1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #include <algorithm> // std::sort 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 33 llvm::Value *Array, 34 llvm::Value *Value, 35 unsigned FirstIndex, 36 unsigned LastIndex) { 37 // Alternatively, we could emit this as a loop in the source. 38 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 39 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 40 Builder.CreateStore(Value, Cell); 41 } 42 } 43 44 static bool isAggregateTypeForABI(QualType T) { 45 return !CodeGenFunction::hasScalarEvaluationKind(T) || 46 T->isMemberFunctionPointerType(); 47 } 48 49 ABIInfo::~ABIInfo() {} 50 51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 52 CGCXXABI &CXXABI) { 53 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 54 if (!RD) 55 return CGCXXABI::RAA_Default; 56 return CXXABI.getRecordArgABI(RD); 57 } 58 59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 60 CGCXXABI &CXXABI) { 61 const RecordType *RT = T->getAs<RecordType>(); 62 if (!RT) 63 return CGCXXABI::RAA_Default; 64 return getRecordArgABI(RT, CXXABI); 65 } 66 67 CGCXXABI &ABIInfo::getCXXABI() const { 68 return CGT.getCXXABI(); 69 } 70 71 ASTContext &ABIInfo::getContext() const { 72 return CGT.getContext(); 73 } 74 75 llvm::LLVMContext &ABIInfo::getVMContext() const { 76 return CGT.getLLVMContext(); 77 } 78 79 const llvm::DataLayout &ABIInfo::getDataLayout() const { 80 return CGT.getDataLayout(); 81 } 82 83 const TargetInfo &ABIInfo::getTarget() const { 84 return CGT.getTarget(); 85 } 86 87 void ABIArgInfo::dump() const { 88 raw_ostream &OS = llvm::errs(); 89 OS << "(ABIArgInfo Kind="; 90 switch (TheKind) { 91 case Direct: 92 OS << "Direct Type="; 93 if (llvm::Type *Ty = getCoerceToType()) 94 Ty->print(OS); 95 else 96 OS << "null"; 97 break; 98 case Extend: 99 OS << "Extend"; 100 break; 101 case Ignore: 102 OS << "Ignore"; 103 break; 104 case InAlloca: 105 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 106 break; 107 case Indirect: 108 OS << "Indirect Align=" << getIndirectAlign() 109 << " ByVal=" << getIndirectByVal() 110 << " Realign=" << getIndirectRealign(); 111 break; 112 case Expand: 113 OS << "Expand"; 114 break; 115 } 116 OS << ")\n"; 117 } 118 119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 120 121 // If someone can figure out a general rule for this, that would be great. 122 // It's probably just doomed to be platform-dependent, though. 123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 124 // Verified for: 125 // x86-64 FreeBSD, Linux, Darwin 126 // x86-32 FreeBSD, Linux, Darwin 127 // PowerPC Linux, Darwin 128 // ARM Darwin (*not* EABI) 129 // AArch64 Linux 130 return 32; 131 } 132 133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 134 const FunctionNoProtoType *fnType) const { 135 // The following conventions are known to require this to be false: 136 // x86_stdcall 137 // MIPS 138 // For everything else, we just prefer false unless we opt out. 139 return false; 140 } 141 142 void 143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 144 llvm::SmallString<24> &Opt) const { 145 // This assumes the user is passing a library name like "rt" instead of a 146 // filename like "librt.a/so", and that they don't care whether it's static or 147 // dynamic. 148 Opt = "-l"; 149 Opt += Lib; 150 } 151 152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 153 154 /// isEmptyField - Return true iff a the field is "empty", that is it 155 /// is an unnamed bit-field or an (array of) empty record(s). 156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 157 bool AllowArrays) { 158 if (FD->isUnnamedBitfield()) 159 return true; 160 161 QualType FT = FD->getType(); 162 163 // Constant arrays of empty records count as empty, strip them off. 164 // Constant arrays of zero length always count as empty. 165 if (AllowArrays) 166 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 167 if (AT->getSize() == 0) 168 return true; 169 FT = AT->getElementType(); 170 } 171 172 const RecordType *RT = FT->getAs<RecordType>(); 173 if (!RT) 174 return false; 175 176 // C++ record fields are never empty, at least in the Itanium ABI. 177 // 178 // FIXME: We should use a predicate for whether this behavior is true in the 179 // current ABI. 180 if (isa<CXXRecordDecl>(RT->getDecl())) 181 return false; 182 183 return isEmptyRecord(Context, FT, AllowArrays); 184 } 185 186 /// isEmptyRecord - Return true iff a structure contains only empty 187 /// fields. Note that a structure with a flexible array member is not 188 /// considered empty. 189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 190 const RecordType *RT = T->getAs<RecordType>(); 191 if (!RT) 192 return 0; 193 const RecordDecl *RD = RT->getDecl(); 194 if (RD->hasFlexibleArrayMember()) 195 return false; 196 197 // If this is a C++ record, check the bases first. 198 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 199 for (const auto &I : CXXRD->bases()) 200 if (!isEmptyRecord(Context, I.getType(), true)) 201 return false; 202 203 for (const auto *I : RD->fields()) 204 if (!isEmptyField(Context, I, AllowArrays)) 205 return false; 206 return true; 207 } 208 209 /// isSingleElementStruct - Determine if a structure is a "single 210 /// element struct", i.e. it has exactly one non-empty field or 211 /// exactly one field which is itself a single element 212 /// struct. Structures with flexible array members are never 213 /// considered single element structs. 214 /// 215 /// \return The field declaration for the single non-empty field, if 216 /// it exists. 217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 218 const RecordType *RT = T->getAsStructureType(); 219 if (!RT) 220 return nullptr; 221 222 const RecordDecl *RD = RT->getDecl(); 223 if (RD->hasFlexibleArrayMember()) 224 return nullptr; 225 226 const Type *Found = nullptr; 227 228 // If this is a C++ record, check the bases first. 229 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 230 for (const auto &I : CXXRD->bases()) { 231 // Ignore empty records. 232 if (isEmptyRecord(Context, I.getType(), true)) 233 continue; 234 235 // If we already found an element then this isn't a single-element struct. 236 if (Found) 237 return nullptr; 238 239 // If this is non-empty and not a single element struct, the composite 240 // cannot be a single element struct. 241 Found = isSingleElementStruct(I.getType(), Context); 242 if (!Found) 243 return nullptr; 244 } 245 } 246 247 // Check for single element. 248 for (const auto *FD : RD->fields()) { 249 QualType FT = FD->getType(); 250 251 // Ignore empty fields. 252 if (isEmptyField(Context, FD, true)) 253 continue; 254 255 // If we already found an element then this isn't a single-element 256 // struct. 257 if (Found) 258 return nullptr; 259 260 // Treat single element arrays as the element. 261 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 262 if (AT->getSize().getZExtValue() != 1) 263 break; 264 FT = AT->getElementType(); 265 } 266 267 if (!isAggregateTypeForABI(FT)) { 268 Found = FT.getTypePtr(); 269 } else { 270 Found = isSingleElementStruct(FT, Context); 271 if (!Found) 272 return nullptr; 273 } 274 } 275 276 // We don't consider a struct a single-element struct if it has 277 // padding beyond the element type. 278 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 279 return nullptr; 280 281 return Found; 282 } 283 284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 285 // Treat complex types as the element type. 286 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 287 Ty = CTy->getElementType(); 288 289 // Check for a type which we know has a simple scalar argument-passing 290 // convention without any padding. (We're specifically looking for 32 291 // and 64-bit integer and integer-equivalents, float, and double.) 292 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 293 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 294 return false; 295 296 uint64_t Size = Context.getTypeSize(Ty); 297 return Size == 32 || Size == 64; 298 } 299 300 /// canExpandIndirectArgument - Test whether an argument type which is to be 301 /// passed indirectly (on the stack) would have the equivalent layout if it was 302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 303 /// inhibiting optimizations. 304 /// 305 // FIXME: This predicate is missing many cases, currently it just follows 306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 307 // should probably make this smarter, or better yet make the LLVM backend 308 // capable of handling it. 309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 310 // We can only expand structure types. 311 const RecordType *RT = Ty->getAs<RecordType>(); 312 if (!RT) 313 return false; 314 315 // We can only expand (C) structures. 316 // 317 // FIXME: This needs to be generalized to handle classes as well. 318 const RecordDecl *RD = RT->getDecl(); 319 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 320 return false; 321 322 uint64_t Size = 0; 323 324 for (const auto *FD : RD->fields()) { 325 if (!is32Or64BitBasicType(FD->getType(), Context)) 326 return false; 327 328 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 329 // how to expand them yet, and the predicate for telling if a bitfield still 330 // counts as "basic" is more complicated than what we were doing previously. 331 if (FD->isBitField()) 332 return false; 333 334 Size += Context.getTypeSize(FD->getType()); 335 } 336 337 // Make sure there are not any holes in the struct. 338 if (Size != Context.getTypeSize(Ty)) 339 return false; 340 341 return true; 342 } 343 344 namespace { 345 /// DefaultABIInfo - The default implementation for ABI specific 346 /// details. This implementation provides information which results in 347 /// self-consistent and sensible LLVM IR generation, but does not 348 /// conform to any particular ABI. 349 class DefaultABIInfo : public ABIInfo { 350 public: 351 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 352 353 ABIArgInfo classifyReturnType(QualType RetTy) const; 354 ABIArgInfo classifyArgumentType(QualType RetTy) const; 355 356 void computeInfo(CGFunctionInfo &FI) const override { 357 if (!getCXXABI().classifyReturnType(FI)) 358 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 359 for (auto &I : FI.arguments()) 360 I.info = classifyArgumentType(I.type); 361 } 362 363 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 364 CodeGenFunction &CGF) const override; 365 }; 366 367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 368 public: 369 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 370 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 371 }; 372 373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 374 CodeGenFunction &CGF) const { 375 return nullptr; 376 } 377 378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 379 if (isAggregateTypeForABI(Ty)) 380 return ABIArgInfo::getIndirect(0); 381 382 // Treat an enum type as its underlying type. 383 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 384 Ty = EnumTy->getDecl()->getIntegerType(); 385 386 return (Ty->isPromotableIntegerType() ? 387 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 388 } 389 390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 391 if (RetTy->isVoidType()) 392 return ABIArgInfo::getIgnore(); 393 394 if (isAggregateTypeForABI(RetTy)) 395 return ABIArgInfo::getIndirect(0); 396 397 // Treat an enum type as its underlying type. 398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 399 RetTy = EnumTy->getDecl()->getIntegerType(); 400 401 return (RetTy->isPromotableIntegerType() ? 402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 403 } 404 405 //===----------------------------------------------------------------------===// 406 // le32/PNaCl bitcode ABI Implementation 407 // 408 // This is a simplified version of the x86_32 ABI. Arguments and return values 409 // are always passed on the stack. 410 //===----------------------------------------------------------------------===// 411 412 class PNaClABIInfo : public ABIInfo { 413 public: 414 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 415 416 ABIArgInfo classifyReturnType(QualType RetTy) const; 417 ABIArgInfo classifyArgumentType(QualType RetTy) const; 418 419 void computeInfo(CGFunctionInfo &FI) const override; 420 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 421 CodeGenFunction &CGF) const override; 422 }; 423 424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 425 public: 426 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 427 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 428 }; 429 430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 431 if (!getCXXABI().classifyReturnType(FI)) 432 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 433 434 for (auto &I : FI.arguments()) 435 I.info = classifyArgumentType(I.type); 436 } 437 438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 439 CodeGenFunction &CGF) const { 440 return nullptr; 441 } 442 443 /// \brief Classify argument of given type \p Ty. 444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 445 if (isAggregateTypeForABI(Ty)) { 446 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 447 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 448 return ABIArgInfo::getIndirect(0); 449 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 450 // Treat an enum type as its underlying type. 451 Ty = EnumTy->getDecl()->getIntegerType(); 452 } else if (Ty->isFloatingType()) { 453 // Floating-point types don't go inreg. 454 return ABIArgInfo::getDirect(); 455 } 456 457 return (Ty->isPromotableIntegerType() ? 458 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 459 } 460 461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 462 if (RetTy->isVoidType()) 463 return ABIArgInfo::getIgnore(); 464 465 // In the PNaCl ABI we always return records/structures on the stack. 466 if (isAggregateTypeForABI(RetTy)) 467 return ABIArgInfo::getIndirect(0); 468 469 // Treat an enum type as its underlying type. 470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 471 RetTy = EnumTy->getDecl()->getIntegerType(); 472 473 return (RetTy->isPromotableIntegerType() ? 474 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 475 } 476 477 /// IsX86_MMXType - Return true if this is an MMX type. 478 bool IsX86_MMXType(llvm::Type *IRType) { 479 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 480 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 481 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 482 IRType->getScalarSizeInBits() != 64; 483 } 484 485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 486 StringRef Constraint, 487 llvm::Type* Ty) { 488 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 489 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 490 // Invalid MMX constraint 491 return nullptr; 492 } 493 494 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 495 } 496 497 // No operation needed 498 return Ty; 499 } 500 501 //===----------------------------------------------------------------------===// 502 // X86-32 ABI Implementation 503 //===----------------------------------------------------------------------===// 504 505 /// \brief Similar to llvm::CCState, but for Clang. 506 struct CCState { 507 CCState(unsigned CC) : CC(CC), FreeRegs(0) {} 508 509 unsigned CC; 510 unsigned FreeRegs; 511 unsigned StackOffset; 512 bool UseInAlloca; 513 }; 514 515 /// X86_32ABIInfo - The X86-32 ABI information. 516 class X86_32ABIInfo : public ABIInfo { 517 enum Class { 518 Integer, 519 Float 520 }; 521 522 static const unsigned MinABIStackAlignInBytes = 4; 523 524 bool IsDarwinVectorABI; 525 bool IsSmallStructInRegABI; 526 bool IsWin32StructABI; 527 unsigned DefaultNumRegisterParameters; 528 529 static bool isRegisterSize(unsigned Size) { 530 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 531 } 532 533 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 534 535 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 536 /// such that the argument will be passed in memory. 537 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 538 539 ABIArgInfo getIndirectReturnResult(CCState &State) const; 540 541 /// \brief Return the alignment to use for the given type on the stack. 542 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 543 544 Class classify(QualType Ty) const; 545 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 546 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 547 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 548 549 /// \brief Rewrite the function info so that all memory arguments use 550 /// inalloca. 551 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 552 553 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 554 unsigned &StackOffset, ABIArgInfo &Info, 555 QualType Type) const; 556 557 public: 558 559 void computeInfo(CGFunctionInfo &FI) const override; 560 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 561 CodeGenFunction &CGF) const override; 562 563 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 564 unsigned r) 565 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 566 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 567 }; 568 569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 570 public: 571 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 572 bool d, bool p, bool w, unsigned r) 573 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 574 575 static bool isStructReturnInRegABI( 576 const llvm::Triple &Triple, const CodeGenOptions &Opts); 577 578 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 579 CodeGen::CodeGenModule &CGM) const override; 580 581 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 582 // Darwin uses different dwarf register numbers for EH. 583 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 584 return 4; 585 } 586 587 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 588 llvm::Value *Address) const override; 589 590 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 591 StringRef Constraint, 592 llvm::Type* Ty) const override { 593 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 594 } 595 596 llvm::Constant * 597 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 598 unsigned Sig = (0xeb << 0) | // jmp rel8 599 (0x06 << 8) | // .+0x08 600 ('F' << 16) | 601 ('T' << 24); 602 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 603 } 604 605 }; 606 607 } 608 609 /// shouldReturnTypeInRegister - Determine if the given type should be 610 /// passed in a register (for the Darwin ABI). 611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 612 ASTContext &Context) const { 613 uint64_t Size = Context.getTypeSize(Ty); 614 615 // Type must be register sized. 616 if (!isRegisterSize(Size)) 617 return false; 618 619 if (Ty->isVectorType()) { 620 // 64- and 128- bit vectors inside structures are not returned in 621 // registers. 622 if (Size == 64 || Size == 128) 623 return false; 624 625 return true; 626 } 627 628 // If this is a builtin, pointer, enum, complex type, member pointer, or 629 // member function pointer it is ok. 630 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 631 Ty->isAnyComplexType() || Ty->isEnumeralType() || 632 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 633 return true; 634 635 // Arrays are treated like records. 636 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 637 return shouldReturnTypeInRegister(AT->getElementType(), Context); 638 639 // Otherwise, it must be a record type. 640 const RecordType *RT = Ty->getAs<RecordType>(); 641 if (!RT) return false; 642 643 // FIXME: Traverse bases here too. 644 645 // Structure types are passed in register if all fields would be 646 // passed in a register. 647 for (const auto *FD : RT->getDecl()->fields()) { 648 // Empty fields are ignored. 649 if (isEmptyField(Context, FD, true)) 650 continue; 651 652 // Check fields recursively. 653 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 654 return false; 655 } 656 return true; 657 } 658 659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 660 // If the return value is indirect, then the hidden argument is consuming one 661 // integer register. 662 if (State.FreeRegs) { 663 --State.FreeRegs; 664 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 665 } 666 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 667 } 668 669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 670 if (RetTy->isVoidType()) 671 return ABIArgInfo::getIgnore(); 672 673 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 674 // On Darwin, some vectors are returned in registers. 675 if (IsDarwinVectorABI) { 676 uint64_t Size = getContext().getTypeSize(RetTy); 677 678 // 128-bit vectors are a special case; they are returned in 679 // registers and we need to make sure to pick a type the LLVM 680 // backend will like. 681 if (Size == 128) 682 return ABIArgInfo::getDirect(llvm::VectorType::get( 683 llvm::Type::getInt64Ty(getVMContext()), 2)); 684 685 // Always return in register if it fits in a general purpose 686 // register, or if it is 64 bits and has a single element. 687 if ((Size == 8 || Size == 16 || Size == 32) || 688 (Size == 64 && VT->getNumElements() == 1)) 689 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 690 Size)); 691 692 return getIndirectReturnResult(State); 693 } 694 695 return ABIArgInfo::getDirect(); 696 } 697 698 if (isAggregateTypeForABI(RetTy)) { 699 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 700 // Structures with flexible arrays are always indirect. 701 if (RT->getDecl()->hasFlexibleArrayMember()) 702 return getIndirectReturnResult(State); 703 } 704 705 // If specified, structs and unions are always indirect. 706 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 707 return getIndirectReturnResult(State); 708 709 // Small structures which are register sized are generally returned 710 // in a register. 711 if (shouldReturnTypeInRegister(RetTy, getContext())) { 712 uint64_t Size = getContext().getTypeSize(RetTy); 713 714 // As a special-case, if the struct is a "single-element" struct, and 715 // the field is of type "float" or "double", return it in a 716 // floating-point register. (MSVC does not apply this special case.) 717 // We apply a similar transformation for pointer types to improve the 718 // quality of the generated IR. 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 721 || SeltTy->hasPointerRepresentation()) 722 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 723 724 // FIXME: We should be able to narrow this integer in cases with dead 725 // padding. 726 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 727 } 728 729 return getIndirectReturnResult(State); 730 } 731 732 // Treat an enum type as its underlying type. 733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 734 RetTy = EnumTy->getDecl()->getIntegerType(); 735 736 return (RetTy->isPromotableIntegerType() ? 737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 738 } 739 740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 741 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 742 } 743 744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 745 const RecordType *RT = Ty->getAs<RecordType>(); 746 if (!RT) 747 return 0; 748 const RecordDecl *RD = RT->getDecl(); 749 750 // If this is a C++ record, check the bases first. 751 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 752 for (const auto &I : CXXRD->bases()) 753 if (!isRecordWithSSEVectorType(Context, I.getType())) 754 return false; 755 756 for (const auto *i : RD->fields()) { 757 QualType FT = i->getType(); 758 759 if (isSSEVectorType(Context, FT)) 760 return true; 761 762 if (isRecordWithSSEVectorType(Context, FT)) 763 return true; 764 } 765 766 return false; 767 } 768 769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 770 unsigned Align) const { 771 // Otherwise, if the alignment is less than or equal to the minimum ABI 772 // alignment, just use the default; the backend will handle this. 773 if (Align <= MinABIStackAlignInBytes) 774 return 0; // Use default alignment. 775 776 // On non-Darwin, the stack type alignment is always 4. 777 if (!IsDarwinVectorABI) { 778 // Set explicit alignment, since we may need to realign the top. 779 return MinABIStackAlignInBytes; 780 } 781 782 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 783 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 784 isRecordWithSSEVectorType(getContext(), Ty))) 785 return 16; 786 787 return MinABIStackAlignInBytes; 788 } 789 790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 791 CCState &State) const { 792 if (!ByVal) { 793 if (State.FreeRegs) { 794 --State.FreeRegs; // Non-byval indirects just use one pointer. 795 return ABIArgInfo::getIndirectInReg(0, false); 796 } 797 return ABIArgInfo::getIndirect(0, false); 798 } 799 800 // Compute the byval alignment. 801 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 802 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 803 if (StackAlign == 0) 804 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 805 806 // If the stack alignment is less than the type alignment, realign the 807 // argument. 808 bool Realign = TypeAlign > StackAlign; 809 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 810 } 811 812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 813 const Type *T = isSingleElementStruct(Ty, getContext()); 814 if (!T) 815 T = Ty.getTypePtr(); 816 817 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 818 BuiltinType::Kind K = BT->getKind(); 819 if (K == BuiltinType::Float || K == BuiltinType::Double) 820 return Float; 821 } 822 return Integer; 823 } 824 825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 826 bool &NeedsPadding) const { 827 NeedsPadding = false; 828 Class C = classify(Ty); 829 if (C == Float) 830 return false; 831 832 unsigned Size = getContext().getTypeSize(Ty); 833 unsigned SizeInRegs = (Size + 31) / 32; 834 835 if (SizeInRegs == 0) 836 return false; 837 838 if (SizeInRegs > State.FreeRegs) { 839 State.FreeRegs = 0; 840 return false; 841 } 842 843 State.FreeRegs -= SizeInRegs; 844 845 if (State.CC == llvm::CallingConv::X86_FastCall) { 846 if (Size > 32) 847 return false; 848 849 if (Ty->isIntegralOrEnumerationType()) 850 return true; 851 852 if (Ty->isPointerType()) 853 return true; 854 855 if (Ty->isReferenceType()) 856 return true; 857 858 if (State.FreeRegs) 859 NeedsPadding = true; 860 861 return false; 862 } 863 864 return true; 865 } 866 867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 868 CCState &State) const { 869 // FIXME: Set alignment on indirect arguments. 870 if (isAggregateTypeForABI(Ty)) { 871 if (const RecordType *RT = Ty->getAs<RecordType>()) { 872 // Check with the C++ ABI first. 873 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 874 if (RAA == CGCXXABI::RAA_Indirect) { 875 return getIndirectResult(Ty, false, State); 876 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 877 // The field index doesn't matter, we'll fix it up later. 878 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 879 } 880 881 // Structs are always byval on win32, regardless of what they contain. 882 if (IsWin32StructABI) 883 return getIndirectResult(Ty, true, State); 884 885 // Structures with flexible arrays are always indirect. 886 if (RT->getDecl()->hasFlexibleArrayMember()) 887 return getIndirectResult(Ty, true, State); 888 } 889 890 // Ignore empty structs/unions. 891 if (isEmptyRecord(getContext(), Ty, true)) 892 return ABIArgInfo::getIgnore(); 893 894 llvm::LLVMContext &LLVMContext = getVMContext(); 895 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 896 bool NeedsPadding; 897 if (shouldUseInReg(Ty, State, NeedsPadding)) { 898 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 899 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 900 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 901 return ABIArgInfo::getDirectInReg(Result); 902 } 903 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 904 905 // Expand small (<= 128-bit) record types when we know that the stack layout 906 // of those arguments will match the struct. This is important because the 907 // LLVM backend isn't smart enough to remove byval, which inhibits many 908 // optimizations. 909 if (getContext().getTypeSize(Ty) <= 4*32 && 910 canExpandIndirectArgument(Ty, getContext())) 911 return ABIArgInfo::getExpandWithPadding( 912 State.CC == llvm::CallingConv::X86_FastCall, PaddingType); 913 914 return getIndirectResult(Ty, true, State); 915 } 916 917 if (const VectorType *VT = Ty->getAs<VectorType>()) { 918 // On Darwin, some vectors are passed in memory, we handle this by passing 919 // it as an i8/i16/i32/i64. 920 if (IsDarwinVectorABI) { 921 uint64_t Size = getContext().getTypeSize(Ty); 922 if ((Size == 8 || Size == 16 || Size == 32) || 923 (Size == 64 && VT->getNumElements() == 1)) 924 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 925 Size)); 926 } 927 928 if (IsX86_MMXType(CGT.ConvertType(Ty))) 929 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 930 931 return ABIArgInfo::getDirect(); 932 } 933 934 935 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 936 Ty = EnumTy->getDecl()->getIntegerType(); 937 938 bool NeedsPadding; 939 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 940 941 if (Ty->isPromotableIntegerType()) { 942 if (InReg) 943 return ABIArgInfo::getExtendInReg(); 944 return ABIArgInfo::getExtend(); 945 } 946 if (InReg) 947 return ABIArgInfo::getDirectInReg(); 948 return ABIArgInfo::getDirect(); 949 } 950 951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 952 CCState State(FI.getCallingConvention()); 953 if (State.CC == llvm::CallingConv::X86_FastCall) 954 State.FreeRegs = 2; 955 else if (FI.getHasRegParm()) 956 State.FreeRegs = FI.getRegParm(); 957 else 958 State.FreeRegs = DefaultNumRegisterParameters; 959 960 if (!getCXXABI().classifyReturnType(FI)) { 961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 962 } else if (FI.getReturnInfo().isIndirect()) { 963 // The C++ ABI is not aware of register usage, so we have to check if the 964 // return value was sret and put it in a register ourselves if appropriate. 965 if (State.FreeRegs) { 966 --State.FreeRegs; // The sret parameter consumes a register. 967 FI.getReturnInfo().setInReg(true); 968 } 969 } 970 971 bool UsedInAlloca = false; 972 for (auto &I : FI.arguments()) { 973 I.info = classifyArgumentType(I.type, State); 974 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 975 } 976 977 // If we needed to use inalloca for any argument, do a second pass and rewrite 978 // all the memory arguments to use inalloca. 979 if (UsedInAlloca) 980 rewriteWithInAlloca(FI); 981 } 982 983 void 984 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 985 unsigned &StackOffset, 986 ABIArgInfo &Info, QualType Type) const { 987 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 988 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 989 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 990 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 991 992 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 993 // byte aligned. 994 if (StackOffset % 4U) { 995 unsigned OldOffset = StackOffset; 996 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 997 unsigned NumBytes = StackOffset - OldOffset; 998 assert(NumBytes); 999 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1000 Ty = llvm::ArrayType::get(Ty, NumBytes); 1001 FrameFields.push_back(Ty); 1002 } 1003 } 1004 1005 static bool isArgInAlloca(const ABIArgInfo &Info) { 1006 // Leave ignored and inreg arguments alone. 1007 switch (Info.getKind()) { 1008 case ABIArgInfo::InAlloca: 1009 return true; 1010 case ABIArgInfo::Indirect: 1011 assert(Info.getIndirectByVal()); 1012 return true; 1013 case ABIArgInfo::Ignore: 1014 return false; 1015 case ABIArgInfo::Direct: 1016 case ABIArgInfo::Extend: 1017 case ABIArgInfo::Expand: 1018 if (Info.getInReg()) 1019 return false; 1020 return true; 1021 } 1022 llvm_unreachable("invalid enum"); 1023 } 1024 1025 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1026 assert(IsWin32StructABI && "inalloca only supported on win32"); 1027 1028 // Build a packed struct type for all of the arguments in memory. 1029 SmallVector<llvm::Type *, 6> FrameFields; 1030 1031 unsigned StackOffset = 0; 1032 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1033 1034 // Put 'this' into the struct before 'sret', if necessary. 1035 bool IsThisCall = 1036 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1037 ABIArgInfo &Ret = FI.getReturnInfo(); 1038 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1039 isArgInAlloca(I->info)) { 1040 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1041 ++I; 1042 } 1043 1044 // Put the sret parameter into the inalloca struct if it's in memory. 1045 if (Ret.isIndirect() && !Ret.getInReg()) { 1046 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1047 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1048 // On Windows, the hidden sret parameter is always returned in eax. 1049 Ret.setInAllocaSRet(IsWin32StructABI); 1050 } 1051 1052 // Skip the 'this' parameter in ecx. 1053 if (IsThisCall) 1054 ++I; 1055 1056 // Put arguments passed in memory into the struct. 1057 for (; I != E; ++I) { 1058 if (isArgInAlloca(I->info)) 1059 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1060 } 1061 1062 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1063 /*isPacked=*/true)); 1064 } 1065 1066 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1067 CodeGenFunction &CGF) const { 1068 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1069 1070 CGBuilderTy &Builder = CGF.Builder; 1071 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1072 "ap"); 1073 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1074 1075 // Compute if the address needs to be aligned 1076 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1077 Align = getTypeStackAlignInBytes(Ty, Align); 1078 Align = std::max(Align, 4U); 1079 if (Align > 4) { 1080 // addr = (addr + align - 1) & -align; 1081 llvm::Value *Offset = 1082 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1083 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1084 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1085 CGF.Int32Ty); 1086 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1087 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1088 Addr->getType(), 1089 "ap.cur.aligned"); 1090 } 1091 1092 llvm::Type *PTy = 1093 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1094 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1095 1096 uint64_t Offset = 1097 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1098 llvm::Value *NextAddr = 1099 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1100 "ap.next"); 1101 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1102 1103 return AddrTyped; 1104 } 1105 1106 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1107 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1108 assert(Triple.getArch() == llvm::Triple::x86); 1109 1110 switch (Opts.getStructReturnConvention()) { 1111 case CodeGenOptions::SRCK_Default: 1112 break; 1113 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1114 return false; 1115 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1116 return true; 1117 } 1118 1119 if (Triple.isOSDarwin()) 1120 return true; 1121 1122 switch (Triple.getOS()) { 1123 case llvm::Triple::DragonFly: 1124 case llvm::Triple::FreeBSD: 1125 case llvm::Triple::OpenBSD: 1126 case llvm::Triple::Bitrig: 1127 return true; 1128 case llvm::Triple::Win32: 1129 switch (Triple.getEnvironment()) { 1130 case llvm::Triple::UnknownEnvironment: 1131 case llvm::Triple::Cygnus: 1132 case llvm::Triple::GNU: 1133 case llvm::Triple::MSVC: 1134 return true; 1135 default: 1136 return false; 1137 } 1138 default: 1139 return false; 1140 } 1141 } 1142 1143 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1144 llvm::GlobalValue *GV, 1145 CodeGen::CodeGenModule &CGM) const { 1146 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1147 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1148 // Get the LLVM function. 1149 llvm::Function *Fn = cast<llvm::Function>(GV); 1150 1151 // Now add the 'alignstack' attribute with a value of 16. 1152 llvm::AttrBuilder B; 1153 B.addStackAlignmentAttr(16); 1154 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1155 llvm::AttributeSet::get(CGM.getLLVMContext(), 1156 llvm::AttributeSet::FunctionIndex, 1157 B)); 1158 } 1159 } 1160 } 1161 1162 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1163 CodeGen::CodeGenFunction &CGF, 1164 llvm::Value *Address) const { 1165 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1166 1167 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1168 1169 // 0-7 are the eight integer registers; the order is different 1170 // on Darwin (for EH), but the range is the same. 1171 // 8 is %eip. 1172 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1173 1174 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1175 // 12-16 are st(0..4). Not sure why we stop at 4. 1176 // These have size 16, which is sizeof(long double) on 1177 // platforms with 8-byte alignment for that type. 1178 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1179 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1180 1181 } else { 1182 // 9 is %eflags, which doesn't get a size on Darwin for some 1183 // reason. 1184 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1185 1186 // 11-16 are st(0..5). Not sure why we stop at 5. 1187 // These have size 12, which is sizeof(long double) on 1188 // platforms with 4-byte alignment for that type. 1189 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1190 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1191 } 1192 1193 return false; 1194 } 1195 1196 //===----------------------------------------------------------------------===// 1197 // X86-64 ABI Implementation 1198 //===----------------------------------------------------------------------===// 1199 1200 1201 namespace { 1202 /// X86_64ABIInfo - The X86_64 ABI information. 1203 class X86_64ABIInfo : public ABIInfo { 1204 enum Class { 1205 Integer = 0, 1206 SSE, 1207 SSEUp, 1208 X87, 1209 X87Up, 1210 ComplexX87, 1211 NoClass, 1212 Memory 1213 }; 1214 1215 /// merge - Implement the X86_64 ABI merging algorithm. 1216 /// 1217 /// Merge an accumulating classification \arg Accum with a field 1218 /// classification \arg Field. 1219 /// 1220 /// \param Accum - The accumulating classification. This should 1221 /// always be either NoClass or the result of a previous merge 1222 /// call. In addition, this should never be Memory (the caller 1223 /// should just return Memory for the aggregate). 1224 static Class merge(Class Accum, Class Field); 1225 1226 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1227 /// 1228 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1229 /// final MEMORY or SSE classes when necessary. 1230 /// 1231 /// \param AggregateSize - The size of the current aggregate in 1232 /// the classification process. 1233 /// 1234 /// \param Lo - The classification for the parts of the type 1235 /// residing in the low word of the containing object. 1236 /// 1237 /// \param Hi - The classification for the parts of the type 1238 /// residing in the higher words of the containing object. 1239 /// 1240 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1241 1242 /// classify - Determine the x86_64 register classes in which the 1243 /// given type T should be passed. 1244 /// 1245 /// \param Lo - The classification for the parts of the type 1246 /// residing in the low word of the containing object. 1247 /// 1248 /// \param Hi - The classification for the parts of the type 1249 /// residing in the high word of the containing object. 1250 /// 1251 /// \param OffsetBase - The bit offset of this type in the 1252 /// containing object. Some parameters are classified different 1253 /// depending on whether they straddle an eightbyte boundary. 1254 /// 1255 /// \param isNamedArg - Whether the argument in question is a "named" 1256 /// argument, as used in AMD64-ABI 3.5.7. 1257 /// 1258 /// If a word is unused its result will be NoClass; if a type should 1259 /// be passed in Memory then at least the classification of \arg Lo 1260 /// will be Memory. 1261 /// 1262 /// The \arg Lo class will be NoClass iff the argument is ignored. 1263 /// 1264 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1265 /// also be ComplexX87. 1266 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1267 bool isNamedArg) const; 1268 1269 llvm::Type *GetByteVectorType(QualType Ty) const; 1270 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1271 unsigned IROffset, QualType SourceTy, 1272 unsigned SourceOffset) const; 1273 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1274 unsigned IROffset, QualType SourceTy, 1275 unsigned SourceOffset) const; 1276 1277 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1278 /// such that the argument will be returned in memory. 1279 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1280 1281 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1282 /// such that the argument will be passed in memory. 1283 /// 1284 /// \param freeIntRegs - The number of free integer registers remaining 1285 /// available. 1286 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1287 1288 ABIArgInfo classifyReturnType(QualType RetTy) const; 1289 1290 ABIArgInfo classifyArgumentType(QualType Ty, 1291 unsigned freeIntRegs, 1292 unsigned &neededInt, 1293 unsigned &neededSSE, 1294 bool isNamedArg) const; 1295 1296 bool IsIllegalVectorType(QualType Ty) const; 1297 1298 /// The 0.98 ABI revision clarified a lot of ambiguities, 1299 /// unfortunately in ways that were not always consistent with 1300 /// certain previous compilers. In particular, platforms which 1301 /// required strict binary compatibility with older versions of GCC 1302 /// may need to exempt themselves. 1303 bool honorsRevision0_98() const { 1304 return !getTarget().getTriple().isOSDarwin(); 1305 } 1306 1307 bool HasAVX; 1308 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1309 // 64-bit hardware. 1310 bool Has64BitPointers; 1311 1312 public: 1313 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1314 ABIInfo(CGT), HasAVX(hasavx), 1315 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1316 } 1317 1318 bool isPassedUsingAVXType(QualType type) const { 1319 unsigned neededInt, neededSSE; 1320 // The freeIntRegs argument doesn't matter here. 1321 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1322 /*isNamedArg*/true); 1323 if (info.isDirect()) { 1324 llvm::Type *ty = info.getCoerceToType(); 1325 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1326 return (vectorTy->getBitWidth() > 128); 1327 } 1328 return false; 1329 } 1330 1331 void computeInfo(CGFunctionInfo &FI) const override; 1332 1333 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1334 CodeGenFunction &CGF) const override; 1335 }; 1336 1337 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1338 class WinX86_64ABIInfo : public ABIInfo { 1339 1340 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1341 1342 public: 1343 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1344 1345 void computeInfo(CGFunctionInfo &FI) const override; 1346 1347 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1348 CodeGenFunction &CGF) const override; 1349 }; 1350 1351 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1352 public: 1353 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1354 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1355 1356 const X86_64ABIInfo &getABIInfo() const { 1357 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1358 } 1359 1360 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1361 return 7; 1362 } 1363 1364 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1365 llvm::Value *Address) const override { 1366 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1367 1368 // 0-15 are the 16 integer registers. 1369 // 16 is %rip. 1370 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1371 return false; 1372 } 1373 1374 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1375 StringRef Constraint, 1376 llvm::Type* Ty) const override { 1377 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1378 } 1379 1380 bool isNoProtoCallVariadic(const CallArgList &args, 1381 const FunctionNoProtoType *fnType) const override { 1382 // The default CC on x86-64 sets %al to the number of SSA 1383 // registers used, and GCC sets this when calling an unprototyped 1384 // function, so we override the default behavior. However, don't do 1385 // that when AVX types are involved: the ABI explicitly states it is 1386 // undefined, and it doesn't work in practice because of how the ABI 1387 // defines varargs anyway. 1388 if (fnType->getCallConv() == CC_C) { 1389 bool HasAVXType = false; 1390 for (CallArgList::const_iterator 1391 it = args.begin(), ie = args.end(); it != ie; ++it) { 1392 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1393 HasAVXType = true; 1394 break; 1395 } 1396 } 1397 1398 if (!HasAVXType) 1399 return true; 1400 } 1401 1402 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1403 } 1404 1405 llvm::Constant * 1406 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1407 unsigned Sig = (0xeb << 0) | // jmp rel8 1408 (0x0a << 8) | // .+0x0c 1409 ('F' << 16) | 1410 ('T' << 24); 1411 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1412 } 1413 1414 }; 1415 1416 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1417 // If the argument does not end in .lib, automatically add the suffix. This 1418 // matches the behavior of MSVC. 1419 std::string ArgStr = Lib; 1420 if (!Lib.endswith_lower(".lib")) 1421 ArgStr += ".lib"; 1422 return ArgStr; 1423 } 1424 1425 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1426 public: 1427 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1428 bool d, bool p, bool w, unsigned RegParms) 1429 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1430 1431 void getDependentLibraryOption(llvm::StringRef Lib, 1432 llvm::SmallString<24> &Opt) const override { 1433 Opt = "/DEFAULTLIB:"; 1434 Opt += qualifyWindowsLibrary(Lib); 1435 } 1436 1437 void getDetectMismatchOption(llvm::StringRef Name, 1438 llvm::StringRef Value, 1439 llvm::SmallString<32> &Opt) const override { 1440 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1441 } 1442 }; 1443 1444 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1445 public: 1446 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1447 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1448 1449 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1450 return 7; 1451 } 1452 1453 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1454 llvm::Value *Address) const override { 1455 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1456 1457 // 0-15 are the 16 integer registers. 1458 // 16 is %rip. 1459 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1460 return false; 1461 } 1462 1463 void getDependentLibraryOption(llvm::StringRef Lib, 1464 llvm::SmallString<24> &Opt) const override { 1465 Opt = "/DEFAULTLIB:"; 1466 Opt += qualifyWindowsLibrary(Lib); 1467 } 1468 1469 void getDetectMismatchOption(llvm::StringRef Name, 1470 llvm::StringRef Value, 1471 llvm::SmallString<32> &Opt) const override { 1472 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1473 } 1474 }; 1475 1476 } 1477 1478 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1479 Class &Hi) const { 1480 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1481 // 1482 // (a) If one of the classes is Memory, the whole argument is passed in 1483 // memory. 1484 // 1485 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1486 // memory. 1487 // 1488 // (c) If the size of the aggregate exceeds two eightbytes and the first 1489 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1490 // argument is passed in memory. NOTE: This is necessary to keep the 1491 // ABI working for processors that don't support the __m256 type. 1492 // 1493 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1494 // 1495 // Some of these are enforced by the merging logic. Others can arise 1496 // only with unions; for example: 1497 // union { _Complex double; unsigned; } 1498 // 1499 // Note that clauses (b) and (c) were added in 0.98. 1500 // 1501 if (Hi == Memory) 1502 Lo = Memory; 1503 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1504 Lo = Memory; 1505 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1506 Lo = Memory; 1507 if (Hi == SSEUp && Lo != SSE) 1508 Hi = SSE; 1509 } 1510 1511 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1512 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1513 // classified recursively so that always two fields are 1514 // considered. The resulting class is calculated according to 1515 // the classes of the fields in the eightbyte: 1516 // 1517 // (a) If both classes are equal, this is the resulting class. 1518 // 1519 // (b) If one of the classes is NO_CLASS, the resulting class is 1520 // the other class. 1521 // 1522 // (c) If one of the classes is MEMORY, the result is the MEMORY 1523 // class. 1524 // 1525 // (d) If one of the classes is INTEGER, the result is the 1526 // INTEGER. 1527 // 1528 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1529 // MEMORY is used as class. 1530 // 1531 // (f) Otherwise class SSE is used. 1532 1533 // Accum should never be memory (we should have returned) or 1534 // ComplexX87 (because this cannot be passed in a structure). 1535 assert((Accum != Memory && Accum != ComplexX87) && 1536 "Invalid accumulated classification during merge."); 1537 if (Accum == Field || Field == NoClass) 1538 return Accum; 1539 if (Field == Memory) 1540 return Memory; 1541 if (Accum == NoClass) 1542 return Field; 1543 if (Accum == Integer || Field == Integer) 1544 return Integer; 1545 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1546 Accum == X87 || Accum == X87Up) 1547 return Memory; 1548 return SSE; 1549 } 1550 1551 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1552 Class &Lo, Class &Hi, bool isNamedArg) const { 1553 // FIXME: This code can be simplified by introducing a simple value class for 1554 // Class pairs with appropriate constructor methods for the various 1555 // situations. 1556 1557 // FIXME: Some of the split computations are wrong; unaligned vectors 1558 // shouldn't be passed in registers for example, so there is no chance they 1559 // can straddle an eightbyte. Verify & simplify. 1560 1561 Lo = Hi = NoClass; 1562 1563 Class &Current = OffsetBase < 64 ? Lo : Hi; 1564 Current = Memory; 1565 1566 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1567 BuiltinType::Kind k = BT->getKind(); 1568 1569 if (k == BuiltinType::Void) { 1570 Current = NoClass; 1571 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1572 Lo = Integer; 1573 Hi = Integer; 1574 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1575 Current = Integer; 1576 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1577 (k == BuiltinType::LongDouble && 1578 getTarget().getTriple().isOSNaCl())) { 1579 Current = SSE; 1580 } else if (k == BuiltinType::LongDouble) { 1581 Lo = X87; 1582 Hi = X87Up; 1583 } 1584 // FIXME: _Decimal32 and _Decimal64 are SSE. 1585 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1586 return; 1587 } 1588 1589 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1590 // Classify the underlying integer type. 1591 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1592 return; 1593 } 1594 1595 if (Ty->hasPointerRepresentation()) { 1596 Current = Integer; 1597 return; 1598 } 1599 1600 if (Ty->isMemberPointerType()) { 1601 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1602 Lo = Hi = Integer; 1603 else 1604 Current = Integer; 1605 return; 1606 } 1607 1608 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1609 uint64_t Size = getContext().getTypeSize(VT); 1610 if (Size == 32) { 1611 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1612 // float> as integer. 1613 Current = Integer; 1614 1615 // If this type crosses an eightbyte boundary, it should be 1616 // split. 1617 uint64_t EB_Real = (OffsetBase) / 64; 1618 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1619 if (EB_Real != EB_Imag) 1620 Hi = Lo; 1621 } else if (Size == 64) { 1622 // gcc passes <1 x double> in memory. :( 1623 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1624 return; 1625 1626 // gcc passes <1 x long long> as INTEGER. 1627 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1628 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1629 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1630 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1631 Current = Integer; 1632 else 1633 Current = SSE; 1634 1635 // If this type crosses an eightbyte boundary, it should be 1636 // split. 1637 if (OffsetBase && OffsetBase != 64) 1638 Hi = Lo; 1639 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1640 // Arguments of 256-bits are split into four eightbyte chunks. The 1641 // least significant one belongs to class SSE and all the others to class 1642 // SSEUP. The original Lo and Hi design considers that types can't be 1643 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1644 // This design isn't correct for 256-bits, but since there're no cases 1645 // where the upper parts would need to be inspected, avoid adding 1646 // complexity and just consider Hi to match the 64-256 part. 1647 // 1648 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1649 // registers if they are "named", i.e. not part of the "..." of a 1650 // variadic function. 1651 Lo = SSE; 1652 Hi = SSEUp; 1653 } 1654 return; 1655 } 1656 1657 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1658 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1659 1660 uint64_t Size = getContext().getTypeSize(Ty); 1661 if (ET->isIntegralOrEnumerationType()) { 1662 if (Size <= 64) 1663 Current = Integer; 1664 else if (Size <= 128) 1665 Lo = Hi = Integer; 1666 } else if (ET == getContext().FloatTy) 1667 Current = SSE; 1668 else if (ET == getContext().DoubleTy || 1669 (ET == getContext().LongDoubleTy && 1670 getTarget().getTriple().isOSNaCl())) 1671 Lo = Hi = SSE; 1672 else if (ET == getContext().LongDoubleTy) 1673 Current = ComplexX87; 1674 1675 // If this complex type crosses an eightbyte boundary then it 1676 // should be split. 1677 uint64_t EB_Real = (OffsetBase) / 64; 1678 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1679 if (Hi == NoClass && EB_Real != EB_Imag) 1680 Hi = Lo; 1681 1682 return; 1683 } 1684 1685 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1686 // Arrays are treated like structures. 1687 1688 uint64_t Size = getContext().getTypeSize(Ty); 1689 1690 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1691 // than four eightbytes, ..., it has class MEMORY. 1692 if (Size > 256) 1693 return; 1694 1695 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1696 // fields, it has class MEMORY. 1697 // 1698 // Only need to check alignment of array base. 1699 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1700 return; 1701 1702 // Otherwise implement simplified merge. We could be smarter about 1703 // this, but it isn't worth it and would be harder to verify. 1704 Current = NoClass; 1705 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1706 uint64_t ArraySize = AT->getSize().getZExtValue(); 1707 1708 // The only case a 256-bit wide vector could be used is when the array 1709 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1710 // to work for sizes wider than 128, early check and fallback to memory. 1711 if (Size > 128 && EltSize != 256) 1712 return; 1713 1714 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1715 Class FieldLo, FieldHi; 1716 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1717 Lo = merge(Lo, FieldLo); 1718 Hi = merge(Hi, FieldHi); 1719 if (Lo == Memory || Hi == Memory) 1720 break; 1721 } 1722 1723 postMerge(Size, Lo, Hi); 1724 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1725 return; 1726 } 1727 1728 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1729 uint64_t Size = getContext().getTypeSize(Ty); 1730 1731 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1732 // than four eightbytes, ..., it has class MEMORY. 1733 if (Size > 256) 1734 return; 1735 1736 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1737 // copy constructor or a non-trivial destructor, it is passed by invisible 1738 // reference. 1739 if (getRecordArgABI(RT, getCXXABI())) 1740 return; 1741 1742 const RecordDecl *RD = RT->getDecl(); 1743 1744 // Assume variable sized types are passed in memory. 1745 if (RD->hasFlexibleArrayMember()) 1746 return; 1747 1748 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1749 1750 // Reset Lo class, this will be recomputed. 1751 Current = NoClass; 1752 1753 // If this is a C++ record, classify the bases first. 1754 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1755 for (const auto &I : CXXRD->bases()) { 1756 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1757 "Unexpected base class!"); 1758 const CXXRecordDecl *Base = 1759 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1760 1761 // Classify this field. 1762 // 1763 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1764 // single eightbyte, each is classified separately. Each eightbyte gets 1765 // initialized to class NO_CLASS. 1766 Class FieldLo, FieldHi; 1767 uint64_t Offset = 1768 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1769 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 1770 Lo = merge(Lo, FieldLo); 1771 Hi = merge(Hi, FieldHi); 1772 if (Lo == Memory || Hi == Memory) 1773 break; 1774 } 1775 } 1776 1777 // Classify the fields one at a time, merging the results. 1778 unsigned idx = 0; 1779 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1780 i != e; ++i, ++idx) { 1781 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1782 bool BitField = i->isBitField(); 1783 1784 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1785 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1786 // 1787 // The only case a 256-bit wide vector could be used is when the struct 1788 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1789 // to work for sizes wider than 128, early check and fallback to memory. 1790 // 1791 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1792 Lo = Memory; 1793 return; 1794 } 1795 // Note, skip this test for bit-fields, see below. 1796 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1797 Lo = Memory; 1798 return; 1799 } 1800 1801 // Classify this field. 1802 // 1803 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1804 // exceeds a single eightbyte, each is classified 1805 // separately. Each eightbyte gets initialized to class 1806 // NO_CLASS. 1807 Class FieldLo, FieldHi; 1808 1809 // Bit-fields require special handling, they do not force the 1810 // structure to be passed in memory even if unaligned, and 1811 // therefore they can straddle an eightbyte. 1812 if (BitField) { 1813 // Ignore padding bit-fields. 1814 if (i->isUnnamedBitfield()) 1815 continue; 1816 1817 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1818 uint64_t Size = i->getBitWidthValue(getContext()); 1819 1820 uint64_t EB_Lo = Offset / 64; 1821 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1822 1823 if (EB_Lo) { 1824 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1825 FieldLo = NoClass; 1826 FieldHi = Integer; 1827 } else { 1828 FieldLo = Integer; 1829 FieldHi = EB_Hi ? Integer : NoClass; 1830 } 1831 } else 1832 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1833 Lo = merge(Lo, FieldLo); 1834 Hi = merge(Hi, FieldHi); 1835 if (Lo == Memory || Hi == Memory) 1836 break; 1837 } 1838 1839 postMerge(Size, Lo, Hi); 1840 } 1841 } 1842 1843 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1844 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1845 // place naturally. 1846 if (!isAggregateTypeForABI(Ty)) { 1847 // Treat an enum type as its underlying type. 1848 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1849 Ty = EnumTy->getDecl()->getIntegerType(); 1850 1851 return (Ty->isPromotableIntegerType() ? 1852 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1853 } 1854 1855 return ABIArgInfo::getIndirect(0); 1856 } 1857 1858 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1859 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1860 uint64_t Size = getContext().getTypeSize(VecTy); 1861 unsigned LargestVector = HasAVX ? 256 : 128; 1862 if (Size <= 64 || Size > LargestVector) 1863 return true; 1864 } 1865 1866 return false; 1867 } 1868 1869 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1870 unsigned freeIntRegs) const { 1871 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1872 // place naturally. 1873 // 1874 // This assumption is optimistic, as there could be free registers available 1875 // when we need to pass this argument in memory, and LLVM could try to pass 1876 // the argument in the free register. This does not seem to happen currently, 1877 // but this code would be much safer if we could mark the argument with 1878 // 'onstack'. See PR12193. 1879 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1880 // Treat an enum type as its underlying type. 1881 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1882 Ty = EnumTy->getDecl()->getIntegerType(); 1883 1884 return (Ty->isPromotableIntegerType() ? 1885 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1886 } 1887 1888 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1889 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1890 1891 // Compute the byval alignment. We specify the alignment of the byval in all 1892 // cases so that the mid-level optimizer knows the alignment of the byval. 1893 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1894 1895 // Attempt to avoid passing indirect results using byval when possible. This 1896 // is important for good codegen. 1897 // 1898 // We do this by coercing the value into a scalar type which the backend can 1899 // handle naturally (i.e., without using byval). 1900 // 1901 // For simplicity, we currently only do this when we have exhausted all of the 1902 // free integer registers. Doing this when there are free integer registers 1903 // would require more care, as we would have to ensure that the coerced value 1904 // did not claim the unused register. That would require either reording the 1905 // arguments to the function (so that any subsequent inreg values came first), 1906 // or only doing this optimization when there were no following arguments that 1907 // might be inreg. 1908 // 1909 // We currently expect it to be rare (particularly in well written code) for 1910 // arguments to be passed on the stack when there are still free integer 1911 // registers available (this would typically imply large structs being passed 1912 // by value), so this seems like a fair tradeoff for now. 1913 // 1914 // We can revisit this if the backend grows support for 'onstack' parameter 1915 // attributes. See PR12193. 1916 if (freeIntRegs == 0) { 1917 uint64_t Size = getContext().getTypeSize(Ty); 1918 1919 // If this type fits in an eightbyte, coerce it into the matching integral 1920 // type, which will end up on the stack (with alignment 8). 1921 if (Align == 8 && Size <= 64) 1922 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1923 Size)); 1924 } 1925 1926 return ABIArgInfo::getIndirect(Align); 1927 } 1928 1929 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1930 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1931 /// vector register. 1932 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1933 llvm::Type *IRType = CGT.ConvertType(Ty); 1934 1935 // Wrapper structs that just contain vectors are passed just like vectors, 1936 // strip them off if present. 1937 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1938 while (STy && STy->getNumElements() == 1) { 1939 IRType = STy->getElementType(0); 1940 STy = dyn_cast<llvm::StructType>(IRType); 1941 } 1942 1943 // If the preferred type is a 16-byte vector, prefer to pass it. 1944 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1945 llvm::Type *EltTy = VT->getElementType(); 1946 unsigned BitWidth = VT->getBitWidth(); 1947 if ((BitWidth >= 128 && BitWidth <= 256) && 1948 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1949 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1950 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1951 EltTy->isIntegerTy(128))) 1952 return VT; 1953 } 1954 1955 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1956 } 1957 1958 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1959 /// is known to either be off the end of the specified type or being in 1960 /// alignment padding. The user type specified is known to be at most 128 bits 1961 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1962 /// classification that put one of the two halves in the INTEGER class. 1963 /// 1964 /// It is conservatively correct to return false. 1965 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1966 unsigned EndBit, ASTContext &Context) { 1967 // If the bytes being queried are off the end of the type, there is no user 1968 // data hiding here. This handles analysis of builtins, vectors and other 1969 // types that don't contain interesting padding. 1970 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1971 if (TySize <= StartBit) 1972 return true; 1973 1974 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1975 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1976 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1977 1978 // Check each element to see if the element overlaps with the queried range. 1979 for (unsigned i = 0; i != NumElts; ++i) { 1980 // If the element is after the span we care about, then we're done.. 1981 unsigned EltOffset = i*EltSize; 1982 if (EltOffset >= EndBit) break; 1983 1984 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1985 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1986 EndBit-EltOffset, Context)) 1987 return false; 1988 } 1989 // If it overlaps no elements, then it is safe to process as padding. 1990 return true; 1991 } 1992 1993 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1994 const RecordDecl *RD = RT->getDecl(); 1995 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1996 1997 // If this is a C++ record, check the bases first. 1998 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1999 for (const auto &I : CXXRD->bases()) { 2000 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2001 "Unexpected base class!"); 2002 const CXXRecordDecl *Base = 2003 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2004 2005 // If the base is after the span we care about, ignore it. 2006 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2007 if (BaseOffset >= EndBit) continue; 2008 2009 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2010 if (!BitsContainNoUserData(I.getType(), BaseStart, 2011 EndBit-BaseOffset, Context)) 2012 return false; 2013 } 2014 } 2015 2016 // Verify that no field has data that overlaps the region of interest. Yes 2017 // this could be sped up a lot by being smarter about queried fields, 2018 // however we're only looking at structs up to 16 bytes, so we don't care 2019 // much. 2020 unsigned idx = 0; 2021 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2022 i != e; ++i, ++idx) { 2023 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2024 2025 // If we found a field after the region we care about, then we're done. 2026 if (FieldOffset >= EndBit) break; 2027 2028 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2029 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2030 Context)) 2031 return false; 2032 } 2033 2034 // If nothing in this record overlapped the area of interest, then we're 2035 // clean. 2036 return true; 2037 } 2038 2039 return false; 2040 } 2041 2042 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2043 /// float member at the specified offset. For example, {int,{float}} has a 2044 /// float at offset 4. It is conservatively correct for this routine to return 2045 /// false. 2046 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2047 const llvm::DataLayout &TD) { 2048 // Base case if we find a float. 2049 if (IROffset == 0 && IRType->isFloatTy()) 2050 return true; 2051 2052 // If this is a struct, recurse into the field at the specified offset. 2053 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2054 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2055 unsigned Elt = SL->getElementContainingOffset(IROffset); 2056 IROffset -= SL->getElementOffset(Elt); 2057 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2058 } 2059 2060 // If this is an array, recurse into the field at the specified offset. 2061 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2062 llvm::Type *EltTy = ATy->getElementType(); 2063 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2064 IROffset -= IROffset/EltSize*EltSize; 2065 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2066 } 2067 2068 return false; 2069 } 2070 2071 2072 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2073 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2074 llvm::Type *X86_64ABIInfo:: 2075 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2076 QualType SourceTy, unsigned SourceOffset) const { 2077 // The only three choices we have are either double, <2 x float>, or float. We 2078 // pass as float if the last 4 bytes is just padding. This happens for 2079 // structs that contain 3 floats. 2080 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2081 SourceOffset*8+64, getContext())) 2082 return llvm::Type::getFloatTy(getVMContext()); 2083 2084 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2085 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2086 // case. 2087 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2088 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2089 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2090 2091 return llvm::Type::getDoubleTy(getVMContext()); 2092 } 2093 2094 2095 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2096 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2097 /// about the high or low part of an up-to-16-byte struct. This routine picks 2098 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2099 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2100 /// etc). 2101 /// 2102 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2103 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2104 /// the 8-byte value references. PrefType may be null. 2105 /// 2106 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2107 /// an offset into this that we're processing (which is always either 0 or 8). 2108 /// 2109 llvm::Type *X86_64ABIInfo:: 2110 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2111 QualType SourceTy, unsigned SourceOffset) const { 2112 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2113 // returning an 8-byte unit starting with it. See if we can safely use it. 2114 if (IROffset == 0) { 2115 // Pointers and int64's always fill the 8-byte unit. 2116 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2117 IRType->isIntegerTy(64)) 2118 return IRType; 2119 2120 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2121 // goodness in the source type is just tail padding. This is allowed to 2122 // kick in for struct {double,int} on the int, but not on 2123 // struct{double,int,int} because we wouldn't return the second int. We 2124 // have to do this analysis on the source type because we can't depend on 2125 // unions being lowered a specific way etc. 2126 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2127 IRType->isIntegerTy(32) || 2128 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2129 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2130 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2131 2132 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2133 SourceOffset*8+64, getContext())) 2134 return IRType; 2135 } 2136 } 2137 2138 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2139 // If this is a struct, recurse into the field at the specified offset. 2140 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2141 if (IROffset < SL->getSizeInBytes()) { 2142 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2143 IROffset -= SL->getElementOffset(FieldIdx); 2144 2145 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2146 SourceTy, SourceOffset); 2147 } 2148 } 2149 2150 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2151 llvm::Type *EltTy = ATy->getElementType(); 2152 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2153 unsigned EltOffset = IROffset/EltSize*EltSize; 2154 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2155 SourceOffset); 2156 } 2157 2158 // Okay, we don't have any better idea of what to pass, so we pass this in an 2159 // integer register that isn't too big to fit the rest of the struct. 2160 unsigned TySizeInBytes = 2161 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2162 2163 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2164 2165 // It is always safe to classify this as an integer type up to i64 that 2166 // isn't larger than the structure. 2167 return llvm::IntegerType::get(getVMContext(), 2168 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2169 } 2170 2171 2172 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2173 /// be used as elements of a two register pair to pass or return, return a 2174 /// first class aggregate to represent them. For example, if the low part of 2175 /// a by-value argument should be passed as i32* and the high part as float, 2176 /// return {i32*, float}. 2177 static llvm::Type * 2178 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2179 const llvm::DataLayout &TD) { 2180 // In order to correctly satisfy the ABI, we need to the high part to start 2181 // at offset 8. If the high and low parts we inferred are both 4-byte types 2182 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2183 // the second element at offset 8. Check for this: 2184 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2185 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2186 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2187 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2188 2189 // To handle this, we have to increase the size of the low part so that the 2190 // second element will start at an 8 byte offset. We can't increase the size 2191 // of the second element because it might make us access off the end of the 2192 // struct. 2193 if (HiStart != 8) { 2194 // There are only two sorts of types the ABI generation code can produce for 2195 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2196 // Promote these to a larger type. 2197 if (Lo->isFloatTy()) 2198 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2199 else { 2200 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2201 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2202 } 2203 } 2204 2205 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2206 2207 2208 // Verify that the second element is at an 8-byte offset. 2209 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2210 "Invalid x86-64 argument pair!"); 2211 return Result; 2212 } 2213 2214 ABIArgInfo X86_64ABIInfo:: 2215 classifyReturnType(QualType RetTy) const { 2216 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2217 // classification algorithm. 2218 X86_64ABIInfo::Class Lo, Hi; 2219 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2220 2221 // Check some invariants. 2222 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2223 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2224 2225 llvm::Type *ResType = nullptr; 2226 switch (Lo) { 2227 case NoClass: 2228 if (Hi == NoClass) 2229 return ABIArgInfo::getIgnore(); 2230 // If the low part is just padding, it takes no register, leave ResType 2231 // null. 2232 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2233 "Unknown missing lo part"); 2234 break; 2235 2236 case SSEUp: 2237 case X87Up: 2238 llvm_unreachable("Invalid classification for lo word."); 2239 2240 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2241 // hidden argument. 2242 case Memory: 2243 return getIndirectReturnResult(RetTy); 2244 2245 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2246 // available register of the sequence %rax, %rdx is used. 2247 case Integer: 2248 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2249 2250 // If we have a sign or zero extended integer, make sure to return Extend 2251 // so that the parameter gets the right LLVM IR attributes. 2252 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2253 // Treat an enum type as its underlying type. 2254 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2255 RetTy = EnumTy->getDecl()->getIntegerType(); 2256 2257 if (RetTy->isIntegralOrEnumerationType() && 2258 RetTy->isPromotableIntegerType()) 2259 return ABIArgInfo::getExtend(); 2260 } 2261 break; 2262 2263 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2264 // available SSE register of the sequence %xmm0, %xmm1 is used. 2265 case SSE: 2266 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2267 break; 2268 2269 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2270 // returned on the X87 stack in %st0 as 80-bit x87 number. 2271 case X87: 2272 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2273 break; 2274 2275 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2276 // part of the value is returned in %st0 and the imaginary part in 2277 // %st1. 2278 case ComplexX87: 2279 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2280 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2281 llvm::Type::getX86_FP80Ty(getVMContext()), 2282 NULL); 2283 break; 2284 } 2285 2286 llvm::Type *HighPart = nullptr; 2287 switch (Hi) { 2288 // Memory was handled previously and X87 should 2289 // never occur as a hi class. 2290 case Memory: 2291 case X87: 2292 llvm_unreachable("Invalid classification for hi word."); 2293 2294 case ComplexX87: // Previously handled. 2295 case NoClass: 2296 break; 2297 2298 case Integer: 2299 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2300 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2301 return ABIArgInfo::getDirect(HighPart, 8); 2302 break; 2303 case SSE: 2304 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2305 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2306 return ABIArgInfo::getDirect(HighPart, 8); 2307 break; 2308 2309 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2310 // is passed in the next available eightbyte chunk if the last used 2311 // vector register. 2312 // 2313 // SSEUP should always be preceded by SSE, just widen. 2314 case SSEUp: 2315 assert(Lo == SSE && "Unexpected SSEUp classification."); 2316 ResType = GetByteVectorType(RetTy); 2317 break; 2318 2319 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2320 // returned together with the previous X87 value in %st0. 2321 case X87Up: 2322 // If X87Up is preceded by X87, we don't need to do 2323 // anything. However, in some cases with unions it may not be 2324 // preceded by X87. In such situations we follow gcc and pass the 2325 // extra bits in an SSE reg. 2326 if (Lo != X87) { 2327 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2328 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2329 return ABIArgInfo::getDirect(HighPart, 8); 2330 } 2331 break; 2332 } 2333 2334 // If a high part was specified, merge it together with the low part. It is 2335 // known to pass in the high eightbyte of the result. We do this by forming a 2336 // first class struct aggregate with the high and low part: {low, high} 2337 if (HighPart) 2338 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2339 2340 return ABIArgInfo::getDirect(ResType); 2341 } 2342 2343 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2344 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2345 bool isNamedArg) 2346 const 2347 { 2348 X86_64ABIInfo::Class Lo, Hi; 2349 classify(Ty, 0, Lo, Hi, isNamedArg); 2350 2351 // Check some invariants. 2352 // FIXME: Enforce these by construction. 2353 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2354 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2355 2356 neededInt = 0; 2357 neededSSE = 0; 2358 llvm::Type *ResType = nullptr; 2359 switch (Lo) { 2360 case NoClass: 2361 if (Hi == NoClass) 2362 return ABIArgInfo::getIgnore(); 2363 // If the low part is just padding, it takes no register, leave ResType 2364 // null. 2365 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2366 "Unknown missing lo part"); 2367 break; 2368 2369 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2370 // on the stack. 2371 case Memory: 2372 2373 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2374 // COMPLEX_X87, it is passed in memory. 2375 case X87: 2376 case ComplexX87: 2377 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2378 ++neededInt; 2379 return getIndirectResult(Ty, freeIntRegs); 2380 2381 case SSEUp: 2382 case X87Up: 2383 llvm_unreachable("Invalid classification for lo word."); 2384 2385 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2386 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2387 // and %r9 is used. 2388 case Integer: 2389 ++neededInt; 2390 2391 // Pick an 8-byte type based on the preferred type. 2392 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2393 2394 // If we have a sign or zero extended integer, make sure to return Extend 2395 // so that the parameter gets the right LLVM IR attributes. 2396 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2397 // Treat an enum type as its underlying type. 2398 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2399 Ty = EnumTy->getDecl()->getIntegerType(); 2400 2401 if (Ty->isIntegralOrEnumerationType() && 2402 Ty->isPromotableIntegerType()) 2403 return ABIArgInfo::getExtend(); 2404 } 2405 2406 break; 2407 2408 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2409 // available SSE register is used, the registers are taken in the 2410 // order from %xmm0 to %xmm7. 2411 case SSE: { 2412 llvm::Type *IRType = CGT.ConvertType(Ty); 2413 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2414 ++neededSSE; 2415 break; 2416 } 2417 } 2418 2419 llvm::Type *HighPart = nullptr; 2420 switch (Hi) { 2421 // Memory was handled previously, ComplexX87 and X87 should 2422 // never occur as hi classes, and X87Up must be preceded by X87, 2423 // which is passed in memory. 2424 case Memory: 2425 case X87: 2426 case ComplexX87: 2427 llvm_unreachable("Invalid classification for hi word."); 2428 2429 case NoClass: break; 2430 2431 case Integer: 2432 ++neededInt; 2433 // Pick an 8-byte type based on the preferred type. 2434 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2435 2436 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2437 return ABIArgInfo::getDirect(HighPart, 8); 2438 break; 2439 2440 // X87Up generally doesn't occur here (long double is passed in 2441 // memory), except in situations involving unions. 2442 case X87Up: 2443 case SSE: 2444 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2445 2446 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2447 return ABIArgInfo::getDirect(HighPart, 8); 2448 2449 ++neededSSE; 2450 break; 2451 2452 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2453 // eightbyte is passed in the upper half of the last used SSE 2454 // register. This only happens when 128-bit vectors are passed. 2455 case SSEUp: 2456 assert(Lo == SSE && "Unexpected SSEUp classification"); 2457 ResType = GetByteVectorType(Ty); 2458 break; 2459 } 2460 2461 // If a high part was specified, merge it together with the low part. It is 2462 // known to pass in the high eightbyte of the result. We do this by forming a 2463 // first class struct aggregate with the high and low part: {low, high} 2464 if (HighPart) 2465 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2466 2467 return ABIArgInfo::getDirect(ResType); 2468 } 2469 2470 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2471 2472 if (!getCXXABI().classifyReturnType(FI)) 2473 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2474 2475 // Keep track of the number of assigned registers. 2476 unsigned freeIntRegs = 6, freeSSERegs = 8; 2477 2478 // If the return value is indirect, then the hidden argument is consuming one 2479 // integer register. 2480 if (FI.getReturnInfo().isIndirect()) 2481 --freeIntRegs; 2482 2483 bool isVariadic = FI.isVariadic(); 2484 unsigned numRequiredArgs = 0; 2485 if (isVariadic) 2486 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2487 2488 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2489 // get assigned (in left-to-right order) for passing as follows... 2490 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2491 it != ie; ++it) { 2492 bool isNamedArg = true; 2493 if (isVariadic) 2494 isNamedArg = (it - FI.arg_begin()) < 2495 static_cast<signed>(numRequiredArgs); 2496 2497 unsigned neededInt, neededSSE; 2498 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2499 neededSSE, isNamedArg); 2500 2501 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2502 // eightbyte of an argument, the whole argument is passed on the 2503 // stack. If registers have already been assigned for some 2504 // eightbytes of such an argument, the assignments get reverted. 2505 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2506 freeIntRegs -= neededInt; 2507 freeSSERegs -= neededSSE; 2508 } else { 2509 it->info = getIndirectResult(it->type, freeIntRegs); 2510 } 2511 } 2512 } 2513 2514 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2515 QualType Ty, 2516 CodeGenFunction &CGF) { 2517 llvm::Value *overflow_arg_area_p = 2518 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2519 llvm::Value *overflow_arg_area = 2520 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2521 2522 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2523 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2524 // It isn't stated explicitly in the standard, but in practice we use 2525 // alignment greater than 16 where necessary. 2526 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2527 if (Align > 8) { 2528 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2529 llvm::Value *Offset = 2530 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2531 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2532 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2533 CGF.Int64Ty); 2534 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2535 overflow_arg_area = 2536 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2537 overflow_arg_area->getType(), 2538 "overflow_arg_area.align"); 2539 } 2540 2541 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2542 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2543 llvm::Value *Res = 2544 CGF.Builder.CreateBitCast(overflow_arg_area, 2545 llvm::PointerType::getUnqual(LTy)); 2546 2547 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2548 // l->overflow_arg_area + sizeof(type). 2549 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2550 // an 8 byte boundary. 2551 2552 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2553 llvm::Value *Offset = 2554 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2555 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2556 "overflow_arg_area.next"); 2557 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2558 2559 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2560 return Res; 2561 } 2562 2563 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2564 CodeGenFunction &CGF) const { 2565 // Assume that va_list type is correct; should be pointer to LLVM type: 2566 // struct { 2567 // i32 gp_offset; 2568 // i32 fp_offset; 2569 // i8* overflow_arg_area; 2570 // i8* reg_save_area; 2571 // }; 2572 unsigned neededInt, neededSSE; 2573 2574 Ty = CGF.getContext().getCanonicalType(Ty); 2575 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2576 /*isNamedArg*/false); 2577 2578 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2579 // in the registers. If not go to step 7. 2580 if (!neededInt && !neededSSE) 2581 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2582 2583 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2584 // general purpose registers needed to pass type and num_fp to hold 2585 // the number of floating point registers needed. 2586 2587 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2588 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2589 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2590 // 2591 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2592 // register save space). 2593 2594 llvm::Value *InRegs = nullptr; 2595 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2596 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2597 if (neededInt) { 2598 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2599 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2600 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2601 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2602 } 2603 2604 if (neededSSE) { 2605 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2606 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2607 llvm::Value *FitsInFP = 2608 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2609 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2610 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2611 } 2612 2613 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2614 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2615 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2616 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2617 2618 // Emit code to load the value if it was passed in registers. 2619 2620 CGF.EmitBlock(InRegBlock); 2621 2622 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2623 // an offset of l->gp_offset and/or l->fp_offset. This may require 2624 // copying to a temporary location in case the parameter is passed 2625 // in different register classes or requires an alignment greater 2626 // than 8 for general purpose registers and 16 for XMM registers. 2627 // 2628 // FIXME: This really results in shameful code when we end up needing to 2629 // collect arguments from different places; often what should result in a 2630 // simple assembling of a structure from scattered addresses has many more 2631 // loads than necessary. Can we clean this up? 2632 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2633 llvm::Value *RegAddr = 2634 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2635 "reg_save_area"); 2636 if (neededInt && neededSSE) { 2637 // FIXME: Cleanup. 2638 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2639 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2640 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2641 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2642 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2643 llvm::Type *TyLo = ST->getElementType(0); 2644 llvm::Type *TyHi = ST->getElementType(1); 2645 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2646 "Unexpected ABI info for mixed regs"); 2647 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2648 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2649 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2650 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2651 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2652 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2653 llvm::Value *V = 2654 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2655 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2656 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2657 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2658 2659 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2660 llvm::PointerType::getUnqual(LTy)); 2661 } else if (neededInt) { 2662 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2663 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2664 llvm::PointerType::getUnqual(LTy)); 2665 2666 // Copy to a temporary if necessary to ensure the appropriate alignment. 2667 std::pair<CharUnits, CharUnits> SizeAlign = 2668 CGF.getContext().getTypeInfoInChars(Ty); 2669 uint64_t TySize = SizeAlign.first.getQuantity(); 2670 unsigned TyAlign = SizeAlign.second.getQuantity(); 2671 if (TyAlign > 8) { 2672 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2673 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2674 RegAddr = Tmp; 2675 } 2676 } else if (neededSSE == 1) { 2677 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2678 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2679 llvm::PointerType::getUnqual(LTy)); 2680 } else { 2681 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2682 // SSE registers are spaced 16 bytes apart in the register save 2683 // area, we need to collect the two eightbytes together. 2684 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2685 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2686 llvm::Type *DoubleTy = CGF.DoubleTy; 2687 llvm::Type *DblPtrTy = 2688 llvm::PointerType::getUnqual(DoubleTy); 2689 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2690 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2691 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2692 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2693 DblPtrTy)); 2694 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2695 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2696 DblPtrTy)); 2697 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2698 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2699 llvm::PointerType::getUnqual(LTy)); 2700 } 2701 2702 // AMD64-ABI 3.5.7p5: Step 5. Set: 2703 // l->gp_offset = l->gp_offset + num_gp * 8 2704 // l->fp_offset = l->fp_offset + num_fp * 16. 2705 if (neededInt) { 2706 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2707 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2708 gp_offset_p); 2709 } 2710 if (neededSSE) { 2711 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2712 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2713 fp_offset_p); 2714 } 2715 CGF.EmitBranch(ContBlock); 2716 2717 // Emit code to load the value if it was passed in memory. 2718 2719 CGF.EmitBlock(InMemBlock); 2720 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2721 2722 // Return the appropriate result. 2723 2724 CGF.EmitBlock(ContBlock); 2725 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2726 "vaarg.addr"); 2727 ResAddr->addIncoming(RegAddr, InRegBlock); 2728 ResAddr->addIncoming(MemAddr, InMemBlock); 2729 return ResAddr; 2730 } 2731 2732 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2733 2734 if (Ty->isVoidType()) 2735 return ABIArgInfo::getIgnore(); 2736 2737 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2738 Ty = EnumTy->getDecl()->getIntegerType(); 2739 2740 uint64_t Size = getContext().getTypeSize(Ty); 2741 2742 const RecordType *RT = Ty->getAs<RecordType>(); 2743 if (RT) { 2744 if (!IsReturnType) { 2745 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2746 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2747 } 2748 2749 if (RT->getDecl()->hasFlexibleArrayMember()) 2750 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2751 2752 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2753 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 2754 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2755 Size)); 2756 } 2757 2758 if (Ty->isMemberPointerType()) { 2759 // If the member pointer is represented by an LLVM int or ptr, pass it 2760 // directly. 2761 llvm::Type *LLTy = CGT.ConvertType(Ty); 2762 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 2763 return ABIArgInfo::getDirect(); 2764 } 2765 2766 if (RT || Ty->isMemberPointerType()) { 2767 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2768 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2769 if (Size > 64 || !llvm::isPowerOf2_64(Size)) 2770 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2771 2772 // Otherwise, coerce it to a small integer. 2773 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 2774 } 2775 2776 if (Ty->isPromotableIntegerType()) 2777 return ABIArgInfo::getExtend(); 2778 2779 return ABIArgInfo::getDirect(); 2780 } 2781 2782 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2783 if (!getCXXABI().classifyReturnType(FI)) 2784 FI.getReturnInfo() = classify(FI.getReturnType(), true); 2785 2786 for (auto &I : FI.arguments()) 2787 I.info = classify(I.type, false); 2788 } 2789 2790 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2791 CodeGenFunction &CGF) const { 2792 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2793 2794 CGBuilderTy &Builder = CGF.Builder; 2795 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2796 "ap"); 2797 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2798 llvm::Type *PTy = 2799 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2800 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2801 2802 uint64_t Offset = 2803 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2804 llvm::Value *NextAddr = 2805 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2806 "ap.next"); 2807 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2808 2809 return AddrTyped; 2810 } 2811 2812 namespace { 2813 2814 class NaClX86_64ABIInfo : public ABIInfo { 2815 public: 2816 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2817 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2818 void computeInfo(CGFunctionInfo &FI) const override; 2819 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2820 CodeGenFunction &CGF) const override; 2821 private: 2822 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2823 X86_64ABIInfo NInfo; // Used for everything else. 2824 }; 2825 2826 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2827 public: 2828 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2829 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2830 }; 2831 2832 } 2833 2834 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2835 if (FI.getASTCallingConvention() == CC_PnaclCall) 2836 PInfo.computeInfo(FI); 2837 else 2838 NInfo.computeInfo(FI); 2839 } 2840 2841 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2842 CodeGenFunction &CGF) const { 2843 // Always use the native convention; calling pnacl-style varargs functions 2844 // is unuspported. 2845 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2846 } 2847 2848 2849 // PowerPC-32 2850 2851 namespace { 2852 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2853 public: 2854 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2855 2856 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2857 // This is recovered from gcc output. 2858 return 1; // r1 is the dedicated stack pointer 2859 } 2860 2861 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2862 llvm::Value *Address) const override; 2863 }; 2864 2865 } 2866 2867 bool 2868 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2869 llvm::Value *Address) const { 2870 // This is calculated from the LLVM and GCC tables and verified 2871 // against gcc output. AFAIK all ABIs use the same encoding. 2872 2873 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2874 2875 llvm::IntegerType *i8 = CGF.Int8Ty; 2876 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2877 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2878 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2879 2880 // 0-31: r0-31, the 4-byte general-purpose registers 2881 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2882 2883 // 32-63: fp0-31, the 8-byte floating-point registers 2884 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2885 2886 // 64-76 are various 4-byte special-purpose registers: 2887 // 64: mq 2888 // 65: lr 2889 // 66: ctr 2890 // 67: ap 2891 // 68-75 cr0-7 2892 // 76: xer 2893 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2894 2895 // 77-108: v0-31, the 16-byte vector registers 2896 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2897 2898 // 109: vrsave 2899 // 110: vscr 2900 // 111: spe_acc 2901 // 112: spefscr 2902 // 113: sfp 2903 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2904 2905 return false; 2906 } 2907 2908 // PowerPC-64 2909 2910 namespace { 2911 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2912 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2913 public: 2914 enum ABIKind { 2915 ELFv1 = 0, 2916 ELFv2 2917 }; 2918 2919 private: 2920 static const unsigned GPRBits = 64; 2921 ABIKind Kind; 2922 2923 public: 2924 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 2925 : DefaultABIInfo(CGT), Kind(Kind) {} 2926 2927 bool isPromotableTypeForABI(QualType Ty) const; 2928 bool isAlignedParamType(QualType Ty) const; 2929 bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 2930 uint64_t &Members) const; 2931 2932 ABIArgInfo classifyReturnType(QualType RetTy) const; 2933 ABIArgInfo classifyArgumentType(QualType Ty) const; 2934 2935 // TODO: We can add more logic to computeInfo to improve performance. 2936 // Example: For aggregate arguments that fit in a register, we could 2937 // use getDirectInReg (as is done below for structs containing a single 2938 // floating-point value) to avoid pushing them to memory on function 2939 // entry. This would require changing the logic in PPCISelLowering 2940 // when lowering the parameters in the caller and args in the callee. 2941 void computeInfo(CGFunctionInfo &FI) const override { 2942 if (!getCXXABI().classifyReturnType(FI)) 2943 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2944 for (auto &I : FI.arguments()) { 2945 // We rely on the default argument classification for the most part. 2946 // One exception: An aggregate containing a single floating-point 2947 // or vector item must be passed in a register if one is available. 2948 const Type *T = isSingleElementStruct(I.type, getContext()); 2949 if (T) { 2950 const BuiltinType *BT = T->getAs<BuiltinType>(); 2951 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 2952 (BT && BT->isFloatingPoint())) { 2953 QualType QT(T, 0); 2954 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2955 continue; 2956 } 2957 } 2958 I.info = classifyArgumentType(I.type); 2959 } 2960 } 2961 2962 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2963 CodeGenFunction &CGF) const override; 2964 }; 2965 2966 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2967 public: 2968 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 2969 PPC64_SVR4_ABIInfo::ABIKind Kind) 2970 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {} 2971 2972 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2973 // This is recovered from gcc output. 2974 return 1; // r1 is the dedicated stack pointer 2975 } 2976 2977 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2978 llvm::Value *Address) const override; 2979 }; 2980 2981 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2982 public: 2983 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2984 2985 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2986 // This is recovered from gcc output. 2987 return 1; // r1 is the dedicated stack pointer 2988 } 2989 2990 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2991 llvm::Value *Address) const override; 2992 }; 2993 2994 } 2995 2996 // Return true if the ABI requires Ty to be passed sign- or zero- 2997 // extended to 64 bits. 2998 bool 2999 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3000 // Treat an enum type as its underlying type. 3001 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3002 Ty = EnumTy->getDecl()->getIntegerType(); 3003 3004 // Promotable integer types are required to be promoted by the ABI. 3005 if (Ty->isPromotableIntegerType()) 3006 return true; 3007 3008 // In addition to the usual promotable integer types, we also need to 3009 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3010 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3011 switch (BT->getKind()) { 3012 case BuiltinType::Int: 3013 case BuiltinType::UInt: 3014 return true; 3015 default: 3016 break; 3017 } 3018 3019 return false; 3020 } 3021 3022 /// isAlignedParamType - Determine whether a type requires 16-byte 3023 /// alignment in the parameter area. 3024 bool 3025 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const { 3026 // Complex types are passed just like their elements. 3027 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3028 Ty = CTy->getElementType(); 3029 3030 // Only vector types of size 16 bytes need alignment (larger types are 3031 // passed via reference, smaller types are not aligned). 3032 if (Ty->isVectorType()) 3033 return getContext().getTypeSize(Ty) == 128; 3034 3035 // For single-element float/vector structs, we consider the whole type 3036 // to have the same alignment requirements as its single element. 3037 const Type *AlignAsType = nullptr; 3038 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3039 if (EltType) { 3040 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3041 if ((EltType->isVectorType() && 3042 getContext().getTypeSize(EltType) == 128) || 3043 (BT && BT->isFloatingPoint())) 3044 AlignAsType = EltType; 3045 } 3046 3047 // Likewise for ELFv2 homogeneous aggregates. 3048 const Type *Base = nullptr; 3049 uint64_t Members = 0; 3050 if (!AlignAsType && Kind == ELFv2 && 3051 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3052 AlignAsType = Base; 3053 3054 // With special case aggregates, only vector base types need alignment. 3055 if (AlignAsType) 3056 return AlignAsType->isVectorType(); 3057 3058 // Otherwise, we only need alignment for any aggregate type that 3059 // has an alignment requirement of >= 16 bytes. 3060 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) 3061 return true; 3062 3063 return false; 3064 } 3065 3066 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3067 /// aggregate. Base is set to the base element type, and Members is set 3068 /// to the number of base elements. 3069 bool 3070 PPC64_SVR4_ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3071 uint64_t &Members) const { 3072 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3073 uint64_t NElements = AT->getSize().getZExtValue(); 3074 if (NElements == 0) 3075 return false; 3076 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3077 return false; 3078 Members *= NElements; 3079 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3080 const RecordDecl *RD = RT->getDecl(); 3081 if (RD->hasFlexibleArrayMember()) 3082 return false; 3083 3084 Members = 0; 3085 for (const auto *FD : RD->fields()) { 3086 // Ignore (non-zero arrays of) empty records. 3087 QualType FT = FD->getType(); 3088 while (const ConstantArrayType *AT = 3089 getContext().getAsConstantArrayType(FT)) { 3090 if (AT->getSize().getZExtValue() == 0) 3091 return false; 3092 FT = AT->getElementType(); 3093 } 3094 if (isEmptyRecord(getContext(), FT, true)) 3095 continue; 3096 3097 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3098 if (getContext().getLangOpts().CPlusPlus && 3099 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3100 continue; 3101 3102 uint64_t FldMembers; 3103 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3104 return false; 3105 3106 Members = (RD->isUnion() ? 3107 std::max(Members, FldMembers) : Members + FldMembers); 3108 } 3109 3110 if (!Base) 3111 return false; 3112 3113 // Ensure there is no padding. 3114 if (getContext().getTypeSize(Base) * Members != 3115 getContext().getTypeSize(Ty)) 3116 return false; 3117 } else { 3118 Members = 1; 3119 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3120 Members = 2; 3121 Ty = CT->getElementType(); 3122 } 3123 3124 // Homogeneous aggregates for ELFv2 must have base types of float, 3125 // double, long double, or 128-bit vectors. 3126 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3127 if (BT->getKind() != BuiltinType::Float && 3128 BT->getKind() != BuiltinType::Double && 3129 BT->getKind() != BuiltinType::LongDouble) 3130 return false; 3131 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 3132 if (getContext().getTypeSize(VT) != 128) 3133 return false; 3134 } else { 3135 return false; 3136 } 3137 3138 // The base type must be the same for all members. Types that 3139 // agree in both total size and mode (float vs. vector) are 3140 // treated as being equivalent here. 3141 const Type *TyPtr = Ty.getTypePtr(); 3142 if (!Base) 3143 Base = TyPtr; 3144 3145 if (Base->isVectorType() != TyPtr->isVectorType() || 3146 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3147 return false; 3148 } 3149 3150 // Vector types require one register, floating point types require one 3151 // or two registers depending on their size. 3152 uint32_t NumRegs = Base->isVectorType() ? 1 : 3153 (getContext().getTypeSize(Base) + 63) / 64; 3154 3155 // Homogeneous Aggregates may occupy at most 8 registers. 3156 return (Members > 0 && Members * NumRegs <= 8); 3157 } 3158 3159 ABIArgInfo 3160 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3161 if (Ty->isAnyComplexType()) 3162 return ABIArgInfo::getDirect(); 3163 3164 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3165 // or via reference (larger than 16 bytes). 3166 if (Ty->isVectorType()) { 3167 uint64_t Size = getContext().getTypeSize(Ty); 3168 if (Size > 128) 3169 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3170 else if (Size < 128) { 3171 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3172 return ABIArgInfo::getDirect(CoerceTy); 3173 } 3174 } 3175 3176 if (isAggregateTypeForABI(Ty)) { 3177 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3178 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3179 3180 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8; 3181 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3182 3183 // ELFv2 homogeneous aggregates are passed as array types. 3184 const Type *Base = nullptr; 3185 uint64_t Members = 0; 3186 if (Kind == ELFv2 && 3187 isHomogeneousAggregate(Ty, Base, Members)) { 3188 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3189 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3190 return ABIArgInfo::getDirect(CoerceTy); 3191 } 3192 3193 // If an aggregate may end up fully in registers, we do not 3194 // use the ByVal method, but pass the aggregate as array. 3195 // This is usually beneficial since we avoid forcing the 3196 // back-end to store the argument to memory. 3197 uint64_t Bits = getContext().getTypeSize(Ty); 3198 if (Bits > 0 && Bits <= 8 * GPRBits) { 3199 llvm::Type *CoerceTy; 3200 3201 // Types up to 8 bytes are passed as integer type (which will be 3202 // properly aligned in the argument save area doubleword). 3203 if (Bits <= GPRBits) 3204 CoerceTy = llvm::IntegerType::get(getVMContext(), 3205 llvm::RoundUpToAlignment(Bits, 8)); 3206 // Larger types are passed as arrays, with the base type selected 3207 // according to the required alignment in the save area. 3208 else { 3209 uint64_t RegBits = ABIAlign * 8; 3210 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3211 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3212 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3213 } 3214 3215 return ABIArgInfo::getDirect(CoerceTy); 3216 } 3217 3218 // All other aggregates are passed ByVal. 3219 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3220 /*Realign=*/TyAlign > ABIAlign); 3221 } 3222 3223 return (isPromotableTypeForABI(Ty) ? 3224 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3225 } 3226 3227 ABIArgInfo 3228 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3229 if (RetTy->isVoidType()) 3230 return ABIArgInfo::getIgnore(); 3231 3232 if (RetTy->isAnyComplexType()) 3233 return ABIArgInfo::getDirect(); 3234 3235 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3236 // or via reference (larger than 16 bytes). 3237 if (RetTy->isVectorType()) { 3238 uint64_t Size = getContext().getTypeSize(RetTy); 3239 if (Size > 128) 3240 return ABIArgInfo::getIndirect(0); 3241 else if (Size < 128) { 3242 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3243 return ABIArgInfo::getDirect(CoerceTy); 3244 } 3245 } 3246 3247 if (isAggregateTypeForABI(RetTy)) { 3248 // ELFv2 homogeneous aggregates are returned as array types. 3249 const Type *Base = nullptr; 3250 uint64_t Members = 0; 3251 if (Kind == ELFv2 && 3252 isHomogeneousAggregate(RetTy, Base, Members)) { 3253 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3254 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3255 return ABIArgInfo::getDirect(CoerceTy); 3256 } 3257 3258 // ELFv2 small aggregates are returned in up to two registers. 3259 uint64_t Bits = getContext().getTypeSize(RetTy); 3260 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3261 if (Bits == 0) 3262 return ABIArgInfo::getIgnore(); 3263 3264 llvm::Type *CoerceTy; 3265 if (Bits > GPRBits) { 3266 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3267 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, NULL); 3268 } else 3269 CoerceTy = llvm::IntegerType::get(getVMContext(), 3270 llvm::RoundUpToAlignment(Bits, 8)); 3271 return ABIArgInfo::getDirect(CoerceTy); 3272 } 3273 3274 // All other aggregates are returned indirectly. 3275 return ABIArgInfo::getIndirect(0); 3276 } 3277 3278 return (isPromotableTypeForABI(RetTy) ? 3279 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3280 } 3281 3282 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3283 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3284 QualType Ty, 3285 CodeGenFunction &CGF) const { 3286 llvm::Type *BP = CGF.Int8PtrTy; 3287 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3288 3289 CGBuilderTy &Builder = CGF.Builder; 3290 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3291 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3292 3293 // Handle types that require 16-byte alignment in the parameter save area. 3294 if (isAlignedParamType(Ty)) { 3295 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3296 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15)); 3297 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16)); 3298 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3299 } 3300 3301 // Update the va_list pointer. The pointer should be bumped by the 3302 // size of the object. We can trust getTypeSize() except for a complex 3303 // type whose base type is smaller than a doubleword. For these, the 3304 // size of the object is 16 bytes; see below for further explanation. 3305 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3306 QualType BaseTy; 3307 unsigned CplxBaseSize = 0; 3308 3309 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3310 BaseTy = CTy->getElementType(); 3311 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3312 if (CplxBaseSize < 8) 3313 SizeInBytes = 16; 3314 } 3315 3316 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3317 llvm::Value *NextAddr = 3318 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3319 "ap.next"); 3320 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3321 3322 // If we have a complex type and the base type is smaller than 8 bytes, 3323 // the ABI calls for the real and imaginary parts to be right-adjusted 3324 // in separate doublewords. However, Clang expects us to produce a 3325 // pointer to a structure with the two parts packed tightly. So generate 3326 // loads of the real and imaginary parts relative to the va_list pointer, 3327 // and store them to a temporary structure. 3328 if (CplxBaseSize && CplxBaseSize < 8) { 3329 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3330 llvm::Value *ImagAddr = RealAddr; 3331 if (CGF.CGM.getDataLayout().isBigEndian()) { 3332 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3333 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3334 } else { 3335 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3336 } 3337 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3338 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3339 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3340 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3341 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3342 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3343 "vacplx"); 3344 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3345 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3346 Builder.CreateStore(Real, RealPtr, false); 3347 Builder.CreateStore(Imag, ImagPtr, false); 3348 return Ptr; 3349 } 3350 3351 // If the argument is smaller than 8 bytes, it is right-adjusted in 3352 // its doubleword slot. Adjust the pointer to pick it up from the 3353 // correct offset. 3354 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3355 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3356 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3357 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3358 } 3359 3360 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3361 return Builder.CreateBitCast(Addr, PTy); 3362 } 3363 3364 static bool 3365 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3366 llvm::Value *Address) { 3367 // This is calculated from the LLVM and GCC tables and verified 3368 // against gcc output. AFAIK all ABIs use the same encoding. 3369 3370 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3371 3372 llvm::IntegerType *i8 = CGF.Int8Ty; 3373 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3374 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3375 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3376 3377 // 0-31: r0-31, the 8-byte general-purpose registers 3378 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3379 3380 // 32-63: fp0-31, the 8-byte floating-point registers 3381 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3382 3383 // 64-76 are various 4-byte special-purpose registers: 3384 // 64: mq 3385 // 65: lr 3386 // 66: ctr 3387 // 67: ap 3388 // 68-75 cr0-7 3389 // 76: xer 3390 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3391 3392 // 77-108: v0-31, the 16-byte vector registers 3393 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3394 3395 // 109: vrsave 3396 // 110: vscr 3397 // 111: spe_acc 3398 // 112: spefscr 3399 // 113: sfp 3400 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3401 3402 return false; 3403 } 3404 3405 bool 3406 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3407 CodeGen::CodeGenFunction &CGF, 3408 llvm::Value *Address) const { 3409 3410 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3411 } 3412 3413 bool 3414 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3415 llvm::Value *Address) const { 3416 3417 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3418 } 3419 3420 //===----------------------------------------------------------------------===// 3421 // AArch64 ABI Implementation 3422 //===----------------------------------------------------------------------===// 3423 3424 namespace { 3425 3426 class AArch64ABIInfo : public ABIInfo { 3427 public: 3428 enum ABIKind { 3429 AAPCS = 0, 3430 DarwinPCS 3431 }; 3432 3433 private: 3434 ABIKind Kind; 3435 3436 public: 3437 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3438 3439 private: 3440 ABIKind getABIKind() const { return Kind; } 3441 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3442 3443 ABIArgInfo classifyReturnType(QualType RetTy) const; 3444 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, 3445 bool &IsHA, unsigned &AllocatedGPR, 3446 bool &IsSmallAggr, bool IsNamedArg) const; 3447 bool isIllegalVectorType(QualType Ty) const; 3448 3449 virtual void computeInfo(CGFunctionInfo &FI) const { 3450 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3451 // number of SIMD and Floating-point registers allocated so far. 3452 // If the argument is an HFA or an HVA and there are sufficient unallocated 3453 // SIMD and Floating-point registers, then the argument is allocated to SIMD 3454 // and Floating-point Registers (with one register per member of the HFA or 3455 // HVA). Otherwise, the NSRN is set to 8. 3456 unsigned AllocatedVFP = 0; 3457 3458 // To correctly handle small aggregates, we need to keep track of the number 3459 // of GPRs allocated so far. If the small aggregate can't all fit into 3460 // registers, it will be on stack. We don't allow the aggregate to be 3461 // partially in registers. 3462 unsigned AllocatedGPR = 0; 3463 3464 // Find the number of named arguments. Variadic arguments get special 3465 // treatment with the Darwin ABI. 3466 unsigned NumRequiredArgs = (FI.isVariadic() ? 3467 FI.getRequiredArgs().getNumRequiredArgs() : 3468 FI.arg_size()); 3469 3470 if (!getCXXABI().classifyReturnType(FI)) 3471 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3472 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3473 it != ie; ++it) { 3474 unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; 3475 bool IsHA = false, IsSmallAggr = false; 3476 const unsigned NumVFPs = 8; 3477 const unsigned NumGPRs = 8; 3478 bool IsNamedArg = ((it - FI.arg_begin()) < 3479 static_cast<signed>(NumRequiredArgs)); 3480 it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, 3481 AllocatedGPR, IsSmallAggr, IsNamedArg); 3482 3483 // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs 3484 // as sequences of floats since they'll get "holes" inserted as 3485 // padding by the back end. 3486 if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && 3487 getContext().getTypeAlign(it->type) < 64) { 3488 uint32_t NumStackSlots = getContext().getTypeSize(it->type); 3489 NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; 3490 3491 llvm::Type *CoerceTy = llvm::ArrayType::get( 3492 llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); 3493 it->info = ABIArgInfo::getDirect(CoerceTy); 3494 } 3495 3496 // If we do not have enough VFP registers for the HA, any VFP registers 3497 // that are unallocated are marked as unavailable. To achieve this, we add 3498 // padding of (NumVFPs - PreAllocation) floats. 3499 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3500 llvm::Type *PaddingTy = llvm::ArrayType::get( 3501 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3502 it->info.setPaddingType(PaddingTy); 3503 } 3504 3505 // If we do not have enough GPRs for the small aggregate, any GPR regs 3506 // that are unallocated are marked as unavailable. 3507 if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { 3508 llvm::Type *PaddingTy = llvm::ArrayType::get( 3509 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); 3510 it->info = 3511 ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); 3512 } 3513 } 3514 } 3515 3516 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3517 CodeGenFunction &CGF) const; 3518 3519 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3520 CodeGenFunction &CGF) const; 3521 3522 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3523 CodeGenFunction &CGF) const { 3524 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3525 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3526 } 3527 }; 3528 3529 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3530 public: 3531 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3532 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3533 3534 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3535 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3536 } 3537 3538 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3539 3540 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3541 }; 3542 } 3543 3544 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3545 ASTContext &Context, 3546 uint64_t *HAMembers = nullptr); 3547 3548 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, 3549 unsigned &AllocatedVFP, 3550 bool &IsHA, 3551 unsigned &AllocatedGPR, 3552 bool &IsSmallAggr, 3553 bool IsNamedArg) const { 3554 // Handle illegal vector types here. 3555 if (isIllegalVectorType(Ty)) { 3556 uint64_t Size = getContext().getTypeSize(Ty); 3557 if (Size <= 32) { 3558 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3559 AllocatedGPR++; 3560 return ABIArgInfo::getDirect(ResType); 3561 } 3562 if (Size == 64) { 3563 llvm::Type *ResType = 3564 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3565 AllocatedVFP++; 3566 return ABIArgInfo::getDirect(ResType); 3567 } 3568 if (Size == 128) { 3569 llvm::Type *ResType = 3570 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3571 AllocatedVFP++; 3572 return ABIArgInfo::getDirect(ResType); 3573 } 3574 AllocatedGPR++; 3575 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3576 } 3577 if (Ty->isVectorType()) 3578 // Size of a legal vector should be either 64 or 128. 3579 AllocatedVFP++; 3580 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3581 if (BT->getKind() == BuiltinType::Half || 3582 BT->getKind() == BuiltinType::Float || 3583 BT->getKind() == BuiltinType::Double || 3584 BT->getKind() == BuiltinType::LongDouble) 3585 AllocatedVFP++; 3586 } 3587 3588 if (!isAggregateTypeForABI(Ty)) { 3589 // Treat an enum type as its underlying type. 3590 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3591 Ty = EnumTy->getDecl()->getIntegerType(); 3592 3593 if (!Ty->isFloatingType() && !Ty->isVectorType()) { 3594 unsigned Alignment = getContext().getTypeAlign(Ty); 3595 if (!isDarwinPCS() && Alignment > 64) 3596 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3597 3598 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3599 AllocatedGPR += RegsNeeded; 3600 } 3601 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3602 ? ABIArgInfo::getExtend() 3603 : ABIArgInfo::getDirect()); 3604 } 3605 3606 // Structures with either a non-trivial destructor or a non-trivial 3607 // copy constructor are always indirect. 3608 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3609 AllocatedGPR++; 3610 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3611 CGCXXABI::RAA_DirectInMemory); 3612 } 3613 3614 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3615 // elsewhere for GNU compatibility. 3616 if (isEmptyRecord(getContext(), Ty, true)) { 3617 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3618 return ABIArgInfo::getIgnore(); 3619 3620 ++AllocatedGPR; 3621 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3622 } 3623 3624 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3625 const Type *Base = nullptr; 3626 uint64_t Members = 0; 3627 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3628 IsHA = true; 3629 if (!IsNamedArg && isDarwinPCS()) { 3630 // With the Darwin ABI, variadic arguments are always passed on the stack 3631 // and should not be expanded. Treat variadic HFAs as arrays of doubles. 3632 uint64_t Size = getContext().getTypeSize(Ty); 3633 llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); 3634 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3635 } 3636 AllocatedVFP += Members; 3637 return ABIArgInfo::getExpand(); 3638 } 3639 3640 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3641 uint64_t Size = getContext().getTypeSize(Ty); 3642 if (Size <= 128) { 3643 unsigned Alignment = getContext().getTypeAlign(Ty); 3644 if (!isDarwinPCS() && Alignment > 64) 3645 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3646 3647 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3648 AllocatedGPR += Size / 64; 3649 IsSmallAggr = true; 3650 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3651 // For aggregates with 16-byte alignment, we use i128. 3652 if (Alignment < 128 && Size == 128) { 3653 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3654 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3655 } 3656 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3657 } 3658 3659 AllocatedGPR++; 3660 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3661 } 3662 3663 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 3664 if (RetTy->isVoidType()) 3665 return ABIArgInfo::getIgnore(); 3666 3667 // Large vector types should be returned via memory. 3668 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3669 return ABIArgInfo::getIndirect(0); 3670 3671 if (!isAggregateTypeForABI(RetTy)) { 3672 // Treat an enum type as its underlying type. 3673 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3674 RetTy = EnumTy->getDecl()->getIntegerType(); 3675 3676 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3677 ? ABIArgInfo::getExtend() 3678 : ABIArgInfo::getDirect()); 3679 } 3680 3681 if (isEmptyRecord(getContext(), RetTy, true)) 3682 return ABIArgInfo::getIgnore(); 3683 3684 const Type *Base = nullptr; 3685 if (isHomogeneousAggregate(RetTy, Base, getContext())) 3686 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3687 return ABIArgInfo::getDirect(); 3688 3689 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3690 uint64_t Size = getContext().getTypeSize(RetTy); 3691 if (Size <= 128) { 3692 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3693 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3694 } 3695 3696 return ABIArgInfo::getIndirect(0); 3697 } 3698 3699 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 3700 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 3701 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3702 // Check whether VT is legal. 3703 unsigned NumElements = VT->getNumElements(); 3704 uint64_t Size = getContext().getTypeSize(VT); 3705 // NumElements should be power of 2 between 1 and 16. 3706 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3707 return true; 3708 return Size != 64 && (Size != 128 || NumElements == 1); 3709 } 3710 return false; 3711 } 3712 3713 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, 3714 int AllocatedGPR, int AllocatedVFP, 3715 bool IsIndirect, CodeGenFunction &CGF) { 3716 // The AArch64 va_list type and handling is specified in the Procedure Call 3717 // Standard, section B.4: 3718 // 3719 // struct { 3720 // void *__stack; 3721 // void *__gr_top; 3722 // void *__vr_top; 3723 // int __gr_offs; 3724 // int __vr_offs; 3725 // }; 3726 3727 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3728 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3729 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3730 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3731 auto &Ctx = CGF.getContext(); 3732 3733 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 3734 int reg_top_index; 3735 int RegSize; 3736 if (AllocatedGPR) { 3737 assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); 3738 // 3 is the field number of __gr_offs 3739 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3740 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 3741 reg_top_index = 1; // field number for __gr_top 3742 RegSize = 8 * AllocatedGPR; 3743 } else { 3744 assert(!AllocatedGPR && "Argument must go in VFP or int regs"); 3745 // 4 is the field number of __vr_offs. 3746 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 3747 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 3748 reg_top_index = 2; // field number for __vr_top 3749 RegSize = 16 * AllocatedVFP; 3750 } 3751 3752 //======================================= 3753 // Find out where argument was passed 3754 //======================================= 3755 3756 // If reg_offs >= 0 we're already using the stack for this type of 3757 // argument. We don't want to keep updating reg_offs (in case it overflows, 3758 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 3759 // whatever they get). 3760 llvm::Value *UsingStack = nullptr; 3761 UsingStack = CGF.Builder.CreateICmpSGE( 3762 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 3763 3764 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 3765 3766 // Otherwise, at least some kind of argument could go in these registers, the 3767 // question is whether this particular type is too big. 3768 CGF.EmitBlock(MaybeRegBlock); 3769 3770 // Integer arguments may need to correct register alignment (for example a 3771 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 3772 // align __gr_offs to calculate the potential address. 3773 if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3774 int Align = Ctx.getTypeAlign(Ty) / 8; 3775 3776 reg_offs = CGF.Builder.CreateAdd( 3777 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 3778 "align_regoffs"); 3779 reg_offs = CGF.Builder.CreateAnd( 3780 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 3781 "aligned_regoffs"); 3782 } 3783 3784 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 3785 llvm::Value *NewOffset = nullptr; 3786 NewOffset = CGF.Builder.CreateAdd( 3787 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 3788 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 3789 3790 // Now we're in a position to decide whether this argument really was in 3791 // registers or not. 3792 llvm::Value *InRegs = nullptr; 3793 InRegs = CGF.Builder.CreateICmpSLE( 3794 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 3795 3796 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 3797 3798 //======================================= 3799 // Argument was in registers 3800 //======================================= 3801 3802 // Now we emit the code for if the argument was originally passed in 3803 // registers. First start the appropriate block: 3804 CGF.EmitBlock(InRegBlock); 3805 3806 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 3807 reg_top_p = 3808 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 3809 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 3810 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 3811 llvm::Value *RegAddr = nullptr; 3812 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 3813 3814 if (IsIndirect) { 3815 // If it's been passed indirectly (actually a struct), whatever we find from 3816 // stored registers or on the stack will actually be a struct **. 3817 MemTy = llvm::PointerType::getUnqual(MemTy); 3818 } 3819 3820 const Type *Base = nullptr; 3821 uint64_t NumMembers; 3822 bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers); 3823 if (IsHFA && NumMembers > 1) { 3824 // Homogeneous aggregates passed in registers will have their elements split 3825 // and stored 16-bytes apart regardless of size (they're notionally in qN, 3826 // qN+1, ...). We reload and store into a temporary local variable 3827 // contiguously. 3828 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 3829 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 3830 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 3831 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 3832 int Offset = 0; 3833 3834 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 3835 Offset = 16 - Ctx.getTypeSize(Base) / 8; 3836 for (unsigned i = 0; i < NumMembers; ++i) { 3837 llvm::Value *BaseOffset = 3838 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 3839 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 3840 LoadAddr = CGF.Builder.CreateBitCast( 3841 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 3842 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 3843 3844 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 3845 CGF.Builder.CreateStore(Elem, StoreAddr); 3846 } 3847 3848 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 3849 } else { 3850 // Otherwise the object is contiguous in memory 3851 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 3852 if (CGF.CGM.getDataLayout().isBigEndian() && 3853 (IsHFA || !isAggregateTypeForABI(Ty)) && 3854 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 3855 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 3856 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 3857 3858 BaseAddr = CGF.Builder.CreateAdd( 3859 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3860 3861 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 3862 } 3863 3864 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 3865 } 3866 3867 CGF.EmitBranch(ContBlock); 3868 3869 //======================================= 3870 // Argument was on the stack 3871 //======================================= 3872 CGF.EmitBlock(OnStackBlock); 3873 3874 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 3875 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 3876 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 3877 3878 // Again, stack arguments may need realigmnent. In this case both integer and 3879 // floating-point ones might be affected. 3880 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3881 int Align = Ctx.getTypeAlign(Ty) / 8; 3882 3883 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3884 3885 OnStackAddr = CGF.Builder.CreateAdd( 3886 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 3887 "align_stack"); 3888 OnStackAddr = CGF.Builder.CreateAnd( 3889 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 3890 "align_stack"); 3891 3892 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3893 } 3894 3895 uint64_t StackSize; 3896 if (IsIndirect) 3897 StackSize = 8; 3898 else 3899 StackSize = Ctx.getTypeSize(Ty) / 8; 3900 3901 // All stack slots are 8 bytes 3902 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 3903 3904 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 3905 llvm::Value *NewStack = 3906 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 3907 3908 // Write the new value of __stack for the next call to va_arg 3909 CGF.Builder.CreateStore(NewStack, stack_p); 3910 3911 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 3912 Ctx.getTypeSize(Ty) < 64) { 3913 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 3914 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3915 3916 OnStackAddr = CGF.Builder.CreateAdd( 3917 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3918 3919 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3920 } 3921 3922 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 3923 3924 CGF.EmitBranch(ContBlock); 3925 3926 //======================================= 3927 // Tidy up 3928 //======================================= 3929 CGF.EmitBlock(ContBlock); 3930 3931 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 3932 ResAddr->addIncoming(RegAddr, InRegBlock); 3933 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 3934 3935 if (IsIndirect) 3936 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 3937 3938 return ResAddr; 3939 } 3940 3941 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3942 CodeGenFunction &CGF) const { 3943 3944 unsigned AllocatedGPR = 0, AllocatedVFP = 0; 3945 bool IsHA = false, IsSmallAggr = false; 3946 ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, 3947 IsSmallAggr, false /*IsNamedArg*/); 3948 3949 return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, 3950 AI.isIndirect(), CGF); 3951 } 3952 3953 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3954 CodeGenFunction &CGF) const { 3955 // We do not support va_arg for aggregates or illegal vector types. 3956 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 3957 // other cases. 3958 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 3959 return nullptr; 3960 3961 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3962 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 3963 3964 const Type *Base = nullptr; 3965 bool isHA = isHomogeneousAggregate(Ty, Base, getContext()); 3966 3967 bool isIndirect = false; 3968 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 3969 // be passed indirectly. 3970 if (Size > 16 && !isHA) { 3971 isIndirect = true; 3972 Size = 8; 3973 Align = 8; 3974 } 3975 3976 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3977 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3978 3979 CGBuilderTy &Builder = CGF.Builder; 3980 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3981 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3982 3983 if (isEmptyRecord(getContext(), Ty, true)) { 3984 // These are ignored for parameter passing purposes. 3985 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3986 return Builder.CreateBitCast(Addr, PTy); 3987 } 3988 3989 const uint64_t MinABIAlign = 8; 3990 if (Align > MinABIAlign) { 3991 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 3992 Addr = Builder.CreateGEP(Addr, Offset); 3993 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3994 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 3995 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 3996 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 3997 } 3998 3999 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4000 llvm::Value *NextAddr = Builder.CreateGEP( 4001 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4002 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4003 4004 if (isIndirect) 4005 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4006 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4007 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4008 4009 return AddrTyped; 4010 } 4011 4012 //===----------------------------------------------------------------------===// 4013 // ARM ABI Implementation 4014 //===----------------------------------------------------------------------===// 4015 4016 namespace { 4017 4018 class ARMABIInfo : public ABIInfo { 4019 public: 4020 enum ABIKind { 4021 APCS = 0, 4022 AAPCS = 1, 4023 AAPCS_VFP 4024 }; 4025 4026 private: 4027 ABIKind Kind; 4028 mutable int VFPRegs[16]; 4029 const unsigned NumVFPs; 4030 const unsigned NumGPRs; 4031 mutable unsigned AllocatedGPRs; 4032 mutable unsigned AllocatedVFPs; 4033 4034 public: 4035 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 4036 NumVFPs(16), NumGPRs(4) { 4037 setRuntimeCC(); 4038 resetAllocatedRegs(); 4039 } 4040 4041 bool isEABI() const { 4042 switch (getTarget().getTriple().getEnvironment()) { 4043 case llvm::Triple::Android: 4044 case llvm::Triple::EABI: 4045 case llvm::Triple::EABIHF: 4046 case llvm::Triple::GNUEABI: 4047 case llvm::Triple::GNUEABIHF: 4048 return true; 4049 default: 4050 return false; 4051 } 4052 } 4053 4054 bool isEABIHF() const { 4055 switch (getTarget().getTriple().getEnvironment()) { 4056 case llvm::Triple::EABIHF: 4057 case llvm::Triple::GNUEABIHF: 4058 return true; 4059 default: 4060 return false; 4061 } 4062 } 4063 4064 ABIKind getABIKind() const { return Kind; } 4065 4066 private: 4067 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4068 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 4069 bool &IsCPRC) const; 4070 bool isIllegalVectorType(QualType Ty) const; 4071 4072 void computeInfo(CGFunctionInfo &FI) const override; 4073 4074 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4075 CodeGenFunction &CGF) const override; 4076 4077 llvm::CallingConv::ID getLLVMDefaultCC() const; 4078 llvm::CallingConv::ID getABIDefaultCC() const; 4079 void setRuntimeCC(); 4080 4081 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 4082 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 4083 void resetAllocatedRegs(void) const; 4084 }; 4085 4086 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4087 public: 4088 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4089 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4090 4091 const ARMABIInfo &getABIInfo() const { 4092 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4093 } 4094 4095 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4096 return 13; 4097 } 4098 4099 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4100 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4101 } 4102 4103 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4104 llvm::Value *Address) const override { 4105 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4106 4107 // 0-15 are the 16 integer registers. 4108 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4109 return false; 4110 } 4111 4112 unsigned getSizeOfUnwindException() const override { 4113 if (getABIInfo().isEABI()) return 88; 4114 return TargetCodeGenInfo::getSizeOfUnwindException(); 4115 } 4116 4117 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4118 CodeGen::CodeGenModule &CGM) const override { 4119 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4120 if (!FD) 4121 return; 4122 4123 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4124 if (!Attr) 4125 return; 4126 4127 const char *Kind; 4128 switch (Attr->getInterrupt()) { 4129 case ARMInterruptAttr::Generic: Kind = ""; break; 4130 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4131 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4132 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4133 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4134 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4135 } 4136 4137 llvm::Function *Fn = cast<llvm::Function>(GV); 4138 4139 Fn->addFnAttr("interrupt", Kind); 4140 4141 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4142 return; 4143 4144 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4145 // however this is not necessarily true on taking any interrupt. Instruct 4146 // the backend to perform a realignment as part of the function prologue. 4147 llvm::AttrBuilder B; 4148 B.addStackAlignmentAttr(8); 4149 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4150 llvm::AttributeSet::get(CGM.getLLVMContext(), 4151 llvm::AttributeSet::FunctionIndex, 4152 B)); 4153 } 4154 4155 }; 4156 4157 } 4158 4159 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4160 // To correctly handle Homogeneous Aggregate, we need to keep track of the 4161 // VFP registers allocated so far. 4162 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4163 // VFP registers of the appropriate type unallocated then the argument is 4164 // allocated to the lowest-numbered sequence of such registers. 4165 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4166 // unallocated are marked as unavailable. 4167 resetAllocatedRegs(); 4168 4169 if (getCXXABI().classifyReturnType(FI)) { 4170 if (FI.getReturnInfo().isIndirect()) 4171 markAllocatedGPRs(1, 1); 4172 } else { 4173 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4174 } 4175 for (auto &I : FI.arguments()) { 4176 unsigned PreAllocationVFPs = AllocatedVFPs; 4177 unsigned PreAllocationGPRs = AllocatedGPRs; 4178 bool IsCPRC = false; 4179 // 6.1.2.3 There is one VFP co-processor register class using registers 4180 // s0-s15 (d0-d7) for passing arguments. 4181 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); 4182 4183 // If we have allocated some arguments onto the stack (due to running 4184 // out of VFP registers), we cannot split an argument between GPRs and 4185 // the stack. If this situation occurs, we add padding to prevent the 4186 // GPRs from being used. In this situation, the current argument could 4187 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 4188 // unusable anyway. 4189 // We do not have to do this if the argument is being passed ByVal, as the 4190 // backend can handle that situation correctly. 4191 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 4192 const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal(); 4193 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && 4194 StackUsed && !IsByVal) { 4195 llvm::Type *PaddingTy = llvm::ArrayType::get( 4196 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 4197 if (I.info.canHaveCoerceToType()) { 4198 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */, 4199 PaddingTy); 4200 } else { 4201 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, 4202 PaddingTy); 4203 } 4204 } 4205 } 4206 4207 // Always honor user-specified calling convention. 4208 if (FI.getCallingConvention() != llvm::CallingConv::C) 4209 return; 4210 4211 llvm::CallingConv::ID cc = getRuntimeCC(); 4212 if (cc != llvm::CallingConv::C) 4213 FI.setEffectiveCallingConvention(cc); 4214 } 4215 4216 /// Return the default calling convention that LLVM will use. 4217 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4218 // The default calling convention that LLVM will infer. 4219 if (isEABIHF()) 4220 return llvm::CallingConv::ARM_AAPCS_VFP; 4221 else if (isEABI()) 4222 return llvm::CallingConv::ARM_AAPCS; 4223 else 4224 return llvm::CallingConv::ARM_APCS; 4225 } 4226 4227 /// Return the calling convention that our ABI would like us to use 4228 /// as the C calling convention. 4229 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4230 switch (getABIKind()) { 4231 case APCS: return llvm::CallingConv::ARM_APCS; 4232 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4233 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4234 } 4235 llvm_unreachable("bad ABI kind"); 4236 } 4237 4238 void ARMABIInfo::setRuntimeCC() { 4239 assert(getRuntimeCC() == llvm::CallingConv::C); 4240 4241 // Don't muddy up the IR with a ton of explicit annotations if 4242 // they'd just match what LLVM will infer from the triple. 4243 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4244 if (abiCC != getLLVMDefaultCC()) 4245 RuntimeCC = abiCC; 4246 } 4247 4248 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 4249 /// aggregate. If HAMembers is non-null, the number of base elements 4250 /// contained in the type is returned through it; this is used for the 4251 /// recursive calls that check aggregate component types. 4252 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 4253 ASTContext &Context, uint64_t *HAMembers) { 4254 uint64_t Members = 0; 4255 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 4256 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 4257 return false; 4258 Members *= AT->getSize().getZExtValue(); 4259 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4260 const RecordDecl *RD = RT->getDecl(); 4261 if (RD->hasFlexibleArrayMember()) 4262 return false; 4263 4264 Members = 0; 4265 for (const auto *FD : RD->fields()) { 4266 uint64_t FldMembers; 4267 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 4268 return false; 4269 4270 Members = (RD->isUnion() ? 4271 std::max(Members, FldMembers) : Members + FldMembers); 4272 } 4273 } else { 4274 Members = 1; 4275 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4276 Members = 2; 4277 Ty = CT->getElementType(); 4278 } 4279 4280 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4281 // double, or 64-bit or 128-bit vectors. 4282 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4283 if (BT->getKind() != BuiltinType::Float && 4284 BT->getKind() != BuiltinType::Double && 4285 BT->getKind() != BuiltinType::LongDouble) 4286 return false; 4287 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4288 unsigned VecSize = Context.getTypeSize(VT); 4289 if (VecSize != 64 && VecSize != 128) 4290 return false; 4291 } else { 4292 return false; 4293 } 4294 4295 // The base type must be the same for all members. Vector types of the 4296 // same total size are treated as being equivalent here. 4297 const Type *TyPtr = Ty.getTypePtr(); 4298 if (!Base) 4299 Base = TyPtr; 4300 4301 if (Base != TyPtr) { 4302 // Homogeneous aggregates are defined as containing members with the 4303 // same machine type. There are two cases in which two members have 4304 // different TypePtrs but the same machine type: 4305 4306 // 1) Vectors of the same length, regardless of the type and number 4307 // of their members. 4308 const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() 4309 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4310 4311 // 2) In the 32-bit AAPCS, `double' and `long double' have the same 4312 // machine type. This is not the case for the 64-bit AAPCS. 4313 const bool SameSizeDoubles = 4314 ( ( Base->isSpecificBuiltinType(BuiltinType::Double) 4315 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) 4316 || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) 4317 && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) 4318 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4319 4320 if (!SameLengthVectors && !SameSizeDoubles) 4321 return false; 4322 } 4323 } 4324 4325 // Homogeneous Aggregates can have at most 4 members of the base type. 4326 if (HAMembers) 4327 *HAMembers = Members; 4328 4329 return (Members > 0 && Members <= 4); 4330 } 4331 4332 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4333 /// number of VFP registers (unit is S register) requested. 4334 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4335 unsigned NumRequired) const { 4336 // Early Exit. 4337 if (AllocatedVFPs >= 16) { 4338 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4339 // the stack. 4340 AllocatedVFPs = 17; 4341 return; 4342 } 4343 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4344 // VFP registers of the appropriate type unallocated then the argument is 4345 // allocated to the lowest-numbered sequence of such registers. 4346 for (unsigned I = 0; I < 16; I += Alignment) { 4347 bool FoundSlot = true; 4348 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4349 if (J >= 16 || VFPRegs[J]) { 4350 FoundSlot = false; 4351 break; 4352 } 4353 if (FoundSlot) { 4354 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4355 VFPRegs[J] = 1; 4356 AllocatedVFPs += NumRequired; 4357 return; 4358 } 4359 } 4360 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4361 // unallocated are marked as unavailable. 4362 for (unsigned I = 0; I < 16; I++) 4363 VFPRegs[I] = 1; 4364 AllocatedVFPs = 17; // We do not have enough VFP registers. 4365 } 4366 4367 /// Update AllocatedGPRs to record the number of general purpose registers 4368 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4369 /// this represents arguments being stored on the stack. 4370 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4371 unsigned NumRequired) const { 4372 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4373 4374 if (Alignment == 2 && AllocatedGPRs & 0x1) 4375 AllocatedGPRs += 1; 4376 4377 AllocatedGPRs += NumRequired; 4378 } 4379 4380 void ARMABIInfo::resetAllocatedRegs(void) const { 4381 AllocatedGPRs = 0; 4382 AllocatedVFPs = 0; 4383 for (unsigned i = 0; i < NumVFPs; ++i) 4384 VFPRegs[i] = 0; 4385 } 4386 4387 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 4388 bool &IsCPRC) const { 4389 // We update number of allocated VFPs according to 4390 // 6.1.2.1 The following argument types are VFP CPRCs: 4391 // A single-precision floating-point type (including promoted 4392 // half-precision types); A double-precision floating-point type; 4393 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4394 // with a Base Type of a single- or double-precision floating-point type, 4395 // 64-bit containerized vectors or 128-bit containerized vectors with one 4396 // to four Elements. 4397 4398 // Handle illegal vector types here. 4399 if (isIllegalVectorType(Ty)) { 4400 uint64_t Size = getContext().getTypeSize(Ty); 4401 if (Size <= 32) { 4402 llvm::Type *ResType = 4403 llvm::Type::getInt32Ty(getVMContext()); 4404 markAllocatedGPRs(1, 1); 4405 return ABIArgInfo::getDirect(ResType); 4406 } 4407 if (Size == 64) { 4408 llvm::Type *ResType = llvm::VectorType::get( 4409 llvm::Type::getInt32Ty(getVMContext()), 2); 4410 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4411 markAllocatedGPRs(2, 2); 4412 } else { 4413 markAllocatedVFPs(2, 2); 4414 IsCPRC = true; 4415 } 4416 return ABIArgInfo::getDirect(ResType); 4417 } 4418 if (Size == 128) { 4419 llvm::Type *ResType = llvm::VectorType::get( 4420 llvm::Type::getInt32Ty(getVMContext()), 4); 4421 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4422 markAllocatedGPRs(2, 4); 4423 } else { 4424 markAllocatedVFPs(4, 4); 4425 IsCPRC = true; 4426 } 4427 return ABIArgInfo::getDirect(ResType); 4428 } 4429 markAllocatedGPRs(1, 1); 4430 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4431 } 4432 // Update VFPRegs for legal vector types. 4433 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4434 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4435 uint64_t Size = getContext().getTypeSize(VT); 4436 // Size of a legal vector should be power of 2 and above 64. 4437 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4438 IsCPRC = true; 4439 } 4440 } 4441 // Update VFPRegs for floating point types. 4442 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4443 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4444 if (BT->getKind() == BuiltinType::Half || 4445 BT->getKind() == BuiltinType::Float) { 4446 markAllocatedVFPs(1, 1); 4447 IsCPRC = true; 4448 } 4449 if (BT->getKind() == BuiltinType::Double || 4450 BT->getKind() == BuiltinType::LongDouble) { 4451 markAllocatedVFPs(2, 2); 4452 IsCPRC = true; 4453 } 4454 } 4455 } 4456 4457 if (!isAggregateTypeForABI(Ty)) { 4458 // Treat an enum type as its underlying type. 4459 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4460 Ty = EnumTy->getDecl()->getIntegerType(); 4461 } 4462 4463 unsigned Size = getContext().getTypeSize(Ty); 4464 if (!IsCPRC) 4465 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4466 return (Ty->isPromotableIntegerType() ? 4467 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4468 } 4469 4470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4471 markAllocatedGPRs(1, 1); 4472 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4473 } 4474 4475 // Ignore empty records. 4476 if (isEmptyRecord(getContext(), Ty, true)) 4477 return ABIArgInfo::getIgnore(); 4478 4479 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4480 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4481 // into VFP registers. 4482 const Type *Base = nullptr; 4483 uint64_t Members = 0; 4484 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 4485 assert(Base && "Base class should be set for homogeneous aggregate"); 4486 // Base can be a floating-point or a vector. 4487 if (Base->isVectorType()) { 4488 // ElementSize is in number of floats. 4489 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4490 markAllocatedVFPs(ElementSize, 4491 Members * ElementSize); 4492 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4493 markAllocatedVFPs(1, Members); 4494 else { 4495 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4496 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4497 markAllocatedVFPs(2, Members * 2); 4498 } 4499 IsCPRC = true; 4500 return ABIArgInfo::getDirect(); 4501 } 4502 } 4503 4504 // Support byval for ARM. 4505 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4506 // most 8-byte. We realign the indirect argument if type alignment is bigger 4507 // than ABI alignment. 4508 uint64_t ABIAlign = 4; 4509 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4510 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4511 getABIKind() == ARMABIInfo::AAPCS) 4512 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4513 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4514 // Update Allocated GPRs. Since this is only used when the size of the 4515 // argument is greater than 64 bytes, this will always use up any available 4516 // registers (of which there are 4). We also don't care about getting the 4517 // alignment right, because general-purpose registers cannot be back-filled. 4518 markAllocatedGPRs(1, 4); 4519 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4520 /*Realign=*/TyAlign > ABIAlign); 4521 } 4522 4523 // Otherwise, pass by coercing to a structure of the appropriate size. 4524 llvm::Type* ElemTy; 4525 unsigned SizeRegs; 4526 // FIXME: Try to match the types of the arguments more accurately where 4527 // we can. 4528 if (getContext().getTypeAlign(Ty) <= 32) { 4529 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4530 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4531 markAllocatedGPRs(1, SizeRegs); 4532 } else { 4533 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4534 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4535 markAllocatedGPRs(2, SizeRegs * 2); 4536 } 4537 4538 llvm::Type *STy = 4539 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 4540 return ABIArgInfo::getDirect(STy); 4541 } 4542 4543 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4544 llvm::LLVMContext &VMContext) { 4545 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4546 // is called integer-like if its size is less than or equal to one word, and 4547 // the offset of each of its addressable sub-fields is zero. 4548 4549 uint64_t Size = Context.getTypeSize(Ty); 4550 4551 // Check that the type fits in a word. 4552 if (Size > 32) 4553 return false; 4554 4555 // FIXME: Handle vector types! 4556 if (Ty->isVectorType()) 4557 return false; 4558 4559 // Float types are never treated as "integer like". 4560 if (Ty->isRealFloatingType()) 4561 return false; 4562 4563 // If this is a builtin or pointer type then it is ok. 4564 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4565 return true; 4566 4567 // Small complex integer types are "integer like". 4568 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4569 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4570 4571 // Single element and zero sized arrays should be allowed, by the definition 4572 // above, but they are not. 4573 4574 // Otherwise, it must be a record type. 4575 const RecordType *RT = Ty->getAs<RecordType>(); 4576 if (!RT) return false; 4577 4578 // Ignore records with flexible arrays. 4579 const RecordDecl *RD = RT->getDecl(); 4580 if (RD->hasFlexibleArrayMember()) 4581 return false; 4582 4583 // Check that all sub-fields are at offset 0, and are themselves "integer 4584 // like". 4585 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4586 4587 bool HadField = false; 4588 unsigned idx = 0; 4589 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4590 i != e; ++i, ++idx) { 4591 const FieldDecl *FD = *i; 4592 4593 // Bit-fields are not addressable, we only need to verify they are "integer 4594 // like". We still have to disallow a subsequent non-bitfield, for example: 4595 // struct { int : 0; int x } 4596 // is non-integer like according to gcc. 4597 if (FD->isBitField()) { 4598 if (!RD->isUnion()) 4599 HadField = true; 4600 4601 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4602 return false; 4603 4604 continue; 4605 } 4606 4607 // Check if this field is at offset 0. 4608 if (Layout.getFieldOffset(idx) != 0) 4609 return false; 4610 4611 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4612 return false; 4613 4614 // Only allow at most one field in a structure. This doesn't match the 4615 // wording above, but follows gcc in situations with a field following an 4616 // empty structure. 4617 if (!RD->isUnion()) { 4618 if (HadField) 4619 return false; 4620 4621 HadField = true; 4622 } 4623 } 4624 4625 return true; 4626 } 4627 4628 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4629 bool isVariadic) const { 4630 if (RetTy->isVoidType()) 4631 return ABIArgInfo::getIgnore(); 4632 4633 // Large vector types should be returned via memory. 4634 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4635 markAllocatedGPRs(1, 1); 4636 return ABIArgInfo::getIndirect(0); 4637 } 4638 4639 if (!isAggregateTypeForABI(RetTy)) { 4640 // Treat an enum type as its underlying type. 4641 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4642 RetTy = EnumTy->getDecl()->getIntegerType(); 4643 4644 return (RetTy->isPromotableIntegerType() ? 4645 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4646 } 4647 4648 // Are we following APCS? 4649 if (getABIKind() == APCS) { 4650 if (isEmptyRecord(getContext(), RetTy, false)) 4651 return ABIArgInfo::getIgnore(); 4652 4653 // Complex types are all returned as packed integers. 4654 // 4655 // FIXME: Consider using 2 x vector types if the back end handles them 4656 // correctly. 4657 if (RetTy->isAnyComplexType()) 4658 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 4659 getContext().getTypeSize(RetTy))); 4660 4661 // Integer like structures are returned in r0. 4662 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4663 // Return in the smallest viable integer type. 4664 uint64_t Size = getContext().getTypeSize(RetTy); 4665 if (Size <= 8) 4666 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4667 if (Size <= 16) 4668 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4669 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4670 } 4671 4672 // Otherwise return in memory. 4673 markAllocatedGPRs(1, 1); 4674 return ABIArgInfo::getIndirect(0); 4675 } 4676 4677 // Otherwise this is an AAPCS variant. 4678 4679 if (isEmptyRecord(getContext(), RetTy, true)) 4680 return ABIArgInfo::getIgnore(); 4681 4682 // Check for homogeneous aggregates with AAPCS-VFP. 4683 if (getABIKind() == AAPCS_VFP && !isVariadic) { 4684 const Type *Base = nullptr; 4685 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 4686 assert(Base && "Base class should be set for homogeneous aggregate"); 4687 // Homogeneous Aggregates are returned directly. 4688 return ABIArgInfo::getDirect(); 4689 } 4690 } 4691 4692 // Aggregates <= 4 bytes are returned in r0; other aggregates 4693 // are returned indirectly. 4694 uint64_t Size = getContext().getTypeSize(RetTy); 4695 if (Size <= 32) { 4696 if (getDataLayout().isBigEndian()) 4697 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4698 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4699 4700 // Return in the smallest viable integer type. 4701 if (Size <= 8) 4702 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4703 if (Size <= 16) 4704 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4705 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4706 } 4707 4708 markAllocatedGPRs(1, 1); 4709 return ABIArgInfo::getIndirect(0); 4710 } 4711 4712 /// isIllegalVector - check whether Ty is an illegal vector type. 4713 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4714 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4715 // Check whether VT is legal. 4716 unsigned NumElements = VT->getNumElements(); 4717 uint64_t Size = getContext().getTypeSize(VT); 4718 // NumElements should be power of 2. 4719 if ((NumElements & (NumElements - 1)) != 0) 4720 return true; 4721 // Size should be greater than 32 bits. 4722 return Size <= 32; 4723 } 4724 return false; 4725 } 4726 4727 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4728 CodeGenFunction &CGF) const { 4729 llvm::Type *BP = CGF.Int8PtrTy; 4730 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4731 4732 CGBuilderTy &Builder = CGF.Builder; 4733 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4734 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4735 4736 if (isEmptyRecord(getContext(), Ty, true)) { 4737 // These are ignored for parameter passing purposes. 4738 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4739 return Builder.CreateBitCast(Addr, PTy); 4740 } 4741 4742 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4743 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4744 bool IsIndirect = false; 4745 4746 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4747 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4748 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4749 getABIKind() == ARMABIInfo::AAPCS) 4750 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4751 else 4752 TyAlign = 4; 4753 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4754 if (isIllegalVectorType(Ty) && Size > 16) { 4755 IsIndirect = true; 4756 Size = 4; 4757 TyAlign = 4; 4758 } 4759 4760 // Handle address alignment for ABI alignment > 4 bytes. 4761 if (TyAlign > 4) { 4762 assert((TyAlign & (TyAlign - 1)) == 0 && 4763 "Alignment is not power of 2!"); 4764 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4765 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4766 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4767 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4768 } 4769 4770 uint64_t Offset = 4771 llvm::RoundUpToAlignment(Size, 4); 4772 llvm::Value *NextAddr = 4773 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4774 "ap.next"); 4775 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4776 4777 if (IsIndirect) 4778 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4779 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4780 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4781 // may not be correctly aligned for the vector type. We create an aligned 4782 // temporary space and copy the content over from ap.cur to the temporary 4783 // space. This is necessary if the natural alignment of the type is greater 4784 // than the ABI alignment. 4785 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4786 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4787 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4788 "var.align"); 4789 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4790 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4791 Builder.CreateMemCpy(Dst, Src, 4792 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 4793 TyAlign, false); 4794 Addr = AlignedTemp; //The content is in aligned location. 4795 } 4796 llvm::Type *PTy = 4797 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4798 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4799 4800 return AddrTyped; 4801 } 4802 4803 namespace { 4804 4805 class NaClARMABIInfo : public ABIInfo { 4806 public: 4807 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4808 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 4809 void computeInfo(CGFunctionInfo &FI) const override; 4810 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4811 CodeGenFunction &CGF) const override; 4812 private: 4813 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 4814 ARMABIInfo NInfo; // Used for everything else. 4815 }; 4816 4817 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 4818 public: 4819 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4820 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 4821 }; 4822 4823 } 4824 4825 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4826 if (FI.getASTCallingConvention() == CC_PnaclCall) 4827 PInfo.computeInfo(FI); 4828 else 4829 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 4830 } 4831 4832 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4833 CodeGenFunction &CGF) const { 4834 // Always use the native convention; calling pnacl-style varargs functions 4835 // is unsupported. 4836 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 4837 } 4838 4839 //===----------------------------------------------------------------------===// 4840 // NVPTX ABI Implementation 4841 //===----------------------------------------------------------------------===// 4842 4843 namespace { 4844 4845 class NVPTXABIInfo : public ABIInfo { 4846 public: 4847 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4848 4849 ABIArgInfo classifyReturnType(QualType RetTy) const; 4850 ABIArgInfo classifyArgumentType(QualType Ty) const; 4851 4852 void computeInfo(CGFunctionInfo &FI) const override; 4853 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4854 CodeGenFunction &CFG) const override; 4855 }; 4856 4857 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4858 public: 4859 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4860 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4861 4862 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4863 CodeGen::CodeGenModule &M) const override; 4864 private: 4865 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 4866 // resulting MDNode to the nvvm.annotations MDNode. 4867 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 4868 }; 4869 4870 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4871 if (RetTy->isVoidType()) 4872 return ABIArgInfo::getIgnore(); 4873 4874 // note: this is different from default ABI 4875 if (!RetTy->isScalarType()) 4876 return ABIArgInfo::getDirect(); 4877 4878 // Treat an enum type as its underlying type. 4879 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4880 RetTy = EnumTy->getDecl()->getIntegerType(); 4881 4882 return (RetTy->isPromotableIntegerType() ? 4883 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4884 } 4885 4886 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4887 // Treat an enum type as its underlying type. 4888 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4889 Ty = EnumTy->getDecl()->getIntegerType(); 4890 4891 return (Ty->isPromotableIntegerType() ? 4892 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4893 } 4894 4895 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4896 if (!getCXXABI().classifyReturnType(FI)) 4897 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4898 for (auto &I : FI.arguments()) 4899 I.info = classifyArgumentType(I.type); 4900 4901 // Always honor user-specified calling convention. 4902 if (FI.getCallingConvention() != llvm::CallingConv::C) 4903 return; 4904 4905 FI.setEffectiveCallingConvention(getRuntimeCC()); 4906 } 4907 4908 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4909 CodeGenFunction &CFG) const { 4910 llvm_unreachable("NVPTX does not support varargs"); 4911 } 4912 4913 void NVPTXTargetCodeGenInfo:: 4914 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4915 CodeGen::CodeGenModule &M) const{ 4916 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4917 if (!FD) return; 4918 4919 llvm::Function *F = cast<llvm::Function>(GV); 4920 4921 // Perform special handling in OpenCL mode 4922 if (M.getLangOpts().OpenCL) { 4923 // Use OpenCL function attributes to check for kernel functions 4924 // By default, all functions are device functions 4925 if (FD->hasAttr<OpenCLKernelAttr>()) { 4926 // OpenCL __kernel functions get kernel metadata 4927 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4928 addNVVMMetadata(F, "kernel", 1); 4929 // And kernel functions are not subject to inlining 4930 F->addFnAttr(llvm::Attribute::NoInline); 4931 } 4932 } 4933 4934 // Perform special handling in CUDA mode. 4935 if (M.getLangOpts().CUDA) { 4936 // CUDA __global__ functions get a kernel metadata entry. Since 4937 // __global__ functions cannot be called from the device, we do not 4938 // need to set the noinline attribute. 4939 if (FD->hasAttr<CUDAGlobalAttr>()) { 4940 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4941 addNVVMMetadata(F, "kernel", 1); 4942 } 4943 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 4944 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 4945 addNVVMMetadata(F, "maxntidx", 4946 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 4947 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 4948 // zero value from getMinBlocks either means it was not specified in 4949 // __launch_bounds__ or the user specified a 0 value. In both cases, we 4950 // don't have to add a PTX directive. 4951 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 4952 if (MinCTASM > 0) { 4953 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 4954 addNVVMMetadata(F, "minctasm", MinCTASM); 4955 } 4956 } 4957 } 4958 } 4959 4960 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 4961 int Operand) { 4962 llvm::Module *M = F->getParent(); 4963 llvm::LLVMContext &Ctx = M->getContext(); 4964 4965 // Get "nvvm.annotations" metadata node 4966 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4967 4968 llvm::Value *MDVals[] = { 4969 F, llvm::MDString::get(Ctx, Name), 4970 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; 4971 // Append metadata to nvvm.annotations 4972 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4973 } 4974 } 4975 4976 //===----------------------------------------------------------------------===// 4977 // SystemZ ABI Implementation 4978 //===----------------------------------------------------------------------===// 4979 4980 namespace { 4981 4982 class SystemZABIInfo : public ABIInfo { 4983 public: 4984 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4985 4986 bool isPromotableIntegerType(QualType Ty) const; 4987 bool isCompoundType(QualType Ty) const; 4988 bool isFPArgumentType(QualType Ty) const; 4989 4990 ABIArgInfo classifyReturnType(QualType RetTy) const; 4991 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4992 4993 void computeInfo(CGFunctionInfo &FI) const override { 4994 if (!getCXXABI().classifyReturnType(FI)) 4995 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4996 for (auto &I : FI.arguments()) 4997 I.info = classifyArgumentType(I.type); 4998 } 4999 5000 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5001 CodeGenFunction &CGF) const override; 5002 }; 5003 5004 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5005 public: 5006 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 5007 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 5008 }; 5009 5010 } 5011 5012 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5013 // Treat an enum type as its underlying type. 5014 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5015 Ty = EnumTy->getDecl()->getIntegerType(); 5016 5017 // Promotable integer types are required to be promoted by the ABI. 5018 if (Ty->isPromotableIntegerType()) 5019 return true; 5020 5021 // 32-bit values must also be promoted. 5022 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5023 switch (BT->getKind()) { 5024 case BuiltinType::Int: 5025 case BuiltinType::UInt: 5026 return true; 5027 default: 5028 return false; 5029 } 5030 return false; 5031 } 5032 5033 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5034 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 5035 } 5036 5037 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5038 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5039 switch (BT->getKind()) { 5040 case BuiltinType::Float: 5041 case BuiltinType::Double: 5042 return true; 5043 default: 5044 return false; 5045 } 5046 5047 if (const RecordType *RT = Ty->getAsStructureType()) { 5048 const RecordDecl *RD = RT->getDecl(); 5049 bool Found = false; 5050 5051 // If this is a C++ record, check the bases first. 5052 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5053 for (const auto &I : CXXRD->bases()) { 5054 QualType Base = I.getType(); 5055 5056 // Empty bases don't affect things either way. 5057 if (isEmptyRecord(getContext(), Base, true)) 5058 continue; 5059 5060 if (Found) 5061 return false; 5062 Found = isFPArgumentType(Base); 5063 if (!Found) 5064 return false; 5065 } 5066 5067 // Check the fields. 5068 for (const auto *FD : RD->fields()) { 5069 // Empty bitfields don't affect things either way. 5070 // Unlike isSingleElementStruct(), empty structure and array fields 5071 // do count. So do anonymous bitfields that aren't zero-sized. 5072 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5073 return true; 5074 5075 // Unlike isSingleElementStruct(), arrays do not count. 5076 // Nested isFPArgumentType structures still do though. 5077 if (Found) 5078 return false; 5079 Found = isFPArgumentType(FD->getType()); 5080 if (!Found) 5081 return false; 5082 } 5083 5084 // Unlike isSingleElementStruct(), trailing padding is allowed. 5085 // An 8-byte aligned struct s { float f; } is passed as a double. 5086 return Found; 5087 } 5088 5089 return false; 5090 } 5091 5092 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5093 CodeGenFunction &CGF) const { 5094 // Assume that va_list type is correct; should be pointer to LLVM type: 5095 // struct { 5096 // i64 __gpr; 5097 // i64 __fpr; 5098 // i8 *__overflow_arg_area; 5099 // i8 *__reg_save_area; 5100 // }; 5101 5102 // Every argument occupies 8 bytes and is passed by preference in either 5103 // GPRs or FPRs. 5104 Ty = CGF.getContext().getCanonicalType(Ty); 5105 ABIArgInfo AI = classifyArgumentType(Ty); 5106 bool InFPRs = isFPArgumentType(Ty); 5107 5108 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 5109 bool IsIndirect = AI.isIndirect(); 5110 unsigned UnpaddedBitSize; 5111 if (IsIndirect) { 5112 APTy = llvm::PointerType::getUnqual(APTy); 5113 UnpaddedBitSize = 64; 5114 } else 5115 UnpaddedBitSize = getContext().getTypeSize(Ty); 5116 unsigned PaddedBitSize = 64; 5117 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5118 5119 unsigned PaddedSize = PaddedBitSize / 8; 5120 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5121 5122 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5123 if (InFPRs) { 5124 MaxRegs = 4; // Maximum of 4 FPR arguments 5125 RegCountField = 1; // __fpr 5126 RegSaveIndex = 16; // save offset for f0 5127 RegPadding = 0; // floats are passed in the high bits of an FPR 5128 } else { 5129 MaxRegs = 5; // Maximum of 5 GPR arguments 5130 RegCountField = 0; // __gpr 5131 RegSaveIndex = 2; // save offset for r2 5132 RegPadding = Padding; // values are passed in the low bits of a GPR 5133 } 5134 5135 llvm::Value *RegCountPtr = 5136 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 5137 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5138 llvm::Type *IndexTy = RegCount->getType(); 5139 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5140 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5141 "fits_in_regs"); 5142 5143 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5144 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5145 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5146 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5147 5148 // Emit code to load the value if it was passed in registers. 5149 CGF.EmitBlock(InRegBlock); 5150 5151 // Work out the address of an argument register. 5152 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5153 llvm::Value *ScaledRegCount = 5154 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5155 llvm::Value *RegBase = 5156 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5157 llvm::Value *RegOffset = 5158 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5159 llvm::Value *RegSaveAreaPtr = 5160 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 5161 llvm::Value *RegSaveArea = 5162 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5163 llvm::Value *RawRegAddr = 5164 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5165 llvm::Value *RegAddr = 5166 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5167 5168 // Update the register count 5169 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5170 llvm::Value *NewRegCount = 5171 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5172 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5173 CGF.EmitBranch(ContBlock); 5174 5175 // Emit code to load the value if it was passed in memory. 5176 CGF.EmitBlock(InMemBlock); 5177 5178 // Work out the address of a stack argument. 5179 llvm::Value *OverflowArgAreaPtr = 5180 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 5181 llvm::Value *OverflowArgArea = 5182 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5183 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5184 llvm::Value *RawMemAddr = 5185 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5186 llvm::Value *MemAddr = 5187 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5188 5189 // Update overflow_arg_area_ptr pointer 5190 llvm::Value *NewOverflowArgArea = 5191 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5192 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5193 CGF.EmitBranch(ContBlock); 5194 5195 // Return the appropriate result. 5196 CGF.EmitBlock(ContBlock); 5197 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5198 ResAddr->addIncoming(RegAddr, InRegBlock); 5199 ResAddr->addIncoming(MemAddr, InMemBlock); 5200 5201 if (IsIndirect) 5202 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5203 5204 return ResAddr; 5205 } 5206 5207 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5208 if (RetTy->isVoidType()) 5209 return ABIArgInfo::getIgnore(); 5210 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5211 return ABIArgInfo::getIndirect(0); 5212 return (isPromotableIntegerType(RetTy) ? 5213 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5214 } 5215 5216 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5217 // Handle the generic C++ ABI. 5218 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5219 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5220 5221 // Integers and enums are extended to full register width. 5222 if (isPromotableIntegerType(Ty)) 5223 return ABIArgInfo::getExtend(); 5224 5225 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5226 uint64_t Size = getContext().getTypeSize(Ty); 5227 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5228 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5229 5230 // Handle small structures. 5231 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5232 // Structures with flexible arrays have variable length, so really 5233 // fail the size test above. 5234 const RecordDecl *RD = RT->getDecl(); 5235 if (RD->hasFlexibleArrayMember()) 5236 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5237 5238 // The structure is passed as an unextended integer, a float, or a double. 5239 llvm::Type *PassTy; 5240 if (isFPArgumentType(Ty)) { 5241 assert(Size == 32 || Size == 64); 5242 if (Size == 32) 5243 PassTy = llvm::Type::getFloatTy(getVMContext()); 5244 else 5245 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5246 } else 5247 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5248 return ABIArgInfo::getDirect(PassTy); 5249 } 5250 5251 // Non-structure compounds are passed indirectly. 5252 if (isCompoundType(Ty)) 5253 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5254 5255 return ABIArgInfo::getDirect(nullptr); 5256 } 5257 5258 //===----------------------------------------------------------------------===// 5259 // MSP430 ABI Implementation 5260 //===----------------------------------------------------------------------===// 5261 5262 namespace { 5263 5264 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5265 public: 5266 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5267 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5268 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5269 CodeGen::CodeGenModule &M) const override; 5270 }; 5271 5272 } 5273 5274 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5275 llvm::GlobalValue *GV, 5276 CodeGen::CodeGenModule &M) const { 5277 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5278 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5279 // Handle 'interrupt' attribute: 5280 llvm::Function *F = cast<llvm::Function>(GV); 5281 5282 // Step 1: Set ISR calling convention. 5283 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5284 5285 // Step 2: Add attributes goodness. 5286 F->addFnAttr(llvm::Attribute::NoInline); 5287 5288 // Step 3: Emit ISR vector alias. 5289 unsigned Num = attr->getNumber() / 2; 5290 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5291 "__isr_" + Twine(Num), F); 5292 } 5293 } 5294 } 5295 5296 //===----------------------------------------------------------------------===// 5297 // MIPS ABI Implementation. This works for both little-endian and 5298 // big-endian variants. 5299 //===----------------------------------------------------------------------===// 5300 5301 namespace { 5302 class MipsABIInfo : public ABIInfo { 5303 bool IsO32; 5304 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5305 void CoerceToIntArgs(uint64_t TySize, 5306 SmallVectorImpl<llvm::Type *> &ArgList) const; 5307 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5308 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5309 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5310 public: 5311 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5312 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5313 StackAlignInBytes(IsO32 ? 8 : 16) {} 5314 5315 ABIArgInfo classifyReturnType(QualType RetTy) const; 5316 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5317 void computeInfo(CGFunctionInfo &FI) const override; 5318 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5319 CodeGenFunction &CGF) const override; 5320 }; 5321 5322 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5323 unsigned SizeOfUnwindException; 5324 public: 5325 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5326 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5327 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5328 5329 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5330 return 29; 5331 } 5332 5333 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5334 CodeGen::CodeGenModule &CGM) const override { 5335 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5336 if (!FD) return; 5337 llvm::Function *Fn = cast<llvm::Function>(GV); 5338 if (FD->hasAttr<Mips16Attr>()) { 5339 Fn->addFnAttr("mips16"); 5340 } 5341 else if (FD->hasAttr<NoMips16Attr>()) { 5342 Fn->addFnAttr("nomips16"); 5343 } 5344 } 5345 5346 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5347 llvm::Value *Address) const override; 5348 5349 unsigned getSizeOfUnwindException() const override { 5350 return SizeOfUnwindException; 5351 } 5352 }; 5353 } 5354 5355 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5356 SmallVectorImpl<llvm::Type *> &ArgList) const { 5357 llvm::IntegerType *IntTy = 5358 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5359 5360 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5361 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5362 ArgList.push_back(IntTy); 5363 5364 // If necessary, add one more integer type to ArgList. 5365 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5366 5367 if (R) 5368 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5369 } 5370 5371 // In N32/64, an aligned double precision floating point field is passed in 5372 // a register. 5373 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5374 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5375 5376 if (IsO32) { 5377 CoerceToIntArgs(TySize, ArgList); 5378 return llvm::StructType::get(getVMContext(), ArgList); 5379 } 5380 5381 if (Ty->isComplexType()) 5382 return CGT.ConvertType(Ty); 5383 5384 const RecordType *RT = Ty->getAs<RecordType>(); 5385 5386 // Unions/vectors are passed in integer registers. 5387 if (!RT || !RT->isStructureOrClassType()) { 5388 CoerceToIntArgs(TySize, ArgList); 5389 return llvm::StructType::get(getVMContext(), ArgList); 5390 } 5391 5392 const RecordDecl *RD = RT->getDecl(); 5393 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5394 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5395 5396 uint64_t LastOffset = 0; 5397 unsigned idx = 0; 5398 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5399 5400 // Iterate over fields in the struct/class and check if there are any aligned 5401 // double fields. 5402 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5403 i != e; ++i, ++idx) { 5404 const QualType Ty = i->getType(); 5405 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5406 5407 if (!BT || BT->getKind() != BuiltinType::Double) 5408 continue; 5409 5410 uint64_t Offset = Layout.getFieldOffset(idx); 5411 if (Offset % 64) // Ignore doubles that are not aligned. 5412 continue; 5413 5414 // Add ((Offset - LastOffset) / 64) args of type i64. 5415 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5416 ArgList.push_back(I64); 5417 5418 // Add double type. 5419 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5420 LastOffset = Offset + 64; 5421 } 5422 5423 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5424 ArgList.append(IntArgList.begin(), IntArgList.end()); 5425 5426 return llvm::StructType::get(getVMContext(), ArgList); 5427 } 5428 5429 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5430 uint64_t Offset) const { 5431 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5432 return nullptr; 5433 5434 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5435 } 5436 5437 ABIArgInfo 5438 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5439 uint64_t OrigOffset = Offset; 5440 uint64_t TySize = getContext().getTypeSize(Ty); 5441 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5442 5443 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5444 (uint64_t)StackAlignInBytes); 5445 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5446 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5447 5448 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5449 // Ignore empty aggregates. 5450 if (TySize == 0) 5451 return ABIArgInfo::getIgnore(); 5452 5453 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5454 Offset = OrigOffset + MinABIStackAlignInBytes; 5455 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5456 } 5457 5458 // If we have reached here, aggregates are passed directly by coercing to 5459 // another structure type. Padding is inserted if the offset of the 5460 // aggregate is unaligned. 5461 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5462 getPaddingType(OrigOffset, CurrOffset)); 5463 } 5464 5465 // Treat an enum type as its underlying type. 5466 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5467 Ty = EnumTy->getDecl()->getIntegerType(); 5468 5469 if (Ty->isPromotableIntegerType()) 5470 return ABIArgInfo::getExtend(); 5471 5472 return ABIArgInfo::getDirect( 5473 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5474 } 5475 5476 llvm::Type* 5477 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5478 const RecordType *RT = RetTy->getAs<RecordType>(); 5479 SmallVector<llvm::Type*, 8> RTList; 5480 5481 if (RT && RT->isStructureOrClassType()) { 5482 const RecordDecl *RD = RT->getDecl(); 5483 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5484 unsigned FieldCnt = Layout.getFieldCount(); 5485 5486 // N32/64 returns struct/classes in floating point registers if the 5487 // following conditions are met: 5488 // 1. The size of the struct/class is no larger than 128-bit. 5489 // 2. The struct/class has one or two fields all of which are floating 5490 // point types. 5491 // 3. The offset of the first field is zero (this follows what gcc does). 5492 // 5493 // Any other composite results are returned in integer registers. 5494 // 5495 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5496 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5497 for (; b != e; ++b) { 5498 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5499 5500 if (!BT || !BT->isFloatingPoint()) 5501 break; 5502 5503 RTList.push_back(CGT.ConvertType(b->getType())); 5504 } 5505 5506 if (b == e) 5507 return llvm::StructType::get(getVMContext(), RTList, 5508 RD->hasAttr<PackedAttr>()); 5509 5510 RTList.clear(); 5511 } 5512 } 5513 5514 CoerceToIntArgs(Size, RTList); 5515 return llvm::StructType::get(getVMContext(), RTList); 5516 } 5517 5518 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5519 uint64_t Size = getContext().getTypeSize(RetTy); 5520 5521 if (RetTy->isVoidType() || Size == 0) 5522 return ABIArgInfo::getIgnore(); 5523 5524 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5525 if (Size <= 128) { 5526 if (RetTy->isAnyComplexType()) 5527 return ABIArgInfo::getDirect(); 5528 5529 // O32 returns integer vectors in registers. 5530 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 5531 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5532 5533 if (!IsO32) 5534 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5535 } 5536 5537 return ABIArgInfo::getIndirect(0); 5538 } 5539 5540 // Treat an enum type as its underlying type. 5541 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5542 RetTy = EnumTy->getDecl()->getIntegerType(); 5543 5544 return (RetTy->isPromotableIntegerType() ? 5545 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5546 } 5547 5548 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5549 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5550 if (!getCXXABI().classifyReturnType(FI)) 5551 RetInfo = classifyReturnType(FI.getReturnType()); 5552 5553 // Check if a pointer to an aggregate is passed as a hidden argument. 5554 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5555 5556 for (auto &I : FI.arguments()) 5557 I.info = classifyArgumentType(I.type, Offset); 5558 } 5559 5560 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5561 CodeGenFunction &CGF) const { 5562 llvm::Type *BP = CGF.Int8PtrTy; 5563 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5564 5565 CGBuilderTy &Builder = CGF.Builder; 5566 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5567 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5568 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 5569 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5570 llvm::Value *AddrTyped; 5571 unsigned PtrWidth = getTarget().getPointerWidth(0); 5572 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5573 5574 if (TypeAlign > MinABIStackAlignInBytes) { 5575 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5576 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5577 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5578 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5579 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5580 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5581 } 5582 else 5583 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5584 5585 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5586 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5587 uint64_t Offset = 5588 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 5589 llvm::Value *NextAddr = 5590 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5591 "ap.next"); 5592 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5593 5594 return AddrTyped; 5595 } 5596 5597 bool 5598 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5599 llvm::Value *Address) const { 5600 // This information comes from gcc's implementation, which seems to 5601 // as canonical as it gets. 5602 5603 // Everything on MIPS is 4 bytes. Double-precision FP registers 5604 // are aliased to pairs of single-precision FP registers. 5605 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5606 5607 // 0-31 are the general purpose registers, $0 - $31. 5608 // 32-63 are the floating-point registers, $f0 - $f31. 5609 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5610 // 66 is the (notional, I think) register for signal-handler return. 5611 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5612 5613 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5614 // They are one bit wide and ignored here. 5615 5616 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5617 // (coprocessor 1 is the FP unit) 5618 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5619 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5620 // 176-181 are the DSP accumulator registers. 5621 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5622 return false; 5623 } 5624 5625 //===----------------------------------------------------------------------===// 5626 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5627 // Currently subclassed only to implement custom OpenCL C function attribute 5628 // handling. 5629 //===----------------------------------------------------------------------===// 5630 5631 namespace { 5632 5633 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5634 public: 5635 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5636 : DefaultTargetCodeGenInfo(CGT) {} 5637 5638 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5639 CodeGen::CodeGenModule &M) const override; 5640 }; 5641 5642 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5643 llvm::GlobalValue *GV, 5644 CodeGen::CodeGenModule &M) const { 5645 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5646 if (!FD) return; 5647 5648 llvm::Function *F = cast<llvm::Function>(GV); 5649 5650 if (M.getLangOpts().OpenCL) { 5651 if (FD->hasAttr<OpenCLKernelAttr>()) { 5652 // OpenCL C Kernel functions are not subject to inlining 5653 F->addFnAttr(llvm::Attribute::NoInline); 5654 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5655 if (Attr) { 5656 // Convert the reqd_work_group_size() attributes to metadata. 5657 llvm::LLVMContext &Context = F->getContext(); 5658 llvm::NamedMDNode *OpenCLMetadata = 5659 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5660 5661 SmallVector<llvm::Value*, 5> Operands; 5662 Operands.push_back(F); 5663 5664 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5665 llvm::APInt(32, Attr->getXDim()))); 5666 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5667 llvm::APInt(32, Attr->getYDim()))); 5668 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5669 llvm::APInt(32, Attr->getZDim()))); 5670 5671 // Add a boolean constant operand for "required" (true) or "hint" (false) 5672 // for implementing the work_group_size_hint attr later. Currently 5673 // always true as the hint is not yet implemented. 5674 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5675 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5676 } 5677 } 5678 } 5679 } 5680 5681 } 5682 5683 //===----------------------------------------------------------------------===// 5684 // Hexagon ABI Implementation 5685 //===----------------------------------------------------------------------===// 5686 5687 namespace { 5688 5689 class HexagonABIInfo : public ABIInfo { 5690 5691 5692 public: 5693 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5694 5695 private: 5696 5697 ABIArgInfo classifyReturnType(QualType RetTy) const; 5698 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5699 5700 void computeInfo(CGFunctionInfo &FI) const override; 5701 5702 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5703 CodeGenFunction &CGF) const override; 5704 }; 5705 5706 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5707 public: 5708 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5709 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5710 5711 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5712 return 29; 5713 } 5714 }; 5715 5716 } 5717 5718 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5719 if (!getCXXABI().classifyReturnType(FI)) 5720 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5721 for (auto &I : FI.arguments()) 5722 I.info = classifyArgumentType(I.type); 5723 } 5724 5725 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5726 if (!isAggregateTypeForABI(Ty)) { 5727 // Treat an enum type as its underlying type. 5728 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5729 Ty = EnumTy->getDecl()->getIntegerType(); 5730 5731 return (Ty->isPromotableIntegerType() ? 5732 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5733 } 5734 5735 // Ignore empty records. 5736 if (isEmptyRecord(getContext(), Ty, true)) 5737 return ABIArgInfo::getIgnore(); 5738 5739 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5740 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5741 5742 uint64_t Size = getContext().getTypeSize(Ty); 5743 if (Size > 64) 5744 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5745 // Pass in the smallest viable integer type. 5746 else if (Size > 32) 5747 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5748 else if (Size > 16) 5749 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5750 else if (Size > 8) 5751 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5752 else 5753 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5754 } 5755 5756 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5757 if (RetTy->isVoidType()) 5758 return ABIArgInfo::getIgnore(); 5759 5760 // Large vector types should be returned via memory. 5761 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5762 return ABIArgInfo::getIndirect(0); 5763 5764 if (!isAggregateTypeForABI(RetTy)) { 5765 // Treat an enum type as its underlying type. 5766 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5767 RetTy = EnumTy->getDecl()->getIntegerType(); 5768 5769 return (RetTy->isPromotableIntegerType() ? 5770 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5771 } 5772 5773 if (isEmptyRecord(getContext(), RetTy, true)) 5774 return ABIArgInfo::getIgnore(); 5775 5776 // Aggregates <= 8 bytes are returned in r0; other aggregates 5777 // are returned indirectly. 5778 uint64_t Size = getContext().getTypeSize(RetTy); 5779 if (Size <= 64) { 5780 // Return in the smallest viable integer type. 5781 if (Size <= 8) 5782 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5783 if (Size <= 16) 5784 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5785 if (Size <= 32) 5786 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5787 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5788 } 5789 5790 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5791 } 5792 5793 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5794 CodeGenFunction &CGF) const { 5795 // FIXME: Need to handle alignment 5796 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5797 5798 CGBuilderTy &Builder = CGF.Builder; 5799 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5800 "ap"); 5801 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5802 llvm::Type *PTy = 5803 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5804 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5805 5806 uint64_t Offset = 5807 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5808 llvm::Value *NextAddr = 5809 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5810 "ap.next"); 5811 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5812 5813 return AddrTyped; 5814 } 5815 5816 5817 //===----------------------------------------------------------------------===// 5818 // SPARC v9 ABI Implementation. 5819 // Based on the SPARC Compliance Definition version 2.4.1. 5820 // 5821 // Function arguments a mapped to a nominal "parameter array" and promoted to 5822 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5823 // the array, structs larger than 16 bytes are passed indirectly. 5824 // 5825 // One case requires special care: 5826 // 5827 // struct mixed { 5828 // int i; 5829 // float f; 5830 // }; 5831 // 5832 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5833 // parameter array, but the int is passed in an integer register, and the float 5834 // is passed in a floating point register. This is represented as two arguments 5835 // with the LLVM IR inreg attribute: 5836 // 5837 // declare void f(i32 inreg %i, float inreg %f) 5838 // 5839 // The code generator will only allocate 4 bytes from the parameter array for 5840 // the inreg arguments. All other arguments are allocated a multiple of 8 5841 // bytes. 5842 // 5843 namespace { 5844 class SparcV9ABIInfo : public ABIInfo { 5845 public: 5846 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5847 5848 private: 5849 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5850 void computeInfo(CGFunctionInfo &FI) const override; 5851 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5852 CodeGenFunction &CGF) const override; 5853 5854 // Coercion type builder for structs passed in registers. The coercion type 5855 // serves two purposes: 5856 // 5857 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5858 // in registers. 5859 // 2. Expose aligned floating point elements as first-level elements, so the 5860 // code generator knows to pass them in floating point registers. 5861 // 5862 // We also compute the InReg flag which indicates that the struct contains 5863 // aligned 32-bit floats. 5864 // 5865 struct CoerceBuilder { 5866 llvm::LLVMContext &Context; 5867 const llvm::DataLayout &DL; 5868 SmallVector<llvm::Type*, 8> Elems; 5869 uint64_t Size; 5870 bool InReg; 5871 5872 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5873 : Context(c), DL(dl), Size(0), InReg(false) {} 5874 5875 // Pad Elems with integers until Size is ToSize. 5876 void pad(uint64_t ToSize) { 5877 assert(ToSize >= Size && "Cannot remove elements"); 5878 if (ToSize == Size) 5879 return; 5880 5881 // Finish the current 64-bit word. 5882 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5883 if (Aligned > Size && Aligned <= ToSize) { 5884 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5885 Size = Aligned; 5886 } 5887 5888 // Add whole 64-bit words. 5889 while (Size + 64 <= ToSize) { 5890 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5891 Size += 64; 5892 } 5893 5894 // Final in-word padding. 5895 if (Size < ToSize) { 5896 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5897 Size = ToSize; 5898 } 5899 } 5900 5901 // Add a floating point element at Offset. 5902 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5903 // Unaligned floats are treated as integers. 5904 if (Offset % Bits) 5905 return; 5906 // The InReg flag is only required if there are any floats < 64 bits. 5907 if (Bits < 64) 5908 InReg = true; 5909 pad(Offset); 5910 Elems.push_back(Ty); 5911 Size = Offset + Bits; 5912 } 5913 5914 // Add a struct type to the coercion type, starting at Offset (in bits). 5915 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5916 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5917 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5918 llvm::Type *ElemTy = StrTy->getElementType(i); 5919 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5920 switch (ElemTy->getTypeID()) { 5921 case llvm::Type::StructTyID: 5922 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5923 break; 5924 case llvm::Type::FloatTyID: 5925 addFloat(ElemOffset, ElemTy, 32); 5926 break; 5927 case llvm::Type::DoubleTyID: 5928 addFloat(ElemOffset, ElemTy, 64); 5929 break; 5930 case llvm::Type::FP128TyID: 5931 addFloat(ElemOffset, ElemTy, 128); 5932 break; 5933 case llvm::Type::PointerTyID: 5934 if (ElemOffset % 64 == 0) { 5935 pad(ElemOffset); 5936 Elems.push_back(ElemTy); 5937 Size += 64; 5938 } 5939 break; 5940 default: 5941 break; 5942 } 5943 } 5944 } 5945 5946 // Check if Ty is a usable substitute for the coercion type. 5947 bool isUsableType(llvm::StructType *Ty) const { 5948 if (Ty->getNumElements() != Elems.size()) 5949 return false; 5950 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5951 if (Elems[i] != Ty->getElementType(i)) 5952 return false; 5953 return true; 5954 } 5955 5956 // Get the coercion type as a literal struct type. 5957 llvm::Type *getType() const { 5958 if (Elems.size() == 1) 5959 return Elems.front(); 5960 else 5961 return llvm::StructType::get(Context, Elems); 5962 } 5963 }; 5964 }; 5965 } // end anonymous namespace 5966 5967 ABIArgInfo 5968 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5969 if (Ty->isVoidType()) 5970 return ABIArgInfo::getIgnore(); 5971 5972 uint64_t Size = getContext().getTypeSize(Ty); 5973 5974 // Anything too big to fit in registers is passed with an explicit indirect 5975 // pointer / sret pointer. 5976 if (Size > SizeLimit) 5977 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5978 5979 // Treat an enum type as its underlying type. 5980 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5981 Ty = EnumTy->getDecl()->getIntegerType(); 5982 5983 // Integer types smaller than a register are extended. 5984 if (Size < 64 && Ty->isIntegerType()) 5985 return ABIArgInfo::getExtend(); 5986 5987 // Other non-aggregates go in registers. 5988 if (!isAggregateTypeForABI(Ty)) 5989 return ABIArgInfo::getDirect(); 5990 5991 // If a C++ object has either a non-trivial copy constructor or a non-trivial 5992 // destructor, it is passed with an explicit indirect pointer / sret pointer. 5993 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5994 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5995 5996 // This is a small aggregate type that should be passed in registers. 5997 // Build a coercion type from the LLVM struct type. 5998 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 5999 if (!StrTy) 6000 return ABIArgInfo::getDirect(); 6001 6002 CoerceBuilder CB(getVMContext(), getDataLayout()); 6003 CB.addStruct(0, StrTy); 6004 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6005 6006 // Try to use the original type for coercion. 6007 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6008 6009 if (CB.InReg) 6010 return ABIArgInfo::getDirectInReg(CoerceTy); 6011 else 6012 return ABIArgInfo::getDirect(CoerceTy); 6013 } 6014 6015 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6016 CodeGenFunction &CGF) const { 6017 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6018 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6019 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6020 AI.setCoerceToType(ArgTy); 6021 6022 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6023 CGBuilderTy &Builder = CGF.Builder; 6024 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6025 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6026 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6027 llvm::Value *ArgAddr; 6028 unsigned Stride; 6029 6030 switch (AI.getKind()) { 6031 case ABIArgInfo::Expand: 6032 case ABIArgInfo::InAlloca: 6033 llvm_unreachable("Unsupported ABI kind for va_arg"); 6034 6035 case ABIArgInfo::Extend: 6036 Stride = 8; 6037 ArgAddr = Builder 6038 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6039 "extend"); 6040 break; 6041 6042 case ABIArgInfo::Direct: 6043 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6044 ArgAddr = Addr; 6045 break; 6046 6047 case ABIArgInfo::Indirect: 6048 Stride = 8; 6049 ArgAddr = Builder.CreateBitCast(Addr, 6050 llvm::PointerType::getUnqual(ArgPtrTy), 6051 "indirect"); 6052 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6053 break; 6054 6055 case ABIArgInfo::Ignore: 6056 return llvm::UndefValue::get(ArgPtrTy); 6057 } 6058 6059 // Update VAList. 6060 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6061 Builder.CreateStore(Addr, VAListAddrAsBPP); 6062 6063 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6064 } 6065 6066 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6067 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6068 for (auto &I : FI.arguments()) 6069 I.info = classifyType(I.type, 16 * 8); 6070 } 6071 6072 namespace { 6073 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6074 public: 6075 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6076 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6077 6078 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6079 return 14; 6080 } 6081 6082 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6083 llvm::Value *Address) const override; 6084 }; 6085 } // end anonymous namespace 6086 6087 bool 6088 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6089 llvm::Value *Address) const { 6090 // This is calculated from the LLVM and GCC tables and verified 6091 // against gcc output. AFAIK all ABIs use the same encoding. 6092 6093 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6094 6095 llvm::IntegerType *i8 = CGF.Int8Ty; 6096 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6097 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6098 6099 // 0-31: the 8-byte general-purpose registers 6100 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6101 6102 // 32-63: f0-31, the 4-byte floating-point registers 6103 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6104 6105 // Y = 64 6106 // PSR = 65 6107 // WIM = 66 6108 // TBR = 67 6109 // PC = 68 6110 // NPC = 69 6111 // FSR = 70 6112 // CSR = 71 6113 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6114 6115 // 72-87: d0-15, the 8-byte floating-point registers 6116 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6117 6118 return false; 6119 } 6120 6121 6122 //===----------------------------------------------------------------------===// 6123 // XCore ABI Implementation 6124 //===----------------------------------------------------------------------===// 6125 6126 namespace { 6127 6128 /// A SmallStringEnc instance is used to build up the TypeString by passing 6129 /// it by reference between functions that append to it. 6130 typedef llvm::SmallString<128> SmallStringEnc; 6131 6132 /// TypeStringCache caches the meta encodings of Types. 6133 /// 6134 /// The reason for caching TypeStrings is two fold: 6135 /// 1. To cache a type's encoding for later uses; 6136 /// 2. As a means to break recursive member type inclusion. 6137 /// 6138 /// A cache Entry can have a Status of: 6139 /// NonRecursive: The type encoding is not recursive; 6140 /// Recursive: The type encoding is recursive; 6141 /// Incomplete: An incomplete TypeString; 6142 /// IncompleteUsed: An incomplete TypeString that has been used in a 6143 /// Recursive type encoding. 6144 /// 6145 /// A NonRecursive entry will have all of its sub-members expanded as fully 6146 /// as possible. Whilst it may contain types which are recursive, the type 6147 /// itself is not recursive and thus its encoding may be safely used whenever 6148 /// the type is encountered. 6149 /// 6150 /// A Recursive entry will have all of its sub-members expanded as fully as 6151 /// possible. The type itself is recursive and it may contain other types which 6152 /// are recursive. The Recursive encoding must not be used during the expansion 6153 /// of a recursive type's recursive branch. For simplicity the code uses 6154 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6155 /// 6156 /// An Incomplete entry is always a RecordType and only encodes its 6157 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6158 /// are placed into the cache during type expansion as a means to identify and 6159 /// handle recursive inclusion of types as sub-members. If there is recursion 6160 /// the entry becomes IncompleteUsed. 6161 /// 6162 /// During the expansion of a RecordType's members: 6163 /// 6164 /// If the cache contains a NonRecursive encoding for the member type, the 6165 /// cached encoding is used; 6166 /// 6167 /// If the cache contains a Recursive encoding for the member type, the 6168 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6169 /// 6170 /// If the member is a RecordType, an Incomplete encoding is placed into the 6171 /// cache to break potential recursive inclusion of itself as a sub-member; 6172 /// 6173 /// Once a member RecordType has been expanded, its temporary incomplete 6174 /// entry is removed from the cache. If a Recursive encoding was swapped out 6175 /// it is swapped back in; 6176 /// 6177 /// If an incomplete entry is used to expand a sub-member, the incomplete 6178 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6179 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6180 /// 6181 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6182 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6183 /// Else the member is part of a recursive type and thus the recursion has 6184 /// been exited too soon for the encoding to be correct for the member. 6185 /// 6186 class TypeStringCache { 6187 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6188 struct Entry { 6189 std::string Str; // The encoded TypeString for the type. 6190 enum Status State; // Information about the encoding in 'Str'. 6191 std::string Swapped; // A temporary place holder for a Recursive encoding 6192 // during the expansion of RecordType's members. 6193 }; 6194 std::map<const IdentifierInfo *, struct Entry> Map; 6195 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6196 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6197 public: 6198 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6199 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6200 bool removeIncomplete(const IdentifierInfo *ID); 6201 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6202 bool IsRecursive); 6203 StringRef lookupStr(const IdentifierInfo *ID); 6204 }; 6205 6206 /// TypeString encodings for enum & union fields must be order. 6207 /// FieldEncoding is a helper for this ordering process. 6208 class FieldEncoding { 6209 bool HasName; 6210 std::string Enc; 6211 public: 6212 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6213 StringRef str() {return Enc.c_str();}; 6214 bool operator<(const FieldEncoding &rhs) const { 6215 if (HasName != rhs.HasName) return HasName; 6216 return Enc < rhs.Enc; 6217 } 6218 }; 6219 6220 class XCoreABIInfo : public DefaultABIInfo { 6221 public: 6222 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6223 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6224 CodeGenFunction &CGF) const override; 6225 }; 6226 6227 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6228 mutable TypeStringCache TSC; 6229 public: 6230 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6231 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6232 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6233 CodeGen::CodeGenModule &M) const override; 6234 }; 6235 6236 } // End anonymous namespace. 6237 6238 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6239 CodeGenFunction &CGF) const { 6240 CGBuilderTy &Builder = CGF.Builder; 6241 6242 // Get the VAList. 6243 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6244 CGF.Int8PtrPtrTy); 6245 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6246 6247 // Handle the argument. 6248 ABIArgInfo AI = classifyArgumentType(Ty); 6249 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6250 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6251 AI.setCoerceToType(ArgTy); 6252 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6253 llvm::Value *Val; 6254 uint64_t ArgSize = 0; 6255 switch (AI.getKind()) { 6256 case ABIArgInfo::Expand: 6257 case ABIArgInfo::InAlloca: 6258 llvm_unreachable("Unsupported ABI kind for va_arg"); 6259 case ABIArgInfo::Ignore: 6260 Val = llvm::UndefValue::get(ArgPtrTy); 6261 ArgSize = 0; 6262 break; 6263 case ABIArgInfo::Extend: 6264 case ABIArgInfo::Direct: 6265 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6266 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6267 if (ArgSize < 4) 6268 ArgSize = 4; 6269 break; 6270 case ABIArgInfo::Indirect: 6271 llvm::Value *ArgAddr; 6272 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6273 ArgAddr = Builder.CreateLoad(ArgAddr); 6274 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6275 ArgSize = 4; 6276 break; 6277 } 6278 6279 // Increment the VAList. 6280 if (ArgSize) { 6281 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6282 Builder.CreateStore(APN, VAListAddrAsBPP); 6283 } 6284 return Val; 6285 } 6286 6287 /// During the expansion of a RecordType, an incomplete TypeString is placed 6288 /// into the cache as a means to identify and break recursion. 6289 /// If there is a Recursive encoding in the cache, it is swapped out and will 6290 /// be reinserted by removeIncomplete(). 6291 /// All other types of encoding should have been used rather than arriving here. 6292 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6293 std::string StubEnc) { 6294 if (!ID) 6295 return; 6296 Entry &E = Map[ID]; 6297 assert( (E.Str.empty() || E.State == Recursive) && 6298 "Incorrectly use of addIncomplete"); 6299 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6300 E.Swapped.swap(E.Str); // swap out the Recursive 6301 E.Str.swap(StubEnc); 6302 E.State = Incomplete; 6303 ++IncompleteCount; 6304 } 6305 6306 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6307 /// must be removed from the cache. 6308 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6309 /// Returns true if the RecordType was defined recursively. 6310 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6311 if (!ID) 6312 return false; 6313 auto I = Map.find(ID); 6314 assert(I != Map.end() && "Entry not present"); 6315 Entry &E = I->second; 6316 assert( (E.State == Incomplete || 6317 E.State == IncompleteUsed) && 6318 "Entry must be an incomplete type"); 6319 bool IsRecursive = false; 6320 if (E.State == IncompleteUsed) { 6321 // We made use of our Incomplete encoding, thus we are recursive. 6322 IsRecursive = true; 6323 --IncompleteUsedCount; 6324 } 6325 if (E.Swapped.empty()) 6326 Map.erase(I); 6327 else { 6328 // Swap the Recursive back. 6329 E.Swapped.swap(E.Str); 6330 E.Swapped.clear(); 6331 E.State = Recursive; 6332 } 6333 --IncompleteCount; 6334 return IsRecursive; 6335 } 6336 6337 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6338 /// Recursive (viz: all sub-members were expanded as fully as possible). 6339 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6340 bool IsRecursive) { 6341 if (!ID || IncompleteUsedCount) 6342 return; // No key or it is is an incomplete sub-type so don't add. 6343 Entry &E = Map[ID]; 6344 if (IsRecursive && !E.Str.empty()) { 6345 assert(E.State==Recursive && E.Str.size() == Str.size() && 6346 "This is not the same Recursive entry"); 6347 // The parent container was not recursive after all, so we could have used 6348 // this Recursive sub-member entry after all, but we assumed the worse when 6349 // we started viz: IncompleteCount!=0. 6350 return; 6351 } 6352 assert(E.Str.empty() && "Entry already present"); 6353 E.Str = Str.str(); 6354 E.State = IsRecursive? Recursive : NonRecursive; 6355 } 6356 6357 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6358 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6359 /// encoding is Recursive, return an empty StringRef. 6360 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6361 if (!ID) 6362 return StringRef(); // We have no key. 6363 auto I = Map.find(ID); 6364 if (I == Map.end()) 6365 return StringRef(); // We have no encoding. 6366 Entry &E = I->second; 6367 if (E.State == Recursive && IncompleteCount) 6368 return StringRef(); // We don't use Recursive encodings for member types. 6369 6370 if (E.State == Incomplete) { 6371 // The incomplete type is being used to break out of recursion. 6372 E.State = IncompleteUsed; 6373 ++IncompleteUsedCount; 6374 } 6375 return E.Str.c_str(); 6376 } 6377 6378 /// The XCore ABI includes a type information section that communicates symbol 6379 /// type information to the linker. The linker uses this information to verify 6380 /// safety/correctness of things such as array bound and pointers et al. 6381 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6382 /// This type information (TypeString) is emitted into meta data for all global 6383 /// symbols: definitions, declarations, functions & variables. 6384 /// 6385 /// The TypeString carries type, qualifier, name, size & value details. 6386 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6387 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6388 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6389 /// 6390 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6391 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6392 6393 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6394 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6395 CodeGen::CodeGenModule &CGM) const { 6396 SmallStringEnc Enc; 6397 if (getTypeString(Enc, D, CGM, TSC)) { 6398 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6399 llvm::SmallVector<llvm::Value *, 2> MDVals; 6400 MDVals.push_back(GV); 6401 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6402 llvm::NamedMDNode *MD = 6403 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6404 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6405 } 6406 } 6407 6408 static bool appendType(SmallStringEnc &Enc, QualType QType, 6409 const CodeGen::CodeGenModule &CGM, 6410 TypeStringCache &TSC); 6411 6412 /// Helper function for appendRecordType(). 6413 /// Builds a SmallVector containing the encoded field types in declaration order. 6414 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6415 const RecordDecl *RD, 6416 const CodeGen::CodeGenModule &CGM, 6417 TypeStringCache &TSC) { 6418 for (const auto *Field : RD->fields()) { 6419 SmallStringEnc Enc; 6420 Enc += "m("; 6421 Enc += Field->getName(); 6422 Enc += "){"; 6423 if (Field->isBitField()) { 6424 Enc += "b("; 6425 llvm::raw_svector_ostream OS(Enc); 6426 OS.resync(); 6427 OS << Field->getBitWidthValue(CGM.getContext()); 6428 OS.flush(); 6429 Enc += ':'; 6430 } 6431 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6432 return false; 6433 if (Field->isBitField()) 6434 Enc += ')'; 6435 Enc += '}'; 6436 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc)); 6437 } 6438 return true; 6439 } 6440 6441 /// Appends structure and union types to Enc and adds encoding to cache. 6442 /// Recursively calls appendType (via extractFieldType) for each field. 6443 /// Union types have their fields ordered according to the ABI. 6444 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6445 const CodeGen::CodeGenModule &CGM, 6446 TypeStringCache &TSC, const IdentifierInfo *ID) { 6447 // Append the cached TypeString if we have one. 6448 StringRef TypeString = TSC.lookupStr(ID); 6449 if (!TypeString.empty()) { 6450 Enc += TypeString; 6451 return true; 6452 } 6453 6454 // Start to emit an incomplete TypeString. 6455 size_t Start = Enc.size(); 6456 Enc += (RT->isUnionType()? 'u' : 's'); 6457 Enc += '('; 6458 if (ID) 6459 Enc += ID->getName(); 6460 Enc += "){"; 6461 6462 // We collect all encoded fields and order as necessary. 6463 bool IsRecursive = false; 6464 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6465 if (RD && !RD->field_empty()) { 6466 // An incomplete TypeString stub is placed in the cache for this RecordType 6467 // so that recursive calls to this RecordType will use it whilst building a 6468 // complete TypeString for this RecordType. 6469 SmallVector<FieldEncoding, 16> FE; 6470 std::string StubEnc(Enc.substr(Start).str()); 6471 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6472 TSC.addIncomplete(ID, std::move(StubEnc)); 6473 if (!extractFieldType(FE, RD, CGM, TSC)) { 6474 (void) TSC.removeIncomplete(ID); 6475 return false; 6476 } 6477 IsRecursive = TSC.removeIncomplete(ID); 6478 // The ABI requires unions to be sorted but not structures. 6479 // See FieldEncoding::operator< for sort algorithm. 6480 if (RT->isUnionType()) 6481 std::sort(FE.begin(), FE.end()); 6482 // We can now complete the TypeString. 6483 unsigned E = FE.size(); 6484 for (unsigned I = 0; I != E; ++I) { 6485 if (I) 6486 Enc += ','; 6487 Enc += FE[I].str(); 6488 } 6489 } 6490 Enc += '}'; 6491 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6492 return true; 6493 } 6494 6495 /// Appends enum types to Enc and adds the encoding to the cache. 6496 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6497 TypeStringCache &TSC, 6498 const IdentifierInfo *ID) { 6499 // Append the cached TypeString if we have one. 6500 StringRef TypeString = TSC.lookupStr(ID); 6501 if (!TypeString.empty()) { 6502 Enc += TypeString; 6503 return true; 6504 } 6505 6506 size_t Start = Enc.size(); 6507 Enc += "e("; 6508 if (ID) 6509 Enc += ID->getName(); 6510 Enc += "){"; 6511 6512 // We collect all encoded enumerations and order them alphanumerically. 6513 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6514 SmallVector<FieldEncoding, 16> FE; 6515 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6516 ++I) { 6517 SmallStringEnc EnumEnc; 6518 EnumEnc += "m("; 6519 EnumEnc += I->getName(); 6520 EnumEnc += "){"; 6521 I->getInitVal().toString(EnumEnc); 6522 EnumEnc += '}'; 6523 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6524 } 6525 std::sort(FE.begin(), FE.end()); 6526 unsigned E = FE.size(); 6527 for (unsigned I = 0; I != E; ++I) { 6528 if (I) 6529 Enc += ','; 6530 Enc += FE[I].str(); 6531 } 6532 } 6533 Enc += '}'; 6534 TSC.addIfComplete(ID, Enc.substr(Start), false); 6535 return true; 6536 } 6537 6538 /// Appends type's qualifier to Enc. 6539 /// This is done prior to appending the type's encoding. 6540 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6541 // Qualifiers are emitted in alphabetical order. 6542 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6543 int Lookup = 0; 6544 if (QT.isConstQualified()) 6545 Lookup += 1<<0; 6546 if (QT.isRestrictQualified()) 6547 Lookup += 1<<1; 6548 if (QT.isVolatileQualified()) 6549 Lookup += 1<<2; 6550 Enc += Table[Lookup]; 6551 } 6552 6553 /// Appends built-in types to Enc. 6554 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6555 const char *EncType; 6556 switch (BT->getKind()) { 6557 case BuiltinType::Void: 6558 EncType = "0"; 6559 break; 6560 case BuiltinType::Bool: 6561 EncType = "b"; 6562 break; 6563 case BuiltinType::Char_U: 6564 EncType = "uc"; 6565 break; 6566 case BuiltinType::UChar: 6567 EncType = "uc"; 6568 break; 6569 case BuiltinType::SChar: 6570 EncType = "sc"; 6571 break; 6572 case BuiltinType::UShort: 6573 EncType = "us"; 6574 break; 6575 case BuiltinType::Short: 6576 EncType = "ss"; 6577 break; 6578 case BuiltinType::UInt: 6579 EncType = "ui"; 6580 break; 6581 case BuiltinType::Int: 6582 EncType = "si"; 6583 break; 6584 case BuiltinType::ULong: 6585 EncType = "ul"; 6586 break; 6587 case BuiltinType::Long: 6588 EncType = "sl"; 6589 break; 6590 case BuiltinType::ULongLong: 6591 EncType = "ull"; 6592 break; 6593 case BuiltinType::LongLong: 6594 EncType = "sll"; 6595 break; 6596 case BuiltinType::Float: 6597 EncType = "ft"; 6598 break; 6599 case BuiltinType::Double: 6600 EncType = "d"; 6601 break; 6602 case BuiltinType::LongDouble: 6603 EncType = "ld"; 6604 break; 6605 default: 6606 return false; 6607 } 6608 Enc += EncType; 6609 return true; 6610 } 6611 6612 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6613 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6614 const CodeGen::CodeGenModule &CGM, 6615 TypeStringCache &TSC) { 6616 Enc += "p("; 6617 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6618 return false; 6619 Enc += ')'; 6620 return true; 6621 } 6622 6623 /// Appends array encoding to Enc before calling appendType for the element. 6624 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6625 const ArrayType *AT, 6626 const CodeGen::CodeGenModule &CGM, 6627 TypeStringCache &TSC, StringRef NoSizeEnc) { 6628 if (AT->getSizeModifier() != ArrayType::Normal) 6629 return false; 6630 Enc += "a("; 6631 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6632 CAT->getSize().toStringUnsigned(Enc); 6633 else 6634 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6635 Enc += ':'; 6636 // The Qualifiers should be attached to the type rather than the array. 6637 appendQualifier(Enc, QT); 6638 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6639 return false; 6640 Enc += ')'; 6641 return true; 6642 } 6643 6644 /// Appends a function encoding to Enc, calling appendType for the return type 6645 /// and the arguments. 6646 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6647 const CodeGen::CodeGenModule &CGM, 6648 TypeStringCache &TSC) { 6649 Enc += "f{"; 6650 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6651 return false; 6652 Enc += "}("; 6653 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6654 // N.B. we are only interested in the adjusted param types. 6655 auto I = FPT->param_type_begin(); 6656 auto E = FPT->param_type_end(); 6657 if (I != E) { 6658 do { 6659 if (!appendType(Enc, *I, CGM, TSC)) 6660 return false; 6661 ++I; 6662 if (I != E) 6663 Enc += ','; 6664 } while (I != E); 6665 if (FPT->isVariadic()) 6666 Enc += ",va"; 6667 } else { 6668 if (FPT->isVariadic()) 6669 Enc += "va"; 6670 else 6671 Enc += '0'; 6672 } 6673 } 6674 Enc += ')'; 6675 return true; 6676 } 6677 6678 /// Handles the type's qualifier before dispatching a call to handle specific 6679 /// type encodings. 6680 static bool appendType(SmallStringEnc &Enc, QualType QType, 6681 const CodeGen::CodeGenModule &CGM, 6682 TypeStringCache &TSC) { 6683 6684 QualType QT = QType.getCanonicalType(); 6685 6686 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6687 // The Qualifiers should be attached to the type rather than the array. 6688 // Thus we don't call appendQualifier() here. 6689 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 6690 6691 appendQualifier(Enc, QT); 6692 6693 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 6694 return appendBuiltinType(Enc, BT); 6695 6696 if (const PointerType *PT = QT->getAs<PointerType>()) 6697 return appendPointerType(Enc, PT, CGM, TSC); 6698 6699 if (const EnumType *ET = QT->getAs<EnumType>()) 6700 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 6701 6702 if (const RecordType *RT = QT->getAsStructureType()) 6703 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6704 6705 if (const RecordType *RT = QT->getAsUnionType()) 6706 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6707 6708 if (const FunctionType *FT = QT->getAs<FunctionType>()) 6709 return appendFunctionType(Enc, FT, CGM, TSC); 6710 6711 return false; 6712 } 6713 6714 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6715 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 6716 if (!D) 6717 return false; 6718 6719 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6720 if (FD->getLanguageLinkage() != CLanguageLinkage) 6721 return false; 6722 return appendType(Enc, FD->getType(), CGM, TSC); 6723 } 6724 6725 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 6726 if (VD->getLanguageLinkage() != CLanguageLinkage) 6727 return false; 6728 QualType QT = VD->getType().getCanonicalType(); 6729 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 6730 // Global ArrayTypes are given a size of '*' if the size is unknown. 6731 // The Qualifiers should be attached to the type rather than the array. 6732 // Thus we don't call appendQualifier() here. 6733 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 6734 } 6735 return appendType(Enc, QT, CGM, TSC); 6736 } 6737 return false; 6738 } 6739 6740 6741 //===----------------------------------------------------------------------===// 6742 // Driver code 6743 //===----------------------------------------------------------------------===// 6744 6745 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 6746 if (TheTargetCodeGenInfo) 6747 return *TheTargetCodeGenInfo; 6748 6749 const llvm::Triple &Triple = getTarget().getTriple(); 6750 switch (Triple.getArch()) { 6751 default: 6752 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 6753 6754 case llvm::Triple::le32: 6755 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 6756 case llvm::Triple::mips: 6757 case llvm::Triple::mipsel: 6758 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 6759 6760 case llvm::Triple::mips64: 6761 case llvm::Triple::mips64el: 6762 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 6763 6764 case llvm::Triple::aarch64: 6765 case llvm::Triple::aarch64_be: { 6766 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 6767 if (getTarget().getABI() == "darwinpcs") 6768 Kind = AArch64ABIInfo::DarwinPCS; 6769 6770 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 6771 } 6772 6773 case llvm::Triple::arm: 6774 case llvm::Triple::armeb: 6775 case llvm::Triple::thumb: 6776 case llvm::Triple::thumbeb: 6777 { 6778 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 6779 if (getTarget().getABI() == "apcs-gnu") 6780 Kind = ARMABIInfo::APCS; 6781 else if (CodeGenOpts.FloatABI == "hard" || 6782 (CodeGenOpts.FloatABI != "soft" && 6783 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 6784 Kind = ARMABIInfo::AAPCS_VFP; 6785 6786 switch (Triple.getOS()) { 6787 case llvm::Triple::NaCl: 6788 return *(TheTargetCodeGenInfo = 6789 new NaClARMTargetCodeGenInfo(Types, Kind)); 6790 default: 6791 return *(TheTargetCodeGenInfo = 6792 new ARMTargetCodeGenInfo(Types, Kind)); 6793 } 6794 } 6795 6796 case llvm::Triple::ppc: 6797 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 6798 case llvm::Triple::ppc64: 6799 if (Triple.isOSBinFormatELF()) { 6800 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 6801 if (getTarget().getABI() == "elfv2") 6802 Kind = PPC64_SVR4_ABIInfo::ELFv2; 6803 6804 return *(TheTargetCodeGenInfo = 6805 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 6806 } else 6807 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 6808 case llvm::Triple::ppc64le: { 6809 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 6810 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 6811 if (getTarget().getABI() == "elfv1") 6812 Kind = PPC64_SVR4_ABIInfo::ELFv1; 6813 6814 return *(TheTargetCodeGenInfo = 6815 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 6816 } 6817 6818 case llvm::Triple::nvptx: 6819 case llvm::Triple::nvptx64: 6820 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 6821 6822 case llvm::Triple::msp430: 6823 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 6824 6825 case llvm::Triple::systemz: 6826 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 6827 6828 case llvm::Triple::tce: 6829 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 6830 6831 case llvm::Triple::x86: { 6832 bool IsDarwinVectorABI = Triple.isOSDarwin(); 6833 bool IsSmallStructInRegABI = 6834 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 6835 bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); 6836 6837 if (Triple.getOS() == llvm::Triple::Win32) { 6838 return *(TheTargetCodeGenInfo = 6839 new WinX86_32TargetCodeGenInfo(Types, 6840 IsDarwinVectorABI, IsSmallStructInRegABI, 6841 IsWin32FloatStructABI, 6842 CodeGenOpts.NumRegisterParameters)); 6843 } else { 6844 return *(TheTargetCodeGenInfo = 6845 new X86_32TargetCodeGenInfo(Types, 6846 IsDarwinVectorABI, IsSmallStructInRegABI, 6847 IsWin32FloatStructABI, 6848 CodeGenOpts.NumRegisterParameters)); 6849 } 6850 } 6851 6852 case llvm::Triple::x86_64: { 6853 bool HasAVX = getTarget().getABI() == "avx"; 6854 6855 switch (Triple.getOS()) { 6856 case llvm::Triple::Win32: 6857 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 6858 case llvm::Triple::NaCl: 6859 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 6860 HasAVX)); 6861 default: 6862 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 6863 HasAVX)); 6864 } 6865 } 6866 case llvm::Triple::hexagon: 6867 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 6868 case llvm::Triple::sparcv9: 6869 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 6870 case llvm::Triple::xcore: 6871 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 6872 } 6873 } 6874