1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 30 llvm::Value *Array, 31 llvm::Value *Value, 32 unsigned FirstIndex, 33 unsigned LastIndex) { 34 // Alternatively, we could emit this as a loop in the source. 35 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 36 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 37 Builder.CreateStore(Value, Cell); 38 } 39 } 40 41 static bool isAggregateTypeForABI(QualType T) { 42 return !CodeGenFunction::hasScalarEvaluationKind(T) || 43 T->isMemberFunctionPointerType(); 44 } 45 46 ABIInfo::~ABIInfo() {} 47 48 static bool isRecordReturnIndirect(const RecordType *RT, 49 CGCXXABI &CXXABI) { 50 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 51 if (!RD) 52 return false; 53 return CXXABI.isReturnTypeIndirect(RD); 54 } 55 56 57 static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) { 58 const RecordType *RT = T->getAs<RecordType>(); 59 if (!RT) 60 return false; 61 return isRecordReturnIndirect(RT, CXXABI); 62 } 63 64 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 65 CGCXXABI &CXXABI) { 66 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 67 if (!RD) 68 return CGCXXABI::RAA_Default; 69 return CXXABI.getRecordArgABI(RD); 70 } 71 72 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 73 CGCXXABI &CXXABI) { 74 const RecordType *RT = T->getAs<RecordType>(); 75 if (!RT) 76 return CGCXXABI::RAA_Default; 77 return getRecordArgABI(RT, CXXABI); 78 } 79 80 CGCXXABI &ABIInfo::getCXXABI() const { 81 return CGT.getCXXABI(); 82 } 83 84 ASTContext &ABIInfo::getContext() const { 85 return CGT.getContext(); 86 } 87 88 llvm::LLVMContext &ABIInfo::getVMContext() const { 89 return CGT.getLLVMContext(); 90 } 91 92 const llvm::DataLayout &ABIInfo::getDataLayout() const { 93 return CGT.getDataLayout(); 94 } 95 96 const TargetInfo &ABIInfo::getTarget() const { 97 return CGT.getTarget(); 98 } 99 100 void ABIArgInfo::dump() const { 101 raw_ostream &OS = llvm::errs(); 102 OS << "(ABIArgInfo Kind="; 103 switch (TheKind) { 104 case Direct: 105 OS << "Direct Type="; 106 if (llvm::Type *Ty = getCoerceToType()) 107 Ty->print(OS); 108 else 109 OS << "null"; 110 break; 111 case Extend: 112 OS << "Extend"; 113 break; 114 case Ignore: 115 OS << "Ignore"; 116 break; 117 case Indirect: 118 OS << "Indirect Align=" << getIndirectAlign() 119 << " ByVal=" << getIndirectByVal() 120 << " Realign=" << getIndirectRealign(); 121 break; 122 case Expand: 123 OS << "Expand"; 124 break; 125 } 126 OS << ")\n"; 127 } 128 129 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 130 131 // If someone can figure out a general rule for this, that would be great. 132 // It's probably just doomed to be platform-dependent, though. 133 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 134 // Verified for: 135 // x86-64 FreeBSD, Linux, Darwin 136 // x86-32 FreeBSD, Linux, Darwin 137 // PowerPC Linux, Darwin 138 // ARM Darwin (*not* EABI) 139 // AArch64 Linux 140 return 32; 141 } 142 143 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 144 const FunctionNoProtoType *fnType) const { 145 // The following conventions are known to require this to be false: 146 // x86_stdcall 147 // MIPS 148 // For everything else, we just prefer false unless we opt out. 149 return false; 150 } 151 152 void 153 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 154 llvm::SmallString<24> &Opt) const { 155 // This assumes the user is passing a library name like "rt" instead of a 156 // filename like "librt.a/so", and that they don't care whether it's static or 157 // dynamic. 158 Opt = "-l"; 159 Opt += Lib; 160 } 161 162 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 163 164 /// isEmptyField - Return true iff a the field is "empty", that is it 165 /// is an unnamed bit-field or an (array of) empty record(s). 166 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 167 bool AllowArrays) { 168 if (FD->isUnnamedBitfield()) 169 return true; 170 171 QualType FT = FD->getType(); 172 173 // Constant arrays of empty records count as empty, strip them off. 174 // Constant arrays of zero length always count as empty. 175 if (AllowArrays) 176 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 177 if (AT->getSize() == 0) 178 return true; 179 FT = AT->getElementType(); 180 } 181 182 const RecordType *RT = FT->getAs<RecordType>(); 183 if (!RT) 184 return false; 185 186 // C++ record fields are never empty, at least in the Itanium ABI. 187 // 188 // FIXME: We should use a predicate for whether this behavior is true in the 189 // current ABI. 190 if (isa<CXXRecordDecl>(RT->getDecl())) 191 return false; 192 193 return isEmptyRecord(Context, FT, AllowArrays); 194 } 195 196 /// isEmptyRecord - Return true iff a structure contains only empty 197 /// fields. Note that a structure with a flexible array member is not 198 /// considered empty. 199 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 200 const RecordType *RT = T->getAs<RecordType>(); 201 if (!RT) 202 return 0; 203 const RecordDecl *RD = RT->getDecl(); 204 if (RD->hasFlexibleArrayMember()) 205 return false; 206 207 // If this is a C++ record, check the bases first. 208 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 209 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 210 e = CXXRD->bases_end(); i != e; ++i) 211 if (!isEmptyRecord(Context, i->getType(), true)) 212 return false; 213 214 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 215 i != e; ++i) 216 if (!isEmptyField(Context, *i, AllowArrays)) 217 return false; 218 return true; 219 } 220 221 /// isSingleElementStruct - Determine if a structure is a "single 222 /// element struct", i.e. it has exactly one non-empty field or 223 /// exactly one field which is itself a single element 224 /// struct. Structures with flexible array members are never 225 /// considered single element structs. 226 /// 227 /// \return The field declaration for the single non-empty field, if 228 /// it exists. 229 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 230 const RecordType *RT = T->getAsStructureType(); 231 if (!RT) 232 return 0; 233 234 const RecordDecl *RD = RT->getDecl(); 235 if (RD->hasFlexibleArrayMember()) 236 return 0; 237 238 const Type *Found = 0; 239 240 // If this is a C++ record, check the bases first. 241 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 242 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 243 e = CXXRD->bases_end(); i != e; ++i) { 244 // Ignore empty records. 245 if (isEmptyRecord(Context, i->getType(), true)) 246 continue; 247 248 // If we already found an element then this isn't a single-element struct. 249 if (Found) 250 return 0; 251 252 // If this is non-empty and not a single element struct, the composite 253 // cannot be a single element struct. 254 Found = isSingleElementStruct(i->getType(), Context); 255 if (!Found) 256 return 0; 257 } 258 } 259 260 // Check for single element. 261 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 262 i != e; ++i) { 263 const FieldDecl *FD = *i; 264 QualType FT = FD->getType(); 265 266 // Ignore empty fields. 267 if (isEmptyField(Context, FD, true)) 268 continue; 269 270 // If we already found an element then this isn't a single-element 271 // struct. 272 if (Found) 273 return 0; 274 275 // Treat single element arrays as the element. 276 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 277 if (AT->getSize().getZExtValue() != 1) 278 break; 279 FT = AT->getElementType(); 280 } 281 282 if (!isAggregateTypeForABI(FT)) { 283 Found = FT.getTypePtr(); 284 } else { 285 Found = isSingleElementStruct(FT, Context); 286 if (!Found) 287 return 0; 288 } 289 } 290 291 // We don't consider a struct a single-element struct if it has 292 // padding beyond the element type. 293 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 294 return 0; 295 296 return Found; 297 } 298 299 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 300 // Treat complex types as the element type. 301 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 302 Ty = CTy->getElementType(); 303 304 // Check for a type which we know has a simple scalar argument-passing 305 // convention without any padding. (We're specifically looking for 32 306 // and 64-bit integer and integer-equivalents, float, and double.) 307 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 308 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 309 return false; 310 311 uint64_t Size = Context.getTypeSize(Ty); 312 return Size == 32 || Size == 64; 313 } 314 315 /// canExpandIndirectArgument - Test whether an argument type which is to be 316 /// passed indirectly (on the stack) would have the equivalent layout if it was 317 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 318 /// inhibiting optimizations. 319 /// 320 // FIXME: This predicate is missing many cases, currently it just follows 321 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 322 // should probably make this smarter, or better yet make the LLVM backend 323 // capable of handling it. 324 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 325 // We can only expand structure types. 326 const RecordType *RT = Ty->getAs<RecordType>(); 327 if (!RT) 328 return false; 329 330 // We can only expand (C) structures. 331 // 332 // FIXME: This needs to be generalized to handle classes as well. 333 const RecordDecl *RD = RT->getDecl(); 334 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 335 return false; 336 337 uint64_t Size = 0; 338 339 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 340 i != e; ++i) { 341 const FieldDecl *FD = *i; 342 343 if (!is32Or64BitBasicType(FD->getType(), Context)) 344 return false; 345 346 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 347 // how to expand them yet, and the predicate for telling if a bitfield still 348 // counts as "basic" is more complicated than what we were doing previously. 349 if (FD->isBitField()) 350 return false; 351 352 Size += Context.getTypeSize(FD->getType()); 353 } 354 355 // Make sure there are not any holes in the struct. 356 if (Size != Context.getTypeSize(Ty)) 357 return false; 358 359 return true; 360 } 361 362 namespace { 363 /// DefaultABIInfo - The default implementation for ABI specific 364 /// details. This implementation provides information which results in 365 /// self-consistent and sensible LLVM IR generation, but does not 366 /// conform to any particular ABI. 367 class DefaultABIInfo : public ABIInfo { 368 public: 369 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 370 371 ABIArgInfo classifyReturnType(QualType RetTy) const; 372 ABIArgInfo classifyArgumentType(QualType RetTy) const; 373 374 virtual void computeInfo(CGFunctionInfo &FI) const { 375 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 376 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 377 it != ie; ++it) 378 it->info = classifyArgumentType(it->type); 379 } 380 381 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 382 CodeGenFunction &CGF) const; 383 }; 384 385 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 386 public: 387 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 388 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 389 }; 390 391 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 392 CodeGenFunction &CGF) const { 393 return 0; 394 } 395 396 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 397 if (isAggregateTypeForABI(Ty)) { 398 // Records with non-trivial destructors/constructors should not be passed 399 // by value. 400 if (isRecordReturnIndirect(Ty, getCXXABI())) 401 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 402 403 return ABIArgInfo::getIndirect(0); 404 } 405 406 // Treat an enum type as its underlying type. 407 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 408 Ty = EnumTy->getDecl()->getIntegerType(); 409 410 return (Ty->isPromotableIntegerType() ? 411 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 412 } 413 414 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 415 if (RetTy->isVoidType()) 416 return ABIArgInfo::getIgnore(); 417 418 if (isAggregateTypeForABI(RetTy)) 419 return ABIArgInfo::getIndirect(0); 420 421 // Treat an enum type as its underlying type. 422 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 423 RetTy = EnumTy->getDecl()->getIntegerType(); 424 425 return (RetTy->isPromotableIntegerType() ? 426 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 427 } 428 429 //===----------------------------------------------------------------------===// 430 // le32/PNaCl bitcode ABI Implementation 431 // 432 // This is a simplified version of the x86_32 ABI. Arguments and return values 433 // are always passed on the stack. 434 //===----------------------------------------------------------------------===// 435 436 class PNaClABIInfo : public ABIInfo { 437 public: 438 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 439 440 ABIArgInfo classifyReturnType(QualType RetTy) const; 441 ABIArgInfo classifyArgumentType(QualType RetTy) const; 442 443 virtual void computeInfo(CGFunctionInfo &FI) const; 444 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 445 CodeGenFunction &CGF) const; 446 }; 447 448 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 449 public: 450 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 451 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 452 }; 453 454 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 456 457 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 458 it != ie; ++it) 459 it->info = classifyArgumentType(it->type); 460 } 461 462 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 463 CodeGenFunction &CGF) const { 464 return 0; 465 } 466 467 /// \brief Classify argument of given type \p Ty. 468 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 469 if (isAggregateTypeForABI(Ty)) { 470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 471 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 472 return ABIArgInfo::getIndirect(0); 473 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 474 // Treat an enum type as its underlying type. 475 Ty = EnumTy->getDecl()->getIntegerType(); 476 } else if (Ty->isFloatingType()) { 477 // Floating-point types don't go inreg. 478 return ABIArgInfo::getDirect(); 479 } 480 481 return (Ty->isPromotableIntegerType() ? 482 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 483 } 484 485 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 486 if (RetTy->isVoidType()) 487 return ABIArgInfo::getIgnore(); 488 489 // In the PNaCl ABI we always return records/structures on the stack. 490 if (isAggregateTypeForABI(RetTy)) 491 return ABIArgInfo::getIndirect(0); 492 493 // Treat an enum type as its underlying type. 494 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 495 RetTy = EnumTy->getDecl()->getIntegerType(); 496 497 return (RetTy->isPromotableIntegerType() ? 498 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 499 } 500 501 /// IsX86_MMXType - Return true if this is an MMX type. 502 bool IsX86_MMXType(llvm::Type *IRType) { 503 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 504 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 505 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 506 IRType->getScalarSizeInBits() != 64; 507 } 508 509 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 510 StringRef Constraint, 511 llvm::Type* Ty) { 512 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 513 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 514 // Invalid MMX constraint 515 return 0; 516 } 517 518 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 519 } 520 521 // No operation needed 522 return Ty; 523 } 524 525 //===----------------------------------------------------------------------===// 526 // X86-32 ABI Implementation 527 //===----------------------------------------------------------------------===// 528 529 /// X86_32ABIInfo - The X86-32 ABI information. 530 class X86_32ABIInfo : public ABIInfo { 531 enum Class { 532 Integer, 533 Float 534 }; 535 536 static const unsigned MinABIStackAlignInBytes = 4; 537 538 bool IsDarwinVectorABI; 539 bool IsSmallStructInRegABI; 540 bool IsWin32StructABI; 541 unsigned DefaultNumRegisterParameters; 542 543 static bool isRegisterSize(unsigned Size) { 544 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 545 } 546 547 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, 548 unsigned callingConvention); 549 550 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 551 /// such that the argument will be passed in memory. 552 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, 553 unsigned &FreeRegs) const; 554 555 /// \brief Return the alignment to use for the given type on the stack. 556 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 557 558 Class classify(QualType Ty) const; 559 ABIArgInfo classifyReturnType(QualType RetTy, 560 unsigned callingConvention) const; 561 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs, 562 bool IsFastCall) const; 563 bool shouldUseInReg(QualType Ty, unsigned &FreeRegs, 564 bool IsFastCall, bool &NeedsPadding) const; 565 566 public: 567 568 virtual void computeInfo(CGFunctionInfo &FI) const; 569 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 570 CodeGenFunction &CGF) const; 571 572 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 573 unsigned r) 574 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 575 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 576 }; 577 578 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 579 public: 580 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 581 bool d, bool p, bool w, unsigned r) 582 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 583 584 static bool isStructReturnInRegABI( 585 const llvm::Triple &Triple, const CodeGenOptions &Opts); 586 587 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 588 CodeGen::CodeGenModule &CGM) const; 589 590 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 591 // Darwin uses different dwarf register numbers for EH. 592 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 593 return 4; 594 } 595 596 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 597 llvm::Value *Address) const; 598 599 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 600 StringRef Constraint, 601 llvm::Type* Ty) const { 602 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 603 } 604 605 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { 606 unsigned Sig = (0xeb << 0) | // jmp rel8 607 (0x06 << 8) | // .+0x08 608 ('F' << 16) | 609 ('T' << 24); 610 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 611 } 612 613 }; 614 615 } 616 617 /// shouldReturnTypeInRegister - Determine if the given type should be 618 /// passed in a register (for the Darwin ABI). 619 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 620 ASTContext &Context, 621 unsigned callingConvention) { 622 uint64_t Size = Context.getTypeSize(Ty); 623 624 // Type must be register sized. 625 if (!isRegisterSize(Size)) 626 return false; 627 628 if (Ty->isVectorType()) { 629 // 64- and 128- bit vectors inside structures are not returned in 630 // registers. 631 if (Size == 64 || Size == 128) 632 return false; 633 634 return true; 635 } 636 637 // If this is a builtin, pointer, enum, complex type, member pointer, or 638 // member function pointer it is ok. 639 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 640 Ty->isAnyComplexType() || Ty->isEnumeralType() || 641 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 642 return true; 643 644 // Arrays are treated like records. 645 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 646 return shouldReturnTypeInRegister(AT->getElementType(), Context, 647 callingConvention); 648 649 // Otherwise, it must be a record type. 650 const RecordType *RT = Ty->getAs<RecordType>(); 651 if (!RT) return false; 652 653 // FIXME: Traverse bases here too. 654 655 // For thiscall conventions, structures will never be returned in 656 // a register. This is for compatibility with the MSVC ABI 657 if (callingConvention == llvm::CallingConv::X86_ThisCall && 658 RT->isStructureType()) { 659 return false; 660 } 661 662 // Structure types are passed in register if all fields would be 663 // passed in a register. 664 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), 665 e = RT->getDecl()->field_end(); i != e; ++i) { 666 const FieldDecl *FD = *i; 667 668 // Empty fields are ignored. 669 if (isEmptyField(Context, FD, true)) 670 continue; 671 672 // Check fields recursively. 673 if (!shouldReturnTypeInRegister(FD->getType(), Context, 674 callingConvention)) 675 return false; 676 } 677 return true; 678 } 679 680 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 681 unsigned callingConvention) const { 682 if (RetTy->isVoidType()) 683 return ABIArgInfo::getIgnore(); 684 685 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 686 // On Darwin, some vectors are returned in registers. 687 if (IsDarwinVectorABI) { 688 uint64_t Size = getContext().getTypeSize(RetTy); 689 690 // 128-bit vectors are a special case; they are returned in 691 // registers and we need to make sure to pick a type the LLVM 692 // backend will like. 693 if (Size == 128) 694 return ABIArgInfo::getDirect(llvm::VectorType::get( 695 llvm::Type::getInt64Ty(getVMContext()), 2)); 696 697 // Always return in register if it fits in a general purpose 698 // register, or if it is 64 bits and has a single element. 699 if ((Size == 8 || Size == 16 || Size == 32) || 700 (Size == 64 && VT->getNumElements() == 1)) 701 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 702 Size)); 703 704 return ABIArgInfo::getIndirect(0); 705 } 706 707 return ABIArgInfo::getDirect(); 708 } 709 710 if (isAggregateTypeForABI(RetTy)) { 711 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 712 if (isRecordReturnIndirect(RT, getCXXABI())) 713 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 714 715 // Structures with flexible arrays are always indirect. 716 if (RT->getDecl()->hasFlexibleArrayMember()) 717 return ABIArgInfo::getIndirect(0); 718 } 719 720 // If specified, structs and unions are always indirect. 721 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 722 return ABIArgInfo::getIndirect(0); 723 724 // Small structures which are register sized are generally returned 725 // in a register. 726 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(), 727 callingConvention)) { 728 uint64_t Size = getContext().getTypeSize(RetTy); 729 730 // As a special-case, if the struct is a "single-element" struct, and 731 // the field is of type "float" or "double", return it in a 732 // floating-point register. (MSVC does not apply this special case.) 733 // We apply a similar transformation for pointer types to improve the 734 // quality of the generated IR. 735 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 736 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 737 || SeltTy->hasPointerRepresentation()) 738 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 739 740 // FIXME: We should be able to narrow this integer in cases with dead 741 // padding. 742 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 743 } 744 745 return ABIArgInfo::getIndirect(0); 746 } 747 748 // Treat an enum type as its underlying type. 749 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 750 RetTy = EnumTy->getDecl()->getIntegerType(); 751 752 return (RetTy->isPromotableIntegerType() ? 753 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 754 } 755 756 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 757 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 758 } 759 760 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 761 const RecordType *RT = Ty->getAs<RecordType>(); 762 if (!RT) 763 return 0; 764 const RecordDecl *RD = RT->getDecl(); 765 766 // If this is a C++ record, check the bases first. 767 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 768 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 769 e = CXXRD->bases_end(); i != e; ++i) 770 if (!isRecordWithSSEVectorType(Context, i->getType())) 771 return false; 772 773 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 774 i != e; ++i) { 775 QualType FT = i->getType(); 776 777 if (isSSEVectorType(Context, FT)) 778 return true; 779 780 if (isRecordWithSSEVectorType(Context, FT)) 781 return true; 782 } 783 784 return false; 785 } 786 787 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 788 unsigned Align) const { 789 // Otherwise, if the alignment is less than or equal to the minimum ABI 790 // alignment, just use the default; the backend will handle this. 791 if (Align <= MinABIStackAlignInBytes) 792 return 0; // Use default alignment. 793 794 // On non-Darwin, the stack type alignment is always 4. 795 if (!IsDarwinVectorABI) { 796 // Set explicit alignment, since we may need to realign the top. 797 return MinABIStackAlignInBytes; 798 } 799 800 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 801 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 802 isRecordWithSSEVectorType(getContext(), Ty))) 803 return 16; 804 805 return MinABIStackAlignInBytes; 806 } 807 808 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 809 unsigned &FreeRegs) const { 810 if (!ByVal) { 811 if (FreeRegs) { 812 --FreeRegs; // Non-byval indirects just use one pointer. 813 return ABIArgInfo::getIndirectInReg(0, false); 814 } 815 return ABIArgInfo::getIndirect(0, false); 816 } 817 818 // Compute the byval alignment. 819 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 820 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 821 if (StackAlign == 0) 822 return ABIArgInfo::getIndirect(4); 823 824 // If the stack alignment is less than the type alignment, realign the 825 // argument. 826 if (StackAlign < TypeAlign) 827 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, 828 /*Realign=*/true); 829 830 return ABIArgInfo::getIndirect(StackAlign); 831 } 832 833 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 834 const Type *T = isSingleElementStruct(Ty, getContext()); 835 if (!T) 836 T = Ty.getTypePtr(); 837 838 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 839 BuiltinType::Kind K = BT->getKind(); 840 if (K == BuiltinType::Float || K == BuiltinType::Double) 841 return Float; 842 } 843 return Integer; 844 } 845 846 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs, 847 bool IsFastCall, bool &NeedsPadding) const { 848 NeedsPadding = false; 849 Class C = classify(Ty); 850 if (C == Float) 851 return false; 852 853 unsigned Size = getContext().getTypeSize(Ty); 854 unsigned SizeInRegs = (Size + 31) / 32; 855 856 if (SizeInRegs == 0) 857 return false; 858 859 if (SizeInRegs > FreeRegs) { 860 FreeRegs = 0; 861 return false; 862 } 863 864 FreeRegs -= SizeInRegs; 865 866 if (IsFastCall) { 867 if (Size > 32) 868 return false; 869 870 if (Ty->isIntegralOrEnumerationType()) 871 return true; 872 873 if (Ty->isPointerType()) 874 return true; 875 876 if (Ty->isReferenceType()) 877 return true; 878 879 if (FreeRegs) 880 NeedsPadding = true; 881 882 return false; 883 } 884 885 return true; 886 } 887 888 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 889 unsigned &FreeRegs, 890 bool IsFastCall) const { 891 // FIXME: Set alignment on indirect arguments. 892 if (isAggregateTypeForABI(Ty)) { 893 if (const RecordType *RT = Ty->getAs<RecordType>()) { 894 if (IsWin32StructABI) 895 return getIndirectResult(Ty, true, FreeRegs); 896 897 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 898 return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs); 899 900 // Structures with flexible arrays are always indirect. 901 if (RT->getDecl()->hasFlexibleArrayMember()) 902 return getIndirectResult(Ty, true, FreeRegs); 903 } 904 905 // Ignore empty structs/unions. 906 if (isEmptyRecord(getContext(), Ty, true)) 907 return ABIArgInfo::getIgnore(); 908 909 llvm::LLVMContext &LLVMContext = getVMContext(); 910 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 911 bool NeedsPadding; 912 if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) { 913 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 914 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 915 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 916 return ABIArgInfo::getDirectInReg(Result); 917 } 918 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0; 919 920 // Expand small (<= 128-bit) record types when we know that the stack layout 921 // of those arguments will match the struct. This is important because the 922 // LLVM backend isn't smart enough to remove byval, which inhibits many 923 // optimizations. 924 if (getContext().getTypeSize(Ty) <= 4*32 && 925 canExpandIndirectArgument(Ty, getContext())) 926 return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType); 927 928 return getIndirectResult(Ty, true, FreeRegs); 929 } 930 931 if (const VectorType *VT = Ty->getAs<VectorType>()) { 932 // On Darwin, some vectors are passed in memory, we handle this by passing 933 // it as an i8/i16/i32/i64. 934 if (IsDarwinVectorABI) { 935 uint64_t Size = getContext().getTypeSize(Ty); 936 if ((Size == 8 || Size == 16 || Size == 32) || 937 (Size == 64 && VT->getNumElements() == 1)) 938 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 939 Size)); 940 } 941 942 if (IsX86_MMXType(CGT.ConvertType(Ty))) 943 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 944 945 return ABIArgInfo::getDirect(); 946 } 947 948 949 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 950 Ty = EnumTy->getDecl()->getIntegerType(); 951 952 bool NeedsPadding; 953 bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding); 954 955 if (Ty->isPromotableIntegerType()) { 956 if (InReg) 957 return ABIArgInfo::getExtendInReg(); 958 return ABIArgInfo::getExtend(); 959 } 960 if (InReg) 961 return ABIArgInfo::getDirectInReg(); 962 return ABIArgInfo::getDirect(); 963 } 964 965 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 966 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), 967 FI.getCallingConvention()); 968 969 unsigned CC = FI.getCallingConvention(); 970 bool IsFastCall = CC == llvm::CallingConv::X86_FastCall; 971 unsigned FreeRegs; 972 if (IsFastCall) 973 FreeRegs = 2; 974 else if (FI.getHasRegParm()) 975 FreeRegs = FI.getRegParm(); 976 else 977 FreeRegs = DefaultNumRegisterParameters; 978 979 // If the return value is indirect, then the hidden argument is consuming one 980 // integer register. 981 if (FI.getReturnInfo().isIndirect() && FreeRegs) { 982 --FreeRegs; 983 ABIArgInfo &Old = FI.getReturnInfo(); 984 Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(), 985 Old.getIndirectByVal(), 986 Old.getIndirectRealign()); 987 } 988 989 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 990 it != ie; ++it) 991 it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall); 992 } 993 994 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 995 CodeGenFunction &CGF) const { 996 llvm::Type *BPP = CGF.Int8PtrPtrTy; 997 998 CGBuilderTy &Builder = CGF.Builder; 999 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1000 "ap"); 1001 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1002 1003 // Compute if the address needs to be aligned 1004 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1005 Align = getTypeStackAlignInBytes(Ty, Align); 1006 Align = std::max(Align, 4U); 1007 if (Align > 4) { 1008 // addr = (addr + align - 1) & -align; 1009 llvm::Value *Offset = 1010 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1011 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1012 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1013 CGF.Int32Ty); 1014 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1015 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1016 Addr->getType(), 1017 "ap.cur.aligned"); 1018 } 1019 1020 llvm::Type *PTy = 1021 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1022 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1023 1024 uint64_t Offset = 1025 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1026 llvm::Value *NextAddr = 1027 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1028 "ap.next"); 1029 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1030 1031 return AddrTyped; 1032 } 1033 1034 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1035 llvm::GlobalValue *GV, 1036 CodeGen::CodeGenModule &CGM) const { 1037 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1038 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1039 // Get the LLVM function. 1040 llvm::Function *Fn = cast<llvm::Function>(GV); 1041 1042 // Now add the 'alignstack' attribute with a value of 16. 1043 llvm::AttrBuilder B; 1044 B.addStackAlignmentAttr(16); 1045 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1046 llvm::AttributeSet::get(CGM.getLLVMContext(), 1047 llvm::AttributeSet::FunctionIndex, 1048 B)); 1049 } 1050 } 1051 } 1052 1053 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1054 CodeGen::CodeGenFunction &CGF, 1055 llvm::Value *Address) const { 1056 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1057 1058 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1059 1060 // 0-7 are the eight integer registers; the order is different 1061 // on Darwin (for EH), but the range is the same. 1062 // 8 is %eip. 1063 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1064 1065 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1066 // 12-16 are st(0..4). Not sure why we stop at 4. 1067 // These have size 16, which is sizeof(long double) on 1068 // platforms with 8-byte alignment for that type. 1069 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1070 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1071 1072 } else { 1073 // 9 is %eflags, which doesn't get a size on Darwin for some 1074 // reason. 1075 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1076 1077 // 11-16 are st(0..5). Not sure why we stop at 5. 1078 // These have size 12, which is sizeof(long double) on 1079 // platforms with 4-byte alignment for that type. 1080 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1081 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1082 } 1083 1084 return false; 1085 } 1086 1087 //===----------------------------------------------------------------------===// 1088 // X86-64 ABI Implementation 1089 //===----------------------------------------------------------------------===// 1090 1091 1092 namespace { 1093 /// X86_64ABIInfo - The X86_64 ABI information. 1094 class X86_64ABIInfo : public ABIInfo { 1095 enum Class { 1096 Integer = 0, 1097 SSE, 1098 SSEUp, 1099 X87, 1100 X87Up, 1101 ComplexX87, 1102 NoClass, 1103 Memory 1104 }; 1105 1106 /// merge - Implement the X86_64 ABI merging algorithm. 1107 /// 1108 /// Merge an accumulating classification \arg Accum with a field 1109 /// classification \arg Field. 1110 /// 1111 /// \param Accum - The accumulating classification. This should 1112 /// always be either NoClass or the result of a previous merge 1113 /// call. In addition, this should never be Memory (the caller 1114 /// should just return Memory for the aggregate). 1115 static Class merge(Class Accum, Class Field); 1116 1117 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1118 /// 1119 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1120 /// final MEMORY or SSE classes when necessary. 1121 /// 1122 /// \param AggregateSize - The size of the current aggregate in 1123 /// the classification process. 1124 /// 1125 /// \param Lo - The classification for the parts of the type 1126 /// residing in the low word of the containing object. 1127 /// 1128 /// \param Hi - The classification for the parts of the type 1129 /// residing in the higher words of the containing object. 1130 /// 1131 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1132 1133 /// classify - Determine the x86_64 register classes in which the 1134 /// given type T should be passed. 1135 /// 1136 /// \param Lo - The classification for the parts of the type 1137 /// residing in the low word of the containing object. 1138 /// 1139 /// \param Hi - The classification for the parts of the type 1140 /// residing in the high word of the containing object. 1141 /// 1142 /// \param OffsetBase - The bit offset of this type in the 1143 /// containing object. Some parameters are classified different 1144 /// depending on whether they straddle an eightbyte boundary. 1145 /// 1146 /// \param isNamedArg - Whether the argument in question is a "named" 1147 /// argument, as used in AMD64-ABI 3.5.7. 1148 /// 1149 /// If a word is unused its result will be NoClass; if a type should 1150 /// be passed in Memory then at least the classification of \arg Lo 1151 /// will be Memory. 1152 /// 1153 /// The \arg Lo class will be NoClass iff the argument is ignored. 1154 /// 1155 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1156 /// also be ComplexX87. 1157 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1158 bool isNamedArg) const; 1159 1160 llvm::Type *GetByteVectorType(QualType Ty) const; 1161 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1162 unsigned IROffset, QualType SourceTy, 1163 unsigned SourceOffset) const; 1164 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1165 unsigned IROffset, QualType SourceTy, 1166 unsigned SourceOffset) const; 1167 1168 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1169 /// such that the argument will be returned in memory. 1170 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1171 1172 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1173 /// such that the argument will be passed in memory. 1174 /// 1175 /// \param freeIntRegs - The number of free integer registers remaining 1176 /// available. 1177 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1178 1179 ABIArgInfo classifyReturnType(QualType RetTy) const; 1180 1181 ABIArgInfo classifyArgumentType(QualType Ty, 1182 unsigned freeIntRegs, 1183 unsigned &neededInt, 1184 unsigned &neededSSE, 1185 bool isNamedArg) const; 1186 1187 bool IsIllegalVectorType(QualType Ty) const; 1188 1189 /// The 0.98 ABI revision clarified a lot of ambiguities, 1190 /// unfortunately in ways that were not always consistent with 1191 /// certain previous compilers. In particular, platforms which 1192 /// required strict binary compatibility with older versions of GCC 1193 /// may need to exempt themselves. 1194 bool honorsRevision0_98() const { 1195 return !getTarget().getTriple().isOSDarwin(); 1196 } 1197 1198 bool HasAVX; 1199 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1200 // 64-bit hardware. 1201 bool Has64BitPointers; 1202 1203 public: 1204 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1205 ABIInfo(CGT), HasAVX(hasavx), 1206 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1207 } 1208 1209 bool isPassedUsingAVXType(QualType type) const { 1210 unsigned neededInt, neededSSE; 1211 // The freeIntRegs argument doesn't matter here. 1212 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1213 /*isNamedArg*/true); 1214 if (info.isDirect()) { 1215 llvm::Type *ty = info.getCoerceToType(); 1216 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1217 return (vectorTy->getBitWidth() > 128); 1218 } 1219 return false; 1220 } 1221 1222 virtual void computeInfo(CGFunctionInfo &FI) const; 1223 1224 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1225 CodeGenFunction &CGF) const; 1226 }; 1227 1228 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1229 class WinX86_64ABIInfo : public ABIInfo { 1230 1231 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1232 1233 public: 1234 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1235 1236 virtual void computeInfo(CGFunctionInfo &FI) const; 1237 1238 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1239 CodeGenFunction &CGF) const; 1240 }; 1241 1242 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1243 public: 1244 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1245 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1246 1247 const X86_64ABIInfo &getABIInfo() const { 1248 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1249 } 1250 1251 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 1252 return 7; 1253 } 1254 1255 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1256 llvm::Value *Address) const { 1257 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1258 1259 // 0-15 are the 16 integer registers. 1260 // 16 is %rip. 1261 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1262 return false; 1263 } 1264 1265 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1266 StringRef Constraint, 1267 llvm::Type* Ty) const { 1268 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1269 } 1270 1271 bool isNoProtoCallVariadic(const CallArgList &args, 1272 const FunctionNoProtoType *fnType) const { 1273 // The default CC on x86-64 sets %al to the number of SSA 1274 // registers used, and GCC sets this when calling an unprototyped 1275 // function, so we override the default behavior. However, don't do 1276 // that when AVX types are involved: the ABI explicitly states it is 1277 // undefined, and it doesn't work in practice because of how the ABI 1278 // defines varargs anyway. 1279 if (fnType->getCallConv() == CC_C) { 1280 bool HasAVXType = false; 1281 for (CallArgList::const_iterator 1282 it = args.begin(), ie = args.end(); it != ie; ++it) { 1283 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1284 HasAVXType = true; 1285 break; 1286 } 1287 } 1288 1289 if (!HasAVXType) 1290 return true; 1291 } 1292 1293 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1294 } 1295 1296 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { 1297 unsigned Sig = (0xeb << 0) | // jmp rel8 1298 (0x0a << 8) | // .+0x0c 1299 ('F' << 16) | 1300 ('T' << 24); 1301 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1302 } 1303 1304 }; 1305 1306 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1307 // If the argument does not end in .lib, automatically add the suffix. This 1308 // matches the behavior of MSVC. 1309 std::string ArgStr = Lib; 1310 if (!Lib.endswith_lower(".lib")) 1311 ArgStr += ".lib"; 1312 return ArgStr; 1313 } 1314 1315 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1316 public: 1317 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1318 bool d, bool p, bool w, unsigned RegParms) 1319 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1320 1321 void getDependentLibraryOption(llvm::StringRef Lib, 1322 llvm::SmallString<24> &Opt) const { 1323 Opt = "/DEFAULTLIB:"; 1324 Opt += qualifyWindowsLibrary(Lib); 1325 } 1326 1327 void getDetectMismatchOption(llvm::StringRef Name, 1328 llvm::StringRef Value, 1329 llvm::SmallString<32> &Opt) const { 1330 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1331 } 1332 }; 1333 1334 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1335 public: 1336 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1337 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1338 1339 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 1340 return 7; 1341 } 1342 1343 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1344 llvm::Value *Address) const { 1345 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1346 1347 // 0-15 are the 16 integer registers. 1348 // 16 is %rip. 1349 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1350 return false; 1351 } 1352 1353 void getDependentLibraryOption(llvm::StringRef Lib, 1354 llvm::SmallString<24> &Opt) const { 1355 Opt = "/DEFAULTLIB:"; 1356 Opt += qualifyWindowsLibrary(Lib); 1357 } 1358 1359 void getDetectMismatchOption(llvm::StringRef Name, 1360 llvm::StringRef Value, 1361 llvm::SmallString<32> &Opt) const { 1362 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1363 } 1364 }; 1365 1366 } 1367 1368 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1369 Class &Hi) const { 1370 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1371 // 1372 // (a) If one of the classes is Memory, the whole argument is passed in 1373 // memory. 1374 // 1375 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1376 // memory. 1377 // 1378 // (c) If the size of the aggregate exceeds two eightbytes and the first 1379 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1380 // argument is passed in memory. NOTE: This is necessary to keep the 1381 // ABI working for processors that don't support the __m256 type. 1382 // 1383 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1384 // 1385 // Some of these are enforced by the merging logic. Others can arise 1386 // only with unions; for example: 1387 // union { _Complex double; unsigned; } 1388 // 1389 // Note that clauses (b) and (c) were added in 0.98. 1390 // 1391 if (Hi == Memory) 1392 Lo = Memory; 1393 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1394 Lo = Memory; 1395 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1396 Lo = Memory; 1397 if (Hi == SSEUp && Lo != SSE) 1398 Hi = SSE; 1399 } 1400 1401 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1402 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1403 // classified recursively so that always two fields are 1404 // considered. The resulting class is calculated according to 1405 // the classes of the fields in the eightbyte: 1406 // 1407 // (a) If both classes are equal, this is the resulting class. 1408 // 1409 // (b) If one of the classes is NO_CLASS, the resulting class is 1410 // the other class. 1411 // 1412 // (c) If one of the classes is MEMORY, the result is the MEMORY 1413 // class. 1414 // 1415 // (d) If one of the classes is INTEGER, the result is the 1416 // INTEGER. 1417 // 1418 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1419 // MEMORY is used as class. 1420 // 1421 // (f) Otherwise class SSE is used. 1422 1423 // Accum should never be memory (we should have returned) or 1424 // ComplexX87 (because this cannot be passed in a structure). 1425 assert((Accum != Memory && Accum != ComplexX87) && 1426 "Invalid accumulated classification during merge."); 1427 if (Accum == Field || Field == NoClass) 1428 return Accum; 1429 if (Field == Memory) 1430 return Memory; 1431 if (Accum == NoClass) 1432 return Field; 1433 if (Accum == Integer || Field == Integer) 1434 return Integer; 1435 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1436 Accum == X87 || Accum == X87Up) 1437 return Memory; 1438 return SSE; 1439 } 1440 1441 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1442 Class &Lo, Class &Hi, bool isNamedArg) const { 1443 // FIXME: This code can be simplified by introducing a simple value class for 1444 // Class pairs with appropriate constructor methods for the various 1445 // situations. 1446 1447 // FIXME: Some of the split computations are wrong; unaligned vectors 1448 // shouldn't be passed in registers for example, so there is no chance they 1449 // can straddle an eightbyte. Verify & simplify. 1450 1451 Lo = Hi = NoClass; 1452 1453 Class &Current = OffsetBase < 64 ? Lo : Hi; 1454 Current = Memory; 1455 1456 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1457 BuiltinType::Kind k = BT->getKind(); 1458 1459 if (k == BuiltinType::Void) { 1460 Current = NoClass; 1461 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1462 Lo = Integer; 1463 Hi = Integer; 1464 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1465 Current = Integer; 1466 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1467 (k == BuiltinType::LongDouble && 1468 getTarget().getTriple().isOSNaCl())) { 1469 Current = SSE; 1470 } else if (k == BuiltinType::LongDouble) { 1471 Lo = X87; 1472 Hi = X87Up; 1473 } 1474 // FIXME: _Decimal32 and _Decimal64 are SSE. 1475 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1476 return; 1477 } 1478 1479 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1480 // Classify the underlying integer type. 1481 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1482 return; 1483 } 1484 1485 if (Ty->hasPointerRepresentation()) { 1486 Current = Integer; 1487 return; 1488 } 1489 1490 if (Ty->isMemberPointerType()) { 1491 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1492 Lo = Hi = Integer; 1493 else 1494 Current = Integer; 1495 return; 1496 } 1497 1498 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1499 uint64_t Size = getContext().getTypeSize(VT); 1500 if (Size == 32) { 1501 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1502 // float> as integer. 1503 Current = Integer; 1504 1505 // If this type crosses an eightbyte boundary, it should be 1506 // split. 1507 uint64_t EB_Real = (OffsetBase) / 64; 1508 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1509 if (EB_Real != EB_Imag) 1510 Hi = Lo; 1511 } else if (Size == 64) { 1512 // gcc passes <1 x double> in memory. :( 1513 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1514 return; 1515 1516 // gcc passes <1 x long long> as INTEGER. 1517 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1518 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1519 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1520 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1521 Current = Integer; 1522 else 1523 Current = SSE; 1524 1525 // If this type crosses an eightbyte boundary, it should be 1526 // split. 1527 if (OffsetBase && OffsetBase != 64) 1528 Hi = Lo; 1529 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1530 // Arguments of 256-bits are split into four eightbyte chunks. The 1531 // least significant one belongs to class SSE and all the others to class 1532 // SSEUP. The original Lo and Hi design considers that types can't be 1533 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1534 // This design isn't correct for 256-bits, but since there're no cases 1535 // where the upper parts would need to be inspected, avoid adding 1536 // complexity and just consider Hi to match the 64-256 part. 1537 // 1538 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1539 // registers if they are "named", i.e. not part of the "..." of a 1540 // variadic function. 1541 Lo = SSE; 1542 Hi = SSEUp; 1543 } 1544 return; 1545 } 1546 1547 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1548 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1549 1550 uint64_t Size = getContext().getTypeSize(Ty); 1551 if (ET->isIntegralOrEnumerationType()) { 1552 if (Size <= 64) 1553 Current = Integer; 1554 else if (Size <= 128) 1555 Lo = Hi = Integer; 1556 } else if (ET == getContext().FloatTy) 1557 Current = SSE; 1558 else if (ET == getContext().DoubleTy || 1559 (ET == getContext().LongDoubleTy && 1560 getTarget().getTriple().isOSNaCl())) 1561 Lo = Hi = SSE; 1562 else if (ET == getContext().LongDoubleTy) 1563 Current = ComplexX87; 1564 1565 // If this complex type crosses an eightbyte boundary then it 1566 // should be split. 1567 uint64_t EB_Real = (OffsetBase) / 64; 1568 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1569 if (Hi == NoClass && EB_Real != EB_Imag) 1570 Hi = Lo; 1571 1572 return; 1573 } 1574 1575 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1576 // Arrays are treated like structures. 1577 1578 uint64_t Size = getContext().getTypeSize(Ty); 1579 1580 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1581 // than four eightbytes, ..., it has class MEMORY. 1582 if (Size > 256) 1583 return; 1584 1585 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1586 // fields, it has class MEMORY. 1587 // 1588 // Only need to check alignment of array base. 1589 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1590 return; 1591 1592 // Otherwise implement simplified merge. We could be smarter about 1593 // this, but it isn't worth it and would be harder to verify. 1594 Current = NoClass; 1595 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1596 uint64_t ArraySize = AT->getSize().getZExtValue(); 1597 1598 // The only case a 256-bit wide vector could be used is when the array 1599 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1600 // to work for sizes wider than 128, early check and fallback to memory. 1601 if (Size > 128 && EltSize != 256) 1602 return; 1603 1604 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1605 Class FieldLo, FieldHi; 1606 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1607 Lo = merge(Lo, FieldLo); 1608 Hi = merge(Hi, FieldHi); 1609 if (Lo == Memory || Hi == Memory) 1610 break; 1611 } 1612 1613 postMerge(Size, Lo, Hi); 1614 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1615 return; 1616 } 1617 1618 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1619 uint64_t Size = getContext().getTypeSize(Ty); 1620 1621 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1622 // than four eightbytes, ..., it has class MEMORY. 1623 if (Size > 256) 1624 return; 1625 1626 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1627 // copy constructor or a non-trivial destructor, it is passed by invisible 1628 // reference. 1629 if (getRecordArgABI(RT, getCXXABI())) 1630 return; 1631 1632 const RecordDecl *RD = RT->getDecl(); 1633 1634 // Assume variable sized types are passed in memory. 1635 if (RD->hasFlexibleArrayMember()) 1636 return; 1637 1638 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1639 1640 // Reset Lo class, this will be recomputed. 1641 Current = NoClass; 1642 1643 // If this is a C++ record, classify the bases first. 1644 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1645 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1646 e = CXXRD->bases_end(); i != e; ++i) { 1647 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1648 "Unexpected base class!"); 1649 const CXXRecordDecl *Base = 1650 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1651 1652 // Classify this field. 1653 // 1654 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1655 // single eightbyte, each is classified separately. Each eightbyte gets 1656 // initialized to class NO_CLASS. 1657 Class FieldLo, FieldHi; 1658 uint64_t Offset = 1659 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1660 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1661 Lo = merge(Lo, FieldLo); 1662 Hi = merge(Hi, FieldHi); 1663 if (Lo == Memory || Hi == Memory) 1664 break; 1665 } 1666 } 1667 1668 // Classify the fields one at a time, merging the results. 1669 unsigned idx = 0; 1670 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1671 i != e; ++i, ++idx) { 1672 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1673 bool BitField = i->isBitField(); 1674 1675 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1676 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1677 // 1678 // The only case a 256-bit wide vector could be used is when the struct 1679 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1680 // to work for sizes wider than 128, early check and fallback to memory. 1681 // 1682 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1683 Lo = Memory; 1684 return; 1685 } 1686 // Note, skip this test for bit-fields, see below. 1687 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1688 Lo = Memory; 1689 return; 1690 } 1691 1692 // Classify this field. 1693 // 1694 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1695 // exceeds a single eightbyte, each is classified 1696 // separately. Each eightbyte gets initialized to class 1697 // NO_CLASS. 1698 Class FieldLo, FieldHi; 1699 1700 // Bit-fields require special handling, they do not force the 1701 // structure to be passed in memory even if unaligned, and 1702 // therefore they can straddle an eightbyte. 1703 if (BitField) { 1704 // Ignore padding bit-fields. 1705 if (i->isUnnamedBitfield()) 1706 continue; 1707 1708 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1709 uint64_t Size = i->getBitWidthValue(getContext()); 1710 1711 uint64_t EB_Lo = Offset / 64; 1712 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1713 1714 if (EB_Lo) { 1715 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1716 FieldLo = NoClass; 1717 FieldHi = Integer; 1718 } else { 1719 FieldLo = Integer; 1720 FieldHi = EB_Hi ? Integer : NoClass; 1721 } 1722 } else 1723 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1724 Lo = merge(Lo, FieldLo); 1725 Hi = merge(Hi, FieldHi); 1726 if (Lo == Memory || Hi == Memory) 1727 break; 1728 } 1729 1730 postMerge(Size, Lo, Hi); 1731 } 1732 } 1733 1734 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1735 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1736 // place naturally. 1737 if (!isAggregateTypeForABI(Ty)) { 1738 // Treat an enum type as its underlying type. 1739 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1740 Ty = EnumTy->getDecl()->getIntegerType(); 1741 1742 return (Ty->isPromotableIntegerType() ? 1743 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1744 } 1745 1746 return ABIArgInfo::getIndirect(0); 1747 } 1748 1749 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1750 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1751 uint64_t Size = getContext().getTypeSize(VecTy); 1752 unsigned LargestVector = HasAVX ? 256 : 128; 1753 if (Size <= 64 || Size > LargestVector) 1754 return true; 1755 } 1756 1757 return false; 1758 } 1759 1760 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1761 unsigned freeIntRegs) const { 1762 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1763 // place naturally. 1764 // 1765 // This assumption is optimistic, as there could be free registers available 1766 // when we need to pass this argument in memory, and LLVM could try to pass 1767 // the argument in the free register. This does not seem to happen currently, 1768 // but this code would be much safer if we could mark the argument with 1769 // 'onstack'. See PR12193. 1770 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1771 // Treat an enum type as its underlying type. 1772 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1773 Ty = EnumTy->getDecl()->getIntegerType(); 1774 1775 return (Ty->isPromotableIntegerType() ? 1776 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1777 } 1778 1779 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1780 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1781 1782 // Compute the byval alignment. We specify the alignment of the byval in all 1783 // cases so that the mid-level optimizer knows the alignment of the byval. 1784 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1785 1786 // Attempt to avoid passing indirect results using byval when possible. This 1787 // is important for good codegen. 1788 // 1789 // We do this by coercing the value into a scalar type which the backend can 1790 // handle naturally (i.e., without using byval). 1791 // 1792 // For simplicity, we currently only do this when we have exhausted all of the 1793 // free integer registers. Doing this when there are free integer registers 1794 // would require more care, as we would have to ensure that the coerced value 1795 // did not claim the unused register. That would require either reording the 1796 // arguments to the function (so that any subsequent inreg values came first), 1797 // or only doing this optimization when there were no following arguments that 1798 // might be inreg. 1799 // 1800 // We currently expect it to be rare (particularly in well written code) for 1801 // arguments to be passed on the stack when there are still free integer 1802 // registers available (this would typically imply large structs being passed 1803 // by value), so this seems like a fair tradeoff for now. 1804 // 1805 // We can revisit this if the backend grows support for 'onstack' parameter 1806 // attributes. See PR12193. 1807 if (freeIntRegs == 0) { 1808 uint64_t Size = getContext().getTypeSize(Ty); 1809 1810 // If this type fits in an eightbyte, coerce it into the matching integral 1811 // type, which will end up on the stack (with alignment 8). 1812 if (Align == 8 && Size <= 64) 1813 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1814 Size)); 1815 } 1816 1817 return ABIArgInfo::getIndirect(Align); 1818 } 1819 1820 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1821 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1822 /// vector register. 1823 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1824 llvm::Type *IRType = CGT.ConvertType(Ty); 1825 1826 // Wrapper structs that just contain vectors are passed just like vectors, 1827 // strip them off if present. 1828 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1829 while (STy && STy->getNumElements() == 1) { 1830 IRType = STy->getElementType(0); 1831 STy = dyn_cast<llvm::StructType>(IRType); 1832 } 1833 1834 // If the preferred type is a 16-byte vector, prefer to pass it. 1835 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1836 llvm::Type *EltTy = VT->getElementType(); 1837 unsigned BitWidth = VT->getBitWidth(); 1838 if ((BitWidth >= 128 && BitWidth <= 256) && 1839 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1840 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1841 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1842 EltTy->isIntegerTy(128))) 1843 return VT; 1844 } 1845 1846 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1847 } 1848 1849 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1850 /// is known to either be off the end of the specified type or being in 1851 /// alignment padding. The user type specified is known to be at most 128 bits 1852 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1853 /// classification that put one of the two halves in the INTEGER class. 1854 /// 1855 /// It is conservatively correct to return false. 1856 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1857 unsigned EndBit, ASTContext &Context) { 1858 // If the bytes being queried are off the end of the type, there is no user 1859 // data hiding here. This handles analysis of builtins, vectors and other 1860 // types that don't contain interesting padding. 1861 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1862 if (TySize <= StartBit) 1863 return true; 1864 1865 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1866 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1867 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1868 1869 // Check each element to see if the element overlaps with the queried range. 1870 for (unsigned i = 0; i != NumElts; ++i) { 1871 // If the element is after the span we care about, then we're done.. 1872 unsigned EltOffset = i*EltSize; 1873 if (EltOffset >= EndBit) break; 1874 1875 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1876 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1877 EndBit-EltOffset, Context)) 1878 return false; 1879 } 1880 // If it overlaps no elements, then it is safe to process as padding. 1881 return true; 1882 } 1883 1884 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1885 const RecordDecl *RD = RT->getDecl(); 1886 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1887 1888 // If this is a C++ record, check the bases first. 1889 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1890 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1891 e = CXXRD->bases_end(); i != e; ++i) { 1892 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1893 "Unexpected base class!"); 1894 const CXXRecordDecl *Base = 1895 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1896 1897 // If the base is after the span we care about, ignore it. 1898 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 1899 if (BaseOffset >= EndBit) continue; 1900 1901 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1902 if (!BitsContainNoUserData(i->getType(), BaseStart, 1903 EndBit-BaseOffset, Context)) 1904 return false; 1905 } 1906 } 1907 1908 // Verify that no field has data that overlaps the region of interest. Yes 1909 // this could be sped up a lot by being smarter about queried fields, 1910 // however we're only looking at structs up to 16 bytes, so we don't care 1911 // much. 1912 unsigned idx = 0; 1913 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1914 i != e; ++i, ++idx) { 1915 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 1916 1917 // If we found a field after the region we care about, then we're done. 1918 if (FieldOffset >= EndBit) break; 1919 1920 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 1921 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 1922 Context)) 1923 return false; 1924 } 1925 1926 // If nothing in this record overlapped the area of interest, then we're 1927 // clean. 1928 return true; 1929 } 1930 1931 return false; 1932 } 1933 1934 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 1935 /// float member at the specified offset. For example, {int,{float}} has a 1936 /// float at offset 4. It is conservatively correct for this routine to return 1937 /// false. 1938 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 1939 const llvm::DataLayout &TD) { 1940 // Base case if we find a float. 1941 if (IROffset == 0 && IRType->isFloatTy()) 1942 return true; 1943 1944 // If this is a struct, recurse into the field at the specified offset. 1945 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1946 const llvm::StructLayout *SL = TD.getStructLayout(STy); 1947 unsigned Elt = SL->getElementContainingOffset(IROffset); 1948 IROffset -= SL->getElementOffset(Elt); 1949 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 1950 } 1951 1952 // If this is an array, recurse into the field at the specified offset. 1953 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 1954 llvm::Type *EltTy = ATy->getElementType(); 1955 unsigned EltSize = TD.getTypeAllocSize(EltTy); 1956 IROffset -= IROffset/EltSize*EltSize; 1957 return ContainsFloatAtOffset(EltTy, IROffset, TD); 1958 } 1959 1960 return false; 1961 } 1962 1963 1964 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 1965 /// low 8 bytes of an XMM register, corresponding to the SSE class. 1966 llvm::Type *X86_64ABIInfo:: 1967 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 1968 QualType SourceTy, unsigned SourceOffset) const { 1969 // The only three choices we have are either double, <2 x float>, or float. We 1970 // pass as float if the last 4 bytes is just padding. This happens for 1971 // structs that contain 3 floats. 1972 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 1973 SourceOffset*8+64, getContext())) 1974 return llvm::Type::getFloatTy(getVMContext()); 1975 1976 // We want to pass as <2 x float> if the LLVM IR type contains a float at 1977 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 1978 // case. 1979 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 1980 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 1981 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 1982 1983 return llvm::Type::getDoubleTy(getVMContext()); 1984 } 1985 1986 1987 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 1988 /// an 8-byte GPR. This means that we either have a scalar or we are talking 1989 /// about the high or low part of an up-to-16-byte struct. This routine picks 1990 /// the best LLVM IR type to represent this, which may be i64 or may be anything 1991 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 1992 /// etc). 1993 /// 1994 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 1995 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 1996 /// the 8-byte value references. PrefType may be null. 1997 /// 1998 /// SourceTy is the source level type for the entire argument. SourceOffset is 1999 /// an offset into this that we're processing (which is always either 0 or 8). 2000 /// 2001 llvm::Type *X86_64ABIInfo:: 2002 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2003 QualType SourceTy, unsigned SourceOffset) const { 2004 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2005 // returning an 8-byte unit starting with it. See if we can safely use it. 2006 if (IROffset == 0) { 2007 // Pointers and int64's always fill the 8-byte unit. 2008 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2009 IRType->isIntegerTy(64)) 2010 return IRType; 2011 2012 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2013 // goodness in the source type is just tail padding. This is allowed to 2014 // kick in for struct {double,int} on the int, but not on 2015 // struct{double,int,int} because we wouldn't return the second int. We 2016 // have to do this analysis on the source type because we can't depend on 2017 // unions being lowered a specific way etc. 2018 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2019 IRType->isIntegerTy(32) || 2020 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2021 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2022 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2023 2024 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2025 SourceOffset*8+64, getContext())) 2026 return IRType; 2027 } 2028 } 2029 2030 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2031 // If this is a struct, recurse into the field at the specified offset. 2032 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2033 if (IROffset < SL->getSizeInBytes()) { 2034 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2035 IROffset -= SL->getElementOffset(FieldIdx); 2036 2037 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2038 SourceTy, SourceOffset); 2039 } 2040 } 2041 2042 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2043 llvm::Type *EltTy = ATy->getElementType(); 2044 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2045 unsigned EltOffset = IROffset/EltSize*EltSize; 2046 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2047 SourceOffset); 2048 } 2049 2050 // Okay, we don't have any better idea of what to pass, so we pass this in an 2051 // integer register that isn't too big to fit the rest of the struct. 2052 unsigned TySizeInBytes = 2053 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2054 2055 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2056 2057 // It is always safe to classify this as an integer type up to i64 that 2058 // isn't larger than the structure. 2059 return llvm::IntegerType::get(getVMContext(), 2060 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2061 } 2062 2063 2064 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2065 /// be used as elements of a two register pair to pass or return, return a 2066 /// first class aggregate to represent them. For example, if the low part of 2067 /// a by-value argument should be passed as i32* and the high part as float, 2068 /// return {i32*, float}. 2069 static llvm::Type * 2070 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2071 const llvm::DataLayout &TD) { 2072 // In order to correctly satisfy the ABI, we need to the high part to start 2073 // at offset 8. If the high and low parts we inferred are both 4-byte types 2074 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2075 // the second element at offset 8. Check for this: 2076 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2077 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2078 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2079 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2080 2081 // To handle this, we have to increase the size of the low part so that the 2082 // second element will start at an 8 byte offset. We can't increase the size 2083 // of the second element because it might make us access off the end of the 2084 // struct. 2085 if (HiStart != 8) { 2086 // There are only two sorts of types the ABI generation code can produce for 2087 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2088 // Promote these to a larger type. 2089 if (Lo->isFloatTy()) 2090 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2091 else { 2092 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2093 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2094 } 2095 } 2096 2097 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2098 2099 2100 // Verify that the second element is at an 8-byte offset. 2101 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2102 "Invalid x86-64 argument pair!"); 2103 return Result; 2104 } 2105 2106 ABIArgInfo X86_64ABIInfo:: 2107 classifyReturnType(QualType RetTy) const { 2108 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2109 // classification algorithm. 2110 X86_64ABIInfo::Class Lo, Hi; 2111 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2112 2113 // Check some invariants. 2114 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2115 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2116 2117 llvm::Type *ResType = 0; 2118 switch (Lo) { 2119 case NoClass: 2120 if (Hi == NoClass) 2121 return ABIArgInfo::getIgnore(); 2122 // If the low part is just padding, it takes no register, leave ResType 2123 // null. 2124 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2125 "Unknown missing lo part"); 2126 break; 2127 2128 case SSEUp: 2129 case X87Up: 2130 llvm_unreachable("Invalid classification for lo word."); 2131 2132 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2133 // hidden argument. 2134 case Memory: 2135 return getIndirectReturnResult(RetTy); 2136 2137 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2138 // available register of the sequence %rax, %rdx is used. 2139 case Integer: 2140 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2141 2142 // If we have a sign or zero extended integer, make sure to return Extend 2143 // so that the parameter gets the right LLVM IR attributes. 2144 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2145 // Treat an enum type as its underlying type. 2146 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2147 RetTy = EnumTy->getDecl()->getIntegerType(); 2148 2149 if (RetTy->isIntegralOrEnumerationType() && 2150 RetTy->isPromotableIntegerType()) 2151 return ABIArgInfo::getExtend(); 2152 } 2153 break; 2154 2155 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2156 // available SSE register of the sequence %xmm0, %xmm1 is used. 2157 case SSE: 2158 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2159 break; 2160 2161 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2162 // returned on the X87 stack in %st0 as 80-bit x87 number. 2163 case X87: 2164 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2165 break; 2166 2167 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2168 // part of the value is returned in %st0 and the imaginary part in 2169 // %st1. 2170 case ComplexX87: 2171 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2172 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2173 llvm::Type::getX86_FP80Ty(getVMContext()), 2174 NULL); 2175 break; 2176 } 2177 2178 llvm::Type *HighPart = 0; 2179 switch (Hi) { 2180 // Memory was handled previously and X87 should 2181 // never occur as a hi class. 2182 case Memory: 2183 case X87: 2184 llvm_unreachable("Invalid classification for hi word."); 2185 2186 case ComplexX87: // Previously handled. 2187 case NoClass: 2188 break; 2189 2190 case Integer: 2191 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2192 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2193 return ABIArgInfo::getDirect(HighPart, 8); 2194 break; 2195 case SSE: 2196 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2197 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2198 return ABIArgInfo::getDirect(HighPart, 8); 2199 break; 2200 2201 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2202 // is passed in the next available eightbyte chunk if the last used 2203 // vector register. 2204 // 2205 // SSEUP should always be preceded by SSE, just widen. 2206 case SSEUp: 2207 assert(Lo == SSE && "Unexpected SSEUp classification."); 2208 ResType = GetByteVectorType(RetTy); 2209 break; 2210 2211 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2212 // returned together with the previous X87 value in %st0. 2213 case X87Up: 2214 // If X87Up is preceded by X87, we don't need to do 2215 // anything. However, in some cases with unions it may not be 2216 // preceded by X87. In such situations we follow gcc and pass the 2217 // extra bits in an SSE reg. 2218 if (Lo != X87) { 2219 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2220 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2221 return ABIArgInfo::getDirect(HighPart, 8); 2222 } 2223 break; 2224 } 2225 2226 // If a high part was specified, merge it together with the low part. It is 2227 // known to pass in the high eightbyte of the result. We do this by forming a 2228 // first class struct aggregate with the high and low part: {low, high} 2229 if (HighPart) 2230 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2231 2232 return ABIArgInfo::getDirect(ResType); 2233 } 2234 2235 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2236 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2237 bool isNamedArg) 2238 const 2239 { 2240 X86_64ABIInfo::Class Lo, Hi; 2241 classify(Ty, 0, Lo, Hi, isNamedArg); 2242 2243 // Check some invariants. 2244 // FIXME: Enforce these by construction. 2245 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2246 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2247 2248 neededInt = 0; 2249 neededSSE = 0; 2250 llvm::Type *ResType = 0; 2251 switch (Lo) { 2252 case NoClass: 2253 if (Hi == NoClass) 2254 return ABIArgInfo::getIgnore(); 2255 // If the low part is just padding, it takes no register, leave ResType 2256 // null. 2257 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2258 "Unknown missing lo part"); 2259 break; 2260 2261 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2262 // on the stack. 2263 case Memory: 2264 2265 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2266 // COMPLEX_X87, it is passed in memory. 2267 case X87: 2268 case ComplexX87: 2269 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2270 ++neededInt; 2271 return getIndirectResult(Ty, freeIntRegs); 2272 2273 case SSEUp: 2274 case X87Up: 2275 llvm_unreachable("Invalid classification for lo word."); 2276 2277 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2278 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2279 // and %r9 is used. 2280 case Integer: 2281 ++neededInt; 2282 2283 // Pick an 8-byte type based on the preferred type. 2284 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2285 2286 // If we have a sign or zero extended integer, make sure to return Extend 2287 // so that the parameter gets the right LLVM IR attributes. 2288 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2289 // Treat an enum type as its underlying type. 2290 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2291 Ty = EnumTy->getDecl()->getIntegerType(); 2292 2293 if (Ty->isIntegralOrEnumerationType() && 2294 Ty->isPromotableIntegerType()) 2295 return ABIArgInfo::getExtend(); 2296 } 2297 2298 break; 2299 2300 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2301 // available SSE register is used, the registers are taken in the 2302 // order from %xmm0 to %xmm7. 2303 case SSE: { 2304 llvm::Type *IRType = CGT.ConvertType(Ty); 2305 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2306 ++neededSSE; 2307 break; 2308 } 2309 } 2310 2311 llvm::Type *HighPart = 0; 2312 switch (Hi) { 2313 // Memory was handled previously, ComplexX87 and X87 should 2314 // never occur as hi classes, and X87Up must be preceded by X87, 2315 // which is passed in memory. 2316 case Memory: 2317 case X87: 2318 case ComplexX87: 2319 llvm_unreachable("Invalid classification for hi word."); 2320 2321 case NoClass: break; 2322 2323 case Integer: 2324 ++neededInt; 2325 // Pick an 8-byte type based on the preferred type. 2326 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2327 2328 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2329 return ABIArgInfo::getDirect(HighPart, 8); 2330 break; 2331 2332 // X87Up generally doesn't occur here (long double is passed in 2333 // memory), except in situations involving unions. 2334 case X87Up: 2335 case SSE: 2336 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2337 2338 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2339 return ABIArgInfo::getDirect(HighPart, 8); 2340 2341 ++neededSSE; 2342 break; 2343 2344 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2345 // eightbyte is passed in the upper half of the last used SSE 2346 // register. This only happens when 128-bit vectors are passed. 2347 case SSEUp: 2348 assert(Lo == SSE && "Unexpected SSEUp classification"); 2349 ResType = GetByteVectorType(Ty); 2350 break; 2351 } 2352 2353 // If a high part was specified, merge it together with the low part. It is 2354 // known to pass in the high eightbyte of the result. We do this by forming a 2355 // first class struct aggregate with the high and low part: {low, high} 2356 if (HighPart) 2357 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2358 2359 return ABIArgInfo::getDirect(ResType); 2360 } 2361 2362 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2363 2364 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2365 2366 // Keep track of the number of assigned registers. 2367 unsigned freeIntRegs = 6, freeSSERegs = 8; 2368 2369 // If the return value is indirect, then the hidden argument is consuming one 2370 // integer register. 2371 if (FI.getReturnInfo().isIndirect()) 2372 --freeIntRegs; 2373 2374 bool isVariadic = FI.isVariadic(); 2375 unsigned numRequiredArgs = 0; 2376 if (isVariadic) 2377 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2378 2379 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2380 // get assigned (in left-to-right order) for passing as follows... 2381 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2382 it != ie; ++it) { 2383 bool isNamedArg = true; 2384 if (isVariadic) 2385 isNamedArg = (it - FI.arg_begin()) < 2386 static_cast<signed>(numRequiredArgs); 2387 2388 unsigned neededInt, neededSSE; 2389 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2390 neededSSE, isNamedArg); 2391 2392 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2393 // eightbyte of an argument, the whole argument is passed on the 2394 // stack. If registers have already been assigned for some 2395 // eightbytes of such an argument, the assignments get reverted. 2396 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2397 freeIntRegs -= neededInt; 2398 freeSSERegs -= neededSSE; 2399 } else { 2400 it->info = getIndirectResult(it->type, freeIntRegs); 2401 } 2402 } 2403 } 2404 2405 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2406 QualType Ty, 2407 CodeGenFunction &CGF) { 2408 llvm::Value *overflow_arg_area_p = 2409 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2410 llvm::Value *overflow_arg_area = 2411 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2412 2413 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2414 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2415 // It isn't stated explicitly in the standard, but in practice we use 2416 // alignment greater than 16 where necessary. 2417 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2418 if (Align > 8) { 2419 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2420 llvm::Value *Offset = 2421 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2422 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2423 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2424 CGF.Int64Ty); 2425 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2426 overflow_arg_area = 2427 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2428 overflow_arg_area->getType(), 2429 "overflow_arg_area.align"); 2430 } 2431 2432 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2433 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2434 llvm::Value *Res = 2435 CGF.Builder.CreateBitCast(overflow_arg_area, 2436 llvm::PointerType::getUnqual(LTy)); 2437 2438 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2439 // l->overflow_arg_area + sizeof(type). 2440 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2441 // an 8 byte boundary. 2442 2443 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2444 llvm::Value *Offset = 2445 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2446 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2447 "overflow_arg_area.next"); 2448 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2449 2450 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2451 return Res; 2452 } 2453 2454 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2455 CodeGenFunction &CGF) const { 2456 // Assume that va_list type is correct; should be pointer to LLVM type: 2457 // struct { 2458 // i32 gp_offset; 2459 // i32 fp_offset; 2460 // i8* overflow_arg_area; 2461 // i8* reg_save_area; 2462 // }; 2463 unsigned neededInt, neededSSE; 2464 2465 Ty = CGF.getContext().getCanonicalType(Ty); 2466 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2467 /*isNamedArg*/false); 2468 2469 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2470 // in the registers. If not go to step 7. 2471 if (!neededInt && !neededSSE) 2472 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2473 2474 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2475 // general purpose registers needed to pass type and num_fp to hold 2476 // the number of floating point registers needed. 2477 2478 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2479 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2480 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2481 // 2482 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2483 // register save space). 2484 2485 llvm::Value *InRegs = 0; 2486 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 2487 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 2488 if (neededInt) { 2489 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2490 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2491 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2492 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2493 } 2494 2495 if (neededSSE) { 2496 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2497 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2498 llvm::Value *FitsInFP = 2499 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2500 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2501 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2502 } 2503 2504 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2505 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2506 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2507 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2508 2509 // Emit code to load the value if it was passed in registers. 2510 2511 CGF.EmitBlock(InRegBlock); 2512 2513 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2514 // an offset of l->gp_offset and/or l->fp_offset. This may require 2515 // copying to a temporary location in case the parameter is passed 2516 // in different register classes or requires an alignment greater 2517 // than 8 for general purpose registers and 16 for XMM registers. 2518 // 2519 // FIXME: This really results in shameful code when we end up needing to 2520 // collect arguments from different places; often what should result in a 2521 // simple assembling of a structure from scattered addresses has many more 2522 // loads than necessary. Can we clean this up? 2523 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2524 llvm::Value *RegAddr = 2525 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2526 "reg_save_area"); 2527 if (neededInt && neededSSE) { 2528 // FIXME: Cleanup. 2529 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2530 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2531 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2532 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2533 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2534 llvm::Type *TyLo = ST->getElementType(0); 2535 llvm::Type *TyHi = ST->getElementType(1); 2536 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2537 "Unexpected ABI info for mixed regs"); 2538 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2539 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2540 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2541 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2542 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; 2543 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; 2544 llvm::Value *V = 2545 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2546 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2547 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2548 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2549 2550 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2551 llvm::PointerType::getUnqual(LTy)); 2552 } else if (neededInt) { 2553 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2554 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2555 llvm::PointerType::getUnqual(LTy)); 2556 2557 // Copy to a temporary if necessary to ensure the appropriate alignment. 2558 std::pair<CharUnits, CharUnits> SizeAlign = 2559 CGF.getContext().getTypeInfoInChars(Ty); 2560 uint64_t TySize = SizeAlign.first.getQuantity(); 2561 unsigned TyAlign = SizeAlign.second.getQuantity(); 2562 if (TyAlign > 8) { 2563 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2564 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2565 RegAddr = Tmp; 2566 } 2567 } else if (neededSSE == 1) { 2568 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2569 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2570 llvm::PointerType::getUnqual(LTy)); 2571 } else { 2572 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2573 // SSE registers are spaced 16 bytes apart in the register save 2574 // area, we need to collect the two eightbytes together. 2575 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2576 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2577 llvm::Type *DoubleTy = CGF.DoubleTy; 2578 llvm::Type *DblPtrTy = 2579 llvm::PointerType::getUnqual(DoubleTy); 2580 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2581 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2582 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2583 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2584 DblPtrTy)); 2585 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2586 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2587 DblPtrTy)); 2588 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2589 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2590 llvm::PointerType::getUnqual(LTy)); 2591 } 2592 2593 // AMD64-ABI 3.5.7p5: Step 5. Set: 2594 // l->gp_offset = l->gp_offset + num_gp * 8 2595 // l->fp_offset = l->fp_offset + num_fp * 16. 2596 if (neededInt) { 2597 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2598 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2599 gp_offset_p); 2600 } 2601 if (neededSSE) { 2602 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2603 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2604 fp_offset_p); 2605 } 2606 CGF.EmitBranch(ContBlock); 2607 2608 // Emit code to load the value if it was passed in memory. 2609 2610 CGF.EmitBlock(InMemBlock); 2611 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2612 2613 // Return the appropriate result. 2614 2615 CGF.EmitBlock(ContBlock); 2616 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2617 "vaarg.addr"); 2618 ResAddr->addIncoming(RegAddr, InRegBlock); 2619 ResAddr->addIncoming(MemAddr, InMemBlock); 2620 return ResAddr; 2621 } 2622 2623 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2624 2625 if (Ty->isVoidType()) 2626 return ABIArgInfo::getIgnore(); 2627 2628 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2629 Ty = EnumTy->getDecl()->getIntegerType(); 2630 2631 uint64_t Size = getContext().getTypeSize(Ty); 2632 2633 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2634 if (IsReturnType) { 2635 if (isRecordReturnIndirect(RT, getCXXABI())) 2636 return ABIArgInfo::getIndirect(0, false); 2637 } else { 2638 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2639 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2640 } 2641 2642 if (RT->getDecl()->hasFlexibleArrayMember()) 2643 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2644 2645 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2646 if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32) 2647 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2648 Size)); 2649 2650 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2651 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2652 if (Size <= 64 && 2653 (Size & (Size - 1)) == 0) 2654 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2655 Size)); 2656 2657 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2658 } 2659 2660 if (Ty->isPromotableIntegerType()) 2661 return ABIArgInfo::getExtend(); 2662 2663 return ABIArgInfo::getDirect(); 2664 } 2665 2666 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2667 2668 QualType RetTy = FI.getReturnType(); 2669 FI.getReturnInfo() = classify(RetTy, true); 2670 2671 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2672 it != ie; ++it) 2673 it->info = classify(it->type, false); 2674 } 2675 2676 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2677 CodeGenFunction &CGF) const { 2678 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2679 2680 CGBuilderTy &Builder = CGF.Builder; 2681 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2682 "ap"); 2683 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2684 llvm::Type *PTy = 2685 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2686 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2687 2688 uint64_t Offset = 2689 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2690 llvm::Value *NextAddr = 2691 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2692 "ap.next"); 2693 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2694 2695 return AddrTyped; 2696 } 2697 2698 namespace { 2699 2700 class NaClX86_64ABIInfo : public ABIInfo { 2701 public: 2702 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2703 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2704 virtual void computeInfo(CGFunctionInfo &FI) const; 2705 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2706 CodeGenFunction &CGF) const; 2707 private: 2708 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2709 X86_64ABIInfo NInfo; // Used for everything else. 2710 }; 2711 2712 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2713 public: 2714 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2715 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2716 }; 2717 2718 } 2719 2720 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2721 if (FI.getASTCallingConvention() == CC_PnaclCall) 2722 PInfo.computeInfo(FI); 2723 else 2724 NInfo.computeInfo(FI); 2725 } 2726 2727 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2728 CodeGenFunction &CGF) const { 2729 // Always use the native convention; calling pnacl-style varargs functions 2730 // is unuspported. 2731 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2732 } 2733 2734 2735 // PowerPC-32 2736 2737 namespace { 2738 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2739 public: 2740 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2741 2742 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2743 // This is recovered from gcc output. 2744 return 1; // r1 is the dedicated stack pointer 2745 } 2746 2747 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2748 llvm::Value *Address) const; 2749 }; 2750 2751 } 2752 2753 bool 2754 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2755 llvm::Value *Address) const { 2756 // This is calculated from the LLVM and GCC tables and verified 2757 // against gcc output. AFAIK all ABIs use the same encoding. 2758 2759 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2760 2761 llvm::IntegerType *i8 = CGF.Int8Ty; 2762 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2763 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2764 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2765 2766 // 0-31: r0-31, the 4-byte general-purpose registers 2767 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2768 2769 // 32-63: fp0-31, the 8-byte floating-point registers 2770 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2771 2772 // 64-76 are various 4-byte special-purpose registers: 2773 // 64: mq 2774 // 65: lr 2775 // 66: ctr 2776 // 67: ap 2777 // 68-75 cr0-7 2778 // 76: xer 2779 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2780 2781 // 77-108: v0-31, the 16-byte vector registers 2782 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2783 2784 // 109: vrsave 2785 // 110: vscr 2786 // 111: spe_acc 2787 // 112: spefscr 2788 // 113: sfp 2789 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2790 2791 return false; 2792 } 2793 2794 // PowerPC-64 2795 2796 namespace { 2797 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2798 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2799 2800 public: 2801 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 2802 2803 bool isPromotableTypeForABI(QualType Ty) const; 2804 2805 ABIArgInfo classifyReturnType(QualType RetTy) const; 2806 ABIArgInfo classifyArgumentType(QualType Ty) const; 2807 2808 // TODO: We can add more logic to computeInfo to improve performance. 2809 // Example: For aggregate arguments that fit in a register, we could 2810 // use getDirectInReg (as is done below for structs containing a single 2811 // floating-point value) to avoid pushing them to memory on function 2812 // entry. This would require changing the logic in PPCISelLowering 2813 // when lowering the parameters in the caller and args in the callee. 2814 virtual void computeInfo(CGFunctionInfo &FI) const { 2815 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2816 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2817 it != ie; ++it) { 2818 // We rely on the default argument classification for the most part. 2819 // One exception: An aggregate containing a single floating-point 2820 // or vector item must be passed in a register if one is available. 2821 const Type *T = isSingleElementStruct(it->type, getContext()); 2822 if (T) { 2823 const BuiltinType *BT = T->getAs<BuiltinType>(); 2824 if (T->isVectorType() || (BT && BT->isFloatingPoint())) { 2825 QualType QT(T, 0); 2826 it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2827 continue; 2828 } 2829 } 2830 it->info = classifyArgumentType(it->type); 2831 } 2832 } 2833 2834 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, 2835 QualType Ty, 2836 CodeGenFunction &CGF) const; 2837 }; 2838 2839 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2840 public: 2841 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) 2842 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} 2843 2844 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2845 // This is recovered from gcc output. 2846 return 1; // r1 is the dedicated stack pointer 2847 } 2848 2849 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2850 llvm::Value *Address) const; 2851 }; 2852 2853 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2854 public: 2855 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2856 2857 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2858 // This is recovered from gcc output. 2859 return 1; // r1 is the dedicated stack pointer 2860 } 2861 2862 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2863 llvm::Value *Address) const; 2864 }; 2865 2866 } 2867 2868 // Return true if the ABI requires Ty to be passed sign- or zero- 2869 // extended to 64 bits. 2870 bool 2871 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 2872 // Treat an enum type as its underlying type. 2873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2874 Ty = EnumTy->getDecl()->getIntegerType(); 2875 2876 // Promotable integer types are required to be promoted by the ABI. 2877 if (Ty->isPromotableIntegerType()) 2878 return true; 2879 2880 // In addition to the usual promotable integer types, we also need to 2881 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 2882 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2883 switch (BT->getKind()) { 2884 case BuiltinType::Int: 2885 case BuiltinType::UInt: 2886 return true; 2887 default: 2888 break; 2889 } 2890 2891 return false; 2892 } 2893 2894 ABIArgInfo 2895 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 2896 if (Ty->isAnyComplexType()) 2897 return ABIArgInfo::getDirect(); 2898 2899 if (isAggregateTypeForABI(Ty)) { 2900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2901 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2902 2903 return ABIArgInfo::getIndirect(0); 2904 } 2905 2906 return (isPromotableTypeForABI(Ty) ? 2907 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2908 } 2909 2910 ABIArgInfo 2911 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 2912 if (RetTy->isVoidType()) 2913 return ABIArgInfo::getIgnore(); 2914 2915 if (RetTy->isAnyComplexType()) 2916 return ABIArgInfo::getDirect(); 2917 2918 if (isAggregateTypeForABI(RetTy)) 2919 return ABIArgInfo::getIndirect(0); 2920 2921 return (isPromotableTypeForABI(RetTy) ? 2922 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2923 } 2924 2925 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 2926 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 2927 QualType Ty, 2928 CodeGenFunction &CGF) const { 2929 llvm::Type *BP = CGF.Int8PtrTy; 2930 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2931 2932 CGBuilderTy &Builder = CGF.Builder; 2933 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 2934 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2935 2936 // Update the va_list pointer. The pointer should be bumped by the 2937 // size of the object. We can trust getTypeSize() except for a complex 2938 // type whose base type is smaller than a doubleword. For these, the 2939 // size of the object is 16 bytes; see below for further explanation. 2940 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 2941 QualType BaseTy; 2942 unsigned CplxBaseSize = 0; 2943 2944 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 2945 BaseTy = CTy->getElementType(); 2946 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 2947 if (CplxBaseSize < 8) 2948 SizeInBytes = 16; 2949 } 2950 2951 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 2952 llvm::Value *NextAddr = 2953 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 2954 "ap.next"); 2955 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2956 2957 // If we have a complex type and the base type is smaller than 8 bytes, 2958 // the ABI calls for the real and imaginary parts to be right-adjusted 2959 // in separate doublewords. However, Clang expects us to produce a 2960 // pointer to a structure with the two parts packed tightly. So generate 2961 // loads of the real and imaginary parts relative to the va_list pointer, 2962 // and store them to a temporary structure. 2963 if (CplxBaseSize && CplxBaseSize < 8) { 2964 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 2965 llvm::Value *ImagAddr = RealAddr; 2966 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 2967 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 2968 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 2969 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 2970 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 2971 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 2972 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 2973 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 2974 "vacplx"); 2975 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 2976 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 2977 Builder.CreateStore(Real, RealPtr, false); 2978 Builder.CreateStore(Imag, ImagPtr, false); 2979 return Ptr; 2980 } 2981 2982 // If the argument is smaller than 8 bytes, it is right-adjusted in 2983 // its doubleword slot. Adjust the pointer to pick it up from the 2984 // correct offset. 2985 if (SizeInBytes < 8) { 2986 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 2987 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 2988 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 2989 } 2990 2991 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2992 return Builder.CreateBitCast(Addr, PTy); 2993 } 2994 2995 static bool 2996 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2997 llvm::Value *Address) { 2998 // This is calculated from the LLVM and GCC tables and verified 2999 // against gcc output. AFAIK all ABIs use the same encoding. 3000 3001 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3002 3003 llvm::IntegerType *i8 = CGF.Int8Ty; 3004 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3005 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3006 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3007 3008 // 0-31: r0-31, the 8-byte general-purpose registers 3009 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3010 3011 // 32-63: fp0-31, the 8-byte floating-point registers 3012 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3013 3014 // 64-76 are various 4-byte special-purpose registers: 3015 // 64: mq 3016 // 65: lr 3017 // 66: ctr 3018 // 67: ap 3019 // 68-75 cr0-7 3020 // 76: xer 3021 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3022 3023 // 77-108: v0-31, the 16-byte vector registers 3024 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3025 3026 // 109: vrsave 3027 // 110: vscr 3028 // 111: spe_acc 3029 // 112: spefscr 3030 // 113: sfp 3031 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3032 3033 return false; 3034 } 3035 3036 bool 3037 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3038 CodeGen::CodeGenFunction &CGF, 3039 llvm::Value *Address) const { 3040 3041 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3042 } 3043 3044 bool 3045 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3046 llvm::Value *Address) const { 3047 3048 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3049 } 3050 3051 //===----------------------------------------------------------------------===// 3052 // ARM ABI Implementation 3053 //===----------------------------------------------------------------------===// 3054 3055 namespace { 3056 3057 class ARMABIInfo : public ABIInfo { 3058 public: 3059 enum ABIKind { 3060 APCS = 0, 3061 AAPCS = 1, 3062 AAPCS_VFP 3063 }; 3064 3065 private: 3066 ABIKind Kind; 3067 3068 public: 3069 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 3070 setRuntimeCC(); 3071 } 3072 3073 bool isEABI() const { 3074 switch (getTarget().getTriple().getEnvironment()) { 3075 case llvm::Triple::Android: 3076 case llvm::Triple::EABI: 3077 case llvm::Triple::GNUEABI: 3078 return true; 3079 default: 3080 return false; 3081 } 3082 } 3083 3084 ABIKind getABIKind() const { return Kind; } 3085 3086 private: 3087 ABIArgInfo classifyReturnType(QualType RetTy) const; 3088 ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs, 3089 unsigned &AllocatedVFP, 3090 bool &IsHA) const; 3091 bool isIllegalVectorType(QualType Ty) const; 3092 3093 virtual void computeInfo(CGFunctionInfo &FI) const; 3094 3095 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3096 CodeGenFunction &CGF) const; 3097 3098 llvm::CallingConv::ID getLLVMDefaultCC() const; 3099 llvm::CallingConv::ID getABIDefaultCC() const; 3100 void setRuntimeCC(); 3101 }; 3102 3103 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 3104 public: 3105 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 3106 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 3107 3108 const ARMABIInfo &getABIInfo() const { 3109 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3110 } 3111 3112 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 3113 return 13; 3114 } 3115 3116 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3117 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 3118 } 3119 3120 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3121 llvm::Value *Address) const { 3122 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 3123 3124 // 0-15 are the 16 integer registers. 3125 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 3126 return false; 3127 } 3128 3129 unsigned getSizeOfUnwindException() const { 3130 if (getABIInfo().isEABI()) return 88; 3131 return TargetCodeGenInfo::getSizeOfUnwindException(); 3132 } 3133 3134 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3135 CodeGen::CodeGenModule &CGM) const { 3136 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3137 if (!FD) 3138 return; 3139 3140 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 3141 if (!Attr) 3142 return; 3143 3144 const char *Kind; 3145 switch (Attr->getInterrupt()) { 3146 case ARMInterruptAttr::Generic: Kind = ""; break; 3147 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 3148 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 3149 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 3150 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 3151 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 3152 } 3153 3154 llvm::Function *Fn = cast<llvm::Function>(GV); 3155 3156 Fn->addFnAttr("interrupt", Kind); 3157 3158 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 3159 return; 3160 3161 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 3162 // however this is not necessarily true on taking any interrupt. Instruct 3163 // the backend to perform a realignment as part of the function prologue. 3164 llvm::AttrBuilder B; 3165 B.addStackAlignmentAttr(8); 3166 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 3167 llvm::AttributeSet::get(CGM.getLLVMContext(), 3168 llvm::AttributeSet::FunctionIndex, 3169 B)); 3170 } 3171 3172 }; 3173 3174 } 3175 3176 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3177 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3178 // VFP registers allocated so far. 3179 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3180 // VFP registers of the appropriate type unallocated then the argument is 3181 // allocated to the lowest-numbered sequence of such registers. 3182 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3183 // unallocated are marked as unavailable. 3184 unsigned AllocatedVFP = 0; 3185 int VFPRegs[16] = { 0 }; 3186 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3187 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3188 it != ie; ++it) { 3189 unsigned PreAllocation = AllocatedVFP; 3190 bool IsHA = false; 3191 // 6.1.2.3 There is one VFP co-processor register class using registers 3192 // s0-s15 (d0-d7) for passing arguments. 3193 const unsigned NumVFPs = 16; 3194 it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA); 3195 // If we do not have enough VFP registers for the HA, any VFP registers 3196 // that are unallocated are marked as unavailable. To achieve this, we add 3197 // padding of (NumVFPs - PreAllocation) floats. 3198 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3199 llvm::Type *PaddingTy = llvm::ArrayType::get( 3200 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3201 it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy); 3202 } 3203 } 3204 3205 // Always honor user-specified calling convention. 3206 if (FI.getCallingConvention() != llvm::CallingConv::C) 3207 return; 3208 3209 llvm::CallingConv::ID cc = getRuntimeCC(); 3210 if (cc != llvm::CallingConv::C) 3211 FI.setEffectiveCallingConvention(cc); 3212 } 3213 3214 /// Return the default calling convention that LLVM will use. 3215 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 3216 // The default calling convention that LLVM will infer. 3217 if (getTarget().getTriple().getEnvironment() == llvm::Triple::GNUEABIHF) 3218 return llvm::CallingConv::ARM_AAPCS_VFP; 3219 else if (isEABI()) 3220 return llvm::CallingConv::ARM_AAPCS; 3221 else 3222 return llvm::CallingConv::ARM_APCS; 3223 } 3224 3225 /// Return the calling convention that our ABI would like us to use 3226 /// as the C calling convention. 3227 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 3228 switch (getABIKind()) { 3229 case APCS: return llvm::CallingConv::ARM_APCS; 3230 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 3231 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 3232 } 3233 llvm_unreachable("bad ABI kind"); 3234 } 3235 3236 void ARMABIInfo::setRuntimeCC() { 3237 assert(getRuntimeCC() == llvm::CallingConv::C); 3238 3239 // Don't muddy up the IR with a ton of explicit annotations if 3240 // they'd just match what LLVM will infer from the triple. 3241 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 3242 if (abiCC != getLLVMDefaultCC()) 3243 RuntimeCC = abiCC; 3244 } 3245 3246 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 3247 /// aggregate. If HAMembers is non-null, the number of base elements 3248 /// contained in the type is returned through it; this is used for the 3249 /// recursive calls that check aggregate component types. 3250 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3251 ASTContext &Context, 3252 uint64_t *HAMembers = 0) { 3253 uint64_t Members = 0; 3254 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3255 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 3256 return false; 3257 Members *= AT->getSize().getZExtValue(); 3258 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3259 const RecordDecl *RD = RT->getDecl(); 3260 if (RD->hasFlexibleArrayMember()) 3261 return false; 3262 3263 Members = 0; 3264 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3265 i != e; ++i) { 3266 const FieldDecl *FD = *i; 3267 uint64_t FldMembers; 3268 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 3269 return false; 3270 3271 Members = (RD->isUnion() ? 3272 std::max(Members, FldMembers) : Members + FldMembers); 3273 } 3274 } else { 3275 Members = 1; 3276 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3277 Members = 2; 3278 Ty = CT->getElementType(); 3279 } 3280 3281 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 3282 // double, or 64-bit or 128-bit vectors. 3283 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3284 if (BT->getKind() != BuiltinType::Float && 3285 BT->getKind() != BuiltinType::Double && 3286 BT->getKind() != BuiltinType::LongDouble) 3287 return false; 3288 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 3289 unsigned VecSize = Context.getTypeSize(VT); 3290 if (VecSize != 64 && VecSize != 128) 3291 return false; 3292 } else { 3293 return false; 3294 } 3295 3296 // The base type must be the same for all members. Vector types of the 3297 // same total size are treated as being equivalent here. 3298 const Type *TyPtr = Ty.getTypePtr(); 3299 if (!Base) 3300 Base = TyPtr; 3301 if (Base != TyPtr && 3302 (!Base->isVectorType() || !TyPtr->isVectorType() || 3303 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr))) 3304 return false; 3305 } 3306 3307 // Homogeneous Aggregates can have at most 4 members of the base type. 3308 if (HAMembers) 3309 *HAMembers = Members; 3310 3311 return (Members > 0 && Members <= 4); 3312 } 3313 3314 /// markAllocatedVFPs - update VFPRegs according to the alignment and 3315 /// number of VFP registers (unit is S register) requested. 3316 static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP, 3317 unsigned Alignment, 3318 unsigned NumRequired) { 3319 // Early Exit. 3320 if (AllocatedVFP >= 16) 3321 return; 3322 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3323 // VFP registers of the appropriate type unallocated then the argument is 3324 // allocated to the lowest-numbered sequence of such registers. 3325 for (unsigned I = 0; I < 16; I += Alignment) { 3326 bool FoundSlot = true; 3327 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 3328 if (J >= 16 || VFPRegs[J]) { 3329 FoundSlot = false; 3330 break; 3331 } 3332 if (FoundSlot) { 3333 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 3334 VFPRegs[J] = 1; 3335 AllocatedVFP += NumRequired; 3336 return; 3337 } 3338 } 3339 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3340 // unallocated are marked as unavailable. 3341 for (unsigned I = 0; I < 16; I++) 3342 VFPRegs[I] = 1; 3343 AllocatedVFP = 17; // We do not have enough VFP registers. 3344 } 3345 3346 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs, 3347 unsigned &AllocatedVFP, 3348 bool &IsHA) const { 3349 // We update number of allocated VFPs according to 3350 // 6.1.2.1 The following argument types are VFP CPRCs: 3351 // A single-precision floating-point type (including promoted 3352 // half-precision types); A double-precision floating-point type; 3353 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 3354 // with a Base Type of a single- or double-precision floating-point type, 3355 // 64-bit containerized vectors or 128-bit containerized vectors with one 3356 // to four Elements. 3357 3358 // Handle illegal vector types here. 3359 if (isIllegalVectorType(Ty)) { 3360 uint64_t Size = getContext().getTypeSize(Ty); 3361 if (Size <= 32) { 3362 llvm::Type *ResType = 3363 llvm::Type::getInt32Ty(getVMContext()); 3364 return ABIArgInfo::getDirect(ResType); 3365 } 3366 if (Size == 64) { 3367 llvm::Type *ResType = llvm::VectorType::get( 3368 llvm::Type::getInt32Ty(getVMContext()), 2); 3369 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); 3370 return ABIArgInfo::getDirect(ResType); 3371 } 3372 if (Size == 128) { 3373 llvm::Type *ResType = llvm::VectorType::get( 3374 llvm::Type::getInt32Ty(getVMContext()), 4); 3375 markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4); 3376 return ABIArgInfo::getDirect(ResType); 3377 } 3378 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3379 } 3380 // Update VFPRegs for legal vector types. 3381 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3382 uint64_t Size = getContext().getTypeSize(VT); 3383 // Size of a legal vector should be power of 2 and above 64. 3384 markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32); 3385 } 3386 // Update VFPRegs for floating point types. 3387 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3388 if (BT->getKind() == BuiltinType::Half || 3389 BT->getKind() == BuiltinType::Float) 3390 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1); 3391 if (BT->getKind() == BuiltinType::Double || 3392 BT->getKind() == BuiltinType::LongDouble) 3393 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); 3394 } 3395 3396 if (!isAggregateTypeForABI(Ty)) { 3397 // Treat an enum type as its underlying type. 3398 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3399 Ty = EnumTy->getDecl()->getIntegerType(); 3400 3401 return (Ty->isPromotableIntegerType() ? 3402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3403 } 3404 3405 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3406 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3407 3408 // Ignore empty records. 3409 if (isEmptyRecord(getContext(), Ty, true)) 3410 return ABIArgInfo::getIgnore(); 3411 3412 if (getABIKind() == ARMABIInfo::AAPCS_VFP) { 3413 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 3414 // into VFP registers. 3415 const Type *Base = 0; 3416 uint64_t Members = 0; 3417 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3418 assert(Base && "Base class should be set for homogeneous aggregate"); 3419 // Base can be a floating-point or a vector. 3420 if (Base->isVectorType()) { 3421 // ElementSize is in number of floats. 3422 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 3423 markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize, 3424 Members * ElementSize); 3425 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 3426 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members); 3427 else { 3428 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 3429 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 3430 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2); 3431 } 3432 IsHA = true; 3433 return ABIArgInfo::getExpand(); 3434 } 3435 } 3436 3437 // Support byval for ARM. 3438 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 3439 // most 8-byte. We realign the indirect argument if type alignment is bigger 3440 // than ABI alignment. 3441 uint64_t ABIAlign = 4; 3442 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3443 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 3444 getABIKind() == ARMABIInfo::AAPCS) 3445 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 3446 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 3447 return ABIArgInfo::getIndirect(0, /*ByVal=*/true, 3448 /*Realign=*/TyAlign > ABIAlign); 3449 } 3450 3451 // Otherwise, pass by coercing to a structure of the appropriate size. 3452 llvm::Type* ElemTy; 3453 unsigned SizeRegs; 3454 // FIXME: Try to match the types of the arguments more accurately where 3455 // we can. 3456 if (getContext().getTypeAlign(Ty) <= 32) { 3457 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 3458 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 3459 } else { 3460 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 3461 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 3462 } 3463 3464 llvm::Type *STy = 3465 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 3466 return ABIArgInfo::getDirect(STy); 3467 } 3468 3469 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 3470 llvm::LLVMContext &VMContext) { 3471 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 3472 // is called integer-like if its size is less than or equal to one word, and 3473 // the offset of each of its addressable sub-fields is zero. 3474 3475 uint64_t Size = Context.getTypeSize(Ty); 3476 3477 // Check that the type fits in a word. 3478 if (Size > 32) 3479 return false; 3480 3481 // FIXME: Handle vector types! 3482 if (Ty->isVectorType()) 3483 return false; 3484 3485 // Float types are never treated as "integer like". 3486 if (Ty->isRealFloatingType()) 3487 return false; 3488 3489 // If this is a builtin or pointer type then it is ok. 3490 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 3491 return true; 3492 3493 // Small complex integer types are "integer like". 3494 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 3495 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 3496 3497 // Single element and zero sized arrays should be allowed, by the definition 3498 // above, but they are not. 3499 3500 // Otherwise, it must be a record type. 3501 const RecordType *RT = Ty->getAs<RecordType>(); 3502 if (!RT) return false; 3503 3504 // Ignore records with flexible arrays. 3505 const RecordDecl *RD = RT->getDecl(); 3506 if (RD->hasFlexibleArrayMember()) 3507 return false; 3508 3509 // Check that all sub-fields are at offset 0, and are themselves "integer 3510 // like". 3511 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3512 3513 bool HadField = false; 3514 unsigned idx = 0; 3515 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3516 i != e; ++i, ++idx) { 3517 const FieldDecl *FD = *i; 3518 3519 // Bit-fields are not addressable, we only need to verify they are "integer 3520 // like". We still have to disallow a subsequent non-bitfield, for example: 3521 // struct { int : 0; int x } 3522 // is non-integer like according to gcc. 3523 if (FD->isBitField()) { 3524 if (!RD->isUnion()) 3525 HadField = true; 3526 3527 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 3528 return false; 3529 3530 continue; 3531 } 3532 3533 // Check if this field is at offset 0. 3534 if (Layout.getFieldOffset(idx) != 0) 3535 return false; 3536 3537 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 3538 return false; 3539 3540 // Only allow at most one field in a structure. This doesn't match the 3541 // wording above, but follows gcc in situations with a field following an 3542 // empty structure. 3543 if (!RD->isUnion()) { 3544 if (HadField) 3545 return false; 3546 3547 HadField = true; 3548 } 3549 } 3550 3551 return true; 3552 } 3553 3554 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { 3555 if (RetTy->isVoidType()) 3556 return ABIArgInfo::getIgnore(); 3557 3558 // Large vector types should be returned via memory. 3559 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3560 return ABIArgInfo::getIndirect(0); 3561 3562 if (!isAggregateTypeForABI(RetTy)) { 3563 // Treat an enum type as its underlying type. 3564 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3565 RetTy = EnumTy->getDecl()->getIntegerType(); 3566 3567 return (RetTy->isPromotableIntegerType() ? 3568 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3569 } 3570 3571 // Structures with either a non-trivial destructor or a non-trivial 3572 // copy constructor are always indirect. 3573 if (isRecordReturnIndirect(RetTy, getCXXABI())) 3574 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3575 3576 // Are we following APCS? 3577 if (getABIKind() == APCS) { 3578 if (isEmptyRecord(getContext(), RetTy, false)) 3579 return ABIArgInfo::getIgnore(); 3580 3581 // Complex types are all returned as packed integers. 3582 // 3583 // FIXME: Consider using 2 x vector types if the back end handles them 3584 // correctly. 3585 if (RetTy->isAnyComplexType()) 3586 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3587 getContext().getTypeSize(RetTy))); 3588 3589 // Integer like structures are returned in r0. 3590 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 3591 // Return in the smallest viable integer type. 3592 uint64_t Size = getContext().getTypeSize(RetTy); 3593 if (Size <= 8) 3594 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3595 if (Size <= 16) 3596 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 3597 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 3598 } 3599 3600 // Otherwise return in memory. 3601 return ABIArgInfo::getIndirect(0); 3602 } 3603 3604 // Otherwise this is an AAPCS variant. 3605 3606 if (isEmptyRecord(getContext(), RetTy, true)) 3607 return ABIArgInfo::getIgnore(); 3608 3609 // Check for homogeneous aggregates with AAPCS-VFP. 3610 if (getABIKind() == AAPCS_VFP) { 3611 const Type *Base = 0; 3612 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 3613 assert(Base && "Base class should be set for homogeneous aggregate"); 3614 // Homogeneous Aggregates are returned directly. 3615 return ABIArgInfo::getDirect(); 3616 } 3617 } 3618 3619 // Aggregates <= 4 bytes are returned in r0; other aggregates 3620 // are returned indirectly. 3621 uint64_t Size = getContext().getTypeSize(RetTy); 3622 if (Size <= 32) { 3623 // Return in the smallest viable integer type. 3624 if (Size <= 8) 3625 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3626 if (Size <= 16) 3627 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 3628 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 3629 } 3630 3631 return ABIArgInfo::getIndirect(0); 3632 } 3633 3634 /// isIllegalVector - check whether Ty is an illegal vector type. 3635 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 3636 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3637 // Check whether VT is legal. 3638 unsigned NumElements = VT->getNumElements(); 3639 uint64_t Size = getContext().getTypeSize(VT); 3640 // NumElements should be power of 2. 3641 if ((NumElements & (NumElements - 1)) != 0) 3642 return true; 3643 // Size should be greater than 32 bits. 3644 return Size <= 32; 3645 } 3646 return false; 3647 } 3648 3649 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3650 CodeGenFunction &CGF) const { 3651 llvm::Type *BP = CGF.Int8PtrTy; 3652 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3653 3654 CGBuilderTy &Builder = CGF.Builder; 3655 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3656 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3657 3658 if (isEmptyRecord(getContext(), Ty, true)) { 3659 // These are ignored for parameter passing purposes. 3660 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3661 return Builder.CreateBitCast(Addr, PTy); 3662 } 3663 3664 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3665 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 3666 bool IsIndirect = false; 3667 3668 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 3669 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 3670 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 3671 getABIKind() == ARMABIInfo::AAPCS) 3672 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 3673 else 3674 TyAlign = 4; 3675 // Use indirect if size of the illegal vector is bigger than 16 bytes. 3676 if (isIllegalVectorType(Ty) && Size > 16) { 3677 IsIndirect = true; 3678 Size = 4; 3679 TyAlign = 4; 3680 } 3681 3682 // Handle address alignment for ABI alignment > 4 bytes. 3683 if (TyAlign > 4) { 3684 assert((TyAlign & (TyAlign - 1)) == 0 && 3685 "Alignment is not power of 2!"); 3686 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 3687 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 3688 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 3689 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3690 } 3691 3692 uint64_t Offset = 3693 llvm::RoundUpToAlignment(Size, 4); 3694 llvm::Value *NextAddr = 3695 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3696 "ap.next"); 3697 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3698 3699 if (IsIndirect) 3700 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 3701 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 3702 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 3703 // may not be correctly aligned for the vector type. We create an aligned 3704 // temporary space and copy the content over from ap.cur to the temporary 3705 // space. This is necessary if the natural alignment of the type is greater 3706 // than the ABI alignment. 3707 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 3708 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 3709 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 3710 "var.align"); 3711 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 3712 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 3713 Builder.CreateMemCpy(Dst, Src, 3714 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 3715 TyAlign, false); 3716 Addr = AlignedTemp; //The content is in aligned location. 3717 } 3718 llvm::Type *PTy = 3719 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3720 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3721 3722 return AddrTyped; 3723 } 3724 3725 namespace { 3726 3727 class NaClARMABIInfo : public ABIInfo { 3728 public: 3729 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 3730 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 3731 virtual void computeInfo(CGFunctionInfo &FI) const; 3732 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3733 CodeGenFunction &CGF) const; 3734 private: 3735 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 3736 ARMABIInfo NInfo; // Used for everything else. 3737 }; 3738 3739 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 3740 public: 3741 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 3742 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 3743 }; 3744 3745 } 3746 3747 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3748 if (FI.getASTCallingConvention() == CC_PnaclCall) 3749 PInfo.computeInfo(FI); 3750 else 3751 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 3752 } 3753 3754 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3755 CodeGenFunction &CGF) const { 3756 // Always use the native convention; calling pnacl-style varargs functions 3757 // is unsupported. 3758 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 3759 } 3760 3761 //===----------------------------------------------------------------------===// 3762 // AArch64 ABI Implementation 3763 //===----------------------------------------------------------------------===// 3764 3765 namespace { 3766 3767 class AArch64ABIInfo : public ABIInfo { 3768 public: 3769 AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 3770 3771 private: 3772 // The AArch64 PCS is explicit about return types and argument types being 3773 // handled identically, so we don't need to draw a distinction between 3774 // Argument and Return classification. 3775 ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs, 3776 int &FreeVFPRegs) const; 3777 3778 ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt, 3779 llvm::Type *DirectTy = 0) const; 3780 3781 virtual void computeInfo(CGFunctionInfo &FI) const; 3782 3783 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3784 CodeGenFunction &CGF) const; 3785 }; 3786 3787 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3788 public: 3789 AArch64TargetCodeGenInfo(CodeGenTypes &CGT) 3790 :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {} 3791 3792 const AArch64ABIInfo &getABIInfo() const { 3793 return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3794 } 3795 3796 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 3797 return 31; 3798 } 3799 3800 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3801 llvm::Value *Address) const { 3802 // 0-31 are x0-x30 and sp: 8 bytes each 3803 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 3804 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31); 3805 3806 // 64-95 are v0-v31: 16 bytes each 3807 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 3808 AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95); 3809 3810 return false; 3811 } 3812 3813 }; 3814 3815 } 3816 3817 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3818 int FreeIntRegs = 8, FreeVFPRegs = 8; 3819 3820 FI.getReturnInfo() = classifyGenericType(FI.getReturnType(), 3821 FreeIntRegs, FreeVFPRegs); 3822 3823 FreeIntRegs = FreeVFPRegs = 8; 3824 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3825 it != ie; ++it) { 3826 it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs); 3827 3828 } 3829 } 3830 3831 ABIArgInfo 3832 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, 3833 bool IsInt, llvm::Type *DirectTy) const { 3834 if (FreeRegs >= RegsNeeded) { 3835 FreeRegs -= RegsNeeded; 3836 return ABIArgInfo::getDirect(DirectTy); 3837 } 3838 3839 llvm::Type *Padding = 0; 3840 3841 // We need padding so that later arguments don't get filled in anyway. That 3842 // wouldn't happen if only ByVal arguments followed in the same category, but 3843 // a large structure will simply seem to be a pointer as far as LLVM is 3844 // concerned. 3845 if (FreeRegs > 0) { 3846 if (IsInt) 3847 Padding = llvm::Type::getInt64Ty(getVMContext()); 3848 else 3849 Padding = llvm::Type::getFloatTy(getVMContext()); 3850 3851 // Either [N x i64] or [N x float]. 3852 Padding = llvm::ArrayType::get(Padding, FreeRegs); 3853 FreeRegs = 0; 3854 } 3855 3856 return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8, 3857 /*IsByVal=*/ true, /*Realign=*/ false, 3858 Padding); 3859 } 3860 3861 3862 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty, 3863 int &FreeIntRegs, 3864 int &FreeVFPRegs) const { 3865 // Can only occurs for return, but harmless otherwise. 3866 if (Ty->isVoidType()) 3867 return ABIArgInfo::getIgnore(); 3868 3869 // Large vector types should be returned via memory. There's no such concept 3870 // in the ABI, but they'd be over 16 bytes anyway so no matter how they're 3871 // classified they'd go into memory (see B.3). 3872 if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) { 3873 if (FreeIntRegs > 0) 3874 --FreeIntRegs; 3875 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3876 } 3877 3878 // All non-aggregate LLVM types have a concrete ABI representation so they can 3879 // be passed directly. After this block we're guaranteed to be in a 3880 // complicated case. 3881 if (!isAggregateTypeForABI(Ty)) { 3882 // Treat an enum type as its underlying type. 3883 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3884 Ty = EnumTy->getDecl()->getIntegerType(); 3885 3886 if (Ty->isFloatingType() || Ty->isVectorType()) 3887 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false); 3888 3889 assert(getContext().getTypeSize(Ty) <= 128 && 3890 "unexpectedly large scalar type"); 3891 3892 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3893 3894 // If the type may need padding registers to ensure "alignment", we must be 3895 // careful when this is accounted for. Increasing the effective size covers 3896 // all cases. 3897 if (getContext().getTypeAlign(Ty) == 128) 3898 RegsNeeded += FreeIntRegs % 2 != 0; 3899 3900 return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true); 3901 } 3902 3903 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3904 if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect) 3905 --FreeIntRegs; 3906 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3907 } 3908 3909 if (isEmptyRecord(getContext(), Ty, true)) { 3910 if (!getContext().getLangOpts().CPlusPlus) { 3911 // Empty structs outside C++ mode are a GNU extension, so no ABI can 3912 // possibly tell us what to do. It turns out (I believe) that GCC ignores 3913 // the object for parameter-passsing purposes. 3914 return ABIArgInfo::getIgnore(); 3915 } 3916 3917 // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode 3918 // description of va_arg in the PCS require that an empty struct does 3919 // actually occupy space for parameter-passing. I'm hoping for a 3920 // clarification giving an explicit paragraph to point to in future. 3921 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true, 3922 llvm::Type::getInt8Ty(getVMContext())); 3923 } 3924 3925 // Homogeneous vector aggregates get passed in registers or on the stack. 3926 const Type *Base = 0; 3927 uint64_t NumMembers = 0; 3928 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) { 3929 assert(Base && "Base class should be set for homogeneous aggregate"); 3930 // Homogeneous aggregates are passed and returned directly. 3931 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers, 3932 /*IsInt=*/ false); 3933 } 3934 3935 uint64_t Size = getContext().getTypeSize(Ty); 3936 if (Size <= 128) { 3937 // Small structs can use the same direct type whether they're in registers 3938 // or on the stack. 3939 llvm::Type *BaseTy; 3940 unsigned NumBases; 3941 int SizeInRegs = (Size + 63) / 64; 3942 3943 if (getContext().getTypeAlign(Ty) == 128) { 3944 BaseTy = llvm::Type::getIntNTy(getVMContext(), 128); 3945 NumBases = 1; 3946 3947 // If the type may need padding registers to ensure "alignment", we must 3948 // be careful when this is accounted for. Increasing the effective size 3949 // covers all cases. 3950 SizeInRegs += FreeIntRegs % 2 != 0; 3951 } else { 3952 BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3953 NumBases = SizeInRegs; 3954 } 3955 llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases); 3956 3957 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs, 3958 /*IsInt=*/ true, DirectTy); 3959 } 3960 3961 // If the aggregate is > 16 bytes, it's passed and returned indirectly. In 3962 // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere. 3963 --FreeIntRegs; 3964 return ABIArgInfo::getIndirect(0, /* byVal = */ false); 3965 } 3966 3967 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3968 CodeGenFunction &CGF) const { 3969 // The AArch64 va_list type and handling is specified in the Procedure Call 3970 // Standard, section B.4: 3971 // 3972 // struct { 3973 // void *__stack; 3974 // void *__gr_top; 3975 // void *__vr_top; 3976 // int __gr_offs; 3977 // int __vr_offs; 3978 // }; 3979 3980 assert(!CGF.CGM.getDataLayout().isBigEndian() 3981 && "va_arg not implemented for big-endian AArch64"); 3982 3983 int FreeIntRegs = 8, FreeVFPRegs = 8; 3984 Ty = CGF.getContext().getCanonicalType(Ty); 3985 ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs); 3986 3987 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3988 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3989 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3990 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3991 3992 llvm::Value *reg_offs_p = 0, *reg_offs = 0; 3993 int reg_top_index; 3994 int RegSize; 3995 if (FreeIntRegs < 8) { 3996 assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs"); 3997 // 3 is the field number of __gr_offs 3998 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3999 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4000 reg_top_index = 1; // field number for __gr_top 4001 RegSize = 8 * (8 - FreeIntRegs); 4002 } else { 4003 assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs"); 4004 // 4 is the field number of __vr_offs. 4005 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 4006 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4007 reg_top_index = 2; // field number for __vr_top 4008 RegSize = 16 * (8 - FreeVFPRegs); 4009 } 4010 4011 //======================================= 4012 // Find out where argument was passed 4013 //======================================= 4014 4015 // If reg_offs >= 0 we're already using the stack for this type of 4016 // argument. We don't want to keep updating reg_offs (in case it overflows, 4017 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4018 // whatever they get). 4019 llvm::Value *UsingStack = 0; 4020 UsingStack = CGF.Builder.CreateICmpSGE(reg_offs, 4021 llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4022 4023 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4024 4025 // Otherwise, at least some kind of argument could go in these registers, the 4026 // quesiton is whether this particular type is too big. 4027 CGF.EmitBlock(MaybeRegBlock); 4028 4029 // Integer arguments may need to correct register alignment (for example a 4030 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4031 // align __gr_offs to calculate the potential address. 4032 if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { 4033 int Align = getContext().getTypeAlign(Ty) / 8; 4034 4035 reg_offs = CGF.Builder.CreateAdd(reg_offs, 4036 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4037 "align_regoffs"); 4038 reg_offs = CGF.Builder.CreateAnd(reg_offs, 4039 llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4040 "aligned_regoffs"); 4041 } 4042 4043 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4044 llvm::Value *NewOffset = 0; 4045 NewOffset = CGF.Builder.CreateAdd(reg_offs, 4046 llvm::ConstantInt::get(CGF.Int32Ty, RegSize), 4047 "new_reg_offs"); 4048 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4049 4050 // Now we're in a position to decide whether this argument really was in 4051 // registers or not. 4052 llvm::Value *InRegs = 0; 4053 InRegs = CGF.Builder.CreateICmpSLE(NewOffset, 4054 llvm::ConstantInt::get(CGF.Int32Ty, 0), 4055 "inreg"); 4056 4057 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4058 4059 //======================================= 4060 // Argument was in registers 4061 //======================================= 4062 4063 // Now we emit the code for if the argument was originally passed in 4064 // registers. First start the appropriate block: 4065 CGF.EmitBlock(InRegBlock); 4066 4067 llvm::Value *reg_top_p = 0, *reg_top = 0; 4068 reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 4069 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4070 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4071 llvm::Value *RegAddr = 0; 4072 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4073 4074 if (!AI.isDirect()) { 4075 // If it's been passed indirectly (actually a struct), whatever we find from 4076 // stored registers or on the stack will actually be a struct **. 4077 MemTy = llvm::PointerType::getUnqual(MemTy); 4078 } 4079 4080 const Type *Base = 0; 4081 uint64_t NumMembers; 4082 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers) 4083 && NumMembers > 1) { 4084 // Homogeneous aggregates passed in registers will have their elements split 4085 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4086 // qN+1, ...). We reload and store into a temporary local variable 4087 // contiguously. 4088 assert(AI.isDirect() && "Homogeneous aggregates should be passed directly"); 4089 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4090 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4091 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 4092 4093 for (unsigned i = 0; i < NumMembers; ++i) { 4094 llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i); 4095 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4096 LoadAddr = CGF.Builder.CreateBitCast(LoadAddr, 4097 llvm::PointerType::getUnqual(BaseTy)); 4098 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 4099 4100 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4101 CGF.Builder.CreateStore(Elem, StoreAddr); 4102 } 4103 4104 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4105 } else { 4106 // Otherwise the object is contiguous in memory 4107 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4108 } 4109 4110 CGF.EmitBranch(ContBlock); 4111 4112 //======================================= 4113 // Argument was on the stack 4114 //======================================= 4115 CGF.EmitBlock(OnStackBlock); 4116 4117 llvm::Value *stack_p = 0, *OnStackAddr = 0; 4118 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 4119 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4120 4121 // Again, stack arguments may need realigmnent. In this case both integer and 4122 // floating-point ones might be affected. 4123 if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { 4124 int Align = getContext().getTypeAlign(Ty) / 8; 4125 4126 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4127 4128 OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr, 4129 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4130 "align_stack"); 4131 OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr, 4132 llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4133 "align_stack"); 4134 4135 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4136 } 4137 4138 uint64_t StackSize; 4139 if (AI.isDirect()) 4140 StackSize = getContext().getTypeSize(Ty) / 8; 4141 else 4142 StackSize = 8; 4143 4144 // All stack slots are 8 bytes 4145 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4146 4147 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4148 llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, 4149 "new_stack"); 4150 4151 // Write the new value of __stack for the next call to va_arg 4152 CGF.Builder.CreateStore(NewStack, stack_p); 4153 4154 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4155 4156 CGF.EmitBranch(ContBlock); 4157 4158 //======================================= 4159 // Tidy up 4160 //======================================= 4161 CGF.EmitBlock(ContBlock); 4162 4163 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4164 ResAddr->addIncoming(RegAddr, InRegBlock); 4165 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4166 4167 if (AI.isDirect()) 4168 return ResAddr; 4169 4170 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4171 } 4172 4173 //===----------------------------------------------------------------------===// 4174 // NVPTX ABI Implementation 4175 //===----------------------------------------------------------------------===// 4176 4177 namespace { 4178 4179 class NVPTXABIInfo : public ABIInfo { 4180 public: 4181 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4182 4183 ABIArgInfo classifyReturnType(QualType RetTy) const; 4184 ABIArgInfo classifyArgumentType(QualType Ty) const; 4185 4186 virtual void computeInfo(CGFunctionInfo &FI) const; 4187 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4188 CodeGenFunction &CFG) const; 4189 }; 4190 4191 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4192 public: 4193 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4194 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4195 4196 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4197 CodeGen::CodeGenModule &M) const; 4198 private: 4199 static void addKernelMetadata(llvm::Function *F); 4200 }; 4201 4202 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4203 if (RetTy->isVoidType()) 4204 return ABIArgInfo::getIgnore(); 4205 4206 // note: this is different from default ABI 4207 if (!RetTy->isScalarType()) 4208 return ABIArgInfo::getDirect(); 4209 4210 // Treat an enum type as its underlying type. 4211 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4212 RetTy = EnumTy->getDecl()->getIntegerType(); 4213 4214 return (RetTy->isPromotableIntegerType() ? 4215 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4216 } 4217 4218 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4219 // Treat an enum type as its underlying type. 4220 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4221 Ty = EnumTy->getDecl()->getIntegerType(); 4222 4223 return (Ty->isPromotableIntegerType() ? 4224 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4225 } 4226 4227 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4228 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4229 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4230 it != ie; ++it) 4231 it->info = classifyArgumentType(it->type); 4232 4233 // Always honor user-specified calling convention. 4234 if (FI.getCallingConvention() != llvm::CallingConv::C) 4235 return; 4236 4237 FI.setEffectiveCallingConvention(getRuntimeCC()); 4238 } 4239 4240 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4241 CodeGenFunction &CFG) const { 4242 llvm_unreachable("NVPTX does not support varargs"); 4243 } 4244 4245 void NVPTXTargetCodeGenInfo:: 4246 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4247 CodeGen::CodeGenModule &M) const{ 4248 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4249 if (!FD) return; 4250 4251 llvm::Function *F = cast<llvm::Function>(GV); 4252 4253 // Perform special handling in OpenCL mode 4254 if (M.getLangOpts().OpenCL) { 4255 // Use OpenCL function attributes to check for kernel functions 4256 // By default, all functions are device functions 4257 if (FD->hasAttr<OpenCLKernelAttr>()) { 4258 // OpenCL __kernel functions get kernel metadata 4259 addKernelMetadata(F); 4260 // And kernel functions are not subject to inlining 4261 F->addFnAttr(llvm::Attribute::NoInline); 4262 } 4263 } 4264 4265 // Perform special handling in CUDA mode. 4266 if (M.getLangOpts().CUDA) { 4267 // CUDA __global__ functions get a kernel metadata entry. Since 4268 // __global__ functions cannot be called from the device, we do not 4269 // need to set the noinline attribute. 4270 if (FD->getAttr<CUDAGlobalAttr>()) 4271 addKernelMetadata(F); 4272 } 4273 } 4274 4275 void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) { 4276 llvm::Module *M = F->getParent(); 4277 llvm::LLVMContext &Ctx = M->getContext(); 4278 4279 // Get "nvvm.annotations" metadata node 4280 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4281 4282 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4283 llvm::SmallVector<llvm::Value *, 3> MDVals; 4284 MDVals.push_back(F); 4285 MDVals.push_back(llvm::MDString::get(Ctx, "kernel")); 4286 MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1)); 4287 4288 // Append metadata to nvvm.annotations 4289 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4290 } 4291 4292 } 4293 4294 //===----------------------------------------------------------------------===// 4295 // SystemZ ABI Implementation 4296 //===----------------------------------------------------------------------===// 4297 4298 namespace { 4299 4300 class SystemZABIInfo : public ABIInfo { 4301 public: 4302 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4303 4304 bool isPromotableIntegerType(QualType Ty) const; 4305 bool isCompoundType(QualType Ty) const; 4306 bool isFPArgumentType(QualType Ty) const; 4307 4308 ABIArgInfo classifyReturnType(QualType RetTy) const; 4309 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4310 4311 virtual void computeInfo(CGFunctionInfo &FI) const { 4312 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4313 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4314 it != ie; ++it) 4315 it->info = classifyArgumentType(it->type); 4316 } 4317 4318 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4319 CodeGenFunction &CGF) const; 4320 }; 4321 4322 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 4323 public: 4324 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 4325 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 4326 }; 4327 4328 } 4329 4330 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 4331 // Treat an enum type as its underlying type. 4332 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4333 Ty = EnumTy->getDecl()->getIntegerType(); 4334 4335 // Promotable integer types are required to be promoted by the ABI. 4336 if (Ty->isPromotableIntegerType()) 4337 return true; 4338 4339 // 32-bit values must also be promoted. 4340 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4341 switch (BT->getKind()) { 4342 case BuiltinType::Int: 4343 case BuiltinType::UInt: 4344 return true; 4345 default: 4346 return false; 4347 } 4348 return false; 4349 } 4350 4351 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 4352 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 4353 } 4354 4355 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 4356 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4357 switch (BT->getKind()) { 4358 case BuiltinType::Float: 4359 case BuiltinType::Double: 4360 return true; 4361 default: 4362 return false; 4363 } 4364 4365 if (const RecordType *RT = Ty->getAsStructureType()) { 4366 const RecordDecl *RD = RT->getDecl(); 4367 bool Found = false; 4368 4369 // If this is a C++ record, check the bases first. 4370 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 4371 for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(), 4372 E = CXXRD->bases_end(); I != E; ++I) { 4373 QualType Base = I->getType(); 4374 4375 // Empty bases don't affect things either way. 4376 if (isEmptyRecord(getContext(), Base, true)) 4377 continue; 4378 4379 if (Found) 4380 return false; 4381 Found = isFPArgumentType(Base); 4382 if (!Found) 4383 return false; 4384 } 4385 4386 // Check the fields. 4387 for (RecordDecl::field_iterator I = RD->field_begin(), 4388 E = RD->field_end(); I != E; ++I) { 4389 const FieldDecl *FD = *I; 4390 4391 // Empty bitfields don't affect things either way. 4392 // Unlike isSingleElementStruct(), empty structure and array fields 4393 // do count. So do anonymous bitfields that aren't zero-sized. 4394 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4395 return true; 4396 4397 // Unlike isSingleElementStruct(), arrays do not count. 4398 // Nested isFPArgumentType structures still do though. 4399 if (Found) 4400 return false; 4401 Found = isFPArgumentType(FD->getType()); 4402 if (!Found) 4403 return false; 4404 } 4405 4406 // Unlike isSingleElementStruct(), trailing padding is allowed. 4407 // An 8-byte aligned struct s { float f; } is passed as a double. 4408 return Found; 4409 } 4410 4411 return false; 4412 } 4413 4414 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4415 CodeGenFunction &CGF) const { 4416 // Assume that va_list type is correct; should be pointer to LLVM type: 4417 // struct { 4418 // i64 __gpr; 4419 // i64 __fpr; 4420 // i8 *__overflow_arg_area; 4421 // i8 *__reg_save_area; 4422 // }; 4423 4424 // Every argument occupies 8 bytes and is passed by preference in either 4425 // GPRs or FPRs. 4426 Ty = CGF.getContext().getCanonicalType(Ty); 4427 ABIArgInfo AI = classifyArgumentType(Ty); 4428 bool InFPRs = isFPArgumentType(Ty); 4429 4430 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4431 bool IsIndirect = AI.isIndirect(); 4432 unsigned UnpaddedBitSize; 4433 if (IsIndirect) { 4434 APTy = llvm::PointerType::getUnqual(APTy); 4435 UnpaddedBitSize = 64; 4436 } else 4437 UnpaddedBitSize = getContext().getTypeSize(Ty); 4438 unsigned PaddedBitSize = 64; 4439 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 4440 4441 unsigned PaddedSize = PaddedBitSize / 8; 4442 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 4443 4444 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 4445 if (InFPRs) { 4446 MaxRegs = 4; // Maximum of 4 FPR arguments 4447 RegCountField = 1; // __fpr 4448 RegSaveIndex = 16; // save offset for f0 4449 RegPadding = 0; // floats are passed in the high bits of an FPR 4450 } else { 4451 MaxRegs = 5; // Maximum of 5 GPR arguments 4452 RegCountField = 0; // __gpr 4453 RegSaveIndex = 2; // save offset for r2 4454 RegPadding = Padding; // values are passed in the low bits of a GPR 4455 } 4456 4457 llvm::Value *RegCountPtr = 4458 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 4459 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 4460 llvm::Type *IndexTy = RegCount->getType(); 4461 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 4462 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 4463 "fits_in_regs"); 4464 4465 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4466 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4467 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4468 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4469 4470 // Emit code to load the value if it was passed in registers. 4471 CGF.EmitBlock(InRegBlock); 4472 4473 // Work out the address of an argument register. 4474 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 4475 llvm::Value *ScaledRegCount = 4476 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 4477 llvm::Value *RegBase = 4478 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 4479 llvm::Value *RegOffset = 4480 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 4481 llvm::Value *RegSaveAreaPtr = 4482 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 4483 llvm::Value *RegSaveArea = 4484 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 4485 llvm::Value *RawRegAddr = 4486 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 4487 llvm::Value *RegAddr = 4488 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 4489 4490 // Update the register count 4491 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 4492 llvm::Value *NewRegCount = 4493 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 4494 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 4495 CGF.EmitBranch(ContBlock); 4496 4497 // Emit code to load the value if it was passed in memory. 4498 CGF.EmitBlock(InMemBlock); 4499 4500 // Work out the address of a stack argument. 4501 llvm::Value *OverflowArgAreaPtr = 4502 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 4503 llvm::Value *OverflowArgArea = 4504 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 4505 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 4506 llvm::Value *RawMemAddr = 4507 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 4508 llvm::Value *MemAddr = 4509 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 4510 4511 // Update overflow_arg_area_ptr pointer 4512 llvm::Value *NewOverflowArgArea = 4513 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 4514 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 4515 CGF.EmitBranch(ContBlock); 4516 4517 // Return the appropriate result. 4518 CGF.EmitBlock(ContBlock); 4519 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 4520 ResAddr->addIncoming(RegAddr, InRegBlock); 4521 ResAddr->addIncoming(MemAddr, InMemBlock); 4522 4523 if (IsIndirect) 4524 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 4525 4526 return ResAddr; 4527 } 4528 4529 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 4530 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4531 assert(Triple.getArch() == llvm::Triple::x86); 4532 4533 switch (Opts.getStructReturnConvention()) { 4534 case CodeGenOptions::SRCK_Default: 4535 break; 4536 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 4537 return false; 4538 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 4539 return true; 4540 } 4541 4542 if (Triple.isOSDarwin()) 4543 return true; 4544 4545 switch (Triple.getOS()) { 4546 case llvm::Triple::Cygwin: 4547 case llvm::Triple::MinGW32: 4548 case llvm::Triple::AuroraUX: 4549 case llvm::Triple::DragonFly: 4550 case llvm::Triple::FreeBSD: 4551 case llvm::Triple::OpenBSD: 4552 case llvm::Triple::Bitrig: 4553 case llvm::Triple::Win32: 4554 return true; 4555 default: 4556 return false; 4557 } 4558 } 4559 4560 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 4561 if (RetTy->isVoidType()) 4562 return ABIArgInfo::getIgnore(); 4563 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 4564 return ABIArgInfo::getIndirect(0); 4565 return (isPromotableIntegerType(RetTy) ? 4566 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4567 } 4568 4569 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 4570 // Handle the generic C++ ABI. 4571 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4572 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4573 4574 // Integers and enums are extended to full register width. 4575 if (isPromotableIntegerType(Ty)) 4576 return ABIArgInfo::getExtend(); 4577 4578 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 4579 uint64_t Size = getContext().getTypeSize(Ty); 4580 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 4581 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4582 4583 // Handle small structures. 4584 if (const RecordType *RT = Ty->getAs<RecordType>()) { 4585 // Structures with flexible arrays have variable length, so really 4586 // fail the size test above. 4587 const RecordDecl *RD = RT->getDecl(); 4588 if (RD->hasFlexibleArrayMember()) 4589 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4590 4591 // The structure is passed as an unextended integer, a float, or a double. 4592 llvm::Type *PassTy; 4593 if (isFPArgumentType(Ty)) { 4594 assert(Size == 32 || Size == 64); 4595 if (Size == 32) 4596 PassTy = llvm::Type::getFloatTy(getVMContext()); 4597 else 4598 PassTy = llvm::Type::getDoubleTy(getVMContext()); 4599 } else 4600 PassTy = llvm::IntegerType::get(getVMContext(), Size); 4601 return ABIArgInfo::getDirect(PassTy); 4602 } 4603 4604 // Non-structure compounds are passed indirectly. 4605 if (isCompoundType(Ty)) 4606 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4607 4608 return ABIArgInfo::getDirect(0); 4609 } 4610 4611 //===----------------------------------------------------------------------===// 4612 // MSP430 ABI Implementation 4613 //===----------------------------------------------------------------------===// 4614 4615 namespace { 4616 4617 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 4618 public: 4619 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 4620 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 4621 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4622 CodeGen::CodeGenModule &M) const; 4623 }; 4624 4625 } 4626 4627 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 4628 llvm::GlobalValue *GV, 4629 CodeGen::CodeGenModule &M) const { 4630 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4631 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 4632 // Handle 'interrupt' attribute: 4633 llvm::Function *F = cast<llvm::Function>(GV); 4634 4635 // Step 1: Set ISR calling convention. 4636 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 4637 4638 // Step 2: Add attributes goodness. 4639 F->addFnAttr(llvm::Attribute::NoInline); 4640 4641 // Step 3: Emit ISR vector alias. 4642 unsigned Num = attr->getNumber() / 2; 4643 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 4644 "__isr_" + Twine(Num), 4645 GV, &M.getModule()); 4646 } 4647 } 4648 } 4649 4650 //===----------------------------------------------------------------------===// 4651 // MIPS ABI Implementation. This works for both little-endian and 4652 // big-endian variants. 4653 //===----------------------------------------------------------------------===// 4654 4655 namespace { 4656 class MipsABIInfo : public ABIInfo { 4657 bool IsO32; 4658 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 4659 void CoerceToIntArgs(uint64_t TySize, 4660 SmallVectorImpl<llvm::Type *> &ArgList) const; 4661 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 4662 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 4663 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 4664 public: 4665 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 4666 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 4667 StackAlignInBytes(IsO32 ? 8 : 16) {} 4668 4669 ABIArgInfo classifyReturnType(QualType RetTy) const; 4670 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 4671 virtual void computeInfo(CGFunctionInfo &FI) const; 4672 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4673 CodeGenFunction &CGF) const; 4674 }; 4675 4676 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 4677 unsigned SizeOfUnwindException; 4678 public: 4679 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 4680 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 4681 SizeOfUnwindException(IsO32 ? 24 : 32) {} 4682 4683 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 4684 return 29; 4685 } 4686 4687 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4688 CodeGen::CodeGenModule &CGM) const { 4689 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4690 if (!FD) return; 4691 llvm::Function *Fn = cast<llvm::Function>(GV); 4692 if (FD->hasAttr<Mips16Attr>()) { 4693 Fn->addFnAttr("mips16"); 4694 } 4695 else if (FD->hasAttr<NoMips16Attr>()) { 4696 Fn->addFnAttr("nomips16"); 4697 } 4698 } 4699 4700 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4701 llvm::Value *Address) const; 4702 4703 unsigned getSizeOfUnwindException() const { 4704 return SizeOfUnwindException; 4705 } 4706 }; 4707 } 4708 4709 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 4710 SmallVectorImpl<llvm::Type *> &ArgList) const { 4711 llvm::IntegerType *IntTy = 4712 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 4713 4714 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 4715 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 4716 ArgList.push_back(IntTy); 4717 4718 // If necessary, add one more integer type to ArgList. 4719 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 4720 4721 if (R) 4722 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 4723 } 4724 4725 // In N32/64, an aligned double precision floating point field is passed in 4726 // a register. 4727 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 4728 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 4729 4730 if (IsO32) { 4731 CoerceToIntArgs(TySize, ArgList); 4732 return llvm::StructType::get(getVMContext(), ArgList); 4733 } 4734 4735 if (Ty->isComplexType()) 4736 return CGT.ConvertType(Ty); 4737 4738 const RecordType *RT = Ty->getAs<RecordType>(); 4739 4740 // Unions/vectors are passed in integer registers. 4741 if (!RT || !RT->isStructureOrClassType()) { 4742 CoerceToIntArgs(TySize, ArgList); 4743 return llvm::StructType::get(getVMContext(), ArgList); 4744 } 4745 4746 const RecordDecl *RD = RT->getDecl(); 4747 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 4748 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 4749 4750 uint64_t LastOffset = 0; 4751 unsigned idx = 0; 4752 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 4753 4754 // Iterate over fields in the struct/class and check if there are any aligned 4755 // double fields. 4756 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4757 i != e; ++i, ++idx) { 4758 const QualType Ty = i->getType(); 4759 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 4760 4761 if (!BT || BT->getKind() != BuiltinType::Double) 4762 continue; 4763 4764 uint64_t Offset = Layout.getFieldOffset(idx); 4765 if (Offset % 64) // Ignore doubles that are not aligned. 4766 continue; 4767 4768 // Add ((Offset - LastOffset) / 64) args of type i64. 4769 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 4770 ArgList.push_back(I64); 4771 4772 // Add double type. 4773 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 4774 LastOffset = Offset + 64; 4775 } 4776 4777 CoerceToIntArgs(TySize - LastOffset, IntArgList); 4778 ArgList.append(IntArgList.begin(), IntArgList.end()); 4779 4780 return llvm::StructType::get(getVMContext(), ArgList); 4781 } 4782 4783 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 4784 uint64_t Offset) const { 4785 if (OrigOffset + MinABIStackAlignInBytes > Offset) 4786 return 0; 4787 4788 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 4789 } 4790 4791 ABIArgInfo 4792 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 4793 uint64_t OrigOffset = Offset; 4794 uint64_t TySize = getContext().getTypeSize(Ty); 4795 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 4796 4797 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 4798 (uint64_t)StackAlignInBytes); 4799 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 4800 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 4801 4802 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 4803 // Ignore empty aggregates. 4804 if (TySize == 0) 4805 return ABIArgInfo::getIgnore(); 4806 4807 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4808 Offset = OrigOffset + MinABIStackAlignInBytes; 4809 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4810 } 4811 4812 // If we have reached here, aggregates are passed directly by coercing to 4813 // another structure type. Padding is inserted if the offset of the 4814 // aggregate is unaligned. 4815 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 4816 getPaddingType(OrigOffset, CurrOffset)); 4817 } 4818 4819 // Treat an enum type as its underlying type. 4820 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4821 Ty = EnumTy->getDecl()->getIntegerType(); 4822 4823 if (Ty->isPromotableIntegerType()) 4824 return ABIArgInfo::getExtend(); 4825 4826 return ABIArgInfo::getDirect( 4827 0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset)); 4828 } 4829 4830 llvm::Type* 4831 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 4832 const RecordType *RT = RetTy->getAs<RecordType>(); 4833 SmallVector<llvm::Type*, 8> RTList; 4834 4835 if (RT && RT->isStructureOrClassType()) { 4836 const RecordDecl *RD = RT->getDecl(); 4837 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 4838 unsigned FieldCnt = Layout.getFieldCount(); 4839 4840 // N32/64 returns struct/classes in floating point registers if the 4841 // following conditions are met: 4842 // 1. The size of the struct/class is no larger than 128-bit. 4843 // 2. The struct/class has one or two fields all of which are floating 4844 // point types. 4845 // 3. The offset of the first field is zero (this follows what gcc does). 4846 // 4847 // Any other composite results are returned in integer registers. 4848 // 4849 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 4850 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 4851 for (; b != e; ++b) { 4852 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 4853 4854 if (!BT || !BT->isFloatingPoint()) 4855 break; 4856 4857 RTList.push_back(CGT.ConvertType(b->getType())); 4858 } 4859 4860 if (b == e) 4861 return llvm::StructType::get(getVMContext(), RTList, 4862 RD->hasAttr<PackedAttr>()); 4863 4864 RTList.clear(); 4865 } 4866 } 4867 4868 CoerceToIntArgs(Size, RTList); 4869 return llvm::StructType::get(getVMContext(), RTList); 4870 } 4871 4872 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 4873 uint64_t Size = getContext().getTypeSize(RetTy); 4874 4875 if (RetTy->isVoidType() || Size == 0) 4876 return ABIArgInfo::getIgnore(); 4877 4878 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 4879 if (isRecordReturnIndirect(RetTy, getCXXABI())) 4880 return ABIArgInfo::getIndirect(0); 4881 4882 if (Size <= 128) { 4883 if (RetTy->isAnyComplexType()) 4884 return ABIArgInfo::getDirect(); 4885 4886 // O32 returns integer vectors in registers. 4887 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 4888 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 4889 4890 if (!IsO32) 4891 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 4892 } 4893 4894 return ABIArgInfo::getIndirect(0); 4895 } 4896 4897 // Treat an enum type as its underlying type. 4898 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4899 RetTy = EnumTy->getDecl()->getIntegerType(); 4900 4901 return (RetTy->isPromotableIntegerType() ? 4902 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4903 } 4904 4905 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 4906 ABIArgInfo &RetInfo = FI.getReturnInfo(); 4907 RetInfo = classifyReturnType(FI.getReturnType()); 4908 4909 // Check if a pointer to an aggregate is passed as a hidden argument. 4910 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 4911 4912 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4913 it != ie; ++it) 4914 it->info = classifyArgumentType(it->type, Offset); 4915 } 4916 4917 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4918 CodeGenFunction &CGF) const { 4919 llvm::Type *BP = CGF.Int8PtrTy; 4920 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4921 4922 CGBuilderTy &Builder = CGF.Builder; 4923 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4924 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4925 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 4926 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4927 llvm::Value *AddrTyped; 4928 unsigned PtrWidth = getTarget().getPointerWidth(0); 4929 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 4930 4931 if (TypeAlign > MinABIStackAlignInBytes) { 4932 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 4933 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 4934 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 4935 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 4936 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 4937 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 4938 } 4939 else 4940 AddrTyped = Builder.CreateBitCast(Addr, PTy); 4941 4942 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 4943 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 4944 uint64_t Offset = 4945 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 4946 llvm::Value *NextAddr = 4947 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 4948 "ap.next"); 4949 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4950 4951 return AddrTyped; 4952 } 4953 4954 bool 4955 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4956 llvm::Value *Address) const { 4957 // This information comes from gcc's implementation, which seems to 4958 // as canonical as it gets. 4959 4960 // Everything on MIPS is 4 bytes. Double-precision FP registers 4961 // are aliased to pairs of single-precision FP registers. 4962 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4963 4964 // 0-31 are the general purpose registers, $0 - $31. 4965 // 32-63 are the floating-point registers, $f0 - $f31. 4966 // 64 and 65 are the multiply/divide registers, $hi and $lo. 4967 // 66 is the (notional, I think) register for signal-handler return. 4968 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 4969 4970 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 4971 // They are one bit wide and ignored here. 4972 4973 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 4974 // (coprocessor 1 is the FP unit) 4975 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 4976 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 4977 // 176-181 are the DSP accumulator registers. 4978 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 4979 return false; 4980 } 4981 4982 //===----------------------------------------------------------------------===// 4983 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 4984 // Currently subclassed only to implement custom OpenCL C function attribute 4985 // handling. 4986 //===----------------------------------------------------------------------===// 4987 4988 namespace { 4989 4990 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4991 public: 4992 TCETargetCodeGenInfo(CodeGenTypes &CGT) 4993 : DefaultTargetCodeGenInfo(CGT) {} 4994 4995 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4996 CodeGen::CodeGenModule &M) const; 4997 }; 4998 4999 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5000 llvm::GlobalValue *GV, 5001 CodeGen::CodeGenModule &M) const { 5002 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5003 if (!FD) return; 5004 5005 llvm::Function *F = cast<llvm::Function>(GV); 5006 5007 if (M.getLangOpts().OpenCL) { 5008 if (FD->hasAttr<OpenCLKernelAttr>()) { 5009 // OpenCL C Kernel functions are not subject to inlining 5010 F->addFnAttr(llvm::Attribute::NoInline); 5011 5012 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 5013 5014 // Convert the reqd_work_group_size() attributes to metadata. 5015 llvm::LLVMContext &Context = F->getContext(); 5016 llvm::NamedMDNode *OpenCLMetadata = 5017 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5018 5019 SmallVector<llvm::Value*, 5> Operands; 5020 Operands.push_back(F); 5021 5022 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5023 llvm::APInt(32, 5024 FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim()))); 5025 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5026 llvm::APInt(32, 5027 FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim()))); 5028 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5029 llvm::APInt(32, 5030 FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim()))); 5031 5032 // Add a boolean constant operand for "required" (true) or "hint" (false) 5033 // for implementing the work_group_size_hint attr later. Currently 5034 // always true as the hint is not yet implemented. 5035 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5036 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5037 } 5038 } 5039 } 5040 } 5041 5042 } 5043 5044 //===----------------------------------------------------------------------===// 5045 // Hexagon ABI Implementation 5046 //===----------------------------------------------------------------------===// 5047 5048 namespace { 5049 5050 class HexagonABIInfo : public ABIInfo { 5051 5052 5053 public: 5054 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5055 5056 private: 5057 5058 ABIArgInfo classifyReturnType(QualType RetTy) const; 5059 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5060 5061 virtual void computeInfo(CGFunctionInfo &FI) const; 5062 5063 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5064 CodeGenFunction &CGF) const; 5065 }; 5066 5067 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5068 public: 5069 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5070 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5071 5072 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 5073 return 29; 5074 } 5075 }; 5076 5077 } 5078 5079 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5080 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5081 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 5082 it != ie; ++it) 5083 it->info = classifyArgumentType(it->type); 5084 } 5085 5086 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5087 if (!isAggregateTypeForABI(Ty)) { 5088 // Treat an enum type as its underlying type. 5089 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5090 Ty = EnumTy->getDecl()->getIntegerType(); 5091 5092 return (Ty->isPromotableIntegerType() ? 5093 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5094 } 5095 5096 // Ignore empty records. 5097 if (isEmptyRecord(getContext(), Ty, true)) 5098 return ABIArgInfo::getIgnore(); 5099 5100 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5101 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5102 5103 uint64_t Size = getContext().getTypeSize(Ty); 5104 if (Size > 64) 5105 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5106 // Pass in the smallest viable integer type. 5107 else if (Size > 32) 5108 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5109 else if (Size > 16) 5110 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5111 else if (Size > 8) 5112 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5113 else 5114 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5115 } 5116 5117 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5118 if (RetTy->isVoidType()) 5119 return ABIArgInfo::getIgnore(); 5120 5121 // Large vector types should be returned via memory. 5122 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5123 return ABIArgInfo::getIndirect(0); 5124 5125 if (!isAggregateTypeForABI(RetTy)) { 5126 // Treat an enum type as its underlying type. 5127 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5128 RetTy = EnumTy->getDecl()->getIntegerType(); 5129 5130 return (RetTy->isPromotableIntegerType() ? 5131 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5132 } 5133 5134 // Structures with either a non-trivial destructor or a non-trivial 5135 // copy constructor are always indirect. 5136 if (isRecordReturnIndirect(RetTy, getCXXABI())) 5137 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5138 5139 if (isEmptyRecord(getContext(), RetTy, true)) 5140 return ABIArgInfo::getIgnore(); 5141 5142 // Aggregates <= 8 bytes are returned in r0; other aggregates 5143 // are returned indirectly. 5144 uint64_t Size = getContext().getTypeSize(RetTy); 5145 if (Size <= 64) { 5146 // Return in the smallest viable integer type. 5147 if (Size <= 8) 5148 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5149 if (Size <= 16) 5150 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5151 if (Size <= 32) 5152 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5153 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5154 } 5155 5156 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5157 } 5158 5159 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5160 CodeGenFunction &CGF) const { 5161 // FIXME: Need to handle alignment 5162 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5163 5164 CGBuilderTy &Builder = CGF.Builder; 5165 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5166 "ap"); 5167 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5168 llvm::Type *PTy = 5169 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5170 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5171 5172 uint64_t Offset = 5173 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5174 llvm::Value *NextAddr = 5175 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5176 "ap.next"); 5177 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5178 5179 return AddrTyped; 5180 } 5181 5182 5183 //===----------------------------------------------------------------------===// 5184 // SPARC v9 ABI Implementation. 5185 // Based on the SPARC Compliance Definition version 2.4.1. 5186 // 5187 // Function arguments a mapped to a nominal "parameter array" and promoted to 5188 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5189 // the array, structs larger than 16 bytes are passed indirectly. 5190 // 5191 // One case requires special care: 5192 // 5193 // struct mixed { 5194 // int i; 5195 // float f; 5196 // }; 5197 // 5198 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5199 // parameter array, but the int is passed in an integer register, and the float 5200 // is passed in a floating point register. This is represented as two arguments 5201 // with the LLVM IR inreg attribute: 5202 // 5203 // declare void f(i32 inreg %i, float inreg %f) 5204 // 5205 // The code generator will only allocate 4 bytes from the parameter array for 5206 // the inreg arguments. All other arguments are allocated a multiple of 8 5207 // bytes. 5208 // 5209 namespace { 5210 class SparcV9ABIInfo : public ABIInfo { 5211 public: 5212 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5213 5214 private: 5215 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5216 virtual void computeInfo(CGFunctionInfo &FI) const; 5217 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5218 CodeGenFunction &CGF) const; 5219 5220 // Coercion type builder for structs passed in registers. The coercion type 5221 // serves two purposes: 5222 // 5223 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5224 // in registers. 5225 // 2. Expose aligned floating point elements as first-level elements, so the 5226 // code generator knows to pass them in floating point registers. 5227 // 5228 // We also compute the InReg flag which indicates that the struct contains 5229 // aligned 32-bit floats. 5230 // 5231 struct CoerceBuilder { 5232 llvm::LLVMContext &Context; 5233 const llvm::DataLayout &DL; 5234 SmallVector<llvm::Type*, 8> Elems; 5235 uint64_t Size; 5236 bool InReg; 5237 5238 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5239 : Context(c), DL(dl), Size(0), InReg(false) {} 5240 5241 // Pad Elems with integers until Size is ToSize. 5242 void pad(uint64_t ToSize) { 5243 assert(ToSize >= Size && "Cannot remove elements"); 5244 if (ToSize == Size) 5245 return; 5246 5247 // Finish the current 64-bit word. 5248 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5249 if (Aligned > Size && Aligned <= ToSize) { 5250 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5251 Size = Aligned; 5252 } 5253 5254 // Add whole 64-bit words. 5255 while (Size + 64 <= ToSize) { 5256 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5257 Size += 64; 5258 } 5259 5260 // Final in-word padding. 5261 if (Size < ToSize) { 5262 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5263 Size = ToSize; 5264 } 5265 } 5266 5267 // Add a floating point element at Offset. 5268 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5269 // Unaligned floats are treated as integers. 5270 if (Offset % Bits) 5271 return; 5272 // The InReg flag is only required if there are any floats < 64 bits. 5273 if (Bits < 64) 5274 InReg = true; 5275 pad(Offset); 5276 Elems.push_back(Ty); 5277 Size = Offset + Bits; 5278 } 5279 5280 // Add a struct type to the coercion type, starting at Offset (in bits). 5281 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5282 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5283 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5284 llvm::Type *ElemTy = StrTy->getElementType(i); 5285 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5286 switch (ElemTy->getTypeID()) { 5287 case llvm::Type::StructTyID: 5288 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5289 break; 5290 case llvm::Type::FloatTyID: 5291 addFloat(ElemOffset, ElemTy, 32); 5292 break; 5293 case llvm::Type::DoubleTyID: 5294 addFloat(ElemOffset, ElemTy, 64); 5295 break; 5296 case llvm::Type::FP128TyID: 5297 addFloat(ElemOffset, ElemTy, 128); 5298 break; 5299 case llvm::Type::PointerTyID: 5300 if (ElemOffset % 64 == 0) { 5301 pad(ElemOffset); 5302 Elems.push_back(ElemTy); 5303 Size += 64; 5304 } 5305 break; 5306 default: 5307 break; 5308 } 5309 } 5310 } 5311 5312 // Check if Ty is a usable substitute for the coercion type. 5313 bool isUsableType(llvm::StructType *Ty) const { 5314 if (Ty->getNumElements() != Elems.size()) 5315 return false; 5316 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5317 if (Elems[i] != Ty->getElementType(i)) 5318 return false; 5319 return true; 5320 } 5321 5322 // Get the coercion type as a literal struct type. 5323 llvm::Type *getType() const { 5324 if (Elems.size() == 1) 5325 return Elems.front(); 5326 else 5327 return llvm::StructType::get(Context, Elems); 5328 } 5329 }; 5330 }; 5331 } // end anonymous namespace 5332 5333 ABIArgInfo 5334 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5335 if (Ty->isVoidType()) 5336 return ABIArgInfo::getIgnore(); 5337 5338 uint64_t Size = getContext().getTypeSize(Ty); 5339 5340 // Anything too big to fit in registers is passed with an explicit indirect 5341 // pointer / sret pointer. 5342 if (Size > SizeLimit) 5343 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5344 5345 // Treat an enum type as its underlying type. 5346 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5347 Ty = EnumTy->getDecl()->getIntegerType(); 5348 5349 // Integer types smaller than a register are extended. 5350 if (Size < 64 && Ty->isIntegerType()) 5351 return ABIArgInfo::getExtend(); 5352 5353 // Other non-aggregates go in registers. 5354 if (!isAggregateTypeForABI(Ty)) 5355 return ABIArgInfo::getDirect(); 5356 5357 // This is a small aggregate type that should be passed in registers. 5358 // Build a coercion type from the LLVM struct type. 5359 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 5360 if (!StrTy) 5361 return ABIArgInfo::getDirect(); 5362 5363 CoerceBuilder CB(getVMContext(), getDataLayout()); 5364 CB.addStruct(0, StrTy); 5365 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 5366 5367 // Try to use the original type for coercion. 5368 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 5369 5370 if (CB.InReg) 5371 return ABIArgInfo::getDirectInReg(CoerceTy); 5372 else 5373 return ABIArgInfo::getDirect(CoerceTy); 5374 } 5375 5376 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5377 CodeGenFunction &CGF) const { 5378 ABIArgInfo AI = classifyType(Ty, 16 * 8); 5379 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5380 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5381 AI.setCoerceToType(ArgTy); 5382 5383 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5384 CGBuilderTy &Builder = CGF.Builder; 5385 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5386 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5387 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5388 llvm::Value *ArgAddr; 5389 unsigned Stride; 5390 5391 switch (AI.getKind()) { 5392 case ABIArgInfo::Expand: 5393 llvm_unreachable("Unsupported ABI kind for va_arg"); 5394 5395 case ABIArgInfo::Extend: 5396 Stride = 8; 5397 ArgAddr = Builder 5398 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 5399 "extend"); 5400 break; 5401 5402 case ABIArgInfo::Direct: 5403 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5404 ArgAddr = Addr; 5405 break; 5406 5407 case ABIArgInfo::Indirect: 5408 Stride = 8; 5409 ArgAddr = Builder.CreateBitCast(Addr, 5410 llvm::PointerType::getUnqual(ArgPtrTy), 5411 "indirect"); 5412 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 5413 break; 5414 5415 case ABIArgInfo::Ignore: 5416 return llvm::UndefValue::get(ArgPtrTy); 5417 } 5418 5419 // Update VAList. 5420 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 5421 Builder.CreateStore(Addr, VAListAddrAsBPP); 5422 5423 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 5424 } 5425 5426 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 5427 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 5428 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 5429 it != ie; ++it) 5430 it->info = classifyType(it->type, 16 * 8); 5431 } 5432 5433 namespace { 5434 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 5435 public: 5436 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 5437 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 5438 }; 5439 } // end anonymous namespace 5440 5441 5442 //===----------------------------------------------------------------------===// 5443 // Xcore ABI Implementation 5444 //===----------------------------------------------------------------------===// 5445 namespace { 5446 class XCoreABIInfo : public DefaultABIInfo { 5447 public: 5448 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 5449 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5450 CodeGenFunction &CGF) const; 5451 }; 5452 5453 class XcoreTargetCodeGenInfo : public TargetCodeGenInfo { 5454 public: 5455 XcoreTargetCodeGenInfo(CodeGenTypes &CGT) 5456 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 5457 }; 5458 } // End anonymous namespace. 5459 5460 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5461 CodeGenFunction &CGF) const { 5462 CGBuilderTy &Builder = CGF.Builder; 5463 5464 // Get the VAList. 5465 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 5466 CGF.Int8PtrPtrTy); 5467 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 5468 5469 // Handle the argument. 5470 ABIArgInfo AI = classifyArgumentType(Ty); 5471 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5472 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5473 AI.setCoerceToType(ArgTy); 5474 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5475 llvm::Value *Val; 5476 uint64_t ArgSize = 0; 5477 switch (AI.getKind()) { 5478 case ABIArgInfo::Expand: 5479 llvm_unreachable("Unsupported ABI kind for va_arg"); 5480 case ABIArgInfo::Ignore: 5481 Val = llvm::UndefValue::get(ArgPtrTy); 5482 ArgSize = 0; 5483 break; 5484 case ABIArgInfo::Extend: 5485 case ABIArgInfo::Direct: 5486 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 5487 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5488 if (ArgSize < 4) 5489 ArgSize = 4; 5490 break; 5491 case ABIArgInfo::Indirect: 5492 llvm::Value *ArgAddr; 5493 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 5494 ArgAddr = Builder.CreateLoad(ArgAddr); 5495 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 5496 ArgSize = 4; 5497 break; 5498 } 5499 5500 // Increment the VAList. 5501 if (ArgSize) { 5502 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 5503 Builder.CreateStore(APN, VAListAddrAsBPP); 5504 } 5505 return Val; 5506 } 5507 5508 //===----------------------------------------------------------------------===// 5509 // Driver code 5510 //===----------------------------------------------------------------------===// 5511 5512 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 5513 if (TheTargetCodeGenInfo) 5514 return *TheTargetCodeGenInfo; 5515 5516 const llvm::Triple &Triple = getTarget().getTriple(); 5517 switch (Triple.getArch()) { 5518 default: 5519 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 5520 5521 case llvm::Triple::le32: 5522 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 5523 case llvm::Triple::mips: 5524 case llvm::Triple::mipsel: 5525 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 5526 5527 case llvm::Triple::mips64: 5528 case llvm::Triple::mips64el: 5529 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 5530 5531 case llvm::Triple::aarch64: 5532 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types)); 5533 5534 case llvm::Triple::arm: 5535 case llvm::Triple::thumb: 5536 { 5537 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 5538 if (strcmp(getTarget().getABI(), "apcs-gnu") == 0) 5539 Kind = ARMABIInfo::APCS; 5540 else if (CodeGenOpts.FloatABI == "hard" || 5541 (CodeGenOpts.FloatABI != "soft" && 5542 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 5543 Kind = ARMABIInfo::AAPCS_VFP; 5544 5545 switch (Triple.getOS()) { 5546 case llvm::Triple::NaCl: 5547 return *(TheTargetCodeGenInfo = 5548 new NaClARMTargetCodeGenInfo(Types, Kind)); 5549 default: 5550 return *(TheTargetCodeGenInfo = 5551 new ARMTargetCodeGenInfo(Types, Kind)); 5552 } 5553 } 5554 5555 case llvm::Triple::ppc: 5556 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 5557 case llvm::Triple::ppc64: 5558 if (Triple.isOSBinFormatELF()) 5559 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 5560 else 5561 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 5562 case llvm::Triple::ppc64le: 5563 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 5564 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 5565 5566 case llvm::Triple::nvptx: 5567 case llvm::Triple::nvptx64: 5568 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 5569 5570 case llvm::Triple::msp430: 5571 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 5572 5573 case llvm::Triple::systemz: 5574 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 5575 5576 case llvm::Triple::tce: 5577 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 5578 5579 case llvm::Triple::x86: { 5580 bool IsDarwinVectorABI = Triple.isOSDarwin(); 5581 bool IsSmallStructInRegABI = 5582 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 5583 bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32); 5584 5585 if (Triple.getOS() == llvm::Triple::Win32) { 5586 return *(TheTargetCodeGenInfo = 5587 new WinX86_32TargetCodeGenInfo(Types, 5588 IsDarwinVectorABI, IsSmallStructInRegABI, 5589 IsWin32FloatStructABI, 5590 CodeGenOpts.NumRegisterParameters)); 5591 } else { 5592 return *(TheTargetCodeGenInfo = 5593 new X86_32TargetCodeGenInfo(Types, 5594 IsDarwinVectorABI, IsSmallStructInRegABI, 5595 IsWin32FloatStructABI, 5596 CodeGenOpts.NumRegisterParameters)); 5597 } 5598 } 5599 5600 case llvm::Triple::x86_64: { 5601 bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0; 5602 5603 switch (Triple.getOS()) { 5604 case llvm::Triple::Win32: 5605 case llvm::Triple::MinGW32: 5606 case llvm::Triple::Cygwin: 5607 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 5608 case llvm::Triple::NaCl: 5609 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 5610 HasAVX)); 5611 default: 5612 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 5613 HasAVX)); 5614 } 5615 } 5616 case llvm::Triple::hexagon: 5617 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 5618 case llvm::Triple::sparcv9: 5619 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 5620 case llvm::Triple::xcore: 5621 return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types)); 5622 5623 } 5624 } 5625