could be used is when 3088 // the struct contains a single 256-bit or 512-bit element. Early check 3089 // and fallback to memory. 3090 // 3091 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3092 // than 128. 3093 if (Size > 128 && 3094 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3095 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3096 Lo = Memory; 3097 postMerge(Size, Lo, Hi); 3098 return; 3099 } 3100 // Note, skip this test for bit-fields, see below. 3101 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3102 Lo = Memory; 3103 postMerge(Size, Lo, Hi); 3104 return; 3105 } 3106 3107 // Classify this field. 3108 // 3109 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3110 // exceeds a single eightbyte, each is classified 3111 // separately. Each eightbyte gets initialized to class 3112 // NO_CLASS. 3113 Class FieldLo, FieldHi; 3114 3115 // Bit-fields require special handling, they do not force the 3116 // structure to be passed in memory even if unaligned, and 3117 // therefore they can straddle an eightbyte. 3118 if (BitField) { 3119 assert(!i->isUnnamedBitfield()); 3120 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3121 uint64_t Size = i->getBitWidthValue(getContext()); 3122 3123 uint64_t EB_Lo = Offset / 64; 3124 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3125 3126 if (EB_Lo) { 3127 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3128 FieldLo = NoClass; 3129 FieldHi = Integer; 3130 } else { 3131 FieldLo = Integer; 3132 FieldHi = EB_Hi ? Integer : NoClass; 3133 } 3134 } else 3135 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3136 Lo = merge(Lo, FieldLo); 3137 Hi = merge(Hi, FieldHi); 3138 if (Lo == Memory || Hi == Memory) 3139 break; 3140 } 3141 3142 postMerge(Size, Lo, Hi); 3143 } 3144 } 3145 3146 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3147 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3148 // place naturally. 3149 if (!isAggregateTypeForABI(Ty)) { 3150 // Treat an enum type as its underlying type. 3151 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3152 Ty = EnumTy->getDecl()->getIntegerType(); 3153 3154 if (Ty->isExtIntType()) 3155 return getNaturalAlignIndirect(Ty); 3156 3157 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3158 : ABIArgInfo::getDirect()); 3159 } 3160 3161 return getNaturalAlignIndirect(Ty); 3162 } 3163 3164 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3165 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3166 uint64_t Size = getContext().getTypeSize(VecTy); 3167 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3168 if (Size <= 64 || Size > LargestVector) 3169 return true; 3170 QualType EltTy = VecTy->getElementType(); 3171 if (passInt128VectorsInMem() && 3172 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3173 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3174 return true; 3175 } 3176 3177 return false; 3178 } 3179 3180 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3181 unsigned freeIntRegs) const { 3182 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3183 // place naturally. 3184 // 3185 // This assumption is optimistic, as there could be free registers available 3186 // when we need to pass this argument in memory, and LLVM could try to pass 3187 // the argument in the free register. This does not seem to happen currently, 3188 // but this code would be much safer if we could mark the argument with 3189 // 'onstack'. See PR12193. 3190 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3191 !Ty->isExtIntType()) { 3192 // Treat an enum type as its underlying type. 3193 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3194 Ty = EnumTy->getDecl()->getIntegerType(); 3195 3196 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3197 : ABIArgInfo::getDirect()); 3198 } 3199 3200 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3201 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3202 3203 // Compute the byval alignment. We specify the alignment of the byval in all 3204 // cases so that the mid-level optimizer knows the alignment of the byval. 3205 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3206 3207 // Attempt to avoid passing indirect results using byval when possible. This 3208 // is important for good codegen. 3209 // 3210 // We do this by coercing the value into a scalar type which the backend can 3211 // handle naturally (i.e., without using byval). 3212 // 3213 // For simplicity, we currently only do this when we have exhausted all of the 3214 // free integer registers. Doing this when there are free integer registers 3215 // would require more care, as we would have to ensure that the coerced value 3216 // did not claim the unused register. That would require either reording the 3217 // arguments to the function (so that any subsequent inreg values came first), 3218 // or only doing this optimization when there were no following arguments that 3219 // might be inreg. 3220 // 3221 // We currently expect it to be rare (particularly in well written code) for 3222 // arguments to be passed on the stack when there are still free integer 3223 // registers available (this would typically imply large structs being passed 3224 // by value), so this seems like a fair tradeoff for now. 3225 // 3226 // We can revisit this if the backend grows support for 'onstack' parameter 3227 // attributes. See PR12193. 3228 if (freeIntRegs == 0) { 3229 uint64_t Size = getContext().getTypeSize(Ty); 3230 3231 // If this type fits in an eightbyte, coerce it into the matching integral 3232 // type, which will end up on the stack (with alignment 8). 3233 if (Align == 8 && Size <= 64) 3234 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3235 Size)); 3236 } 3237 3238 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3239 } 3240 3241 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3242 /// register. Pick an LLVM IR type that will be passed as a vector register. 3243 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3244 // Wrapper structs/arrays that only contain vectors are passed just like 3245 // vectors; strip them off if present. 3246 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3247 Ty = QualType(InnerTy, 0); 3248 3249 llvm::Type *IRType = CGT.ConvertType(Ty); 3250 if (isa<llvm::VectorType>(IRType)) { 3251 // Don't pass vXi128 vectors in their native type, the backend can't 3252 // legalize them. 3253 if (passInt128VectorsInMem() && 3254 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3255 // Use a vXi64 vector. 3256 uint64_t Size = getContext().getTypeSize(Ty); 3257 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3258 Size / 64); 3259 } 3260 3261 return IRType; 3262 } 3263 3264 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3265 return IRType; 3266 3267 // We couldn't find the preferred IR vector type for 'Ty'. 3268 uint64_t Size = getContext().getTypeSize(Ty); 3269 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3270 3271 3272 // Return a LLVM IR vector type based on the size of 'Ty'. 3273 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3274 Size / 64); 3275 } 3276 3277 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3278 /// is known to either be off the end of the specified type or being in 3279 /// alignment padding. The user type specified is known to be at most 128 bits 3280 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3281 /// classification that put one of the two halves in the INTEGER class. 3282 /// 3283 /// It is conservatively correct to return false. 3284 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3285 unsigned EndBit, ASTContext &Context) { 3286 // If the bytes being queried are off the end of the type, there is no user 3287 // data hiding here. This handles analysis of builtins, vectors and other 3288 // types that don't contain interesting padding. 3289 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3290 if (TySize <= StartBit) 3291 return true; 3292 3293 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3294 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3295 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3296 3297 // Check each element to see if the element overlaps with the queried range. 3298 for (unsigned i = 0; i != NumElts; ++i) { 3299 // If the element is after the span we care about, then we're done.. 3300 unsigned EltOffset = i*EltSize; 3301 if (EltOffset >= EndBit) break; 3302 3303 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3304 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3305 EndBit-EltOffset, Context)) 3306 return false; 3307 } 3308 // If it overlaps no elements, then it is safe to process as padding. 3309 return true; 3310 } 3311 3312 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3313 const RecordDecl *RD = RT->getDecl(); 3314 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3315 3316 // If this is a C++ record, check the bases first. 3317 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3318 for (const auto &I : CXXRD->bases()) { 3319 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3320 "Unexpected base class!"); 3321 const auto *Base = 3322 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3323 3324 // If the base is after the span we care about, ignore it. 3325 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3326 if (BaseOffset >= EndBit) continue; 3327 3328 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3329 if (!BitsContainNoUserData(I.getType(), BaseStart, 3330 EndBit-BaseOffset, Context)) 3331 return false; 3332 } 3333 } 3334 3335 // Verify that no field has data that overlaps the region of interest. Yes 3336 // this could be sped up a lot by being smarter about queried fields, 3337 // however we're only looking at structs up to 16 bytes, so we don't care 3338 // much. 3339 unsigned idx = 0; 3340 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3341 i != e; ++i, ++idx) { 3342 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3343 3344 // If we found a field after the region we care about, then we're done. 3345 if (FieldOffset >= EndBit) break; 3346 3347 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3348 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3349 Context)) 3350 return false; 3351 } 3352 3353 // If nothing in this record overlapped the area of interest, then we're 3354 // clean. 3355 return true; 3356 } 3357 3358 return false; 3359 } 3360 3361 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3362 /// float member at the specified offset. For example, {int,{float}} has a 3363 /// float at offset 4. It is conservatively correct for this routine to return 3364 /// false. 3365 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3366 const llvm::DataLayout &TD) { 3367 // Base case if we find a float. 3368 if (IROffset == 0 && IRType->isFloatTy()) 3369 return true; 3370 3371 // If this is a struct, recurse into the field at the specified offset. 3372 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3373 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3374 unsigned Elt = SL->getElementContainingOffset(IROffset); 3375 IROffset -= SL->getElementOffset(Elt); 3376 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3377 } 3378 3379 // If this is an array, recurse into the field at the specified offset. 3380 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3381 llvm::Type *EltTy = ATy->getElementType(); 3382 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3383 IROffset -= IROffset/EltSize*EltSize; 3384 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3385 } 3386 3387 return false; 3388 } 3389 3390 3391 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3392 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3393 llvm::Type *X86_64ABIInfo:: 3394 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3395 QualType SourceTy, unsigned SourceOffset) const { 3396 // The only three choices we have are either double, <2 x float>, or float. We 3397 // pass as float if the last 4 bytes is just padding. This happens for 3398 // structs that contain 3 floats. 3399 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3400 SourceOffset*8+64, getContext())) 3401 return llvm::Type::getFloatTy(getVMContext()); 3402 3403 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3404 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3405 // case. 3406 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3407 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3408 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3409 2); 3410 3411 return llvm::Type::getDoubleTy(getVMContext()); 3412 } 3413 3414 3415 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3416 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3417 /// about the high or low part of an up-to-16-byte struct. This routine picks 3418 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3419 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3420 /// etc). 3421 /// 3422 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3423 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3424 /// the 8-byte value references. PrefType may be null. 3425 /// 3426 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3427 /// an offset into this that we're processing (which is always either 0 or 8). 3428 /// 3429 llvm::Type *X86_64ABIInfo:: 3430 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3431 QualType SourceTy, unsigned SourceOffset) const { 3432 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3433 // returning an 8-byte unit starting with it. See if we can safely use it. 3434 if (IROffset == 0) { 3435 // Pointers and int64's always fill the 8-byte unit. 3436 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3437 IRType->isIntegerTy(64)) 3438 return IRType; 3439 3440 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3441 // goodness in the source type is just tail padding. This is allowed to 3442 // kick in for struct {double,int} on the int, but not on 3443 // struct{double,int,int} because we wouldn't return the second int. We 3444 // have to do this analysis on the source type because we can't depend on 3445 // unions being lowered a specific way etc. 3446 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3447 IRType->isIntegerTy(32) || 3448 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3449 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3450 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3451 3452 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3453 SourceOffset*8+64, getContext())) 3454 return IRType; 3455 } 3456 } 3457 3458 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3459 // If this is a struct, recurse into the field at the specified offset. 3460 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3461 if (IROffset < SL->getSizeInBytes()) { 3462 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3463 IROffset -= SL->getElementOffset(FieldIdx); 3464 3465 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3466 SourceTy, SourceOffset); 3467 } 3468 } 3469 3470 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3471 llvm::Type *EltTy = ATy->getElementType(); 3472 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3473 unsigned EltOffset = IROffset/EltSize*EltSize; 3474 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3475 SourceOffset); 3476 } 3477 3478 // Okay, we don't have any better idea of what to pass, so we pass this in an 3479 // integer register that isn't too big to fit the rest of the struct. 3480 unsigned TySizeInBytes = 3481 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3482 3483 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3484 3485 // It is always safe to classify this as an integer type up to i64 that 3486 // isn't larger than the structure. 3487 return llvm::IntegerType::get(getVMContext(), 3488 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3489 } 3490 3491 3492 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3493 /// be used as elements of a two register pair to pass or return, return a 3494 /// first class aggregate to represent them. For example, if the low part of 3495 /// a by-value argument should be passed as i32* and the high part as float, 3496 /// return {i32*, float}. 3497 static llvm::Type * 3498 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3499 const llvm::DataLayout &TD) { 3500 // In order to correctly satisfy the ABI, we need to the high part to start 3501 // at offset 8. If the high and low parts we inferred are both 4-byte types 3502 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3503 // the second element at offset 8. Check for this: 3504 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3505 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3506 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3507 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3508 3509 // To handle this, we have to increase the size of the low part so that the 3510 // second element will start at an 8 byte offset. We can't increase the size 3511 // of the second element because it might make us access off the end of the 3512 // struct. 3513 if (HiStart != 8) { 3514 // There are usually two sorts of types the ABI generation code can produce 3515 // for the low part of a pair that aren't 8 bytes in size: float or 3516 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3517 // NaCl). 3518 // Promote these to a larger type. 3519 if (Lo->isFloatTy()) 3520 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3521 else { 3522 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3523 && "Invalid/unknown lo type"); 3524 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3525 } 3526 } 3527 3528 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3529 3530 // Verify that the second element is at an 8-byte offset. 3531 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3532 "Invalid x86-64 argument pair!"); 3533 return Result; 3534 } 3535 3536 ABIArgInfo X86_64ABIInfo:: 3537 classifyReturnType(QualType RetTy) const { 3538 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3539 // classification algorithm. 3540 X86_64ABIInfo::Class Lo, Hi; 3541 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3542 3543 // Check some invariants. 3544 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3545 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3546 3547 llvm::Type *ResType = nullptr; 3548 switch (Lo) { 3549 case NoClass: 3550 if (Hi == NoClass) 3551 return ABIArgInfo::getIgnore(); 3552 // If the low part is just padding, it takes no register, leave ResType 3553 // null. 3554 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3555 "Unknown missing lo part"); 3556 break; 3557 3558 case SSEUp: 3559 case X87Up: 3560 llvm_unreachable("Invalid classification for lo word."); 3561 3562 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3563 // hidden argument. 3564 case Memory: 3565 return getIndirectReturnResult(RetTy); 3566 3567 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3568 // available register of the sequence %rax, %rdx is used. 3569 case Integer: 3570 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3571 3572 // If we have a sign or zero extended integer, make sure to return Extend 3573 // so that the parameter gets the right LLVM IR attributes. 3574 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3575 // Treat an enum type as its underlying type. 3576 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3577 RetTy = EnumTy->getDecl()->getIntegerType(); 3578 3579 if (RetTy->isIntegralOrEnumerationType() && 3580 isPromotableIntegerTypeForABI(RetTy)) 3581 return ABIArgInfo::getExtend(RetTy); 3582 } 3583 break; 3584 3585 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3586 // available SSE register of the sequence %xmm0, %xmm1 is used. 3587 case SSE: 3588 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3589 break; 3590 3591 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3592 // returned on the X87 stack in %st0 as 80-bit x87 number. 3593 case X87: 3594 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3595 break; 3596 3597 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3598 // part of the value is returned in %st0 and the imaginary part in 3599 // %st1. 3600 case ComplexX87: 3601 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3602 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3603 llvm::Type::getX86_FP80Ty(getVMContext())); 3604 break; 3605 } 3606 3607 llvm::Type *HighPart = nullptr; 3608 switch (Hi) { 3609 // Memory was handled previously and X87 should 3610 // never occur as a hi class. 3611 case Memory: 3612 case X87: 3613 llvm_unreachable("Invalid classification for hi word."); 3614 3615 case ComplexX87: // Previously handled. 3616 case NoClass: 3617 break; 3618 3619 case Integer: 3620 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3621 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3622 return ABIArgInfo::getDirect(HighPart, 8); 3623 break; 3624 case SSE: 3625 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3626 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3627 return ABIArgInfo::getDirect(HighPart, 8); 3628 break; 3629 3630 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3631 // is passed in the next available eightbyte chunk if the last used 3632 // vector register. 3633 // 3634 // SSEUP should always be preceded by SSE, just widen. 3635 case SSEUp: 3636 assert(Lo == SSE && "Unexpected SSEUp classification."); 3637 ResType = GetByteVectorType(RetTy); 3638 break; 3639 3640 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3641 // returned together with the previous X87 value in %st0. 3642 case X87Up: 3643 // If X87Up is preceded by X87, we don't need to do 3644 // anything. However, in some cases with unions it may not be 3645 // preceded by X87. In such situations we follow gcc and pass the 3646 // extra bits in an SSE reg. 3647 if (Lo != X87) { 3648 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3649 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3650 return ABIArgInfo::getDirect(HighPart, 8); 3651 } 3652 break; 3653 } 3654 3655 // If a high part was specified, merge it together with the low part. It is 3656 // known to pass in the high eightbyte of the result. We do this by forming a 3657 // first class struct aggregate with the high and low part: {low, high} 3658 if (HighPart) 3659 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3660 3661 return ABIArgInfo::getDirect(ResType); 3662 } 3663 3664 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3665 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3666 bool isNamedArg) 3667 const 3668 { 3669 Ty = useFirstFieldIfTransparentUnion(Ty); 3670 3671 X86_64ABIInfo::Class Lo, Hi; 3672 classify(Ty, 0, Lo, Hi, isNamedArg); 3673 3674 // Check some invariants. 3675 // FIXME: Enforce these by construction. 3676 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3677 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3678 3679 neededInt = 0; 3680 neededSSE = 0; 3681 llvm::Type *ResType = nullptr; 3682 switch (Lo) { 3683 case NoClass: 3684 if (Hi == NoClass) 3685 return ABIArgInfo::getIgnore(); 3686 // If the low part is just padding, it takes no register, leave ResType 3687 // null. 3688 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3689 "Unknown missing lo part"); 3690 break; 3691 3692 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3693 // on the stack. 3694 case Memory: 3695 3696 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3697 // COMPLEX_X87, it is passed in memory. 3698 case X87: 3699 case ComplexX87: 3700 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3701 ++neededInt; 3702 return getIndirectResult(Ty, freeIntRegs); 3703 3704 case SSEUp: 3705 case X87Up: 3706 llvm_unreachable("Invalid classification for lo word."); 3707 3708 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3709 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3710 // and %r9 is used. 3711 case Integer: 3712 ++neededInt; 3713 3714 // Pick an 8-byte type based on the preferred type. 3715 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3716 3717 // If we have a sign or zero extended integer, make sure to return Extend 3718 // so that the parameter gets the right LLVM IR attributes. 3719 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3720 // Treat an enum type as its underlying type. 3721 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3722 Ty = EnumTy->getDecl()->getIntegerType(); 3723 3724 if (Ty->isIntegralOrEnumerationType() && 3725 isPromotableIntegerTypeForABI(Ty)) 3726 return ABIArgInfo::getExtend(Ty); 3727 } 3728 3729 break; 3730 3731 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3732 // available SSE register is used, the registers are taken in the 3733 // order from %xmm0 to %xmm7. 3734 case SSE: { 3735 llvm::Type *IRType = CGT.ConvertType(Ty); 3736 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3737 ++neededSSE; 3738 break; 3739 } 3740 } 3741 3742 llvm::Type *HighPart = nullptr; 3743 switch (Hi) { 3744 // Memory was handled previously, ComplexX87 and X87 should 3745 // never occur as hi classes, and X87Up must be preceded by X87, 3746 // which is passed in memory. 3747 case Memory: 3748 case X87: 3749 case ComplexX87: 3750 llvm_unreachable("Invalid classification for hi word."); 3751 3752 case NoClass: break; 3753 3754 case Integer: 3755 ++neededInt; 3756 // Pick an 8-byte type based on the preferred type. 3757 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3758 3759 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3760 return ABIArgInfo::getDirect(HighPart, 8); 3761 break; 3762 3763 // X87Up generally doesn't occur here (long double is passed in 3764 // memory), except in situations involving unions. 3765 case X87Up: 3766 case SSE: 3767 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3768 3769 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3770 return ABIArgInfo::getDirect(HighPart, 8); 3771 3772 ++neededSSE; 3773 break; 3774 3775 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3776 // eightbyte is passed in the upper half of the last used SSE 3777 // register. This only happens when 128-bit vectors are passed. 3778 case SSEUp: 3779 assert(Lo == SSE && "Unexpected SSEUp classification"); 3780 ResType = GetByteVectorType(Ty); 3781 break; 3782 } 3783 3784 // If a high part was specified, merge it together with the low part. It is 3785 // known to pass in the high eightbyte of the result. We do this by forming a 3786 // first class struct aggregate with the high and low part: {low, high} 3787 if (HighPart) 3788 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3789 3790 return ABIArgInfo::getDirect(ResType); 3791 } 3792 3793 ABIArgInfo 3794 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3795 unsigned &NeededSSE) const { 3796 auto RT = Ty->getAs<RecordType>(); 3797 assert(RT && "classifyRegCallStructType only valid with struct types"); 3798 3799 if (RT->getDecl()->hasFlexibleArrayMember()) 3800 return getIndirectReturnResult(Ty); 3801 3802 // Sum up bases 3803 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3804 if (CXXRD->isDynamicClass()) { 3805 NeededInt = NeededSSE = 0; 3806 return getIndirectReturnResult(Ty); 3807 } 3808 3809 for (const auto &I : CXXRD->bases()) 3810 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3811 .isIndirect()) { 3812 NeededInt = NeededSSE = 0; 3813 return getIndirectReturnResult(Ty); 3814 } 3815 } 3816 3817 // Sum up members 3818 for (const auto *FD : RT->getDecl()->fields()) { 3819 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3820 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3821 .isIndirect()) { 3822 NeededInt = NeededSSE = 0; 3823 return getIndirectReturnResult(Ty); 3824 } 3825 } else { 3826 unsigned LocalNeededInt, LocalNeededSSE; 3827 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3828 LocalNeededSSE, true) 3829 .isIndirect()) { 3830 NeededInt = NeededSSE = 0; 3831 return getIndirectReturnResult(Ty); 3832 } 3833 NeededInt += LocalNeededInt; 3834 NeededSSE += LocalNeededSSE; 3835 } 3836 } 3837 3838 return ABIArgInfo::getDirect(); 3839 } 3840 3841 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3842 unsigned &NeededInt, 3843 unsigned &NeededSSE) const { 3844 3845 NeededInt = 0; 3846 NeededSSE = 0; 3847 3848 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3849 } 3850 3851 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3852 3853 const unsigned CallingConv = FI.getCallingConvention(); 3854 // It is possible to force Win64 calling convention on any x86_64 target by 3855 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3856 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3857 if (CallingConv == llvm::CallingConv::Win64) { 3858 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3859 Win64ABIInfo.computeInfo(FI); 3860 return; 3861 } 3862 3863 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3864 3865 // Keep track of the number of assigned registers. 3866 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3867 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3868 unsigned NeededInt, NeededSSE; 3869 3870 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3871 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3872 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3873 FI.getReturnInfo() = 3874 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3875 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3876 FreeIntRegs -= NeededInt; 3877 FreeSSERegs -= NeededSSE; 3878 } else { 3879 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3880 } 3881 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3882 getContext().getCanonicalType(FI.getReturnType() 3883 ->getAs<ComplexType>() 3884 ->getElementType()) == 3885 getContext().LongDoubleTy) 3886 // Complex Long Double Type is passed in Memory when Regcall 3887 // calling convention is used. 3888 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3889 else 3890 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3891 } 3892 3893 // If the return value is indirect, then the hidden argument is consuming one 3894 // integer register. 3895 if (FI.getReturnInfo().isIndirect()) 3896 --FreeIntRegs; 3897 3898 // The chain argument effectively gives us another free register. 3899 if (FI.isChainCall()) 3900 ++FreeIntRegs; 3901 3902 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3903 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3904 // get assigned (in left-to-right order) for passing as follows... 3905 unsigned ArgNo = 0; 3906 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3907 it != ie; ++it, ++ArgNo) { 3908 bool IsNamedArg = ArgNo < NumRequiredArgs; 3909 3910 if (IsRegCall && it->type->isStructureOrClassType()) 3911 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3912 else 3913 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3914 NeededSSE, IsNamedArg); 3915 3916 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3917 // eightbyte of an argument, the whole argument is passed on the 3918 // stack. If registers have already been assigned for some 3919 // eightbytes of such an argument, the assignments get reverted. 3920 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3921 FreeIntRegs -= NeededInt; 3922 FreeSSERegs -= NeededSSE; 3923 } else { 3924 it->info = getIndirectResult(it->type, FreeIntRegs); 3925 } 3926 } 3927 } 3928 3929 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3930 Address VAListAddr, QualType Ty) { 3931 Address overflow_arg_area_p = 3932 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3933 llvm::Value *overflow_arg_area = 3934 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3935 3936 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3937 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3938 // It isn't stated explicitly in the standard, but in practice we use 3939 // alignment greater than 16 where necessary. 3940 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3941 if (Align > CharUnits::fromQuantity(8)) { 3942 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3943 Align); 3944 } 3945 3946 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3947 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3948 llvm::Value *Res = 3949 CGF.Builder.CreateBitCast(overflow_arg_area, 3950 llvm::PointerType::getUnqual(LTy)); 3951 3952 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3953 // l->overflow_arg_area + sizeof(type). 3954 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3955 // an 8 byte boundary. 3956 3957 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3958 llvm::Value *Offset = 3959 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3960 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3961 "overflow_arg_area.next"); 3962 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3963 3964 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3965 return Address(Res, Align); 3966 } 3967 3968 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3969 QualType Ty) const { 3970 // Assume that va_list type is correct; should be pointer to LLVM type: 3971 // struct { 3972 // i32 gp_offset; 3973 // i32 fp_offset; 3974 // i8* overflow_arg_area; 3975 // i8* reg_save_area; 3976 // }; 3977 unsigned neededInt, neededSSE; 3978 3979 Ty = getContext().getCanonicalType(Ty); 3980 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3981 /*isNamedArg*/false); 3982 3983 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3984 // in the registers. If not go to step 7. 3985 if (!neededInt && !neededSSE) 3986 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3987 3988 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3989 // general purpose registers needed to pass type and num_fp to hold 3990 // the number of floating point registers needed. 3991 3992 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3993 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3994 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3995 // 3996 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3997 // register save space). 3998 3999 llvm::Value *InRegs = nullptr; 4000 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4001 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4002 if (neededInt) { 4003 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4004 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4005 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4006 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4007 } 4008 4009 if (neededSSE) { 4010 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4011 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4012 llvm::Value *FitsInFP = 4013 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4014 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4015 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4016 } 4017 4018 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4019 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4020 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4021 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4022 4023 // Emit code to load the value if it was passed in registers. 4024 4025 CGF.EmitBlock(InRegBlock); 4026 4027 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4028 // an offset of l->gp_offset and/or l->fp_offset. This may require 4029 // copying to a temporary location in case the parameter is passed 4030 // in different register classes or requires an alignment greater 4031 // than 8 for general purpose registers and 16 for XMM registers. 4032 // 4033 // FIXME: This really results in shameful code when we end up needing to 4034 // collect arguments from different places; often what should result in a 4035 // simple assembling of a structure from scattered addresses has many more 4036 // loads than necessary. Can we clean this up? 4037 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4038 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4039 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4040 4041 Address RegAddr = Address::invalid(); 4042 if (neededInt && neededSSE) { 4043 // FIXME: Cleanup. 4044 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4045 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4046 Address Tmp = CGF.CreateMemTemp(Ty); 4047 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4048 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4049 llvm::Type *TyLo = ST->getElementType(0); 4050 llvm::Type *TyHi = ST->getElementType(1); 4051 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4052 "Unexpected ABI info for mixed regs"); 4053 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4054 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4055 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4056 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4057 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4058 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4059 4060 // Copy the first element. 4061 // FIXME: Our choice of alignment here and below is probably pessimistic. 4062 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4063 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4064 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4065 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4066 4067 // Copy the second element. 4068 V = CGF.Builder.CreateAlignedLoad( 4069 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4070 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4071 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4072 4073 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4074 } else if (neededInt) { 4075 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4076 CharUnits::fromQuantity(8)); 4077 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4078 4079 // Copy to a temporary if necessary to ensure the appropriate alignment. 4080 auto TInfo = getContext().getTypeInfoInChars(Ty); 4081 uint64_t TySize = TInfo.Width.getQuantity(); 4082 CharUnits TyAlign = TInfo.Align; 4083 4084 // Copy into a temporary if the type is more aligned than the 4085 // register save area. 4086 if (TyAlign.getQuantity() > 8) { 4087 Address Tmp = CGF.CreateMemTemp(Ty); 4088 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4089 RegAddr = Tmp; 4090 } 4091 4092 } else if (neededSSE == 1) { 4093 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4094 CharUnits::fromQuantity(16)); 4095 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4096 } else { 4097 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4098 // SSE registers are spaced 16 bytes apart in the register save 4099 // area, we need to collect the two eightbytes together. 4100 // The ABI isn't explicit about this, but it seems reasonable 4101 // to assume that the slots are 16-byte aligned, since the stack is 4102 // naturally 16-byte aligned and the prologue is expected to store 4103 // all the SSE registers to the RSA. 4104 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4105 CharUnits::fromQuantity(16)); 4106 Address RegAddrHi = 4107 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4108 CharUnits::fromQuantity(16)); 4109 llvm::Type *ST = AI.canHaveCoerceToType() 4110 ? AI.getCoerceToType() 4111 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4112 llvm::Value *V; 4113 Address Tmp = CGF.CreateMemTemp(Ty); 4114 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4115 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4116 RegAddrLo, ST->getStructElementType(0))); 4117 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4118 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4119 RegAddrHi, ST->getStructElementType(1))); 4120 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4121 4122 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4123 } 4124 4125 // AMD64-ABI 3.5.7p5: Step 5. Set: 4126 // l->gp_offset = l->gp_offset + num_gp * 8 4127 // l->fp_offset = l->fp_offset + num_fp * 16. 4128 if (neededInt) { 4129 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4130 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4131 gp_offset_p); 4132 } 4133 if (neededSSE) { 4134 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4135 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4136 fp_offset_p); 4137 } 4138 CGF.EmitBranch(ContBlock); 4139 4140 // Emit code to load the value if it was passed in memory. 4141 4142 CGF.EmitBlock(InMemBlock); 4143 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4144 4145 // Return the appropriate result. 4146 4147 CGF.EmitBlock(ContBlock); 4148 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4149 "vaarg.addr"); 4150 return ResAddr; 4151 } 4152 4153 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4154 QualType Ty) const { 4155 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4156 CGF.getContext().getTypeInfoInChars(Ty), 4157 CharUnits::fromQuantity(8), 4158 /*allowHigherAlign*/ false); 4159 } 4160 4161 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4162 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4163 const Type *Base = nullptr; 4164 uint64_t NumElts = 0; 4165 4166 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4167 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4168 FreeSSERegs -= NumElts; 4169 return getDirectX86Hva(); 4170 } 4171 return current; 4172 } 4173 4174 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4175 bool IsReturnType, bool IsVectorCall, 4176 bool IsRegCall) const { 4177 4178 if (Ty->isVoidType()) 4179 return ABIArgInfo::getIgnore(); 4180 4181 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4182 Ty = EnumTy->getDecl()->getIntegerType(); 4183 4184 TypeInfo Info = getContext().getTypeInfo(Ty); 4185 uint64_t Width = Info.Width; 4186 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4187 4188 const RecordType *RT = Ty->getAs<RecordType>(); 4189 if (RT) { 4190 if (!IsReturnType) { 4191 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4192 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4193 } 4194 4195 if (RT->getDecl()->hasFlexibleArrayMember()) 4196 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4197 4198 } 4199 4200 const Type *Base = nullptr; 4201 uint64_t NumElts = 0; 4202 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4203 // other targets. 4204 if ((IsVectorCall || IsRegCall) && 4205 isHomogeneousAggregate(Ty, Base, NumElts)) { 4206 if (IsRegCall) { 4207 if (FreeSSERegs >= NumElts) { 4208 FreeSSERegs -= NumElts; 4209 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4210 return ABIArgInfo::getDirect(); 4211 return ABIArgInfo::getExpand(); 4212 } 4213 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4214 } else if (IsVectorCall) { 4215 if (FreeSSERegs >= NumElts && 4216 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4217 FreeSSERegs -= NumElts; 4218 return ABIArgInfo::getDirect(); 4219 } else if (IsReturnType) { 4220 return ABIArgInfo::getExpand(); 4221 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4222 // HVAs are delayed and reclassified in the 2nd step. 4223 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4224 } 4225 } 4226 } 4227 4228 if (Ty->isMemberPointerType()) { 4229 // If the member pointer is represented by an LLVM int or ptr, pass it 4230 // directly. 4231 llvm::Type *LLTy = CGT.ConvertType(Ty); 4232 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4233 return ABIArgInfo::getDirect(); 4234 } 4235 4236 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4237 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4238 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4239 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4240 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4241 4242 // Otherwise, coerce it to a small integer. 4243 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4244 } 4245 4246 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4247 switch (BT->getKind()) { 4248 case BuiltinType::Bool: 4249 // Bool type is always extended to the ABI, other builtin types are not 4250 // extended. 4251 return ABIArgInfo::getExtend(Ty); 4252 4253 case BuiltinType::LongDouble: 4254 // Mingw64 GCC uses the old 80 bit extended precision floating point 4255 // unit. It passes them indirectly through memory. 4256 if (IsMingw64) { 4257 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4258 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4259 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4260 } 4261 break; 4262 4263 case BuiltinType::Int128: 4264 case BuiltinType::UInt128: 4265 // If it's a parameter type, the normal ABI rule is that arguments larger 4266 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4267 // even though it isn't particularly efficient. 4268 if (!IsReturnType) 4269 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4270 4271 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4272 // Clang matches them for compatibility. 4273 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4274 llvm::Type::getInt64Ty(getVMContext()), 2)); 4275 4276 default: 4277 break; 4278 } 4279 } 4280 4281 if (Ty->isExtIntType()) { 4282 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4283 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4284 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4285 // anyway as long is it fits in them, so we don't have to check the power of 4286 // 2. 4287 if (Width <= 64) 4288 return ABIArgInfo::getDirect(); 4289 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4290 } 4291 4292 return ABIArgInfo::getDirect(); 4293 } 4294 4295 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4296 const unsigned CC = FI.getCallingConvention(); 4297 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4298 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4299 4300 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4301 // classification rules. 4302 if (CC == llvm::CallingConv::X86_64_SysV) { 4303 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4304 SysVABIInfo.computeInfo(FI); 4305 return; 4306 } 4307 4308 unsigned FreeSSERegs = 0; 4309 if (IsVectorCall) { 4310 // We can use up to 4 SSE return registers with vectorcall. 4311 FreeSSERegs = 4; 4312 } else if (IsRegCall) { 4313 // RegCall gives us 16 SSE registers. 4314 FreeSSERegs = 16; 4315 } 4316 4317 if (!getCXXABI().classifyReturnType(FI)) 4318 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4319 IsVectorCall, IsRegCall); 4320 4321 if (IsVectorCall) { 4322 // We can use up to 6 SSE register parameters with vectorcall. 4323 FreeSSERegs = 6; 4324 } else if (IsRegCall) { 4325 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4326 FreeSSERegs = 16; 4327 } 4328 4329 unsigned ArgNum = 0; 4330 unsigned ZeroSSERegs = 0; 4331 for (auto &I : FI.arguments()) { 4332 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4333 // XMM/YMM registers. After the sixth argument, pretend no vector 4334 // registers are left. 4335 unsigned *MaybeFreeSSERegs = 4336 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4337 I.info = 4338 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4339 ++ArgNum; 4340 } 4341 4342 if (IsVectorCall) { 4343 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4344 // second pass. 4345 for (auto &I : FI.arguments()) 4346 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4347 } 4348 } 4349 4350 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4351 QualType Ty) const { 4352 4353 bool IsIndirect = false; 4354 4355 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4356 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4357 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4358 uint64_t Width = getContext().getTypeSize(Ty); 4359 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4360 } 4361 4362 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4363 CGF.getContext().getTypeInfoInChars(Ty), 4364 CharUnits::fromQuantity(8), 4365 /*allowHigherAlign*/ false); 4366 } 4367 4368 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4369 llvm::Value *Address, bool Is64Bit, 4370 bool IsAIX) { 4371 // This is calculated from the LLVM and GCC tables and verified 4372 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4373 4374 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4375 4376 llvm::IntegerType *i8 = CGF.Int8Ty; 4377 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4378 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4379 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4380 4381 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4382 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4383 4384 // 32-63: fp0-31, the 8-byte floating-point registers 4385 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4386 4387 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4388 // 64: mq 4389 // 65: lr 4390 // 66: ctr 4391 // 67: ap 4392 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4393 4394 // 68-76 are various 4-byte special-purpose registers: 4395 // 68-75 cr0-7 4396 // 76: xer 4397 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4398 4399 // 77-108: v0-31, the 16-byte vector registers 4400 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4401 4402 // 109: vrsave 4403 // 110: vscr 4404 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4405 4406 // AIX does not utilize the rest of the registers. 4407 if (IsAIX) 4408 return false; 4409 4410 // 111: spe_acc 4411 // 112: spefscr 4412 // 113: sfp 4413 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4414 4415 if (!Is64Bit) 4416 return false; 4417 4418 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4419 // or above CPU. 4420 // 64-bit only registers: 4421 // 114: tfhar 4422 // 115: tfiar 4423 // 116: texasr 4424 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4425 4426 return false; 4427 } 4428 4429 // AIX 4430 namespace { 4431 /// AIXABIInfo - The AIX XCOFF ABI information. 4432 class AIXABIInfo : public ABIInfo { 4433 const bool Is64Bit; 4434 const unsigned PtrByteSize; 4435 CharUnits getParamTypeAlignment(QualType Ty) const; 4436 4437 public: 4438 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4439 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4440 4441 bool isPromotableTypeForABI(QualType Ty) const; 4442 4443 ABIArgInfo classifyReturnType(QualType RetTy) const; 4444 ABIArgInfo classifyArgumentType(QualType Ty) const; 4445 4446 void computeInfo(CGFunctionInfo &FI) const override { 4447 if (!getCXXABI().classifyReturnType(FI)) 4448 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4449 4450 for (auto &I : FI.arguments()) 4451 I.info = classifyArgumentType(I.type); 4452 } 4453 4454 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4455 QualType Ty) const override; 4456 }; 4457 4458 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4459 const bool Is64Bit; 4460 4461 public: 4462 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4463 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4464 Is64Bit(Is64Bit) {} 4465 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4466 return 1; // r1 is the dedicated stack pointer 4467 } 4468 4469 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4470 llvm::Value *Address) const override; 4471 }; 4472 } // namespace 4473 4474 // Return true if the ABI requires Ty to be passed sign- or zero- 4475 // extended to 32/64 bits. 4476 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4477 // Treat an enum type as its underlying type. 4478 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4479 Ty = EnumTy->getDecl()->getIntegerType(); 4480 4481 // Promotable integer types are required to be promoted by the ABI. 4482 if (Ty->isPromotableIntegerType()) 4483 return true; 4484 4485 if (!Is64Bit) 4486 return false; 4487 4488 // For 64 bit mode, in addition to the usual promotable integer types, we also 4489 // need to extend all 32-bit types, since the ABI requires promotion to 64 4490 // bits. 4491 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4492 switch (BT->getKind()) { 4493 case BuiltinType::Int: 4494 case BuiltinType::UInt: 4495 return true; 4496 default: 4497 break; 4498 } 4499 4500 return false; 4501 } 4502 4503 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4504 if (RetTy->isAnyComplexType()) 4505 return ABIArgInfo::getDirect(); 4506 4507 if (RetTy->isVectorType()) 4508 return ABIArgInfo::getDirect(); 4509 4510 if (RetTy->isVoidType()) 4511 return ABIArgInfo::getIgnore(); 4512 4513 if (isAggregateTypeForABI(RetTy)) 4514 return getNaturalAlignIndirect(RetTy); 4515 4516 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4517 : ABIArgInfo::getDirect()); 4518 } 4519 4520 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4521 Ty = useFirstFieldIfTransparentUnion(Ty); 4522 4523 if (Ty->isAnyComplexType()) 4524 return ABIArgInfo::getDirect(); 4525 4526 if (Ty->isVectorType()) 4527 return ABIArgInfo::getDirect(); 4528 4529 if (isAggregateTypeForABI(Ty)) { 4530 // Records with non-trivial destructors/copy-constructors should not be 4531 // passed by value. 4532 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4533 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4534 4535 CharUnits CCAlign = getParamTypeAlignment(Ty); 4536 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4537 4538 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4539 /*Realign*/ TyAlign > CCAlign); 4540 } 4541 4542 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4543 : ABIArgInfo::getDirect()); 4544 } 4545 4546 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4547 // Complex types are passed just like their elements. 4548 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4549 Ty = CTy->getElementType(); 4550 4551 if (Ty->isVectorType()) 4552 return CharUnits::fromQuantity(16); 4553 4554 // If the structure contains a vector type, the alignment is 16. 4555 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4556 return CharUnits::fromQuantity(16); 4557 4558 return CharUnits::fromQuantity(PtrByteSize); 4559 } 4560 4561 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4562 QualType Ty) const { 4563 if (Ty->isAnyComplexType()) 4564 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4565 4566 if (Ty->isVectorType()) 4567 llvm::report_fatal_error( 4568 "vector types are not yet supported for variadic functions on AIX"); 4569 4570 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4571 TypeInfo.Align = getParamTypeAlignment(Ty); 4572 4573 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4574 4575 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4576 SlotSize, /*AllowHigher*/ true); 4577 } 4578 4579 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4580 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4581 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4582 } 4583 4584 // PowerPC-32 4585 namespace { 4586 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4587 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4588 bool IsSoftFloatABI; 4589 bool IsRetSmallStructInRegABI; 4590 4591 CharUnits getParamTypeAlignment(QualType Ty) const; 4592 4593 public: 4594 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4595 bool RetSmallStructInRegABI) 4596 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4597 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4598 4599 ABIArgInfo classifyReturnType(QualType RetTy) const; 4600 4601 void computeInfo(CGFunctionInfo &FI) const override { 4602 if (!getCXXABI().classifyReturnType(FI)) 4603 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4604 for (auto &I : FI.arguments()) 4605 I.info = classifyArgumentType(I.type); 4606 } 4607 4608 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4609 QualType Ty) const override; 4610 }; 4611 4612 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4613 public: 4614 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4615 bool RetSmallStructInRegABI) 4616 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4617 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4618 4619 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4620 const CodeGenOptions &Opts); 4621 4622 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4623 // This is recovered from gcc output. 4624 return 1; // r1 is the dedicated stack pointer 4625 } 4626 4627 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4628 llvm::Value *Address) const override; 4629 }; 4630 } 4631 4632 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4633 // Complex types are passed just like their elements. 4634 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4635 Ty = CTy->getElementType(); 4636 4637 if (Ty->isVectorType()) 4638 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4639 : 4); 4640 4641 // For single-element float/vector structs, we consider the whole type 4642 // to have the same alignment requirements as its single element. 4643 const Type *AlignTy = nullptr; 4644 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4645 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4646 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4647 (BT && BT->isFloatingPoint())) 4648 AlignTy = EltType; 4649 } 4650 4651 if (AlignTy) 4652 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4653 return CharUnits::fromQuantity(4); 4654 } 4655 4656 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4657 uint64_t Size; 4658 4659 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4660 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4661 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4662 // System V ABI (1995), page 3-22, specified: 4663 // > A structure or union whose size is less than or equal to 8 bytes 4664 // > shall be returned in r3 and r4, as if it were first stored in the 4665 // > 8-byte aligned memory area and then the low addressed word were 4666 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4667 // > the last member of the structure or union are not defined. 4668 // 4669 // GCC for big-endian PPC32 inserts the pad before the first member, 4670 // not "beyond the last member" of the struct. To stay compatible 4671 // with GCC, we coerce the struct to an integer of the same size. 4672 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4673 if (Size == 0) 4674 return ABIArgInfo::getIgnore(); 4675 else { 4676 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4677 return ABIArgInfo::getDirect(CoerceTy); 4678 } 4679 } 4680 4681 return DefaultABIInfo::classifyReturnType(RetTy); 4682 } 4683 4684 // TODO: this implementation is now likely redundant with 4685 // DefaultABIInfo::EmitVAArg. 4686 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4687 QualType Ty) const { 4688 if (getTarget().getTriple().isOSDarwin()) { 4689 auto TI = getContext().getTypeInfoInChars(Ty); 4690 TI.Align = getParamTypeAlignment(Ty); 4691 4692 CharUnits SlotSize = CharUnits::fromQuantity(4); 4693 return emitVoidPtrVAArg(CGF, VAList, Ty, 4694 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4695 /*AllowHigherAlign=*/true); 4696 } 4697 4698 const unsigned OverflowLimit = 8; 4699 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4700 // TODO: Implement this. For now ignore. 4701 (void)CTy; 4702 return Address::invalid(); // FIXME? 4703 } 4704 4705 // struct __va_list_tag { 4706 // unsigned char gpr; 4707 // unsigned char fpr; 4708 // unsigned short reserved; 4709 // void *overflow_arg_area; 4710 // void *reg_save_area; 4711 // }; 4712 4713 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4714 bool isInt = !Ty->isFloatingType(); 4715 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4716 4717 // All aggregates are passed indirectly? That doesn't seem consistent 4718 // with the argument-lowering code. 4719 bool isIndirect = isAggregateTypeForABI(Ty); 4720 4721 CGBuilderTy &Builder = CGF.Builder; 4722 4723 // The calling convention either uses 1-2 GPRs or 1 FPR. 4724 Address NumRegsAddr = Address::invalid(); 4725 if (isInt || IsSoftFloatABI) { 4726 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4727 } else { 4728 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4729 } 4730 4731 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4732 4733 // "Align" the register count when TY is i64. 4734 if (isI64 || (isF64 && IsSoftFloatABI)) { 4735 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4736 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4737 } 4738 4739 llvm::Value *CC = 4740 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4741 4742 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4743 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4744 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4745 4746 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4747 4748 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4749 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4750 4751 // Case 1: consume registers. 4752 Address RegAddr = Address::invalid(); 4753 { 4754 CGF.EmitBlock(UsingRegs); 4755 4756 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4757 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4758 CharUnits::fromQuantity(8)); 4759 assert(RegAddr.getElementType() == CGF.Int8Ty); 4760 4761 // Floating-point registers start after the general-purpose registers. 4762 if (!(isInt || IsSoftFloatABI)) { 4763 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4764 CharUnits::fromQuantity(32)); 4765 } 4766 4767 // Get the address of the saved value by scaling the number of 4768 // registers we've used by the number of 4769 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4770 llvm::Value *RegOffset = 4771 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4772 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4773 RegAddr.getPointer(), RegOffset), 4774 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4775 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4776 4777 // Increase the used-register count. 4778 NumRegs = 4779 Builder.CreateAdd(NumRegs, 4780 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4781 Builder.CreateStore(NumRegs, NumRegsAddr); 4782 4783 CGF.EmitBranch(Cont); 4784 } 4785 4786 // Case 2: consume space in the overflow area. 4787 Address MemAddr = Address::invalid(); 4788 { 4789 CGF.EmitBlock(UsingOverflow); 4790 4791 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4792 4793 // Everything in the overflow area is rounded up to a size of at least 4. 4794 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4795 4796 CharUnits Size; 4797 if (!isIndirect) { 4798 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4799 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4800 } else { 4801 Size = CGF.getPointerSize(); 4802 } 4803 4804 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4805 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4806 OverflowAreaAlign); 4807 // Round up address of argument to alignment 4808 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4809 if (Align > OverflowAreaAlign) { 4810 llvm::Value *Ptr = OverflowArea.getPointer(); 4811 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4812 Align); 4813 } 4814 4815 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4816 4817 // Increase the overflow area. 4818 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4819 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4820 CGF.EmitBranch(Cont); 4821 } 4822 4823 CGF.EmitBlock(Cont); 4824 4825 // Merge the cases with a phi. 4826 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4827 "vaarg.addr"); 4828 4829 // Load the pointer if the argument was passed indirectly. 4830 if (isIndirect) { 4831 Result = Address(Builder.CreateLoad(Result, "aggr"), 4832 getContext().getTypeAlignInChars(Ty)); 4833 } 4834 4835 return Result; 4836 } 4837 4838 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4839 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4840 assert(Triple.isPPC32()); 4841 4842 switch (Opts.getStructReturnConvention()) { 4843 case CodeGenOptions::SRCK_Default: 4844 break; 4845 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4846 return false; 4847 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4848 return true; 4849 } 4850 4851 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4852 return true; 4853 4854 return false; 4855 } 4856 4857 bool 4858 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4859 llvm::Value *Address) const { 4860 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4861 /*IsAIX*/ false); 4862 } 4863 4864 // PowerPC-64 4865 4866 namespace { 4867 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4868 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4869 public: 4870 enum ABIKind { 4871 ELFv1 = 0, 4872 ELFv2 4873 }; 4874 4875 private: 4876 static const unsigned GPRBits = 64; 4877 ABIKind Kind; 4878 bool IsSoftFloatABI; 4879 4880 public: 4881 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4882 bool SoftFloatABI) 4883 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4884 4885 bool isPromotableTypeForABI(QualType Ty) const; 4886 CharUnits getParamTypeAlignment(QualType Ty) const; 4887 4888 ABIArgInfo classifyReturnType(QualType RetTy) const; 4889 ABIArgInfo classifyArgumentType(QualType Ty) const; 4890 4891 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4892 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4893 uint64_t Members) const override; 4894 4895 // TODO: We can add more logic to computeInfo to improve performance. 4896 // Example: For aggregate arguments that fit in a register, we could 4897 // use getDirectInReg (as is done below for structs containing a single 4898 // floating-point value) to avoid pushing them to memory on function 4899 // entry. This would require changing the logic in PPCISelLowering 4900 // when lowering the parameters in the caller and args in the callee. 4901 void computeInfo(CGFunctionInfo &FI) const override { 4902 if (!getCXXABI().classifyReturnType(FI)) 4903 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4904 for (auto &I : FI.arguments()) { 4905 // We rely on the default argument classification for the most part. 4906 // One exception: An aggregate containing a single floating-point 4907 // or vector item must be passed in a register if one is available. 4908 const Type *T = isSingleElementStruct(I.type, getContext()); 4909 if (T) { 4910 const BuiltinType *BT = T->getAs<BuiltinType>(); 4911 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4912 (BT && BT->isFloatingPoint())) { 4913 QualType QT(T, 0); 4914 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4915 continue; 4916 } 4917 } 4918 I.info = classifyArgumentType(I.type); 4919 } 4920 } 4921 4922 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4923 QualType Ty) const override; 4924 4925 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4926 bool asReturnValue) const override { 4927 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4928 } 4929 4930 bool isSwiftErrorInRegister() const override { 4931 return false; 4932 } 4933 }; 4934 4935 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4936 4937 public: 4938 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4939 PPC64_SVR4_ABIInfo::ABIKind Kind, 4940 bool SoftFloatABI) 4941 : TargetCodeGenInfo( 4942 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4943 4944 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4945 // This is recovered from gcc output. 4946 return 1; // r1 is the dedicated stack pointer 4947 } 4948 4949 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4950 llvm::Value *Address) const override; 4951 }; 4952 4953 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4954 public: 4955 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4956 4957 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4958 // This is recovered from gcc output. 4959 return 1; // r1 is the dedicated stack pointer 4960 } 4961 4962 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4963 llvm::Value *Address) const override; 4964 }; 4965 4966 } 4967 4968 // Return true if the ABI requires Ty to be passed sign- or zero- 4969 // extended to 64 bits. 4970 bool 4971 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4972 // Treat an enum type as its underlying type. 4973 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4974 Ty = EnumTy->getDecl()->getIntegerType(); 4975 4976 // Promotable integer types are required to be promoted by the ABI. 4977 if (isPromotableIntegerTypeForABI(Ty)) 4978 return true; 4979 4980 // In addition to the usual promotable integer types, we also need to 4981 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4982 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4983 switch (BT->getKind()) { 4984 case BuiltinType::Int: 4985 case BuiltinType::UInt: 4986 return true; 4987 default: 4988 break; 4989 } 4990 4991 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4992 if (EIT->getNumBits() < 64) 4993 return true; 4994 4995 return false; 4996 } 4997 4998 /// isAlignedParamType - Determine whether a type requires 16-byte or 4999 /// higher alignment in the parameter area. Always returns at least 8. 5000 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5001 // Complex types are passed just like their elements. 5002 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5003 Ty = CTy->getElementType(); 5004 5005 // Only vector types of size 16 bytes need alignment (larger types are 5006 // passed via reference, smaller types are not aligned). 5007 if (Ty->isVectorType()) { 5008 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5009 } else if (Ty->isRealFloatingType() && 5010 &getContext().getFloatTypeSemantics(Ty) == 5011 &llvm::APFloat::IEEEquad()) { 5012 // According to ABI document section 'Optional Save Areas': If extended 5013 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5014 // format are supported, map them to a single quadword, quadword aligned. 5015 return CharUnits::fromQuantity(16); 5016 } 5017 5018 // For single-element float/vector structs, we consider the whole type 5019 // to have the same alignment requirements as its single element. 5020 const Type *AlignAsType = nullptr; 5021 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5022 if (EltType) { 5023 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5024 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5025 (BT && BT->isFloatingPoint())) 5026 AlignAsType = EltType; 5027 } 5028 5029 // Likewise for ELFv2 homogeneous aggregates. 5030 const Type *Base = nullptr; 5031 uint64_t Members = 0; 5032 if (!AlignAsType && Kind == ELFv2 && 5033 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5034 AlignAsType = Base; 5035 5036 // With special case aggregates, only vector base types need alignment. 5037 if (AlignAsType) { 5038 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5039 } 5040 5041 // Otherwise, we only need alignment for any aggregate type that 5042 // has an alignment requirement of >= 16 bytes. 5043 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5044 return CharUnits::fromQuantity(16); 5045 } 5046 5047 return CharUnits::fromQuantity(8); 5048 } 5049 5050 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5051 /// aggregate. Base is set to the base element type, and Members is set 5052 /// to the number of base elements. 5053 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5054 uint64_t &Members) const { 5055 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5056 uint64_t NElements = AT->getSize().getZExtValue(); 5057 if (NElements == 0) 5058 return false; 5059 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5060 return false; 5061 Members *= NElements; 5062 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5063 const RecordDecl *RD = RT->getDecl(); 5064 if (RD->hasFlexibleArrayMember()) 5065 return false; 5066 5067 Members = 0; 5068 5069 // If this is a C++ record, check the properties of the record such as 5070 // bases and ABI specific restrictions 5071 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5072 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5073 return false; 5074 5075 for (const auto &I : CXXRD->bases()) { 5076 // Ignore empty records. 5077 if (isEmptyRecord(getContext(), I.getType(), true)) 5078 continue; 5079 5080 uint64_t FldMembers; 5081 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5082 return false; 5083 5084 Members += FldMembers; 5085 } 5086 } 5087 5088 for (const auto *FD : RD->fields()) { 5089 // Ignore (non-zero arrays of) empty records. 5090 QualType FT = FD->getType(); 5091 while (const ConstantArrayType *AT = 5092 getContext().getAsConstantArrayType(FT)) { 5093 if (AT->getSize().getZExtValue() == 0) 5094 return false; 5095 FT = AT->getElementType(); 5096 } 5097 if (isEmptyRecord(getContext(), FT, true)) 5098 continue; 5099 5100 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5101 if (getContext().getLangOpts().CPlusPlus && 5102 FD->isZeroLengthBitField(getContext())) 5103 continue; 5104 5105 uint64_t FldMembers; 5106 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5107 return false; 5108 5109 Members = (RD->isUnion() ? 5110 std::max(Members, FldMembers) : Members + FldMembers); 5111 } 5112 5113 if (!Base) 5114 return false; 5115 5116 // Ensure there is no padding. 5117 if (getContext().getTypeSize(Base) * Members != 5118 getContext().getTypeSize(Ty)) 5119 return false; 5120 } else { 5121 Members = 1; 5122 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5123 Members = 2; 5124 Ty = CT->getElementType(); 5125 } 5126 5127 // Most ABIs only support float, double, and some vector type widths. 5128 if (!isHomogeneousAggregateBaseType(Ty)) 5129 return false; 5130 5131 // The base type must be the same for all members. Types that 5132 // agree in both total size and mode (float vs. vector) are 5133 // treated as being equivalent here. 5134 const Type *TyPtr = Ty.getTypePtr(); 5135 if (!Base) { 5136 Base = TyPtr; 5137 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5138 // so make sure to widen it explicitly. 5139 if (const VectorType *VT = Base->getAs<VectorType>()) { 5140 QualType EltTy = VT->getElementType(); 5141 unsigned NumElements = 5142 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5143 Base = getContext() 5144 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5145 .getTypePtr(); 5146 } 5147 } 5148 5149 if (Base->isVectorType() != TyPtr->isVectorType() || 5150 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5151 return false; 5152 } 5153 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5154 } 5155 5156 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5157 // Homogeneous aggregates for ELFv2 must have base types of float, 5158 // double, long double, or 128-bit vectors. 5159 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5160 if (BT->getKind() == BuiltinType::Float || 5161 BT->getKind() == BuiltinType::Double || 5162 BT->getKind() == BuiltinType::LongDouble || 5163 (getContext().getTargetInfo().hasFloat128Type() && 5164 (BT->getKind() == BuiltinType::Float128))) { 5165 if (IsSoftFloatABI) 5166 return false; 5167 return true; 5168 } 5169 } 5170 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5171 if (getContext().getTypeSize(VT) == 128) 5172 return true; 5173 } 5174 return false; 5175 } 5176 5177 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5178 const Type *Base, uint64_t Members) const { 5179 // Vector and fp128 types require one register, other floating point types 5180 // require one or two registers depending on their size. 5181 uint32_t NumRegs = 5182 ((getContext().getTargetInfo().hasFloat128Type() && 5183 Base->isFloat128Type()) || 5184 Base->isVectorType()) ? 1 5185 : (getContext().getTypeSize(Base) + 63) / 64; 5186 5187 // Homogeneous Aggregates may occupy at most 8 registers. 5188 return Members * NumRegs <= 8; 5189 } 5190 5191 ABIArgInfo 5192 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5193 Ty = useFirstFieldIfTransparentUnion(Ty); 5194 5195 if (Ty->isAnyComplexType()) 5196 return ABIArgInfo::getDirect(); 5197 5198 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5199 // or via reference (larger than 16 bytes). 5200 if (Ty->isVectorType()) { 5201 uint64_t Size = getContext().getTypeSize(Ty); 5202 if (Size > 128) 5203 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5204 else if (Size < 128) { 5205 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5206 return ABIArgInfo::getDirect(CoerceTy); 5207 } 5208 } 5209 5210 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5211 if (EIT->getNumBits() > 128) 5212 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5213 5214 if (isAggregateTypeForABI(Ty)) { 5215 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5216 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5217 5218 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5219 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5220 5221 // ELFv2 homogeneous aggregates are passed as array types. 5222 const Type *Base = nullptr; 5223 uint64_t Members = 0; 5224 if (Kind == ELFv2 && 5225 isHomogeneousAggregate(Ty, Base, Members)) { 5226 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5227 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5228 return ABIArgInfo::getDirect(CoerceTy); 5229 } 5230 5231 // If an aggregate may end up fully in registers, we do not 5232 // use the ByVal method, but pass the aggregate as array. 5233 // This is usually beneficial since we avoid forcing the 5234 // back-end to store the argument to memory. 5235 uint64_t Bits = getContext().getTypeSize(Ty); 5236 if (Bits > 0 && Bits <= 8 * GPRBits) { 5237 llvm::Type *CoerceTy; 5238 5239 // Types up to 8 bytes are passed as integer type (which will be 5240 // properly aligned in the argument save area doubleword). 5241 if (Bits <= GPRBits) 5242 CoerceTy = 5243 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5244 // Larger types are passed as arrays, with the base type selected 5245 // according to the required alignment in the save area. 5246 else { 5247 uint64_t RegBits = ABIAlign * 8; 5248 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5249 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5250 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5251 } 5252 5253 return ABIArgInfo::getDirect(CoerceTy); 5254 } 5255 5256 // All other aggregates are passed ByVal. 5257 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5258 /*ByVal=*/true, 5259 /*Realign=*/TyAlign > ABIAlign); 5260 } 5261 5262 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5263 : ABIArgInfo::getDirect()); 5264 } 5265 5266 ABIArgInfo 5267 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5268 if (RetTy->isVoidType()) 5269 return ABIArgInfo::getIgnore(); 5270 5271 if (RetTy->isAnyComplexType()) 5272 return ABIArgInfo::getDirect(); 5273 5274 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5275 // or via reference (larger than 16 bytes). 5276 if (RetTy->isVectorType()) { 5277 uint64_t Size = getContext().getTypeSize(RetTy); 5278 if (Size > 128) 5279 return getNaturalAlignIndirect(RetTy); 5280 else if (Size < 128) { 5281 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5282 return ABIArgInfo::getDirect(CoerceTy); 5283 } 5284 } 5285 5286 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5287 if (EIT->getNumBits() > 128) 5288 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5289 5290 if (isAggregateTypeForABI(RetTy)) { 5291 // ELFv2 homogeneous aggregates are returned as array types. 5292 const Type *Base = nullptr; 5293 uint64_t Members = 0; 5294 if (Kind == ELFv2 && 5295 isHomogeneousAggregate(RetTy, Base, Members)) { 5296 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5297 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5298 return ABIArgInfo::getDirect(CoerceTy); 5299 } 5300 5301 // ELFv2 small aggregates are returned in up to two registers. 5302 uint64_t Bits = getContext().getTypeSize(RetTy); 5303 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5304 if (Bits == 0) 5305 return ABIArgInfo::getIgnore(); 5306 5307 llvm::Type *CoerceTy; 5308 if (Bits > GPRBits) { 5309 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5310 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5311 } else 5312 CoerceTy = 5313 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5314 return ABIArgInfo::getDirect(CoerceTy); 5315 } 5316 5317 // All other aggregates are returned indirectly. 5318 return getNaturalAlignIndirect(RetTy); 5319 } 5320 5321 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5322 : ABIArgInfo::getDirect()); 5323 } 5324 5325 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5326 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5327 QualType Ty) const { 5328 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5329 TypeInfo.Align = getParamTypeAlignment(Ty); 5330 5331 CharUnits SlotSize = CharUnits::fromQuantity(8); 5332 5333 // If we have a complex type and the base type is smaller than 8 bytes, 5334 // the ABI calls for the real and imaginary parts to be right-adjusted 5335 // in separate doublewords. However, Clang expects us to produce a 5336 // pointer to a structure with the two parts packed tightly. So generate 5337 // loads of the real and imaginary parts relative to the va_list pointer, 5338 // and store them to a temporary structure. 5339 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5340 CharUnits EltSize = TypeInfo.Width / 2; 5341 if (EltSize < SlotSize) { 5342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5343 SlotSize * 2, SlotSize, 5344 SlotSize, /*AllowHigher*/ true); 5345 5346 Address RealAddr = Addr; 5347 Address ImagAddr = RealAddr; 5348 if (CGF.CGM.getDataLayout().isBigEndian()) { 5349 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5350 SlotSize - EltSize); 5351 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5352 2 * SlotSize - EltSize); 5353 } else { 5354 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5355 } 5356 5357 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5358 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5359 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5360 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5361 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5362 5363 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5364 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5365 /*init*/ true); 5366 return Temp; 5367 } 5368 } 5369 5370 // Otherwise, just use the general rule. 5371 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5372 TypeInfo, SlotSize, /*AllowHigher*/ true); 5373 } 5374 5375 bool 5376 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5377 CodeGen::CodeGenFunction &CGF, 5378 llvm::Value *Address) const { 5379 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5380 /*IsAIX*/ false); 5381 } 5382 5383 bool 5384 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5385 llvm::Value *Address) const { 5386 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5387 /*IsAIX*/ false); 5388 } 5389 5390 //===----------------------------------------------------------------------===// 5391 // AArch64 ABI Implementation 5392 //===----------------------------------------------------------------------===// 5393 5394 namespace { 5395 5396 class AArch64ABIInfo : public SwiftABIInfo { 5397 public: 5398 enum ABIKind { 5399 AAPCS = 0, 5400 DarwinPCS, 5401 Win64 5402 }; 5403 5404 private: 5405 ABIKind Kind; 5406 5407 public: 5408 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5409 : SwiftABIInfo(CGT), Kind(Kind) {} 5410 5411 private: 5412 ABIKind getABIKind() const { return Kind; } 5413 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5414 5415 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5416 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5417 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5418 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5419 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5420 uint64_t Members) const override; 5421 5422 bool isIllegalVectorType(QualType Ty) const; 5423 5424 void computeInfo(CGFunctionInfo &FI) const override { 5425 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5426 FI.getReturnInfo() = 5427 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5428 5429 for (auto &it : FI.arguments()) 5430 it.info = classifyArgumentType(it.type); 5431 } 5432 5433 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5434 CodeGenFunction &CGF) const; 5435 5436 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5437 CodeGenFunction &CGF) const; 5438 5439 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5440 QualType Ty) const override { 5441 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5442 if (isa<llvm::ScalableVectorType>(BaseTy)) 5443 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5444 "currently not supported"); 5445 5446 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5447 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5448 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5449 } 5450 5451 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5452 QualType Ty) const override; 5453 5454 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5455 bool asReturnValue) const override { 5456 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5457 } 5458 bool isSwiftErrorInRegister() const override { 5459 return true; 5460 } 5461 5462 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5463 unsigned elts) const override; 5464 5465 bool allowBFloatArgsAndRet() const override { 5466 return getTarget().hasBFloat16Type(); 5467 } 5468 }; 5469 5470 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5471 public: 5472 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5473 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5474 5475 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5476 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5477 } 5478 5479 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5480 return 31; 5481 } 5482 5483 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5484 5485 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5486 CodeGen::CodeGenModule &CGM) const override { 5487 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5488 if (!FD) 5489 return; 5490 5491 const auto *TA = FD->getAttr<TargetAttr>(); 5492 if (TA == nullptr) 5493 return; 5494 5495 ParsedTargetAttr Attr = TA->parse(); 5496 if (Attr.BranchProtection.empty()) 5497 return; 5498 5499 TargetInfo::BranchProtectionInfo BPI; 5500 StringRef Error; 5501 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5502 BPI, Error); 5503 assert(Error.empty()); 5504 5505 auto *Fn = cast<llvm::Function>(GV); 5506 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5507 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5508 5509 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5510 Fn->addFnAttr("sign-return-address-key", 5511 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5512 ? "a_key" 5513 : "b_key"); 5514 } 5515 5516 Fn->addFnAttr("branch-target-enforcement", 5517 BPI.BranchTargetEnforcement ? "true" : "false"); 5518 } 5519 }; 5520 5521 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5522 public: 5523 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5524 : AArch64TargetCodeGenInfo(CGT, K) {} 5525 5526 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5527 CodeGen::CodeGenModule &CGM) const override; 5528 5529 void getDependentLibraryOption(llvm::StringRef Lib, 5530 llvm::SmallString<24> &Opt) const override { 5531 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5532 } 5533 5534 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5535 llvm::SmallString<32> &Opt) const override { 5536 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5537 } 5538 }; 5539 5540 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5541 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5542 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5543 if (GV->isDeclaration()) 5544 return; 5545 addStackProbeTargetAttributes(D, GV, CGM); 5546 } 5547 } 5548 5549 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5550 assert(Ty->isVectorType() && "expected vector type!"); 5551 5552 const auto *VT = Ty->castAs<VectorType>(); 5553 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5554 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5555 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5556 BuiltinType::UChar && 5557 "unexpected builtin type for SVE predicate!"); 5558 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5559 llvm::Type::getInt1Ty(getVMContext()), 16)); 5560 } 5561 5562 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5563 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5564 5565 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5566 llvm::ScalableVectorType *ResType = nullptr; 5567 switch (BT->getKind()) { 5568 default: 5569 llvm_unreachable("unexpected builtin type for SVE vector!"); 5570 case BuiltinType::SChar: 5571 case BuiltinType::UChar: 5572 ResType = llvm::ScalableVectorType::get( 5573 llvm::Type::getInt8Ty(getVMContext()), 16); 5574 break; 5575 case BuiltinType::Short: 5576 case BuiltinType::UShort: 5577 ResType = llvm::ScalableVectorType::get( 5578 llvm::Type::getInt16Ty(getVMContext()), 8); 5579 break; 5580 case BuiltinType::Int: 5581 case BuiltinType::UInt: 5582 ResType = llvm::ScalableVectorType::get( 5583 llvm::Type::getInt32Ty(getVMContext()), 4); 5584 break; 5585 case BuiltinType::Long: 5586 case BuiltinType::ULong: 5587 ResType = llvm::ScalableVectorType::get( 5588 llvm::Type::getInt64Ty(getVMContext()), 2); 5589 break; 5590 case BuiltinType::Half: 5591 ResType = llvm::ScalableVectorType::get( 5592 llvm::Type::getHalfTy(getVMContext()), 8); 5593 break; 5594 case BuiltinType::Float: 5595 ResType = llvm::ScalableVectorType::get( 5596 llvm::Type::getFloatTy(getVMContext()), 4); 5597 break; 5598 case BuiltinType::Double: 5599 ResType = llvm::ScalableVectorType::get( 5600 llvm::Type::getDoubleTy(getVMContext()), 2); 5601 break; 5602 case BuiltinType::BFloat16: 5603 ResType = llvm::ScalableVectorType::get( 5604 llvm::Type::getBFloatTy(getVMContext()), 8); 5605 break; 5606 } 5607 return ABIArgInfo::getDirect(ResType); 5608 } 5609 5610 uint64_t Size = getContext().getTypeSize(Ty); 5611 // Android promotes <2 x i8> to i16, not i32 5612 if (isAndroid() && (Size <= 16)) { 5613 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5614 return ABIArgInfo::getDirect(ResType); 5615 } 5616 if (Size <= 32) { 5617 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5618 return ABIArgInfo::getDirect(ResType); 5619 } 5620 if (Size == 64) { 5621 auto *ResType = 5622 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5623 return ABIArgInfo::getDirect(ResType); 5624 } 5625 if (Size == 128) { 5626 auto *ResType = 5627 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5628 return ABIArgInfo::getDirect(ResType); 5629 } 5630 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5631 } 5632 5633 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5634 Ty = useFirstFieldIfTransparentUnion(Ty); 5635 5636 // Handle illegal vector types here. 5637 if (isIllegalVectorType(Ty)) 5638 return coerceIllegalVector(Ty); 5639 5640 if (!isAggregateTypeForABI(Ty)) { 5641 // Treat an enum type as its underlying type. 5642 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5643 Ty = EnumTy->getDecl()->getIntegerType(); 5644 5645 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5646 if (EIT->getNumBits() > 128) 5647 return getNaturalAlignIndirect(Ty); 5648 5649 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5650 ? ABIArgInfo::getExtend(Ty) 5651 : ABIArgInfo::getDirect()); 5652 } 5653 5654 // Structures with either a non-trivial destructor or a non-trivial 5655 // copy constructor are always indirect. 5656 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5657 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5658 CGCXXABI::RAA_DirectInMemory); 5659 } 5660 5661 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5662 // elsewhere for GNU compatibility. 5663 uint64_t Size = getContext().getTypeSize(Ty); 5664 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5665 if (IsEmpty || Size == 0) { 5666 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5667 return ABIArgInfo::getIgnore(); 5668 5669 // GNU C mode. The only argument that gets ignored is an empty one with size 5670 // 0. 5671 if (IsEmpty && Size == 0) 5672 return ABIArgInfo::getIgnore(); 5673 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5674 } 5675 5676 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5677 const Type *Base = nullptr; 5678 uint64_t Members = 0; 5679 if (isHomogeneousAggregate(Ty, Base, Members)) { 5680 return ABIArgInfo::getDirect( 5681 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5682 } 5683 5684 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5685 if (Size <= 128) { 5686 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5687 // same size and alignment. 5688 if (getTarget().isRenderScriptTarget()) { 5689 return coerceToIntArray(Ty, getContext(), getVMContext()); 5690 } 5691 unsigned Alignment; 5692 if (Kind == AArch64ABIInfo::AAPCS) { 5693 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5694 Alignment = Alignment < 128 ? 64 : 128; 5695 } else { 5696 Alignment = std::max(getContext().getTypeAlign(Ty), 5697 (unsigned)getTarget().getPointerWidth(0)); 5698 } 5699 Size = llvm::alignTo(Size, Alignment); 5700 5701 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5702 // For aggregates with 16-byte alignment, we use i128. 5703 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5704 return ABIArgInfo::getDirect( 5705 Size == Alignment ? BaseTy 5706 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5707 } 5708 5709 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5710 } 5711 5712 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5713 bool IsVariadic) const { 5714 if (RetTy->isVoidType()) 5715 return ABIArgInfo::getIgnore(); 5716 5717 if (const auto *VT = RetTy->getAs<VectorType>()) { 5718 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5719 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5720 return coerceIllegalVector(RetTy); 5721 } 5722 5723 // Large vector types should be returned via memory. 5724 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5725 return getNaturalAlignIndirect(RetTy); 5726 5727 if (!isAggregateTypeForABI(RetTy)) { 5728 // Treat an enum type as its underlying type. 5729 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5730 RetTy = EnumTy->getDecl()->getIntegerType(); 5731 5732 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5733 if (EIT->getNumBits() > 128) 5734 return getNaturalAlignIndirect(RetTy); 5735 5736 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5737 ? ABIArgInfo::getExtend(RetTy) 5738 : ABIArgInfo::getDirect()); 5739 } 5740 5741 uint64_t Size = getContext().getTypeSize(RetTy); 5742 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5743 return ABIArgInfo::getIgnore(); 5744 5745 const Type *Base = nullptr; 5746 uint64_t Members = 0; 5747 if (isHomogeneousAggregate(RetTy, Base, Members) && 5748 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5749 IsVariadic)) 5750 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5751 return ABIArgInfo::getDirect(); 5752 5753 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5754 if (Size <= 128) { 5755 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5756 // same size and alignment. 5757 if (getTarget().isRenderScriptTarget()) { 5758 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5759 } 5760 unsigned Alignment = getContext().getTypeAlign(RetTy); 5761 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5762 5763 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5764 // For aggregates with 16-byte alignment, we use i128. 5765 if (Alignment < 128 && Size == 128) { 5766 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5767 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5768 } 5769 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5770 } 5771 5772 return getNaturalAlignIndirect(RetTy); 5773 } 5774 5775 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5776 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5777 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5778 // Check whether VT is a fixed-length SVE vector. These types are 5779 // represented as scalable vectors in function args/return and must be 5780 // coerced from fixed vectors. 5781 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5782 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5783 return true; 5784 5785 // Check whether VT is legal. 5786 unsigned NumElements = VT->getNumElements(); 5787 uint64_t Size = getContext().getTypeSize(VT); 5788 // NumElements should be power of 2. 5789 if (!llvm::isPowerOf2_32(NumElements)) 5790 return true; 5791 5792 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5793 // vectors for some reason. 5794 llvm::Triple Triple = getTarget().getTriple(); 5795 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5796 Triple.isOSBinFormatMachO()) 5797 return Size <= 32; 5798 5799 return Size != 64 && (Size != 128 || NumElements == 1); 5800 } 5801 return false; 5802 } 5803 5804 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5805 llvm::Type *eltTy, 5806 unsigned elts) const { 5807 if (!llvm::isPowerOf2_32(elts)) 5808 return false; 5809 if (totalSize.getQuantity() != 8 && 5810 (totalSize.getQuantity() != 16 || elts == 1)) 5811 return false; 5812 return true; 5813 } 5814 5815 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5816 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5817 // point type or a short-vector type. This is the same as the 32-bit ABI, 5818 // but with the difference that any floating-point type is allowed, 5819 // including __fp16. 5820 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5821 if (BT->isFloatingPoint()) 5822 return true; 5823 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5824 unsigned VecSize = getContext().getTypeSize(VT); 5825 if (VecSize == 64 || VecSize == 128) 5826 return true; 5827 } 5828 return false; 5829 } 5830 5831 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5832 uint64_t Members) const { 5833 return Members <= 4; 5834 } 5835 5836 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5837 QualType Ty, 5838 CodeGenFunction &CGF) const { 5839 ABIArgInfo AI = classifyArgumentType(Ty); 5840 bool IsIndirect = AI.isIndirect(); 5841 5842 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5843 if (IsIndirect) 5844 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5845 else if (AI.getCoerceToType()) 5846 BaseTy = AI.getCoerceToType(); 5847 5848 unsigned NumRegs = 1; 5849 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5850 BaseTy = ArrTy->getElementType(); 5851 NumRegs = ArrTy->getNumElements(); 5852 } 5853 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5854 5855 // The AArch64 va_list type and handling is specified in the Procedure Call 5856 // Standard, section B.4: 5857 // 5858 // struct { 5859 // void *__stack; 5860 // void *__gr_top; 5861 // void *__vr_top; 5862 // int __gr_offs; 5863 // int __vr_offs; 5864 // }; 5865 5866 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5867 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5868 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5869 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5870 5871 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5872 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5873 5874 Address reg_offs_p = Address::invalid(); 5875 llvm::Value *reg_offs = nullptr; 5876 int reg_top_index; 5877 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5878 if (!IsFPR) { 5879 // 3 is the field number of __gr_offs 5880 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5881 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5882 reg_top_index = 1; // field number for __gr_top 5883 RegSize = llvm::alignTo(RegSize, 8); 5884 } else { 5885 // 4 is the field number of __vr_offs. 5886 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5887 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5888 reg_top_index = 2; // field number for __vr_top 5889 RegSize = 16 * NumRegs; 5890 } 5891 5892 //======================================= 5893 // Find out where argument was passed 5894 //======================================= 5895 5896 // If reg_offs >= 0 we're already using the stack for this type of 5897 // argument. We don't want to keep updating reg_offs (in case it overflows, 5898 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5899 // whatever they get). 5900 llvm::Value *UsingStack = nullptr; 5901 UsingStack = CGF.Builder.CreateICmpSGE( 5902 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5903 5904 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5905 5906 // Otherwise, at least some kind of argument could go in these registers, the 5907 // question is whether this particular type is too big. 5908 CGF.EmitBlock(MaybeRegBlock); 5909 5910 // Integer arguments may need to correct register alignment (for example a 5911 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5912 // align __gr_offs to calculate the potential address. 5913 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5914 int Align = TyAlign.getQuantity(); 5915 5916 reg_offs = CGF.Builder.CreateAdd( 5917 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5918 "align_regoffs"); 5919 reg_offs = CGF.Builder.CreateAnd( 5920 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5921 "aligned_regoffs"); 5922 } 5923 5924 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5925 // The fact that this is done unconditionally reflects the fact that 5926 // allocating an argument to the stack also uses up all the remaining 5927 // registers of the appropriate kind. 5928 llvm::Value *NewOffset = nullptr; 5929 NewOffset = CGF.Builder.CreateAdd( 5930 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5931 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5932 5933 // Now we're in a position to decide whether this argument really was in 5934 // registers or not. 5935 llvm::Value *InRegs = nullptr; 5936 InRegs = CGF.Builder.CreateICmpSLE( 5937 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5938 5939 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5940 5941 //======================================= 5942 // Argument was in registers 5943 //======================================= 5944 5945 // Now we emit the code for if the argument was originally passed in 5946 // registers. First start the appropriate block: 5947 CGF.EmitBlock(InRegBlock); 5948 5949 llvm::Value *reg_top = nullptr; 5950 Address reg_top_p = 5951 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5952 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5953 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5954 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5955 Address RegAddr = Address::invalid(); 5956 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5957 5958 if (IsIndirect) { 5959 // If it's been passed indirectly (actually a struct), whatever we find from 5960 // stored registers or on the stack will actually be a struct **. 5961 MemTy = llvm::PointerType::getUnqual(MemTy); 5962 } 5963 5964 const Type *Base = nullptr; 5965 uint64_t NumMembers = 0; 5966 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5967 if (IsHFA && NumMembers > 1) { 5968 // Homogeneous aggregates passed in registers will have their elements split 5969 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5970 // qN+1, ...). We reload and store into a temporary local variable 5971 // contiguously. 5972 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5973 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5974 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5975 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5976 Address Tmp = CGF.CreateTempAlloca(HFATy, 5977 std::max(TyAlign, BaseTyInfo.Align)); 5978 5979 // On big-endian platforms, the value will be right-aligned in its slot. 5980 int Offset = 0; 5981 if (CGF.CGM.getDataLayout().isBigEndian() && 5982 BaseTyInfo.Width.getQuantity() < 16) 5983 Offset = 16 - BaseTyInfo.Width.getQuantity(); 5984 5985 for (unsigned i = 0; i < NumMembers; ++i) { 5986 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5987 Address LoadAddr = 5988 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5989 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5990 5991 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5992 5993 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5994 CGF.Builder.CreateStore(Elem, StoreAddr); 5995 } 5996 5997 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5998 } else { 5999 // Otherwise the object is contiguous in memory. 6000 6001 // It might be right-aligned in its slot. 6002 CharUnits SlotSize = BaseAddr.getAlignment(); 6003 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6004 (IsHFA || !isAggregateTypeForABI(Ty)) && 6005 TySize < SlotSize) { 6006 CharUnits Offset = SlotSize - TySize; 6007 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6008 } 6009 6010 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6011 } 6012 6013 CGF.EmitBranch(ContBlock); 6014 6015 //======================================= 6016 // Argument was on the stack 6017 //======================================= 6018 CGF.EmitBlock(OnStackBlock); 6019 6020 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6021 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6022 6023 // Again, stack arguments may need realignment. In this case both integer and 6024 // floating-point ones might be affected. 6025 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6026 int Align = TyAlign.getQuantity(); 6027 6028 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6029 6030 OnStackPtr = CGF.Builder.CreateAdd( 6031 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6032 "align_stack"); 6033 OnStackPtr = CGF.Builder.CreateAnd( 6034 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6035 "align_stack"); 6036 6037 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6038 } 6039 Address OnStackAddr(OnStackPtr, 6040 std::max(CharUnits::fromQuantity(8), TyAlign)); 6041 6042 // All stack slots are multiples of 8 bytes. 6043 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6044 CharUnits StackSize; 6045 if (IsIndirect) 6046 StackSize = StackSlotSize; 6047 else 6048 StackSize = TySize.alignTo(StackSlotSize); 6049 6050 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6051 llvm::Value *NewStack = 6052 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6053 6054 // Write the new value of __stack for the next call to va_arg 6055 CGF.Builder.CreateStore(NewStack, stack_p); 6056 6057 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6058 TySize < StackSlotSize) { 6059 CharUnits Offset = StackSlotSize - TySize; 6060 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6061 } 6062 6063 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6064 6065 CGF.EmitBranch(ContBlock); 6066 6067 //======================================= 6068 // Tidy up 6069 //======================================= 6070 CGF.EmitBlock(ContBlock); 6071 6072 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6073 OnStackAddr, OnStackBlock, "vaargs.addr"); 6074 6075 if (IsIndirect) 6076 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6077 TyAlign); 6078 6079 return ResAddr; 6080 } 6081 6082 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6083 CodeGenFunction &CGF) const { 6084 // The backend's lowering doesn't support va_arg for aggregates or 6085 // illegal vector types. Lower VAArg here for these cases and use 6086 // the LLVM va_arg instruction for everything else. 6087 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6088 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6089 6090 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6091 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6092 6093 // Empty records are ignored for parameter passing purposes. 6094 if (isEmptyRecord(getContext(), Ty, true)) { 6095 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6096 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6097 return Addr; 6098 } 6099 6100 // The size of the actual thing passed, which might end up just 6101 // being a pointer for indirect types. 6102 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6103 6104 // Arguments bigger than 16 bytes which aren't homogeneous 6105 // aggregates should be passed indirectly. 6106 bool IsIndirect = false; 6107 if (TyInfo.Width.getQuantity() > 16) { 6108 const Type *Base = nullptr; 6109 uint64_t Members = 0; 6110 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6111 } 6112 6113 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6114 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6115 } 6116 6117 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6118 QualType Ty) const { 6119 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6120 CGF.getContext().getTypeInfoInChars(Ty), 6121 CharUnits::fromQuantity(8), 6122 /*allowHigherAlign*/ false); 6123 } 6124 6125 //===----------------------------------------------------------------------===// 6126 // ARM ABI Implementation 6127 //===----------------------------------------------------------------------===// 6128 6129 namespace { 6130 6131 class ARMABIInfo : public SwiftABIInfo { 6132 public: 6133 enum ABIKind { 6134 APCS = 0, 6135 AAPCS = 1, 6136 AAPCS_VFP = 2, 6137 AAPCS16_VFP = 3, 6138 }; 6139 6140 private: 6141 ABIKind Kind; 6142 bool IsFloatABISoftFP; 6143 6144 public: 6145 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6146 : SwiftABIInfo(CGT), Kind(_Kind) { 6147 setCCs(); 6148 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6149 CGT.getCodeGenOpts().FloatABI == ""; // default 6150 } 6151 6152 bool isEABI() const { 6153 switch (getTarget().getTriple().getEnvironment()) { 6154 case llvm::Triple::Android: 6155 case llvm::Triple::EABI: 6156 case llvm::Triple::EABIHF: 6157 case llvm::Triple::GNUEABI: 6158 case llvm::Triple::GNUEABIHF: 6159 case llvm::Triple::MuslEABI: 6160 case llvm::Triple::MuslEABIHF: 6161 return true; 6162 default: 6163 return false; 6164 } 6165 } 6166 6167 bool isEABIHF() const { 6168 switch (getTarget().getTriple().getEnvironment()) { 6169 case llvm::Triple::EABIHF: 6170 case llvm::Triple::GNUEABIHF: 6171 case llvm::Triple::MuslEABIHF: 6172 return true; 6173 default: 6174 return false; 6175 } 6176 } 6177 6178 ABIKind getABIKind() const { return Kind; } 6179 6180 bool allowBFloatArgsAndRet() const override { 6181 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6182 } 6183 6184 private: 6185 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6186 unsigned functionCallConv) const; 6187 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6188 unsigned functionCallConv) const; 6189 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6190 uint64_t Members) const; 6191 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6192 bool isIllegalVectorType(QualType Ty) const; 6193 bool containsAnyFP16Vectors(QualType Ty) const; 6194 6195 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6196 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6197 uint64_t Members) const override; 6198 6199 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6200 6201 void computeInfo(CGFunctionInfo &FI) const override; 6202 6203 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6204 QualType Ty) const override; 6205 6206 llvm::CallingConv::ID getLLVMDefaultCC() const; 6207 llvm::CallingConv::ID getABIDefaultCC() const; 6208 void setCCs(); 6209 6210 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6211 bool asReturnValue) const override { 6212 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6213 } 6214 bool isSwiftErrorInRegister() const override { 6215 return true; 6216 } 6217 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6218 unsigned elts) const override; 6219 }; 6220 6221 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6222 public: 6223 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6224 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6225 6226 const ARMABIInfo &getABIInfo() const { 6227 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6228 } 6229 6230 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6231 return 13; 6232 } 6233 6234 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6235 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6236 } 6237 6238 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6239 llvm::Value *Address) const override { 6240 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6241 6242 // 0-15 are the 16 integer registers. 6243 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6244 return false; 6245 } 6246 6247 unsigned getSizeOfUnwindException() const override { 6248 if (getABIInfo().isEABI()) return 88; 6249 return TargetCodeGenInfo::getSizeOfUnwindException(); 6250 } 6251 6252 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6253 CodeGen::CodeGenModule &CGM) const override { 6254 if (GV->isDeclaration()) 6255 return; 6256 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6257 if (!FD) 6258 return; 6259 6260 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6261 if (!Attr) 6262 return; 6263 6264 const char *Kind; 6265 switch (Attr->getInterrupt()) { 6266 case ARMInterruptAttr::Generic: Kind = ""; break; 6267 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6268 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6269 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6270 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6271 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6272 } 6273 6274 llvm::Function *Fn = cast<llvm::Function>(GV); 6275 6276 Fn->addFnAttr("interrupt", Kind); 6277 6278 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6279 if (ABI == ARMABIInfo::APCS) 6280 return; 6281 6282 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6283 // however this is not necessarily true on taking any interrupt. Instruct 6284 // the backend to perform a realignment as part of the function prologue. 6285 llvm::AttrBuilder B; 6286 B.addStackAlignmentAttr(8); 6287 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6288 } 6289 }; 6290 6291 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6292 public: 6293 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6294 : ARMTargetCodeGenInfo(CGT, K) {} 6295 6296 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6297 CodeGen::CodeGenModule &CGM) const override; 6298 6299 void getDependentLibraryOption(llvm::StringRef Lib, 6300 llvm::SmallString<24> &Opt) const override { 6301 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6302 } 6303 6304 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6305 llvm::SmallString<32> &Opt) const override { 6306 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6307 } 6308 }; 6309 6310 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6311 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6312 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6313 if (GV->isDeclaration()) 6314 return; 6315 addStackProbeTargetAttributes(D, GV, CGM); 6316 } 6317 } 6318 6319 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6320 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6321 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6322 FI.getCallingConvention()); 6323 6324 for (auto &I : FI.arguments()) 6325 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6326 FI.getCallingConvention()); 6327 6328 6329 // Always honor user-specified calling convention. 6330 if (FI.getCallingConvention() != llvm::CallingConv::C) 6331 return; 6332 6333 llvm::CallingConv::ID cc = getRuntimeCC(); 6334 if (cc != llvm::CallingConv::C) 6335 FI.setEffectiveCallingConvention(cc); 6336 } 6337 6338 /// Return the default calling convention that LLVM will use. 6339 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6340 // The default calling convention that LLVM will infer. 6341 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6342 return llvm::CallingConv::ARM_AAPCS_VFP; 6343 else if (isEABI()) 6344 return llvm::CallingConv::ARM_AAPCS; 6345 else 6346 return llvm::CallingConv::ARM_APCS; 6347 } 6348 6349 /// Return the calling convention that our ABI would like us to use 6350 /// as the C calling convention. 6351 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6352 switch (getABIKind()) { 6353 case APCS: return llvm::CallingConv::ARM_APCS; 6354 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6355 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6356 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6357 } 6358 llvm_unreachable("bad ABI kind"); 6359 } 6360 6361 void ARMABIInfo::setCCs() { 6362 assert(getRuntimeCC() == llvm::CallingConv::C); 6363 6364 // Don't muddy up the IR with a ton of explicit annotations if 6365 // they'd just match what LLVM will infer from the triple. 6366 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6367 if (abiCC != getLLVMDefaultCC()) 6368 RuntimeCC = abiCC; 6369 } 6370 6371 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6372 uint64_t Size = getContext().getTypeSize(Ty); 6373 if (Size <= 32) { 6374 llvm::Type *ResType = 6375 llvm::Type::getInt32Ty(getVMContext()); 6376 return ABIArgInfo::getDirect(ResType); 6377 } 6378 if (Size == 64 || Size == 128) { 6379 auto *ResType = llvm::FixedVectorType::get( 6380 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6381 return ABIArgInfo::getDirect(ResType); 6382 } 6383 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6384 } 6385 6386 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6387 const Type *Base, 6388 uint64_t Members) const { 6389 assert(Base && "Base class should be set for homogeneous aggregate"); 6390 // Base can be a floating-point or a vector. 6391 if (const VectorType *VT = Base->getAs<VectorType>()) { 6392 // FP16 vectors should be converted to integer vectors 6393 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6394 uint64_t Size = getContext().getTypeSize(VT); 6395 auto *NewVecTy = llvm::FixedVectorType::get( 6396 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6397 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6398 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6399 } 6400 } 6401 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6402 } 6403 6404 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6405 unsigned functionCallConv) const { 6406 // 6.1.2.1 The following argument types are VFP CPRCs: 6407 // A single-precision floating-point type (including promoted 6408 // half-precision types); A double-precision floating-point type; 6409 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6410 // with a Base Type of a single- or double-precision floating-point type, 6411 // 64-bit containerized vectors or 128-bit containerized vectors with one 6412 // to four Elements. 6413 // Variadic functions should always marshal to the base standard. 6414 bool IsAAPCS_VFP = 6415 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6416 6417 Ty = useFirstFieldIfTransparentUnion(Ty); 6418 6419 // Handle illegal vector types here. 6420 if (isIllegalVectorType(Ty)) 6421 return coerceIllegalVector(Ty); 6422 6423 if (!isAggregateTypeForABI(Ty)) { 6424 // Treat an enum type as its underlying type. 6425 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6426 Ty = EnumTy->getDecl()->getIntegerType(); 6427 } 6428 6429 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6430 if (EIT->getNumBits() > 64) 6431 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6432 6433 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6434 : ABIArgInfo::getDirect()); 6435 } 6436 6437 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6438 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6439 } 6440 6441 // Ignore empty records. 6442 if (isEmptyRecord(getContext(), Ty, true)) 6443 return ABIArgInfo::getIgnore(); 6444 6445 if (IsAAPCS_VFP) { 6446 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6447 // into VFP registers. 6448 const Type *Base = nullptr; 6449 uint64_t Members = 0; 6450 if (isHomogeneousAggregate(Ty, Base, Members)) 6451 return classifyHomogeneousAggregate(Ty, Base, Members); 6452 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6453 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6454 // this convention even for a variadic function: the backend will use GPRs 6455 // if needed. 6456 const Type *Base = nullptr; 6457 uint64_t Members = 0; 6458 if (isHomogeneousAggregate(Ty, Base, Members)) { 6459 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6460 llvm::Type *Ty = 6461 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6462 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6463 } 6464 } 6465 6466 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6467 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6468 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6469 // bigger than 128-bits, they get placed in space allocated by the caller, 6470 // and a pointer is passed. 6471 return ABIArgInfo::getIndirect( 6472 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6473 } 6474 6475 // Support byval for ARM. 6476 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6477 // most 8-byte. We realign the indirect argument if type alignment is bigger 6478 // than ABI alignment. 6479 uint64_t ABIAlign = 4; 6480 uint64_t TyAlign; 6481 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6482 getABIKind() == ARMABIInfo::AAPCS) { 6483 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6484 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6485 } else { 6486 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6487 } 6488 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6489 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6490 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6491 /*ByVal=*/true, 6492 /*Realign=*/TyAlign > ABIAlign); 6493 } 6494 6495 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6496 // same size and alignment. 6497 if (getTarget().isRenderScriptTarget()) { 6498 return coerceToIntArray(Ty, getContext(), getVMContext()); 6499 } 6500 6501 // Otherwise, pass by coercing to a structure of the appropriate size. 6502 llvm::Type* ElemTy; 6503 unsigned SizeRegs; 6504 // FIXME: Try to match the types of the arguments more accurately where 6505 // we can. 6506 if (TyAlign <= 4) { 6507 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6508 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6509 } else { 6510 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6511 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6512 } 6513 6514 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6515 } 6516 6517 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6518 llvm::LLVMContext &VMContext) { 6519 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6520 // is called integer-like if its size is less than or equal to one word, and 6521 // the offset of each of its addressable sub-fields is zero. 6522 6523 uint64_t Size = Context.getTypeSize(Ty); 6524 6525 // Check that the type fits in a word. 6526 if (Size > 32) 6527 return false; 6528 6529 // FIXME: Handle vector types! 6530 if (Ty->isVectorType()) 6531 return false; 6532 6533 // Float types are never treated as "integer like". 6534 if (Ty->isRealFloatingType()) 6535 return false; 6536 6537 // If this is a builtin or pointer type then it is ok. 6538 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6539 return true; 6540 6541 // Small complex integer types are "integer like". 6542 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6543 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6544 6545 // Single element and zero sized arrays should be allowed, by the definition 6546 // above, but they are not. 6547 6548 // Otherwise, it must be a record type. 6549 const RecordType *RT = Ty->getAs<RecordType>(); 6550 if (!RT) return false; 6551 6552 // Ignore records with flexible arrays. 6553 const RecordDecl *RD = RT->getDecl(); 6554 if (RD->hasFlexibleArrayMember()) 6555 return false; 6556 6557 // Check that all sub-fields are at offset 0, and are themselves "integer 6558 // like". 6559 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6560 6561 bool HadField = false; 6562 unsigned idx = 0; 6563 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6564 i != e; ++i, ++idx) { 6565 const FieldDecl *FD = *i; 6566 6567 // Bit-fields are not addressable, we only need to verify they are "integer 6568 // like". We still have to disallow a subsequent non-bitfield, for example: 6569 // struct { int : 0; int x } 6570 // is non-integer like according to gcc. 6571 if (FD->isBitField()) { 6572 if (!RD->isUnion()) 6573 HadField = true; 6574 6575 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6576 return false; 6577 6578 continue; 6579 } 6580 6581 // Check if this field is at offset 0. 6582 if (Layout.getFieldOffset(idx) != 0) 6583 return false; 6584 6585 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6586 return false; 6587 6588 // Only allow at most one field in a structure. This doesn't match the 6589 // wording above, but follows gcc in situations with a field following an 6590 // empty structure. 6591 if (!RD->isUnion()) { 6592 if (HadField) 6593 return false; 6594 6595 HadField = true; 6596 } 6597 } 6598 6599 return true; 6600 } 6601 6602 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6603 unsigned functionCallConv) const { 6604 6605 // Variadic functions should always marshal to the base standard. 6606 bool IsAAPCS_VFP = 6607 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6608 6609 if (RetTy->isVoidType()) 6610 return ABIArgInfo::getIgnore(); 6611 6612 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6613 // Large vector types should be returned via memory. 6614 if (getContext().getTypeSize(RetTy) > 128) 6615 return getNaturalAlignIndirect(RetTy); 6616 // TODO: FP16/BF16 vectors should be converted to integer vectors 6617 // This check is similar to isIllegalVectorType - refactor? 6618 if ((!getTarget().hasLegalHalfType() && 6619 (VT->getElementType()->isFloat16Type() || 6620 VT->getElementType()->isHalfType())) || 6621 (IsFloatABISoftFP && 6622 VT->getElementType()->isBFloat16Type())) 6623 return coerceIllegalVector(RetTy); 6624 } 6625 6626 if (!isAggregateTypeForABI(RetTy)) { 6627 // Treat an enum type as its underlying type. 6628 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6629 RetTy = EnumTy->getDecl()->getIntegerType(); 6630 6631 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6632 if (EIT->getNumBits() > 64) 6633 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6634 6635 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6636 : ABIArgInfo::getDirect(); 6637 } 6638 6639 // Are we following APCS? 6640 if (getABIKind() == APCS) { 6641 if (isEmptyRecord(getContext(), RetTy, false)) 6642 return ABIArgInfo::getIgnore(); 6643 6644 // Complex types are all returned as packed integers. 6645 // 6646 // FIXME: Consider using 2 x vector types if the back end handles them 6647 // correctly. 6648 if (RetTy->isAnyComplexType()) 6649 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6650 getVMContext(), getContext().getTypeSize(RetTy))); 6651 6652 // Integer like structures are returned in r0. 6653 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6654 // Return in the smallest viable integer type. 6655 uint64_t Size = getContext().getTypeSize(RetTy); 6656 if (Size <= 8) 6657 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6658 if (Size <= 16) 6659 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6660 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6661 } 6662 6663 // Otherwise return in memory. 6664 return getNaturalAlignIndirect(RetTy); 6665 } 6666 6667 // Otherwise this is an AAPCS variant. 6668 6669 if (isEmptyRecord(getContext(), RetTy, true)) 6670 return ABIArgInfo::getIgnore(); 6671 6672 // Check for homogeneous aggregates with AAPCS-VFP. 6673 if (IsAAPCS_VFP) { 6674 const Type *Base = nullptr; 6675 uint64_t Members = 0; 6676 if (isHomogeneousAggregate(RetTy, Base, Members)) 6677 return classifyHomogeneousAggregate(RetTy, Base, Members); 6678 } 6679 6680 // Aggregates <= 4 bytes are returned in r0; other aggregates 6681 // are returned indirectly. 6682 uint64_t Size = getContext().getTypeSize(RetTy); 6683 if (Size <= 32) { 6684 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6685 // same size and alignment. 6686 if (getTarget().isRenderScriptTarget()) { 6687 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6688 } 6689 if (getDataLayout().isBigEndian()) 6690 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6691 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6692 6693 // Return in the smallest viable integer type. 6694 if (Size <= 8) 6695 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6696 if (Size <= 16) 6697 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6698 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6699 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6700 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6701 llvm::Type *CoerceTy = 6702 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6703 return ABIArgInfo::getDirect(CoerceTy); 6704 } 6705 6706 return getNaturalAlignIndirect(RetTy); 6707 } 6708 6709 /// isIllegalVector - check whether Ty is an illegal vector type. 6710 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6711 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6712 // On targets that don't support half, fp16 or bfloat, they are expanded 6713 // into float, and we don't want the ABI to depend on whether or not they 6714 // are supported in hardware. Thus return false to coerce vectors of these 6715 // types into integer vectors. 6716 // We do not depend on hasLegalHalfType for bfloat as it is a 6717 // separate IR type. 6718 if ((!getTarget().hasLegalHalfType() && 6719 (VT->getElementType()->isFloat16Type() || 6720 VT->getElementType()->isHalfType())) || 6721 (IsFloatABISoftFP && 6722 VT->getElementType()->isBFloat16Type())) 6723 return true; 6724 if (isAndroid()) { 6725 // Android shipped using Clang 3.1, which supported a slightly different 6726 // vector ABI. The primary differences were that 3-element vector types 6727 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6728 // accepts that legacy behavior for Android only. 6729 // Check whether VT is legal. 6730 unsigned NumElements = VT->getNumElements(); 6731 // NumElements should be power of 2 or equal to 3. 6732 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6733 return true; 6734 } else { 6735 // Check whether VT is legal. 6736 unsigned NumElements = VT->getNumElements(); 6737 uint64_t Size = getContext().getTypeSize(VT); 6738 // NumElements should be power of 2. 6739 if (!llvm::isPowerOf2_32(NumElements)) 6740 return true; 6741 // Size should be greater than 32 bits. 6742 return Size <= 32; 6743 } 6744 } 6745 return false; 6746 } 6747 6748 /// Return true if a type contains any 16-bit floating point vectors 6749 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6750 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6751 uint64_t NElements = AT->getSize().getZExtValue(); 6752 if (NElements == 0) 6753 return false; 6754 return containsAnyFP16Vectors(AT->getElementType()); 6755 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6756 const RecordDecl *RD = RT->getDecl(); 6757 6758 // If this is a C++ record, check the bases first. 6759 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6760 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6761 return containsAnyFP16Vectors(B.getType()); 6762 })) 6763 return true; 6764 6765 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6766 return FD && containsAnyFP16Vectors(FD->getType()); 6767 })) 6768 return true; 6769 6770 return false; 6771 } else { 6772 if (const VectorType *VT = Ty->getAs<VectorType>()) 6773 return (VT->getElementType()->isFloat16Type() || 6774 VT->getElementType()->isBFloat16Type() || 6775 VT->getElementType()->isHalfType()); 6776 return false; 6777 } 6778 } 6779 6780 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6781 llvm::Type *eltTy, 6782 unsigned numElts) const { 6783 if (!llvm::isPowerOf2_32(numElts)) 6784 return false; 6785 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6786 if (size > 64) 6787 return false; 6788 if (vectorSize.getQuantity() != 8 && 6789 (vectorSize.getQuantity() != 16 || numElts == 1)) 6790 return false; 6791 return true; 6792 } 6793 6794 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6795 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6796 // double, or 64-bit or 128-bit vectors. 6797 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6798 if (BT->getKind() == BuiltinType::Float || 6799 BT->getKind() == BuiltinType::Double || 6800 BT->getKind() == BuiltinType::LongDouble) 6801 return true; 6802 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6803 unsigned VecSize = getContext().getTypeSize(VT); 6804 if (VecSize == 64 || VecSize == 128) 6805 return true; 6806 } 6807 return false; 6808 } 6809 6810 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6811 uint64_t Members) const { 6812 return Members <= 4; 6813 } 6814 6815 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6816 bool acceptHalf) const { 6817 // Give precedence to user-specified calling conventions. 6818 if (callConvention != llvm::CallingConv::C) 6819 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6820 else 6821 return (getABIKind() == AAPCS_VFP) || 6822 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6823 } 6824 6825 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6826 QualType Ty) const { 6827 CharUnits SlotSize = CharUnits::fromQuantity(4); 6828 6829 // Empty records are ignored for parameter passing purposes. 6830 if (isEmptyRecord(getContext(), Ty, true)) { 6831 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6832 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6833 return Addr; 6834 } 6835 6836 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6837 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6838 6839 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6840 bool IsIndirect = false; 6841 const Type *Base = nullptr; 6842 uint64_t Members = 0; 6843 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6844 IsIndirect = true; 6845 6846 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6847 // allocated by the caller. 6848 } else if (TySize > CharUnits::fromQuantity(16) && 6849 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6850 !isHomogeneousAggregate(Ty, Base, Members)) { 6851 IsIndirect = true; 6852 6853 // Otherwise, bound the type's ABI alignment. 6854 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6855 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6856 // Our callers should be prepared to handle an under-aligned address. 6857 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6858 getABIKind() == ARMABIInfo::AAPCS) { 6859 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6860 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6861 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6862 // ARMv7k allows type alignment up to 16 bytes. 6863 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6864 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6865 } else { 6866 TyAlignForABI = CharUnits::fromQuantity(4); 6867 } 6868 6869 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6870 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6871 SlotSize, /*AllowHigherAlign*/ true); 6872 } 6873 6874 //===----------------------------------------------------------------------===// 6875 // NVPTX ABI Implementation 6876 //===----------------------------------------------------------------------===// 6877 6878 namespace { 6879 6880 class NVPTXTargetCodeGenInfo; 6881 6882 class NVPTXABIInfo : public ABIInfo { 6883 NVPTXTargetCodeGenInfo &CGInfo; 6884 6885 public: 6886 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6887 : ABIInfo(CGT), CGInfo(Info) {} 6888 6889 ABIArgInfo classifyReturnType(QualType RetTy) const; 6890 ABIArgInfo classifyArgumentType(QualType Ty) const; 6891 6892 void computeInfo(CGFunctionInfo &FI) const override; 6893 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6894 QualType Ty) const override; 6895 bool isUnsupportedType(QualType T) const; 6896 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6897 }; 6898 6899 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6900 public: 6901 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6902 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6903 6904 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6905 CodeGen::CodeGenModule &M) const override; 6906 bool shouldEmitStaticExternCAliases() const override; 6907 6908 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6909 // On the device side, surface reference is represented as an object handle 6910 // in 64-bit integer. 6911 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6912 } 6913 6914 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6915 // On the device side, texture reference is represented as an object handle 6916 // in 64-bit integer. 6917 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6918 } 6919 6920 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6921 LValue Src) const override { 6922 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6923 return true; 6924 } 6925 6926 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6927 LValue Src) const override { 6928 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6929 return true; 6930 } 6931 6932 private: 6933 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6934 // resulting MDNode to the nvvm.annotations MDNode. 6935 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6936 int Operand); 6937 6938 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6939 LValue Src) { 6940 llvm::Value *Handle = nullptr; 6941 llvm::Constant *C = 6942 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6943 // Lookup `addrspacecast` through the constant pointer if any. 6944 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6945 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6946 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6947 // Load the handle from the specific global variable using 6948 // `nvvm.texsurf.handle.internal` intrinsic. 6949 Handle = CGF.EmitRuntimeCall( 6950 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6951 {GV->getType()}), 6952 {GV}, "texsurf_handle"); 6953 } else 6954 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6955 CGF.EmitStoreOfScalar(Handle, Dst); 6956 } 6957 }; 6958 6959 /// Checks if the type is unsupported directly by the current target. 6960 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6961 ASTContext &Context = getContext(); 6962 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6963 return true; 6964 if (!Context.getTargetInfo().hasFloat128Type() && 6965 (T->isFloat128Type() || 6966 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6967 return true; 6968 if (const auto *EIT = T->getAs<ExtIntType>()) 6969 return EIT->getNumBits() > 6970 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6971 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6972 Context.getTypeSize(T) > 64U) 6973 return true; 6974 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6975 return isUnsupportedType(AT->getElementType()); 6976 const auto *RT = T->getAs<RecordType>(); 6977 if (!RT) 6978 return false; 6979 const RecordDecl *RD = RT->getDecl(); 6980 6981 // If this is a C++ record, check the bases first. 6982 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6983 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6984 if (isUnsupportedType(I.getType())) 6985 return true; 6986 6987 for (const FieldDecl *I : RD->fields()) 6988 if (isUnsupportedType(I->getType())) 6989 return true; 6990 return false; 6991 } 6992 6993 /// Coerce the given type into an array with maximum allowed size of elements. 6994 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 6995 unsigned MaxSize) const { 6996 // Alignment and Size are measured in bits. 6997 const uint64_t Size = getContext().getTypeSize(Ty); 6998 const uint64_t Alignment = getContext().getTypeAlign(Ty); 6999 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7000 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7001 const uint64_t NumElements = (Size + Div - 1) / Div; 7002 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7003 } 7004 7005 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7006 if (RetTy->isVoidType()) 7007 return ABIArgInfo::getIgnore(); 7008 7009 if (getContext().getLangOpts().OpenMP && 7010 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7011 return coerceToIntArrayWithLimit(RetTy, 64); 7012 7013 // note: this is different from default ABI 7014 if (!RetTy->isScalarType()) 7015 return ABIArgInfo::getDirect(); 7016 7017 // Treat an enum type as its underlying type. 7018 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7019 RetTy = EnumTy->getDecl()->getIntegerType(); 7020 7021 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7022 : ABIArgInfo::getDirect()); 7023 } 7024 7025 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7026 // Treat an enum type as its underlying type. 7027 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7028 Ty = EnumTy->getDecl()->getIntegerType(); 7029 7030 // Return aggregates type as indirect by value 7031 if (isAggregateTypeForABI(Ty)) { 7032 // Under CUDA device compilation, tex/surf builtin types are replaced with 7033 // object types and passed directly. 7034 if (getContext().getLangOpts().CUDAIsDevice) { 7035 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7036 return ABIArgInfo::getDirect( 7037 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7038 if (Ty->isCUDADeviceBuiltinTextureType()) 7039 return ABIArgInfo::getDirect( 7040 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7041 } 7042 return getNaturalAlignIndirect(Ty, /* byval */ true); 7043 } 7044 7045 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7046 if ((EIT->getNumBits() > 128) || 7047 (!getContext().getTargetInfo().hasInt128Type() && 7048 EIT->getNumBits() > 64)) 7049 return getNaturalAlignIndirect(Ty, /* byval */ true); 7050 } 7051 7052 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7053 : ABIArgInfo::getDirect()); 7054 } 7055 7056 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7057 if (!getCXXABI().classifyReturnType(FI)) 7058 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7059 for (auto &I : FI.arguments()) 7060 I.info = classifyArgumentType(I.type); 7061 7062 // Always honor user-specified calling convention. 7063 if (FI.getCallingConvention() != llvm::CallingConv::C) 7064 return; 7065 7066 FI.setEffectiveCallingConvention(getRuntimeCC()); 7067 } 7068 7069 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7070 QualType Ty) const { 7071 llvm_unreachable("NVPTX does not support varargs"); 7072 } 7073 7074 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7075 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7076 if (GV->isDeclaration()) 7077 return; 7078 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7079 if (VD) { 7080 if (M.getLangOpts().CUDA) { 7081 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7082 addNVVMMetadata(GV, "surface", 1); 7083 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7084 addNVVMMetadata(GV, "texture", 1); 7085 return; 7086 } 7087 } 7088 7089 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7090 if (!FD) return; 7091 7092 llvm::Function *F = cast<llvm::Function>(GV); 7093 7094 // Perform special handling in OpenCL mode 7095 if (M.getLangOpts().OpenCL) { 7096 // Use OpenCL function attributes to check for kernel functions 7097 // By default, all functions are device functions 7098 if (FD->hasAttr<OpenCLKernelAttr>()) { 7099 // OpenCL __kernel functions get kernel metadata 7100 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7101 addNVVMMetadata(F, "kernel", 1); 7102 // And kernel functions are not subject to inlining 7103 F->addFnAttr(llvm::Attribute::NoInline); 7104 } 7105 } 7106 7107 // Perform special handling in CUDA mode. 7108 if (M.getLangOpts().CUDA) { 7109 // CUDA __global__ functions get a kernel metadata entry. Since 7110 // __global__ functions cannot be called from the device, we do not 7111 // need to set the noinline attribute. 7112 if (FD->hasAttr<CUDAGlobalAttr>()) { 7113 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7114 addNVVMMetadata(F, "kernel", 1); 7115 } 7116 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7117 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7118 llvm::APSInt MaxThreads(32); 7119 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7120 if (MaxThreads > 0) 7121 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7122 7123 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7124 // not specified in __launch_bounds__ or if the user specified a 0 value, 7125 // we don't have to add a PTX directive. 7126 if (Attr->getMinBlocks()) { 7127 llvm::APSInt MinBlocks(32); 7128 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7129 if (MinBlocks > 0) 7130 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7131 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7132 } 7133 } 7134 } 7135 } 7136 7137 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7138 StringRef Name, int Operand) { 7139 llvm::Module *M = GV->getParent(); 7140 llvm::LLVMContext &Ctx = M->getContext(); 7141 7142 // Get "nvvm.annotations" metadata node 7143 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7144 7145 llvm::Metadata *MDVals[] = { 7146 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7147 llvm::ConstantAsMetadata::get( 7148 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7149 // Append metadata to nvvm.annotations 7150 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7151 } 7152 7153 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7154 return false; 7155 } 7156 } 7157 7158 //===----------------------------------------------------------------------===// 7159 // SystemZ ABI Implementation 7160 //===----------------------------------------------------------------------===// 7161 7162 namespace { 7163 7164 class SystemZABIInfo : public SwiftABIInfo { 7165 bool HasVector; 7166 bool IsSoftFloatABI; 7167 7168 public: 7169 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7170 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7171 7172 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7173 bool isCompoundType(QualType Ty) const; 7174 bool isVectorArgumentType(QualType Ty) const; 7175 bool isFPArgumentType(QualType Ty) const; 7176 QualType GetSingleElementType(QualType Ty) const; 7177 7178 ABIArgInfo classifyReturnType(QualType RetTy) const; 7179 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7180 7181 void computeInfo(CGFunctionInfo &FI) const override { 7182 if (!getCXXABI().classifyReturnType(FI)) 7183 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7184 for (auto &I : FI.arguments()) 7185 I.info = classifyArgumentType(I.type); 7186 } 7187 7188 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7189 QualType Ty) const override; 7190 7191 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7192 bool asReturnValue) const override { 7193 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7194 } 7195 bool isSwiftErrorInRegister() const override { 7196 return false; 7197 } 7198 }; 7199 7200 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7201 public: 7202 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7203 : TargetCodeGenInfo( 7204 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7205 7206 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7207 CGBuilderTy &Builder, 7208 CodeGenModule &CGM) const override { 7209 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7210 // Only use TDC in constrained FP mode. 7211 if (!Builder.getIsFPConstrained()) 7212 return nullptr; 7213 7214 llvm::Type *Ty = V->getType(); 7215 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7216 llvm::Module &M = CGM.getModule(); 7217 auto &Ctx = M.getContext(); 7218 llvm::Function *TDCFunc = 7219 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7220 unsigned TDCBits = 0; 7221 switch (BuiltinID) { 7222 case Builtin::BI__builtin_isnan: 7223 TDCBits = 0xf; 7224 break; 7225 default: 7226 break; 7227 } 7228 if (TDCBits) 7229 return Builder.CreateCall( 7230 TDCFunc, 7231 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7232 } 7233 return nullptr; 7234 } 7235 }; 7236 } 7237 7238 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7239 // Treat an enum type as its underlying type. 7240 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7241 Ty = EnumTy->getDecl()->getIntegerType(); 7242 7243 // Promotable integer types are required to be promoted by the ABI. 7244 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7245 return true; 7246 7247 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7248 if (EIT->getNumBits() < 64) 7249 return true; 7250 7251 // 32-bit values must also be promoted. 7252 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7253 switch (BT->getKind()) { 7254 case BuiltinType::Int: 7255 case BuiltinType::UInt: 7256 return true; 7257 default: 7258 return false; 7259 } 7260 return false; 7261 } 7262 7263 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7264 return (Ty->isAnyComplexType() || 7265 Ty->isVectorType() || 7266 isAggregateTypeForABI(Ty)); 7267 } 7268 7269 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7270 return (HasVector && 7271 Ty->isVectorType() && 7272 getContext().getTypeSize(Ty) <= 128); 7273 } 7274 7275 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7276 if (IsSoftFloatABI) 7277 return false; 7278 7279 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7280 switch (BT->getKind()) { 7281 case BuiltinType::Float: 7282 case BuiltinType::Double: 7283 return true; 7284 default: 7285 return false; 7286 } 7287 7288 return false; 7289 } 7290 7291 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7292 const RecordType *RT = Ty->getAs<RecordType>(); 7293 7294 if (RT && RT->isStructureOrClassType()) { 7295 const RecordDecl *RD = RT->getDecl(); 7296 QualType Found; 7297 7298 // If this is a C++ record, check the bases first. 7299 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7300 for (const auto &I : CXXRD->bases()) { 7301 QualType Base = I.getType(); 7302 7303 // Empty bases don't affect things either way. 7304 if (isEmptyRecord(getContext(), Base, true)) 7305 continue; 7306 7307 if (!Found.isNull()) 7308 return Ty; 7309 Found = GetSingleElementType(Base); 7310 } 7311 7312 // Check the fields. 7313 for (const auto *FD : RD->fields()) { 7314 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7315 // Unlike isSingleElementStruct(), empty structure and array fields 7316 // do count. So do anonymous bitfields that aren't zero-sized. 7317 if (getContext().getLangOpts().CPlusPlus && 7318 FD->isZeroLengthBitField(getContext())) 7319 continue; 7320 // Like isSingleElementStruct(), ignore C++20 empty data members. 7321 if (FD->hasAttr<NoUniqueAddressAttr>() && 7322 isEmptyRecord(getContext(), FD->getType(), true)) 7323 continue; 7324 7325 // Unlike isSingleElementStruct(), arrays do not count. 7326 // Nested structures still do though. 7327 if (!Found.isNull()) 7328 return Ty; 7329 Found = GetSingleElementType(FD->getType()); 7330 } 7331 7332 // Unlike isSingleElementStruct(), trailing padding is allowed. 7333 // An 8-byte aligned struct s { float f; } is passed as a double. 7334 if (!Found.isNull()) 7335 return Found; 7336 } 7337 7338 return Ty; 7339 } 7340 7341 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7342 QualType Ty) const { 7343 // Assume that va_list type is correct; should be pointer to LLVM type: 7344 // struct { 7345 // i64 __gpr; 7346 // i64 __fpr; 7347 // i8 *__overflow_arg_area; 7348 // i8 *__reg_save_area; 7349 // }; 7350 7351 // Every non-vector argument occupies 8 bytes and is passed by preference 7352 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7353 // always passed on the stack. 7354 Ty = getContext().getCanonicalType(Ty); 7355 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7356 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7357 llvm::Type *DirectTy = ArgTy; 7358 ABIArgInfo AI = classifyArgumentType(Ty); 7359 bool IsIndirect = AI.isIndirect(); 7360 bool InFPRs = false; 7361 bool IsVector = false; 7362 CharUnits UnpaddedSize; 7363 CharUnits DirectAlign; 7364 if (IsIndirect) { 7365 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7366 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7367 } else { 7368 if (AI.getCoerceToType()) 7369 ArgTy = AI.getCoerceToType(); 7370 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7371 IsVector = ArgTy->isVectorTy(); 7372 UnpaddedSize = TyInfo.Width; 7373 DirectAlign = TyInfo.Align; 7374 } 7375 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7376 if (IsVector && UnpaddedSize > PaddedSize) 7377 PaddedSize = CharUnits::fromQuantity(16); 7378 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7379 7380 CharUnits Padding = (PaddedSize - UnpaddedSize); 7381 7382 llvm::Type *IndexTy = CGF.Int64Ty; 7383 llvm::Value *PaddedSizeV = 7384 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7385 7386 if (IsVector) { 7387 // Work out the address of a vector argument on the stack. 7388 // Vector arguments are always passed in the high bits of a 7389 // single (8 byte) or double (16 byte) stack slot. 7390 Address OverflowArgAreaPtr = 7391 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7392 Address OverflowArgArea = 7393 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7394 TyInfo.Align); 7395 Address MemAddr = 7396 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7397 7398 // Update overflow_arg_area_ptr pointer 7399 llvm::Value *NewOverflowArgArea = 7400 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7401 "overflow_arg_area"); 7402 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7403 7404 return MemAddr; 7405 } 7406 7407 assert(PaddedSize.getQuantity() == 8); 7408 7409 unsigned MaxRegs, RegCountField, RegSaveIndex; 7410 CharUnits RegPadding; 7411 if (InFPRs) { 7412 MaxRegs = 4; // Maximum of 4 FPR arguments 7413 RegCountField = 1; // __fpr 7414 RegSaveIndex = 16; // save offset for f0 7415 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7416 } else { 7417 MaxRegs = 5; // Maximum of 5 GPR arguments 7418 RegCountField = 0; // __gpr 7419 RegSaveIndex = 2; // save offset for r2 7420 RegPadding = Padding; // values are passed in the low bits of a GPR 7421 } 7422 7423 Address RegCountPtr = 7424 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7425 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7426 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7427 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7428 "fits_in_regs"); 7429 7430 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7431 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7432 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7433 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7434 7435 // Emit code to load the value if it was passed in registers. 7436 CGF.EmitBlock(InRegBlock); 7437 7438 // Work out the address of an argument register. 7439 llvm::Value *ScaledRegCount = 7440 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7441 llvm::Value *RegBase = 7442 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7443 + RegPadding.getQuantity()); 7444 llvm::Value *RegOffset = 7445 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7446 Address RegSaveAreaPtr = 7447 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7448 llvm::Value *RegSaveArea = 7449 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7450 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7451 "raw_reg_addr"), 7452 PaddedSize); 7453 Address RegAddr = 7454 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7455 7456 // Update the register count 7457 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7458 llvm::Value *NewRegCount = 7459 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7460 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7461 CGF.EmitBranch(ContBlock); 7462 7463 // Emit code to load the value if it was passed in memory. 7464 CGF.EmitBlock(InMemBlock); 7465 7466 // Work out the address of a stack argument. 7467 Address OverflowArgAreaPtr = 7468 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7469 Address OverflowArgArea = 7470 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7471 PaddedSize); 7472 Address RawMemAddr = 7473 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7474 Address MemAddr = 7475 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7476 7477 // Update overflow_arg_area_ptr pointer 7478 llvm::Value *NewOverflowArgArea = 7479 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7480 "overflow_arg_area"); 7481 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7482 CGF.EmitBranch(ContBlock); 7483 7484 // Return the appropriate result. 7485 CGF.EmitBlock(ContBlock); 7486 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7487 MemAddr, InMemBlock, "va_arg.addr"); 7488 7489 if (IsIndirect) 7490 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7491 TyInfo.Align); 7492 7493 return ResAddr; 7494 } 7495 7496 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7497 if (RetTy->isVoidType()) 7498 return ABIArgInfo::getIgnore(); 7499 if (isVectorArgumentType(RetTy)) 7500 return ABIArgInfo::getDirect(); 7501 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7502 return getNaturalAlignIndirect(RetTy); 7503 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7504 : ABIArgInfo::getDirect()); 7505 } 7506 7507 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7508 // Handle the generic C++ ABI. 7509 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7510 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7511 7512 // Integers and enums are extended to full register width. 7513 if (isPromotableIntegerTypeForABI(Ty)) 7514 return ABIArgInfo::getExtend(Ty); 7515 7516 // Handle vector types and vector-like structure types. Note that 7517 // as opposed to float-like structure types, we do not allow any 7518 // padding for vector-like structures, so verify the sizes match. 7519 uint64_t Size = getContext().getTypeSize(Ty); 7520 QualType SingleElementTy = GetSingleElementType(Ty); 7521 if (isVectorArgumentType(SingleElementTy) && 7522 getContext().getTypeSize(SingleElementTy) == Size) 7523 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7524 7525 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7526 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7527 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7528 7529 // Handle small structures. 7530 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7531 // Structures with flexible arrays have variable length, so really 7532 // fail the size test above. 7533 const RecordDecl *RD = RT->getDecl(); 7534 if (RD->hasFlexibleArrayMember()) 7535 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7536 7537 // The structure is passed as an unextended integer, a float, or a double. 7538 llvm::Type *PassTy; 7539 if (isFPArgumentType(SingleElementTy)) { 7540 assert(Size == 32 || Size == 64); 7541 if (Size == 32) 7542 PassTy = llvm::Type::getFloatTy(getVMContext()); 7543 else 7544 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7545 } else 7546 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7547 return ABIArgInfo::getDirect(PassTy); 7548 } 7549 7550 // Non-structure compounds are passed indirectly. 7551 if (isCompoundType(Ty)) 7552 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7553 7554 return ABIArgInfo::getDirect(nullptr); 7555 } 7556 7557 //===----------------------------------------------------------------------===// 7558 // MSP430 ABI Implementation 7559 //===----------------------------------------------------------------------===// 7560 7561 namespace { 7562 7563 class MSP430ABIInfo : public DefaultABIInfo { 7564 static ABIArgInfo complexArgInfo() { 7565 ABIArgInfo Info = ABIArgInfo::getDirect(); 7566 Info.setCanBeFlattened(false); 7567 return Info; 7568 } 7569 7570 public: 7571 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7572 7573 ABIArgInfo classifyReturnType(QualType RetTy) const { 7574 if (RetTy->isAnyComplexType()) 7575 return complexArgInfo(); 7576 7577 return DefaultABIInfo::classifyReturnType(RetTy); 7578 } 7579 7580 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7581 if (RetTy->isAnyComplexType()) 7582 return complexArgInfo(); 7583 7584 return DefaultABIInfo::classifyArgumentType(RetTy); 7585 } 7586 7587 // Just copy the original implementations because 7588 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7589 void computeInfo(CGFunctionInfo &FI) const override { 7590 if (!getCXXABI().classifyReturnType(FI)) 7591 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7592 for (auto &I : FI.arguments()) 7593 I.info = classifyArgumentType(I.type); 7594 } 7595 7596 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7597 QualType Ty) const override { 7598 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7599 } 7600 }; 7601 7602 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7603 public: 7604 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7605 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7606 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7607 CodeGen::CodeGenModule &M) const override; 7608 }; 7609 7610 } 7611 7612 void MSP430TargetCodeGenInfo::setTargetAttributes( 7613 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7614 if (GV->isDeclaration()) 7615 return; 7616 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7617 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7618 if (!InterruptAttr) 7619 return; 7620 7621 // Handle 'interrupt' attribute: 7622 llvm::Function *F = cast<llvm::Function>(GV); 7623 7624 // Step 1: Set ISR calling convention. 7625 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7626 7627 // Step 2: Add attributes goodness. 7628 F->addFnAttr(llvm::Attribute::NoInline); 7629 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7630 } 7631 } 7632 7633 //===----------------------------------------------------------------------===// 7634 // MIPS ABI Implementation. This works for both little-endian and 7635 // big-endian variants. 7636 //===----------------------------------------------------------------------===// 7637 7638 namespace { 7639 class MipsABIInfo : public ABIInfo { 7640 bool IsO32; 7641 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7642 void CoerceToIntArgs(uint64_t TySize, 7643 SmallVectorImpl<llvm::Type *> &ArgList) const; 7644 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7645 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7646 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7647 public: 7648 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7649 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7650 StackAlignInBytes(IsO32 ? 8 : 16) {} 7651 7652 ABIArgInfo classifyReturnType(QualType RetTy) const; 7653 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7654 void computeInfo(CGFunctionInfo &FI) const override; 7655 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7656 QualType Ty) const override; 7657 ABIArgInfo extendType(QualType Ty) const; 7658 }; 7659 7660 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7661 unsigned SizeOfUnwindException; 7662 public: 7663 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7664 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7665 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7666 7667 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7668 return 29; 7669 } 7670 7671 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7672 CodeGen::CodeGenModule &CGM) const override { 7673 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7674 if (!FD) return; 7675 llvm::Function *Fn = cast<llvm::Function>(GV); 7676 7677 if (FD->hasAttr<MipsLongCallAttr>()) 7678 Fn->addFnAttr("long-call"); 7679 else if (FD->hasAttr<MipsShortCallAttr>()) 7680 Fn->addFnAttr("short-call"); 7681 7682 // Other attributes do not have a meaning for declarations. 7683 if (GV->isDeclaration()) 7684 return; 7685 7686 if (FD->hasAttr<Mips16Attr>()) { 7687 Fn->addFnAttr("mips16"); 7688 } 7689 else if (FD->hasAttr<NoMips16Attr>()) { 7690 Fn->addFnAttr("nomips16"); 7691 } 7692 7693 if (FD->hasAttr<MicroMipsAttr>()) 7694 Fn->addFnAttr("micromips"); 7695 else if (FD->hasAttr<NoMicroMipsAttr>()) 7696 Fn->addFnAttr("nomicromips"); 7697 7698 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7699 if (!Attr) 7700 return; 7701 7702 const char *Kind; 7703 switch (Attr->getInterrupt()) { 7704 case MipsInterruptAttr::eic: Kind = "eic"; break; 7705 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7706 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7707 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7708 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7709 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7710 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7711 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7712 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7713 } 7714 7715 Fn->addFnAttr("interrupt", Kind); 7716 7717 } 7718 7719 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7720 llvm::Value *Address) const override; 7721 7722 unsigned getSizeOfUnwindException() const override { 7723 return SizeOfUnwindException; 7724 } 7725 }; 7726 } 7727 7728 void MipsABIInfo::CoerceToIntArgs( 7729 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7730 llvm::IntegerType *IntTy = 7731 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7732 7733 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7734 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7735 ArgList.push_back(IntTy); 7736 7737 // If necessary, add one more integer type to ArgList. 7738 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7739 7740 if (R) 7741 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7742 } 7743 7744 // In N32/64, an aligned double precision floating point field is passed in 7745 // a register. 7746 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7747 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7748 7749 if (IsO32) { 7750 CoerceToIntArgs(TySize, ArgList); 7751 return llvm::StructType::get(getVMContext(), ArgList); 7752 } 7753 7754 if (Ty->isComplexType()) 7755 return CGT.ConvertType(Ty); 7756 7757 const RecordType *RT = Ty->getAs<RecordType>(); 7758 7759 // Unions/vectors are passed in integer registers. 7760 if (!RT || !RT->isStructureOrClassType()) { 7761 CoerceToIntArgs(TySize, ArgList); 7762 return llvm::StructType::get(getVMContext(), ArgList); 7763 } 7764 7765 const RecordDecl *RD = RT->getDecl(); 7766 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7767 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7768 7769 uint64_t LastOffset = 0; 7770 unsigned idx = 0; 7771 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7772 7773 // Iterate over fields in the struct/class and check if there are any aligned 7774 // double fields. 7775 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7776 i != e; ++i, ++idx) { 7777 const QualType Ty = i->getType(); 7778 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7779 7780 if (!BT || BT->getKind() != BuiltinType::Double) 7781 continue; 7782 7783 uint64_t Offset = Layout.getFieldOffset(idx); 7784 if (Offset % 64) // Ignore doubles that are not aligned. 7785 continue; 7786 7787 // Add ((Offset - LastOffset) / 64) args of type i64. 7788 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7789 ArgList.push_back(I64); 7790 7791 // Add double type. 7792 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7793 LastOffset = Offset + 64; 7794 } 7795 7796 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7797 ArgList.append(IntArgList.begin(), IntArgList.end()); 7798 7799 return llvm::StructType::get(getVMContext(), ArgList); 7800 } 7801 7802 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7803 uint64_t Offset) const { 7804 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7805 return nullptr; 7806 7807 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7808 } 7809 7810 ABIArgInfo 7811 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7812 Ty = useFirstFieldIfTransparentUnion(Ty); 7813 7814 uint64_t OrigOffset = Offset; 7815 uint64_t TySize = getContext().getTypeSize(Ty); 7816 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7817 7818 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7819 (uint64_t)StackAlignInBytes); 7820 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7821 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7822 7823 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7824 // Ignore empty aggregates. 7825 if (TySize == 0) 7826 return ABIArgInfo::getIgnore(); 7827 7828 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7829 Offset = OrigOffset + MinABIStackAlignInBytes; 7830 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7831 } 7832 7833 // If we have reached here, aggregates are passed directly by coercing to 7834 // another structure type. Padding is inserted if the offset of the 7835 // aggregate is unaligned. 7836 ABIArgInfo ArgInfo = 7837 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7838 getPaddingType(OrigOffset, CurrOffset)); 7839 ArgInfo.setInReg(true); 7840 return ArgInfo; 7841 } 7842 7843 // Treat an enum type as its underlying type. 7844 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7845 Ty = EnumTy->getDecl()->getIntegerType(); 7846 7847 // Make sure we pass indirectly things that are too large. 7848 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7849 if (EIT->getNumBits() > 128 || 7850 (EIT->getNumBits() > 64 && 7851 !getContext().getTargetInfo().hasInt128Type())) 7852 return getNaturalAlignIndirect(Ty); 7853 7854 // All integral types are promoted to the GPR width. 7855 if (Ty->isIntegralOrEnumerationType()) 7856 return extendType(Ty); 7857 7858 return ABIArgInfo::getDirect( 7859 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7860 } 7861 7862 llvm::Type* 7863 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7864 const RecordType *RT = RetTy->getAs<RecordType>(); 7865 SmallVector<llvm::Type*, 8> RTList; 7866 7867 if (RT && RT->isStructureOrClassType()) { 7868 const RecordDecl *RD = RT->getDecl(); 7869 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7870 unsigned FieldCnt = Layout.getFieldCount(); 7871 7872 // N32/64 returns struct/classes in floating point registers if the 7873 // following conditions are met: 7874 // 1. The size of the struct/class is no larger than 128-bit. 7875 // 2. The struct/class has one or two fields all of which are floating 7876 // point types. 7877 // 3. The offset of the first field is zero (this follows what gcc does). 7878 // 7879 // Any other composite results are returned in integer registers. 7880 // 7881 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7882 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7883 for (; b != e; ++b) { 7884 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7885 7886 if (!BT || !BT->isFloatingPoint()) 7887 break; 7888 7889 RTList.push_back(CGT.ConvertType(b->getType())); 7890 } 7891 7892 if (b == e) 7893 return llvm::StructType::get(getVMContext(), RTList, 7894 RD->hasAttr<PackedAttr>()); 7895 7896 RTList.clear(); 7897 } 7898 } 7899 7900 CoerceToIntArgs(Size, RTList); 7901 return llvm::StructType::get(getVMContext(), RTList); 7902 } 7903 7904 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7905 uint64_t Size = getContext().getTypeSize(RetTy); 7906 7907 if (RetTy->isVoidType()) 7908 return ABIArgInfo::getIgnore(); 7909 7910 // O32 doesn't treat zero-sized structs differently from other structs. 7911 // However, N32/N64 ignores zero sized return values. 7912 if (!IsO32 && Size == 0) 7913 return ABIArgInfo::getIgnore(); 7914 7915 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7916 if (Size <= 128) { 7917 if (RetTy->isAnyComplexType()) 7918 return ABIArgInfo::getDirect(); 7919 7920 // O32 returns integer vectors in registers and N32/N64 returns all small 7921 // aggregates in registers. 7922 if (!IsO32 || 7923 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7924 ABIArgInfo ArgInfo = 7925 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7926 ArgInfo.setInReg(true); 7927 return ArgInfo; 7928 } 7929 } 7930 7931 return getNaturalAlignIndirect(RetTy); 7932 } 7933 7934 // Treat an enum type as its underlying type. 7935 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7936 RetTy = EnumTy->getDecl()->getIntegerType(); 7937 7938 // Make sure we pass indirectly things that are too large. 7939 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7940 if (EIT->getNumBits() > 128 || 7941 (EIT->getNumBits() > 64 && 7942 !getContext().getTargetInfo().hasInt128Type())) 7943 return getNaturalAlignIndirect(RetTy); 7944 7945 if (isPromotableIntegerTypeForABI(RetTy)) 7946 return ABIArgInfo::getExtend(RetTy); 7947 7948 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7949 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7950 return ABIArgInfo::getSignExtend(RetTy); 7951 7952 return ABIArgInfo::getDirect(); 7953 } 7954 7955 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7956 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7957 if (!getCXXABI().classifyReturnType(FI)) 7958 RetInfo = classifyReturnType(FI.getReturnType()); 7959 7960 // Check if a pointer to an aggregate is passed as a hidden argument. 7961 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7962 7963 for (auto &I : FI.arguments()) 7964 I.info = classifyArgumentType(I.type, Offset); 7965 } 7966 7967 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7968 QualType OrigTy) const { 7969 QualType Ty = OrigTy; 7970 7971 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7972 // Pointers are also promoted in the same way but this only matters for N32. 7973 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7974 unsigned PtrWidth = getTarget().getPointerWidth(0); 7975 bool DidPromote = false; 7976 if ((Ty->isIntegerType() && 7977 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7978 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7979 DidPromote = true; 7980 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7981 Ty->isSignedIntegerType()); 7982 } 7983 7984 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7985 7986 // The alignment of things in the argument area is never larger than 7987 // StackAlignInBytes. 7988 TyInfo.Align = 7989 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 7990 7991 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7992 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7993 7994 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7995 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7996 7997 7998 // If there was a promotion, "unpromote" into a temporary. 7999 // TODO: can we just use a pointer into a subset of the original slot? 8000 if (DidPromote) { 8001 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8002 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8003 8004 // Truncate down to the right width. 8005 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8006 : CGF.IntPtrTy); 8007 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8008 if (OrigTy->isPointerType()) 8009 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8010 8011 CGF.Builder.CreateStore(V, Temp); 8012 Addr = Temp; 8013 } 8014 8015 return Addr; 8016 } 8017 8018 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8019 int TySize = getContext().getTypeSize(Ty); 8020 8021 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8022 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8023 return ABIArgInfo::getSignExtend(Ty); 8024 8025 return ABIArgInfo::getExtend(Ty); 8026 } 8027 8028 bool 8029 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8030 llvm::Value *Address) const { 8031 // This information comes from gcc's implementation, which seems to 8032 // as canonical as it gets. 8033 8034 // Everything on MIPS is 4 bytes. Double-precision FP registers 8035 // are aliased to pairs of single-precision FP registers. 8036 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8037 8038 // 0-31 are the general purpose registers, $0 - $31. 8039 // 32-63 are the floating-point registers, $f0 - $f31. 8040 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8041 // 66 is the (notional, I think) register for signal-handler return. 8042 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8043 8044 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8045 // They are one bit wide and ignored here. 8046 8047 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8048 // (coprocessor 1 is the FP unit) 8049 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8050 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8051 // 176-181 are the DSP accumulator registers. 8052 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8053 return false; 8054 } 8055 8056 //===----------------------------------------------------------------------===// 8057 // AVR ABI Implementation. 8058 //===----------------------------------------------------------------------===// 8059 8060 namespace { 8061 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8062 public: 8063 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8064 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8065 8066 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8067 CodeGen::CodeGenModule &CGM) const override { 8068 if (GV->isDeclaration()) 8069 return; 8070 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8071 if (!FD) return; 8072 auto *Fn = cast<llvm::Function>(GV); 8073 8074 if (FD->getAttr<AVRInterruptAttr>()) 8075 Fn->addFnAttr("interrupt"); 8076 8077 if (FD->getAttr<AVRSignalAttr>()) 8078 Fn->addFnAttr("signal"); 8079 } 8080 }; 8081 } 8082 8083 //===----------------------------------------------------------------------===// 8084 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8085 // Currently subclassed only to implement custom OpenCL C function attribute 8086 // handling. 8087 //===----------------------------------------------------------------------===// 8088 8089 namespace { 8090 8091 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8092 public: 8093 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8094 : DefaultTargetCodeGenInfo(CGT) {} 8095 8096 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8097 CodeGen::CodeGenModule &M) const override; 8098 }; 8099 8100 void TCETargetCodeGenInfo::setTargetAttributes( 8101 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8102 if (GV->isDeclaration()) 8103 return; 8104 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8105 if (!FD) return; 8106 8107 llvm::Function *F = cast<llvm::Function>(GV); 8108 8109 if (M.getLangOpts().OpenCL) { 8110 if (FD->hasAttr<OpenCLKernelAttr>()) { 8111 // OpenCL C Kernel functions are not subject to inlining 8112 F->addFnAttr(llvm::Attribute::NoInline); 8113 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8114 if (Attr) { 8115 // Convert the reqd_work_group_size() attributes to metadata. 8116 llvm::LLVMContext &Context = F->getContext(); 8117 llvm::NamedMDNode *OpenCLMetadata = 8118 M.getModule().getOrInsertNamedMetadata( 8119 "opencl.kernel_wg_size_info"); 8120 8121 SmallVector<llvm::Metadata *, 5> Operands; 8122 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8123 8124 Operands.push_back( 8125 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8126 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8127 Operands.push_back( 8128 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8129 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8130 Operands.push_back( 8131 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8132 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8133 8134 // Add a boolean constant operand for "required" (true) or "hint" 8135 // (false) for implementing the work_group_size_hint attr later. 8136 // Currently always true as the hint is not yet implemented. 8137 Operands.push_back( 8138 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8139 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8140 } 8141 } 8142 } 8143 } 8144 8145 } 8146 8147 //===----------------------------------------------------------------------===// 8148 // Hexagon ABI Implementation 8149 //===----------------------------------------------------------------------===// 8150 8151 namespace { 8152 8153 class HexagonABIInfo : public DefaultABIInfo { 8154 public: 8155 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8156 8157 private: 8158 ABIArgInfo classifyReturnType(QualType RetTy) const; 8159 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8160 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8161 8162 void computeInfo(CGFunctionInfo &FI) const override; 8163 8164 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8165 QualType Ty) const override; 8166 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8167 QualType Ty) const; 8168 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8169 QualType Ty) const; 8170 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8171 QualType Ty) const; 8172 }; 8173 8174 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8175 public: 8176 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8177 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8178 8179 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8180 return 29; 8181 } 8182 8183 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8184 CodeGen::CodeGenModule &GCM) const override { 8185 if (GV->isDeclaration()) 8186 return; 8187 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8188 if (!FD) 8189 return; 8190 } 8191 }; 8192 8193 } // namespace 8194 8195 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8196 unsigned RegsLeft = 6; 8197 if (!getCXXABI().classifyReturnType(FI)) 8198 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8199 for (auto &I : FI.arguments()) 8200 I.info = classifyArgumentType(I.type, &RegsLeft); 8201 } 8202 8203 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8204 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8205 " through registers"); 8206 8207 if (*RegsLeft == 0) 8208 return false; 8209 8210 if (Size <= 32) { 8211 (*RegsLeft)--; 8212 return true; 8213 } 8214 8215 if (2 <= (*RegsLeft & (~1U))) { 8216 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8217 return true; 8218 } 8219 8220 // Next available register was r5 but candidate was greater than 32-bits so it 8221 // has to go on the stack. However we still consume r5 8222 if (*RegsLeft == 1) 8223 *RegsLeft = 0; 8224 8225 return false; 8226 } 8227 8228 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8229 unsigned *RegsLeft) const { 8230 if (!isAggregateTypeForABI(Ty)) { 8231 // Treat an enum type as its underlying type. 8232 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8233 Ty = EnumTy->getDecl()->getIntegerType(); 8234 8235 uint64_t Size = getContext().getTypeSize(Ty); 8236 if (Size <= 64) 8237 HexagonAdjustRegsLeft(Size, RegsLeft); 8238 8239 if (Size > 64 && Ty->isExtIntType()) 8240 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8241 8242 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8243 : ABIArgInfo::getDirect(); 8244 } 8245 8246 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8247 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8248 8249 // Ignore empty records. 8250 if (isEmptyRecord(getContext(), Ty, true)) 8251 return ABIArgInfo::getIgnore(); 8252 8253 uint64_t Size = getContext().getTypeSize(Ty); 8254 unsigned Align = getContext().getTypeAlign(Ty); 8255 8256 if (Size > 64) 8257 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8258 8259 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8260 Align = Size <= 32 ? 32 : 64; 8261 if (Size <= Align) { 8262 // Pass in the smallest viable integer type. 8263 if (!llvm::isPowerOf2_64(Size)) 8264 Size = llvm::NextPowerOf2(Size); 8265 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8266 } 8267 return DefaultABIInfo::classifyArgumentType(Ty); 8268 } 8269 8270 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8271 if (RetTy->isVoidType()) 8272 return ABIArgInfo::getIgnore(); 8273 8274 const TargetInfo &T = CGT.getTarget(); 8275 uint64_t Size = getContext().getTypeSize(RetTy); 8276 8277 if (RetTy->getAs<VectorType>()) { 8278 // HVX vectors are returned in vector registers or register pairs. 8279 if (T.hasFeature("hvx")) { 8280 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8281 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8282 if (Size == VecSize || Size == 2*VecSize) 8283 return ABIArgInfo::getDirectInReg(); 8284 } 8285 // Large vector types should be returned via memory. 8286 if (Size > 64) 8287 return getNaturalAlignIndirect(RetTy); 8288 } 8289 8290 if (!isAggregateTypeForABI(RetTy)) { 8291 // Treat an enum type as its underlying type. 8292 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8293 RetTy = EnumTy->getDecl()->getIntegerType(); 8294 8295 if (Size > 64 && RetTy->isExtIntType()) 8296 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8297 8298 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8299 : ABIArgInfo::getDirect(); 8300 } 8301 8302 if (isEmptyRecord(getContext(), RetTy, true)) 8303 return ABIArgInfo::getIgnore(); 8304 8305 // Aggregates <= 8 bytes are returned in registers, other aggregates 8306 // are returned indirectly. 8307 if (Size <= 64) { 8308 // Return in the smallest viable integer type. 8309 if (!llvm::isPowerOf2_64(Size)) 8310 Size = llvm::NextPowerOf2(Size); 8311 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8312 } 8313 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8314 } 8315 8316 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8317 Address VAListAddr, 8318 QualType Ty) const { 8319 // Load the overflow area pointer. 8320 Address __overflow_area_pointer_p = 8321 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8322 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8323 __overflow_area_pointer_p, "__overflow_area_pointer"); 8324 8325 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8326 if (Align > 4) { 8327 // Alignment should be a power of 2. 8328 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8329 8330 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8331 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8332 8333 // Add offset to the current pointer to access the argument. 8334 __overflow_area_pointer = 8335 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8336 llvm::Value *AsInt = 8337 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8338 8339 // Create a mask which should be "AND"ed 8340 // with (overflow_arg_area + align - 1) 8341 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8342 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8343 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8344 "__overflow_area_pointer.align"); 8345 } 8346 8347 // Get the type of the argument from memory and bitcast 8348 // overflow area pointer to the argument type. 8349 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8350 Address AddrTyped = CGF.Builder.CreateBitCast( 8351 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8352 llvm::PointerType::getUnqual(PTy)); 8353 8354 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8355 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8356 8357 __overflow_area_pointer = CGF.Builder.CreateGEP( 8358 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8359 "__overflow_area_pointer.next"); 8360 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8361 8362 return AddrTyped; 8363 } 8364 8365 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8366 Address VAListAddr, 8367 QualType Ty) const { 8368 // FIXME: Need to handle alignment 8369 llvm::Type *BP = CGF.Int8PtrTy; 8370 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8371 CGBuilderTy &Builder = CGF.Builder; 8372 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8373 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8374 // Handle address alignment for type alignment > 32 bits 8375 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8376 if (TyAlign > 4) { 8377 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8378 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8379 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8380 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8381 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8382 } 8383 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8384 Address AddrTyped = Builder.CreateBitCast( 8385 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8386 8387 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8388 llvm::Value *NextAddr = Builder.CreateGEP( 8389 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8390 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8391 8392 return AddrTyped; 8393 } 8394 8395 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8396 Address VAListAddr, 8397 QualType Ty) const { 8398 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8399 8400 if (ArgSize > 8) 8401 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8402 8403 // Here we have check if the argument is in register area or 8404 // in overflow area. 8405 // If the saved register area pointer + argsize rounded up to alignment > 8406 // saved register area end pointer, argument is in overflow area. 8407 unsigned RegsLeft = 6; 8408 Ty = CGF.getContext().getCanonicalType(Ty); 8409 (void)classifyArgumentType(Ty, &RegsLeft); 8410 8411 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8412 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8413 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8414 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8415 8416 // Get rounded size of the argument.GCC does not allow vararg of 8417 // size < 4 bytes. We follow the same logic here. 8418 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8419 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8420 8421 // Argument may be in saved register area 8422 CGF.EmitBlock(MaybeRegBlock); 8423 8424 // Load the current saved register area pointer. 8425 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8426 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8427 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8428 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8429 8430 // Load the saved register area end pointer. 8431 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8432 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8433 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8434 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8435 8436 // If the size of argument is > 4 bytes, check if the stack 8437 // location is aligned to 8 bytes 8438 if (ArgAlign > 4) { 8439 8440 llvm::Value *__current_saved_reg_area_pointer_int = 8441 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8442 CGF.Int32Ty); 8443 8444 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8445 __current_saved_reg_area_pointer_int, 8446 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8447 "align_current_saved_reg_area_pointer"); 8448 8449 __current_saved_reg_area_pointer_int = 8450 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8451 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8452 "align_current_saved_reg_area_pointer"); 8453 8454 __current_saved_reg_area_pointer = 8455 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8456 __current_saved_reg_area_pointer->getType(), 8457 "align_current_saved_reg_area_pointer"); 8458 } 8459 8460 llvm::Value *__new_saved_reg_area_pointer = 8461 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8462 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8463 "__new_saved_reg_area_pointer"); 8464 8465 llvm::Value *UsingStack = 0; 8466 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8467 __saved_reg_area_end_pointer); 8468 8469 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8470 8471 // Argument in saved register area 8472 // Implement the block where argument is in register saved area 8473 CGF.EmitBlock(InRegBlock); 8474 8475 llvm::Type *PTy = CGF.ConvertType(Ty); 8476 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8477 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8478 8479 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8480 __current_saved_reg_area_pointer_p); 8481 8482 CGF.EmitBranch(ContBlock); 8483 8484 // Argument in overflow area 8485 // Implement the block where the argument is in overflow area. 8486 CGF.EmitBlock(OnStackBlock); 8487 8488 // Load the overflow area pointer 8489 Address __overflow_area_pointer_p = 8490 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8491 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8492 __overflow_area_pointer_p, "__overflow_area_pointer"); 8493 8494 // Align the overflow area pointer according to the alignment of the argument 8495 if (ArgAlign > 4) { 8496 llvm::Value *__overflow_area_pointer_int = 8497 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8498 8499 __overflow_area_pointer_int = 8500 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8501 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8502 "align_overflow_area_pointer"); 8503 8504 __overflow_area_pointer_int = 8505 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8506 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8507 "align_overflow_area_pointer"); 8508 8509 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8510 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8511 "align_overflow_area_pointer"); 8512 } 8513 8514 // Get the pointer for next argument in overflow area and store it 8515 // to overflow area pointer. 8516 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8517 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8518 "__overflow_area_pointer.next"); 8519 8520 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8521 __overflow_area_pointer_p); 8522 8523 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8524 __current_saved_reg_area_pointer_p); 8525 8526 // Bitcast the overflow area pointer to the type of argument. 8527 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8528 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8529 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8530 8531 CGF.EmitBranch(ContBlock); 8532 8533 // Get the correct pointer to load the variable argument 8534 // Implement the ContBlock 8535 CGF.EmitBlock(ContBlock); 8536 8537 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8538 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8539 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8540 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8541 8542 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8543 } 8544 8545 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8546 QualType Ty) const { 8547 8548 if (getTarget().getTriple().isMusl()) 8549 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8550 8551 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8552 } 8553 8554 //===----------------------------------------------------------------------===// 8555 // Lanai ABI Implementation 8556 //===----------------------------------------------------------------------===// 8557 8558 namespace { 8559 class LanaiABIInfo : public DefaultABIInfo { 8560 public: 8561 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8562 8563 bool shouldUseInReg(QualType Ty, CCState &State) const; 8564 8565 void computeInfo(CGFunctionInfo &FI) const override { 8566 CCState State(FI); 8567 // Lanai uses 4 registers to pass arguments unless the function has the 8568 // regparm attribute set. 8569 if (FI.getHasRegParm()) { 8570 State.FreeRegs = FI.getRegParm(); 8571 } else { 8572 State.FreeRegs = 4; 8573 } 8574 8575 if (!getCXXABI().classifyReturnType(FI)) 8576 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8577 for (auto &I : FI.arguments()) 8578 I.info = classifyArgumentType(I.type, State); 8579 } 8580 8581 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8582 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8583 }; 8584 } // end anonymous namespace 8585 8586 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8587 unsigned Size = getContext().getTypeSize(Ty); 8588 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8589 8590 if (SizeInRegs == 0) 8591 return false; 8592 8593 if (SizeInRegs > State.FreeRegs) { 8594 State.FreeRegs = 0; 8595 return false; 8596 } 8597 8598 State.FreeRegs -= SizeInRegs; 8599 8600 return true; 8601 } 8602 8603 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8604 CCState &State) const { 8605 if (!ByVal) { 8606 if (State.FreeRegs) { 8607 --State.FreeRegs; // Non-byval indirects just use one pointer. 8608 return getNaturalAlignIndirectInReg(Ty); 8609 } 8610 return getNaturalAlignIndirect(Ty, false); 8611 } 8612 8613 // Compute the byval alignment. 8614 const unsigned MinABIStackAlignInBytes = 4; 8615 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8616 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8617 /*Realign=*/TypeAlign > 8618 MinABIStackAlignInBytes); 8619 } 8620 8621 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8622 CCState &State) const { 8623 // Check with the C++ ABI first. 8624 const RecordType *RT = Ty->getAs<RecordType>(); 8625 if (RT) { 8626 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8627 if (RAA == CGCXXABI::RAA_Indirect) { 8628 return getIndirectResult(Ty, /*ByVal=*/false, State); 8629 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8630 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8631 } 8632 } 8633 8634 if (isAggregateTypeForABI(Ty)) { 8635 // Structures with flexible arrays are always indirect. 8636 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8637 return getIndirectResult(Ty, /*ByVal=*/true, State); 8638 8639 // Ignore empty structs/unions. 8640 if (isEmptyRecord(getContext(), Ty, true)) 8641 return ABIArgInfo::getIgnore(); 8642 8643 llvm::LLVMContext &LLVMContext = getVMContext(); 8644 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8645 if (SizeInRegs <= State.FreeRegs) { 8646 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8647 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8648 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8649 State.FreeRegs -= SizeInRegs; 8650 return ABIArgInfo::getDirectInReg(Result); 8651 } else { 8652 State.FreeRegs = 0; 8653 } 8654 return getIndirectResult(Ty, true, State); 8655 } 8656 8657 // Treat an enum type as its underlying type. 8658 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8659 Ty = EnumTy->getDecl()->getIntegerType(); 8660 8661 bool InReg = shouldUseInReg(Ty, State); 8662 8663 // Don't pass >64 bit integers in registers. 8664 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8665 if (EIT->getNumBits() > 64) 8666 return getIndirectResult(Ty, /*ByVal=*/true, State); 8667 8668 if (isPromotableIntegerTypeForABI(Ty)) { 8669 if (InReg) 8670 return ABIArgInfo::getDirectInReg(); 8671 return ABIArgInfo::getExtend(Ty); 8672 } 8673 if (InReg) 8674 return ABIArgInfo::getDirectInReg(); 8675 return ABIArgInfo::getDirect(); 8676 } 8677 8678 namespace { 8679 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8680 public: 8681 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8682 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8683 }; 8684 } 8685 8686 //===----------------------------------------------------------------------===// 8687 // AMDGPU ABI Implementation 8688 //===----------------------------------------------------------------------===// 8689 8690 namespace { 8691 8692 class AMDGPUABIInfo final : public DefaultABIInfo { 8693 private: 8694 static const unsigned MaxNumRegsForArgsRet = 16; 8695 8696 unsigned numRegsForType(QualType Ty) const; 8697 8698 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8699 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8700 uint64_t Members) const override; 8701 8702 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8703 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8704 unsigned ToAS) const { 8705 // Single value types. 8706 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8707 return llvm::PointerType::get( 8708 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8709 return Ty; 8710 } 8711 8712 public: 8713 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8714 DefaultABIInfo(CGT) {} 8715 8716 ABIArgInfo classifyReturnType(QualType RetTy) const; 8717 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8718 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8719 8720 void computeInfo(CGFunctionInfo &FI) const override; 8721 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8722 QualType Ty) const override; 8723 }; 8724 8725 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8726 return true; 8727 } 8728 8729 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8730 const Type *Base, uint64_t Members) const { 8731 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8732 8733 // Homogeneous Aggregates may occupy at most 16 registers. 8734 return Members * NumRegs <= MaxNumRegsForArgsRet; 8735 } 8736 8737 /// Estimate number of registers the type will use when passed in registers. 8738 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8739 unsigned NumRegs = 0; 8740 8741 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8742 // Compute from the number of elements. The reported size is based on the 8743 // in-memory size, which includes the padding 4th element for 3-vectors. 8744 QualType EltTy = VT->getElementType(); 8745 unsigned EltSize = getContext().getTypeSize(EltTy); 8746 8747 // 16-bit element vectors should be passed as packed. 8748 if (EltSize == 16) 8749 return (VT->getNumElements() + 1) / 2; 8750 8751 unsigned EltNumRegs = (EltSize + 31) / 32; 8752 return EltNumRegs * VT->getNumElements(); 8753 } 8754 8755 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8756 const RecordDecl *RD = RT->getDecl(); 8757 assert(!RD->hasFlexibleArrayMember()); 8758 8759 for (const FieldDecl *Field : RD->fields()) { 8760 QualType FieldTy = Field->getType(); 8761 NumRegs += numRegsForType(FieldTy); 8762 } 8763 8764 return NumRegs; 8765 } 8766 8767 return (getContext().getTypeSize(Ty) + 31) / 32; 8768 } 8769 8770 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8771 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8772 8773 if (!getCXXABI().classifyReturnType(FI)) 8774 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8775 8776 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8777 for (auto &Arg : FI.arguments()) { 8778 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8779 Arg.info = classifyKernelArgumentType(Arg.type); 8780 } else { 8781 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8782 } 8783 } 8784 } 8785 8786 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8787 QualType Ty) const { 8788 llvm_unreachable("AMDGPU does not support varargs"); 8789 } 8790 8791 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8792 if (isAggregateTypeForABI(RetTy)) { 8793 // Records with non-trivial destructors/copy-constructors should not be 8794 // returned by value. 8795 if (!getRecordArgABI(RetTy, getCXXABI())) { 8796 // Ignore empty structs/unions. 8797 if (isEmptyRecord(getContext(), RetTy, true)) 8798 return ABIArgInfo::getIgnore(); 8799 8800 // Lower single-element structs to just return a regular value. 8801 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8802 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8803 8804 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8805 const RecordDecl *RD = RT->getDecl(); 8806 if (RD->hasFlexibleArrayMember()) 8807 return DefaultABIInfo::classifyReturnType(RetTy); 8808 } 8809 8810 // Pack aggregates <= 4 bytes into single VGPR or pair. 8811 uint64_t Size = getContext().getTypeSize(RetTy); 8812 if (Size <= 16) 8813 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8814 8815 if (Size <= 32) 8816 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8817 8818 if (Size <= 64) { 8819 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8820 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8821 } 8822 8823 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8824 return ABIArgInfo::getDirect(); 8825 } 8826 } 8827 8828 // Otherwise just do the default thing. 8829 return DefaultABIInfo::classifyReturnType(RetTy); 8830 } 8831 8832 /// For kernels all parameters are really passed in a special buffer. It doesn't 8833 /// make sense to pass anything byval, so everything must be direct. 8834 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8835 Ty = useFirstFieldIfTransparentUnion(Ty); 8836 8837 // TODO: Can we omit empty structs? 8838 8839 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8840 Ty = QualType(SeltTy, 0); 8841 8842 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8843 llvm::Type *LTy = OrigLTy; 8844 if (getContext().getLangOpts().HIP) { 8845 LTy = coerceKernelArgumentType( 8846 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8847 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8848 } 8849 8850 // FIXME: Should also use this for OpenCL, but it requires addressing the 8851 // problem of kernels being called. 8852 // 8853 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8854 // to global address space when using byref. This would require implementing a 8855 // new kind of coercion of the in-memory type when for indirect arguments. 8856 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8857 isAggregateTypeForABI(Ty)) { 8858 return ABIArgInfo::getIndirectAliased( 8859 getContext().getTypeAlignInChars(Ty), 8860 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8861 false /*Realign*/, nullptr /*Padding*/); 8862 } 8863 8864 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8865 // individual elements, which confuses the Clover OpenCL backend; therefore we 8866 // have to set it to false here. Other args of getDirect() are just defaults. 8867 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8868 } 8869 8870 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8871 unsigned &NumRegsLeft) const { 8872 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8873 8874 Ty = useFirstFieldIfTransparentUnion(Ty); 8875 8876 if (isAggregateTypeForABI(Ty)) { 8877 // Records with non-trivial destructors/copy-constructors should not be 8878 // passed by value. 8879 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8880 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8881 8882 // Ignore empty structs/unions. 8883 if (isEmptyRecord(getContext(), Ty, true)) 8884 return ABIArgInfo::getIgnore(); 8885 8886 // Lower single-element structs to just pass a regular value. TODO: We 8887 // could do reasonable-size multiple-element structs too, using getExpand(), 8888 // though watch out for things like bitfields. 8889 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8890 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8891 8892 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8893 const RecordDecl *RD = RT->getDecl(); 8894 if (RD->hasFlexibleArrayMember()) 8895 return DefaultABIInfo::classifyArgumentType(Ty); 8896 } 8897 8898 // Pack aggregates <= 8 bytes into single VGPR or pair. 8899 uint64_t Size = getContext().getTypeSize(Ty); 8900 if (Size <= 64) { 8901 unsigned NumRegs = (Size + 31) / 32; 8902 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8903 8904 if (Size <= 16) 8905 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8906 8907 if (Size <= 32) 8908 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8909 8910 // XXX: Should this be i64 instead, and should the limit increase? 8911 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8912 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8913 } 8914 8915 if (NumRegsLeft > 0) { 8916 unsigned NumRegs = numRegsForType(Ty); 8917 if (NumRegsLeft >= NumRegs) { 8918 NumRegsLeft -= NumRegs; 8919 return ABIArgInfo::getDirect(); 8920 } 8921 } 8922 } 8923 8924 // Otherwise just do the default thing. 8925 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8926 if (!ArgInfo.isIndirect()) { 8927 unsigned NumRegs = numRegsForType(Ty); 8928 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8929 } 8930 8931 return ArgInfo; 8932 } 8933 8934 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8935 public: 8936 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8937 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8938 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8939 CodeGen::CodeGenModule &M) const override; 8940 unsigned getOpenCLKernelCallingConv() const override; 8941 8942 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8943 llvm::PointerType *T, QualType QT) const override; 8944 8945 LangAS getASTAllocaAddressSpace() const override { 8946 return getLangASFromTargetAS( 8947 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8948 } 8949 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8950 const VarDecl *D) const override; 8951 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8952 SyncScope Scope, 8953 llvm::AtomicOrdering Ordering, 8954 llvm::LLVMContext &Ctx) const override; 8955 llvm::Function * 8956 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8957 llvm::Function *BlockInvokeFunc, 8958 llvm::Value *BlockLiteral) const override; 8959 bool shouldEmitStaticExternCAliases() const override; 8960 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8961 }; 8962 } 8963 8964 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8965 llvm::GlobalValue *GV) { 8966 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8967 return false; 8968 8969 return D->hasAttr<OpenCLKernelAttr>() || 8970 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8971 (isa<VarDecl>(D) && 8972 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8973 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8974 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8975 } 8976 8977 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8978 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8979 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8980 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8981 GV->setDSOLocal(true); 8982 } 8983 8984 if (GV->isDeclaration()) 8985 return; 8986 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8987 if (!FD) 8988 return; 8989 8990 llvm::Function *F = cast<llvm::Function>(GV); 8991 8992 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8993 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8994 8995 8996 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8997 FD->hasAttr<OpenCLKernelAttr>(); 8998 const bool IsHIPKernel = M.getLangOpts().HIP && 8999 FD->hasAttr<CUDAGlobalAttr>(); 9000 if ((IsOpenCLKernel || IsHIPKernel) && 9001 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9002 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9003 9004 if (IsHIPKernel) 9005 F->addFnAttr("uniform-work-group-size", "true"); 9006 9007 9008 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9009 if (ReqdWGS || FlatWGS) { 9010 unsigned Min = 0; 9011 unsigned Max = 0; 9012 if (FlatWGS) { 9013 Min = FlatWGS->getMin() 9014 ->EvaluateKnownConstInt(M.getContext()) 9015 .getExtValue(); 9016 Max = FlatWGS->getMax() 9017 ->EvaluateKnownConstInt(M.getContext()) 9018 .getExtValue(); 9019 } 9020 if (ReqdWGS && Min == 0 && Max == 0) 9021 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9022 9023 if (Min != 0) { 9024 assert(Min <= Max && "Min must be less than or equal Max"); 9025 9026 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9027 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9028 } else 9029 assert(Max == 0 && "Max must be zero"); 9030 } else if (IsOpenCLKernel || IsHIPKernel) { 9031 // By default, restrict the maximum size to a value specified by 9032 // --gpu-max-threads-per-block=n or its default value for HIP. 9033 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9034 const unsigned DefaultMaxWorkGroupSize = 9035 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9036 : M.getLangOpts().GPUMaxThreadsPerBlock; 9037 std::string AttrVal = 9038 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9039 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9040 } 9041 9042 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9043 unsigned Min = 9044 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9045 unsigned Max = Attr->getMax() ? Attr->getMax() 9046 ->EvaluateKnownConstInt(M.getContext()) 9047 .getExtValue() 9048 : 0; 9049 9050 if (Min != 0) { 9051 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9052 9053 std::string AttrVal = llvm::utostr(Min); 9054 if (Max != 0) 9055 AttrVal = AttrVal + "," + llvm::utostr(Max); 9056 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9057 } else 9058 assert(Max == 0 && "Max must be zero"); 9059 } 9060 9061 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9062 unsigned NumSGPR = Attr->getNumSGPR(); 9063 9064 if (NumSGPR != 0) 9065 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9066 } 9067 9068 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9069 uint32_t NumVGPR = Attr->getNumVGPR(); 9070 9071 if (NumVGPR != 0) 9072 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9073 } 9074 9075 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9076 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9077 } 9078 9079 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9080 return llvm::CallingConv::AMDGPU_KERNEL; 9081 } 9082 9083 // Currently LLVM assumes null pointers always have value 0, 9084 // which results in incorrectly transformed IR. Therefore, instead of 9085 // emitting null pointers in private and local address spaces, a null 9086 // pointer in generic address space is emitted which is casted to a 9087 // pointer in local or private address space. 9088 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9089 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9090 QualType QT) const { 9091 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9092 return llvm::ConstantPointerNull::get(PT); 9093 9094 auto &Ctx = CGM.getContext(); 9095 auto NPT = llvm::PointerType::get(PT->getElementType(), 9096 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9097 return llvm::ConstantExpr::getAddrSpaceCast( 9098 llvm::ConstantPointerNull::get(NPT), PT); 9099 } 9100 9101 LangAS 9102 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9103 const VarDecl *D) const { 9104 assert(!CGM.getLangOpts().OpenCL && 9105 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9106 "Address space agnostic languages only"); 9107 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9108 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9109 if (!D) 9110 return DefaultGlobalAS; 9111 9112 LangAS AddrSpace = D->getType().getAddressSpace(); 9113 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9114 if (AddrSpace != LangAS::Default) 9115 return AddrSpace; 9116 9117 if (CGM.isTypeConstant(D->getType(), false)) { 9118 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9119 return ConstAS.getValue(); 9120 } 9121 return DefaultGlobalAS; 9122 } 9123 9124 llvm::SyncScope::ID 9125 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9126 SyncScope Scope, 9127 llvm::AtomicOrdering Ordering, 9128 llvm::LLVMContext &Ctx) const { 9129 std::string Name; 9130 switch (Scope) { 9131 case SyncScope::OpenCLWorkGroup: 9132 Name = "workgroup"; 9133 break; 9134 case SyncScope::OpenCLDevice: 9135 Name = "agent"; 9136 break; 9137 case SyncScope::OpenCLAllSVMDevices: 9138 Name = ""; 9139 break; 9140 case SyncScope::OpenCLSubGroup: 9141 Name = "wavefront"; 9142 } 9143 9144 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9145 if (!Name.empty()) 9146 Name = Twine(Twine(Name) + Twine("-")).str(); 9147 9148 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9149 } 9150 9151 return Ctx.getOrInsertSyncScopeID(Name); 9152 } 9153 9154 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9155 return false; 9156 } 9157 9158 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9159 const FunctionType *&FT) const { 9160 FT = getABIInfo().getContext().adjustFunctionType( 9161 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9162 } 9163 9164 //===----------------------------------------------------------------------===// 9165 // SPARC v8 ABI Implementation. 9166 // Based on the SPARC Compliance Definition version 2.4.1. 9167 // 9168 // Ensures that complex values are passed in registers. 9169 // 9170 namespace { 9171 class SparcV8ABIInfo : public DefaultABIInfo { 9172 public: 9173 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9174 9175 private: 9176 ABIArgInfo classifyReturnType(QualType RetTy) const; 9177 void computeInfo(CGFunctionInfo &FI) const override; 9178 }; 9179 } // end anonymous namespace 9180 9181 9182 ABIArgInfo 9183 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9184 if (Ty->isAnyComplexType()) { 9185 return ABIArgInfo::getDirect(); 9186 } 9187 else { 9188 return DefaultABIInfo::classifyReturnType(Ty); 9189 } 9190 } 9191 9192 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9193 9194 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9195 for (auto &Arg : FI.arguments()) 9196 Arg.info = classifyArgumentType(Arg.type); 9197 } 9198 9199 namespace { 9200 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9201 public: 9202 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9203 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9204 }; 9205 } // end anonymous namespace 9206 9207 //===----------------------------------------------------------------------===// 9208 // SPARC v9 ABI Implementation. 9209 // Based on the SPARC Compliance Definition version 2.4.1. 9210 // 9211 // Function arguments a mapped to a nominal "parameter array" and promoted to 9212 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9213 // the array, structs larger than 16 bytes are passed indirectly. 9214 // 9215 // One case requires special care: 9216 // 9217 // struct mixed { 9218 // int i; 9219 // float f; 9220 // }; 9221 // 9222 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9223 // parameter array, but the int is passed in an integer register, and the float 9224 // is passed in a floating point register. This is represented as two arguments 9225 // with the LLVM IR inreg attribute: 9226 // 9227 // declare void f(i32 inreg %i, float inreg %f) 9228 // 9229 // The code generator will only allocate 4 bytes from the parameter array for 9230 // the inreg arguments. All other arguments are allocated a multiple of 8 9231 // bytes. 9232 // 9233 namespace { 9234 class SparcV9ABIInfo : public ABIInfo { 9235 public: 9236 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9237 9238 private: 9239 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9240 void computeInfo(CGFunctionInfo &FI) const override; 9241 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9242 QualType Ty) const override; 9243 9244 // Coercion type builder for structs passed in registers. The coercion type 9245 // serves two purposes: 9246 // 9247 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9248 // in registers. 9249 // 2. Expose aligned floating point elements as first-level elements, so the 9250 // code generator knows to pass them in floating point registers. 9251 // 9252 // We also compute the InReg flag which indicates that the struct contains 9253 // aligned 32-bit floats. 9254 // 9255 struct CoerceBuilder { 9256 llvm::LLVMContext &Context; 9257 const llvm::DataLayout &DL; 9258 SmallVector<llvm::Type*, 8> Elems; 9259 uint64_t Size; 9260 bool InReg; 9261 9262 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9263 : Context(c), DL(dl), Size(0), InReg(false) {} 9264 9265 // Pad Elems with integers until Size is ToSize. 9266 void pad(uint64_t ToSize) { 9267 assert(ToSize >= Size && "Cannot remove elements"); 9268 if (ToSize == Size) 9269 return; 9270 9271 // Finish the current 64-bit word. 9272 uint64_t Aligned = llvm::alignTo(Size, 64); 9273 if (Aligned > Size && Aligned <= ToSize) { 9274 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9275 Size = Aligned; 9276 } 9277 9278 // Add whole 64-bit words. 9279 while (Size + 64 <= ToSize) { 9280 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9281 Size += 64; 9282 } 9283 9284 // Final in-word padding. 9285 if (Size < ToSize) { 9286 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9287 Size = ToSize; 9288 } 9289 } 9290 9291 // Add a floating point element at Offset. 9292 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9293 // Unaligned floats are treated as integers. 9294 if (Offset % Bits) 9295 return; 9296 // The InReg flag is only required if there are any floats < 64 bits. 9297 if (Bits < 64) 9298 InReg = true; 9299 pad(Offset); 9300 Elems.push_back(Ty); 9301 Size = Offset + Bits; 9302 } 9303 9304 // Add a struct type to the coercion type, starting at Offset (in bits). 9305 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9306 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9307 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9308 llvm::Type *ElemTy = StrTy->getElementType(i); 9309 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9310 switch (ElemTy->getTypeID()) { 9311 case llvm::Type::StructTyID: 9312 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9313 break; 9314 case llvm::Type::FloatTyID: 9315 addFloat(ElemOffset, ElemTy, 32); 9316 break; 9317 case llvm::Type::DoubleTyID: 9318 addFloat(ElemOffset, ElemTy, 64); 9319 break; 9320 case llvm::Type::FP128TyID: 9321 addFloat(ElemOffset, ElemTy, 128); 9322 break; 9323 case llvm::Type::PointerTyID: 9324 if (ElemOffset % 64 == 0) { 9325 pad(ElemOffset); 9326 Elems.push_back(ElemTy); 9327 Size += 64; 9328 } 9329 break; 9330 default: 9331 break; 9332 } 9333 } 9334 } 9335 9336 // Check if Ty is a usable substitute for the coercion type. 9337 bool isUsableType(llvm::StructType *Ty) const { 9338 return llvm::makeArrayRef(Elems) == Ty->elements(); 9339 } 9340 9341 // Get the coercion type as a literal struct type. 9342 llvm::Type *getType() const { 9343 if (Elems.size() == 1) 9344 return Elems.front(); 9345 else 9346 return llvm::StructType::get(Context, Elems); 9347 } 9348 }; 9349 }; 9350 } // end anonymous namespace 9351 9352 ABIArgInfo 9353 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9354 if (Ty->isVoidType()) 9355 return ABIArgInfo::getIgnore(); 9356 9357 uint64_t Size = getContext().getTypeSize(Ty); 9358 9359 // Anything too big to fit in registers is passed with an explicit indirect 9360 // pointer / sret pointer. 9361 if (Size > SizeLimit) 9362 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9363 9364 // Treat an enum type as its underlying type. 9365 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9366 Ty = EnumTy->getDecl()->getIntegerType(); 9367 9368 // Integer types smaller than a register are extended. 9369 if (Size < 64 && Ty->isIntegerType()) 9370 return ABIArgInfo::getExtend(Ty); 9371 9372 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9373 if (EIT->getNumBits() < 64) 9374 return ABIArgInfo::getExtend(Ty); 9375 9376 // Other non-aggregates go in registers. 9377 if (!isAggregateTypeForABI(Ty)) 9378 return ABIArgInfo::getDirect(); 9379 9380 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9381 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9382 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9383 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9384 9385 // This is a small aggregate type that should be passed in registers. 9386 // Build a coercion type from the LLVM struct type. 9387 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9388 if (!StrTy) 9389 return ABIArgInfo::getDirect(); 9390 9391 CoerceBuilder CB(getVMContext(), getDataLayout()); 9392 CB.addStruct(0, StrTy); 9393 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9394 9395 // Try to use the original type for coercion. 9396 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9397 9398 if (CB.InReg) 9399 return ABIArgInfo::getDirectInReg(CoerceTy); 9400 else 9401 return ABIArgInfo::getDirect(CoerceTy); 9402 } 9403 9404 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9405 QualType Ty) const { 9406 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9407 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9408 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9409 AI.setCoerceToType(ArgTy); 9410 9411 CharUnits SlotSize = CharUnits::fromQuantity(8); 9412 9413 CGBuilderTy &Builder = CGF.Builder; 9414 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9415 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9416 9417 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9418 9419 Address ArgAddr = Address::invalid(); 9420 CharUnits Stride; 9421 switch (AI.getKind()) { 9422 case ABIArgInfo::Expand: 9423 case ABIArgInfo::CoerceAndExpand: 9424 case ABIArgInfo::InAlloca: 9425 llvm_unreachable("Unsupported ABI kind for va_arg"); 9426 9427 case ABIArgInfo::Extend: { 9428 Stride = SlotSize; 9429 CharUnits Offset = SlotSize - TypeInfo.Width; 9430 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9431 break; 9432 } 9433 9434 case ABIArgInfo::Direct: { 9435 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9436 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9437 ArgAddr = Addr; 9438 break; 9439 } 9440 9441 case ABIArgInfo::Indirect: 9442 case ABIArgInfo::IndirectAliased: 9443 Stride = SlotSize; 9444 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9445 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9446 TypeInfo.Align); 9447 break; 9448 9449 case ABIArgInfo::Ignore: 9450 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9451 } 9452 9453 // Update VAList. 9454 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9455 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9456 9457 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9458 } 9459 9460 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9461 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9462 for (auto &I : FI.arguments()) 9463 I.info = classifyType(I.type, 16 * 8); 9464 } 9465 9466 namespace { 9467 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9468 public: 9469 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9470 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9471 9472 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9473 return 14; 9474 } 9475 9476 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9477 llvm::Value *Address) const override; 9478 }; 9479 } // end anonymous namespace 9480 9481 bool 9482 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9483 llvm::Value *Address) const { 9484 // This is calculated from the LLVM and GCC tables and verified 9485 // against gcc output. AFAIK all ABIs use the same encoding. 9486 9487 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9488 9489 llvm::IntegerType *i8 = CGF.Int8Ty; 9490 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9491 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9492 9493 // 0-31: the 8-byte general-purpose registers 9494 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9495 9496 // 32-63: f0-31, the 4-byte floating-point registers 9497 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9498 9499 // Y = 64 9500 // PSR = 65 9501 // WIM = 66 9502 // TBR = 67 9503 // PC = 68 9504 // NPC = 69 9505 // FSR = 70 9506 // CSR = 71 9507 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9508 9509 // 72-87: d0-15, the 8-byte floating-point registers 9510 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9511 9512 return false; 9513 } 9514 9515 // ARC ABI implementation. 9516 namespace { 9517 9518 class ARCABIInfo : public DefaultABIInfo { 9519 public: 9520 using DefaultABIInfo::DefaultABIInfo; 9521 9522 private: 9523 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9524 QualType Ty) const override; 9525 9526 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9527 if (!State.FreeRegs) 9528 return; 9529 if (Info.isIndirect() && Info.getInReg()) 9530 State.FreeRegs--; 9531 else if (Info.isDirect() && Info.getInReg()) { 9532 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9533 if (sz < State.FreeRegs) 9534 State.FreeRegs -= sz; 9535 else 9536 State.FreeRegs = 0; 9537 } 9538 } 9539 9540 void computeInfo(CGFunctionInfo &FI) const override { 9541 CCState State(FI); 9542 // ARC uses 8 registers to pass arguments. 9543 State.FreeRegs = 8; 9544 9545 if (!getCXXABI().classifyReturnType(FI)) 9546 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9547 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9548 for (auto &I : FI.arguments()) { 9549 I.info = classifyArgumentType(I.type, State.FreeRegs); 9550 updateState(I.info, I.type, State); 9551 } 9552 } 9553 9554 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9555 ABIArgInfo getIndirectByValue(QualType Ty) const; 9556 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9557 ABIArgInfo classifyReturnType(QualType RetTy) const; 9558 }; 9559 9560 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9561 public: 9562 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9563 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9564 }; 9565 9566 9567 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9568 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9569 getNaturalAlignIndirect(Ty, false); 9570 } 9571 9572 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9573 // Compute the byval alignment. 9574 const unsigned MinABIStackAlignInBytes = 4; 9575 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9576 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9577 TypeAlign > MinABIStackAlignInBytes); 9578 } 9579 9580 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9581 QualType Ty) const { 9582 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9583 getContext().getTypeInfoInChars(Ty), 9584 CharUnits::fromQuantity(4), true); 9585 } 9586 9587 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9588 uint8_t FreeRegs) const { 9589 // Handle the generic C++ ABI. 9590 const RecordType *RT = Ty->getAs<RecordType>(); 9591 if (RT) { 9592 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9593 if (RAA == CGCXXABI::RAA_Indirect) 9594 return getIndirectByRef(Ty, FreeRegs > 0); 9595 9596 if (RAA == CGCXXABI::RAA_DirectInMemory) 9597 return getIndirectByValue(Ty); 9598 } 9599 9600 // Treat an enum type as its underlying type. 9601 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9602 Ty = EnumTy->getDecl()->getIntegerType(); 9603 9604 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9605 9606 if (isAggregateTypeForABI(Ty)) { 9607 // Structures with flexible arrays are always indirect. 9608 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9609 return getIndirectByValue(Ty); 9610 9611 // Ignore empty structs/unions. 9612 if (isEmptyRecord(getContext(), Ty, true)) 9613 return ABIArgInfo::getIgnore(); 9614 9615 llvm::LLVMContext &LLVMContext = getVMContext(); 9616 9617 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9618 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9619 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9620 9621 return FreeRegs >= SizeInRegs ? 9622 ABIArgInfo::getDirectInReg(Result) : 9623 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9624 } 9625 9626 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9627 if (EIT->getNumBits() > 64) 9628 return getIndirectByValue(Ty); 9629 9630 return isPromotableIntegerTypeForABI(Ty) 9631 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9632 : ABIArgInfo::getExtend(Ty)) 9633 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9634 : ABIArgInfo::getDirect()); 9635 } 9636 9637 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9638 if (RetTy->isAnyComplexType()) 9639 return ABIArgInfo::getDirectInReg(); 9640 9641 // Arguments of size > 4 registers are indirect. 9642 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9643 if (RetSize > 4) 9644 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9645 9646 return DefaultABIInfo::classifyReturnType(RetTy); 9647 } 9648 9649 } // End anonymous namespace. 9650 9651 //===----------------------------------------------------------------------===// 9652 // XCore ABI Implementation 9653 //===----------------------------------------------------------------------===// 9654 9655 namespace { 9656 9657 /// A SmallStringEnc instance is used to build up the TypeString by passing 9658 /// it by reference between functions that append to it. 9659 typedef llvm::SmallString<128> SmallStringEnc; 9660 9661 /// TypeStringCache caches the meta encodings of Types. 9662 /// 9663 /// The reason for caching TypeStrings is two fold: 9664 /// 1. To cache a type's encoding for later uses; 9665 /// 2. As a means to break recursive member type inclusion. 9666 /// 9667 /// A cache Entry can have a Status of: 9668 /// NonRecursive: The type encoding is not recursive; 9669 /// Recursive: The type encoding is recursive; 9670 /// Incomplete: An incomplete TypeString; 9671 /// IncompleteUsed: An incomplete TypeString that has been used in a 9672 /// Recursive type encoding. 9673 /// 9674 /// A NonRecursive entry will have all of its sub-members expanded as fully 9675 /// as possible. Whilst it may contain types which are recursive, the type 9676 /// itself is not recursive and thus its encoding may be safely used whenever 9677 /// the type is encountered. 9678 /// 9679 /// A Recursive entry will have all of its sub-members expanded as fully as 9680 /// possible. The type itself is recursive and it may contain other types which 9681 /// are recursive. The Recursive encoding must not be used during the expansion 9682 /// of a recursive type's recursive branch. For simplicity the code uses 9683 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9684 /// 9685 /// An Incomplete entry is always a RecordType and only encodes its 9686 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9687 /// are placed into the cache during type expansion as a means to identify and 9688 /// handle recursive inclusion of types as sub-members. If there is recursion 9689 /// the entry becomes IncompleteUsed. 9690 /// 9691 /// During the expansion of a RecordType's members: 9692 /// 9693 /// If the cache contains a NonRecursive encoding for the member type, the 9694 /// cached encoding is used; 9695 /// 9696 /// If the cache contains a Recursive encoding for the member type, the 9697 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9698 /// 9699 /// If the member is a RecordType, an Incomplete encoding is placed into the 9700 /// cache to break potential recursive inclusion of itself as a sub-member; 9701 /// 9702 /// Once a member RecordType has been expanded, its temporary incomplete 9703 /// entry is removed from the cache. If a Recursive encoding was swapped out 9704 /// it is swapped back in; 9705 /// 9706 /// If an incomplete entry is used to expand a sub-member, the incomplete 9707 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9708 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9709 /// 9710 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9711 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9712 /// Else the member is part of a recursive type and thus the recursion has 9713 /// been exited too soon for the encoding to be correct for the member. 9714 /// 9715 class TypeStringCache { 9716 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9717 struct Entry { 9718 std::string Str; // The encoded TypeString for the type. 9719 enum Status State; // Information about the encoding in 'Str'. 9720 std::string Swapped; // A temporary place holder for a Recursive encoding 9721 // during the expansion of RecordType's members. 9722 }; 9723 std::map<const IdentifierInfo *, struct Entry> Map; 9724 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9725 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9726 public: 9727 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9728 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9729 bool removeIncomplete(const IdentifierInfo *ID); 9730 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9731 bool IsRecursive); 9732 StringRef lookupStr(const IdentifierInfo *ID); 9733 }; 9734 9735 /// TypeString encodings for enum & union fields must be order. 9736 /// FieldEncoding is a helper for this ordering process. 9737 class FieldEncoding { 9738 bool HasName; 9739 std::string Enc; 9740 public: 9741 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9742 StringRef str() { return Enc; } 9743 bool operator<(const FieldEncoding &rhs) const { 9744 if (HasName != rhs.HasName) return HasName; 9745 return Enc < rhs.Enc; 9746 } 9747 }; 9748 9749 class XCoreABIInfo : public DefaultABIInfo { 9750 public: 9751 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9752 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9753 QualType Ty) const override; 9754 }; 9755 9756 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9757 mutable TypeStringCache TSC; 9758 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9759 const CodeGen::CodeGenModule &M) const; 9760 9761 public: 9762 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9763 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9764 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9765 const llvm::MapVector<GlobalDecl, StringRef> 9766 &MangledDeclNames) const override; 9767 }; 9768 9769 } // End anonymous namespace. 9770 9771 // TODO: this implementation is likely now redundant with the default 9772 // EmitVAArg. 9773 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9774 QualType Ty) const { 9775 CGBuilderTy &Builder = CGF.Builder; 9776 9777 // Get the VAList. 9778 CharUnits SlotSize = CharUnits::fromQuantity(4); 9779 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9780 9781 // Handle the argument. 9782 ABIArgInfo AI = classifyArgumentType(Ty); 9783 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9784 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9785 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9786 AI.setCoerceToType(ArgTy); 9787 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9788 9789 Address Val = Address::invalid(); 9790 CharUnits ArgSize = CharUnits::Zero(); 9791 switch (AI.getKind()) { 9792 case ABIArgInfo::Expand: 9793 case ABIArgInfo::CoerceAndExpand: 9794 case ABIArgInfo::InAlloca: 9795 llvm_unreachable("Unsupported ABI kind for va_arg"); 9796 case ABIArgInfo::Ignore: 9797 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9798 ArgSize = CharUnits::Zero(); 9799 break; 9800 case ABIArgInfo::Extend: 9801 case ABIArgInfo::Direct: 9802 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9803 ArgSize = CharUnits::fromQuantity( 9804 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9805 ArgSize = ArgSize.alignTo(SlotSize); 9806 break; 9807 case ABIArgInfo::Indirect: 9808 case ABIArgInfo::IndirectAliased: 9809 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9810 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9811 ArgSize = SlotSize; 9812 break; 9813 } 9814 9815 // Increment the VAList. 9816 if (!ArgSize.isZero()) { 9817 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9818 Builder.CreateStore(APN.getPointer(), VAListAddr); 9819 } 9820 9821 return Val; 9822 } 9823 9824 /// During the expansion of a RecordType, an incomplete TypeString is placed 9825 /// into the cache as a means to identify and break recursion. 9826 /// If there is a Recursive encoding in the cache, it is swapped out and will 9827 /// be reinserted by removeIncomplete(). 9828 /// All other types of encoding should have been used rather than arriving here. 9829 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9830 std::string StubEnc) { 9831 if (!ID) 9832 return; 9833 Entry &E = Map[ID]; 9834 assert( (E.Str.empty() || E.State == Recursive) && 9835 "Incorrectly use of addIncomplete"); 9836 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9837 E.Swapped.swap(E.Str); // swap out the Recursive 9838 E.Str.swap(StubEnc); 9839 E.State = Incomplete; 9840 ++IncompleteCount; 9841 } 9842 9843 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9844 /// must be removed from the cache. 9845 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9846 /// Returns true if the RecordType was defined recursively. 9847 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9848 if (!ID) 9849 return false; 9850 auto I = Map.find(ID); 9851 assert(I != Map.end() && "Entry not present"); 9852 Entry &E = I->second; 9853 assert( (E.State == Incomplete || 9854 E.State == IncompleteUsed) && 9855 "Entry must be an incomplete type"); 9856 bool IsRecursive = false; 9857 if (E.State == IncompleteUsed) { 9858 // We made use of our Incomplete encoding, thus we are recursive. 9859 IsRecursive = true; 9860 --IncompleteUsedCount; 9861 } 9862 if (E.Swapped.empty()) 9863 Map.erase(I); 9864 else { 9865 // Swap the Recursive back. 9866 E.Swapped.swap(E.Str); 9867 E.Swapped.clear(); 9868 E.State = Recursive; 9869 } 9870 --IncompleteCount; 9871 return IsRecursive; 9872 } 9873 9874 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9875 /// Recursive (viz: all sub-members were expanded as fully as possible). 9876 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9877 bool IsRecursive) { 9878 if (!ID || IncompleteUsedCount) 9879 return; // No key or it is is an incomplete sub-type so don't add. 9880 Entry &E = Map[ID]; 9881 if (IsRecursive && !E.Str.empty()) { 9882 assert(E.State==Recursive && E.Str.size() == Str.size() && 9883 "This is not the same Recursive entry"); 9884 // The parent container was not recursive after all, so we could have used 9885 // this Recursive sub-member entry after all, but we assumed the worse when 9886 // we started viz: IncompleteCount!=0. 9887 return; 9888 } 9889 assert(E.Str.empty() && "Entry already present"); 9890 E.Str = Str.str(); 9891 E.State = IsRecursive? Recursive : NonRecursive; 9892 } 9893 9894 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9895 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9896 /// encoding is Recursive, return an empty StringRef. 9897 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9898 if (!ID) 9899 return StringRef(); // We have no key. 9900 auto I = Map.find(ID); 9901 if (I == Map.end()) 9902 return StringRef(); // We have no encoding. 9903 Entry &E = I->second; 9904 if (E.State == Recursive && IncompleteCount) 9905 return StringRef(); // We don't use Recursive encodings for member types. 9906 9907 if (E.State == Incomplete) { 9908 // The incomplete type is being used to break out of recursion. 9909 E.State = IncompleteUsed; 9910 ++IncompleteUsedCount; 9911 } 9912 return E.Str; 9913 } 9914 9915 /// The XCore ABI includes a type information section that communicates symbol 9916 /// type information to the linker. The linker uses this information to verify 9917 /// safety/correctness of things such as array bound and pointers et al. 9918 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9919 /// This type information (TypeString) is emitted into meta data for all global 9920 /// symbols: definitions, declarations, functions & variables. 9921 /// 9922 /// The TypeString carries type, qualifier, name, size & value details. 9923 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9924 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9925 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9926 /// 9927 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9928 const CodeGen::CodeGenModule &CGM, 9929 TypeStringCache &TSC); 9930 9931 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9932 void XCoreTargetCodeGenInfo::emitTargetMD( 9933 const Decl *D, llvm::GlobalValue *GV, 9934 const CodeGen::CodeGenModule &CGM) const { 9935 SmallStringEnc Enc; 9936 if (getTypeString(Enc, D, CGM, TSC)) { 9937 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9938 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9939 llvm::MDString::get(Ctx, Enc.str())}; 9940 llvm::NamedMDNode *MD = 9941 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9942 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9943 } 9944 } 9945 9946 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9947 CodeGen::CodeGenModule &CGM, 9948 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9949 // Warning, new MangledDeclNames may be appended within this loop. 9950 // We rely on MapVector insertions adding new elements to the end 9951 // of the container. 9952 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9953 auto Val = *(MangledDeclNames.begin() + I); 9954 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9955 if (GV) { 9956 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9957 emitTargetMD(D, GV, CGM); 9958 } 9959 } 9960 } 9961 //===----------------------------------------------------------------------===// 9962 // SPIR ABI Implementation 9963 //===----------------------------------------------------------------------===// 9964 9965 namespace { 9966 class SPIRABIInfo : public DefaultABIInfo { 9967 public: 9968 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 9969 9970 private: 9971 void setCCs(); 9972 }; 9973 } // end anonymous namespace 9974 namespace { 9975 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9976 public: 9977 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9978 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 9979 unsigned getOpenCLKernelCallingConv() const override; 9980 }; 9981 9982 } // End anonymous namespace. 9983 void SPIRABIInfo::setCCs() { 9984 assert(getRuntimeCC() == llvm::CallingConv::C); 9985 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 9986 } 9987 9988 namespace clang { 9989 namespace CodeGen { 9990 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9991 DefaultABIInfo SPIRABI(CGM.getTypes()); 9992 SPIRABI.computeInfo(FI); 9993 } 9994 } 9995 } 9996 9997 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9998 return llvm::CallingConv::SPIR_KERNEL; 9999 } 10000 10001 static bool appendType(SmallStringEnc &Enc, QualType QType, 10002 const CodeGen::CodeGenModule &CGM, 10003 TypeStringCache &TSC); 10004 10005 /// Helper function for appendRecordType(). 10006 /// Builds a SmallVector containing the encoded field types in declaration 10007 /// order. 10008 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10009 const RecordDecl *RD, 10010 const CodeGen::CodeGenModule &CGM, 10011 TypeStringCache &TSC) { 10012 for (const auto *Field : RD->fields()) { 10013 SmallStringEnc Enc; 10014 Enc += "m("; 10015 Enc += Field->getName(); 10016 Enc += "){"; 10017 if (Field->isBitField()) { 10018 Enc += "b("; 10019 llvm::raw_svector_ostream OS(Enc); 10020 OS << Field->getBitWidthValue(CGM.getContext()); 10021 Enc += ':'; 10022 } 10023 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10024 return false; 10025 if (Field->isBitField()) 10026 Enc += ')'; 10027 Enc += '}'; 10028 FE.emplace_back(!Field->getName().empty(), Enc); 10029 } 10030 return true; 10031 } 10032 10033 /// Appends structure and union types to Enc and adds encoding to cache. 10034 /// Recursively calls appendType (via extractFieldType) for each field. 10035 /// Union types have their fields ordered according to the ABI. 10036 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10037 const CodeGen::CodeGenModule &CGM, 10038 TypeStringCache &TSC, const IdentifierInfo *ID) { 10039 // Append the cached TypeString if we have one. 10040 StringRef TypeString = TSC.lookupStr(ID); 10041 if (!TypeString.empty()) { 10042 Enc += TypeString; 10043 return true; 10044 } 10045 10046 // Start to emit an incomplete TypeString. 10047 size_t Start = Enc.size(); 10048 Enc += (RT->isUnionType()? 'u' : 's'); 10049 Enc += '('; 10050 if (ID) 10051 Enc += ID->getName(); 10052 Enc += "){"; 10053 10054 // We collect all encoded fields and order as necessary. 10055 bool IsRecursive = false; 10056 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10057 if (RD && !RD->field_empty()) { 10058 // An incomplete TypeString stub is placed in the cache for this RecordType 10059 // so that recursive calls to this RecordType will use it whilst building a 10060 // complete TypeString for this RecordType. 10061 SmallVector<FieldEncoding, 16> FE; 10062 std::string StubEnc(Enc.substr(Start).str()); 10063 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10064 TSC.addIncomplete(ID, std::move(StubEnc)); 10065 if (!extractFieldType(FE, RD, CGM, TSC)) { 10066 (void) TSC.removeIncomplete(ID); 10067 return false; 10068 } 10069 IsRecursive = TSC.removeIncomplete(ID); 10070 // The ABI requires unions to be sorted but not structures. 10071 // See FieldEncoding::operator< for sort algorithm. 10072 if (RT->isUnionType()) 10073 llvm::sort(FE); 10074 // We can now complete the TypeString. 10075 unsigned E = FE.size(); 10076 for (unsigned I = 0; I != E; ++I) { 10077 if (I) 10078 Enc += ','; 10079 Enc += FE[I].str(); 10080 } 10081 } 10082 Enc += '}'; 10083 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10084 return true; 10085 } 10086 10087 /// Appends enum types to Enc and adds the encoding to the cache. 10088 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10089 TypeStringCache &TSC, 10090 const IdentifierInfo *ID) { 10091 // Append the cached TypeString if we have one. 10092 StringRef TypeString = TSC.lookupStr(ID); 10093 if (!TypeString.empty()) { 10094 Enc += TypeString; 10095 return true; 10096 } 10097 10098 size_t Start = Enc.size(); 10099 Enc += "e("; 10100 if (ID) 10101 Enc += ID->getName(); 10102 Enc += "){"; 10103 10104 // We collect all encoded enumerations and order them alphanumerically. 10105 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10106 SmallVector<FieldEncoding, 16> FE; 10107 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10108 ++I) { 10109 SmallStringEnc EnumEnc; 10110 EnumEnc += "m("; 10111 EnumEnc += I->getName(); 10112 EnumEnc += "){"; 10113 I->getInitVal().toString(EnumEnc); 10114 EnumEnc += '}'; 10115 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10116 } 10117 llvm::sort(FE); 10118 unsigned E = FE.size(); 10119 for (unsigned I = 0; I != E; ++I) { 10120 if (I) 10121 Enc += ','; 10122 Enc += FE[I].str(); 10123 } 10124 } 10125 Enc += '}'; 10126 TSC.addIfComplete(ID, Enc.substr(Start), false); 10127 return true; 10128 } 10129 10130 /// Appends type's qualifier to Enc. 10131 /// This is done prior to appending the type's encoding. 10132 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10133 // Qualifiers are emitted in alphabetical order. 10134 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10135 int Lookup = 0; 10136 if (QT.isConstQualified()) 10137 Lookup += 1<<0; 10138 if (QT.isRestrictQualified()) 10139 Lookup += 1<<1; 10140 if (QT.isVolatileQualified()) 10141 Lookup += 1<<2; 10142 Enc += Table[Lookup]; 10143 } 10144 10145 /// Appends built-in types to Enc. 10146 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10147 const char *EncType; 10148 switch (BT->getKind()) { 10149 case BuiltinType::Void: 10150 EncType = "0"; 10151 break; 10152 case BuiltinType::Bool: 10153 EncType = "b"; 10154 break; 10155 case BuiltinType::Char_U: 10156 EncType = "uc"; 10157 break; 10158 case BuiltinType::UChar: 10159 EncType = "uc"; 10160 break; 10161 case BuiltinType::SChar: 10162 EncType = "sc"; 10163 break; 10164 case BuiltinType::UShort: 10165 EncType = "us"; 10166 break; 10167 case BuiltinType::Short: 10168 EncType = "ss"; 10169 break; 10170 case BuiltinType::UInt: 10171 EncType = "ui"; 10172 break; 10173 case BuiltinType::Int: 10174 EncType = "si"; 10175 break; 10176 case BuiltinType::ULong: 10177 EncType = "ul"; 10178 break; 10179 case BuiltinType::Long: 10180 EncType = "sl"; 10181 break; 10182 case BuiltinType::ULongLong: 10183 EncType = "ull"; 10184 break; 10185 case BuiltinType::LongLong: 10186 EncType = "sll"; 10187 break; 10188 case BuiltinType::Float: 10189 EncType = "ft"; 10190 break; 10191 case BuiltinType::Double: 10192 EncType = "d"; 10193 break; 10194 case BuiltinType::LongDouble: 10195 EncType = "ld"; 10196 break; 10197 default: 10198 return false; 10199 } 10200 Enc += EncType; 10201 return true; 10202 } 10203 10204 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10205 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10206 const CodeGen::CodeGenModule &CGM, 10207 TypeStringCache &TSC) { 10208 Enc += "p("; 10209 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10210 return false; 10211 Enc += ')'; 10212 return true; 10213 } 10214 10215 /// Appends array encoding to Enc before calling appendType for the element. 10216 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10217 const ArrayType *AT, 10218 const CodeGen::CodeGenModule &CGM, 10219 TypeStringCache &TSC, StringRef NoSizeEnc) { 10220 if (AT->getSizeModifier() != ArrayType::Normal) 10221 return false; 10222 Enc += "a("; 10223 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10224 CAT->getSize().toStringUnsigned(Enc); 10225 else 10226 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10227 Enc += ':'; 10228 // The Qualifiers should be attached to the type rather than the array. 10229 appendQualifier(Enc, QT); 10230 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10231 return false; 10232 Enc += ')'; 10233 return true; 10234 } 10235 10236 /// Appends a function encoding to Enc, calling appendType for the return type 10237 /// and the arguments. 10238 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10239 const CodeGen::CodeGenModule &CGM, 10240 TypeStringCache &TSC) { 10241 Enc += "f{"; 10242 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10243 return false; 10244 Enc += "}("; 10245 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10246 // N.B. we are only interested in the adjusted param types. 10247 auto I = FPT->param_type_begin(); 10248 auto E = FPT->param_type_end(); 10249 if (I != E) { 10250 do { 10251 if (!appendType(Enc, *I, CGM, TSC)) 10252 return false; 10253 ++I; 10254 if (I != E) 10255 Enc += ','; 10256 } while (I != E); 10257 if (FPT->isVariadic()) 10258 Enc += ",va"; 10259 } else { 10260 if (FPT->isVariadic()) 10261 Enc += "va"; 10262 else 10263 Enc += '0'; 10264 } 10265 } 10266 Enc += ')'; 10267 return true; 10268 } 10269 10270 /// Handles the type's qualifier before dispatching a call to handle specific 10271 /// type encodings. 10272 static bool appendType(SmallStringEnc &Enc, QualType QType, 10273 const CodeGen::CodeGenModule &CGM, 10274 TypeStringCache &TSC) { 10275 10276 QualType QT = QType.getCanonicalType(); 10277 10278 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10279 // The Qualifiers should be attached to the type rather than the array. 10280 // Thus we don't call appendQualifier() here. 10281 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10282 10283 appendQualifier(Enc, QT); 10284 10285 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10286 return appendBuiltinType(Enc, BT); 10287 10288 if (const PointerType *PT = QT->getAs<PointerType>()) 10289 return appendPointerType(Enc, PT, CGM, TSC); 10290 10291 if (const EnumType *ET = QT->getAs<EnumType>()) 10292 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10293 10294 if (const RecordType *RT = QT->getAsStructureType()) 10295 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10296 10297 if (const RecordType *RT = QT->getAsUnionType()) 10298 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10299 10300 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10301 return appendFunctionType(Enc, FT, CGM, TSC); 10302 10303 return false; 10304 } 10305 10306 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10307 const CodeGen::CodeGenModule &CGM, 10308 TypeStringCache &TSC) { 10309 if (!D) 10310 return false; 10311 10312 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10313 if (FD->getLanguageLinkage() != CLanguageLinkage) 10314 return false; 10315 return appendType(Enc, FD->getType(), CGM, TSC); 10316 } 10317 10318 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10319 if (VD->getLanguageLinkage() != CLanguageLinkage) 10320 return false; 10321 QualType QT = VD->getType().getCanonicalType(); 10322 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10323 // Global ArrayTypes are given a size of '*' if the size is unknown. 10324 // The Qualifiers should be attached to the type rather than the array. 10325 // Thus we don't call appendQualifier() here. 10326 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10327 } 10328 return appendType(Enc, QT, CGM, TSC); 10329 } 10330 return false; 10331 } 10332 10333 //===----------------------------------------------------------------------===// 10334 // RISCV ABI Implementation 10335 //===----------------------------------------------------------------------===// 10336 10337 namespace { 10338 class RISCVABIInfo : public DefaultABIInfo { 10339 private: 10340 // Size of the integer ('x') registers in bits. 10341 unsigned XLen; 10342 // Size of the floating point ('f') registers in bits. Note that the target 10343 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10344 // with soft float ABI has FLen==0). 10345 unsigned FLen; 10346 static const int NumArgGPRs = 8; 10347 static const int NumArgFPRs = 8; 10348 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10349 llvm::Type *&Field1Ty, 10350 CharUnits &Field1Off, 10351 llvm::Type *&Field2Ty, 10352 CharUnits &Field2Off) const; 10353 10354 public: 10355 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10356 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10357 10358 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10359 // non-virtual, but computeInfo is virtual, so we overload it. 10360 void computeInfo(CGFunctionInfo &FI) const override; 10361 10362 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10363 int &ArgFPRsLeft) const; 10364 ABIArgInfo classifyReturnType(QualType RetTy) const; 10365 10366 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10367 QualType Ty) const override; 10368 10369 ABIArgInfo extendType(QualType Ty) const; 10370 10371 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10372 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10373 CharUnits &Field2Off, int &NeededArgGPRs, 10374 int &NeededArgFPRs) const; 10375 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10376 CharUnits Field1Off, 10377 llvm::Type *Field2Ty, 10378 CharUnits Field2Off) const; 10379 }; 10380 } // end anonymous namespace 10381 10382 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10383 QualType RetTy = FI.getReturnType(); 10384 if (!getCXXABI().classifyReturnType(FI)) 10385 FI.getReturnInfo() = classifyReturnType(RetTy); 10386 10387 // IsRetIndirect is true if classifyArgumentType indicated the value should 10388 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10389 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10390 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10391 // list and pass indirectly on RV32. 10392 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10393 if (!IsRetIndirect && RetTy->isScalarType() && 10394 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10395 if (RetTy->isComplexType() && FLen) { 10396 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10397 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10398 } else { 10399 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10400 IsRetIndirect = true; 10401 } 10402 } 10403 10404 // We must track the number of GPRs used in order to conform to the RISC-V 10405 // ABI, as integer scalars passed in registers should have signext/zeroext 10406 // when promoted, but are anyext if passed on the stack. As GPR usage is 10407 // different for variadic arguments, we must also track whether we are 10408 // examining a vararg or not. 10409 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10410 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10411 int NumFixedArgs = FI.getNumRequiredArgs(); 10412 10413 int ArgNum = 0; 10414 for (auto &ArgInfo : FI.arguments()) { 10415 bool IsFixed = ArgNum < NumFixedArgs; 10416 ArgInfo.info = 10417 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10418 ArgNum++; 10419 } 10420 } 10421 10422 // Returns true if the struct is a potential candidate for the floating point 10423 // calling convention. If this function returns true, the caller is 10424 // responsible for checking that if there is only a single field then that 10425 // field is a float. 10426 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10427 llvm::Type *&Field1Ty, 10428 CharUnits &Field1Off, 10429 llvm::Type *&Field2Ty, 10430 CharUnits &Field2Off) const { 10431 bool IsInt = Ty->isIntegralOrEnumerationType(); 10432 bool IsFloat = Ty->isRealFloatingType(); 10433 10434 if (IsInt || IsFloat) { 10435 uint64_t Size = getContext().getTypeSize(Ty); 10436 if (IsInt && Size > XLen) 10437 return false; 10438 // Can't be eligible if larger than the FP registers. Half precision isn't 10439 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10440 // default to the integer ABI in that case. 10441 if (IsFloat && (Size > FLen || Size < 32)) 10442 return false; 10443 // Can't be eligible if an integer type was already found (int+int pairs 10444 // are not eligible). 10445 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10446 return false; 10447 if (!Field1Ty) { 10448 Field1Ty = CGT.ConvertType(Ty); 10449 Field1Off = CurOff; 10450 return true; 10451 } 10452 if (!Field2Ty) { 10453 Field2Ty = CGT.ConvertType(Ty); 10454 Field2Off = CurOff; 10455 return true; 10456 } 10457 return false; 10458 } 10459 10460 if (auto CTy = Ty->getAs<ComplexType>()) { 10461 if (Field1Ty) 10462 return false; 10463 QualType EltTy = CTy->getElementType(); 10464 if (getContext().getTypeSize(EltTy) > FLen) 10465 return false; 10466 Field1Ty = CGT.ConvertType(EltTy); 10467 Field1Off = CurOff; 10468 Field2Ty = Field1Ty; 10469 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10470 return true; 10471 } 10472 10473 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10474 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10475 QualType EltTy = ATy->getElementType(); 10476 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10477 for (uint64_t i = 0; i < ArraySize; ++i) { 10478 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10479 Field1Off, Field2Ty, Field2Off); 10480 if (!Ret) 10481 return false; 10482 CurOff += EltSize; 10483 } 10484 return true; 10485 } 10486 10487 if (const auto *RTy = Ty->getAs<RecordType>()) { 10488 // Structures with either a non-trivial destructor or a non-trivial 10489 // copy constructor are not eligible for the FP calling convention. 10490 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10491 return false; 10492 if (isEmptyRecord(getContext(), Ty, true)) 10493 return true; 10494 const RecordDecl *RD = RTy->getDecl(); 10495 // Unions aren't eligible unless they're empty (which is caught above). 10496 if (RD->isUnion()) 10497 return false; 10498 int ZeroWidthBitFieldCount = 0; 10499 for (const FieldDecl *FD : RD->fields()) { 10500 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10501 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10502 QualType QTy = FD->getType(); 10503 if (FD->isBitField()) { 10504 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10505 // Allow a bitfield with a type greater than XLen as long as the 10506 // bitwidth is XLen or less. 10507 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10508 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10509 if (BitWidth == 0) { 10510 ZeroWidthBitFieldCount++; 10511 continue; 10512 } 10513 } 10514 10515 bool Ret = detectFPCCEligibleStructHelper( 10516 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10517 Field1Ty, Field1Off, Field2Ty, Field2Off); 10518 if (!Ret) 10519 return false; 10520 10521 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10522 // or int+fp structs, but are ignored for a struct with an fp field and 10523 // any number of zero-width bitfields. 10524 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10525 return false; 10526 } 10527 return Field1Ty != nullptr; 10528 } 10529 10530 return false; 10531 } 10532 10533 // Determine if a struct is eligible for passing according to the floating 10534 // point calling convention (i.e., when flattened it contains a single fp 10535 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10536 // NeededArgGPRs are incremented appropriately. 10537 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10538 CharUnits &Field1Off, 10539 llvm::Type *&Field2Ty, 10540 CharUnits &Field2Off, 10541 int &NeededArgGPRs, 10542 int &NeededArgFPRs) const { 10543 Field1Ty = nullptr; 10544 Field2Ty = nullptr; 10545 NeededArgGPRs = 0; 10546 NeededArgFPRs = 0; 10547 bool IsCandidate = detectFPCCEligibleStructHelper( 10548 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10549 // Not really a candidate if we have a single int but no float. 10550 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10551 return false; 10552 if (!IsCandidate) 10553 return false; 10554 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10555 NeededArgFPRs++; 10556 else if (Field1Ty) 10557 NeededArgGPRs++; 10558 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10559 NeededArgFPRs++; 10560 else if (Field2Ty) 10561 NeededArgGPRs++; 10562 return true; 10563 } 10564 10565 // Call getCoerceAndExpand for the two-element flattened struct described by 10566 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10567 // appropriate coerceToType and unpaddedCoerceToType. 10568 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10569 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10570 CharUnits Field2Off) const { 10571 SmallVector<llvm::Type *, 3> CoerceElts; 10572 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10573 if (!Field1Off.isZero()) 10574 CoerceElts.push_back(llvm::ArrayType::get( 10575 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10576 10577 CoerceElts.push_back(Field1Ty); 10578 UnpaddedCoerceElts.push_back(Field1Ty); 10579 10580 if (!Field2Ty) { 10581 return ABIArgInfo::getCoerceAndExpand( 10582 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10583 UnpaddedCoerceElts[0]); 10584 } 10585 10586 CharUnits Field2Align = 10587 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10588 CharUnits Field1End = Field1Off + 10589 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10590 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10591 10592 CharUnits Padding = CharUnits::Zero(); 10593 if (Field2Off > Field2OffNoPadNoPack) 10594 Padding = Field2Off - Field2OffNoPadNoPack; 10595 else if (Field2Off != Field2Align && Field2Off > Field1End) 10596 Padding = Field2Off - Field1End; 10597 10598 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10599 10600 if (!Padding.isZero()) 10601 CoerceElts.push_back(llvm::ArrayType::get( 10602 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10603 10604 CoerceElts.push_back(Field2Ty); 10605 UnpaddedCoerceElts.push_back(Field2Ty); 10606 10607 auto CoerceToType = 10608 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10609 auto UnpaddedCoerceToType = 10610 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10611 10612 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10613 } 10614 10615 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10616 int &ArgGPRsLeft, 10617 int &ArgFPRsLeft) const { 10618 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10619 Ty = useFirstFieldIfTransparentUnion(Ty); 10620 10621 // Structures with either a non-trivial destructor or a non-trivial 10622 // copy constructor are always passed indirectly. 10623 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10624 if (ArgGPRsLeft) 10625 ArgGPRsLeft -= 1; 10626 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10627 CGCXXABI::RAA_DirectInMemory); 10628 } 10629 10630 // Ignore empty structs/unions. 10631 if (isEmptyRecord(getContext(), Ty, true)) 10632 return ABIArgInfo::getIgnore(); 10633 10634 uint64_t Size = getContext().getTypeSize(Ty); 10635 10636 // Pass floating point values via FPRs if possible. 10637 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10638 FLen >= Size && ArgFPRsLeft) { 10639 ArgFPRsLeft--; 10640 return ABIArgInfo::getDirect(); 10641 } 10642 10643 // Complex types for the hard float ABI must be passed direct rather than 10644 // using CoerceAndExpand. 10645 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10646 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10647 if (getContext().getTypeSize(EltTy) <= FLen) { 10648 ArgFPRsLeft -= 2; 10649 return ABIArgInfo::getDirect(); 10650 } 10651 } 10652 10653 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10654 llvm::Type *Field1Ty = nullptr; 10655 llvm::Type *Field2Ty = nullptr; 10656 CharUnits Field1Off = CharUnits::Zero(); 10657 CharUnits Field2Off = CharUnits::Zero(); 10658 int NeededArgGPRs; 10659 int NeededArgFPRs; 10660 bool IsCandidate = 10661 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10662 NeededArgGPRs, NeededArgFPRs); 10663 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10664 NeededArgFPRs <= ArgFPRsLeft) { 10665 ArgGPRsLeft -= NeededArgGPRs; 10666 ArgFPRsLeft -= NeededArgFPRs; 10667 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10668 Field2Off); 10669 } 10670 } 10671 10672 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10673 bool MustUseStack = false; 10674 // Determine the number of GPRs needed to pass the current argument 10675 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10676 // register pairs, so may consume 3 registers. 10677 int NeededArgGPRs = 1; 10678 if (!IsFixed && NeededAlign == 2 * XLen) 10679 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10680 else if (Size > XLen && Size <= 2 * XLen) 10681 NeededArgGPRs = 2; 10682 10683 if (NeededArgGPRs > ArgGPRsLeft) { 10684 MustUseStack = true; 10685 NeededArgGPRs = ArgGPRsLeft; 10686 } 10687 10688 ArgGPRsLeft -= NeededArgGPRs; 10689 10690 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10691 // Treat an enum type as its underlying type. 10692 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10693 Ty = EnumTy->getDecl()->getIntegerType(); 10694 10695 // All integral types are promoted to XLen width, unless passed on the 10696 // stack. 10697 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10698 return extendType(Ty); 10699 } 10700 10701 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10702 if (EIT->getNumBits() < XLen && !MustUseStack) 10703 return extendType(Ty); 10704 if (EIT->getNumBits() > 128 || 10705 (!getContext().getTargetInfo().hasInt128Type() && 10706 EIT->getNumBits() > 64)) 10707 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10708 } 10709 10710 return ABIArgInfo::getDirect(); 10711 } 10712 10713 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10714 // so coerce to integers. 10715 if (Size <= 2 * XLen) { 10716 unsigned Alignment = getContext().getTypeAlign(Ty); 10717 10718 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10719 // required, and a 2-element XLen array if only XLen alignment is required. 10720 if (Size <= XLen) { 10721 return ABIArgInfo::getDirect( 10722 llvm::IntegerType::get(getVMContext(), XLen)); 10723 } else if (Alignment == 2 * XLen) { 10724 return ABIArgInfo::getDirect( 10725 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10726 } else { 10727 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10728 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10729 } 10730 } 10731 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10732 } 10733 10734 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10735 if (RetTy->isVoidType()) 10736 return ABIArgInfo::getIgnore(); 10737 10738 int ArgGPRsLeft = 2; 10739 int ArgFPRsLeft = FLen ? 2 : 0; 10740 10741 // The rules for return and argument types are the same, so defer to 10742 // classifyArgumentType. 10743 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10744 ArgFPRsLeft); 10745 } 10746 10747 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10748 QualType Ty) const { 10749 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10750 10751 // Empty records are ignored for parameter passing purposes. 10752 if (isEmptyRecord(getContext(), Ty, true)) { 10753 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10754 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10755 return Addr; 10756 } 10757 10758 auto TInfo = getContext().getTypeInfoInChars(Ty); 10759 10760 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10761 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10762 10763 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10764 SlotSize, /*AllowHigherAlign=*/true); 10765 } 10766 10767 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10768 int TySize = getContext().getTypeSize(Ty); 10769 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10770 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10771 return ABIArgInfo::getSignExtend(Ty); 10772 return ABIArgInfo::getExtend(Ty); 10773 } 10774 10775 namespace { 10776 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10777 public: 10778 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10779 unsigned FLen) 10780 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10781 10782 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10783 CodeGen::CodeGenModule &CGM) const override { 10784 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10785 if (!FD) return; 10786 10787 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10788 if (!Attr) 10789 return; 10790 10791 const char *Kind; 10792 switch (Attr->getInterrupt()) { 10793 case RISCVInterruptAttr::user: Kind = "user"; break; 10794 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10795 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10796 } 10797 10798 auto *Fn = cast<llvm::Function>(GV); 10799 10800 Fn->addFnAttr("interrupt", Kind); 10801 } 10802 }; 10803 } // namespace 10804 10805 //===----------------------------------------------------------------------===// 10806 // VE ABI Implementation. 10807 // 10808 namespace { 10809 class VEABIInfo : public DefaultABIInfo { 10810 public: 10811 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10812 10813 private: 10814 ABIArgInfo classifyReturnType(QualType RetTy) const; 10815 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10816 void computeInfo(CGFunctionInfo &FI) const override; 10817 }; 10818 } // end anonymous namespace 10819 10820 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10821 if (Ty->isAnyComplexType()) 10822 return ABIArgInfo::getDirect(); 10823 uint64_t Size = getContext().getTypeSize(Ty); 10824 if (Size < 64 && Ty->isIntegerType()) 10825 return ABIArgInfo::getExtend(Ty); 10826 return DefaultABIInfo::classifyReturnType(Ty); 10827 } 10828 10829 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10830 if (Ty->isAnyComplexType()) 10831 return ABIArgInfo::getDirect(); 10832 uint64_t Size = getContext().getTypeSize(Ty); 10833 if (Size < 64 && Ty->isIntegerType()) 10834 return ABIArgInfo::getExtend(Ty); 10835 return DefaultABIInfo::classifyArgumentType(Ty); 10836 } 10837 10838 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10839 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10840 for (auto &Arg : FI.arguments()) 10841 Arg.info = classifyArgumentType(Arg.type); 10842 } 10843 10844 namespace { 10845 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10846 public: 10847 VETargetCodeGenInfo(CodeGenTypes &CGT) 10848 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10849 // VE ABI requires the arguments of variadic and prototype-less functions 10850 // are passed in both registers and memory. 10851 bool isNoProtoCallVariadic(const CallArgList &args, 10852 const FunctionNoProtoType *fnType) const override { 10853 return true; 10854 } 10855 }; 10856 } // end anonymous namespace 10857 10858 //===----------------------------------------------------------------------===// 10859 // Driver code 10860 //===----------------------------------------------------------------------===// 10861 10862 bool CodeGenModule::supportsCOMDAT() const { 10863 return getTriple().supportsCOMDAT(); 10864 } 10865 10866 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10867 if (TheTargetCodeGenInfo) 10868 return *TheTargetCodeGenInfo; 10869 10870 // Helper to set the unique_ptr while still keeping the return value. 10871 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10872 this->TheTargetCodeGenInfo.reset(P); 10873 return *P; 10874 }; 10875 10876 const llvm::Triple &Triple = getTarget().getTriple(); 10877 switch (Triple.getArch()) { 10878 default: 10879 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10880 10881 case llvm::Triple::le32: 10882 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10883 case llvm::Triple::mips: 10884 case llvm::Triple::mipsel: 10885 if (Triple.getOS() == llvm::Triple::NaCl) 10886 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10887 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10888 10889 case llvm::Triple::mips64: 10890 case llvm::Triple::mips64el: 10891 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10892 10893 case llvm::Triple::avr: 10894 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10895 10896 case llvm::Triple::aarch64: 10897 case llvm::Triple::aarch64_32: 10898 case llvm::Triple::aarch64_be: { 10899 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10900 if (getTarget().getABI() == "darwinpcs") 10901 Kind = AArch64ABIInfo::DarwinPCS; 10902 else if (Triple.isOSWindows()) 10903 return SetCGInfo( 10904 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10905 10906 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10907 } 10908 10909 case llvm::Triple::wasm32: 10910 case llvm::Triple::wasm64: { 10911 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10912 if (getTarget().getABI() == "experimental-mv") 10913 Kind = WebAssemblyABIInfo::ExperimentalMV; 10914 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10915 } 10916 10917 case llvm::Triple::arm: 10918 case llvm::Triple::armeb: 10919 case llvm::Triple::thumb: 10920 case llvm::Triple::thumbeb: { 10921 if (Triple.getOS() == llvm::Triple::Win32) { 10922 return SetCGInfo( 10923 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10924 } 10925 10926 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10927 StringRef ABIStr = getTarget().getABI(); 10928 if (ABIStr == "apcs-gnu") 10929 Kind = ARMABIInfo::APCS; 10930 else if (ABIStr == "aapcs16") 10931 Kind = ARMABIInfo::AAPCS16_VFP; 10932 else if (CodeGenOpts.FloatABI == "hard" || 10933 (CodeGenOpts.FloatABI != "soft" && 10934 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10935 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10936 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10937 Kind = ARMABIInfo::AAPCS_VFP; 10938 10939 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10940 } 10941 10942 case llvm::Triple::ppc: { 10943 if (Triple.isOSAIX()) 10944 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10945 10946 bool IsSoftFloat = 10947 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10948 bool RetSmallStructInRegABI = 10949 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10950 return SetCGInfo( 10951 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10952 } 10953 case llvm::Triple::ppcle: { 10954 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10955 bool RetSmallStructInRegABI = 10956 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10957 return SetCGInfo( 10958 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10959 } 10960 case llvm::Triple::ppc64: 10961 if (Triple.isOSAIX()) 10962 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10963 10964 if (Triple.isOSBinFormatELF()) { 10965 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10966 if (getTarget().getABI() == "elfv2") 10967 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10968 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10969 10970 return SetCGInfo( 10971 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 10972 } 10973 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10974 case llvm::Triple::ppc64le: { 10975 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10976 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10977 if (getTarget().getABI() == "elfv1") 10978 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10979 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10980 10981 return SetCGInfo( 10982 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 10983 } 10984 10985 case llvm::Triple::nvptx: 10986 case llvm::Triple::nvptx64: 10987 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10988 10989 case llvm::Triple::msp430: 10990 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10991 10992 case llvm::Triple::riscv32: 10993 case llvm::Triple::riscv64: { 10994 StringRef ABIStr = getTarget().getABI(); 10995 unsigned XLen = getTarget().getPointerWidth(0); 10996 unsigned ABIFLen = 0; 10997 if (ABIStr.endswith("f")) 10998 ABIFLen = 32; 10999 else if (ABIStr.endswith("d")) 11000 ABIFLen = 64; 11001 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11002 } 11003 11004 case llvm::Triple::systemz: { 11005 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11006 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11007 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11008 } 11009 11010 case llvm::Triple::tce: 11011 case llvm::Triple::tcele: 11012 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11013 11014 case llvm::Triple::x86: { 11015 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11016 bool RetSmallStructInRegABI = 11017 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11018 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11019 11020 if (Triple.getOS() == llvm::Triple::Win32) { 11021 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11022 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11023 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11024 } else { 11025 return SetCGInfo(new X86_32TargetCodeGenInfo( 11026 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11027 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11028 CodeGenOpts.FloatABI == "soft")); 11029 } 11030 } 11031 11032 case llvm::Triple::x86_64: { 11033 StringRef ABI = getTarget().getABI(); 11034 X86AVXABILevel AVXLevel = 11035 (ABI == "avx512" 11036 ? X86AVXABILevel::AVX512 11037 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11038 11039 switch (Triple.getOS()) { 11040 case llvm::Triple::Win32: 11041 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11042 default: 11043 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11044 } 11045 } 11046 case llvm::Triple::hexagon: 11047 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11048 case llvm::Triple::lanai: 11049 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11050 case llvm::Triple::r600: 11051 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11052 case llvm::Triple::amdgcn: 11053 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11054 case llvm::Triple::sparc: 11055 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11056 case llvm::Triple::sparcv9: 11057 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11058 case llvm::Triple::xcore: 11059 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11060 case llvm::Triple::arc: 11061 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11062 case llvm::Triple::spir: 11063 case llvm::Triple::spir64: 11064 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11065 case llvm::Triple::ve: 11066 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11067 } 11068 } 11069 11070 /// Create an OpenCL kernel for an enqueued block. 11071 /// 11072 /// The kernel has the same function type as the block invoke function. Its 11073 /// name is the name of the block invoke function postfixed with "_kernel". 11074 /// It simply calls the block invoke function then returns. 11075 llvm::Function * 11076 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11077 llvm::Function *Invoke, 11078 llvm::Value *BlockLiteral) const { 11079 auto *InvokeFT = Invoke->getFunctionType(); 11080 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11081 for (auto &P : InvokeFT->params()) 11082 ArgTys.push_back(P); 11083 auto &C = CGF.getLLVMContext(); 11084 std::string Name = Invoke->getName().str() + "_kernel"; 11085 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11086 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11087 &CGF.CGM.getModule()); 11088 auto IP = CGF.Builder.saveIP(); 11089 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11090 auto &Builder = CGF.Builder; 11091 Builder.SetInsertPoint(BB); 11092 llvm::SmallVector<llvm::Value *, 2> Args; 11093 for (auto &A : F->args()) 11094 Args.push_back(&A); 11095 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11096 call->setCallingConv(Invoke->getCallingConv()); 11097 Builder.CreateRetVoid(); 11098 Builder.restoreIP(IP); 11099 return F; 11100 } 11101 11102 /// Create an OpenCL kernel for an enqueued block. 11103 /// 11104 /// The type of the first argument (the block literal) is the struct type 11105 /// of the block literal instead of a pointer type. The first argument 11106 /// (block literal) is passed directly by value to the kernel. The kernel 11107 /// allocates the same type of struct on stack and stores the block literal 11108 /// to it and passes its pointer to the block invoke function. The kernel 11109 /// has "enqueued-block" function attribute and kernel argument metadata. 11110 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11111 CodeGenFunction &CGF, llvm::Function *Invoke, 11112 llvm::Value *BlockLiteral) const { 11113 auto &Builder = CGF.Builder; 11114 auto &C = CGF.getLLVMContext(); 11115 11116 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11117 auto *InvokeFT = Invoke->getFunctionType(); 11118 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11119 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11120 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11121 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11122 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11123 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11124 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11125 11126 ArgTys.push_back(BlockTy); 11127 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11128 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11129 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11130 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11131 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11132 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11133 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11134 ArgTys.push_back(InvokeFT->getParamType(I)); 11135 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11136 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11137 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11138 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11139 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11140 ArgNames.push_back( 11141 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11142 } 11143 std::string Name = Invoke->getName().str() + "_kernel"; 11144 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11145 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11146 &CGF.CGM.getModule()); 11147 F->addFnAttr("enqueued-block"); 11148 auto IP = CGF.Builder.saveIP(); 11149 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11150 Builder.SetInsertPoint(BB); 11151 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11152 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11153 BlockPtr->setAlignment(BlockAlign); 11154 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11155 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11156 llvm::SmallVector<llvm::Value *, 2> Args; 11157 Args.push_back(Cast); 11158 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11159 Args.push_back(I); 11160 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11161 call->setCallingConv(Invoke->getCallingConv()); 11162 Builder.CreateRetVoid(); 11163 Builder.restoreIP(IP); 11164 11165 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11166 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11167 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11168 F->setMetadata("kernel_arg_base_type", 11169 llvm::MDNode::get(C, ArgBaseTypeNames)); 11170 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11171 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11172 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11173 11174 return F; 11175 } 11176