1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   Address NextPtr =
313       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
314   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
315 
316   // If the argument is smaller than a slot, and this is a big-endian
317   // target, the argument will be right-adjusted in its slot.
318   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
319       !DirectTy->isStructTy()) {
320     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
321   }
322 
323   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
324   return Addr;
325 }
326 
327 /// Emit va_arg for a platform using the common void* representation,
328 /// where arguments are simply emitted in an array of slots on the stack.
329 ///
330 /// \param IsIndirect - Values of this type are passed indirectly.
331 /// \param ValueInfo - The size and alignment of this type, generally
332 ///   computed with getContext().getTypeInfoInChars(ValueTy).
333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
334 ///   Each argument will be allocated to a multiple of this number of
335 ///   slots, and all the slots will be aligned to this value.
336 /// \param AllowHigherAlign - The slot alignment is not a cap;
337 ///   an argument type with an alignment greater than the slot size
338 ///   will be emitted on a higher-alignment address, potentially
339 ///   leaving one or more empty slots behind as padding.
340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
341                                 QualType ValueTy, bool IsIndirect,
342                                 std::pair<CharUnits, CharUnits> ValueInfo,
343                                 CharUnits SlotSizeAndAlign,
344                                 bool AllowHigherAlign) {
345   // The size and alignment of the value that was passed directly.
346   CharUnits DirectSize, DirectAlign;
347   if (IsIndirect) {
348     DirectSize = CGF.getPointerSize();
349     DirectAlign = CGF.getPointerAlign();
350   } else {
351     DirectSize = ValueInfo.first;
352     DirectAlign = ValueInfo.second;
353   }
354 
355   // Cast the address we've calculated to the right type.
356   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
357   if (IsIndirect)
358     DirectTy = DirectTy->getPointerTo(0);
359 
360   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
361                                         DirectSize, DirectAlign,
362                                         SlotSizeAndAlign,
363                                         AllowHigherAlign);
364 
365   if (IsIndirect) {
366     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
367   }
368 
369   return Addr;
370 
371 }
372 
373 static Address emitMergePHI(CodeGenFunction &CGF,
374                             Address Addr1, llvm::BasicBlock *Block1,
375                             Address Addr2, llvm::BasicBlock *Block2,
376                             const llvm::Twine &Name = "") {
377   assert(Addr1.getType() == Addr2.getType());
378   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
379   PHI->addIncoming(Addr1.getPointer(), Block1);
380   PHI->addIncoming(Addr2.getPointer(), Block2);
381   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
382   return Address(PHI, Align);
383 }
384 
385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
386 
387 // If someone can figure out a general rule for this, that would be great.
388 // It's probably just doomed to be platform-dependent, though.
389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
390   // Verified for:
391   //   x86-64     FreeBSD, Linux, Darwin
392   //   x86-32     FreeBSD, Linux, Darwin
393   //   PowerPC    Linux, Darwin
394   //   ARM        Darwin (*not* EABI)
395   //   AArch64    Linux
396   return 32;
397 }
398 
399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
400                                      const FunctionNoProtoType *fnType) const {
401   // The following conventions are known to require this to be false:
402   //   x86_stdcall
403   //   MIPS
404   // For everything else, we just prefer false unless we opt out.
405   return false;
406 }
407 
408 void
409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
410                                              llvm::SmallString<24> &Opt) const {
411   // This assumes the user is passing a library name like "rt" instead of a
412   // filename like "librt.a/so", and that they don't care whether it's static or
413   // dynamic.
414   Opt = "-l";
415   Opt += Lib;
416 }
417 
418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
419   // OpenCL kernels are called via an explicit runtime API with arguments
420   // set with clSetKernelArg(), not as normal sub-functions.
421   // Return SPIR_KERNEL by default as the kernel calling convention to
422   // ensure the fingerprint is fixed such way that each OpenCL argument
423   // gets one matching argument in the produced kernel function argument
424   // list to enable feasible implementation of clSetKernelArg() with
425   // aggregates etc. In case we would use the default C calling conv here,
426   // clSetKernelArg() might break depending on the target-specific
427   // conventions; different targets might split structs passed as values
428   // to multiple function arguments etc.
429   return llvm::CallingConv::SPIR_KERNEL;
430 }
431 
432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
433     llvm::PointerType *T, QualType QT) const {
434   return llvm::ConstantPointerNull::get(T);
435 }
436 
437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
438                                                    const VarDecl *D) const {
439   assert(!CGM.getLangOpts().OpenCL &&
440          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
441          "Address space agnostic languages only");
442   return D ? D->getType().getAddressSpace() : LangAS::Default;
443 }
444 
445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
446     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
447     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   if (auto *C = dyn_cast<llvm::Constant>(Src))
451     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
452   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
453 }
454 
455 llvm::Constant *
456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
457                                         LangAS SrcAddr, LangAS DestAddr,
458                                         llvm::Type *DestTy) const {
459   // Since target may map different address spaces in AST to the same address
460   // space, an address space conversion may end up as a bitcast.
461   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
462 }
463 
464 llvm::SyncScope::ID
465 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
466                                       SyncScope Scope,
467                                       llvm::AtomicOrdering Ordering,
468                                       llvm::LLVMContext &Ctx) const {
469   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
470 }
471 
472 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
473 
474 /// isEmptyField - Return true iff a the field is "empty", that is it
475 /// is an unnamed bit-field or an (array of) empty record(s).
476 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
477                          bool AllowArrays) {
478   if (FD->isUnnamedBitfield())
479     return true;
480 
481   QualType FT = FD->getType();
482 
483   // Constant arrays of empty records count as empty, strip them off.
484   // Constant arrays of zero length always count as empty.
485   if (AllowArrays)
486     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
487       if (AT->getSize() == 0)
488         return true;
489       FT = AT->getElementType();
490     }
491 
492   const RecordType *RT = FT->getAs<RecordType>();
493   if (!RT)
494     return false;
495 
496   // C++ record fields are never empty, at least in the Itanium ABI.
497   //
498   // FIXME: We should use a predicate for whether this behavior is true in the
499   // current ABI.
500   if (isa<CXXRecordDecl>(RT->getDecl()))
501     return false;
502 
503   return isEmptyRecord(Context, FT, AllowArrays);
504 }
505 
506 /// isEmptyRecord - Return true iff a structure contains only empty
507 /// fields. Note that a structure with a flexible array member is not
508 /// considered empty.
509 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
510   const RecordType *RT = T->getAs<RecordType>();
511   if (!RT)
512     return false;
513   const RecordDecl *RD = RT->getDecl();
514   if (RD->hasFlexibleArrayMember())
515     return false;
516 
517   // If this is a C++ record, check the bases first.
518   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
519     for (const auto &I : CXXRD->bases())
520       if (!isEmptyRecord(Context, I.getType(), true))
521         return false;
522 
523   for (const auto *I : RD->fields())
524     if (!isEmptyField(Context, I, AllowArrays))
525       return false;
526   return true;
527 }
528 
529 /// isSingleElementStruct - Determine if a structure is a "single
530 /// element struct", i.e. it has exactly one non-empty field or
531 /// exactly one field which is itself a single element
532 /// struct. Structures with flexible array members are never
533 /// considered single element structs.
534 ///
535 /// \return The field declaration for the single non-empty field, if
536 /// it exists.
537 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
538   const RecordType *RT = T->getAs<RecordType>();
539   if (!RT)
540     return nullptr;
541 
542   const RecordDecl *RD = RT->getDecl();
543   if (RD->hasFlexibleArrayMember())
544     return nullptr;
545 
546   const Type *Found = nullptr;
547 
548   // If this is a C++ record, check the bases first.
549   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
550     for (const auto &I : CXXRD->bases()) {
551       // Ignore empty records.
552       if (isEmptyRecord(Context, I.getType(), true))
553         continue;
554 
555       // If we already found an element then this isn't a single-element struct.
556       if (Found)
557         return nullptr;
558 
559       // If this is non-empty and not a single element struct, the composite
560       // cannot be a single element struct.
561       Found = isSingleElementStruct(I.getType(), Context);
562       if (!Found)
563         return nullptr;
564     }
565   }
566 
567   // Check for single element.
568   for (const auto *FD : RD->fields()) {
569     QualType FT = FD->getType();
570 
571     // Ignore empty fields.
572     if (isEmptyField(Context, FD, true))
573       continue;
574 
575     // If we already found an element then this isn't a single-element
576     // struct.
577     if (Found)
578       return nullptr;
579 
580     // Treat single element arrays as the element.
581     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
582       if (AT->getSize().getZExtValue() != 1)
583         break;
584       FT = AT->getElementType();
585     }
586 
587     if (!isAggregateTypeForABI(FT)) {
588       Found = FT.getTypePtr();
589     } else {
590       Found = isSingleElementStruct(FT, Context);
591       if (!Found)
592         return nullptr;
593     }
594   }
595 
596   // We don't consider a struct a single-element struct if it has
597   // padding beyond the element type.
598   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
599     return nullptr;
600 
601   return Found;
602 }
603 
604 namespace {
605 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
606                        const ABIArgInfo &AI) {
607   // This default implementation defers to the llvm backend's va_arg
608   // instruction. It can handle only passing arguments directly
609   // (typically only handled in the backend for primitive types), or
610   // aggregates passed indirectly by pointer (NOTE: if the "byval"
611   // flag has ABI impact in the callee, this implementation cannot
612   // work.)
613 
614   // Only a few cases are covered here at the moment -- those needed
615   // by the default abi.
616   llvm::Value *Val;
617 
618   if (AI.isIndirect()) {
619     assert(!AI.getPaddingType() &&
620            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
621     assert(
622         !AI.getIndirectRealign() &&
623         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
624 
625     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
626     CharUnits TyAlignForABI = TyInfo.second;
627 
628     llvm::Type *BaseTy =
629         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
630     llvm::Value *Addr =
631         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
632     return Address(Addr, TyAlignForABI);
633   } else {
634     assert((AI.isDirect() || AI.isExtend()) &&
635            "Unexpected ArgInfo Kind in generic VAArg emitter!");
636 
637     assert(!AI.getInReg() &&
638            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
639     assert(!AI.getPaddingType() &&
640            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
641     assert(!AI.getDirectOffset() &&
642            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
643     assert(!AI.getCoerceToType() &&
644            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
645 
646     Address Temp = CGF.CreateMemTemp(Ty, "varet");
647     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
648     CGF.Builder.CreateStore(Val, Temp);
649     return Temp;
650   }
651 }
652 
653 /// DefaultABIInfo - The default implementation for ABI specific
654 /// details. This implementation provides information which results in
655 /// self-consistent and sensible LLVM IR generation, but does not
656 /// conform to any particular ABI.
657 class DefaultABIInfo : public ABIInfo {
658 public:
659   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
660 
661   ABIArgInfo classifyReturnType(QualType RetTy) const;
662   ABIArgInfo classifyArgumentType(QualType RetTy) const;
663 
664   void computeInfo(CGFunctionInfo &FI) const override {
665     if (!getCXXABI().classifyReturnType(FI))
666       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
667     for (auto &I : FI.arguments())
668       I.info = classifyArgumentType(I.type);
669   }
670 
671   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
672                     QualType Ty) const override {
673     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
674   }
675 };
676 
677 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
678 public:
679   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
680     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
681 };
682 
683 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
684   Ty = useFirstFieldIfTransparentUnion(Ty);
685 
686   if (isAggregateTypeForABI(Ty)) {
687     // Records with non-trivial destructors/copy-constructors should not be
688     // passed by value.
689     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
690       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
691 
692     return getNaturalAlignIndirect(Ty);
693   }
694 
695   // Treat an enum type as its underlying type.
696   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
697     Ty = EnumTy->getDecl()->getIntegerType();
698 
699   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
700                                         : ABIArgInfo::getDirect());
701 }
702 
703 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
704   if (RetTy->isVoidType())
705     return ABIArgInfo::getIgnore();
706 
707   if (isAggregateTypeForABI(RetTy))
708     return getNaturalAlignIndirect(RetTy);
709 
710   // Treat an enum type as its underlying type.
711   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
712     RetTy = EnumTy->getDecl()->getIntegerType();
713 
714   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
715                                            : ABIArgInfo::getDirect());
716 }
717 
718 //===----------------------------------------------------------------------===//
719 // WebAssembly ABI Implementation
720 //
721 // This is a very simple ABI that relies a lot on DefaultABIInfo.
722 //===----------------------------------------------------------------------===//
723 
724 class WebAssemblyABIInfo final : public SwiftABIInfo {
725   DefaultABIInfo defaultInfo;
726 
727 public:
728   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
729       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
730 
731 private:
732   ABIArgInfo classifyReturnType(QualType RetTy) const;
733   ABIArgInfo classifyArgumentType(QualType Ty) const;
734 
735   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
736   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
737   // overload them.
738   void computeInfo(CGFunctionInfo &FI) const override {
739     if (!getCXXABI().classifyReturnType(FI))
740       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
741     for (auto &Arg : FI.arguments())
742       Arg.info = classifyArgumentType(Arg.type);
743   }
744 
745   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
746                     QualType Ty) const override;
747 
748   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
749                                     bool asReturnValue) const override {
750     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
751   }
752 
753   bool isSwiftErrorInRegister() const override {
754     return false;
755   }
756 };
757 
758 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
759 public:
760   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
761       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
762 
763   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
764                            CodeGen::CodeGenModule &CGM) const override {
765     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
766     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
767       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
768         llvm::Function *Fn = cast<llvm::Function>(GV);
769         llvm::AttrBuilder B;
770         B.addAttribute("wasm-import-module", Attr->getImportModule());
771         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
772       }
773       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
774         llvm::Function *Fn = cast<llvm::Function>(GV);
775         llvm::AttrBuilder B;
776         B.addAttribute("wasm-import-name", Attr->getImportName());
777         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
778       }
779     }
780 
781     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
782       llvm::Function *Fn = cast<llvm::Function>(GV);
783       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
784         Fn->addFnAttr("no-prototype");
785     }
786   }
787 };
788 
789 /// Classify argument of given type \p Ty.
790 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
791   Ty = useFirstFieldIfTransparentUnion(Ty);
792 
793   if (isAggregateTypeForABI(Ty)) {
794     // Records with non-trivial destructors/copy-constructors should not be
795     // passed by value.
796     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
797       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
798     // Ignore empty structs/unions.
799     if (isEmptyRecord(getContext(), Ty, true))
800       return ABIArgInfo::getIgnore();
801     // Lower single-element structs to just pass a regular value. TODO: We
802     // could do reasonable-size multiple-element structs too, using getExpand(),
803     // though watch out for things like bitfields.
804     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
805       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
806   }
807 
808   // Otherwise just do the default thing.
809   return defaultInfo.classifyArgumentType(Ty);
810 }
811 
812 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
813   if (isAggregateTypeForABI(RetTy)) {
814     // Records with non-trivial destructors/copy-constructors should not be
815     // returned by value.
816     if (!getRecordArgABI(RetTy, getCXXABI())) {
817       // Ignore empty structs/unions.
818       if (isEmptyRecord(getContext(), RetTy, true))
819         return ABIArgInfo::getIgnore();
820       // Lower single-element structs to just return a regular value. TODO: We
821       // could do reasonable-size multiple-element structs too, using
822       // ABIArgInfo::getDirect().
823       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
824         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
825     }
826   }
827 
828   // Otherwise just do the default thing.
829   return defaultInfo.classifyReturnType(RetTy);
830 }
831 
832 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
833                                       QualType Ty) const {
834   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
835                           getContext().getTypeInfoInChars(Ty),
836                           CharUnits::fromQuantity(4),
837                           /*AllowHigherAlign=*/ true);
838 }
839 
840 //===----------------------------------------------------------------------===//
841 // le32/PNaCl bitcode ABI Implementation
842 //
843 // This is a simplified version of the x86_32 ABI.  Arguments and return values
844 // are always passed on the stack.
845 //===----------------------------------------------------------------------===//
846 
847 class PNaClABIInfo : public ABIInfo {
848  public:
849   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
850 
851   ABIArgInfo classifyReturnType(QualType RetTy) const;
852   ABIArgInfo classifyArgumentType(QualType RetTy) const;
853 
854   void computeInfo(CGFunctionInfo &FI) const override;
855   Address EmitVAArg(CodeGenFunction &CGF,
856                     Address VAListAddr, QualType Ty) const override;
857 };
858 
859 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
860  public:
861   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
862     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
863 };
864 
865 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
866   if (!getCXXABI().classifyReturnType(FI))
867     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
868 
869   for (auto &I : FI.arguments())
870     I.info = classifyArgumentType(I.type);
871 }
872 
873 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
874                                 QualType Ty) const {
875   // The PNaCL ABI is a bit odd, in that varargs don't use normal
876   // function classification. Structs get passed directly for varargs
877   // functions, through a rewriting transform in
878   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
879   // this target to actually support a va_arg instructions with an
880   // aggregate type, unlike other targets.
881   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
882 }
883 
884 /// Classify argument of given type \p Ty.
885 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
886   if (isAggregateTypeForABI(Ty)) {
887     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
888       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
889     return getNaturalAlignIndirect(Ty);
890   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
891     // Treat an enum type as its underlying type.
892     Ty = EnumTy->getDecl()->getIntegerType();
893   } else if (Ty->isFloatingType()) {
894     // Floating-point types don't go inreg.
895     return ABIArgInfo::getDirect();
896   }
897 
898   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
899                                         : ABIArgInfo::getDirect());
900 }
901 
902 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
903   if (RetTy->isVoidType())
904     return ABIArgInfo::getIgnore();
905 
906   // In the PNaCl ABI we always return records/structures on the stack.
907   if (isAggregateTypeForABI(RetTy))
908     return getNaturalAlignIndirect(RetTy);
909 
910   // Treat an enum type as its underlying type.
911   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
912     RetTy = EnumTy->getDecl()->getIntegerType();
913 
914   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
915                                            : ABIArgInfo::getDirect());
916 }
917 
918 /// IsX86_MMXType - Return true if this is an MMX type.
919 bool IsX86_MMXType(llvm::Type *IRType) {
920   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
921   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
922     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
923     IRType->getScalarSizeInBits() != 64;
924 }
925 
926 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
927                                           StringRef Constraint,
928                                           llvm::Type* Ty) {
929   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
930                      .Cases("y", "&y", "^Ym", true)
931                      .Default(false);
932   if (IsMMXCons && Ty->isVectorTy()) {
933     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
934       // Invalid MMX constraint
935       return nullptr;
936     }
937 
938     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
939   }
940 
941   // No operation needed
942   return Ty;
943 }
944 
945 /// Returns true if this type can be passed in SSE registers with the
946 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
947 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
948   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
949     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
950       if (BT->getKind() == BuiltinType::LongDouble) {
951         if (&Context.getTargetInfo().getLongDoubleFormat() ==
952             &llvm::APFloat::x87DoubleExtended())
953           return false;
954       }
955       return true;
956     }
957   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
958     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
959     // registers specially.
960     unsigned VecSize = Context.getTypeSize(VT);
961     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
962       return true;
963   }
964   return false;
965 }
966 
967 /// Returns true if this aggregate is small enough to be passed in SSE registers
968 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
969 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
970   return NumMembers <= 4;
971 }
972 
973 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
974 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
975   auto AI = ABIArgInfo::getDirect(T);
976   AI.setInReg(true);
977   AI.setCanBeFlattened(false);
978   return AI;
979 }
980 
981 //===----------------------------------------------------------------------===//
982 // X86-32 ABI Implementation
983 //===----------------------------------------------------------------------===//
984 
985 /// Similar to llvm::CCState, but for Clang.
986 struct CCState {
987   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
988 
989   unsigned CC;
990   unsigned FreeRegs;
991   unsigned FreeSSERegs;
992 };
993 
994 enum {
995   // Vectorcall only allows the first 6 parameters to be passed in registers.
996   VectorcallMaxParamNumAsReg = 6
997 };
998 
999 /// X86_32ABIInfo - The X86-32 ABI information.
1000 class X86_32ABIInfo : public SwiftABIInfo {
1001   enum Class {
1002     Integer,
1003     Float
1004   };
1005 
1006   static const unsigned MinABIStackAlignInBytes = 4;
1007 
1008   bool IsDarwinVectorABI;
1009   bool IsRetSmallStructInRegABI;
1010   bool IsWin32StructABI;
1011   bool IsSoftFloatABI;
1012   bool IsMCUABI;
1013   bool IsLinuxABI;
1014   unsigned DefaultNumRegisterParameters;
1015 
1016   static bool isRegisterSize(unsigned Size) {
1017     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1018   }
1019 
1020   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1021     // FIXME: Assumes vectorcall is in use.
1022     return isX86VectorTypeForVectorCall(getContext(), Ty);
1023   }
1024 
1025   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1026                                          uint64_t NumMembers) const override {
1027     // FIXME: Assumes vectorcall is in use.
1028     return isX86VectorCallAggregateSmallEnough(NumMembers);
1029   }
1030 
1031   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1032 
1033   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1034   /// such that the argument will be passed in memory.
1035   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1036 
1037   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1038 
1039   /// Return the alignment to use for the given type on the stack.
1040   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1041 
1042   Class classify(QualType Ty) const;
1043   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1044   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1045 
1046   /// Updates the number of available free registers, returns
1047   /// true if any registers were allocated.
1048   bool updateFreeRegs(QualType Ty, CCState &State) const;
1049 
1050   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1051                                 bool &NeedsPadding) const;
1052   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1053 
1054   bool canExpandIndirectArgument(QualType Ty) const;
1055 
1056   /// Rewrite the function info so that all memory arguments use
1057   /// inalloca.
1058   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1059 
1060   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1061                            CharUnits &StackOffset, ABIArgInfo &Info,
1062                            QualType Type) const;
1063   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1064                              bool &UsedInAlloca) const;
1065 
1066 public:
1067 
1068   void computeInfo(CGFunctionInfo &FI) const override;
1069   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1070                     QualType Ty) const override;
1071 
1072   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1073                 bool RetSmallStructInRegABI, bool Win32StructABI,
1074                 unsigned NumRegisterParameters, bool SoftFloatABI)
1075     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1076       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1077       IsWin32StructABI(Win32StructABI),
1078       IsSoftFloatABI(SoftFloatABI),
1079       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1080       IsLinuxABI(CGT.getTarget().getTriple().isOSLinux()),
1081       DefaultNumRegisterParameters(NumRegisterParameters) {}
1082 
1083   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1084                                     bool asReturnValue) const override {
1085     // LLVM's x86-32 lowering currently only assigns up to three
1086     // integer registers and three fp registers.  Oddly, it'll use up to
1087     // four vector registers for vectors, but those can overlap with the
1088     // scalar registers.
1089     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1090   }
1091 
1092   bool isSwiftErrorInRegister() const override {
1093     // x86-32 lowering does not support passing swifterror in a register.
1094     return false;
1095   }
1096 };
1097 
1098 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1099 public:
1100   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1101                           bool RetSmallStructInRegABI, bool Win32StructABI,
1102                           unsigned NumRegisterParameters, bool SoftFloatABI)
1103       : TargetCodeGenInfo(new X86_32ABIInfo(
1104             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1105             NumRegisterParameters, SoftFloatABI)) {}
1106 
1107   static bool isStructReturnInRegABI(
1108       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1109 
1110   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1111                            CodeGen::CodeGenModule &CGM) const override;
1112 
1113   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1114     // Darwin uses different dwarf register numbers for EH.
1115     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1116     return 4;
1117   }
1118 
1119   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1120                                llvm::Value *Address) const override;
1121 
1122   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1123                                   StringRef Constraint,
1124                                   llvm::Type* Ty) const override {
1125     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1126   }
1127 
1128   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1129                                 std::string &Constraints,
1130                                 std::vector<llvm::Type *> &ResultRegTypes,
1131                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1132                                 std::vector<LValue> &ResultRegDests,
1133                                 std::string &AsmString,
1134                                 unsigned NumOutputs) const override;
1135 
1136   llvm::Constant *
1137   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1138     unsigned Sig = (0xeb << 0) |  // jmp rel8
1139                    (0x06 << 8) |  //           .+0x08
1140                    ('v' << 16) |
1141                    ('2' << 24);
1142     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1143   }
1144 
1145   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1146     return "movl\t%ebp, %ebp"
1147            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1148   }
1149 };
1150 
1151 }
1152 
1153 /// Rewrite input constraint references after adding some output constraints.
1154 /// In the case where there is one output and one input and we add one output,
1155 /// we need to replace all operand references greater than or equal to 1:
1156 ///     mov $0, $1
1157 ///     mov eax, $1
1158 /// The result will be:
1159 ///     mov $0, $2
1160 ///     mov eax, $2
1161 static void rewriteInputConstraintReferences(unsigned FirstIn,
1162                                              unsigned NumNewOuts,
1163                                              std::string &AsmString) {
1164   std::string Buf;
1165   llvm::raw_string_ostream OS(Buf);
1166   size_t Pos = 0;
1167   while (Pos < AsmString.size()) {
1168     size_t DollarStart = AsmString.find('$', Pos);
1169     if (DollarStart == std::string::npos)
1170       DollarStart = AsmString.size();
1171     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1172     if (DollarEnd == std::string::npos)
1173       DollarEnd = AsmString.size();
1174     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1175     Pos = DollarEnd;
1176     size_t NumDollars = DollarEnd - DollarStart;
1177     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1178       // We have an operand reference.
1179       size_t DigitStart = Pos;
1180       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1181       if (DigitEnd == std::string::npos)
1182         DigitEnd = AsmString.size();
1183       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1184       unsigned OperandIndex;
1185       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1186         if (OperandIndex >= FirstIn)
1187           OperandIndex += NumNewOuts;
1188         OS << OperandIndex;
1189       } else {
1190         OS << OperandStr;
1191       }
1192       Pos = DigitEnd;
1193     }
1194   }
1195   AsmString = std::move(OS.str());
1196 }
1197 
1198 /// Add output constraints for EAX:EDX because they are return registers.
1199 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1200     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1201     std::vector<llvm::Type *> &ResultRegTypes,
1202     std::vector<llvm::Type *> &ResultTruncRegTypes,
1203     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1204     unsigned NumOutputs) const {
1205   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1206 
1207   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1208   // larger.
1209   if (!Constraints.empty())
1210     Constraints += ',';
1211   if (RetWidth <= 32) {
1212     Constraints += "={eax}";
1213     ResultRegTypes.push_back(CGF.Int32Ty);
1214   } else {
1215     // Use the 'A' constraint for EAX:EDX.
1216     Constraints += "=A";
1217     ResultRegTypes.push_back(CGF.Int64Ty);
1218   }
1219 
1220   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1221   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1222   ResultTruncRegTypes.push_back(CoerceTy);
1223 
1224   // Coerce the integer by bitcasting the return slot pointer.
1225   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1226                                                   CoerceTy->getPointerTo()));
1227   ResultRegDests.push_back(ReturnSlot);
1228 
1229   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1230 }
1231 
1232 /// shouldReturnTypeInRegister - Determine if the given type should be
1233 /// returned in a register (for the Darwin and MCU ABI).
1234 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1235                                                ASTContext &Context) const {
1236   uint64_t Size = Context.getTypeSize(Ty);
1237 
1238   // For i386, type must be register sized.
1239   // For the MCU ABI, it only needs to be <= 8-byte
1240   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1241    return false;
1242 
1243   if (Ty->isVectorType()) {
1244     // 64- and 128- bit vectors inside structures are not returned in
1245     // registers.
1246     if (Size == 64 || Size == 128)
1247       return false;
1248 
1249     return true;
1250   }
1251 
1252   // If this is a builtin, pointer, enum, complex type, member pointer, or
1253   // member function pointer it is ok.
1254   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1255       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1256       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1257     return true;
1258 
1259   // Arrays are treated like records.
1260   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1261     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1262 
1263   // Otherwise, it must be a record type.
1264   const RecordType *RT = Ty->getAs<RecordType>();
1265   if (!RT) return false;
1266 
1267   // FIXME: Traverse bases here too.
1268 
1269   // Structure types are passed in register if all fields would be
1270   // passed in a register.
1271   for (const auto *FD : RT->getDecl()->fields()) {
1272     // Empty fields are ignored.
1273     if (isEmptyField(Context, FD, true))
1274       continue;
1275 
1276     // Check fields recursively.
1277     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1278       return false;
1279   }
1280   return true;
1281 }
1282 
1283 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1284   // Treat complex types as the element type.
1285   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1286     Ty = CTy->getElementType();
1287 
1288   // Check for a type which we know has a simple scalar argument-passing
1289   // convention without any padding.  (We're specifically looking for 32
1290   // and 64-bit integer and integer-equivalents, float, and double.)
1291   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1292       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1293     return false;
1294 
1295   uint64_t Size = Context.getTypeSize(Ty);
1296   return Size == 32 || Size == 64;
1297 }
1298 
1299 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1300                           uint64_t &Size) {
1301   for (const auto *FD : RD->fields()) {
1302     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1303     // argument is smaller than 32-bits, expanding the struct will create
1304     // alignment padding.
1305     if (!is32Or64BitBasicType(FD->getType(), Context))
1306       return false;
1307 
1308     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1309     // how to expand them yet, and the predicate for telling if a bitfield still
1310     // counts as "basic" is more complicated than what we were doing previously.
1311     if (FD->isBitField())
1312       return false;
1313 
1314     Size += Context.getTypeSize(FD->getType());
1315   }
1316   return true;
1317 }
1318 
1319 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1320                                  uint64_t &Size) {
1321   // Don't do this if there are any non-empty bases.
1322   for (const CXXBaseSpecifier &Base : RD->bases()) {
1323     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1324                               Size))
1325       return false;
1326   }
1327   if (!addFieldSizes(Context, RD, Size))
1328     return false;
1329   return true;
1330 }
1331 
1332 /// Test whether an argument type which is to be passed indirectly (on the
1333 /// stack) would have the equivalent layout if it was expanded into separate
1334 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1335 /// optimizations.
1336 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1337   // We can only expand structure types.
1338   const RecordType *RT = Ty->getAs<RecordType>();
1339   if (!RT)
1340     return false;
1341   const RecordDecl *RD = RT->getDecl();
1342   uint64_t Size = 0;
1343   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1344     if (!IsWin32StructABI) {
1345       // On non-Windows, we have to conservatively match our old bitcode
1346       // prototypes in order to be ABI-compatible at the bitcode level.
1347       if (!CXXRD->isCLike())
1348         return false;
1349     } else {
1350       // Don't do this for dynamic classes.
1351       if (CXXRD->isDynamicClass())
1352         return false;
1353     }
1354     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1355       return false;
1356   } else {
1357     if (!addFieldSizes(getContext(), RD, Size))
1358       return false;
1359   }
1360 
1361   // We can do this if there was no alignment padding.
1362   return Size == getContext().getTypeSize(Ty);
1363 }
1364 
1365 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1366   // If the return value is indirect, then the hidden argument is consuming one
1367   // integer register.
1368   if (State.FreeRegs) {
1369     --State.FreeRegs;
1370     if (!IsMCUABI)
1371       return getNaturalAlignIndirectInReg(RetTy);
1372   }
1373   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1374 }
1375 
1376 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1377                                              CCState &State) const {
1378   if (RetTy->isVoidType())
1379     return ABIArgInfo::getIgnore();
1380 
1381   const Type *Base = nullptr;
1382   uint64_t NumElts = 0;
1383   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1384        State.CC == llvm::CallingConv::X86_RegCall) &&
1385       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1386     // The LLVM struct type for such an aggregate should lower properly.
1387     return ABIArgInfo::getDirect();
1388   }
1389 
1390   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1391     // On Darwin, some vectors are returned in registers.
1392     if (IsDarwinVectorABI) {
1393       uint64_t Size = getContext().getTypeSize(RetTy);
1394 
1395       // 128-bit vectors are a special case; they are returned in
1396       // registers and we need to make sure to pick a type the LLVM
1397       // backend will like.
1398       if (Size == 128)
1399         return ABIArgInfo::getDirect(llvm::VectorType::get(
1400                   llvm::Type::getInt64Ty(getVMContext()), 2));
1401 
1402       // Always return in register if it fits in a general purpose
1403       // register, or if it is 64 bits and has a single element.
1404       if ((Size == 8 || Size == 16 || Size == 32) ||
1405           (Size == 64 && VT->getNumElements() == 1))
1406         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1407                                                             Size));
1408 
1409       return getIndirectReturnResult(RetTy, State);
1410     }
1411 
1412     return ABIArgInfo::getDirect();
1413   }
1414 
1415   if (isAggregateTypeForABI(RetTy)) {
1416     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1417       // Structures with flexible arrays are always indirect.
1418       if (RT->getDecl()->hasFlexibleArrayMember())
1419         return getIndirectReturnResult(RetTy, State);
1420     }
1421 
1422     // If specified, structs and unions are always indirect.
1423     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1424       return getIndirectReturnResult(RetTy, State);
1425 
1426     // Ignore empty structs/unions.
1427     if (isEmptyRecord(getContext(), RetTy, true))
1428       return ABIArgInfo::getIgnore();
1429 
1430     // Small structures which are register sized are generally returned
1431     // in a register.
1432     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1433       uint64_t Size = getContext().getTypeSize(RetTy);
1434 
1435       // As a special-case, if the struct is a "single-element" struct, and
1436       // the field is of type "float" or "double", return it in a
1437       // floating-point register. (MSVC does not apply this special case.)
1438       // We apply a similar transformation for pointer types to improve the
1439       // quality of the generated IR.
1440       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1441         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1442             || SeltTy->hasPointerRepresentation())
1443           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1444 
1445       // FIXME: We should be able to narrow this integer in cases with dead
1446       // padding.
1447       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1448     }
1449 
1450     return getIndirectReturnResult(RetTy, State);
1451   }
1452 
1453   // Treat an enum type as its underlying type.
1454   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1455     RetTy = EnumTy->getDecl()->getIntegerType();
1456 
1457   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1458                                            : ABIArgInfo::getDirect());
1459 }
1460 
1461 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1462   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1463 }
1464 
1465 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1466   const RecordType *RT = Ty->getAs<RecordType>();
1467   if (!RT)
1468     return 0;
1469   const RecordDecl *RD = RT->getDecl();
1470 
1471   // If this is a C++ record, check the bases first.
1472   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1473     for (const auto &I : CXXRD->bases())
1474       if (!isRecordWithSSEVectorType(Context, I.getType()))
1475         return false;
1476 
1477   for (const auto *i : RD->fields()) {
1478     QualType FT = i->getType();
1479 
1480     if (isSSEVectorType(Context, FT))
1481       return true;
1482 
1483     if (isRecordWithSSEVectorType(Context, FT))
1484       return true;
1485   }
1486 
1487   return false;
1488 }
1489 
1490 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1491                                                  unsigned Align) const {
1492   // Otherwise, if the alignment is less than or equal to the minimum ABI
1493   // alignment, just use the default; the backend will handle this.
1494   if (Align <= MinABIStackAlignInBytes)
1495     return 0; // Use default alignment.
1496 
1497   if (IsLinuxABI) {
1498     // i386 System V ABI 2.1: Structures and unions assume the alignment of their
1499     // most strictly aligned component.
1500     //
1501     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1502     // want to spend any effort dealing with the ramifications of ABI breaks.
1503     return Align;
1504   } else if (!IsDarwinVectorABI) {
1505     // On non-Darwin and non-Linux, the stack type alignment is always 4.
1506     // Set explicit alignment, since we may need to realign the top.
1507     return MinABIStackAlignInBytes;
1508   }
1509 
1510   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1511   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1512                       isRecordWithSSEVectorType(getContext(), Ty)))
1513     return 16;
1514 
1515   return MinABIStackAlignInBytes;
1516 }
1517 
1518 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1519                                             CCState &State) const {
1520   if (!ByVal) {
1521     if (State.FreeRegs) {
1522       --State.FreeRegs; // Non-byval indirects just use one pointer.
1523       if (!IsMCUABI)
1524         return getNaturalAlignIndirectInReg(Ty);
1525     }
1526     return getNaturalAlignIndirect(Ty, false);
1527   }
1528 
1529   // Compute the byval alignment.
1530   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1531   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1532   if (StackAlign == 0)
1533     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1534 
1535   // If the stack alignment is less than the type alignment, realign the
1536   // argument.
1537   bool Realign = TypeAlign > StackAlign;
1538   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1539                                  /*ByVal=*/true, Realign);
1540 }
1541 
1542 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1543   const Type *T = isSingleElementStruct(Ty, getContext());
1544   if (!T)
1545     T = Ty.getTypePtr();
1546 
1547   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1548     BuiltinType::Kind K = BT->getKind();
1549     if (K == BuiltinType::Float || K == BuiltinType::Double)
1550       return Float;
1551   }
1552   return Integer;
1553 }
1554 
1555 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1556   if (!IsSoftFloatABI) {
1557     Class C = classify(Ty);
1558     if (C == Float)
1559       return false;
1560   }
1561 
1562   unsigned Size = getContext().getTypeSize(Ty);
1563   unsigned SizeInRegs = (Size + 31) / 32;
1564 
1565   if (SizeInRegs == 0)
1566     return false;
1567 
1568   if (!IsMCUABI) {
1569     if (SizeInRegs > State.FreeRegs) {
1570       State.FreeRegs = 0;
1571       return false;
1572     }
1573   } else {
1574     // The MCU psABI allows passing parameters in-reg even if there are
1575     // earlier parameters that are passed on the stack. Also,
1576     // it does not allow passing >8-byte structs in-register,
1577     // even if there are 3 free registers available.
1578     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1579       return false;
1580   }
1581 
1582   State.FreeRegs -= SizeInRegs;
1583   return true;
1584 }
1585 
1586 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1587                                              bool &InReg,
1588                                              bool &NeedsPadding) const {
1589   // On Windows, aggregates other than HFAs are never passed in registers, and
1590   // they do not consume register slots. Homogenous floating-point aggregates
1591   // (HFAs) have already been dealt with at this point.
1592   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1593     return false;
1594 
1595   NeedsPadding = false;
1596   InReg = !IsMCUABI;
1597 
1598   if (!updateFreeRegs(Ty, State))
1599     return false;
1600 
1601   if (IsMCUABI)
1602     return true;
1603 
1604   if (State.CC == llvm::CallingConv::X86_FastCall ||
1605       State.CC == llvm::CallingConv::X86_VectorCall ||
1606       State.CC == llvm::CallingConv::X86_RegCall) {
1607     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1608       NeedsPadding = true;
1609 
1610     return false;
1611   }
1612 
1613   return true;
1614 }
1615 
1616 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1617   if (!updateFreeRegs(Ty, State))
1618     return false;
1619 
1620   if (IsMCUABI)
1621     return false;
1622 
1623   if (State.CC == llvm::CallingConv::X86_FastCall ||
1624       State.CC == llvm::CallingConv::X86_VectorCall ||
1625       State.CC == llvm::CallingConv::X86_RegCall) {
1626     if (getContext().getTypeSize(Ty) > 32)
1627       return false;
1628 
1629     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1630         Ty->isReferenceType());
1631   }
1632 
1633   return true;
1634 }
1635 
1636 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1637                                                CCState &State) const {
1638   // FIXME: Set alignment on indirect arguments.
1639 
1640   Ty = useFirstFieldIfTransparentUnion(Ty);
1641 
1642   // Check with the C++ ABI first.
1643   const RecordType *RT = Ty->getAs<RecordType>();
1644   if (RT) {
1645     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1646     if (RAA == CGCXXABI::RAA_Indirect) {
1647       return getIndirectResult(Ty, false, State);
1648     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1649       // The field index doesn't matter, we'll fix it up later.
1650       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1651     }
1652   }
1653 
1654   // Regcall uses the concept of a homogenous vector aggregate, similar
1655   // to other targets.
1656   const Type *Base = nullptr;
1657   uint64_t NumElts = 0;
1658   if (State.CC == llvm::CallingConv::X86_RegCall &&
1659       isHomogeneousAggregate(Ty, Base, NumElts)) {
1660 
1661     if (State.FreeSSERegs >= NumElts) {
1662       State.FreeSSERegs -= NumElts;
1663       if (Ty->isBuiltinType() || Ty->isVectorType())
1664         return ABIArgInfo::getDirect();
1665       return ABIArgInfo::getExpand();
1666     }
1667     return getIndirectResult(Ty, /*ByVal=*/false, State);
1668   }
1669 
1670   if (isAggregateTypeForABI(Ty)) {
1671     // Structures with flexible arrays are always indirect.
1672     // FIXME: This should not be byval!
1673     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1674       return getIndirectResult(Ty, true, State);
1675 
1676     // Ignore empty structs/unions on non-Windows.
1677     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1678       return ABIArgInfo::getIgnore();
1679 
1680     llvm::LLVMContext &LLVMContext = getVMContext();
1681     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1682     bool NeedsPadding = false;
1683     bool InReg;
1684     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1685       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1686       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1687       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1688       if (InReg)
1689         return ABIArgInfo::getDirectInReg(Result);
1690       else
1691         return ABIArgInfo::getDirect(Result);
1692     }
1693     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1694 
1695     // Expand small (<= 128-bit) record types when we know that the stack layout
1696     // of those arguments will match the struct. This is important because the
1697     // LLVM backend isn't smart enough to remove byval, which inhibits many
1698     // optimizations.
1699     // Don't do this for the MCU if there are still free integer registers
1700     // (see X86_64 ABI for full explanation).
1701     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1702         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1703       return ABIArgInfo::getExpandWithPadding(
1704           State.CC == llvm::CallingConv::X86_FastCall ||
1705               State.CC == llvm::CallingConv::X86_VectorCall ||
1706               State.CC == llvm::CallingConv::X86_RegCall,
1707           PaddingType);
1708 
1709     return getIndirectResult(Ty, true, State);
1710   }
1711 
1712   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1713     // On Darwin, some vectors are passed in memory, we handle this by passing
1714     // it as an i8/i16/i32/i64.
1715     if (IsDarwinVectorABI) {
1716       uint64_t Size = getContext().getTypeSize(Ty);
1717       if ((Size == 8 || Size == 16 || Size == 32) ||
1718           (Size == 64 && VT->getNumElements() == 1))
1719         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1720                                                             Size));
1721     }
1722 
1723     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1724       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1725 
1726     return ABIArgInfo::getDirect();
1727   }
1728 
1729 
1730   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1731     Ty = EnumTy->getDecl()->getIntegerType();
1732 
1733   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1734 
1735   if (Ty->isPromotableIntegerType()) {
1736     if (InReg)
1737       return ABIArgInfo::getExtendInReg(Ty);
1738     return ABIArgInfo::getExtend(Ty);
1739   }
1740 
1741   if (InReg)
1742     return ABIArgInfo::getDirectInReg();
1743   return ABIArgInfo::getDirect();
1744 }
1745 
1746 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1747                                           bool &UsedInAlloca) const {
1748   // Vectorcall x86 works subtly different than in x64, so the format is
1749   // a bit different than the x64 version.  First, all vector types (not HVAs)
1750   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1751   // This differs from the x64 implementation, where the first 6 by INDEX get
1752   // registers.
1753   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1754   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1755   // first take up the remaining YMM/XMM registers. If insufficient registers
1756   // remain but an integer register (ECX/EDX) is available, it will be passed
1757   // in that, else, on the stack.
1758   for (auto &I : FI.arguments()) {
1759     // First pass do all the vector types.
1760     const Type *Base = nullptr;
1761     uint64_t NumElts = 0;
1762     const QualType& Ty = I.type;
1763     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1764         isHomogeneousAggregate(Ty, Base, NumElts)) {
1765       if (State.FreeSSERegs >= NumElts) {
1766         State.FreeSSERegs -= NumElts;
1767         I.info = ABIArgInfo::getDirect();
1768       } else {
1769         I.info = classifyArgumentType(Ty, State);
1770       }
1771       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1772     }
1773   }
1774 
1775   for (auto &I : FI.arguments()) {
1776     // Second pass, do the rest!
1777     const Type *Base = nullptr;
1778     uint64_t NumElts = 0;
1779     const QualType& Ty = I.type;
1780     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1781 
1782     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1783       // Assign true HVAs (non vector/native FP types).
1784       if (State.FreeSSERegs >= NumElts) {
1785         State.FreeSSERegs -= NumElts;
1786         I.info = getDirectX86Hva();
1787       } else {
1788         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1789       }
1790     } else if (!IsHva) {
1791       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1792       I.info = classifyArgumentType(Ty, State);
1793       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1794     }
1795   }
1796 }
1797 
1798 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1799   CCState State(FI.getCallingConvention());
1800   if (IsMCUABI)
1801     State.FreeRegs = 3;
1802   else if (State.CC == llvm::CallingConv::X86_FastCall)
1803     State.FreeRegs = 2;
1804   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1805     State.FreeRegs = 2;
1806     State.FreeSSERegs = 6;
1807   } else if (FI.getHasRegParm())
1808     State.FreeRegs = FI.getRegParm();
1809   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1810     State.FreeRegs = 5;
1811     State.FreeSSERegs = 8;
1812   } else
1813     State.FreeRegs = DefaultNumRegisterParameters;
1814 
1815   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1816     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1817   } else if (FI.getReturnInfo().isIndirect()) {
1818     // The C++ ABI is not aware of register usage, so we have to check if the
1819     // return value was sret and put it in a register ourselves if appropriate.
1820     if (State.FreeRegs) {
1821       --State.FreeRegs;  // The sret parameter consumes a register.
1822       if (!IsMCUABI)
1823         FI.getReturnInfo().setInReg(true);
1824     }
1825   }
1826 
1827   // The chain argument effectively gives us another free register.
1828   if (FI.isChainCall())
1829     ++State.FreeRegs;
1830 
1831   bool UsedInAlloca = false;
1832   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1833     computeVectorCallArgs(FI, State, UsedInAlloca);
1834   } else {
1835     // If not vectorcall, revert to normal behavior.
1836     for (auto &I : FI.arguments()) {
1837       I.info = classifyArgumentType(I.type, State);
1838       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1839     }
1840   }
1841 
1842   // If we needed to use inalloca for any argument, do a second pass and rewrite
1843   // all the memory arguments to use inalloca.
1844   if (UsedInAlloca)
1845     rewriteWithInAlloca(FI);
1846 }
1847 
1848 void
1849 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1850                                    CharUnits &StackOffset, ABIArgInfo &Info,
1851                                    QualType Type) const {
1852   // Arguments are always 4-byte-aligned.
1853   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1854 
1855   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1856   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1857   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1858   StackOffset += getContext().getTypeSizeInChars(Type);
1859 
1860   // Insert padding bytes to respect alignment.
1861   CharUnits FieldEnd = StackOffset;
1862   StackOffset = FieldEnd.alignTo(FieldAlign);
1863   if (StackOffset != FieldEnd) {
1864     CharUnits NumBytes = StackOffset - FieldEnd;
1865     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1866     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1867     FrameFields.push_back(Ty);
1868   }
1869 }
1870 
1871 static bool isArgInAlloca(const ABIArgInfo &Info) {
1872   // Leave ignored and inreg arguments alone.
1873   switch (Info.getKind()) {
1874   case ABIArgInfo::InAlloca:
1875     return true;
1876   case ABIArgInfo::Indirect:
1877     assert(Info.getIndirectByVal());
1878     return true;
1879   case ABIArgInfo::Ignore:
1880     return false;
1881   case ABIArgInfo::Direct:
1882   case ABIArgInfo::Extend:
1883     if (Info.getInReg())
1884       return false;
1885     return true;
1886   case ABIArgInfo::Expand:
1887   case ABIArgInfo::CoerceAndExpand:
1888     // These are aggregate types which are never passed in registers when
1889     // inalloca is involved.
1890     return true;
1891   }
1892   llvm_unreachable("invalid enum");
1893 }
1894 
1895 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1896   assert(IsWin32StructABI && "inalloca only supported on win32");
1897 
1898   // Build a packed struct type for all of the arguments in memory.
1899   SmallVector<llvm::Type *, 6> FrameFields;
1900 
1901   // The stack alignment is always 4.
1902   CharUnits StackAlign = CharUnits::fromQuantity(4);
1903 
1904   CharUnits StackOffset;
1905   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1906 
1907   // Put 'this' into the struct before 'sret', if necessary.
1908   bool IsThisCall =
1909       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1910   ABIArgInfo &Ret = FI.getReturnInfo();
1911   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1912       isArgInAlloca(I->info)) {
1913     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1914     ++I;
1915   }
1916 
1917   // Put the sret parameter into the inalloca struct if it's in memory.
1918   if (Ret.isIndirect() && !Ret.getInReg()) {
1919     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1920     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1921     // On Windows, the hidden sret parameter is always returned in eax.
1922     Ret.setInAllocaSRet(IsWin32StructABI);
1923   }
1924 
1925   // Skip the 'this' parameter in ecx.
1926   if (IsThisCall)
1927     ++I;
1928 
1929   // Put arguments passed in memory into the struct.
1930   for (; I != E; ++I) {
1931     if (isArgInAlloca(I->info))
1932       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1933   }
1934 
1935   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1936                                         /*isPacked=*/true),
1937                   StackAlign);
1938 }
1939 
1940 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1941                                  Address VAListAddr, QualType Ty) const {
1942 
1943   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1944 
1945   // x86-32 changes the alignment of certain arguments on the stack.
1946   //
1947   // Just messing with TypeInfo like this works because we never pass
1948   // anything indirectly.
1949   TypeInfo.second = CharUnits::fromQuantity(
1950                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1951 
1952   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1953                           TypeInfo, CharUnits::fromQuantity(4),
1954                           /*AllowHigherAlign*/ true);
1955 }
1956 
1957 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1958     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1959   assert(Triple.getArch() == llvm::Triple::x86);
1960 
1961   switch (Opts.getStructReturnConvention()) {
1962   case CodeGenOptions::SRCK_Default:
1963     break;
1964   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1965     return false;
1966   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1967     return true;
1968   }
1969 
1970   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1971     return true;
1972 
1973   switch (Triple.getOS()) {
1974   case llvm::Triple::DragonFly:
1975   case llvm::Triple::FreeBSD:
1976   case llvm::Triple::OpenBSD:
1977   case llvm::Triple::Win32:
1978     return true;
1979   default:
1980     return false;
1981   }
1982 }
1983 
1984 void X86_32TargetCodeGenInfo::setTargetAttributes(
1985     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1986   if (GV->isDeclaration())
1987     return;
1988   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1989     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1990       llvm::Function *Fn = cast<llvm::Function>(GV);
1991       Fn->addFnAttr("stackrealign");
1992     }
1993     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1994       llvm::Function *Fn = cast<llvm::Function>(GV);
1995       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1996     }
1997   }
1998 }
1999 
2000 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2001                                                CodeGen::CodeGenFunction &CGF,
2002                                                llvm::Value *Address) const {
2003   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2004 
2005   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2006 
2007   // 0-7 are the eight integer registers;  the order is different
2008   //   on Darwin (for EH), but the range is the same.
2009   // 8 is %eip.
2010   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2011 
2012   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2013     // 12-16 are st(0..4).  Not sure why we stop at 4.
2014     // These have size 16, which is sizeof(long double) on
2015     // platforms with 8-byte alignment for that type.
2016     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2017     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2018 
2019   } else {
2020     // 9 is %eflags, which doesn't get a size on Darwin for some
2021     // reason.
2022     Builder.CreateAlignedStore(
2023         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2024                                CharUnits::One());
2025 
2026     // 11-16 are st(0..5).  Not sure why we stop at 5.
2027     // These have size 12, which is sizeof(long double) on
2028     // platforms with 4-byte alignment for that type.
2029     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2030     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2031   }
2032 
2033   return false;
2034 }
2035 
2036 //===----------------------------------------------------------------------===//
2037 // X86-64 ABI Implementation
2038 //===----------------------------------------------------------------------===//
2039 
2040 
2041 namespace {
2042 /// The AVX ABI level for X86 targets.
2043 enum class X86AVXABILevel {
2044   None,
2045   AVX,
2046   AVX512
2047 };
2048 
2049 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2050 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2051   switch (AVXLevel) {
2052   case X86AVXABILevel::AVX512:
2053     return 512;
2054   case X86AVXABILevel::AVX:
2055     return 256;
2056   case X86AVXABILevel::None:
2057     return 128;
2058   }
2059   llvm_unreachable("Unknown AVXLevel");
2060 }
2061 
2062 /// X86_64ABIInfo - The X86_64 ABI information.
2063 class X86_64ABIInfo : public SwiftABIInfo {
2064   enum Class {
2065     Integer = 0,
2066     SSE,
2067     SSEUp,
2068     X87,
2069     X87Up,
2070     ComplexX87,
2071     NoClass,
2072     Memory
2073   };
2074 
2075   /// merge - Implement the X86_64 ABI merging algorithm.
2076   ///
2077   /// Merge an accumulating classification \arg Accum with a field
2078   /// classification \arg Field.
2079   ///
2080   /// \param Accum - The accumulating classification. This should
2081   /// always be either NoClass or the result of a previous merge
2082   /// call. In addition, this should never be Memory (the caller
2083   /// should just return Memory for the aggregate).
2084   static Class merge(Class Accum, Class Field);
2085 
2086   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2087   ///
2088   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2089   /// final MEMORY or SSE classes when necessary.
2090   ///
2091   /// \param AggregateSize - The size of the current aggregate in
2092   /// the classification process.
2093   ///
2094   /// \param Lo - The classification for the parts of the type
2095   /// residing in the low word of the containing object.
2096   ///
2097   /// \param Hi - The classification for the parts of the type
2098   /// residing in the higher words of the containing object.
2099   ///
2100   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2101 
2102   /// classify - Determine the x86_64 register classes in which the
2103   /// given type T should be passed.
2104   ///
2105   /// \param Lo - The classification for the parts of the type
2106   /// residing in the low word of the containing object.
2107   ///
2108   /// \param Hi - The classification for the parts of the type
2109   /// residing in the high word of the containing object.
2110   ///
2111   /// \param OffsetBase - The bit offset of this type in the
2112   /// containing object.  Some parameters are classified different
2113   /// depending on whether they straddle an eightbyte boundary.
2114   ///
2115   /// \param isNamedArg - Whether the argument in question is a "named"
2116   /// argument, as used in AMD64-ABI 3.5.7.
2117   ///
2118   /// If a word is unused its result will be NoClass; if a type should
2119   /// be passed in Memory then at least the classification of \arg Lo
2120   /// will be Memory.
2121   ///
2122   /// The \arg Lo class will be NoClass iff the argument is ignored.
2123   ///
2124   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2125   /// also be ComplexX87.
2126   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2127                 bool isNamedArg) const;
2128 
2129   llvm::Type *GetByteVectorType(QualType Ty) const;
2130   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2131                                  unsigned IROffset, QualType SourceTy,
2132                                  unsigned SourceOffset) const;
2133   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2134                                      unsigned IROffset, QualType SourceTy,
2135                                      unsigned SourceOffset) const;
2136 
2137   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2138   /// such that the argument will be returned in memory.
2139   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2140 
2141   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2142   /// such that the argument will be passed in memory.
2143   ///
2144   /// \param freeIntRegs - The number of free integer registers remaining
2145   /// available.
2146   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2147 
2148   ABIArgInfo classifyReturnType(QualType RetTy) const;
2149 
2150   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2151                                   unsigned &neededInt, unsigned &neededSSE,
2152                                   bool isNamedArg) const;
2153 
2154   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2155                                        unsigned &NeededSSE) const;
2156 
2157   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2158                                            unsigned &NeededSSE) const;
2159 
2160   bool IsIllegalVectorType(QualType Ty) const;
2161 
2162   /// The 0.98 ABI revision clarified a lot of ambiguities,
2163   /// unfortunately in ways that were not always consistent with
2164   /// certain previous compilers.  In particular, platforms which
2165   /// required strict binary compatibility with older versions of GCC
2166   /// may need to exempt themselves.
2167   bool honorsRevision0_98() const {
2168     return !getTarget().getTriple().isOSDarwin();
2169   }
2170 
2171   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2172   /// classify it as INTEGER (for compatibility with older clang compilers).
2173   bool classifyIntegerMMXAsSSE() const {
2174     // Clang <= 3.8 did not do this.
2175     if (getContext().getLangOpts().getClangABICompat() <=
2176         LangOptions::ClangABI::Ver3_8)
2177       return false;
2178 
2179     const llvm::Triple &Triple = getTarget().getTriple();
2180     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2181       return false;
2182     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2183       return false;
2184     return true;
2185   }
2186 
2187   X86AVXABILevel AVXLevel;
2188   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2189   // 64-bit hardware.
2190   bool Has64BitPointers;
2191 
2192 public:
2193   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2194       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2195       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2196   }
2197 
2198   bool isPassedUsingAVXType(QualType type) const {
2199     unsigned neededInt, neededSSE;
2200     // The freeIntRegs argument doesn't matter here.
2201     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2202                                            /*isNamedArg*/true);
2203     if (info.isDirect()) {
2204       llvm::Type *ty = info.getCoerceToType();
2205       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2206         return (vectorTy->getBitWidth() > 128);
2207     }
2208     return false;
2209   }
2210 
2211   void computeInfo(CGFunctionInfo &FI) const override;
2212 
2213   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2214                     QualType Ty) const override;
2215   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2216                       QualType Ty) const override;
2217 
2218   bool has64BitPointers() const {
2219     return Has64BitPointers;
2220   }
2221 
2222   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2223                                     bool asReturnValue) const override {
2224     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2225   }
2226   bool isSwiftErrorInRegister() const override {
2227     return true;
2228   }
2229 };
2230 
2231 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2232 class WinX86_64ABIInfo : public SwiftABIInfo {
2233 public:
2234   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2235       : SwiftABIInfo(CGT),
2236         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2237 
2238   void computeInfo(CGFunctionInfo &FI) const override;
2239 
2240   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2241                     QualType Ty) const override;
2242 
2243   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2244     // FIXME: Assumes vectorcall is in use.
2245     return isX86VectorTypeForVectorCall(getContext(), Ty);
2246   }
2247 
2248   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2249                                          uint64_t NumMembers) const override {
2250     // FIXME: Assumes vectorcall is in use.
2251     return isX86VectorCallAggregateSmallEnough(NumMembers);
2252   }
2253 
2254   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2255                                     bool asReturnValue) const override {
2256     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2257   }
2258 
2259   bool isSwiftErrorInRegister() const override {
2260     return true;
2261   }
2262 
2263 private:
2264   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2265                       bool IsVectorCall, bool IsRegCall) const;
2266   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2267                                       const ABIArgInfo &current) const;
2268   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2269                              bool IsVectorCall, bool IsRegCall) const;
2270 
2271     bool IsMingw64;
2272 };
2273 
2274 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2275 public:
2276   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2277       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2278 
2279   const X86_64ABIInfo &getABIInfo() const {
2280     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2281   }
2282 
2283   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2284   /// the autoreleaseRV/retainRV optimization.
2285   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2286     return true;
2287   }
2288 
2289   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2290     return 7;
2291   }
2292 
2293   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2294                                llvm::Value *Address) const override {
2295     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2296 
2297     // 0-15 are the 16 integer registers.
2298     // 16 is %rip.
2299     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2300     return false;
2301   }
2302 
2303   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2304                                   StringRef Constraint,
2305                                   llvm::Type* Ty) const override {
2306     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2307   }
2308 
2309   bool isNoProtoCallVariadic(const CallArgList &args,
2310                              const FunctionNoProtoType *fnType) const override {
2311     // The default CC on x86-64 sets %al to the number of SSA
2312     // registers used, and GCC sets this when calling an unprototyped
2313     // function, so we override the default behavior.  However, don't do
2314     // that when AVX types are involved: the ABI explicitly states it is
2315     // undefined, and it doesn't work in practice because of how the ABI
2316     // defines varargs anyway.
2317     if (fnType->getCallConv() == CC_C) {
2318       bool HasAVXType = false;
2319       for (CallArgList::const_iterator
2320              it = args.begin(), ie = args.end(); it != ie; ++it) {
2321         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2322           HasAVXType = true;
2323           break;
2324         }
2325       }
2326 
2327       if (!HasAVXType)
2328         return true;
2329     }
2330 
2331     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2332   }
2333 
2334   llvm::Constant *
2335   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2336     unsigned Sig = (0xeb << 0) | // jmp rel8
2337                    (0x06 << 8) | //           .+0x08
2338                    ('v' << 16) |
2339                    ('2' << 24);
2340     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2341   }
2342 
2343   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2344                            CodeGen::CodeGenModule &CGM) const override {
2345     if (GV->isDeclaration())
2346       return;
2347     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2348       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2349         llvm::Function *Fn = cast<llvm::Function>(GV);
2350         Fn->addFnAttr("stackrealign");
2351       }
2352       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2353         llvm::Function *Fn = cast<llvm::Function>(GV);
2354         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2355       }
2356     }
2357   }
2358 };
2359 
2360 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2361   // If the argument does not end in .lib, automatically add the suffix.
2362   // If the argument contains a space, enclose it in quotes.
2363   // This matches the behavior of MSVC.
2364   bool Quote = (Lib.find(" ") != StringRef::npos);
2365   std::string ArgStr = Quote ? "\"" : "";
2366   ArgStr += Lib;
2367   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2368     ArgStr += ".lib";
2369   ArgStr += Quote ? "\"" : "";
2370   return ArgStr;
2371 }
2372 
2373 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2374 public:
2375   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2376         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2377         unsigned NumRegisterParameters)
2378     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2379         Win32StructABI, NumRegisterParameters, false) {}
2380 
2381   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2382                            CodeGen::CodeGenModule &CGM) const override;
2383 
2384   void getDependentLibraryOption(llvm::StringRef Lib,
2385                                  llvm::SmallString<24> &Opt) const override {
2386     Opt = "/DEFAULTLIB:";
2387     Opt += qualifyWindowsLibrary(Lib);
2388   }
2389 
2390   void getDetectMismatchOption(llvm::StringRef Name,
2391                                llvm::StringRef Value,
2392                                llvm::SmallString<32> &Opt) const override {
2393     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2394   }
2395 };
2396 
2397 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2398                                           CodeGen::CodeGenModule &CGM) {
2399   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2400 
2401     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2402       Fn->addFnAttr("stack-probe-size",
2403                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2404     if (CGM.getCodeGenOpts().NoStackArgProbe)
2405       Fn->addFnAttr("no-stack-arg-probe");
2406   }
2407 }
2408 
2409 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2410     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2411   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2412   if (GV->isDeclaration())
2413     return;
2414   addStackProbeTargetAttributes(D, GV, CGM);
2415 }
2416 
2417 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2418 public:
2419   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2420                              X86AVXABILevel AVXLevel)
2421       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2422 
2423   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2424                            CodeGen::CodeGenModule &CGM) const override;
2425 
2426   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2427     return 7;
2428   }
2429 
2430   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2431                                llvm::Value *Address) const override {
2432     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2433 
2434     // 0-15 are the 16 integer registers.
2435     // 16 is %rip.
2436     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2437     return false;
2438   }
2439 
2440   void getDependentLibraryOption(llvm::StringRef Lib,
2441                                  llvm::SmallString<24> &Opt) const override {
2442     Opt = "/DEFAULTLIB:";
2443     Opt += qualifyWindowsLibrary(Lib);
2444   }
2445 
2446   void getDetectMismatchOption(llvm::StringRef Name,
2447                                llvm::StringRef Value,
2448                                llvm::SmallString<32> &Opt) const override {
2449     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2450   }
2451 };
2452 
2453 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2454     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2455   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2456   if (GV->isDeclaration())
2457     return;
2458   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2459     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2460       llvm::Function *Fn = cast<llvm::Function>(GV);
2461       Fn->addFnAttr("stackrealign");
2462     }
2463     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2464       llvm::Function *Fn = cast<llvm::Function>(GV);
2465       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2466     }
2467   }
2468 
2469   addStackProbeTargetAttributes(D, GV, CGM);
2470 }
2471 }
2472 
2473 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2474                               Class &Hi) const {
2475   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2476   //
2477   // (a) If one of the classes is Memory, the whole argument is passed in
2478   //     memory.
2479   //
2480   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2481   //     memory.
2482   //
2483   // (c) If the size of the aggregate exceeds two eightbytes and the first
2484   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2485   //     argument is passed in memory. NOTE: This is necessary to keep the
2486   //     ABI working for processors that don't support the __m256 type.
2487   //
2488   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2489   //
2490   // Some of these are enforced by the merging logic.  Others can arise
2491   // only with unions; for example:
2492   //   union { _Complex double; unsigned; }
2493   //
2494   // Note that clauses (b) and (c) were added in 0.98.
2495   //
2496   if (Hi == Memory)
2497     Lo = Memory;
2498   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2499     Lo = Memory;
2500   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2501     Lo = Memory;
2502   if (Hi == SSEUp && Lo != SSE)
2503     Hi = SSE;
2504 }
2505 
2506 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2507   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2508   // classified recursively so that always two fields are
2509   // considered. The resulting class is calculated according to
2510   // the classes of the fields in the eightbyte:
2511   //
2512   // (a) If both classes are equal, this is the resulting class.
2513   //
2514   // (b) If one of the classes is NO_CLASS, the resulting class is
2515   // the other class.
2516   //
2517   // (c) If one of the classes is MEMORY, the result is the MEMORY
2518   // class.
2519   //
2520   // (d) If one of the classes is INTEGER, the result is the
2521   // INTEGER.
2522   //
2523   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2524   // MEMORY is used as class.
2525   //
2526   // (f) Otherwise class SSE is used.
2527 
2528   // Accum should never be memory (we should have returned) or
2529   // ComplexX87 (because this cannot be passed in a structure).
2530   assert((Accum != Memory && Accum != ComplexX87) &&
2531          "Invalid accumulated classification during merge.");
2532   if (Accum == Field || Field == NoClass)
2533     return Accum;
2534   if (Field == Memory)
2535     return Memory;
2536   if (Accum == NoClass)
2537     return Field;
2538   if (Accum == Integer || Field == Integer)
2539     return Integer;
2540   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2541       Accum == X87 || Accum == X87Up)
2542     return Memory;
2543   return SSE;
2544 }
2545 
2546 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2547                              Class &Lo, Class &Hi, bool isNamedArg) const {
2548   // FIXME: This code can be simplified by introducing a simple value class for
2549   // Class pairs with appropriate constructor methods for the various
2550   // situations.
2551 
2552   // FIXME: Some of the split computations are wrong; unaligned vectors
2553   // shouldn't be passed in registers for example, so there is no chance they
2554   // can straddle an eightbyte. Verify & simplify.
2555 
2556   Lo = Hi = NoClass;
2557 
2558   Class &Current = OffsetBase < 64 ? Lo : Hi;
2559   Current = Memory;
2560 
2561   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2562     BuiltinType::Kind k = BT->getKind();
2563 
2564     if (k == BuiltinType::Void) {
2565       Current = NoClass;
2566     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2567       Lo = Integer;
2568       Hi = Integer;
2569     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2570       Current = Integer;
2571     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2572       Current = SSE;
2573     } else if (k == BuiltinType::LongDouble) {
2574       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2575       if (LDF == &llvm::APFloat::IEEEquad()) {
2576         Lo = SSE;
2577         Hi = SSEUp;
2578       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2579         Lo = X87;
2580         Hi = X87Up;
2581       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2582         Current = SSE;
2583       } else
2584         llvm_unreachable("unexpected long double representation!");
2585     }
2586     // FIXME: _Decimal32 and _Decimal64 are SSE.
2587     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2588     return;
2589   }
2590 
2591   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2592     // Classify the underlying integer type.
2593     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2594     return;
2595   }
2596 
2597   if (Ty->hasPointerRepresentation()) {
2598     Current = Integer;
2599     return;
2600   }
2601 
2602   if (Ty->isMemberPointerType()) {
2603     if (Ty->isMemberFunctionPointerType()) {
2604       if (Has64BitPointers) {
2605         // If Has64BitPointers, this is an {i64, i64}, so classify both
2606         // Lo and Hi now.
2607         Lo = Hi = Integer;
2608       } else {
2609         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2610         // straddles an eightbyte boundary, Hi should be classified as well.
2611         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2612         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2613         if (EB_FuncPtr != EB_ThisAdj) {
2614           Lo = Hi = Integer;
2615         } else {
2616           Current = Integer;
2617         }
2618       }
2619     } else {
2620       Current = Integer;
2621     }
2622     return;
2623   }
2624 
2625   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2626     uint64_t Size = getContext().getTypeSize(VT);
2627     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2628       // gcc passes the following as integer:
2629       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2630       // 2 bytes - <2 x char>, <1 x short>
2631       // 1 byte  - <1 x char>
2632       Current = Integer;
2633 
2634       // If this type crosses an eightbyte boundary, it should be
2635       // split.
2636       uint64_t EB_Lo = (OffsetBase) / 64;
2637       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2638       if (EB_Lo != EB_Hi)
2639         Hi = Lo;
2640     } else if (Size == 64) {
2641       QualType ElementType = VT->getElementType();
2642 
2643       // gcc passes <1 x double> in memory. :(
2644       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2645         return;
2646 
2647       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2648       // pass them as integer.  For platforms where clang is the de facto
2649       // platform compiler, we must continue to use integer.
2650       if (!classifyIntegerMMXAsSSE() &&
2651           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2652            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2653            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2654            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2655         Current = Integer;
2656       else
2657         Current = SSE;
2658 
2659       // If this type crosses an eightbyte boundary, it should be
2660       // split.
2661       if (OffsetBase && OffsetBase != 64)
2662         Hi = Lo;
2663     } else if (Size == 128 ||
2664                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2665       // Arguments of 256-bits are split into four eightbyte chunks. The
2666       // least significant one belongs to class SSE and all the others to class
2667       // SSEUP. The original Lo and Hi design considers that types can't be
2668       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2669       // This design isn't correct for 256-bits, but since there're no cases
2670       // where the upper parts would need to be inspected, avoid adding
2671       // complexity and just consider Hi to match the 64-256 part.
2672       //
2673       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2674       // registers if they are "named", i.e. not part of the "..." of a
2675       // variadic function.
2676       //
2677       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2678       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2679       Lo = SSE;
2680       Hi = SSEUp;
2681     }
2682     return;
2683   }
2684 
2685   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2686     QualType ET = getContext().getCanonicalType(CT->getElementType());
2687 
2688     uint64_t Size = getContext().getTypeSize(Ty);
2689     if (ET->isIntegralOrEnumerationType()) {
2690       if (Size <= 64)
2691         Current = Integer;
2692       else if (Size <= 128)
2693         Lo = Hi = Integer;
2694     } else if (ET == getContext().FloatTy) {
2695       Current = SSE;
2696     } else if (ET == getContext().DoubleTy) {
2697       Lo = Hi = SSE;
2698     } else if (ET == getContext().LongDoubleTy) {
2699       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2700       if (LDF == &llvm::APFloat::IEEEquad())
2701         Current = Memory;
2702       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2703         Current = ComplexX87;
2704       else if (LDF == &llvm::APFloat::IEEEdouble())
2705         Lo = Hi = SSE;
2706       else
2707         llvm_unreachable("unexpected long double representation!");
2708     }
2709 
2710     // If this complex type crosses an eightbyte boundary then it
2711     // should be split.
2712     uint64_t EB_Real = (OffsetBase) / 64;
2713     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2714     if (Hi == NoClass && EB_Real != EB_Imag)
2715       Hi = Lo;
2716 
2717     return;
2718   }
2719 
2720   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2721     // Arrays are treated like structures.
2722 
2723     uint64_t Size = getContext().getTypeSize(Ty);
2724 
2725     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2726     // than eight eightbytes, ..., it has class MEMORY.
2727     if (Size > 512)
2728       return;
2729 
2730     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2731     // fields, it has class MEMORY.
2732     //
2733     // Only need to check alignment of array base.
2734     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2735       return;
2736 
2737     // Otherwise implement simplified merge. We could be smarter about
2738     // this, but it isn't worth it and would be harder to verify.
2739     Current = NoClass;
2740     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2741     uint64_t ArraySize = AT->getSize().getZExtValue();
2742 
2743     // The only case a 256-bit wide vector could be used is when the array
2744     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2745     // to work for sizes wider than 128, early check and fallback to memory.
2746     //
2747     if (Size > 128 &&
2748         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2749       return;
2750 
2751     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2752       Class FieldLo, FieldHi;
2753       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2754       Lo = merge(Lo, FieldLo);
2755       Hi = merge(Hi, FieldHi);
2756       if (Lo == Memory || Hi == Memory)
2757         break;
2758     }
2759 
2760     postMerge(Size, Lo, Hi);
2761     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2762     return;
2763   }
2764 
2765   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2766     uint64_t Size = getContext().getTypeSize(Ty);
2767 
2768     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2769     // than eight eightbytes, ..., it has class MEMORY.
2770     if (Size > 512)
2771       return;
2772 
2773     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2774     // copy constructor or a non-trivial destructor, it is passed by invisible
2775     // reference.
2776     if (getRecordArgABI(RT, getCXXABI()))
2777       return;
2778 
2779     const RecordDecl *RD = RT->getDecl();
2780 
2781     // Assume variable sized types are passed in memory.
2782     if (RD->hasFlexibleArrayMember())
2783       return;
2784 
2785     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2786 
2787     // Reset Lo class, this will be recomputed.
2788     Current = NoClass;
2789 
2790     // If this is a C++ record, classify the bases first.
2791     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2792       for (const auto &I : CXXRD->bases()) {
2793         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2794                "Unexpected base class!");
2795         const CXXRecordDecl *Base =
2796           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2797 
2798         // Classify this field.
2799         //
2800         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2801         // single eightbyte, each is classified separately. Each eightbyte gets
2802         // initialized to class NO_CLASS.
2803         Class FieldLo, FieldHi;
2804         uint64_t Offset =
2805           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2806         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2807         Lo = merge(Lo, FieldLo);
2808         Hi = merge(Hi, FieldHi);
2809         if (Lo == Memory || Hi == Memory) {
2810           postMerge(Size, Lo, Hi);
2811           return;
2812         }
2813       }
2814     }
2815 
2816     // Classify the fields one at a time, merging the results.
2817     unsigned idx = 0;
2818     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2819            i != e; ++i, ++idx) {
2820       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2821       bool BitField = i->isBitField();
2822 
2823       // Ignore padding bit-fields.
2824       if (BitField && i->isUnnamedBitfield())
2825         continue;
2826 
2827       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2828       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2829       //
2830       // The only case a 256-bit wide vector could be used is when the struct
2831       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2832       // to work for sizes wider than 128, early check and fallback to memory.
2833       //
2834       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2835                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2836         Lo = Memory;
2837         postMerge(Size, Lo, Hi);
2838         return;
2839       }
2840       // Note, skip this test for bit-fields, see below.
2841       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2842         Lo = Memory;
2843         postMerge(Size, Lo, Hi);
2844         return;
2845       }
2846 
2847       // Classify this field.
2848       //
2849       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2850       // exceeds a single eightbyte, each is classified
2851       // separately. Each eightbyte gets initialized to class
2852       // NO_CLASS.
2853       Class FieldLo, FieldHi;
2854 
2855       // Bit-fields require special handling, they do not force the
2856       // structure to be passed in memory even if unaligned, and
2857       // therefore they can straddle an eightbyte.
2858       if (BitField) {
2859         assert(!i->isUnnamedBitfield());
2860         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2861         uint64_t Size = i->getBitWidthValue(getContext());
2862 
2863         uint64_t EB_Lo = Offset / 64;
2864         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2865 
2866         if (EB_Lo) {
2867           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2868           FieldLo = NoClass;
2869           FieldHi = Integer;
2870         } else {
2871           FieldLo = Integer;
2872           FieldHi = EB_Hi ? Integer : NoClass;
2873         }
2874       } else
2875         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2876       Lo = merge(Lo, FieldLo);
2877       Hi = merge(Hi, FieldHi);
2878       if (Lo == Memory || Hi == Memory)
2879         break;
2880     }
2881 
2882     postMerge(Size, Lo, Hi);
2883   }
2884 }
2885 
2886 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2887   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2888   // place naturally.
2889   if (!isAggregateTypeForABI(Ty)) {
2890     // Treat an enum type as its underlying type.
2891     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2892       Ty = EnumTy->getDecl()->getIntegerType();
2893 
2894     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2895                                           : ABIArgInfo::getDirect());
2896   }
2897 
2898   return getNaturalAlignIndirect(Ty);
2899 }
2900 
2901 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2902   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2903     uint64_t Size = getContext().getTypeSize(VecTy);
2904     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2905     if (Size <= 64 || Size > LargestVector)
2906       return true;
2907   }
2908 
2909   return false;
2910 }
2911 
2912 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2913                                             unsigned freeIntRegs) const {
2914   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2915   // place naturally.
2916   //
2917   // This assumption is optimistic, as there could be free registers available
2918   // when we need to pass this argument in memory, and LLVM could try to pass
2919   // the argument in the free register. This does not seem to happen currently,
2920   // but this code would be much safer if we could mark the argument with
2921   // 'onstack'. See PR12193.
2922   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2923     // Treat an enum type as its underlying type.
2924     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2925       Ty = EnumTy->getDecl()->getIntegerType();
2926 
2927     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2928                                           : ABIArgInfo::getDirect());
2929   }
2930 
2931   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2932     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2933 
2934   // Compute the byval alignment. We specify the alignment of the byval in all
2935   // cases so that the mid-level optimizer knows the alignment of the byval.
2936   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2937 
2938   // Attempt to avoid passing indirect results using byval when possible. This
2939   // is important for good codegen.
2940   //
2941   // We do this by coercing the value into a scalar type which the backend can
2942   // handle naturally (i.e., without using byval).
2943   //
2944   // For simplicity, we currently only do this when we have exhausted all of the
2945   // free integer registers. Doing this when there are free integer registers
2946   // would require more care, as we would have to ensure that the coerced value
2947   // did not claim the unused register. That would require either reording the
2948   // arguments to the function (so that any subsequent inreg values came first),
2949   // or only doing this optimization when there were no following arguments that
2950   // might be inreg.
2951   //
2952   // We currently expect it to be rare (particularly in well written code) for
2953   // arguments to be passed on the stack when there are still free integer
2954   // registers available (this would typically imply large structs being passed
2955   // by value), so this seems like a fair tradeoff for now.
2956   //
2957   // We can revisit this if the backend grows support for 'onstack' parameter
2958   // attributes. See PR12193.
2959   if (freeIntRegs == 0) {
2960     uint64_t Size = getContext().getTypeSize(Ty);
2961 
2962     // If this type fits in an eightbyte, coerce it into the matching integral
2963     // type, which will end up on the stack (with alignment 8).
2964     if (Align == 8 && Size <= 64)
2965       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2966                                                           Size));
2967   }
2968 
2969   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2970 }
2971 
2972 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2973 /// register. Pick an LLVM IR type that will be passed as a vector register.
2974 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2975   // Wrapper structs/arrays that only contain vectors are passed just like
2976   // vectors; strip them off if present.
2977   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2978     Ty = QualType(InnerTy, 0);
2979 
2980   llvm::Type *IRType = CGT.ConvertType(Ty);
2981   if (isa<llvm::VectorType>(IRType) ||
2982       IRType->getTypeID() == llvm::Type::FP128TyID)
2983     return IRType;
2984 
2985   // We couldn't find the preferred IR vector type for 'Ty'.
2986   uint64_t Size = getContext().getTypeSize(Ty);
2987   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2988 
2989   // Return a LLVM IR vector type based on the size of 'Ty'.
2990   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2991                                Size / 64);
2992 }
2993 
2994 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2995 /// is known to either be off the end of the specified type or being in
2996 /// alignment padding.  The user type specified is known to be at most 128 bits
2997 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2998 /// classification that put one of the two halves in the INTEGER class.
2999 ///
3000 /// It is conservatively correct to return false.
3001 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3002                                   unsigned EndBit, ASTContext &Context) {
3003   // If the bytes being queried are off the end of the type, there is no user
3004   // data hiding here.  This handles analysis of builtins, vectors and other
3005   // types that don't contain interesting padding.
3006   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3007   if (TySize <= StartBit)
3008     return true;
3009 
3010   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3011     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3012     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3013 
3014     // Check each element to see if the element overlaps with the queried range.
3015     for (unsigned i = 0; i != NumElts; ++i) {
3016       // If the element is after the span we care about, then we're done..
3017       unsigned EltOffset = i*EltSize;
3018       if (EltOffset >= EndBit) break;
3019 
3020       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3021       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3022                                  EndBit-EltOffset, Context))
3023         return false;
3024     }
3025     // If it overlaps no elements, then it is safe to process as padding.
3026     return true;
3027   }
3028 
3029   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3030     const RecordDecl *RD = RT->getDecl();
3031     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3032 
3033     // If this is a C++ record, check the bases first.
3034     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3035       for (const auto &I : CXXRD->bases()) {
3036         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3037                "Unexpected base class!");
3038         const CXXRecordDecl *Base =
3039           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3040 
3041         // If the base is after the span we care about, ignore it.
3042         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3043         if (BaseOffset >= EndBit) continue;
3044 
3045         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3046         if (!BitsContainNoUserData(I.getType(), BaseStart,
3047                                    EndBit-BaseOffset, Context))
3048           return false;
3049       }
3050     }
3051 
3052     // Verify that no field has data that overlaps the region of interest.  Yes
3053     // this could be sped up a lot by being smarter about queried fields,
3054     // however we're only looking at structs up to 16 bytes, so we don't care
3055     // much.
3056     unsigned idx = 0;
3057     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3058          i != e; ++i, ++idx) {
3059       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3060 
3061       // If we found a field after the region we care about, then we're done.
3062       if (FieldOffset >= EndBit) break;
3063 
3064       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3065       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3066                                  Context))
3067         return false;
3068     }
3069 
3070     // If nothing in this record overlapped the area of interest, then we're
3071     // clean.
3072     return true;
3073   }
3074 
3075   return false;
3076 }
3077 
3078 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3079 /// float member at the specified offset.  For example, {int,{float}} has a
3080 /// float at offset 4.  It is conservatively correct for this routine to return
3081 /// false.
3082 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3083                                   const llvm::DataLayout &TD) {
3084   // Base case if we find a float.
3085   if (IROffset == 0 && IRType->isFloatTy())
3086     return true;
3087 
3088   // If this is a struct, recurse into the field at the specified offset.
3089   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3090     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3091     unsigned Elt = SL->getElementContainingOffset(IROffset);
3092     IROffset -= SL->getElementOffset(Elt);
3093     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3094   }
3095 
3096   // If this is an array, recurse into the field at the specified offset.
3097   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3098     llvm::Type *EltTy = ATy->getElementType();
3099     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3100     IROffset -= IROffset/EltSize*EltSize;
3101     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3102   }
3103 
3104   return false;
3105 }
3106 
3107 
3108 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3109 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3110 llvm::Type *X86_64ABIInfo::
3111 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3112                    QualType SourceTy, unsigned SourceOffset) const {
3113   // The only three choices we have are either double, <2 x float>, or float. We
3114   // pass as float if the last 4 bytes is just padding.  This happens for
3115   // structs that contain 3 floats.
3116   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3117                             SourceOffset*8+64, getContext()))
3118     return llvm::Type::getFloatTy(getVMContext());
3119 
3120   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3121   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3122   // case.
3123   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3124       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3125     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3126 
3127   return llvm::Type::getDoubleTy(getVMContext());
3128 }
3129 
3130 
3131 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3132 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3133 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3134 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3135 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3136 /// etc).
3137 ///
3138 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3139 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3140 /// the 8-byte value references.  PrefType may be null.
3141 ///
3142 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3143 /// an offset into this that we're processing (which is always either 0 or 8).
3144 ///
3145 llvm::Type *X86_64ABIInfo::
3146 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3147                        QualType SourceTy, unsigned SourceOffset) const {
3148   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3149   // returning an 8-byte unit starting with it.  See if we can safely use it.
3150   if (IROffset == 0) {
3151     // Pointers and int64's always fill the 8-byte unit.
3152     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3153         IRType->isIntegerTy(64))
3154       return IRType;
3155 
3156     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3157     // goodness in the source type is just tail padding.  This is allowed to
3158     // kick in for struct {double,int} on the int, but not on
3159     // struct{double,int,int} because we wouldn't return the second int.  We
3160     // have to do this analysis on the source type because we can't depend on
3161     // unions being lowered a specific way etc.
3162     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3163         IRType->isIntegerTy(32) ||
3164         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3165       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3166           cast<llvm::IntegerType>(IRType)->getBitWidth();
3167 
3168       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3169                                 SourceOffset*8+64, getContext()))
3170         return IRType;
3171     }
3172   }
3173 
3174   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3175     // If this is a struct, recurse into the field at the specified offset.
3176     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3177     if (IROffset < SL->getSizeInBytes()) {
3178       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3179       IROffset -= SL->getElementOffset(FieldIdx);
3180 
3181       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3182                                     SourceTy, SourceOffset);
3183     }
3184   }
3185 
3186   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3187     llvm::Type *EltTy = ATy->getElementType();
3188     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3189     unsigned EltOffset = IROffset/EltSize*EltSize;
3190     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3191                                   SourceOffset);
3192   }
3193 
3194   // Okay, we don't have any better idea of what to pass, so we pass this in an
3195   // integer register that isn't too big to fit the rest of the struct.
3196   unsigned TySizeInBytes =
3197     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3198 
3199   assert(TySizeInBytes != SourceOffset && "Empty field?");
3200 
3201   // It is always safe to classify this as an integer type up to i64 that
3202   // isn't larger than the structure.
3203   return llvm::IntegerType::get(getVMContext(),
3204                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3205 }
3206 
3207 
3208 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3209 /// be used as elements of a two register pair to pass or return, return a
3210 /// first class aggregate to represent them.  For example, if the low part of
3211 /// a by-value argument should be passed as i32* and the high part as float,
3212 /// return {i32*, float}.
3213 static llvm::Type *
3214 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3215                            const llvm::DataLayout &TD) {
3216   // In order to correctly satisfy the ABI, we need to the high part to start
3217   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3218   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3219   // the second element at offset 8.  Check for this:
3220   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3221   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3222   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3223   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3224 
3225   // To handle this, we have to increase the size of the low part so that the
3226   // second element will start at an 8 byte offset.  We can't increase the size
3227   // of the second element because it might make us access off the end of the
3228   // struct.
3229   if (HiStart != 8) {
3230     // There are usually two sorts of types the ABI generation code can produce
3231     // for the low part of a pair that aren't 8 bytes in size: float or
3232     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3233     // NaCl).
3234     // Promote these to a larger type.
3235     if (Lo->isFloatTy())
3236       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3237     else {
3238       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3239              && "Invalid/unknown lo type");
3240       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3241     }
3242   }
3243 
3244   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3245 
3246   // Verify that the second element is at an 8-byte offset.
3247   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3248          "Invalid x86-64 argument pair!");
3249   return Result;
3250 }
3251 
3252 ABIArgInfo X86_64ABIInfo::
3253 classifyReturnType(QualType RetTy) const {
3254   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3255   // classification algorithm.
3256   X86_64ABIInfo::Class Lo, Hi;
3257   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3258 
3259   // Check some invariants.
3260   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3261   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3262 
3263   llvm::Type *ResType = nullptr;
3264   switch (Lo) {
3265   case NoClass:
3266     if (Hi == NoClass)
3267       return ABIArgInfo::getIgnore();
3268     // If the low part is just padding, it takes no register, leave ResType
3269     // null.
3270     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3271            "Unknown missing lo part");
3272     break;
3273 
3274   case SSEUp:
3275   case X87Up:
3276     llvm_unreachable("Invalid classification for lo word.");
3277 
3278     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3279     // hidden argument.
3280   case Memory:
3281     return getIndirectReturnResult(RetTy);
3282 
3283     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3284     // available register of the sequence %rax, %rdx is used.
3285   case Integer:
3286     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3287 
3288     // If we have a sign or zero extended integer, make sure to return Extend
3289     // so that the parameter gets the right LLVM IR attributes.
3290     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3291       // Treat an enum type as its underlying type.
3292       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3293         RetTy = EnumTy->getDecl()->getIntegerType();
3294 
3295       if (RetTy->isIntegralOrEnumerationType() &&
3296           RetTy->isPromotableIntegerType())
3297         return ABIArgInfo::getExtend(RetTy);
3298     }
3299     break;
3300 
3301     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3302     // available SSE register of the sequence %xmm0, %xmm1 is used.
3303   case SSE:
3304     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3305     break;
3306 
3307     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3308     // returned on the X87 stack in %st0 as 80-bit x87 number.
3309   case X87:
3310     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3311     break;
3312 
3313     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3314     // part of the value is returned in %st0 and the imaginary part in
3315     // %st1.
3316   case ComplexX87:
3317     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3318     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3319                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3320     break;
3321   }
3322 
3323   llvm::Type *HighPart = nullptr;
3324   switch (Hi) {
3325     // Memory was handled previously and X87 should
3326     // never occur as a hi class.
3327   case Memory:
3328   case X87:
3329     llvm_unreachable("Invalid classification for hi word.");
3330 
3331   case ComplexX87: // Previously handled.
3332   case NoClass:
3333     break;
3334 
3335   case Integer:
3336     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3337     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3338       return ABIArgInfo::getDirect(HighPart, 8);
3339     break;
3340   case SSE:
3341     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3342     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3343       return ABIArgInfo::getDirect(HighPart, 8);
3344     break;
3345 
3346     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3347     // is passed in the next available eightbyte chunk if the last used
3348     // vector register.
3349     //
3350     // SSEUP should always be preceded by SSE, just widen.
3351   case SSEUp:
3352     assert(Lo == SSE && "Unexpected SSEUp classification.");
3353     ResType = GetByteVectorType(RetTy);
3354     break;
3355 
3356     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3357     // returned together with the previous X87 value in %st0.
3358   case X87Up:
3359     // If X87Up is preceded by X87, we don't need to do
3360     // anything. However, in some cases with unions it may not be
3361     // preceded by X87. In such situations we follow gcc and pass the
3362     // extra bits in an SSE reg.
3363     if (Lo != X87) {
3364       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3365       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3366         return ABIArgInfo::getDirect(HighPart, 8);
3367     }
3368     break;
3369   }
3370 
3371   // If a high part was specified, merge it together with the low part.  It is
3372   // known to pass in the high eightbyte of the result.  We do this by forming a
3373   // first class struct aggregate with the high and low part: {low, high}
3374   if (HighPart)
3375     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3376 
3377   return ABIArgInfo::getDirect(ResType);
3378 }
3379 
3380 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3381   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3382   bool isNamedArg)
3383   const
3384 {
3385   Ty = useFirstFieldIfTransparentUnion(Ty);
3386 
3387   X86_64ABIInfo::Class Lo, Hi;
3388   classify(Ty, 0, Lo, Hi, isNamedArg);
3389 
3390   // Check some invariants.
3391   // FIXME: Enforce these by construction.
3392   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3393   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3394 
3395   neededInt = 0;
3396   neededSSE = 0;
3397   llvm::Type *ResType = nullptr;
3398   switch (Lo) {
3399   case NoClass:
3400     if (Hi == NoClass)
3401       return ABIArgInfo::getIgnore();
3402     // If the low part is just padding, it takes no register, leave ResType
3403     // null.
3404     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3405            "Unknown missing lo part");
3406     break;
3407 
3408     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3409     // on the stack.
3410   case Memory:
3411 
3412     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3413     // COMPLEX_X87, it is passed in memory.
3414   case X87:
3415   case ComplexX87:
3416     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3417       ++neededInt;
3418     return getIndirectResult(Ty, freeIntRegs);
3419 
3420   case SSEUp:
3421   case X87Up:
3422     llvm_unreachable("Invalid classification for lo word.");
3423 
3424     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3425     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3426     // and %r9 is used.
3427   case Integer:
3428     ++neededInt;
3429 
3430     // Pick an 8-byte type based on the preferred type.
3431     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3432 
3433     // If we have a sign or zero extended integer, make sure to return Extend
3434     // so that the parameter gets the right LLVM IR attributes.
3435     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3436       // Treat an enum type as its underlying type.
3437       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3438         Ty = EnumTy->getDecl()->getIntegerType();
3439 
3440       if (Ty->isIntegralOrEnumerationType() &&
3441           Ty->isPromotableIntegerType())
3442         return ABIArgInfo::getExtend(Ty);
3443     }
3444 
3445     break;
3446 
3447     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3448     // available SSE register is used, the registers are taken in the
3449     // order from %xmm0 to %xmm7.
3450   case SSE: {
3451     llvm::Type *IRType = CGT.ConvertType(Ty);
3452     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3453     ++neededSSE;
3454     break;
3455   }
3456   }
3457 
3458   llvm::Type *HighPart = nullptr;
3459   switch (Hi) {
3460     // Memory was handled previously, ComplexX87 and X87 should
3461     // never occur as hi classes, and X87Up must be preceded by X87,
3462     // which is passed in memory.
3463   case Memory:
3464   case X87:
3465   case ComplexX87:
3466     llvm_unreachable("Invalid classification for hi word.");
3467 
3468   case NoClass: break;
3469 
3470   case Integer:
3471     ++neededInt;
3472     // Pick an 8-byte type based on the preferred type.
3473     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3474 
3475     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3476       return ABIArgInfo::getDirect(HighPart, 8);
3477     break;
3478 
3479     // X87Up generally doesn't occur here (long double is passed in
3480     // memory), except in situations involving unions.
3481   case X87Up:
3482   case SSE:
3483     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3484 
3485     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3486       return ABIArgInfo::getDirect(HighPart, 8);
3487 
3488     ++neededSSE;
3489     break;
3490 
3491     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3492     // eightbyte is passed in the upper half of the last used SSE
3493     // register.  This only happens when 128-bit vectors are passed.
3494   case SSEUp:
3495     assert(Lo == SSE && "Unexpected SSEUp classification");
3496     ResType = GetByteVectorType(Ty);
3497     break;
3498   }
3499 
3500   // If a high part was specified, merge it together with the low part.  It is
3501   // known to pass in the high eightbyte of the result.  We do this by forming a
3502   // first class struct aggregate with the high and low part: {low, high}
3503   if (HighPart)
3504     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3505 
3506   return ABIArgInfo::getDirect(ResType);
3507 }
3508 
3509 ABIArgInfo
3510 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3511                                              unsigned &NeededSSE) const {
3512   auto RT = Ty->getAs<RecordType>();
3513   assert(RT && "classifyRegCallStructType only valid with struct types");
3514 
3515   if (RT->getDecl()->hasFlexibleArrayMember())
3516     return getIndirectReturnResult(Ty);
3517 
3518   // Sum up bases
3519   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3520     if (CXXRD->isDynamicClass()) {
3521       NeededInt = NeededSSE = 0;
3522       return getIndirectReturnResult(Ty);
3523     }
3524 
3525     for (const auto &I : CXXRD->bases())
3526       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3527               .isIndirect()) {
3528         NeededInt = NeededSSE = 0;
3529         return getIndirectReturnResult(Ty);
3530       }
3531   }
3532 
3533   // Sum up members
3534   for (const auto *FD : RT->getDecl()->fields()) {
3535     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3536       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3537               .isIndirect()) {
3538         NeededInt = NeededSSE = 0;
3539         return getIndirectReturnResult(Ty);
3540       }
3541     } else {
3542       unsigned LocalNeededInt, LocalNeededSSE;
3543       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3544                                LocalNeededSSE, true)
3545               .isIndirect()) {
3546         NeededInt = NeededSSE = 0;
3547         return getIndirectReturnResult(Ty);
3548       }
3549       NeededInt += LocalNeededInt;
3550       NeededSSE += LocalNeededSSE;
3551     }
3552   }
3553 
3554   return ABIArgInfo::getDirect();
3555 }
3556 
3557 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3558                                                     unsigned &NeededInt,
3559                                                     unsigned &NeededSSE) const {
3560 
3561   NeededInt = 0;
3562   NeededSSE = 0;
3563 
3564   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3565 }
3566 
3567 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3568 
3569   const unsigned CallingConv = FI.getCallingConvention();
3570   // It is possible to force Win64 calling convention on any x86_64 target by
3571   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3572   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3573   if (CallingConv == llvm::CallingConv::Win64) {
3574     WinX86_64ABIInfo Win64ABIInfo(CGT);
3575     Win64ABIInfo.computeInfo(FI);
3576     return;
3577   }
3578 
3579   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3580 
3581   // Keep track of the number of assigned registers.
3582   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3583   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3584   unsigned NeededInt, NeededSSE;
3585 
3586   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3587     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3588         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3589       FI.getReturnInfo() =
3590           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3591       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3592         FreeIntRegs -= NeededInt;
3593         FreeSSERegs -= NeededSSE;
3594       } else {
3595         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3596       }
3597     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3598       // Complex Long Double Type is passed in Memory when Regcall
3599       // calling convention is used.
3600       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3601       if (getContext().getCanonicalType(CT->getElementType()) ==
3602           getContext().LongDoubleTy)
3603         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3604     } else
3605       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3606   }
3607 
3608   // If the return value is indirect, then the hidden argument is consuming one
3609   // integer register.
3610   if (FI.getReturnInfo().isIndirect())
3611     --FreeIntRegs;
3612 
3613   // The chain argument effectively gives us another free register.
3614   if (FI.isChainCall())
3615     ++FreeIntRegs;
3616 
3617   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3618   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3619   // get assigned (in left-to-right order) for passing as follows...
3620   unsigned ArgNo = 0;
3621   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3622        it != ie; ++it, ++ArgNo) {
3623     bool IsNamedArg = ArgNo < NumRequiredArgs;
3624 
3625     if (IsRegCall && it->type->isStructureOrClassType())
3626       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3627     else
3628       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3629                                       NeededSSE, IsNamedArg);
3630 
3631     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3632     // eightbyte of an argument, the whole argument is passed on the
3633     // stack. If registers have already been assigned for some
3634     // eightbytes of such an argument, the assignments get reverted.
3635     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3636       FreeIntRegs -= NeededInt;
3637       FreeSSERegs -= NeededSSE;
3638     } else {
3639       it->info = getIndirectResult(it->type, FreeIntRegs);
3640     }
3641   }
3642 }
3643 
3644 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3645                                          Address VAListAddr, QualType Ty) {
3646   Address overflow_arg_area_p =
3647       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3648   llvm::Value *overflow_arg_area =
3649     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3650 
3651   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3652   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3653   // It isn't stated explicitly in the standard, but in practice we use
3654   // alignment greater than 16 where necessary.
3655   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3656   if (Align > CharUnits::fromQuantity(8)) {
3657     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3658                                                       Align);
3659   }
3660 
3661   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3662   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3663   llvm::Value *Res =
3664     CGF.Builder.CreateBitCast(overflow_arg_area,
3665                               llvm::PointerType::getUnqual(LTy));
3666 
3667   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3668   // l->overflow_arg_area + sizeof(type).
3669   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3670   // an 8 byte boundary.
3671 
3672   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3673   llvm::Value *Offset =
3674       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3675   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3676                                             "overflow_arg_area.next");
3677   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3678 
3679   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3680   return Address(Res, Align);
3681 }
3682 
3683 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3684                                  QualType Ty) const {
3685   // Assume that va_list type is correct; should be pointer to LLVM type:
3686   // struct {
3687   //   i32 gp_offset;
3688   //   i32 fp_offset;
3689   //   i8* overflow_arg_area;
3690   //   i8* reg_save_area;
3691   // };
3692   unsigned neededInt, neededSSE;
3693 
3694   Ty = getContext().getCanonicalType(Ty);
3695   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3696                                        /*isNamedArg*/false);
3697 
3698   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3699   // in the registers. If not go to step 7.
3700   if (!neededInt && !neededSSE)
3701     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3702 
3703   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3704   // general purpose registers needed to pass type and num_fp to hold
3705   // the number of floating point registers needed.
3706 
3707   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3708   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3709   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3710   //
3711   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3712   // register save space).
3713 
3714   llvm::Value *InRegs = nullptr;
3715   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3716   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3717   if (neededInt) {
3718     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3719     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3720     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3721     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3722   }
3723 
3724   if (neededSSE) {
3725     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3726     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3727     llvm::Value *FitsInFP =
3728       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3729     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3730     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3731   }
3732 
3733   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3734   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3735   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3736   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3737 
3738   // Emit code to load the value if it was passed in registers.
3739 
3740   CGF.EmitBlock(InRegBlock);
3741 
3742   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3743   // an offset of l->gp_offset and/or l->fp_offset. This may require
3744   // copying to a temporary location in case the parameter is passed
3745   // in different register classes or requires an alignment greater
3746   // than 8 for general purpose registers and 16 for XMM registers.
3747   //
3748   // FIXME: This really results in shameful code when we end up needing to
3749   // collect arguments from different places; often what should result in a
3750   // simple assembling of a structure from scattered addresses has many more
3751   // loads than necessary. Can we clean this up?
3752   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3753   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3754       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3755 
3756   Address RegAddr = Address::invalid();
3757   if (neededInt && neededSSE) {
3758     // FIXME: Cleanup.
3759     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3760     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3761     Address Tmp = CGF.CreateMemTemp(Ty);
3762     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3763     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3764     llvm::Type *TyLo = ST->getElementType(0);
3765     llvm::Type *TyHi = ST->getElementType(1);
3766     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3767            "Unexpected ABI info for mixed regs");
3768     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3769     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3770     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3771     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3772     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3773     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3774 
3775     // Copy the first element.
3776     // FIXME: Our choice of alignment here and below is probably pessimistic.
3777     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3778         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3779         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3780     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3781 
3782     // Copy the second element.
3783     V = CGF.Builder.CreateAlignedLoad(
3784         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3785         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3786     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3787 
3788     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3789   } else if (neededInt) {
3790     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3791                       CharUnits::fromQuantity(8));
3792     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3793 
3794     // Copy to a temporary if necessary to ensure the appropriate alignment.
3795     std::pair<CharUnits, CharUnits> SizeAlign =
3796         getContext().getTypeInfoInChars(Ty);
3797     uint64_t TySize = SizeAlign.first.getQuantity();
3798     CharUnits TyAlign = SizeAlign.second;
3799 
3800     // Copy into a temporary if the type is more aligned than the
3801     // register save area.
3802     if (TyAlign.getQuantity() > 8) {
3803       Address Tmp = CGF.CreateMemTemp(Ty);
3804       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3805       RegAddr = Tmp;
3806     }
3807 
3808   } else if (neededSSE == 1) {
3809     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3810                       CharUnits::fromQuantity(16));
3811     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3812   } else {
3813     assert(neededSSE == 2 && "Invalid number of needed registers!");
3814     // SSE registers are spaced 16 bytes apart in the register save
3815     // area, we need to collect the two eightbytes together.
3816     // The ABI isn't explicit about this, but it seems reasonable
3817     // to assume that the slots are 16-byte aligned, since the stack is
3818     // naturally 16-byte aligned and the prologue is expected to store
3819     // all the SSE registers to the RSA.
3820     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3821                                 CharUnits::fromQuantity(16));
3822     Address RegAddrHi =
3823       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3824                                              CharUnits::fromQuantity(16));
3825     llvm::Type *ST = AI.canHaveCoerceToType()
3826                          ? AI.getCoerceToType()
3827                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3828     llvm::Value *V;
3829     Address Tmp = CGF.CreateMemTemp(Ty);
3830     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3831     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3832         RegAddrLo, ST->getStructElementType(0)));
3833     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3834     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3835         RegAddrHi, ST->getStructElementType(1)));
3836     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3837 
3838     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3839   }
3840 
3841   // AMD64-ABI 3.5.7p5: Step 5. Set:
3842   // l->gp_offset = l->gp_offset + num_gp * 8
3843   // l->fp_offset = l->fp_offset + num_fp * 16.
3844   if (neededInt) {
3845     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3846     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3847                             gp_offset_p);
3848   }
3849   if (neededSSE) {
3850     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3851     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3852                             fp_offset_p);
3853   }
3854   CGF.EmitBranch(ContBlock);
3855 
3856   // Emit code to load the value if it was passed in memory.
3857 
3858   CGF.EmitBlock(InMemBlock);
3859   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3860 
3861   // Return the appropriate result.
3862 
3863   CGF.EmitBlock(ContBlock);
3864   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3865                                  "vaarg.addr");
3866   return ResAddr;
3867 }
3868 
3869 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3870                                    QualType Ty) const {
3871   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3872                           CGF.getContext().getTypeInfoInChars(Ty),
3873                           CharUnits::fromQuantity(8),
3874                           /*allowHigherAlign*/ false);
3875 }
3876 
3877 ABIArgInfo
3878 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3879                                     const ABIArgInfo &current) const {
3880   // Assumes vectorCall calling convention.
3881   const Type *Base = nullptr;
3882   uint64_t NumElts = 0;
3883 
3884   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3885       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3886     FreeSSERegs -= NumElts;
3887     return getDirectX86Hva();
3888   }
3889   return current;
3890 }
3891 
3892 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3893                                       bool IsReturnType, bool IsVectorCall,
3894                                       bool IsRegCall) const {
3895 
3896   if (Ty->isVoidType())
3897     return ABIArgInfo::getIgnore();
3898 
3899   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3900     Ty = EnumTy->getDecl()->getIntegerType();
3901 
3902   TypeInfo Info = getContext().getTypeInfo(Ty);
3903   uint64_t Width = Info.Width;
3904   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3905 
3906   const RecordType *RT = Ty->getAs<RecordType>();
3907   if (RT) {
3908     if (!IsReturnType) {
3909       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3910         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3911     }
3912 
3913     if (RT->getDecl()->hasFlexibleArrayMember())
3914       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3915 
3916   }
3917 
3918   const Type *Base = nullptr;
3919   uint64_t NumElts = 0;
3920   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3921   // other targets.
3922   if ((IsVectorCall || IsRegCall) &&
3923       isHomogeneousAggregate(Ty, Base, NumElts)) {
3924     if (IsRegCall) {
3925       if (FreeSSERegs >= NumElts) {
3926         FreeSSERegs -= NumElts;
3927         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3928           return ABIArgInfo::getDirect();
3929         return ABIArgInfo::getExpand();
3930       }
3931       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3932     } else if (IsVectorCall) {
3933       if (FreeSSERegs >= NumElts &&
3934           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3935         FreeSSERegs -= NumElts;
3936         return ABIArgInfo::getDirect();
3937       } else if (IsReturnType) {
3938         return ABIArgInfo::getExpand();
3939       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3940         // HVAs are delayed and reclassified in the 2nd step.
3941         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3942       }
3943     }
3944   }
3945 
3946   if (Ty->isMemberPointerType()) {
3947     // If the member pointer is represented by an LLVM int or ptr, pass it
3948     // directly.
3949     llvm::Type *LLTy = CGT.ConvertType(Ty);
3950     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3951       return ABIArgInfo::getDirect();
3952   }
3953 
3954   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3955     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3956     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3957     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3958       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3959 
3960     // Otherwise, coerce it to a small integer.
3961     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3962   }
3963 
3964   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3965     switch (BT->getKind()) {
3966     case BuiltinType::Bool:
3967       // Bool type is always extended to the ABI, other builtin types are not
3968       // extended.
3969       return ABIArgInfo::getExtend(Ty);
3970 
3971     case BuiltinType::LongDouble:
3972       // Mingw64 GCC uses the old 80 bit extended precision floating point
3973       // unit. It passes them indirectly through memory.
3974       if (IsMingw64) {
3975         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3976         if (LDF == &llvm::APFloat::x87DoubleExtended())
3977           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3978       }
3979       break;
3980 
3981     case BuiltinType::Int128:
3982     case BuiltinType::UInt128:
3983       // If it's a parameter type, the normal ABI rule is that arguments larger
3984       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3985       // even though it isn't particularly efficient.
3986       if (!IsReturnType)
3987         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3988 
3989       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3990       // Clang matches them for compatibility.
3991       return ABIArgInfo::getDirect(
3992           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3993 
3994     default:
3995       break;
3996     }
3997   }
3998 
3999   return ABIArgInfo::getDirect();
4000 }
4001 
4002 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4003                                              unsigned FreeSSERegs,
4004                                              bool IsVectorCall,
4005                                              bool IsRegCall) const {
4006   unsigned Count = 0;
4007   for (auto &I : FI.arguments()) {
4008     // Vectorcall in x64 only permits the first 6 arguments to be passed
4009     // as XMM/YMM registers.
4010     if (Count < VectorcallMaxParamNumAsReg)
4011       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4012     else {
4013       // Since these cannot be passed in registers, pretend no registers
4014       // are left.
4015       unsigned ZeroSSERegsAvail = 0;
4016       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4017                         IsVectorCall, IsRegCall);
4018     }
4019     ++Count;
4020   }
4021 
4022   for (auto &I : FI.arguments()) {
4023     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4024   }
4025 }
4026 
4027 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4028   bool IsVectorCall =
4029       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
4030   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
4031 
4032   unsigned FreeSSERegs = 0;
4033   if (IsVectorCall) {
4034     // We can use up to 4 SSE return registers with vectorcall.
4035     FreeSSERegs = 4;
4036   } else if (IsRegCall) {
4037     // RegCall gives us 16 SSE registers.
4038     FreeSSERegs = 16;
4039   }
4040 
4041   if (!getCXXABI().classifyReturnType(FI))
4042     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4043                                   IsVectorCall, IsRegCall);
4044 
4045   if (IsVectorCall) {
4046     // We can use up to 6 SSE register parameters with vectorcall.
4047     FreeSSERegs = 6;
4048   } else if (IsRegCall) {
4049     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4050     FreeSSERegs = 16;
4051   }
4052 
4053   if (IsVectorCall) {
4054     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4055   } else {
4056     for (auto &I : FI.arguments())
4057       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4058   }
4059 
4060 }
4061 
4062 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4063                                     QualType Ty) const {
4064 
4065   bool IsIndirect = false;
4066 
4067   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4068   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4069   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4070     uint64_t Width = getContext().getTypeSize(Ty);
4071     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4072   }
4073 
4074   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4075                           CGF.getContext().getTypeInfoInChars(Ty),
4076                           CharUnits::fromQuantity(8),
4077                           /*allowHigherAlign*/ false);
4078 }
4079 
4080 // PowerPC-32
4081 namespace {
4082 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4083 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4084   bool IsSoftFloatABI;
4085 
4086   CharUnits getParamTypeAlignment(QualType Ty) const;
4087 
4088 public:
4089   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4090       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4091 
4092   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4093                     QualType Ty) const override;
4094 };
4095 
4096 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4097 public:
4098   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4099       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4100 
4101   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4102     // This is recovered from gcc output.
4103     return 1; // r1 is the dedicated stack pointer
4104   }
4105 
4106   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4107                                llvm::Value *Address) const override;
4108 };
4109 }
4110 
4111 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4112   // Complex types are passed just like their elements
4113   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4114     Ty = CTy->getElementType();
4115 
4116   if (Ty->isVectorType())
4117     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4118                                                                        : 4);
4119 
4120   // For single-element float/vector structs, we consider the whole type
4121   // to have the same alignment requirements as its single element.
4122   const Type *AlignTy = nullptr;
4123   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4124     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4125     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4126         (BT && BT->isFloatingPoint()))
4127       AlignTy = EltType;
4128   }
4129 
4130   if (AlignTy)
4131     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4132   return CharUnits::fromQuantity(4);
4133 }
4134 
4135 // TODO: this implementation is now likely redundant with
4136 // DefaultABIInfo::EmitVAArg.
4137 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4138                                       QualType Ty) const {
4139   if (getTarget().getTriple().isOSDarwin()) {
4140     auto TI = getContext().getTypeInfoInChars(Ty);
4141     TI.second = getParamTypeAlignment(Ty);
4142 
4143     CharUnits SlotSize = CharUnits::fromQuantity(4);
4144     return emitVoidPtrVAArg(CGF, VAList, Ty,
4145                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4146                             /*AllowHigherAlign=*/true);
4147   }
4148 
4149   const unsigned OverflowLimit = 8;
4150   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4151     // TODO: Implement this. For now ignore.
4152     (void)CTy;
4153     return Address::invalid(); // FIXME?
4154   }
4155 
4156   // struct __va_list_tag {
4157   //   unsigned char gpr;
4158   //   unsigned char fpr;
4159   //   unsigned short reserved;
4160   //   void *overflow_arg_area;
4161   //   void *reg_save_area;
4162   // };
4163 
4164   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4165   bool isInt =
4166       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4167   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4168 
4169   // All aggregates are passed indirectly?  That doesn't seem consistent
4170   // with the argument-lowering code.
4171   bool isIndirect = Ty->isAggregateType();
4172 
4173   CGBuilderTy &Builder = CGF.Builder;
4174 
4175   // The calling convention either uses 1-2 GPRs or 1 FPR.
4176   Address NumRegsAddr = Address::invalid();
4177   if (isInt || IsSoftFloatABI) {
4178     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4179   } else {
4180     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4181   }
4182 
4183   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4184 
4185   // "Align" the register count when TY is i64.
4186   if (isI64 || (isF64 && IsSoftFloatABI)) {
4187     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4188     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4189   }
4190 
4191   llvm::Value *CC =
4192       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4193 
4194   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4195   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4196   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4197 
4198   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4199 
4200   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4201   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4202 
4203   // Case 1: consume registers.
4204   Address RegAddr = Address::invalid();
4205   {
4206     CGF.EmitBlock(UsingRegs);
4207 
4208     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4209     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4210                       CharUnits::fromQuantity(8));
4211     assert(RegAddr.getElementType() == CGF.Int8Ty);
4212 
4213     // Floating-point registers start after the general-purpose registers.
4214     if (!(isInt || IsSoftFloatABI)) {
4215       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4216                                                    CharUnits::fromQuantity(32));
4217     }
4218 
4219     // Get the address of the saved value by scaling the number of
4220     // registers we've used by the number of
4221     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4222     llvm::Value *RegOffset =
4223       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4224     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4225                                             RegAddr.getPointer(), RegOffset),
4226                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4227     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4228 
4229     // Increase the used-register count.
4230     NumRegs =
4231       Builder.CreateAdd(NumRegs,
4232                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4233     Builder.CreateStore(NumRegs, NumRegsAddr);
4234 
4235     CGF.EmitBranch(Cont);
4236   }
4237 
4238   // Case 2: consume space in the overflow area.
4239   Address MemAddr = Address::invalid();
4240   {
4241     CGF.EmitBlock(UsingOverflow);
4242 
4243     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4244 
4245     // Everything in the overflow area is rounded up to a size of at least 4.
4246     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4247 
4248     CharUnits Size;
4249     if (!isIndirect) {
4250       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4251       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4252     } else {
4253       Size = CGF.getPointerSize();
4254     }
4255 
4256     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4257     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4258                          OverflowAreaAlign);
4259     // Round up address of argument to alignment
4260     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4261     if (Align > OverflowAreaAlign) {
4262       llvm::Value *Ptr = OverflowArea.getPointer();
4263       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4264                                                            Align);
4265     }
4266 
4267     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4268 
4269     // Increase the overflow area.
4270     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4271     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4272     CGF.EmitBranch(Cont);
4273   }
4274 
4275   CGF.EmitBlock(Cont);
4276 
4277   // Merge the cases with a phi.
4278   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4279                                 "vaarg.addr");
4280 
4281   // Load the pointer if the argument was passed indirectly.
4282   if (isIndirect) {
4283     Result = Address(Builder.CreateLoad(Result, "aggr"),
4284                      getContext().getTypeAlignInChars(Ty));
4285   }
4286 
4287   return Result;
4288 }
4289 
4290 bool
4291 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4292                                                 llvm::Value *Address) const {
4293   // This is calculated from the LLVM and GCC tables and verified
4294   // against gcc output.  AFAIK all ABIs use the same encoding.
4295 
4296   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4297 
4298   llvm::IntegerType *i8 = CGF.Int8Ty;
4299   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4300   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4301   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4302 
4303   // 0-31: r0-31, the 4-byte general-purpose registers
4304   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4305 
4306   // 32-63: fp0-31, the 8-byte floating-point registers
4307   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4308 
4309   // 64-76 are various 4-byte special-purpose registers:
4310   // 64: mq
4311   // 65: lr
4312   // 66: ctr
4313   // 67: ap
4314   // 68-75 cr0-7
4315   // 76: xer
4316   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4317 
4318   // 77-108: v0-31, the 16-byte vector registers
4319   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4320 
4321   // 109: vrsave
4322   // 110: vscr
4323   // 111: spe_acc
4324   // 112: spefscr
4325   // 113: sfp
4326   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4327 
4328   return false;
4329 }
4330 
4331 // PowerPC-64
4332 
4333 namespace {
4334 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4335 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4336 public:
4337   enum ABIKind {
4338     ELFv1 = 0,
4339     ELFv2
4340   };
4341 
4342 private:
4343   static const unsigned GPRBits = 64;
4344   ABIKind Kind;
4345   bool HasQPX;
4346   bool IsSoftFloatABI;
4347 
4348   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4349   // will be passed in a QPX register.
4350   bool IsQPXVectorTy(const Type *Ty) const {
4351     if (!HasQPX)
4352       return false;
4353 
4354     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4355       unsigned NumElements = VT->getNumElements();
4356       if (NumElements == 1)
4357         return false;
4358 
4359       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4360         if (getContext().getTypeSize(Ty) <= 256)
4361           return true;
4362       } else if (VT->getElementType()->
4363                    isSpecificBuiltinType(BuiltinType::Float)) {
4364         if (getContext().getTypeSize(Ty) <= 128)
4365           return true;
4366       }
4367     }
4368 
4369     return false;
4370   }
4371 
4372   bool IsQPXVectorTy(QualType Ty) const {
4373     return IsQPXVectorTy(Ty.getTypePtr());
4374   }
4375 
4376 public:
4377   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4378                      bool SoftFloatABI)
4379       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4380         IsSoftFloatABI(SoftFloatABI) {}
4381 
4382   bool isPromotableTypeForABI(QualType Ty) const;
4383   CharUnits getParamTypeAlignment(QualType Ty) const;
4384 
4385   ABIArgInfo classifyReturnType(QualType RetTy) const;
4386   ABIArgInfo classifyArgumentType(QualType Ty) const;
4387 
4388   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4389   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4390                                          uint64_t Members) const override;
4391 
4392   // TODO: We can add more logic to computeInfo to improve performance.
4393   // Example: For aggregate arguments that fit in a register, we could
4394   // use getDirectInReg (as is done below for structs containing a single
4395   // floating-point value) to avoid pushing them to memory on function
4396   // entry.  This would require changing the logic in PPCISelLowering
4397   // when lowering the parameters in the caller and args in the callee.
4398   void computeInfo(CGFunctionInfo &FI) const override {
4399     if (!getCXXABI().classifyReturnType(FI))
4400       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4401     for (auto &I : FI.arguments()) {
4402       // We rely on the default argument classification for the most part.
4403       // One exception:  An aggregate containing a single floating-point
4404       // or vector item must be passed in a register if one is available.
4405       const Type *T = isSingleElementStruct(I.type, getContext());
4406       if (T) {
4407         const BuiltinType *BT = T->getAs<BuiltinType>();
4408         if (IsQPXVectorTy(T) ||
4409             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4410             (BT && BT->isFloatingPoint())) {
4411           QualType QT(T, 0);
4412           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4413           continue;
4414         }
4415       }
4416       I.info = classifyArgumentType(I.type);
4417     }
4418   }
4419 
4420   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4421                     QualType Ty) const override;
4422 
4423   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4424                                     bool asReturnValue) const override {
4425     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4426   }
4427 
4428   bool isSwiftErrorInRegister() const override {
4429     return false;
4430   }
4431 };
4432 
4433 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4434 
4435 public:
4436   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4437                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4438                                bool SoftFloatABI)
4439       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4440                                                  SoftFloatABI)) {}
4441 
4442   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4443     // This is recovered from gcc output.
4444     return 1; // r1 is the dedicated stack pointer
4445   }
4446 
4447   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4448                                llvm::Value *Address) const override;
4449 };
4450 
4451 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4452 public:
4453   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4454 
4455   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4456     // This is recovered from gcc output.
4457     return 1; // r1 is the dedicated stack pointer
4458   }
4459 
4460   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4461                                llvm::Value *Address) const override;
4462 };
4463 
4464 }
4465 
4466 // Return true if the ABI requires Ty to be passed sign- or zero-
4467 // extended to 64 bits.
4468 bool
4469 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4470   // Treat an enum type as its underlying type.
4471   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4472     Ty = EnumTy->getDecl()->getIntegerType();
4473 
4474   // Promotable integer types are required to be promoted by the ABI.
4475   if (Ty->isPromotableIntegerType())
4476     return true;
4477 
4478   // In addition to the usual promotable integer types, we also need to
4479   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4480   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4481     switch (BT->getKind()) {
4482     case BuiltinType::Int:
4483     case BuiltinType::UInt:
4484       return true;
4485     default:
4486       break;
4487     }
4488 
4489   return false;
4490 }
4491 
4492 /// isAlignedParamType - Determine whether a type requires 16-byte or
4493 /// higher alignment in the parameter area.  Always returns at least 8.
4494 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4495   // Complex types are passed just like their elements.
4496   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4497     Ty = CTy->getElementType();
4498 
4499   // Only vector types of size 16 bytes need alignment (larger types are
4500   // passed via reference, smaller types are not aligned).
4501   if (IsQPXVectorTy(Ty)) {
4502     if (getContext().getTypeSize(Ty) > 128)
4503       return CharUnits::fromQuantity(32);
4504 
4505     return CharUnits::fromQuantity(16);
4506   } else if (Ty->isVectorType()) {
4507     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4508   }
4509 
4510   // For single-element float/vector structs, we consider the whole type
4511   // to have the same alignment requirements as its single element.
4512   const Type *AlignAsType = nullptr;
4513   const Type *EltType = isSingleElementStruct(Ty, getContext());
4514   if (EltType) {
4515     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4516     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4517          getContext().getTypeSize(EltType) == 128) ||
4518         (BT && BT->isFloatingPoint()))
4519       AlignAsType = EltType;
4520   }
4521 
4522   // Likewise for ELFv2 homogeneous aggregates.
4523   const Type *Base = nullptr;
4524   uint64_t Members = 0;
4525   if (!AlignAsType && Kind == ELFv2 &&
4526       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4527     AlignAsType = Base;
4528 
4529   // With special case aggregates, only vector base types need alignment.
4530   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4531     if (getContext().getTypeSize(AlignAsType) > 128)
4532       return CharUnits::fromQuantity(32);
4533 
4534     return CharUnits::fromQuantity(16);
4535   } else if (AlignAsType) {
4536     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4537   }
4538 
4539   // Otherwise, we only need alignment for any aggregate type that
4540   // has an alignment requirement of >= 16 bytes.
4541   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4542     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4543       return CharUnits::fromQuantity(32);
4544     return CharUnits::fromQuantity(16);
4545   }
4546 
4547   return CharUnits::fromQuantity(8);
4548 }
4549 
4550 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4551 /// aggregate.  Base is set to the base element type, and Members is set
4552 /// to the number of base elements.
4553 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4554                                      uint64_t &Members) const {
4555   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4556     uint64_t NElements = AT->getSize().getZExtValue();
4557     if (NElements == 0)
4558       return false;
4559     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4560       return false;
4561     Members *= NElements;
4562   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4563     const RecordDecl *RD = RT->getDecl();
4564     if (RD->hasFlexibleArrayMember())
4565       return false;
4566 
4567     Members = 0;
4568 
4569     // If this is a C++ record, check the bases first.
4570     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4571       for (const auto &I : CXXRD->bases()) {
4572         // Ignore empty records.
4573         if (isEmptyRecord(getContext(), I.getType(), true))
4574           continue;
4575 
4576         uint64_t FldMembers;
4577         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4578           return false;
4579 
4580         Members += FldMembers;
4581       }
4582     }
4583 
4584     for (const auto *FD : RD->fields()) {
4585       // Ignore (non-zero arrays of) empty records.
4586       QualType FT = FD->getType();
4587       while (const ConstantArrayType *AT =
4588              getContext().getAsConstantArrayType(FT)) {
4589         if (AT->getSize().getZExtValue() == 0)
4590           return false;
4591         FT = AT->getElementType();
4592       }
4593       if (isEmptyRecord(getContext(), FT, true))
4594         continue;
4595 
4596       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4597       if (getContext().getLangOpts().CPlusPlus &&
4598           FD->isZeroLengthBitField(getContext()))
4599         continue;
4600 
4601       uint64_t FldMembers;
4602       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4603         return false;
4604 
4605       Members = (RD->isUnion() ?
4606                  std::max(Members, FldMembers) : Members + FldMembers);
4607     }
4608 
4609     if (!Base)
4610       return false;
4611 
4612     // Ensure there is no padding.
4613     if (getContext().getTypeSize(Base) * Members !=
4614         getContext().getTypeSize(Ty))
4615       return false;
4616   } else {
4617     Members = 1;
4618     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4619       Members = 2;
4620       Ty = CT->getElementType();
4621     }
4622 
4623     // Most ABIs only support float, double, and some vector type widths.
4624     if (!isHomogeneousAggregateBaseType(Ty))
4625       return false;
4626 
4627     // The base type must be the same for all members.  Types that
4628     // agree in both total size and mode (float vs. vector) are
4629     // treated as being equivalent here.
4630     const Type *TyPtr = Ty.getTypePtr();
4631     if (!Base) {
4632       Base = TyPtr;
4633       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4634       // so make sure to widen it explicitly.
4635       if (const VectorType *VT = Base->getAs<VectorType>()) {
4636         QualType EltTy = VT->getElementType();
4637         unsigned NumElements =
4638             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4639         Base = getContext()
4640                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4641                    .getTypePtr();
4642       }
4643     }
4644 
4645     if (Base->isVectorType() != TyPtr->isVectorType() ||
4646         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4647       return false;
4648   }
4649   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4650 }
4651 
4652 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4653   // Homogeneous aggregates for ELFv2 must have base types of float,
4654   // double, long double, or 128-bit vectors.
4655   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4656     if (BT->getKind() == BuiltinType::Float ||
4657         BT->getKind() == BuiltinType::Double ||
4658         BT->getKind() == BuiltinType::LongDouble ||
4659         (getContext().getTargetInfo().hasFloat128Type() &&
4660           (BT->getKind() == BuiltinType::Float128))) {
4661       if (IsSoftFloatABI)
4662         return false;
4663       return true;
4664     }
4665   }
4666   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4667     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4668       return true;
4669   }
4670   return false;
4671 }
4672 
4673 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4674     const Type *Base, uint64_t Members) const {
4675   // Vector and fp128 types require one register, other floating point types
4676   // require one or two registers depending on their size.
4677   uint32_t NumRegs =
4678       ((getContext().getTargetInfo().hasFloat128Type() &&
4679           Base->isFloat128Type()) ||
4680         Base->isVectorType()) ? 1
4681                               : (getContext().getTypeSize(Base) + 63) / 64;
4682 
4683   // Homogeneous Aggregates may occupy at most 8 registers.
4684   return Members * NumRegs <= 8;
4685 }
4686 
4687 ABIArgInfo
4688 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4689   Ty = useFirstFieldIfTransparentUnion(Ty);
4690 
4691   if (Ty->isAnyComplexType())
4692     return ABIArgInfo::getDirect();
4693 
4694   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4695   // or via reference (larger than 16 bytes).
4696   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4697     uint64_t Size = getContext().getTypeSize(Ty);
4698     if (Size > 128)
4699       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4700     else if (Size < 128) {
4701       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4702       return ABIArgInfo::getDirect(CoerceTy);
4703     }
4704   }
4705 
4706   if (isAggregateTypeForABI(Ty)) {
4707     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4708       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4709 
4710     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4711     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4712 
4713     // ELFv2 homogeneous aggregates are passed as array types.
4714     const Type *Base = nullptr;
4715     uint64_t Members = 0;
4716     if (Kind == ELFv2 &&
4717         isHomogeneousAggregate(Ty, Base, Members)) {
4718       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4719       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4720       return ABIArgInfo::getDirect(CoerceTy);
4721     }
4722 
4723     // If an aggregate may end up fully in registers, we do not
4724     // use the ByVal method, but pass the aggregate as array.
4725     // This is usually beneficial since we avoid forcing the
4726     // back-end to store the argument to memory.
4727     uint64_t Bits = getContext().getTypeSize(Ty);
4728     if (Bits > 0 && Bits <= 8 * GPRBits) {
4729       llvm::Type *CoerceTy;
4730 
4731       // Types up to 8 bytes are passed as integer type (which will be
4732       // properly aligned in the argument save area doubleword).
4733       if (Bits <= GPRBits)
4734         CoerceTy =
4735             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4736       // Larger types are passed as arrays, with the base type selected
4737       // according to the required alignment in the save area.
4738       else {
4739         uint64_t RegBits = ABIAlign * 8;
4740         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4741         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4742         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4743       }
4744 
4745       return ABIArgInfo::getDirect(CoerceTy);
4746     }
4747 
4748     // All other aggregates are passed ByVal.
4749     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4750                                    /*ByVal=*/true,
4751                                    /*Realign=*/TyAlign > ABIAlign);
4752   }
4753 
4754   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4755                                      : ABIArgInfo::getDirect());
4756 }
4757 
4758 ABIArgInfo
4759 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4760   if (RetTy->isVoidType())
4761     return ABIArgInfo::getIgnore();
4762 
4763   if (RetTy->isAnyComplexType())
4764     return ABIArgInfo::getDirect();
4765 
4766   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4767   // or via reference (larger than 16 bytes).
4768   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4769     uint64_t Size = getContext().getTypeSize(RetTy);
4770     if (Size > 128)
4771       return getNaturalAlignIndirect(RetTy);
4772     else if (Size < 128) {
4773       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4774       return ABIArgInfo::getDirect(CoerceTy);
4775     }
4776   }
4777 
4778   if (isAggregateTypeForABI(RetTy)) {
4779     // ELFv2 homogeneous aggregates are returned as array types.
4780     const Type *Base = nullptr;
4781     uint64_t Members = 0;
4782     if (Kind == ELFv2 &&
4783         isHomogeneousAggregate(RetTy, Base, Members)) {
4784       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4785       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4786       return ABIArgInfo::getDirect(CoerceTy);
4787     }
4788 
4789     // ELFv2 small aggregates are returned in up to two registers.
4790     uint64_t Bits = getContext().getTypeSize(RetTy);
4791     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4792       if (Bits == 0)
4793         return ABIArgInfo::getIgnore();
4794 
4795       llvm::Type *CoerceTy;
4796       if (Bits > GPRBits) {
4797         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4798         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4799       } else
4800         CoerceTy =
4801             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4802       return ABIArgInfo::getDirect(CoerceTy);
4803     }
4804 
4805     // All other aggregates are returned indirectly.
4806     return getNaturalAlignIndirect(RetTy);
4807   }
4808 
4809   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4810                                         : ABIArgInfo::getDirect());
4811 }
4812 
4813 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4814 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4815                                       QualType Ty) const {
4816   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4817   TypeInfo.second = getParamTypeAlignment(Ty);
4818 
4819   CharUnits SlotSize = CharUnits::fromQuantity(8);
4820 
4821   // If we have a complex type and the base type is smaller than 8 bytes,
4822   // the ABI calls for the real and imaginary parts to be right-adjusted
4823   // in separate doublewords.  However, Clang expects us to produce a
4824   // pointer to a structure with the two parts packed tightly.  So generate
4825   // loads of the real and imaginary parts relative to the va_list pointer,
4826   // and store them to a temporary structure.
4827   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4828     CharUnits EltSize = TypeInfo.first / 2;
4829     if (EltSize < SlotSize) {
4830       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4831                                             SlotSize * 2, SlotSize,
4832                                             SlotSize, /*AllowHigher*/ true);
4833 
4834       Address RealAddr = Addr;
4835       Address ImagAddr = RealAddr;
4836       if (CGF.CGM.getDataLayout().isBigEndian()) {
4837         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4838                                                           SlotSize - EltSize);
4839         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4840                                                       2 * SlotSize - EltSize);
4841       } else {
4842         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4843       }
4844 
4845       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4846       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4847       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4848       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4849       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4850 
4851       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4852       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4853                              /*init*/ true);
4854       return Temp;
4855     }
4856   }
4857 
4858   // Otherwise, just use the general rule.
4859   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4860                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4861 }
4862 
4863 static bool
4864 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4865                               llvm::Value *Address) {
4866   // This is calculated from the LLVM and GCC tables and verified
4867   // against gcc output.  AFAIK all ABIs use the same encoding.
4868 
4869   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4870 
4871   llvm::IntegerType *i8 = CGF.Int8Ty;
4872   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4873   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4874   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4875 
4876   // 0-31: r0-31, the 8-byte general-purpose registers
4877   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4878 
4879   // 32-63: fp0-31, the 8-byte floating-point registers
4880   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4881 
4882   // 64-67 are various 8-byte special-purpose registers:
4883   // 64: mq
4884   // 65: lr
4885   // 66: ctr
4886   // 67: ap
4887   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4888 
4889   // 68-76 are various 4-byte special-purpose registers:
4890   // 68-75 cr0-7
4891   // 76: xer
4892   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4893 
4894   // 77-108: v0-31, the 16-byte vector registers
4895   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4896 
4897   // 109: vrsave
4898   // 110: vscr
4899   // 111: spe_acc
4900   // 112: spefscr
4901   // 113: sfp
4902   // 114: tfhar
4903   // 115: tfiar
4904   // 116: texasr
4905   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4906 
4907   return false;
4908 }
4909 
4910 bool
4911 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4912   CodeGen::CodeGenFunction &CGF,
4913   llvm::Value *Address) const {
4914 
4915   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4916 }
4917 
4918 bool
4919 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4920                                                 llvm::Value *Address) const {
4921 
4922   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4923 }
4924 
4925 //===----------------------------------------------------------------------===//
4926 // AArch64 ABI Implementation
4927 //===----------------------------------------------------------------------===//
4928 
4929 namespace {
4930 
4931 class AArch64ABIInfo : public SwiftABIInfo {
4932 public:
4933   enum ABIKind {
4934     AAPCS = 0,
4935     DarwinPCS,
4936     Win64
4937   };
4938 
4939 private:
4940   ABIKind Kind;
4941 
4942 public:
4943   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4944     : SwiftABIInfo(CGT), Kind(Kind) {}
4945 
4946 private:
4947   ABIKind getABIKind() const { return Kind; }
4948   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4949 
4950   ABIArgInfo classifyReturnType(QualType RetTy) const;
4951   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4952   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4953   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4954                                          uint64_t Members) const override;
4955 
4956   bool isIllegalVectorType(QualType Ty) const;
4957 
4958   void computeInfo(CGFunctionInfo &FI) const override {
4959     if (!::classifyReturnType(getCXXABI(), FI, *this))
4960       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4961 
4962     for (auto &it : FI.arguments())
4963       it.info = classifyArgumentType(it.type);
4964   }
4965 
4966   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4967                           CodeGenFunction &CGF) const;
4968 
4969   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4970                          CodeGenFunction &CGF) const;
4971 
4972   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4973                     QualType Ty) const override {
4974     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4975                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4976                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4977   }
4978 
4979   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4980                       QualType Ty) const override;
4981 
4982   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4983                                     bool asReturnValue) const override {
4984     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4985   }
4986   bool isSwiftErrorInRegister() const override {
4987     return true;
4988   }
4989 
4990   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4991                                  unsigned elts) const override;
4992 };
4993 
4994 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4995 public:
4996   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4997       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4998 
4999   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5000     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5001   }
5002 
5003   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5004     return 31;
5005   }
5006 
5007   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5008 
5009   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5010                            CodeGen::CodeGenModule &CGM) const override {
5011     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5012     if (!FD)
5013       return;
5014     llvm::Function *Fn = cast<llvm::Function>(GV);
5015 
5016     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5017     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5018       Fn->addFnAttr("sign-return-address",
5019                     Kind == CodeGenOptions::SignReturnAddressScope::All
5020                         ? "all"
5021                         : "non-leaf");
5022 
5023       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5024       Fn->addFnAttr("sign-return-address-key",
5025                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5026                         ? "a_key"
5027                         : "b_key");
5028     }
5029 
5030     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5031       Fn->addFnAttr("branch-target-enforcement");
5032   }
5033 };
5034 
5035 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5036 public:
5037   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5038       : AArch64TargetCodeGenInfo(CGT, K) {}
5039 
5040   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5041                            CodeGen::CodeGenModule &CGM) const override;
5042 
5043   void getDependentLibraryOption(llvm::StringRef Lib,
5044                                  llvm::SmallString<24> &Opt) const override {
5045     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5046   }
5047 
5048   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5049                                llvm::SmallString<32> &Opt) const override {
5050     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5051   }
5052 };
5053 
5054 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5055     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5056   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5057   if (GV->isDeclaration())
5058     return;
5059   addStackProbeTargetAttributes(D, GV, CGM);
5060 }
5061 }
5062 
5063 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5064   Ty = useFirstFieldIfTransparentUnion(Ty);
5065 
5066   // Handle illegal vector types here.
5067   if (isIllegalVectorType(Ty)) {
5068     uint64_t Size = getContext().getTypeSize(Ty);
5069     // Android promotes <2 x i8> to i16, not i32
5070     if (isAndroid() && (Size <= 16)) {
5071       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5072       return ABIArgInfo::getDirect(ResType);
5073     }
5074     if (Size <= 32) {
5075       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5076       return ABIArgInfo::getDirect(ResType);
5077     }
5078     if (Size == 64) {
5079       llvm::Type *ResType =
5080           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5081       return ABIArgInfo::getDirect(ResType);
5082     }
5083     if (Size == 128) {
5084       llvm::Type *ResType =
5085           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5086       return ABIArgInfo::getDirect(ResType);
5087     }
5088     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5089   }
5090 
5091   if (!isAggregateTypeForABI(Ty)) {
5092     // Treat an enum type as its underlying type.
5093     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5094       Ty = EnumTy->getDecl()->getIntegerType();
5095 
5096     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5097                 ? ABIArgInfo::getExtend(Ty)
5098                 : ABIArgInfo::getDirect());
5099   }
5100 
5101   // Structures with either a non-trivial destructor or a non-trivial
5102   // copy constructor are always indirect.
5103   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5104     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5105                                      CGCXXABI::RAA_DirectInMemory);
5106   }
5107 
5108   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5109   // elsewhere for GNU compatibility.
5110   uint64_t Size = getContext().getTypeSize(Ty);
5111   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5112   if (IsEmpty || Size == 0) {
5113     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5114       return ABIArgInfo::getIgnore();
5115 
5116     // GNU C mode. The only argument that gets ignored is an empty one with size
5117     // 0.
5118     if (IsEmpty && Size == 0)
5119       return ABIArgInfo::getIgnore();
5120     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5121   }
5122 
5123   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5124   const Type *Base = nullptr;
5125   uint64_t Members = 0;
5126   if (isHomogeneousAggregate(Ty, Base, Members)) {
5127     return ABIArgInfo::getDirect(
5128         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5129   }
5130 
5131   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5132   if (Size <= 128) {
5133     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5134     // same size and alignment.
5135     if (getTarget().isRenderScriptTarget()) {
5136       return coerceToIntArray(Ty, getContext(), getVMContext());
5137     }
5138     unsigned Alignment;
5139     if (Kind == AArch64ABIInfo::AAPCS) {
5140       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5141       Alignment = Alignment < 128 ? 64 : 128;
5142     } else {
5143       Alignment = getContext().getTypeAlign(Ty);
5144     }
5145     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5146 
5147     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5148     // For aggregates with 16-byte alignment, we use i128.
5149     if (Alignment < 128 && Size == 128) {
5150       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5151       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5152     }
5153     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5154   }
5155 
5156   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5157 }
5158 
5159 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5160   if (RetTy->isVoidType())
5161     return ABIArgInfo::getIgnore();
5162 
5163   // Large vector types should be returned via memory.
5164   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5165     return getNaturalAlignIndirect(RetTy);
5166 
5167   if (!isAggregateTypeForABI(RetTy)) {
5168     // Treat an enum type as its underlying type.
5169     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5170       RetTy = EnumTy->getDecl()->getIntegerType();
5171 
5172     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5173                 ? ABIArgInfo::getExtend(RetTy)
5174                 : ABIArgInfo::getDirect());
5175   }
5176 
5177   uint64_t Size = getContext().getTypeSize(RetTy);
5178   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5179     return ABIArgInfo::getIgnore();
5180 
5181   const Type *Base = nullptr;
5182   uint64_t Members = 0;
5183   if (isHomogeneousAggregate(RetTy, Base, Members))
5184     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5185     return ABIArgInfo::getDirect();
5186 
5187   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5188   if (Size <= 128) {
5189     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5190     // same size and alignment.
5191     if (getTarget().isRenderScriptTarget()) {
5192       return coerceToIntArray(RetTy, getContext(), getVMContext());
5193     }
5194     unsigned Alignment = getContext().getTypeAlign(RetTy);
5195     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5196 
5197     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5198     // For aggregates with 16-byte alignment, we use i128.
5199     if (Alignment < 128 && Size == 128) {
5200       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5201       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5202     }
5203     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5204   }
5205 
5206   return getNaturalAlignIndirect(RetTy);
5207 }
5208 
5209 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5210 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5211   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5212     // Check whether VT is legal.
5213     unsigned NumElements = VT->getNumElements();
5214     uint64_t Size = getContext().getTypeSize(VT);
5215     // NumElements should be power of 2.
5216     if (!llvm::isPowerOf2_32(NumElements))
5217       return true;
5218     return Size != 64 && (Size != 128 || NumElements == 1);
5219   }
5220   return false;
5221 }
5222 
5223 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5224                                                llvm::Type *eltTy,
5225                                                unsigned elts) const {
5226   if (!llvm::isPowerOf2_32(elts))
5227     return false;
5228   if (totalSize.getQuantity() != 8 &&
5229       (totalSize.getQuantity() != 16 || elts == 1))
5230     return false;
5231   return true;
5232 }
5233 
5234 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5235   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5236   // point type or a short-vector type. This is the same as the 32-bit ABI,
5237   // but with the difference that any floating-point type is allowed,
5238   // including __fp16.
5239   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5240     if (BT->isFloatingPoint())
5241       return true;
5242   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5243     unsigned VecSize = getContext().getTypeSize(VT);
5244     if (VecSize == 64 || VecSize == 128)
5245       return true;
5246   }
5247   return false;
5248 }
5249 
5250 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5251                                                        uint64_t Members) const {
5252   return Members <= 4;
5253 }
5254 
5255 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5256                                             QualType Ty,
5257                                             CodeGenFunction &CGF) const {
5258   ABIArgInfo AI = classifyArgumentType(Ty);
5259   bool IsIndirect = AI.isIndirect();
5260 
5261   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5262   if (IsIndirect)
5263     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5264   else if (AI.getCoerceToType())
5265     BaseTy = AI.getCoerceToType();
5266 
5267   unsigned NumRegs = 1;
5268   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5269     BaseTy = ArrTy->getElementType();
5270     NumRegs = ArrTy->getNumElements();
5271   }
5272   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5273 
5274   // The AArch64 va_list type and handling is specified in the Procedure Call
5275   // Standard, section B.4:
5276   //
5277   // struct {
5278   //   void *__stack;
5279   //   void *__gr_top;
5280   //   void *__vr_top;
5281   //   int __gr_offs;
5282   //   int __vr_offs;
5283   // };
5284 
5285   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5286   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5287   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5288   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5289 
5290   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5291   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5292 
5293   Address reg_offs_p = Address::invalid();
5294   llvm::Value *reg_offs = nullptr;
5295   int reg_top_index;
5296   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5297   if (!IsFPR) {
5298     // 3 is the field number of __gr_offs
5299     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5300     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5301     reg_top_index = 1; // field number for __gr_top
5302     RegSize = llvm::alignTo(RegSize, 8);
5303   } else {
5304     // 4 is the field number of __vr_offs.
5305     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5306     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5307     reg_top_index = 2; // field number for __vr_top
5308     RegSize = 16 * NumRegs;
5309   }
5310 
5311   //=======================================
5312   // Find out where argument was passed
5313   //=======================================
5314 
5315   // If reg_offs >= 0 we're already using the stack for this type of
5316   // argument. We don't want to keep updating reg_offs (in case it overflows,
5317   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5318   // whatever they get).
5319   llvm::Value *UsingStack = nullptr;
5320   UsingStack = CGF.Builder.CreateICmpSGE(
5321       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5322 
5323   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5324 
5325   // Otherwise, at least some kind of argument could go in these registers, the
5326   // question is whether this particular type is too big.
5327   CGF.EmitBlock(MaybeRegBlock);
5328 
5329   // Integer arguments may need to correct register alignment (for example a
5330   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5331   // align __gr_offs to calculate the potential address.
5332   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5333     int Align = TyAlign.getQuantity();
5334 
5335     reg_offs = CGF.Builder.CreateAdd(
5336         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5337         "align_regoffs");
5338     reg_offs = CGF.Builder.CreateAnd(
5339         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5340         "aligned_regoffs");
5341   }
5342 
5343   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5344   // The fact that this is done unconditionally reflects the fact that
5345   // allocating an argument to the stack also uses up all the remaining
5346   // registers of the appropriate kind.
5347   llvm::Value *NewOffset = nullptr;
5348   NewOffset = CGF.Builder.CreateAdd(
5349       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5350   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5351 
5352   // Now we're in a position to decide whether this argument really was in
5353   // registers or not.
5354   llvm::Value *InRegs = nullptr;
5355   InRegs = CGF.Builder.CreateICmpSLE(
5356       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5357 
5358   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5359 
5360   //=======================================
5361   // Argument was in registers
5362   //=======================================
5363 
5364   // Now we emit the code for if the argument was originally passed in
5365   // registers. First start the appropriate block:
5366   CGF.EmitBlock(InRegBlock);
5367 
5368   llvm::Value *reg_top = nullptr;
5369   Address reg_top_p =
5370       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5371   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5372   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5373                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5374   Address RegAddr = Address::invalid();
5375   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5376 
5377   if (IsIndirect) {
5378     // If it's been passed indirectly (actually a struct), whatever we find from
5379     // stored registers or on the stack will actually be a struct **.
5380     MemTy = llvm::PointerType::getUnqual(MemTy);
5381   }
5382 
5383   const Type *Base = nullptr;
5384   uint64_t NumMembers = 0;
5385   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5386   if (IsHFA && NumMembers > 1) {
5387     // Homogeneous aggregates passed in registers will have their elements split
5388     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5389     // qN+1, ...). We reload and store into a temporary local variable
5390     // contiguously.
5391     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5392     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5393     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5394     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5395     Address Tmp = CGF.CreateTempAlloca(HFATy,
5396                                        std::max(TyAlign, BaseTyInfo.second));
5397 
5398     // On big-endian platforms, the value will be right-aligned in its slot.
5399     int Offset = 0;
5400     if (CGF.CGM.getDataLayout().isBigEndian() &&
5401         BaseTyInfo.first.getQuantity() < 16)
5402       Offset = 16 - BaseTyInfo.first.getQuantity();
5403 
5404     for (unsigned i = 0; i < NumMembers; ++i) {
5405       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5406       Address LoadAddr =
5407         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5408       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5409 
5410       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5411 
5412       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5413       CGF.Builder.CreateStore(Elem, StoreAddr);
5414     }
5415 
5416     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5417   } else {
5418     // Otherwise the object is contiguous in memory.
5419 
5420     // It might be right-aligned in its slot.
5421     CharUnits SlotSize = BaseAddr.getAlignment();
5422     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5423         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5424         TySize < SlotSize) {
5425       CharUnits Offset = SlotSize - TySize;
5426       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5427     }
5428 
5429     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5430   }
5431 
5432   CGF.EmitBranch(ContBlock);
5433 
5434   //=======================================
5435   // Argument was on the stack
5436   //=======================================
5437   CGF.EmitBlock(OnStackBlock);
5438 
5439   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5440   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5441 
5442   // Again, stack arguments may need realignment. In this case both integer and
5443   // floating-point ones might be affected.
5444   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5445     int Align = TyAlign.getQuantity();
5446 
5447     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5448 
5449     OnStackPtr = CGF.Builder.CreateAdd(
5450         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5451         "align_stack");
5452     OnStackPtr = CGF.Builder.CreateAnd(
5453         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5454         "align_stack");
5455 
5456     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5457   }
5458   Address OnStackAddr(OnStackPtr,
5459                       std::max(CharUnits::fromQuantity(8), TyAlign));
5460 
5461   // All stack slots are multiples of 8 bytes.
5462   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5463   CharUnits StackSize;
5464   if (IsIndirect)
5465     StackSize = StackSlotSize;
5466   else
5467     StackSize = TySize.alignTo(StackSlotSize);
5468 
5469   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5470   llvm::Value *NewStack =
5471       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5472 
5473   // Write the new value of __stack for the next call to va_arg
5474   CGF.Builder.CreateStore(NewStack, stack_p);
5475 
5476   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5477       TySize < StackSlotSize) {
5478     CharUnits Offset = StackSlotSize - TySize;
5479     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5480   }
5481 
5482   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5483 
5484   CGF.EmitBranch(ContBlock);
5485 
5486   //=======================================
5487   // Tidy up
5488   //=======================================
5489   CGF.EmitBlock(ContBlock);
5490 
5491   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5492                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5493 
5494   if (IsIndirect)
5495     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5496                    TyAlign);
5497 
5498   return ResAddr;
5499 }
5500 
5501 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5502                                         CodeGenFunction &CGF) const {
5503   // The backend's lowering doesn't support va_arg for aggregates or
5504   // illegal vector types.  Lower VAArg here for these cases and use
5505   // the LLVM va_arg instruction for everything else.
5506   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5507     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5508 
5509   CharUnits SlotSize = CharUnits::fromQuantity(8);
5510 
5511   // Empty records are ignored for parameter passing purposes.
5512   if (isEmptyRecord(getContext(), Ty, true)) {
5513     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5514     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5515     return Addr;
5516   }
5517 
5518   // The size of the actual thing passed, which might end up just
5519   // being a pointer for indirect types.
5520   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5521 
5522   // Arguments bigger than 16 bytes which aren't homogeneous
5523   // aggregates should be passed indirectly.
5524   bool IsIndirect = false;
5525   if (TyInfo.first.getQuantity() > 16) {
5526     const Type *Base = nullptr;
5527     uint64_t Members = 0;
5528     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5529   }
5530 
5531   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5532                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5533 }
5534 
5535 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5536                                     QualType Ty) const {
5537   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5538                           CGF.getContext().getTypeInfoInChars(Ty),
5539                           CharUnits::fromQuantity(8),
5540                           /*allowHigherAlign*/ false);
5541 }
5542 
5543 //===----------------------------------------------------------------------===//
5544 // ARM ABI Implementation
5545 //===----------------------------------------------------------------------===//
5546 
5547 namespace {
5548 
5549 class ARMABIInfo : public SwiftABIInfo {
5550 public:
5551   enum ABIKind {
5552     APCS = 0,
5553     AAPCS = 1,
5554     AAPCS_VFP = 2,
5555     AAPCS16_VFP = 3,
5556   };
5557 
5558 private:
5559   ABIKind Kind;
5560 
5561 public:
5562   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5563       : SwiftABIInfo(CGT), Kind(_Kind) {
5564     setCCs();
5565   }
5566 
5567   bool isEABI() const {
5568     switch (getTarget().getTriple().getEnvironment()) {
5569     case llvm::Triple::Android:
5570     case llvm::Triple::EABI:
5571     case llvm::Triple::EABIHF:
5572     case llvm::Triple::GNUEABI:
5573     case llvm::Triple::GNUEABIHF:
5574     case llvm::Triple::MuslEABI:
5575     case llvm::Triple::MuslEABIHF:
5576       return true;
5577     default:
5578       return false;
5579     }
5580   }
5581 
5582   bool isEABIHF() const {
5583     switch (getTarget().getTriple().getEnvironment()) {
5584     case llvm::Triple::EABIHF:
5585     case llvm::Triple::GNUEABIHF:
5586     case llvm::Triple::MuslEABIHF:
5587       return true;
5588     default:
5589       return false;
5590     }
5591   }
5592 
5593   ABIKind getABIKind() const { return Kind; }
5594 
5595 private:
5596   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5597                                 unsigned functionCallConv) const;
5598   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5599                                   unsigned functionCallConv) const;
5600   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5601                                           uint64_t Members) const;
5602   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5603   bool isIllegalVectorType(QualType Ty) const;
5604 
5605   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5606   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5607                                          uint64_t Members) const override;
5608 
5609   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5610 
5611   void computeInfo(CGFunctionInfo &FI) const override;
5612 
5613   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5614                     QualType Ty) const override;
5615 
5616   llvm::CallingConv::ID getLLVMDefaultCC() const;
5617   llvm::CallingConv::ID getABIDefaultCC() const;
5618   void setCCs();
5619 
5620   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5621                                     bool asReturnValue) const override {
5622     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5623   }
5624   bool isSwiftErrorInRegister() const override {
5625     return true;
5626   }
5627   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5628                                  unsigned elts) const override;
5629 };
5630 
5631 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5632 public:
5633   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5634     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5635 
5636   const ARMABIInfo &getABIInfo() const {
5637     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5638   }
5639 
5640   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5641     return 13;
5642   }
5643 
5644   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5645     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5646   }
5647 
5648   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5649                                llvm::Value *Address) const override {
5650     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5651 
5652     // 0-15 are the 16 integer registers.
5653     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5654     return false;
5655   }
5656 
5657   unsigned getSizeOfUnwindException() const override {
5658     if (getABIInfo().isEABI()) return 88;
5659     return TargetCodeGenInfo::getSizeOfUnwindException();
5660   }
5661 
5662   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5663                            CodeGen::CodeGenModule &CGM) const override {
5664     if (GV->isDeclaration())
5665       return;
5666     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5667     if (!FD)
5668       return;
5669 
5670     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5671     if (!Attr)
5672       return;
5673 
5674     const char *Kind;
5675     switch (Attr->getInterrupt()) {
5676     case ARMInterruptAttr::Generic: Kind = ""; break;
5677     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5678     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5679     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5680     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5681     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5682     }
5683 
5684     llvm::Function *Fn = cast<llvm::Function>(GV);
5685 
5686     Fn->addFnAttr("interrupt", Kind);
5687 
5688     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5689     if (ABI == ARMABIInfo::APCS)
5690       return;
5691 
5692     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5693     // however this is not necessarily true on taking any interrupt. Instruct
5694     // the backend to perform a realignment as part of the function prologue.
5695     llvm::AttrBuilder B;
5696     B.addStackAlignmentAttr(8);
5697     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5698   }
5699 };
5700 
5701 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5702 public:
5703   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5704       : ARMTargetCodeGenInfo(CGT, K) {}
5705 
5706   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5707                            CodeGen::CodeGenModule &CGM) const override;
5708 
5709   void getDependentLibraryOption(llvm::StringRef Lib,
5710                                  llvm::SmallString<24> &Opt) const override {
5711     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5712   }
5713 
5714   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5715                                llvm::SmallString<32> &Opt) const override {
5716     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5717   }
5718 };
5719 
5720 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5721     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5722   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5723   if (GV->isDeclaration())
5724     return;
5725   addStackProbeTargetAttributes(D, GV, CGM);
5726 }
5727 }
5728 
5729 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5730   if (!::classifyReturnType(getCXXABI(), FI, *this))
5731     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5732                                             FI.getCallingConvention());
5733 
5734   for (auto &I : FI.arguments())
5735     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5736                                   FI.getCallingConvention());
5737 
5738 
5739   // Always honor user-specified calling convention.
5740   if (FI.getCallingConvention() != llvm::CallingConv::C)
5741     return;
5742 
5743   llvm::CallingConv::ID cc = getRuntimeCC();
5744   if (cc != llvm::CallingConv::C)
5745     FI.setEffectiveCallingConvention(cc);
5746 }
5747 
5748 /// Return the default calling convention that LLVM will use.
5749 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5750   // The default calling convention that LLVM will infer.
5751   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5752     return llvm::CallingConv::ARM_AAPCS_VFP;
5753   else if (isEABI())
5754     return llvm::CallingConv::ARM_AAPCS;
5755   else
5756     return llvm::CallingConv::ARM_APCS;
5757 }
5758 
5759 /// Return the calling convention that our ABI would like us to use
5760 /// as the C calling convention.
5761 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5762   switch (getABIKind()) {
5763   case APCS: return llvm::CallingConv::ARM_APCS;
5764   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5765   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5766   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5767   }
5768   llvm_unreachable("bad ABI kind");
5769 }
5770 
5771 void ARMABIInfo::setCCs() {
5772   assert(getRuntimeCC() == llvm::CallingConv::C);
5773 
5774   // Don't muddy up the IR with a ton of explicit annotations if
5775   // they'd just match what LLVM will infer from the triple.
5776   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5777   if (abiCC != getLLVMDefaultCC())
5778     RuntimeCC = abiCC;
5779 }
5780 
5781 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5782   uint64_t Size = getContext().getTypeSize(Ty);
5783   if (Size <= 32) {
5784     llvm::Type *ResType =
5785         llvm::Type::getInt32Ty(getVMContext());
5786     return ABIArgInfo::getDirect(ResType);
5787   }
5788   if (Size == 64 || Size == 128) {
5789     llvm::Type *ResType = llvm::VectorType::get(
5790         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5791     return ABIArgInfo::getDirect(ResType);
5792   }
5793   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5794 }
5795 
5796 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5797                                                     const Type *Base,
5798                                                     uint64_t Members) const {
5799   assert(Base && "Base class should be set for homogeneous aggregate");
5800   // Base can be a floating-point or a vector.
5801   if (const VectorType *VT = Base->getAs<VectorType>()) {
5802     // FP16 vectors should be converted to integer vectors
5803     if (!getTarget().hasLegalHalfType() &&
5804         (VT->getElementType()->isFloat16Type() ||
5805           VT->getElementType()->isHalfType())) {
5806       uint64_t Size = getContext().getTypeSize(VT);
5807       llvm::Type *NewVecTy = llvm::VectorType::get(
5808           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5809       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5810       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5811     }
5812   }
5813   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5814 }
5815 
5816 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5817                                             unsigned functionCallConv) const {
5818   // 6.1.2.1 The following argument types are VFP CPRCs:
5819   //   A single-precision floating-point type (including promoted
5820   //   half-precision types); A double-precision floating-point type;
5821   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5822   //   with a Base Type of a single- or double-precision floating-point type,
5823   //   64-bit containerized vectors or 128-bit containerized vectors with one
5824   //   to four Elements.
5825   // Variadic functions should always marshal to the base standard.
5826   bool IsAAPCS_VFP =
5827       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5828 
5829   Ty = useFirstFieldIfTransparentUnion(Ty);
5830 
5831   // Handle illegal vector types here.
5832   if (isIllegalVectorType(Ty))
5833     return coerceIllegalVector(Ty);
5834 
5835   // _Float16 and __fp16 get passed as if it were an int or float, but with
5836   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5837   // half type natively, and does not need to interwork with AAPCS code.
5838   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5839       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5840     llvm::Type *ResType = IsAAPCS_VFP ?
5841       llvm::Type::getFloatTy(getVMContext()) :
5842       llvm::Type::getInt32Ty(getVMContext());
5843     return ABIArgInfo::getDirect(ResType);
5844   }
5845 
5846   if (!isAggregateTypeForABI(Ty)) {
5847     // Treat an enum type as its underlying type.
5848     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5849       Ty = EnumTy->getDecl()->getIntegerType();
5850     }
5851 
5852     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5853                                           : ABIArgInfo::getDirect());
5854   }
5855 
5856   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5857     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5858   }
5859 
5860   // Ignore empty records.
5861   if (isEmptyRecord(getContext(), Ty, true))
5862     return ABIArgInfo::getIgnore();
5863 
5864   if (IsAAPCS_VFP) {
5865     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5866     // into VFP registers.
5867     const Type *Base = nullptr;
5868     uint64_t Members = 0;
5869     if (isHomogeneousAggregate(Ty, Base, Members))
5870       return classifyHomogeneousAggregate(Ty, Base, Members);
5871   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5872     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5873     // this convention even for a variadic function: the backend will use GPRs
5874     // if needed.
5875     const Type *Base = nullptr;
5876     uint64_t Members = 0;
5877     if (isHomogeneousAggregate(Ty, Base, Members)) {
5878       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5879       llvm::Type *Ty =
5880         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5881       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5882     }
5883   }
5884 
5885   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5886       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5887     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5888     // bigger than 128-bits, they get placed in space allocated by the caller,
5889     // and a pointer is passed.
5890     return ABIArgInfo::getIndirect(
5891         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5892   }
5893 
5894   // Support byval for ARM.
5895   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5896   // most 8-byte. We realign the indirect argument if type alignment is bigger
5897   // than ABI alignment.
5898   uint64_t ABIAlign = 4;
5899   uint64_t TyAlign;
5900   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5901       getABIKind() == ARMABIInfo::AAPCS) {
5902     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5903     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5904   } else {
5905     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5906   }
5907   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5908     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5909     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5910                                    /*ByVal=*/true,
5911                                    /*Realign=*/TyAlign > ABIAlign);
5912   }
5913 
5914   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5915   // same size and alignment.
5916   if (getTarget().isRenderScriptTarget()) {
5917     return coerceToIntArray(Ty, getContext(), getVMContext());
5918   }
5919 
5920   // Otherwise, pass by coercing to a structure of the appropriate size.
5921   llvm::Type* ElemTy;
5922   unsigned SizeRegs;
5923   // FIXME: Try to match the types of the arguments more accurately where
5924   // we can.
5925   if (TyAlign <= 4) {
5926     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5927     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5928   } else {
5929     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5930     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5931   }
5932 
5933   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5934 }
5935 
5936 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5937                               llvm::LLVMContext &VMContext) {
5938   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5939   // is called integer-like if its size is less than or equal to one word, and
5940   // the offset of each of its addressable sub-fields is zero.
5941 
5942   uint64_t Size = Context.getTypeSize(Ty);
5943 
5944   // Check that the type fits in a word.
5945   if (Size > 32)
5946     return false;
5947 
5948   // FIXME: Handle vector types!
5949   if (Ty->isVectorType())
5950     return false;
5951 
5952   // Float types are never treated as "integer like".
5953   if (Ty->isRealFloatingType())
5954     return false;
5955 
5956   // If this is a builtin or pointer type then it is ok.
5957   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5958     return true;
5959 
5960   // Small complex integer types are "integer like".
5961   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5962     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5963 
5964   // Single element and zero sized arrays should be allowed, by the definition
5965   // above, but they are not.
5966 
5967   // Otherwise, it must be a record type.
5968   const RecordType *RT = Ty->getAs<RecordType>();
5969   if (!RT) return false;
5970 
5971   // Ignore records with flexible arrays.
5972   const RecordDecl *RD = RT->getDecl();
5973   if (RD->hasFlexibleArrayMember())
5974     return false;
5975 
5976   // Check that all sub-fields are at offset 0, and are themselves "integer
5977   // like".
5978   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5979 
5980   bool HadField = false;
5981   unsigned idx = 0;
5982   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5983        i != e; ++i, ++idx) {
5984     const FieldDecl *FD = *i;
5985 
5986     // Bit-fields are not addressable, we only need to verify they are "integer
5987     // like". We still have to disallow a subsequent non-bitfield, for example:
5988     //   struct { int : 0; int x }
5989     // is non-integer like according to gcc.
5990     if (FD->isBitField()) {
5991       if (!RD->isUnion())
5992         HadField = true;
5993 
5994       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5995         return false;
5996 
5997       continue;
5998     }
5999 
6000     // Check if this field is at offset 0.
6001     if (Layout.getFieldOffset(idx) != 0)
6002       return false;
6003 
6004     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6005       return false;
6006 
6007     // Only allow at most one field in a structure. This doesn't match the
6008     // wording above, but follows gcc in situations with a field following an
6009     // empty structure.
6010     if (!RD->isUnion()) {
6011       if (HadField)
6012         return false;
6013 
6014       HadField = true;
6015     }
6016   }
6017 
6018   return true;
6019 }
6020 
6021 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6022                                           unsigned functionCallConv) const {
6023 
6024   // Variadic functions should always marshal to the base standard.
6025   bool IsAAPCS_VFP =
6026       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6027 
6028   if (RetTy->isVoidType())
6029     return ABIArgInfo::getIgnore();
6030 
6031   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6032     // Large vector types should be returned via memory.
6033     if (getContext().getTypeSize(RetTy) > 128)
6034       return getNaturalAlignIndirect(RetTy);
6035     // FP16 vectors should be converted to integer vectors
6036     if (!getTarget().hasLegalHalfType() &&
6037         (VT->getElementType()->isFloat16Type() ||
6038          VT->getElementType()->isHalfType()))
6039       return coerceIllegalVector(RetTy);
6040   }
6041 
6042   // _Float16 and __fp16 get returned as if it were an int or float, but with
6043   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6044   // half type natively, and does not need to interwork with AAPCS code.
6045   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6046       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6047     llvm::Type *ResType = IsAAPCS_VFP ?
6048       llvm::Type::getFloatTy(getVMContext()) :
6049       llvm::Type::getInt32Ty(getVMContext());
6050     return ABIArgInfo::getDirect(ResType);
6051   }
6052 
6053   if (!isAggregateTypeForABI(RetTy)) {
6054     // Treat an enum type as its underlying type.
6055     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6056       RetTy = EnumTy->getDecl()->getIntegerType();
6057 
6058     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6059                                             : ABIArgInfo::getDirect();
6060   }
6061 
6062   // Are we following APCS?
6063   if (getABIKind() == APCS) {
6064     if (isEmptyRecord(getContext(), RetTy, false))
6065       return ABIArgInfo::getIgnore();
6066 
6067     // Complex types are all returned as packed integers.
6068     //
6069     // FIXME: Consider using 2 x vector types if the back end handles them
6070     // correctly.
6071     if (RetTy->isAnyComplexType())
6072       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6073           getVMContext(), getContext().getTypeSize(RetTy)));
6074 
6075     // Integer like structures are returned in r0.
6076     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6077       // Return in the smallest viable integer type.
6078       uint64_t Size = getContext().getTypeSize(RetTy);
6079       if (Size <= 8)
6080         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6081       if (Size <= 16)
6082         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6083       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6084     }
6085 
6086     // Otherwise return in memory.
6087     return getNaturalAlignIndirect(RetTy);
6088   }
6089 
6090   // Otherwise this is an AAPCS variant.
6091 
6092   if (isEmptyRecord(getContext(), RetTy, true))
6093     return ABIArgInfo::getIgnore();
6094 
6095   // Check for homogeneous aggregates with AAPCS-VFP.
6096   if (IsAAPCS_VFP) {
6097     const Type *Base = nullptr;
6098     uint64_t Members = 0;
6099     if (isHomogeneousAggregate(RetTy, Base, Members))
6100       return classifyHomogeneousAggregate(RetTy, Base, Members);
6101   }
6102 
6103   // Aggregates <= 4 bytes are returned in r0; other aggregates
6104   // are returned indirectly.
6105   uint64_t Size = getContext().getTypeSize(RetTy);
6106   if (Size <= 32) {
6107     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6108     // same size and alignment.
6109     if (getTarget().isRenderScriptTarget()) {
6110       return coerceToIntArray(RetTy, getContext(), getVMContext());
6111     }
6112     if (getDataLayout().isBigEndian())
6113       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6114       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6115 
6116     // Return in the smallest viable integer type.
6117     if (Size <= 8)
6118       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6119     if (Size <= 16)
6120       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6121     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6122   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6123     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6124     llvm::Type *CoerceTy =
6125         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6126     return ABIArgInfo::getDirect(CoerceTy);
6127   }
6128 
6129   return getNaturalAlignIndirect(RetTy);
6130 }
6131 
6132 /// isIllegalVector - check whether Ty is an illegal vector type.
6133 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6134   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6135     // On targets that don't support FP16, FP16 is expanded into float, and we
6136     // don't want the ABI to depend on whether or not FP16 is supported in
6137     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6138     if (!getTarget().hasLegalHalfType() &&
6139         (VT->getElementType()->isFloat16Type() ||
6140          VT->getElementType()->isHalfType()))
6141       return true;
6142     if (isAndroid()) {
6143       // Android shipped using Clang 3.1, which supported a slightly different
6144       // vector ABI. The primary differences were that 3-element vector types
6145       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6146       // accepts that legacy behavior for Android only.
6147       // Check whether VT is legal.
6148       unsigned NumElements = VT->getNumElements();
6149       // NumElements should be power of 2 or equal to 3.
6150       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6151         return true;
6152     } else {
6153       // Check whether VT is legal.
6154       unsigned NumElements = VT->getNumElements();
6155       uint64_t Size = getContext().getTypeSize(VT);
6156       // NumElements should be power of 2.
6157       if (!llvm::isPowerOf2_32(NumElements))
6158         return true;
6159       // Size should be greater than 32 bits.
6160       return Size <= 32;
6161     }
6162   }
6163   return false;
6164 }
6165 
6166 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6167                                            llvm::Type *eltTy,
6168                                            unsigned numElts) const {
6169   if (!llvm::isPowerOf2_32(numElts))
6170     return false;
6171   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6172   if (size > 64)
6173     return false;
6174   if (vectorSize.getQuantity() != 8 &&
6175       (vectorSize.getQuantity() != 16 || numElts == 1))
6176     return false;
6177   return true;
6178 }
6179 
6180 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6181   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6182   // double, or 64-bit or 128-bit vectors.
6183   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6184     if (BT->getKind() == BuiltinType::Float ||
6185         BT->getKind() == BuiltinType::Double ||
6186         BT->getKind() == BuiltinType::LongDouble)
6187       return true;
6188   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6189     unsigned VecSize = getContext().getTypeSize(VT);
6190     if (VecSize == 64 || VecSize == 128)
6191       return true;
6192   }
6193   return false;
6194 }
6195 
6196 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6197                                                    uint64_t Members) const {
6198   return Members <= 4;
6199 }
6200 
6201 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6202                                         bool acceptHalf) const {
6203   // Give precedence to user-specified calling conventions.
6204   if (callConvention != llvm::CallingConv::C)
6205     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6206   else
6207     return (getABIKind() == AAPCS_VFP) ||
6208            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6209 }
6210 
6211 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6212                               QualType Ty) const {
6213   CharUnits SlotSize = CharUnits::fromQuantity(4);
6214 
6215   // Empty records are ignored for parameter passing purposes.
6216   if (isEmptyRecord(getContext(), Ty, true)) {
6217     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6218     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6219     return Addr;
6220   }
6221 
6222   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6223   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6224 
6225   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6226   bool IsIndirect = false;
6227   const Type *Base = nullptr;
6228   uint64_t Members = 0;
6229   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6230     IsIndirect = true;
6231 
6232   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6233   // allocated by the caller.
6234   } else if (TySize > CharUnits::fromQuantity(16) &&
6235              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6236              !isHomogeneousAggregate(Ty, Base, Members)) {
6237     IsIndirect = true;
6238 
6239   // Otherwise, bound the type's ABI alignment.
6240   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6241   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6242   // Our callers should be prepared to handle an under-aligned address.
6243   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6244              getABIKind() == ARMABIInfo::AAPCS) {
6245     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6246     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6247   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6248     // ARMv7k allows type alignment up to 16 bytes.
6249     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6250     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6251   } else {
6252     TyAlignForABI = CharUnits::fromQuantity(4);
6253   }
6254 
6255   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6256   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6257                           SlotSize, /*AllowHigherAlign*/ true);
6258 }
6259 
6260 //===----------------------------------------------------------------------===//
6261 // NVPTX ABI Implementation
6262 //===----------------------------------------------------------------------===//
6263 
6264 namespace {
6265 
6266 class NVPTXABIInfo : public ABIInfo {
6267 public:
6268   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6269 
6270   ABIArgInfo classifyReturnType(QualType RetTy) const;
6271   ABIArgInfo classifyArgumentType(QualType Ty) const;
6272 
6273   void computeInfo(CGFunctionInfo &FI) const override;
6274   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6275                     QualType Ty) const override;
6276 };
6277 
6278 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6279 public:
6280   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6281     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6282 
6283   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6284                            CodeGen::CodeGenModule &M) const override;
6285   bool shouldEmitStaticExternCAliases() const override;
6286 
6287 private:
6288   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6289   // resulting MDNode to the nvvm.annotations MDNode.
6290   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6291 };
6292 
6293 /// Checks if the type is unsupported directly by the current target.
6294 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6295   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6296     return true;
6297   if (!Context.getTargetInfo().hasFloat128Type() && T->isFloat128Type())
6298     return true;
6299   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6300       Context.getTypeSize(T) > 64)
6301     return true;
6302   if (const auto *AT = T->getAsArrayTypeUnsafe())
6303     return isUnsupportedType(Context, AT->getElementType());
6304   const auto *RT = T->getAs<RecordType>();
6305   if (!RT)
6306     return false;
6307   const RecordDecl *RD = RT->getDecl();
6308 
6309   // If this is a C++ record, check the bases first.
6310   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6311     for (const CXXBaseSpecifier &I : CXXRD->bases())
6312       if (isUnsupportedType(Context, I.getType()))
6313         return true;
6314 
6315   for (const FieldDecl *I : RD->fields())
6316     if (isUnsupportedType(Context, I->getType()))
6317       return true;
6318   return false;
6319 }
6320 
6321 /// Coerce the given type into an array with maximum allowed size of elements.
6322 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6323                                             llvm::LLVMContext &LLVMContext,
6324                                             unsigned MaxSize) {
6325   // Alignment and Size are measured in bits.
6326   const uint64_t Size = Context.getTypeSize(Ty);
6327   const uint64_t Alignment = Context.getTypeAlign(Ty);
6328   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6329   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6330   const uint64_t NumElements = (Size + Div - 1) / Div;
6331   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6332 }
6333 
6334 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6335   if (RetTy->isVoidType())
6336     return ABIArgInfo::getIgnore();
6337 
6338   if (getContext().getLangOpts().OpenMP &&
6339       getContext().getLangOpts().OpenMPIsDevice &&
6340       isUnsupportedType(getContext(), RetTy))
6341     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6342 
6343   // note: this is different from default ABI
6344   if (!RetTy->isScalarType())
6345     return ABIArgInfo::getDirect();
6346 
6347   // Treat an enum type as its underlying type.
6348   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6349     RetTy = EnumTy->getDecl()->getIntegerType();
6350 
6351   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6352                                            : ABIArgInfo::getDirect());
6353 }
6354 
6355 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6356   // Treat an enum type as its underlying type.
6357   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6358     Ty = EnumTy->getDecl()->getIntegerType();
6359 
6360   // Return aggregates type as indirect by value
6361   if (isAggregateTypeForABI(Ty))
6362     return getNaturalAlignIndirect(Ty, /* byval */ true);
6363 
6364   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6365                                         : ABIArgInfo::getDirect());
6366 }
6367 
6368 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6369   if (!getCXXABI().classifyReturnType(FI))
6370     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6371   for (auto &I : FI.arguments())
6372     I.info = classifyArgumentType(I.type);
6373 
6374   // Always honor user-specified calling convention.
6375   if (FI.getCallingConvention() != llvm::CallingConv::C)
6376     return;
6377 
6378   FI.setEffectiveCallingConvention(getRuntimeCC());
6379 }
6380 
6381 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6382                                 QualType Ty) const {
6383   llvm_unreachable("NVPTX does not support varargs");
6384 }
6385 
6386 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6387     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6388   if (GV->isDeclaration())
6389     return;
6390   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6391   if (!FD) return;
6392 
6393   llvm::Function *F = cast<llvm::Function>(GV);
6394 
6395   // Perform special handling in OpenCL mode
6396   if (M.getLangOpts().OpenCL) {
6397     // Use OpenCL function attributes to check for kernel functions
6398     // By default, all functions are device functions
6399     if (FD->hasAttr<OpenCLKernelAttr>()) {
6400       // OpenCL __kernel functions get kernel metadata
6401       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6402       addNVVMMetadata(F, "kernel", 1);
6403       // And kernel functions are not subject to inlining
6404       F->addFnAttr(llvm::Attribute::NoInline);
6405     }
6406   }
6407 
6408   // Perform special handling in CUDA mode.
6409   if (M.getLangOpts().CUDA) {
6410     // CUDA __global__ functions get a kernel metadata entry.  Since
6411     // __global__ functions cannot be called from the device, we do not
6412     // need to set the noinline attribute.
6413     if (FD->hasAttr<CUDAGlobalAttr>()) {
6414       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6415       addNVVMMetadata(F, "kernel", 1);
6416     }
6417     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6418       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6419       llvm::APSInt MaxThreads(32);
6420       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6421       if (MaxThreads > 0)
6422         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6423 
6424       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6425       // not specified in __launch_bounds__ or if the user specified a 0 value,
6426       // we don't have to add a PTX directive.
6427       if (Attr->getMinBlocks()) {
6428         llvm::APSInt MinBlocks(32);
6429         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6430         if (MinBlocks > 0)
6431           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6432           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6433       }
6434     }
6435   }
6436 }
6437 
6438 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6439                                              int Operand) {
6440   llvm::Module *M = F->getParent();
6441   llvm::LLVMContext &Ctx = M->getContext();
6442 
6443   // Get "nvvm.annotations" metadata node
6444   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6445 
6446   llvm::Metadata *MDVals[] = {
6447       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6448       llvm::ConstantAsMetadata::get(
6449           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6450   // Append metadata to nvvm.annotations
6451   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6452 }
6453 
6454 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6455   return false;
6456 }
6457 }
6458 
6459 //===----------------------------------------------------------------------===//
6460 // SystemZ ABI Implementation
6461 //===----------------------------------------------------------------------===//
6462 
6463 namespace {
6464 
6465 class SystemZABIInfo : public SwiftABIInfo {
6466   bool HasVector;
6467 
6468 public:
6469   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6470     : SwiftABIInfo(CGT), HasVector(HV) {}
6471 
6472   bool isPromotableIntegerType(QualType Ty) const;
6473   bool isCompoundType(QualType Ty) const;
6474   bool isVectorArgumentType(QualType Ty) const;
6475   bool isFPArgumentType(QualType Ty) const;
6476   QualType GetSingleElementType(QualType Ty) const;
6477 
6478   ABIArgInfo classifyReturnType(QualType RetTy) const;
6479   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6480 
6481   void computeInfo(CGFunctionInfo &FI) const override {
6482     if (!getCXXABI().classifyReturnType(FI))
6483       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6484     for (auto &I : FI.arguments())
6485       I.info = classifyArgumentType(I.type);
6486   }
6487 
6488   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6489                     QualType Ty) const override;
6490 
6491   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6492                                     bool asReturnValue) const override {
6493     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6494   }
6495   bool isSwiftErrorInRegister() const override {
6496     return false;
6497   }
6498 };
6499 
6500 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6501 public:
6502   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6503     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6504 };
6505 
6506 }
6507 
6508 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6509   // Treat an enum type as its underlying type.
6510   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6511     Ty = EnumTy->getDecl()->getIntegerType();
6512 
6513   // Promotable integer types are required to be promoted by the ABI.
6514   if (Ty->isPromotableIntegerType())
6515     return true;
6516 
6517   // 32-bit values must also be promoted.
6518   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6519     switch (BT->getKind()) {
6520     case BuiltinType::Int:
6521     case BuiltinType::UInt:
6522       return true;
6523     default:
6524       return false;
6525     }
6526   return false;
6527 }
6528 
6529 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6530   return (Ty->isAnyComplexType() ||
6531           Ty->isVectorType() ||
6532           isAggregateTypeForABI(Ty));
6533 }
6534 
6535 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6536   return (HasVector &&
6537           Ty->isVectorType() &&
6538           getContext().getTypeSize(Ty) <= 128);
6539 }
6540 
6541 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6542   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6543     switch (BT->getKind()) {
6544     case BuiltinType::Float:
6545     case BuiltinType::Double:
6546       return true;
6547     default:
6548       return false;
6549     }
6550 
6551   return false;
6552 }
6553 
6554 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6555   if (const RecordType *RT = Ty->getAsStructureType()) {
6556     const RecordDecl *RD = RT->getDecl();
6557     QualType Found;
6558 
6559     // If this is a C++ record, check the bases first.
6560     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6561       for (const auto &I : CXXRD->bases()) {
6562         QualType Base = I.getType();
6563 
6564         // Empty bases don't affect things either way.
6565         if (isEmptyRecord(getContext(), Base, true))
6566           continue;
6567 
6568         if (!Found.isNull())
6569           return Ty;
6570         Found = GetSingleElementType(Base);
6571       }
6572 
6573     // Check the fields.
6574     for (const auto *FD : RD->fields()) {
6575       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6576       // Unlike isSingleElementStruct(), empty structure and array fields
6577       // do count.  So do anonymous bitfields that aren't zero-sized.
6578       if (getContext().getLangOpts().CPlusPlus &&
6579           FD->isZeroLengthBitField(getContext()))
6580         continue;
6581 
6582       // Unlike isSingleElementStruct(), arrays do not count.
6583       // Nested structures still do though.
6584       if (!Found.isNull())
6585         return Ty;
6586       Found = GetSingleElementType(FD->getType());
6587     }
6588 
6589     // Unlike isSingleElementStruct(), trailing padding is allowed.
6590     // An 8-byte aligned struct s { float f; } is passed as a double.
6591     if (!Found.isNull())
6592       return Found;
6593   }
6594 
6595   return Ty;
6596 }
6597 
6598 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6599                                   QualType Ty) const {
6600   // Assume that va_list type is correct; should be pointer to LLVM type:
6601   // struct {
6602   //   i64 __gpr;
6603   //   i64 __fpr;
6604   //   i8 *__overflow_arg_area;
6605   //   i8 *__reg_save_area;
6606   // };
6607 
6608   // Every non-vector argument occupies 8 bytes and is passed by preference
6609   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6610   // always passed on the stack.
6611   Ty = getContext().getCanonicalType(Ty);
6612   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6613   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6614   llvm::Type *DirectTy = ArgTy;
6615   ABIArgInfo AI = classifyArgumentType(Ty);
6616   bool IsIndirect = AI.isIndirect();
6617   bool InFPRs = false;
6618   bool IsVector = false;
6619   CharUnits UnpaddedSize;
6620   CharUnits DirectAlign;
6621   if (IsIndirect) {
6622     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6623     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6624   } else {
6625     if (AI.getCoerceToType())
6626       ArgTy = AI.getCoerceToType();
6627     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6628     IsVector = ArgTy->isVectorTy();
6629     UnpaddedSize = TyInfo.first;
6630     DirectAlign = TyInfo.second;
6631   }
6632   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6633   if (IsVector && UnpaddedSize > PaddedSize)
6634     PaddedSize = CharUnits::fromQuantity(16);
6635   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6636 
6637   CharUnits Padding = (PaddedSize - UnpaddedSize);
6638 
6639   llvm::Type *IndexTy = CGF.Int64Ty;
6640   llvm::Value *PaddedSizeV =
6641     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6642 
6643   if (IsVector) {
6644     // Work out the address of a vector argument on the stack.
6645     // Vector arguments are always passed in the high bits of a
6646     // single (8 byte) or double (16 byte) stack slot.
6647     Address OverflowArgAreaPtr =
6648         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6649     Address OverflowArgArea =
6650       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6651               TyInfo.second);
6652     Address MemAddr =
6653       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6654 
6655     // Update overflow_arg_area_ptr pointer
6656     llvm::Value *NewOverflowArgArea =
6657       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6658                             "overflow_arg_area");
6659     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6660 
6661     return MemAddr;
6662   }
6663 
6664   assert(PaddedSize.getQuantity() == 8);
6665 
6666   unsigned MaxRegs, RegCountField, RegSaveIndex;
6667   CharUnits RegPadding;
6668   if (InFPRs) {
6669     MaxRegs = 4; // Maximum of 4 FPR arguments
6670     RegCountField = 1; // __fpr
6671     RegSaveIndex = 16; // save offset for f0
6672     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6673   } else {
6674     MaxRegs = 5; // Maximum of 5 GPR arguments
6675     RegCountField = 0; // __gpr
6676     RegSaveIndex = 2; // save offset for r2
6677     RegPadding = Padding; // values are passed in the low bits of a GPR
6678   }
6679 
6680   Address RegCountPtr =
6681       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6682   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6683   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6684   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6685                                                  "fits_in_regs");
6686 
6687   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6688   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6689   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6690   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6691 
6692   // Emit code to load the value if it was passed in registers.
6693   CGF.EmitBlock(InRegBlock);
6694 
6695   // Work out the address of an argument register.
6696   llvm::Value *ScaledRegCount =
6697     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6698   llvm::Value *RegBase =
6699     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6700                                       + RegPadding.getQuantity());
6701   llvm::Value *RegOffset =
6702     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6703   Address RegSaveAreaPtr =
6704       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6705   llvm::Value *RegSaveArea =
6706     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6707   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6708                                            "raw_reg_addr"),
6709                      PaddedSize);
6710   Address RegAddr =
6711     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6712 
6713   // Update the register count
6714   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6715   llvm::Value *NewRegCount =
6716     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6717   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6718   CGF.EmitBranch(ContBlock);
6719 
6720   // Emit code to load the value if it was passed in memory.
6721   CGF.EmitBlock(InMemBlock);
6722 
6723   // Work out the address of a stack argument.
6724   Address OverflowArgAreaPtr =
6725       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6726   Address OverflowArgArea =
6727     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6728             PaddedSize);
6729   Address RawMemAddr =
6730     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6731   Address MemAddr =
6732     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6733 
6734   // Update overflow_arg_area_ptr pointer
6735   llvm::Value *NewOverflowArgArea =
6736     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6737                           "overflow_arg_area");
6738   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6739   CGF.EmitBranch(ContBlock);
6740 
6741   // Return the appropriate result.
6742   CGF.EmitBlock(ContBlock);
6743   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6744                                  MemAddr, InMemBlock, "va_arg.addr");
6745 
6746   if (IsIndirect)
6747     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6748                       TyInfo.second);
6749 
6750   return ResAddr;
6751 }
6752 
6753 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6754   if (RetTy->isVoidType())
6755     return ABIArgInfo::getIgnore();
6756   if (isVectorArgumentType(RetTy))
6757     return ABIArgInfo::getDirect();
6758   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6759     return getNaturalAlignIndirect(RetTy);
6760   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6761                                          : ABIArgInfo::getDirect());
6762 }
6763 
6764 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6765   // Handle the generic C++ ABI.
6766   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6767     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6768 
6769   // Integers and enums are extended to full register width.
6770   if (isPromotableIntegerType(Ty))
6771     return ABIArgInfo::getExtend(Ty);
6772 
6773   // Handle vector types and vector-like structure types.  Note that
6774   // as opposed to float-like structure types, we do not allow any
6775   // padding for vector-like structures, so verify the sizes match.
6776   uint64_t Size = getContext().getTypeSize(Ty);
6777   QualType SingleElementTy = GetSingleElementType(Ty);
6778   if (isVectorArgumentType(SingleElementTy) &&
6779       getContext().getTypeSize(SingleElementTy) == Size)
6780     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6781 
6782   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6783   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6784     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6785 
6786   // Handle small structures.
6787   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6788     // Structures with flexible arrays have variable length, so really
6789     // fail the size test above.
6790     const RecordDecl *RD = RT->getDecl();
6791     if (RD->hasFlexibleArrayMember())
6792       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6793 
6794     // The structure is passed as an unextended integer, a float, or a double.
6795     llvm::Type *PassTy;
6796     if (isFPArgumentType(SingleElementTy)) {
6797       assert(Size == 32 || Size == 64);
6798       if (Size == 32)
6799         PassTy = llvm::Type::getFloatTy(getVMContext());
6800       else
6801         PassTy = llvm::Type::getDoubleTy(getVMContext());
6802     } else
6803       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6804     return ABIArgInfo::getDirect(PassTy);
6805   }
6806 
6807   // Non-structure compounds are passed indirectly.
6808   if (isCompoundType(Ty))
6809     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6810 
6811   return ABIArgInfo::getDirect(nullptr);
6812 }
6813 
6814 //===----------------------------------------------------------------------===//
6815 // MSP430 ABI Implementation
6816 //===----------------------------------------------------------------------===//
6817 
6818 namespace {
6819 
6820 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6821 public:
6822   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6823     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6824   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6825                            CodeGen::CodeGenModule &M) const override;
6826 };
6827 
6828 }
6829 
6830 void MSP430TargetCodeGenInfo::setTargetAttributes(
6831     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6832   if (GV->isDeclaration())
6833     return;
6834   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6835     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6836     if (!InterruptAttr)
6837       return;
6838 
6839     // Handle 'interrupt' attribute:
6840     llvm::Function *F = cast<llvm::Function>(GV);
6841 
6842     // Step 1: Set ISR calling convention.
6843     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6844 
6845     // Step 2: Add attributes goodness.
6846     F->addFnAttr(llvm::Attribute::NoInline);
6847     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6848   }
6849 }
6850 
6851 //===----------------------------------------------------------------------===//
6852 // MIPS ABI Implementation.  This works for both little-endian and
6853 // big-endian variants.
6854 //===----------------------------------------------------------------------===//
6855 
6856 namespace {
6857 class MipsABIInfo : public ABIInfo {
6858   bool IsO32;
6859   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6860   void CoerceToIntArgs(uint64_t TySize,
6861                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6862   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6863   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6864   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6865 public:
6866   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6867     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6868     StackAlignInBytes(IsO32 ? 8 : 16) {}
6869 
6870   ABIArgInfo classifyReturnType(QualType RetTy) const;
6871   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6872   void computeInfo(CGFunctionInfo &FI) const override;
6873   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6874                     QualType Ty) const override;
6875   ABIArgInfo extendType(QualType Ty) const;
6876 };
6877 
6878 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6879   unsigned SizeOfUnwindException;
6880 public:
6881   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6882     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6883       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6884 
6885   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6886     return 29;
6887   }
6888 
6889   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6890                            CodeGen::CodeGenModule &CGM) const override {
6891     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6892     if (!FD) return;
6893     llvm::Function *Fn = cast<llvm::Function>(GV);
6894 
6895     if (FD->hasAttr<MipsLongCallAttr>())
6896       Fn->addFnAttr("long-call");
6897     else if (FD->hasAttr<MipsShortCallAttr>())
6898       Fn->addFnAttr("short-call");
6899 
6900     // Other attributes do not have a meaning for declarations.
6901     if (GV->isDeclaration())
6902       return;
6903 
6904     if (FD->hasAttr<Mips16Attr>()) {
6905       Fn->addFnAttr("mips16");
6906     }
6907     else if (FD->hasAttr<NoMips16Attr>()) {
6908       Fn->addFnAttr("nomips16");
6909     }
6910 
6911     if (FD->hasAttr<MicroMipsAttr>())
6912       Fn->addFnAttr("micromips");
6913     else if (FD->hasAttr<NoMicroMipsAttr>())
6914       Fn->addFnAttr("nomicromips");
6915 
6916     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6917     if (!Attr)
6918       return;
6919 
6920     const char *Kind;
6921     switch (Attr->getInterrupt()) {
6922     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6923     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6924     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6925     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6926     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6927     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6928     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6929     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6930     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6931     }
6932 
6933     Fn->addFnAttr("interrupt", Kind);
6934 
6935   }
6936 
6937   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6938                                llvm::Value *Address) const override;
6939 
6940   unsigned getSizeOfUnwindException() const override {
6941     return SizeOfUnwindException;
6942   }
6943 };
6944 }
6945 
6946 void MipsABIInfo::CoerceToIntArgs(
6947     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6948   llvm::IntegerType *IntTy =
6949     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6950 
6951   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6952   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6953     ArgList.push_back(IntTy);
6954 
6955   // If necessary, add one more integer type to ArgList.
6956   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6957 
6958   if (R)
6959     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6960 }
6961 
6962 // In N32/64, an aligned double precision floating point field is passed in
6963 // a register.
6964 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6965   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6966 
6967   if (IsO32) {
6968     CoerceToIntArgs(TySize, ArgList);
6969     return llvm::StructType::get(getVMContext(), ArgList);
6970   }
6971 
6972   if (Ty->isComplexType())
6973     return CGT.ConvertType(Ty);
6974 
6975   const RecordType *RT = Ty->getAs<RecordType>();
6976 
6977   // Unions/vectors are passed in integer registers.
6978   if (!RT || !RT->isStructureOrClassType()) {
6979     CoerceToIntArgs(TySize, ArgList);
6980     return llvm::StructType::get(getVMContext(), ArgList);
6981   }
6982 
6983   const RecordDecl *RD = RT->getDecl();
6984   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6985   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6986 
6987   uint64_t LastOffset = 0;
6988   unsigned idx = 0;
6989   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6990 
6991   // Iterate over fields in the struct/class and check if there are any aligned
6992   // double fields.
6993   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6994        i != e; ++i, ++idx) {
6995     const QualType Ty = i->getType();
6996     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6997 
6998     if (!BT || BT->getKind() != BuiltinType::Double)
6999       continue;
7000 
7001     uint64_t Offset = Layout.getFieldOffset(idx);
7002     if (Offset % 64) // Ignore doubles that are not aligned.
7003       continue;
7004 
7005     // Add ((Offset - LastOffset) / 64) args of type i64.
7006     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7007       ArgList.push_back(I64);
7008 
7009     // Add double type.
7010     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7011     LastOffset = Offset + 64;
7012   }
7013 
7014   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7015   ArgList.append(IntArgList.begin(), IntArgList.end());
7016 
7017   return llvm::StructType::get(getVMContext(), ArgList);
7018 }
7019 
7020 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7021                                         uint64_t Offset) const {
7022   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7023     return nullptr;
7024 
7025   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7026 }
7027 
7028 ABIArgInfo
7029 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7030   Ty = useFirstFieldIfTransparentUnion(Ty);
7031 
7032   uint64_t OrigOffset = Offset;
7033   uint64_t TySize = getContext().getTypeSize(Ty);
7034   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7035 
7036   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7037                    (uint64_t)StackAlignInBytes);
7038   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7039   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7040 
7041   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7042     // Ignore empty aggregates.
7043     if (TySize == 0)
7044       return ABIArgInfo::getIgnore();
7045 
7046     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7047       Offset = OrigOffset + MinABIStackAlignInBytes;
7048       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7049     }
7050 
7051     // If we have reached here, aggregates are passed directly by coercing to
7052     // another structure type. Padding is inserted if the offset of the
7053     // aggregate is unaligned.
7054     ABIArgInfo ArgInfo =
7055         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7056                               getPaddingType(OrigOffset, CurrOffset));
7057     ArgInfo.setInReg(true);
7058     return ArgInfo;
7059   }
7060 
7061   // Treat an enum type as its underlying type.
7062   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7063     Ty = EnumTy->getDecl()->getIntegerType();
7064 
7065   // All integral types are promoted to the GPR width.
7066   if (Ty->isIntegralOrEnumerationType())
7067     return extendType(Ty);
7068 
7069   return ABIArgInfo::getDirect(
7070       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7071 }
7072 
7073 llvm::Type*
7074 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7075   const RecordType *RT = RetTy->getAs<RecordType>();
7076   SmallVector<llvm::Type*, 8> RTList;
7077 
7078   if (RT && RT->isStructureOrClassType()) {
7079     const RecordDecl *RD = RT->getDecl();
7080     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7081     unsigned FieldCnt = Layout.getFieldCount();
7082 
7083     // N32/64 returns struct/classes in floating point registers if the
7084     // following conditions are met:
7085     // 1. The size of the struct/class is no larger than 128-bit.
7086     // 2. The struct/class has one or two fields all of which are floating
7087     //    point types.
7088     // 3. The offset of the first field is zero (this follows what gcc does).
7089     //
7090     // Any other composite results are returned in integer registers.
7091     //
7092     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7093       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7094       for (; b != e; ++b) {
7095         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7096 
7097         if (!BT || !BT->isFloatingPoint())
7098           break;
7099 
7100         RTList.push_back(CGT.ConvertType(b->getType()));
7101       }
7102 
7103       if (b == e)
7104         return llvm::StructType::get(getVMContext(), RTList,
7105                                      RD->hasAttr<PackedAttr>());
7106 
7107       RTList.clear();
7108     }
7109   }
7110 
7111   CoerceToIntArgs(Size, RTList);
7112   return llvm::StructType::get(getVMContext(), RTList);
7113 }
7114 
7115 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7116   uint64_t Size = getContext().getTypeSize(RetTy);
7117 
7118   if (RetTy->isVoidType())
7119     return ABIArgInfo::getIgnore();
7120 
7121   // O32 doesn't treat zero-sized structs differently from other structs.
7122   // However, N32/N64 ignores zero sized return values.
7123   if (!IsO32 && Size == 0)
7124     return ABIArgInfo::getIgnore();
7125 
7126   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7127     if (Size <= 128) {
7128       if (RetTy->isAnyComplexType())
7129         return ABIArgInfo::getDirect();
7130 
7131       // O32 returns integer vectors in registers and N32/N64 returns all small
7132       // aggregates in registers.
7133       if (!IsO32 ||
7134           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7135         ABIArgInfo ArgInfo =
7136             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7137         ArgInfo.setInReg(true);
7138         return ArgInfo;
7139       }
7140     }
7141 
7142     return getNaturalAlignIndirect(RetTy);
7143   }
7144 
7145   // Treat an enum type as its underlying type.
7146   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7147     RetTy = EnumTy->getDecl()->getIntegerType();
7148 
7149   if (RetTy->isPromotableIntegerType())
7150     return ABIArgInfo::getExtend(RetTy);
7151 
7152   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7153       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7154     return ABIArgInfo::getSignExtend(RetTy);
7155 
7156   return ABIArgInfo::getDirect();
7157 }
7158 
7159 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7160   ABIArgInfo &RetInfo = FI.getReturnInfo();
7161   if (!getCXXABI().classifyReturnType(FI))
7162     RetInfo = classifyReturnType(FI.getReturnType());
7163 
7164   // Check if a pointer to an aggregate is passed as a hidden argument.
7165   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7166 
7167   for (auto &I : FI.arguments())
7168     I.info = classifyArgumentType(I.type, Offset);
7169 }
7170 
7171 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7172                                QualType OrigTy) const {
7173   QualType Ty = OrigTy;
7174 
7175   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7176   // Pointers are also promoted in the same way but this only matters for N32.
7177   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7178   unsigned PtrWidth = getTarget().getPointerWidth(0);
7179   bool DidPromote = false;
7180   if ((Ty->isIntegerType() &&
7181           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7182       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7183     DidPromote = true;
7184     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7185                                             Ty->isSignedIntegerType());
7186   }
7187 
7188   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7189 
7190   // The alignment of things in the argument area is never larger than
7191   // StackAlignInBytes.
7192   TyInfo.second =
7193     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7194 
7195   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7196   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7197 
7198   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7199                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7200 
7201 
7202   // If there was a promotion, "unpromote" into a temporary.
7203   // TODO: can we just use a pointer into a subset of the original slot?
7204   if (DidPromote) {
7205     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7206     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7207 
7208     // Truncate down to the right width.
7209     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7210                                                  : CGF.IntPtrTy);
7211     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7212     if (OrigTy->isPointerType())
7213       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7214 
7215     CGF.Builder.CreateStore(V, Temp);
7216     Addr = Temp;
7217   }
7218 
7219   return Addr;
7220 }
7221 
7222 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7223   int TySize = getContext().getTypeSize(Ty);
7224 
7225   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7226   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7227     return ABIArgInfo::getSignExtend(Ty);
7228 
7229   return ABIArgInfo::getExtend(Ty);
7230 }
7231 
7232 bool
7233 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7234                                                llvm::Value *Address) const {
7235   // This information comes from gcc's implementation, which seems to
7236   // as canonical as it gets.
7237 
7238   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7239   // are aliased to pairs of single-precision FP registers.
7240   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7241 
7242   // 0-31 are the general purpose registers, $0 - $31.
7243   // 32-63 are the floating-point registers, $f0 - $f31.
7244   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7245   // 66 is the (notional, I think) register for signal-handler return.
7246   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7247 
7248   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7249   // They are one bit wide and ignored here.
7250 
7251   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7252   // (coprocessor 1 is the FP unit)
7253   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7254   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7255   // 176-181 are the DSP accumulator registers.
7256   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7257   return false;
7258 }
7259 
7260 //===----------------------------------------------------------------------===//
7261 // AVR ABI Implementation.
7262 //===----------------------------------------------------------------------===//
7263 
7264 namespace {
7265 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7266 public:
7267   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7268     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7269 
7270   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7271                            CodeGen::CodeGenModule &CGM) const override {
7272     if (GV->isDeclaration())
7273       return;
7274     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7275     if (!FD) return;
7276     auto *Fn = cast<llvm::Function>(GV);
7277 
7278     if (FD->getAttr<AVRInterruptAttr>())
7279       Fn->addFnAttr("interrupt");
7280 
7281     if (FD->getAttr<AVRSignalAttr>())
7282       Fn->addFnAttr("signal");
7283   }
7284 };
7285 }
7286 
7287 //===----------------------------------------------------------------------===//
7288 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7289 // Currently subclassed only to implement custom OpenCL C function attribute
7290 // handling.
7291 //===----------------------------------------------------------------------===//
7292 
7293 namespace {
7294 
7295 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7296 public:
7297   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7298     : DefaultTargetCodeGenInfo(CGT) {}
7299 
7300   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7301                            CodeGen::CodeGenModule &M) const override;
7302 };
7303 
7304 void TCETargetCodeGenInfo::setTargetAttributes(
7305     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7306   if (GV->isDeclaration())
7307     return;
7308   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7309   if (!FD) return;
7310 
7311   llvm::Function *F = cast<llvm::Function>(GV);
7312 
7313   if (M.getLangOpts().OpenCL) {
7314     if (FD->hasAttr<OpenCLKernelAttr>()) {
7315       // OpenCL C Kernel functions are not subject to inlining
7316       F->addFnAttr(llvm::Attribute::NoInline);
7317       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7318       if (Attr) {
7319         // Convert the reqd_work_group_size() attributes to metadata.
7320         llvm::LLVMContext &Context = F->getContext();
7321         llvm::NamedMDNode *OpenCLMetadata =
7322             M.getModule().getOrInsertNamedMetadata(
7323                 "opencl.kernel_wg_size_info");
7324 
7325         SmallVector<llvm::Metadata *, 5> Operands;
7326         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7327 
7328         Operands.push_back(
7329             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7330                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7331         Operands.push_back(
7332             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7333                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7334         Operands.push_back(
7335             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7336                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7337 
7338         // Add a boolean constant operand for "required" (true) or "hint"
7339         // (false) for implementing the work_group_size_hint attr later.
7340         // Currently always true as the hint is not yet implemented.
7341         Operands.push_back(
7342             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7343         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7344       }
7345     }
7346   }
7347 }
7348 
7349 }
7350 
7351 //===----------------------------------------------------------------------===//
7352 // Hexagon ABI Implementation
7353 //===----------------------------------------------------------------------===//
7354 
7355 namespace {
7356 
7357 class HexagonABIInfo : public ABIInfo {
7358 
7359 
7360 public:
7361   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7362 
7363 private:
7364 
7365   ABIArgInfo classifyReturnType(QualType RetTy) const;
7366   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7367 
7368   void computeInfo(CGFunctionInfo &FI) const override;
7369 
7370   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7371                     QualType Ty) const override;
7372 };
7373 
7374 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7375 public:
7376   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7377     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7378 
7379   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7380     return 29;
7381   }
7382 };
7383 
7384 }
7385 
7386 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7387   if (!getCXXABI().classifyReturnType(FI))
7388     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7389   for (auto &I : FI.arguments())
7390     I.info = classifyArgumentType(I.type);
7391 }
7392 
7393 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7394   if (!isAggregateTypeForABI(Ty)) {
7395     // Treat an enum type as its underlying type.
7396     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7397       Ty = EnumTy->getDecl()->getIntegerType();
7398 
7399     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7400                                           : ABIArgInfo::getDirect());
7401   }
7402 
7403   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7404     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7405 
7406   // Ignore empty records.
7407   if (isEmptyRecord(getContext(), Ty, true))
7408     return ABIArgInfo::getIgnore();
7409 
7410   uint64_t Size = getContext().getTypeSize(Ty);
7411   if (Size > 64)
7412     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7413     // Pass in the smallest viable integer type.
7414   else if (Size > 32)
7415       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7416   else if (Size > 16)
7417       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7418   else if (Size > 8)
7419       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7420   else
7421       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7422 }
7423 
7424 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7425   if (RetTy->isVoidType())
7426     return ABIArgInfo::getIgnore();
7427 
7428   // Large vector types should be returned via memory.
7429   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7430     return getNaturalAlignIndirect(RetTy);
7431 
7432   if (!isAggregateTypeForABI(RetTy)) {
7433     // Treat an enum type as its underlying type.
7434     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7435       RetTy = EnumTy->getDecl()->getIntegerType();
7436 
7437     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7438                                              : ABIArgInfo::getDirect());
7439   }
7440 
7441   if (isEmptyRecord(getContext(), RetTy, true))
7442     return ABIArgInfo::getIgnore();
7443 
7444   // Aggregates <= 8 bytes are returned in r0; other aggregates
7445   // are returned indirectly.
7446   uint64_t Size = getContext().getTypeSize(RetTy);
7447   if (Size <= 64) {
7448     // Return in the smallest viable integer type.
7449     if (Size <= 8)
7450       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7451     if (Size <= 16)
7452       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7453     if (Size <= 32)
7454       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7455     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7456   }
7457 
7458   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7459 }
7460 
7461 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7462                                   QualType Ty) const {
7463   // FIXME: Someone needs to audit that this handle alignment correctly.
7464   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7465                           getContext().getTypeInfoInChars(Ty),
7466                           CharUnits::fromQuantity(4),
7467                           /*AllowHigherAlign*/ true);
7468 }
7469 
7470 //===----------------------------------------------------------------------===//
7471 // Lanai ABI Implementation
7472 //===----------------------------------------------------------------------===//
7473 
7474 namespace {
7475 class LanaiABIInfo : public DefaultABIInfo {
7476 public:
7477   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7478 
7479   bool shouldUseInReg(QualType Ty, CCState &State) const;
7480 
7481   void computeInfo(CGFunctionInfo &FI) const override {
7482     CCState State(FI.getCallingConvention());
7483     // Lanai uses 4 registers to pass arguments unless the function has the
7484     // regparm attribute set.
7485     if (FI.getHasRegParm()) {
7486       State.FreeRegs = FI.getRegParm();
7487     } else {
7488       State.FreeRegs = 4;
7489     }
7490 
7491     if (!getCXXABI().classifyReturnType(FI))
7492       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7493     for (auto &I : FI.arguments())
7494       I.info = classifyArgumentType(I.type, State);
7495   }
7496 
7497   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7498   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7499 };
7500 } // end anonymous namespace
7501 
7502 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7503   unsigned Size = getContext().getTypeSize(Ty);
7504   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7505 
7506   if (SizeInRegs == 0)
7507     return false;
7508 
7509   if (SizeInRegs > State.FreeRegs) {
7510     State.FreeRegs = 0;
7511     return false;
7512   }
7513 
7514   State.FreeRegs -= SizeInRegs;
7515 
7516   return true;
7517 }
7518 
7519 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7520                                            CCState &State) const {
7521   if (!ByVal) {
7522     if (State.FreeRegs) {
7523       --State.FreeRegs; // Non-byval indirects just use one pointer.
7524       return getNaturalAlignIndirectInReg(Ty);
7525     }
7526     return getNaturalAlignIndirect(Ty, false);
7527   }
7528 
7529   // Compute the byval alignment.
7530   const unsigned MinABIStackAlignInBytes = 4;
7531   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7532   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7533                                  /*Realign=*/TypeAlign >
7534                                      MinABIStackAlignInBytes);
7535 }
7536 
7537 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7538                                               CCState &State) const {
7539   // Check with the C++ ABI first.
7540   const RecordType *RT = Ty->getAs<RecordType>();
7541   if (RT) {
7542     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7543     if (RAA == CGCXXABI::RAA_Indirect) {
7544       return getIndirectResult(Ty, /*ByVal=*/false, State);
7545     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7546       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7547     }
7548   }
7549 
7550   if (isAggregateTypeForABI(Ty)) {
7551     // Structures with flexible arrays are always indirect.
7552     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7553       return getIndirectResult(Ty, /*ByVal=*/true, State);
7554 
7555     // Ignore empty structs/unions.
7556     if (isEmptyRecord(getContext(), Ty, true))
7557       return ABIArgInfo::getIgnore();
7558 
7559     llvm::LLVMContext &LLVMContext = getVMContext();
7560     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7561     if (SizeInRegs <= State.FreeRegs) {
7562       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7563       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7564       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7565       State.FreeRegs -= SizeInRegs;
7566       return ABIArgInfo::getDirectInReg(Result);
7567     } else {
7568       State.FreeRegs = 0;
7569     }
7570     return getIndirectResult(Ty, true, State);
7571   }
7572 
7573   // Treat an enum type as its underlying type.
7574   if (const auto *EnumTy = Ty->getAs<EnumType>())
7575     Ty = EnumTy->getDecl()->getIntegerType();
7576 
7577   bool InReg = shouldUseInReg(Ty, State);
7578   if (Ty->isPromotableIntegerType()) {
7579     if (InReg)
7580       return ABIArgInfo::getDirectInReg();
7581     return ABIArgInfo::getExtend(Ty);
7582   }
7583   if (InReg)
7584     return ABIArgInfo::getDirectInReg();
7585   return ABIArgInfo::getDirect();
7586 }
7587 
7588 namespace {
7589 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7590 public:
7591   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7592       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7593 };
7594 }
7595 
7596 //===----------------------------------------------------------------------===//
7597 // AMDGPU ABI Implementation
7598 //===----------------------------------------------------------------------===//
7599 
7600 namespace {
7601 
7602 class AMDGPUABIInfo final : public DefaultABIInfo {
7603 private:
7604   static const unsigned MaxNumRegsForArgsRet = 16;
7605 
7606   unsigned numRegsForType(QualType Ty) const;
7607 
7608   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7609   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7610                                          uint64_t Members) const override;
7611 
7612 public:
7613   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7614     DefaultABIInfo(CGT) {}
7615 
7616   ABIArgInfo classifyReturnType(QualType RetTy) const;
7617   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7618   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7619 
7620   void computeInfo(CGFunctionInfo &FI) const override;
7621 };
7622 
7623 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7624   return true;
7625 }
7626 
7627 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7628   const Type *Base, uint64_t Members) const {
7629   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7630 
7631   // Homogeneous Aggregates may occupy at most 16 registers.
7632   return Members * NumRegs <= MaxNumRegsForArgsRet;
7633 }
7634 
7635 /// Estimate number of registers the type will use when passed in registers.
7636 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7637   unsigned NumRegs = 0;
7638 
7639   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7640     // Compute from the number of elements. The reported size is based on the
7641     // in-memory size, which includes the padding 4th element for 3-vectors.
7642     QualType EltTy = VT->getElementType();
7643     unsigned EltSize = getContext().getTypeSize(EltTy);
7644 
7645     // 16-bit element vectors should be passed as packed.
7646     if (EltSize == 16)
7647       return (VT->getNumElements() + 1) / 2;
7648 
7649     unsigned EltNumRegs = (EltSize + 31) / 32;
7650     return EltNumRegs * VT->getNumElements();
7651   }
7652 
7653   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7654     const RecordDecl *RD = RT->getDecl();
7655     assert(!RD->hasFlexibleArrayMember());
7656 
7657     for (const FieldDecl *Field : RD->fields()) {
7658       QualType FieldTy = Field->getType();
7659       NumRegs += numRegsForType(FieldTy);
7660     }
7661 
7662     return NumRegs;
7663   }
7664 
7665   return (getContext().getTypeSize(Ty) + 31) / 32;
7666 }
7667 
7668 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7669   llvm::CallingConv::ID CC = FI.getCallingConvention();
7670 
7671   if (!getCXXABI().classifyReturnType(FI))
7672     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7673 
7674   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7675   for (auto &Arg : FI.arguments()) {
7676     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7677       Arg.info = classifyKernelArgumentType(Arg.type);
7678     } else {
7679       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7680     }
7681   }
7682 }
7683 
7684 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7685   if (isAggregateTypeForABI(RetTy)) {
7686     // Records with non-trivial destructors/copy-constructors should not be
7687     // returned by value.
7688     if (!getRecordArgABI(RetTy, getCXXABI())) {
7689       // Ignore empty structs/unions.
7690       if (isEmptyRecord(getContext(), RetTy, true))
7691         return ABIArgInfo::getIgnore();
7692 
7693       // Lower single-element structs to just return a regular value.
7694       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7695         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7696 
7697       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7698         const RecordDecl *RD = RT->getDecl();
7699         if (RD->hasFlexibleArrayMember())
7700           return DefaultABIInfo::classifyReturnType(RetTy);
7701       }
7702 
7703       // Pack aggregates <= 4 bytes into single VGPR or pair.
7704       uint64_t Size = getContext().getTypeSize(RetTy);
7705       if (Size <= 16)
7706         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7707 
7708       if (Size <= 32)
7709         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7710 
7711       if (Size <= 64) {
7712         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7713         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7714       }
7715 
7716       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7717         return ABIArgInfo::getDirect();
7718     }
7719   }
7720 
7721   // Otherwise just do the default thing.
7722   return DefaultABIInfo::classifyReturnType(RetTy);
7723 }
7724 
7725 /// For kernels all parameters are really passed in a special buffer. It doesn't
7726 /// make sense to pass anything byval, so everything must be direct.
7727 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7728   Ty = useFirstFieldIfTransparentUnion(Ty);
7729 
7730   // TODO: Can we omit empty structs?
7731 
7732   // Coerce single element structs to its element.
7733   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7734     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7735 
7736   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7737   // individual elements, which confuses the Clover OpenCL backend; therefore we
7738   // have to set it to false here. Other args of getDirect() are just defaults.
7739   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7740 }
7741 
7742 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7743                                                unsigned &NumRegsLeft) const {
7744   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7745 
7746   Ty = useFirstFieldIfTransparentUnion(Ty);
7747 
7748   if (isAggregateTypeForABI(Ty)) {
7749     // Records with non-trivial destructors/copy-constructors should not be
7750     // passed by value.
7751     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7752       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7753 
7754     // Ignore empty structs/unions.
7755     if (isEmptyRecord(getContext(), Ty, true))
7756       return ABIArgInfo::getIgnore();
7757 
7758     // Lower single-element structs to just pass a regular value. TODO: We
7759     // could do reasonable-size multiple-element structs too, using getExpand(),
7760     // though watch out for things like bitfields.
7761     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7762       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7763 
7764     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7765       const RecordDecl *RD = RT->getDecl();
7766       if (RD->hasFlexibleArrayMember())
7767         return DefaultABIInfo::classifyArgumentType(Ty);
7768     }
7769 
7770     // Pack aggregates <= 8 bytes into single VGPR or pair.
7771     uint64_t Size = getContext().getTypeSize(Ty);
7772     if (Size <= 64) {
7773       unsigned NumRegs = (Size + 31) / 32;
7774       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7775 
7776       if (Size <= 16)
7777         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7778 
7779       if (Size <= 32)
7780         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7781 
7782       // XXX: Should this be i64 instead, and should the limit increase?
7783       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7784       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7785     }
7786 
7787     if (NumRegsLeft > 0) {
7788       unsigned NumRegs = numRegsForType(Ty);
7789       if (NumRegsLeft >= NumRegs) {
7790         NumRegsLeft -= NumRegs;
7791         return ABIArgInfo::getDirect();
7792       }
7793     }
7794   }
7795 
7796   // Otherwise just do the default thing.
7797   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7798   if (!ArgInfo.isIndirect()) {
7799     unsigned NumRegs = numRegsForType(Ty);
7800     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7801   }
7802 
7803   return ArgInfo;
7804 }
7805 
7806 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7807 public:
7808   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7809     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7810   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7811                            CodeGen::CodeGenModule &M) const override;
7812   unsigned getOpenCLKernelCallingConv() const override;
7813 
7814   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7815       llvm::PointerType *T, QualType QT) const override;
7816 
7817   LangAS getASTAllocaAddressSpace() const override {
7818     return getLangASFromTargetAS(
7819         getABIInfo().getDataLayout().getAllocaAddrSpace());
7820   }
7821   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7822                                   const VarDecl *D) const override;
7823   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
7824                                          SyncScope Scope,
7825                                          llvm::AtomicOrdering Ordering,
7826                                          llvm::LLVMContext &Ctx) const override;
7827   llvm::Function *
7828   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7829                             llvm::Function *BlockInvokeFunc,
7830                             llvm::Value *BlockLiteral) const override;
7831   bool shouldEmitStaticExternCAliases() const override;
7832   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7833 };
7834 }
7835 
7836 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
7837                                               llvm::GlobalValue *GV) {
7838   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7839     return false;
7840 
7841   return D->hasAttr<OpenCLKernelAttr>() ||
7842          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
7843          (isa<VarDecl>(D) &&
7844           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()));
7845 }
7846 
7847 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7848     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7849   if (requiresAMDGPUProtectedVisibility(D, GV)) {
7850     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
7851     GV->setDSOLocal(true);
7852   }
7853 
7854   if (GV->isDeclaration())
7855     return;
7856   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7857   if (!FD)
7858     return;
7859 
7860   llvm::Function *F = cast<llvm::Function>(GV);
7861 
7862   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7863     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7864 
7865   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7866       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7867     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7868 
7869   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7870   if (ReqdWGS || FlatWGS) {
7871     unsigned Min = 0;
7872     unsigned Max = 0;
7873     if (FlatWGS) {
7874       Min = FlatWGS->getMin()
7875                 ->EvaluateKnownConstInt(M.getContext())
7876                 .getExtValue();
7877       Max = FlatWGS->getMax()
7878                 ->EvaluateKnownConstInt(M.getContext())
7879                 .getExtValue();
7880     }
7881     if (ReqdWGS && Min == 0 && Max == 0)
7882       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7883 
7884     if (Min != 0) {
7885       assert(Min <= Max && "Min must be less than or equal Max");
7886 
7887       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7888       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7889     } else
7890       assert(Max == 0 && "Max must be zero");
7891   }
7892 
7893   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7894     unsigned Min =
7895         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
7896     unsigned Max = Attr->getMax() ? Attr->getMax()
7897                                         ->EvaluateKnownConstInt(M.getContext())
7898                                         .getExtValue()
7899                                   : 0;
7900 
7901     if (Min != 0) {
7902       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7903 
7904       std::string AttrVal = llvm::utostr(Min);
7905       if (Max != 0)
7906         AttrVal = AttrVal + "," + llvm::utostr(Max);
7907       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7908     } else
7909       assert(Max == 0 && "Max must be zero");
7910   }
7911 
7912   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7913     unsigned NumSGPR = Attr->getNumSGPR();
7914 
7915     if (NumSGPR != 0)
7916       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7917   }
7918 
7919   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7920     uint32_t NumVGPR = Attr->getNumVGPR();
7921 
7922     if (NumVGPR != 0)
7923       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7924   }
7925 }
7926 
7927 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7928   return llvm::CallingConv::AMDGPU_KERNEL;
7929 }
7930 
7931 // Currently LLVM assumes null pointers always have value 0,
7932 // which results in incorrectly transformed IR. Therefore, instead of
7933 // emitting null pointers in private and local address spaces, a null
7934 // pointer in generic address space is emitted which is casted to a
7935 // pointer in local or private address space.
7936 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7937     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7938     QualType QT) const {
7939   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7940     return llvm::ConstantPointerNull::get(PT);
7941 
7942   auto &Ctx = CGM.getContext();
7943   auto NPT = llvm::PointerType::get(PT->getElementType(),
7944       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7945   return llvm::ConstantExpr::getAddrSpaceCast(
7946       llvm::ConstantPointerNull::get(NPT), PT);
7947 }
7948 
7949 LangAS
7950 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7951                                                   const VarDecl *D) const {
7952   assert(!CGM.getLangOpts().OpenCL &&
7953          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7954          "Address space agnostic languages only");
7955   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7956       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7957   if (!D)
7958     return DefaultGlobalAS;
7959 
7960   LangAS AddrSpace = D->getType().getAddressSpace();
7961   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7962   if (AddrSpace != LangAS::Default)
7963     return AddrSpace;
7964 
7965   if (CGM.isTypeConstant(D->getType(), false)) {
7966     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7967       return ConstAS.getValue();
7968   }
7969   return DefaultGlobalAS;
7970 }
7971 
7972 llvm::SyncScope::ID
7973 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
7974                                             SyncScope Scope,
7975                                             llvm::AtomicOrdering Ordering,
7976                                             llvm::LLVMContext &Ctx) const {
7977   std::string Name;
7978   switch (Scope) {
7979   case SyncScope::OpenCLWorkGroup:
7980     Name = "workgroup";
7981     break;
7982   case SyncScope::OpenCLDevice:
7983     Name = "agent";
7984     break;
7985   case SyncScope::OpenCLAllSVMDevices:
7986     Name = "";
7987     break;
7988   case SyncScope::OpenCLSubGroup:
7989     Name = "wavefront";
7990   }
7991 
7992   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
7993     if (!Name.empty())
7994       Name = Twine(Twine(Name) + Twine("-")).str();
7995 
7996     Name = Twine(Twine(Name) + Twine("one-as")).str();
7997   }
7998 
7999   return Ctx.getOrInsertSyncScopeID(Name);
8000 }
8001 
8002 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8003   return false;
8004 }
8005 
8006 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8007     const FunctionType *&FT) const {
8008   FT = getABIInfo().getContext().adjustFunctionType(
8009       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8010 }
8011 
8012 //===----------------------------------------------------------------------===//
8013 // SPARC v8 ABI Implementation.
8014 // Based on the SPARC Compliance Definition version 2.4.1.
8015 //
8016 // Ensures that complex values are passed in registers.
8017 //
8018 namespace {
8019 class SparcV8ABIInfo : public DefaultABIInfo {
8020 public:
8021   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8022 
8023 private:
8024   ABIArgInfo classifyReturnType(QualType RetTy) const;
8025   void computeInfo(CGFunctionInfo &FI) const override;
8026 };
8027 } // end anonymous namespace
8028 
8029 
8030 ABIArgInfo
8031 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8032   if (Ty->isAnyComplexType()) {
8033     return ABIArgInfo::getDirect();
8034   }
8035   else {
8036     return DefaultABIInfo::classifyReturnType(Ty);
8037   }
8038 }
8039 
8040 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8041 
8042   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8043   for (auto &Arg : FI.arguments())
8044     Arg.info = classifyArgumentType(Arg.type);
8045 }
8046 
8047 namespace {
8048 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8049 public:
8050   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8051     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8052 };
8053 } // end anonymous namespace
8054 
8055 //===----------------------------------------------------------------------===//
8056 // SPARC v9 ABI Implementation.
8057 // Based on the SPARC Compliance Definition version 2.4.1.
8058 //
8059 // Function arguments a mapped to a nominal "parameter array" and promoted to
8060 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8061 // the array, structs larger than 16 bytes are passed indirectly.
8062 //
8063 // One case requires special care:
8064 //
8065 //   struct mixed {
8066 //     int i;
8067 //     float f;
8068 //   };
8069 //
8070 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8071 // parameter array, but the int is passed in an integer register, and the float
8072 // is passed in a floating point register. This is represented as two arguments
8073 // with the LLVM IR inreg attribute:
8074 //
8075 //   declare void f(i32 inreg %i, float inreg %f)
8076 //
8077 // The code generator will only allocate 4 bytes from the parameter array for
8078 // the inreg arguments. All other arguments are allocated a multiple of 8
8079 // bytes.
8080 //
8081 namespace {
8082 class SparcV9ABIInfo : public ABIInfo {
8083 public:
8084   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8085 
8086 private:
8087   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8088   void computeInfo(CGFunctionInfo &FI) const override;
8089   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8090                     QualType Ty) const override;
8091 
8092   // Coercion type builder for structs passed in registers. The coercion type
8093   // serves two purposes:
8094   //
8095   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8096   //    in registers.
8097   // 2. Expose aligned floating point elements as first-level elements, so the
8098   //    code generator knows to pass them in floating point registers.
8099   //
8100   // We also compute the InReg flag which indicates that the struct contains
8101   // aligned 32-bit floats.
8102   //
8103   struct CoerceBuilder {
8104     llvm::LLVMContext &Context;
8105     const llvm::DataLayout &DL;
8106     SmallVector<llvm::Type*, 8> Elems;
8107     uint64_t Size;
8108     bool InReg;
8109 
8110     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8111       : Context(c), DL(dl), Size(0), InReg(false) {}
8112 
8113     // Pad Elems with integers until Size is ToSize.
8114     void pad(uint64_t ToSize) {
8115       assert(ToSize >= Size && "Cannot remove elements");
8116       if (ToSize == Size)
8117         return;
8118 
8119       // Finish the current 64-bit word.
8120       uint64_t Aligned = llvm::alignTo(Size, 64);
8121       if (Aligned > Size && Aligned <= ToSize) {
8122         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8123         Size = Aligned;
8124       }
8125 
8126       // Add whole 64-bit words.
8127       while (Size + 64 <= ToSize) {
8128         Elems.push_back(llvm::Type::getInt64Ty(Context));
8129         Size += 64;
8130       }
8131 
8132       // Final in-word padding.
8133       if (Size < ToSize) {
8134         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8135         Size = ToSize;
8136       }
8137     }
8138 
8139     // Add a floating point element at Offset.
8140     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8141       // Unaligned floats are treated as integers.
8142       if (Offset % Bits)
8143         return;
8144       // The InReg flag is only required if there are any floats < 64 bits.
8145       if (Bits < 64)
8146         InReg = true;
8147       pad(Offset);
8148       Elems.push_back(Ty);
8149       Size = Offset + Bits;
8150     }
8151 
8152     // Add a struct type to the coercion type, starting at Offset (in bits).
8153     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8154       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8155       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8156         llvm::Type *ElemTy = StrTy->getElementType(i);
8157         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8158         switch (ElemTy->getTypeID()) {
8159         case llvm::Type::StructTyID:
8160           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8161           break;
8162         case llvm::Type::FloatTyID:
8163           addFloat(ElemOffset, ElemTy, 32);
8164           break;
8165         case llvm::Type::DoubleTyID:
8166           addFloat(ElemOffset, ElemTy, 64);
8167           break;
8168         case llvm::Type::FP128TyID:
8169           addFloat(ElemOffset, ElemTy, 128);
8170           break;
8171         case llvm::Type::PointerTyID:
8172           if (ElemOffset % 64 == 0) {
8173             pad(ElemOffset);
8174             Elems.push_back(ElemTy);
8175             Size += 64;
8176           }
8177           break;
8178         default:
8179           break;
8180         }
8181       }
8182     }
8183 
8184     // Check if Ty is a usable substitute for the coercion type.
8185     bool isUsableType(llvm::StructType *Ty) const {
8186       return llvm::makeArrayRef(Elems) == Ty->elements();
8187     }
8188 
8189     // Get the coercion type as a literal struct type.
8190     llvm::Type *getType() const {
8191       if (Elems.size() == 1)
8192         return Elems.front();
8193       else
8194         return llvm::StructType::get(Context, Elems);
8195     }
8196   };
8197 };
8198 } // end anonymous namespace
8199 
8200 ABIArgInfo
8201 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8202   if (Ty->isVoidType())
8203     return ABIArgInfo::getIgnore();
8204 
8205   uint64_t Size = getContext().getTypeSize(Ty);
8206 
8207   // Anything too big to fit in registers is passed with an explicit indirect
8208   // pointer / sret pointer.
8209   if (Size > SizeLimit)
8210     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8211 
8212   // Treat an enum type as its underlying type.
8213   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8214     Ty = EnumTy->getDecl()->getIntegerType();
8215 
8216   // Integer types smaller than a register are extended.
8217   if (Size < 64 && Ty->isIntegerType())
8218     return ABIArgInfo::getExtend(Ty);
8219 
8220   // Other non-aggregates go in registers.
8221   if (!isAggregateTypeForABI(Ty))
8222     return ABIArgInfo::getDirect();
8223 
8224   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8225   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8226   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8227     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8228 
8229   // This is a small aggregate type that should be passed in registers.
8230   // Build a coercion type from the LLVM struct type.
8231   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8232   if (!StrTy)
8233     return ABIArgInfo::getDirect();
8234 
8235   CoerceBuilder CB(getVMContext(), getDataLayout());
8236   CB.addStruct(0, StrTy);
8237   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8238 
8239   // Try to use the original type for coercion.
8240   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8241 
8242   if (CB.InReg)
8243     return ABIArgInfo::getDirectInReg(CoerceTy);
8244   else
8245     return ABIArgInfo::getDirect(CoerceTy);
8246 }
8247 
8248 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8249                                   QualType Ty) const {
8250   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8251   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8252   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8253     AI.setCoerceToType(ArgTy);
8254 
8255   CharUnits SlotSize = CharUnits::fromQuantity(8);
8256 
8257   CGBuilderTy &Builder = CGF.Builder;
8258   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8259   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8260 
8261   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8262 
8263   Address ArgAddr = Address::invalid();
8264   CharUnits Stride;
8265   switch (AI.getKind()) {
8266   case ABIArgInfo::Expand:
8267   case ABIArgInfo::CoerceAndExpand:
8268   case ABIArgInfo::InAlloca:
8269     llvm_unreachable("Unsupported ABI kind for va_arg");
8270 
8271   case ABIArgInfo::Extend: {
8272     Stride = SlotSize;
8273     CharUnits Offset = SlotSize - TypeInfo.first;
8274     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8275     break;
8276   }
8277 
8278   case ABIArgInfo::Direct: {
8279     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8280     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8281     ArgAddr = Addr;
8282     break;
8283   }
8284 
8285   case ABIArgInfo::Indirect:
8286     Stride = SlotSize;
8287     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8288     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8289                       TypeInfo.second);
8290     break;
8291 
8292   case ABIArgInfo::Ignore:
8293     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8294   }
8295 
8296   // Update VAList.
8297   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8298   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8299 
8300   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8301 }
8302 
8303 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8304   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8305   for (auto &I : FI.arguments())
8306     I.info = classifyType(I.type, 16 * 8);
8307 }
8308 
8309 namespace {
8310 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8311 public:
8312   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8313     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8314 
8315   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8316     return 14;
8317   }
8318 
8319   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8320                                llvm::Value *Address) const override;
8321 };
8322 } // end anonymous namespace
8323 
8324 bool
8325 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8326                                                 llvm::Value *Address) const {
8327   // This is calculated from the LLVM and GCC tables and verified
8328   // against gcc output.  AFAIK all ABIs use the same encoding.
8329 
8330   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8331 
8332   llvm::IntegerType *i8 = CGF.Int8Ty;
8333   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8334   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8335 
8336   // 0-31: the 8-byte general-purpose registers
8337   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8338 
8339   // 32-63: f0-31, the 4-byte floating-point registers
8340   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8341 
8342   //   Y   = 64
8343   //   PSR = 65
8344   //   WIM = 66
8345   //   TBR = 67
8346   //   PC  = 68
8347   //   NPC = 69
8348   //   FSR = 70
8349   //   CSR = 71
8350   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8351 
8352   // 72-87: d0-15, the 8-byte floating-point registers
8353   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8354 
8355   return false;
8356 }
8357 
8358 // ARC ABI implementation.
8359 namespace {
8360 
8361 class ARCABIInfo : public DefaultABIInfo {
8362 public:
8363   using DefaultABIInfo::DefaultABIInfo;
8364 
8365 private:
8366   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8367                     QualType Ty) const override;
8368 
8369   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8370     if (!State.FreeRegs)
8371       return;
8372     if (Info.isIndirect() && Info.getInReg())
8373       State.FreeRegs--;
8374     else if (Info.isDirect() && Info.getInReg()) {
8375       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8376       if (sz < State.FreeRegs)
8377         State.FreeRegs -= sz;
8378       else
8379         State.FreeRegs = 0;
8380     }
8381   }
8382 
8383   void computeInfo(CGFunctionInfo &FI) const override {
8384     CCState State(FI.getCallingConvention());
8385     // ARC uses 8 registers to pass arguments.
8386     State.FreeRegs = 8;
8387 
8388     if (!getCXXABI().classifyReturnType(FI))
8389       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8390     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8391     for (auto &I : FI.arguments()) {
8392       I.info = classifyArgumentType(I.type, State.FreeRegs);
8393       updateState(I.info, I.type, State);
8394     }
8395   }
8396 
8397   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8398   ABIArgInfo getIndirectByValue(QualType Ty) const;
8399   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8400   ABIArgInfo classifyReturnType(QualType RetTy) const;
8401 };
8402 
8403 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8404 public:
8405   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8406       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8407 };
8408 
8409 
8410 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8411   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8412                        getNaturalAlignIndirect(Ty, false);
8413 }
8414 
8415 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8416   // Compute the byval alignment.
8417   const unsigned MinABIStackAlignInBytes = 4;
8418   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8419   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8420                                  TypeAlign > MinABIStackAlignInBytes);
8421 }
8422 
8423 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8424                               QualType Ty) const {
8425   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8426                           getContext().getTypeInfoInChars(Ty),
8427                           CharUnits::fromQuantity(4), true);
8428 }
8429 
8430 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8431                                             uint8_t FreeRegs) const {
8432   // Handle the generic C++ ABI.
8433   const RecordType *RT = Ty->getAs<RecordType>();
8434   if (RT) {
8435     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8436     if (RAA == CGCXXABI::RAA_Indirect)
8437       return getIndirectByRef(Ty, FreeRegs > 0);
8438 
8439     if (RAA == CGCXXABI::RAA_DirectInMemory)
8440       return getIndirectByValue(Ty);
8441   }
8442 
8443   // Treat an enum type as its underlying type.
8444   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8445     Ty = EnumTy->getDecl()->getIntegerType();
8446 
8447   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8448 
8449   if (isAggregateTypeForABI(Ty)) {
8450     // Structures with flexible arrays are always indirect.
8451     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8452       return getIndirectByValue(Ty);
8453 
8454     // Ignore empty structs/unions.
8455     if (isEmptyRecord(getContext(), Ty, true))
8456       return ABIArgInfo::getIgnore();
8457 
8458     llvm::LLVMContext &LLVMContext = getVMContext();
8459 
8460     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8461     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8462     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8463 
8464     return FreeRegs >= SizeInRegs ?
8465         ABIArgInfo::getDirectInReg(Result) :
8466         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8467   }
8468 
8469   return Ty->isPromotableIntegerType() ?
8470       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8471                                 ABIArgInfo::getExtend(Ty)) :
8472       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8473                                 ABIArgInfo::getDirect());
8474 }
8475 
8476 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8477   if (RetTy->isAnyComplexType())
8478     return ABIArgInfo::getDirectInReg();
8479 
8480   // Arguments of size > 4 registers are indirect.
8481   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8482   if (RetSize > 4)
8483     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8484 
8485   return DefaultABIInfo::classifyReturnType(RetTy);
8486 }
8487 
8488 } // End anonymous namespace.
8489 
8490 //===----------------------------------------------------------------------===//
8491 // XCore ABI Implementation
8492 //===----------------------------------------------------------------------===//
8493 
8494 namespace {
8495 
8496 /// A SmallStringEnc instance is used to build up the TypeString by passing
8497 /// it by reference between functions that append to it.
8498 typedef llvm::SmallString<128> SmallStringEnc;
8499 
8500 /// TypeStringCache caches the meta encodings of Types.
8501 ///
8502 /// The reason for caching TypeStrings is two fold:
8503 ///   1. To cache a type's encoding for later uses;
8504 ///   2. As a means to break recursive member type inclusion.
8505 ///
8506 /// A cache Entry can have a Status of:
8507 ///   NonRecursive:   The type encoding is not recursive;
8508 ///   Recursive:      The type encoding is recursive;
8509 ///   Incomplete:     An incomplete TypeString;
8510 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8511 ///                   Recursive type encoding.
8512 ///
8513 /// A NonRecursive entry will have all of its sub-members expanded as fully
8514 /// as possible. Whilst it may contain types which are recursive, the type
8515 /// itself is not recursive and thus its encoding may be safely used whenever
8516 /// the type is encountered.
8517 ///
8518 /// A Recursive entry will have all of its sub-members expanded as fully as
8519 /// possible. The type itself is recursive and it may contain other types which
8520 /// are recursive. The Recursive encoding must not be used during the expansion
8521 /// of a recursive type's recursive branch. For simplicity the code uses
8522 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8523 ///
8524 /// An Incomplete entry is always a RecordType and only encodes its
8525 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8526 /// are placed into the cache during type expansion as a means to identify and
8527 /// handle recursive inclusion of types as sub-members. If there is recursion
8528 /// the entry becomes IncompleteUsed.
8529 ///
8530 /// During the expansion of a RecordType's members:
8531 ///
8532 ///   If the cache contains a NonRecursive encoding for the member type, the
8533 ///   cached encoding is used;
8534 ///
8535 ///   If the cache contains a Recursive encoding for the member type, the
8536 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8537 ///
8538 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8539 ///   cache to break potential recursive inclusion of itself as a sub-member;
8540 ///
8541 ///   Once a member RecordType has been expanded, its temporary incomplete
8542 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8543 ///   it is swapped back in;
8544 ///
8545 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8546 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8547 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8548 ///
8549 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8550 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8551 ///   Else the member is part of a recursive type and thus the recursion has
8552 ///   been exited too soon for the encoding to be correct for the member.
8553 ///
8554 class TypeStringCache {
8555   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8556   struct Entry {
8557     std::string Str;     // The encoded TypeString for the type.
8558     enum Status State;   // Information about the encoding in 'Str'.
8559     std::string Swapped; // A temporary place holder for a Recursive encoding
8560                          // during the expansion of RecordType's members.
8561   };
8562   std::map<const IdentifierInfo *, struct Entry> Map;
8563   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8564   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8565 public:
8566   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8567   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8568   bool removeIncomplete(const IdentifierInfo *ID);
8569   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8570                      bool IsRecursive);
8571   StringRef lookupStr(const IdentifierInfo *ID);
8572 };
8573 
8574 /// TypeString encodings for enum & union fields must be order.
8575 /// FieldEncoding is a helper for this ordering process.
8576 class FieldEncoding {
8577   bool HasName;
8578   std::string Enc;
8579 public:
8580   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8581   StringRef str() { return Enc; }
8582   bool operator<(const FieldEncoding &rhs) const {
8583     if (HasName != rhs.HasName) return HasName;
8584     return Enc < rhs.Enc;
8585   }
8586 };
8587 
8588 class XCoreABIInfo : public DefaultABIInfo {
8589 public:
8590   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8591   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8592                     QualType Ty) const override;
8593 };
8594 
8595 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8596   mutable TypeStringCache TSC;
8597 public:
8598   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8599     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8600   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8601                     CodeGen::CodeGenModule &M) const override;
8602 };
8603 
8604 } // End anonymous namespace.
8605 
8606 // TODO: this implementation is likely now redundant with the default
8607 // EmitVAArg.
8608 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8609                                 QualType Ty) const {
8610   CGBuilderTy &Builder = CGF.Builder;
8611 
8612   // Get the VAList.
8613   CharUnits SlotSize = CharUnits::fromQuantity(4);
8614   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8615 
8616   // Handle the argument.
8617   ABIArgInfo AI = classifyArgumentType(Ty);
8618   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8619   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8620   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8621     AI.setCoerceToType(ArgTy);
8622   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8623 
8624   Address Val = Address::invalid();
8625   CharUnits ArgSize = CharUnits::Zero();
8626   switch (AI.getKind()) {
8627   case ABIArgInfo::Expand:
8628   case ABIArgInfo::CoerceAndExpand:
8629   case ABIArgInfo::InAlloca:
8630     llvm_unreachable("Unsupported ABI kind for va_arg");
8631   case ABIArgInfo::Ignore:
8632     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8633     ArgSize = CharUnits::Zero();
8634     break;
8635   case ABIArgInfo::Extend:
8636   case ABIArgInfo::Direct:
8637     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8638     ArgSize = CharUnits::fromQuantity(
8639                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8640     ArgSize = ArgSize.alignTo(SlotSize);
8641     break;
8642   case ABIArgInfo::Indirect:
8643     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8644     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8645     ArgSize = SlotSize;
8646     break;
8647   }
8648 
8649   // Increment the VAList.
8650   if (!ArgSize.isZero()) {
8651     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
8652     Builder.CreateStore(APN.getPointer(), VAListAddr);
8653   }
8654 
8655   return Val;
8656 }
8657 
8658 /// During the expansion of a RecordType, an incomplete TypeString is placed
8659 /// into the cache as a means to identify and break recursion.
8660 /// If there is a Recursive encoding in the cache, it is swapped out and will
8661 /// be reinserted by removeIncomplete().
8662 /// All other types of encoding should have been used rather than arriving here.
8663 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8664                                     std::string StubEnc) {
8665   if (!ID)
8666     return;
8667   Entry &E = Map[ID];
8668   assert( (E.Str.empty() || E.State == Recursive) &&
8669          "Incorrectly use of addIncomplete");
8670   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8671   E.Swapped.swap(E.Str); // swap out the Recursive
8672   E.Str.swap(StubEnc);
8673   E.State = Incomplete;
8674   ++IncompleteCount;
8675 }
8676 
8677 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8678 /// must be removed from the cache.
8679 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8680 /// Returns true if the RecordType was defined recursively.
8681 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8682   if (!ID)
8683     return false;
8684   auto I = Map.find(ID);
8685   assert(I != Map.end() && "Entry not present");
8686   Entry &E = I->second;
8687   assert( (E.State == Incomplete ||
8688            E.State == IncompleteUsed) &&
8689          "Entry must be an incomplete type");
8690   bool IsRecursive = false;
8691   if (E.State == IncompleteUsed) {
8692     // We made use of our Incomplete encoding, thus we are recursive.
8693     IsRecursive = true;
8694     --IncompleteUsedCount;
8695   }
8696   if (E.Swapped.empty())
8697     Map.erase(I);
8698   else {
8699     // Swap the Recursive back.
8700     E.Swapped.swap(E.Str);
8701     E.Swapped.clear();
8702     E.State = Recursive;
8703   }
8704   --IncompleteCount;
8705   return IsRecursive;
8706 }
8707 
8708 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8709 /// Recursive (viz: all sub-members were expanded as fully as possible).
8710 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8711                                     bool IsRecursive) {
8712   if (!ID || IncompleteUsedCount)
8713     return; // No key or it is is an incomplete sub-type so don't add.
8714   Entry &E = Map[ID];
8715   if (IsRecursive && !E.Str.empty()) {
8716     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8717            "This is not the same Recursive entry");
8718     // The parent container was not recursive after all, so we could have used
8719     // this Recursive sub-member entry after all, but we assumed the worse when
8720     // we started viz: IncompleteCount!=0.
8721     return;
8722   }
8723   assert(E.Str.empty() && "Entry already present");
8724   E.Str = Str.str();
8725   E.State = IsRecursive? Recursive : NonRecursive;
8726 }
8727 
8728 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8729 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8730 /// encoding is Recursive, return an empty StringRef.
8731 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8732   if (!ID)
8733     return StringRef();   // We have no key.
8734   auto I = Map.find(ID);
8735   if (I == Map.end())
8736     return StringRef();   // We have no encoding.
8737   Entry &E = I->second;
8738   if (E.State == Recursive && IncompleteCount)
8739     return StringRef();   // We don't use Recursive encodings for member types.
8740 
8741   if (E.State == Incomplete) {
8742     // The incomplete type is being used to break out of recursion.
8743     E.State = IncompleteUsed;
8744     ++IncompleteUsedCount;
8745   }
8746   return E.Str;
8747 }
8748 
8749 /// The XCore ABI includes a type information section that communicates symbol
8750 /// type information to the linker. The linker uses this information to verify
8751 /// safety/correctness of things such as array bound and pointers et al.
8752 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8753 /// This type information (TypeString) is emitted into meta data for all global
8754 /// symbols: definitions, declarations, functions & variables.
8755 ///
8756 /// The TypeString carries type, qualifier, name, size & value details.
8757 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8758 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8759 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8760 ///
8761 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8762                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8763 
8764 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8765 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8766                                           CodeGen::CodeGenModule &CGM) const {
8767   SmallStringEnc Enc;
8768   if (getTypeString(Enc, D, CGM, TSC)) {
8769     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8770     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8771                                 llvm::MDString::get(Ctx, Enc.str())};
8772     llvm::NamedMDNode *MD =
8773       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8774     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8775   }
8776 }
8777 
8778 //===----------------------------------------------------------------------===//
8779 // SPIR ABI Implementation
8780 //===----------------------------------------------------------------------===//
8781 
8782 namespace {
8783 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8784 public:
8785   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8786     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8787   unsigned getOpenCLKernelCallingConv() const override;
8788 };
8789 
8790 } // End anonymous namespace.
8791 
8792 namespace clang {
8793 namespace CodeGen {
8794 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8795   DefaultABIInfo SPIRABI(CGM.getTypes());
8796   SPIRABI.computeInfo(FI);
8797 }
8798 }
8799 }
8800 
8801 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8802   return llvm::CallingConv::SPIR_KERNEL;
8803 }
8804 
8805 static bool appendType(SmallStringEnc &Enc, QualType QType,
8806                        const CodeGen::CodeGenModule &CGM,
8807                        TypeStringCache &TSC);
8808 
8809 /// Helper function for appendRecordType().
8810 /// Builds a SmallVector containing the encoded field types in declaration
8811 /// order.
8812 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8813                              const RecordDecl *RD,
8814                              const CodeGen::CodeGenModule &CGM,
8815                              TypeStringCache &TSC) {
8816   for (const auto *Field : RD->fields()) {
8817     SmallStringEnc Enc;
8818     Enc += "m(";
8819     Enc += Field->getName();
8820     Enc += "){";
8821     if (Field->isBitField()) {
8822       Enc += "b(";
8823       llvm::raw_svector_ostream OS(Enc);
8824       OS << Field->getBitWidthValue(CGM.getContext());
8825       Enc += ':';
8826     }
8827     if (!appendType(Enc, Field->getType(), CGM, TSC))
8828       return false;
8829     if (Field->isBitField())
8830       Enc += ')';
8831     Enc += '}';
8832     FE.emplace_back(!Field->getName().empty(), Enc);
8833   }
8834   return true;
8835 }
8836 
8837 /// Appends structure and union types to Enc and adds encoding to cache.
8838 /// Recursively calls appendType (via extractFieldType) for each field.
8839 /// Union types have their fields ordered according to the ABI.
8840 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8841                              const CodeGen::CodeGenModule &CGM,
8842                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8843   // Append the cached TypeString if we have one.
8844   StringRef TypeString = TSC.lookupStr(ID);
8845   if (!TypeString.empty()) {
8846     Enc += TypeString;
8847     return true;
8848   }
8849 
8850   // Start to emit an incomplete TypeString.
8851   size_t Start = Enc.size();
8852   Enc += (RT->isUnionType()? 'u' : 's');
8853   Enc += '(';
8854   if (ID)
8855     Enc += ID->getName();
8856   Enc += "){";
8857 
8858   // We collect all encoded fields and order as necessary.
8859   bool IsRecursive = false;
8860   const RecordDecl *RD = RT->getDecl()->getDefinition();
8861   if (RD && !RD->field_empty()) {
8862     // An incomplete TypeString stub is placed in the cache for this RecordType
8863     // so that recursive calls to this RecordType will use it whilst building a
8864     // complete TypeString for this RecordType.
8865     SmallVector<FieldEncoding, 16> FE;
8866     std::string StubEnc(Enc.substr(Start).str());
8867     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8868     TSC.addIncomplete(ID, std::move(StubEnc));
8869     if (!extractFieldType(FE, RD, CGM, TSC)) {
8870       (void) TSC.removeIncomplete(ID);
8871       return false;
8872     }
8873     IsRecursive = TSC.removeIncomplete(ID);
8874     // The ABI requires unions to be sorted but not structures.
8875     // See FieldEncoding::operator< for sort algorithm.
8876     if (RT->isUnionType())
8877       llvm::sort(FE);
8878     // We can now complete the TypeString.
8879     unsigned E = FE.size();
8880     for (unsigned I = 0; I != E; ++I) {
8881       if (I)
8882         Enc += ',';
8883       Enc += FE[I].str();
8884     }
8885   }
8886   Enc += '}';
8887   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8888   return true;
8889 }
8890 
8891 /// Appends enum types to Enc and adds the encoding to the cache.
8892 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8893                            TypeStringCache &TSC,
8894                            const IdentifierInfo *ID) {
8895   // Append the cached TypeString if we have one.
8896   StringRef TypeString = TSC.lookupStr(ID);
8897   if (!TypeString.empty()) {
8898     Enc += TypeString;
8899     return true;
8900   }
8901 
8902   size_t Start = Enc.size();
8903   Enc += "e(";
8904   if (ID)
8905     Enc += ID->getName();
8906   Enc += "){";
8907 
8908   // We collect all encoded enumerations and order them alphanumerically.
8909   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8910     SmallVector<FieldEncoding, 16> FE;
8911     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8912          ++I) {
8913       SmallStringEnc EnumEnc;
8914       EnumEnc += "m(";
8915       EnumEnc += I->getName();
8916       EnumEnc += "){";
8917       I->getInitVal().toString(EnumEnc);
8918       EnumEnc += '}';
8919       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8920     }
8921     llvm::sort(FE);
8922     unsigned E = FE.size();
8923     for (unsigned I = 0; I != E; ++I) {
8924       if (I)
8925         Enc += ',';
8926       Enc += FE[I].str();
8927     }
8928   }
8929   Enc += '}';
8930   TSC.addIfComplete(ID, Enc.substr(Start), false);
8931   return true;
8932 }
8933 
8934 /// Appends type's qualifier to Enc.
8935 /// This is done prior to appending the type's encoding.
8936 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8937   // Qualifiers are emitted in alphabetical order.
8938   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8939   int Lookup = 0;
8940   if (QT.isConstQualified())
8941     Lookup += 1<<0;
8942   if (QT.isRestrictQualified())
8943     Lookup += 1<<1;
8944   if (QT.isVolatileQualified())
8945     Lookup += 1<<2;
8946   Enc += Table[Lookup];
8947 }
8948 
8949 /// Appends built-in types to Enc.
8950 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8951   const char *EncType;
8952   switch (BT->getKind()) {
8953     case BuiltinType::Void:
8954       EncType = "0";
8955       break;
8956     case BuiltinType::Bool:
8957       EncType = "b";
8958       break;
8959     case BuiltinType::Char_U:
8960       EncType = "uc";
8961       break;
8962     case BuiltinType::UChar:
8963       EncType = "uc";
8964       break;
8965     case BuiltinType::SChar:
8966       EncType = "sc";
8967       break;
8968     case BuiltinType::UShort:
8969       EncType = "us";
8970       break;
8971     case BuiltinType::Short:
8972       EncType = "ss";
8973       break;
8974     case BuiltinType::UInt:
8975       EncType = "ui";
8976       break;
8977     case BuiltinType::Int:
8978       EncType = "si";
8979       break;
8980     case BuiltinType::ULong:
8981       EncType = "ul";
8982       break;
8983     case BuiltinType::Long:
8984       EncType = "sl";
8985       break;
8986     case BuiltinType::ULongLong:
8987       EncType = "ull";
8988       break;
8989     case BuiltinType::LongLong:
8990       EncType = "sll";
8991       break;
8992     case BuiltinType::Float:
8993       EncType = "ft";
8994       break;
8995     case BuiltinType::Double:
8996       EncType = "d";
8997       break;
8998     case BuiltinType::LongDouble:
8999       EncType = "ld";
9000       break;
9001     default:
9002       return false;
9003   }
9004   Enc += EncType;
9005   return true;
9006 }
9007 
9008 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9009 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9010                               const CodeGen::CodeGenModule &CGM,
9011                               TypeStringCache &TSC) {
9012   Enc += "p(";
9013   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9014     return false;
9015   Enc += ')';
9016   return true;
9017 }
9018 
9019 /// Appends array encoding to Enc before calling appendType for the element.
9020 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9021                             const ArrayType *AT,
9022                             const CodeGen::CodeGenModule &CGM,
9023                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9024   if (AT->getSizeModifier() != ArrayType::Normal)
9025     return false;
9026   Enc += "a(";
9027   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9028     CAT->getSize().toStringUnsigned(Enc);
9029   else
9030     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9031   Enc += ':';
9032   // The Qualifiers should be attached to the type rather than the array.
9033   appendQualifier(Enc, QT);
9034   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9035     return false;
9036   Enc += ')';
9037   return true;
9038 }
9039 
9040 /// Appends a function encoding to Enc, calling appendType for the return type
9041 /// and the arguments.
9042 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9043                              const CodeGen::CodeGenModule &CGM,
9044                              TypeStringCache &TSC) {
9045   Enc += "f{";
9046   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9047     return false;
9048   Enc += "}(";
9049   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9050     // N.B. we are only interested in the adjusted param types.
9051     auto I = FPT->param_type_begin();
9052     auto E = FPT->param_type_end();
9053     if (I != E) {
9054       do {
9055         if (!appendType(Enc, *I, CGM, TSC))
9056           return false;
9057         ++I;
9058         if (I != E)
9059           Enc += ',';
9060       } while (I != E);
9061       if (FPT->isVariadic())
9062         Enc += ",va";
9063     } else {
9064       if (FPT->isVariadic())
9065         Enc += "va";
9066       else
9067         Enc += '0';
9068     }
9069   }
9070   Enc += ')';
9071   return true;
9072 }
9073 
9074 /// Handles the type's qualifier before dispatching a call to handle specific
9075 /// type encodings.
9076 static bool appendType(SmallStringEnc &Enc, QualType QType,
9077                        const CodeGen::CodeGenModule &CGM,
9078                        TypeStringCache &TSC) {
9079 
9080   QualType QT = QType.getCanonicalType();
9081 
9082   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9083     // The Qualifiers should be attached to the type rather than the array.
9084     // Thus we don't call appendQualifier() here.
9085     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9086 
9087   appendQualifier(Enc, QT);
9088 
9089   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9090     return appendBuiltinType(Enc, BT);
9091 
9092   if (const PointerType *PT = QT->getAs<PointerType>())
9093     return appendPointerType(Enc, PT, CGM, TSC);
9094 
9095   if (const EnumType *ET = QT->getAs<EnumType>())
9096     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9097 
9098   if (const RecordType *RT = QT->getAsStructureType())
9099     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9100 
9101   if (const RecordType *RT = QT->getAsUnionType())
9102     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9103 
9104   if (const FunctionType *FT = QT->getAs<FunctionType>())
9105     return appendFunctionType(Enc, FT, CGM, TSC);
9106 
9107   return false;
9108 }
9109 
9110 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9111                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9112   if (!D)
9113     return false;
9114 
9115   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9116     if (FD->getLanguageLinkage() != CLanguageLinkage)
9117       return false;
9118     return appendType(Enc, FD->getType(), CGM, TSC);
9119   }
9120 
9121   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9122     if (VD->getLanguageLinkage() != CLanguageLinkage)
9123       return false;
9124     QualType QT = VD->getType().getCanonicalType();
9125     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9126       // Global ArrayTypes are given a size of '*' if the size is unknown.
9127       // The Qualifiers should be attached to the type rather than the array.
9128       // Thus we don't call appendQualifier() here.
9129       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9130     }
9131     return appendType(Enc, QT, CGM, TSC);
9132   }
9133   return false;
9134 }
9135 
9136 //===----------------------------------------------------------------------===//
9137 // RISCV ABI Implementation
9138 //===----------------------------------------------------------------------===//
9139 
9140 namespace {
9141 class RISCVABIInfo : public DefaultABIInfo {
9142 private:
9143   unsigned XLen; // Size of the integer ('x') registers in bits.
9144   static const int NumArgGPRs = 8;
9145 
9146 public:
9147   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9148       : DefaultABIInfo(CGT), XLen(XLen) {}
9149 
9150   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9151   // non-virtual, but computeInfo is virtual, so we overload it.
9152   void computeInfo(CGFunctionInfo &FI) const override;
9153 
9154   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
9155                                   int &ArgGPRsLeft) const;
9156   ABIArgInfo classifyReturnType(QualType RetTy) const;
9157 
9158   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9159                     QualType Ty) const override;
9160 
9161   ABIArgInfo extendType(QualType Ty) const;
9162 };
9163 } // end anonymous namespace
9164 
9165 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9166   QualType RetTy = FI.getReturnType();
9167   if (!getCXXABI().classifyReturnType(FI))
9168     FI.getReturnInfo() = classifyReturnType(RetTy);
9169 
9170   // IsRetIndirect is true if classifyArgumentType indicated the value should
9171   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9172   // is passed direct in LLVM IR, relying on the backend lowering code to
9173   // rewrite the argument list and pass indirectly on RV32.
9174   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9175                        getContext().getTypeSize(RetTy) > (2 * XLen);
9176 
9177   // We must track the number of GPRs used in order to conform to the RISC-V
9178   // ABI, as integer scalars passed in registers should have signext/zeroext
9179   // when promoted, but are anyext if passed on the stack. As GPR usage is
9180   // different for variadic arguments, we must also track whether we are
9181   // examining a vararg or not.
9182   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9183   int NumFixedArgs = FI.getNumRequiredArgs();
9184 
9185   int ArgNum = 0;
9186   for (auto &ArgInfo : FI.arguments()) {
9187     bool IsFixed = ArgNum < NumFixedArgs;
9188     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
9189     ArgNum++;
9190   }
9191 }
9192 
9193 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9194                                               int &ArgGPRsLeft) const {
9195   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9196   Ty = useFirstFieldIfTransparentUnion(Ty);
9197 
9198   // Structures with either a non-trivial destructor or a non-trivial
9199   // copy constructor are always passed indirectly.
9200   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9201     if (ArgGPRsLeft)
9202       ArgGPRsLeft -= 1;
9203     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9204                                            CGCXXABI::RAA_DirectInMemory);
9205   }
9206 
9207   // Ignore empty structs/unions.
9208   if (isEmptyRecord(getContext(), Ty, true))
9209     return ABIArgInfo::getIgnore();
9210 
9211   uint64_t Size = getContext().getTypeSize(Ty);
9212   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9213   bool MustUseStack = false;
9214   // Determine the number of GPRs needed to pass the current argument
9215   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9216   // register pairs, so may consume 3 registers.
9217   int NeededArgGPRs = 1;
9218   if (!IsFixed && NeededAlign == 2 * XLen)
9219     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9220   else if (Size > XLen && Size <= 2 * XLen)
9221     NeededArgGPRs = 2;
9222 
9223   if (NeededArgGPRs > ArgGPRsLeft) {
9224     MustUseStack = true;
9225     NeededArgGPRs = ArgGPRsLeft;
9226   }
9227 
9228   ArgGPRsLeft -= NeededArgGPRs;
9229 
9230   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9231     // Treat an enum type as its underlying type.
9232     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9233       Ty = EnumTy->getDecl()->getIntegerType();
9234 
9235     // All integral types are promoted to XLen width, unless passed on the
9236     // stack.
9237     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9238       return extendType(Ty);
9239     }
9240 
9241     return ABIArgInfo::getDirect();
9242   }
9243 
9244   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9245   // so coerce to integers.
9246   if (Size <= 2 * XLen) {
9247     unsigned Alignment = getContext().getTypeAlign(Ty);
9248 
9249     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9250     // required, and a 2-element XLen array if only XLen alignment is required.
9251     if (Size <= XLen) {
9252       return ABIArgInfo::getDirect(
9253           llvm::IntegerType::get(getVMContext(), XLen));
9254     } else if (Alignment == 2 * XLen) {
9255       return ABIArgInfo::getDirect(
9256           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9257     } else {
9258       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9259           llvm::IntegerType::get(getVMContext(), XLen), 2));
9260     }
9261   }
9262   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9263 }
9264 
9265 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9266   if (RetTy->isVoidType())
9267     return ABIArgInfo::getIgnore();
9268 
9269   int ArgGPRsLeft = 2;
9270 
9271   // The rules for return and argument types are the same, so defer to
9272   // classifyArgumentType.
9273   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
9274 }
9275 
9276 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9277                                 QualType Ty) const {
9278   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9279 
9280   // Empty records are ignored for parameter passing purposes.
9281   if (isEmptyRecord(getContext(), Ty, true)) {
9282     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9283     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9284     return Addr;
9285   }
9286 
9287   std::pair<CharUnits, CharUnits> SizeAndAlign =
9288       getContext().getTypeInfoInChars(Ty);
9289 
9290   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9291   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9292 
9293   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9294                           SlotSize, /*AllowHigherAlign=*/true);
9295 }
9296 
9297 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9298   int TySize = getContext().getTypeSize(Ty);
9299   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9300   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9301     return ABIArgInfo::getSignExtend(Ty);
9302   return ABIArgInfo::getExtend(Ty);
9303 }
9304 
9305 namespace {
9306 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9307 public:
9308   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9309       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
9310 
9311   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9312                            CodeGen::CodeGenModule &CGM) const override {
9313     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9314     if (!FD) return;
9315 
9316     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9317     if (!Attr)
9318       return;
9319 
9320     const char *Kind;
9321     switch (Attr->getInterrupt()) {
9322     case RISCVInterruptAttr::user: Kind = "user"; break;
9323     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9324     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9325     }
9326 
9327     auto *Fn = cast<llvm::Function>(GV);
9328 
9329     Fn->addFnAttr("interrupt", Kind);
9330   }
9331 };
9332 } // namespace
9333 
9334 //===----------------------------------------------------------------------===//
9335 // Driver code
9336 //===----------------------------------------------------------------------===//
9337 
9338 bool CodeGenModule::supportsCOMDAT() const {
9339   return getTriple().supportsCOMDAT();
9340 }
9341 
9342 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9343   if (TheTargetCodeGenInfo)
9344     return *TheTargetCodeGenInfo;
9345 
9346   // Helper to set the unique_ptr while still keeping the return value.
9347   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9348     this->TheTargetCodeGenInfo.reset(P);
9349     return *P;
9350   };
9351 
9352   const llvm::Triple &Triple = getTarget().getTriple();
9353   switch (Triple.getArch()) {
9354   default:
9355     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9356 
9357   case llvm::Triple::le32:
9358     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9359   case llvm::Triple::mips:
9360   case llvm::Triple::mipsel:
9361     if (Triple.getOS() == llvm::Triple::NaCl)
9362       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9363     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9364 
9365   case llvm::Triple::mips64:
9366   case llvm::Triple::mips64el:
9367     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9368 
9369   case llvm::Triple::avr:
9370     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9371 
9372   case llvm::Triple::aarch64:
9373   case llvm::Triple::aarch64_be: {
9374     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9375     if (getTarget().getABI() == "darwinpcs")
9376       Kind = AArch64ABIInfo::DarwinPCS;
9377     else if (Triple.isOSWindows())
9378       return SetCGInfo(
9379           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9380 
9381     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9382   }
9383 
9384   case llvm::Triple::wasm32:
9385   case llvm::Triple::wasm64:
9386     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9387 
9388   case llvm::Triple::arm:
9389   case llvm::Triple::armeb:
9390   case llvm::Triple::thumb:
9391   case llvm::Triple::thumbeb: {
9392     if (Triple.getOS() == llvm::Triple::Win32) {
9393       return SetCGInfo(
9394           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9395     }
9396 
9397     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9398     StringRef ABIStr = getTarget().getABI();
9399     if (ABIStr == "apcs-gnu")
9400       Kind = ARMABIInfo::APCS;
9401     else if (ABIStr == "aapcs16")
9402       Kind = ARMABIInfo::AAPCS16_VFP;
9403     else if (CodeGenOpts.FloatABI == "hard" ||
9404              (CodeGenOpts.FloatABI != "soft" &&
9405               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9406                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9407                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9408       Kind = ARMABIInfo::AAPCS_VFP;
9409 
9410     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9411   }
9412 
9413   case llvm::Triple::ppc:
9414     return SetCGInfo(
9415         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9416   case llvm::Triple::ppc64:
9417     if (Triple.isOSBinFormatELF()) {
9418       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9419       if (getTarget().getABI() == "elfv2")
9420         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9421       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9422       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9423 
9424       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9425                                                         IsSoftFloat));
9426     } else
9427       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9428   case llvm::Triple::ppc64le: {
9429     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9430     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9431     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9432       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9433     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9434     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9435 
9436     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9437                                                       IsSoftFloat));
9438   }
9439 
9440   case llvm::Triple::nvptx:
9441   case llvm::Triple::nvptx64:
9442     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9443 
9444   case llvm::Triple::msp430:
9445     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9446 
9447   case llvm::Triple::riscv32:
9448     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9449   case llvm::Triple::riscv64:
9450     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9451 
9452   case llvm::Triple::systemz: {
9453     bool HasVector = getTarget().getABI() == "vector";
9454     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9455   }
9456 
9457   case llvm::Triple::tce:
9458   case llvm::Triple::tcele:
9459     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9460 
9461   case llvm::Triple::x86: {
9462     bool IsDarwinVectorABI = Triple.isOSDarwin();
9463     bool RetSmallStructInRegABI =
9464         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9465     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9466 
9467     if (Triple.getOS() == llvm::Triple::Win32) {
9468       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9469           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9470           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9471     } else {
9472       return SetCGInfo(new X86_32TargetCodeGenInfo(
9473           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9474           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9475           CodeGenOpts.FloatABI == "soft"));
9476     }
9477   }
9478 
9479   case llvm::Triple::x86_64: {
9480     StringRef ABI = getTarget().getABI();
9481     X86AVXABILevel AVXLevel =
9482         (ABI == "avx512"
9483              ? X86AVXABILevel::AVX512
9484              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9485 
9486     switch (Triple.getOS()) {
9487     case llvm::Triple::Win32:
9488       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9489     default:
9490       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9491     }
9492   }
9493   case llvm::Triple::hexagon:
9494     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9495   case llvm::Triple::lanai:
9496     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9497   case llvm::Triple::r600:
9498     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9499   case llvm::Triple::amdgcn:
9500     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9501   case llvm::Triple::sparc:
9502     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9503   case llvm::Triple::sparcv9:
9504     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9505   case llvm::Triple::xcore:
9506     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9507   case llvm::Triple::arc:
9508     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9509   case llvm::Triple::spir:
9510   case llvm::Triple::spir64:
9511     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9512   }
9513 }
9514 
9515 /// Create an OpenCL kernel for an enqueued block.
9516 ///
9517 /// The kernel has the same function type as the block invoke function. Its
9518 /// name is the name of the block invoke function postfixed with "_kernel".
9519 /// It simply calls the block invoke function then returns.
9520 llvm::Function *
9521 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9522                                              llvm::Function *Invoke,
9523                                              llvm::Value *BlockLiteral) const {
9524   auto *InvokeFT = Invoke->getFunctionType();
9525   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9526   for (auto &P : InvokeFT->params())
9527     ArgTys.push_back(P);
9528   auto &C = CGF.getLLVMContext();
9529   std::string Name = Invoke->getName().str() + "_kernel";
9530   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9531   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9532                                    &CGF.CGM.getModule());
9533   auto IP = CGF.Builder.saveIP();
9534   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9535   auto &Builder = CGF.Builder;
9536   Builder.SetInsertPoint(BB);
9537   llvm::SmallVector<llvm::Value *, 2> Args;
9538   for (auto &A : F->args())
9539     Args.push_back(&A);
9540   Builder.CreateCall(Invoke, Args);
9541   Builder.CreateRetVoid();
9542   Builder.restoreIP(IP);
9543   return F;
9544 }
9545 
9546 /// Create an OpenCL kernel for an enqueued block.
9547 ///
9548 /// The type of the first argument (the block literal) is the struct type
9549 /// of the block literal instead of a pointer type. The first argument
9550 /// (block literal) is passed directly by value to the kernel. The kernel
9551 /// allocates the same type of struct on stack and stores the block literal
9552 /// to it and passes its pointer to the block invoke function. The kernel
9553 /// has "enqueued-block" function attribute and kernel argument metadata.
9554 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9555     CodeGenFunction &CGF, llvm::Function *Invoke,
9556     llvm::Value *BlockLiteral) const {
9557   auto &Builder = CGF.Builder;
9558   auto &C = CGF.getLLVMContext();
9559 
9560   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9561   auto *InvokeFT = Invoke->getFunctionType();
9562   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9563   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9564   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9565   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9566   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9567   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9568   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9569 
9570   ArgTys.push_back(BlockTy);
9571   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9572   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9573   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9574   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9575   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9576   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9577   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9578     ArgTys.push_back(InvokeFT->getParamType(I));
9579     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9580     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9581     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9582     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9583     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9584     ArgNames.push_back(
9585         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9586   }
9587   std::string Name = Invoke->getName().str() + "_kernel";
9588   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9589   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9590                                    &CGF.CGM.getModule());
9591   F->addFnAttr("enqueued-block");
9592   auto IP = CGF.Builder.saveIP();
9593   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9594   Builder.SetInsertPoint(BB);
9595   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9596   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9597   BlockPtr->setAlignment(BlockAlign);
9598   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9599   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9600   llvm::SmallVector<llvm::Value *, 2> Args;
9601   Args.push_back(Cast);
9602   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9603     Args.push_back(I);
9604   Builder.CreateCall(Invoke, Args);
9605   Builder.CreateRetVoid();
9606   Builder.restoreIP(IP);
9607 
9608   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9609   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9610   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9611   F->setMetadata("kernel_arg_base_type",
9612                  llvm::MDNode::get(C, ArgBaseTypeNames));
9613   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9614   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9615     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9616 
9617   return F;
9618 }
9619