1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 // Helper for coercing an aggregate argument or return value into an integer 35 // array of the same size (including padding) and alignment. This alternate 36 // coercion happens only for the RenderScript ABI and can be removed after 37 // runtimes that rely on it are no longer supported. 38 // 39 // RenderScript assumes that the size of the argument / return value in the IR 40 // is the same as the size of the corresponding qualified type. This helper 41 // coerces the aggregate type into an array of the same size (including 42 // padding). This coercion is used in lieu of expansion of struct members or 43 // other canonical coercions that return a coerced-type of larger size. 44 // 45 // Ty - The argument / return value type 46 // Context - The associated ASTContext 47 // LLVMContext - The associated LLVMContext 48 static ABIArgInfo coerceToIntArray(QualType Ty, 49 ASTContext &Context, 50 llvm::LLVMContext &LLVMContext) { 51 // Alignment and Size are measured in bits. 52 const uint64_t Size = Context.getTypeSize(Ty); 53 const uint64_t Alignment = Context.getTypeAlign(Ty); 54 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 55 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 56 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 57 } 58 59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 60 llvm::Value *Array, 61 llvm::Value *Value, 62 unsigned FirstIndex, 63 unsigned LastIndex) { 64 // Alternatively, we could emit this as a loop in the source. 65 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 66 llvm::Value *Cell = 67 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 68 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 69 } 70 } 71 72 static bool isAggregateTypeForABI(QualType T) { 73 return !CodeGenFunction::hasScalarEvaluationKind(T) || 74 T->isMemberFunctionPointerType(); 75 } 76 77 ABIArgInfo 78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 79 llvm::Type *Padding) const { 80 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 81 ByRef, Realign, Padding); 82 } 83 84 ABIArgInfo 85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 86 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 87 /*ByRef*/ false, Realign); 88 } 89 90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 91 QualType Ty) const { 92 return Address::invalid(); 93 } 94 95 ABIInfo::~ABIInfo() {} 96 97 /// Does the given lowering require more than the given number of 98 /// registers when expanded? 99 /// 100 /// This is intended to be the basis of a reasonable basic implementation 101 /// of should{Pass,Return}IndirectlyForSwift. 102 /// 103 /// For most targets, a limit of four total registers is reasonable; this 104 /// limits the amount of code required in order to move around the value 105 /// in case it wasn't produced immediately prior to the call by the caller 106 /// (or wasn't produced in exactly the right registers) or isn't used 107 /// immediately within the callee. But some targets may need to further 108 /// limit the register count due to an inability to support that many 109 /// return registers. 110 static bool occupiesMoreThan(CodeGenTypes &cgt, 111 ArrayRef<llvm::Type*> scalarTypes, 112 unsigned maxAllRegisters) { 113 unsigned intCount = 0, fpCount = 0; 114 for (llvm::Type *type : scalarTypes) { 115 if (type->isPointerTy()) { 116 intCount++; 117 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 118 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 119 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 120 } else { 121 assert(type->isVectorTy() || type->isFloatingPointTy()); 122 fpCount++; 123 } 124 } 125 126 return (intCount + fpCount > maxAllRegisters); 127 } 128 129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 130 llvm::Type *eltTy, 131 unsigned numElts) const { 132 // The default implementation of this assumes that the target guarantees 133 // 128-bit SIMD support but nothing more. 134 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 135 } 136 137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 138 CGCXXABI &CXXABI) { 139 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 140 if (!RD) 141 return CGCXXABI::RAA_Default; 142 return CXXABI.getRecordArgABI(RD); 143 } 144 145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 146 CGCXXABI &CXXABI) { 147 const RecordType *RT = T->getAs<RecordType>(); 148 if (!RT) 149 return CGCXXABI::RAA_Default; 150 return getRecordArgABI(RT, CXXABI); 151 } 152 153 /// Pass transparent unions as if they were the type of the first element. Sema 154 /// should ensure that all elements of the union have the same "machine type". 155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 156 if (const RecordType *UT = Ty->getAsUnionType()) { 157 const RecordDecl *UD = UT->getDecl(); 158 if (UD->hasAttr<TransparentUnionAttr>()) { 159 assert(!UD->field_empty() && "sema created an empty transparent union"); 160 return UD->field_begin()->getType(); 161 } 162 } 163 return Ty; 164 } 165 166 CGCXXABI &ABIInfo::getCXXABI() const { 167 return CGT.getCXXABI(); 168 } 169 170 ASTContext &ABIInfo::getContext() const { 171 return CGT.getContext(); 172 } 173 174 llvm::LLVMContext &ABIInfo::getVMContext() const { 175 return CGT.getLLVMContext(); 176 } 177 178 const llvm::DataLayout &ABIInfo::getDataLayout() const { 179 return CGT.getDataLayout(); 180 } 181 182 const TargetInfo &ABIInfo::getTarget() const { 183 return CGT.getTarget(); 184 } 185 186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 187 188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 189 return false; 190 } 191 192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 193 uint64_t Members) const { 194 return false; 195 } 196 197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 198 return false; 199 } 200 201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 202 raw_ostream &OS = llvm::errs(); 203 OS << "(ABIArgInfo Kind="; 204 switch (TheKind) { 205 case Direct: 206 OS << "Direct Type="; 207 if (llvm::Type *Ty = getCoerceToType()) 208 Ty->print(OS); 209 else 210 OS << "null"; 211 break; 212 case Extend: 213 OS << "Extend"; 214 break; 215 case Ignore: 216 OS << "Ignore"; 217 break; 218 case InAlloca: 219 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 220 break; 221 case Indirect: 222 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 223 << " ByVal=" << getIndirectByVal() 224 << " Realign=" << getIndirectRealign(); 225 break; 226 case Expand: 227 OS << "Expand"; 228 break; 229 case CoerceAndExpand: 230 OS << "CoerceAndExpand Type="; 231 getCoerceAndExpandType()->print(OS); 232 break; 233 } 234 OS << ")\n"; 235 } 236 237 // Dynamically round a pointer up to a multiple of the given alignment. 238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 239 llvm::Value *Ptr, 240 CharUnits Align) { 241 llvm::Value *PtrAsInt = Ptr; 242 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 243 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 244 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 245 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 246 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 247 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 248 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 249 Ptr->getType(), 250 Ptr->getName() + ".aligned"); 251 return PtrAsInt; 252 } 253 254 /// Emit va_arg for a platform using the common void* representation, 255 /// where arguments are simply emitted in an array of slots on the stack. 256 /// 257 /// This version implements the core direct-value passing rules. 258 /// 259 /// \param SlotSize - The size and alignment of a stack slot. 260 /// Each argument will be allocated to a multiple of this number of 261 /// slots, and all the slots will be aligned to this value. 262 /// \param AllowHigherAlign - The slot alignment is not a cap; 263 /// an argument type with an alignment greater than the slot size 264 /// will be emitted on a higher-alignment address, potentially 265 /// leaving one or more empty slots behind as padding. If this 266 /// is false, the returned address might be less-aligned than 267 /// DirectAlign. 268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 269 Address VAListAddr, 270 llvm::Type *DirectTy, 271 CharUnits DirectSize, 272 CharUnits DirectAlign, 273 CharUnits SlotSize, 274 bool AllowHigherAlign) { 275 // Cast the element type to i8* if necessary. Some platforms define 276 // va_list as a struct containing an i8* instead of just an i8*. 277 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 278 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 279 280 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 281 282 // If the CC aligns values higher than the slot size, do so if needed. 283 Address Addr = Address::invalid(); 284 if (AllowHigherAlign && DirectAlign > SlotSize) { 285 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 286 DirectAlign); 287 } else { 288 Addr = Address(Ptr, SlotSize); 289 } 290 291 // Advance the pointer past the argument, then store that back. 292 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 293 llvm::Value *NextPtr = 294 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 295 "argp.next"); 296 CGF.Builder.CreateStore(NextPtr, VAListAddr); 297 298 // If the argument is smaller than a slot, and this is a big-endian 299 // target, the argument will be right-adjusted in its slot. 300 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 301 !DirectTy->isStructTy()) { 302 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 303 } 304 305 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 306 return Addr; 307 } 308 309 /// Emit va_arg for a platform using the common void* representation, 310 /// where arguments are simply emitted in an array of slots on the stack. 311 /// 312 /// \param IsIndirect - Values of this type are passed indirectly. 313 /// \param ValueInfo - The size and alignment of this type, generally 314 /// computed with getContext().getTypeInfoInChars(ValueTy). 315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 316 /// Each argument will be allocated to a multiple of this number of 317 /// slots, and all the slots will be aligned to this value. 318 /// \param AllowHigherAlign - The slot alignment is not a cap; 319 /// an argument type with an alignment greater than the slot size 320 /// will be emitted on a higher-alignment address, potentially 321 /// leaving one or more empty slots behind as padding. 322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 323 QualType ValueTy, bool IsIndirect, 324 std::pair<CharUnits, CharUnits> ValueInfo, 325 CharUnits SlotSizeAndAlign, 326 bool AllowHigherAlign) { 327 // The size and alignment of the value that was passed directly. 328 CharUnits DirectSize, DirectAlign; 329 if (IsIndirect) { 330 DirectSize = CGF.getPointerSize(); 331 DirectAlign = CGF.getPointerAlign(); 332 } else { 333 DirectSize = ValueInfo.first; 334 DirectAlign = ValueInfo.second; 335 } 336 337 // Cast the address we've calculated to the right type. 338 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 339 if (IsIndirect) 340 DirectTy = DirectTy->getPointerTo(0); 341 342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 343 DirectSize, DirectAlign, 344 SlotSizeAndAlign, 345 AllowHigherAlign); 346 347 if (IsIndirect) { 348 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 349 } 350 351 return Addr; 352 353 } 354 355 static Address emitMergePHI(CodeGenFunction &CGF, 356 Address Addr1, llvm::BasicBlock *Block1, 357 Address Addr2, llvm::BasicBlock *Block2, 358 const llvm::Twine &Name = "") { 359 assert(Addr1.getType() == Addr2.getType()); 360 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 361 PHI->addIncoming(Addr1.getPointer(), Block1); 362 PHI->addIncoming(Addr2.getPointer(), Block2); 363 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 364 return Address(PHI, Align); 365 } 366 367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 368 369 // If someone can figure out a general rule for this, that would be great. 370 // It's probably just doomed to be platform-dependent, though. 371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 372 // Verified for: 373 // x86-64 FreeBSD, Linux, Darwin 374 // x86-32 FreeBSD, Linux, Darwin 375 // PowerPC Linux, Darwin 376 // ARM Darwin (*not* EABI) 377 // AArch64 Linux 378 return 32; 379 } 380 381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 382 const FunctionNoProtoType *fnType) const { 383 // The following conventions are known to require this to be false: 384 // x86_stdcall 385 // MIPS 386 // For everything else, we just prefer false unless we opt out. 387 return false; 388 } 389 390 void 391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 392 llvm::SmallString<24> &Opt) const { 393 // This assumes the user is passing a library name like "rt" instead of a 394 // filename like "librt.a/so", and that they don't care whether it's static or 395 // dynamic. 396 Opt = "-l"; 397 Opt += Lib; 398 } 399 400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 401 return llvm::CallingConv::C; 402 } 403 404 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 405 llvm::PointerType *T, QualType QT) const { 406 return llvm::ConstantPointerNull::get(T); 407 } 408 409 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 410 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, QualType SrcTy, 411 QualType DestTy) const { 412 // Since target may map different address spaces in AST to the same address 413 // space, an address space conversion may end up as a bitcast. 414 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, 415 CGF.ConvertType(DestTy)); 416 } 417 418 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 419 420 /// isEmptyField - Return true iff a the field is "empty", that is it 421 /// is an unnamed bit-field or an (array of) empty record(s). 422 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 423 bool AllowArrays) { 424 if (FD->isUnnamedBitfield()) 425 return true; 426 427 QualType FT = FD->getType(); 428 429 // Constant arrays of empty records count as empty, strip them off. 430 // Constant arrays of zero length always count as empty. 431 if (AllowArrays) 432 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 433 if (AT->getSize() == 0) 434 return true; 435 FT = AT->getElementType(); 436 } 437 438 const RecordType *RT = FT->getAs<RecordType>(); 439 if (!RT) 440 return false; 441 442 // C++ record fields are never empty, at least in the Itanium ABI. 443 // 444 // FIXME: We should use a predicate for whether this behavior is true in the 445 // current ABI. 446 if (isa<CXXRecordDecl>(RT->getDecl())) 447 return false; 448 449 return isEmptyRecord(Context, FT, AllowArrays); 450 } 451 452 /// isEmptyRecord - Return true iff a structure contains only empty 453 /// fields. Note that a structure with a flexible array member is not 454 /// considered empty. 455 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 456 const RecordType *RT = T->getAs<RecordType>(); 457 if (!RT) 458 return false; 459 const RecordDecl *RD = RT->getDecl(); 460 if (RD->hasFlexibleArrayMember()) 461 return false; 462 463 // If this is a C++ record, check the bases first. 464 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 465 for (const auto &I : CXXRD->bases()) 466 if (!isEmptyRecord(Context, I.getType(), true)) 467 return false; 468 469 for (const auto *I : RD->fields()) 470 if (!isEmptyField(Context, I, AllowArrays)) 471 return false; 472 return true; 473 } 474 475 /// isSingleElementStruct - Determine if a structure is a "single 476 /// element struct", i.e. it has exactly one non-empty field or 477 /// exactly one field which is itself a single element 478 /// struct. Structures with flexible array members are never 479 /// considered single element structs. 480 /// 481 /// \return The field declaration for the single non-empty field, if 482 /// it exists. 483 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 484 const RecordType *RT = T->getAs<RecordType>(); 485 if (!RT) 486 return nullptr; 487 488 const RecordDecl *RD = RT->getDecl(); 489 if (RD->hasFlexibleArrayMember()) 490 return nullptr; 491 492 const Type *Found = nullptr; 493 494 // If this is a C++ record, check the bases first. 495 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 496 for (const auto &I : CXXRD->bases()) { 497 // Ignore empty records. 498 if (isEmptyRecord(Context, I.getType(), true)) 499 continue; 500 501 // If we already found an element then this isn't a single-element struct. 502 if (Found) 503 return nullptr; 504 505 // If this is non-empty and not a single element struct, the composite 506 // cannot be a single element struct. 507 Found = isSingleElementStruct(I.getType(), Context); 508 if (!Found) 509 return nullptr; 510 } 511 } 512 513 // Check for single element. 514 for (const auto *FD : RD->fields()) { 515 QualType FT = FD->getType(); 516 517 // Ignore empty fields. 518 if (isEmptyField(Context, FD, true)) 519 continue; 520 521 // If we already found an element then this isn't a single-element 522 // struct. 523 if (Found) 524 return nullptr; 525 526 // Treat single element arrays as the element. 527 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 528 if (AT->getSize().getZExtValue() != 1) 529 break; 530 FT = AT->getElementType(); 531 } 532 533 if (!isAggregateTypeForABI(FT)) { 534 Found = FT.getTypePtr(); 535 } else { 536 Found = isSingleElementStruct(FT, Context); 537 if (!Found) 538 return nullptr; 539 } 540 } 541 542 // We don't consider a struct a single-element struct if it has 543 // padding beyond the element type. 544 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 545 return nullptr; 546 547 return Found; 548 } 549 550 namespace { 551 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 552 const ABIArgInfo &AI) { 553 // This default implementation defers to the llvm backend's va_arg 554 // instruction. It can handle only passing arguments directly 555 // (typically only handled in the backend for primitive types), or 556 // aggregates passed indirectly by pointer (NOTE: if the "byval" 557 // flag has ABI impact in the callee, this implementation cannot 558 // work.) 559 560 // Only a few cases are covered here at the moment -- those needed 561 // by the default abi. 562 llvm::Value *Val; 563 564 if (AI.isIndirect()) { 565 assert(!AI.getPaddingType() && 566 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 567 assert( 568 !AI.getIndirectRealign() && 569 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 570 571 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 572 CharUnits TyAlignForABI = TyInfo.second; 573 574 llvm::Type *BaseTy = 575 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 576 llvm::Value *Addr = 577 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 578 return Address(Addr, TyAlignForABI); 579 } else { 580 assert((AI.isDirect() || AI.isExtend()) && 581 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 582 583 assert(!AI.getInReg() && 584 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 585 assert(!AI.getPaddingType() && 586 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 587 assert(!AI.getDirectOffset() && 588 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 589 assert(!AI.getCoerceToType() && 590 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 591 592 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 593 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 594 CGF.Builder.CreateStore(Val, Temp); 595 return Temp; 596 } 597 } 598 599 /// DefaultABIInfo - The default implementation for ABI specific 600 /// details. This implementation provides information which results in 601 /// self-consistent and sensible LLVM IR generation, but does not 602 /// conform to any particular ABI. 603 class DefaultABIInfo : public ABIInfo { 604 public: 605 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 606 607 ABIArgInfo classifyReturnType(QualType RetTy) const; 608 ABIArgInfo classifyArgumentType(QualType RetTy) const; 609 610 void computeInfo(CGFunctionInfo &FI) const override { 611 if (!getCXXABI().classifyReturnType(FI)) 612 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 613 for (auto &I : FI.arguments()) 614 I.info = classifyArgumentType(I.type); 615 } 616 617 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 618 QualType Ty) const override { 619 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 620 } 621 }; 622 623 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 624 public: 625 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 626 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 627 }; 628 629 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 630 Ty = useFirstFieldIfTransparentUnion(Ty); 631 632 if (isAggregateTypeForABI(Ty)) { 633 // Records with non-trivial destructors/copy-constructors should not be 634 // passed by value. 635 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 636 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 637 638 return getNaturalAlignIndirect(Ty); 639 } 640 641 // Treat an enum type as its underlying type. 642 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 643 Ty = EnumTy->getDecl()->getIntegerType(); 644 645 return (Ty->isPromotableIntegerType() ? 646 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 647 } 648 649 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 650 if (RetTy->isVoidType()) 651 return ABIArgInfo::getIgnore(); 652 653 if (isAggregateTypeForABI(RetTy)) 654 return getNaturalAlignIndirect(RetTy); 655 656 // Treat an enum type as its underlying type. 657 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 658 RetTy = EnumTy->getDecl()->getIntegerType(); 659 660 return (RetTy->isPromotableIntegerType() ? 661 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 662 } 663 664 //===----------------------------------------------------------------------===// 665 // WebAssembly ABI Implementation 666 // 667 // This is a very simple ABI that relies a lot on DefaultABIInfo. 668 //===----------------------------------------------------------------------===// 669 670 class WebAssemblyABIInfo final : public DefaultABIInfo { 671 public: 672 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 673 : DefaultABIInfo(CGT) {} 674 675 private: 676 ABIArgInfo classifyReturnType(QualType RetTy) const; 677 ABIArgInfo classifyArgumentType(QualType Ty) const; 678 679 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 680 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 681 // overload them. 682 void computeInfo(CGFunctionInfo &FI) const override { 683 if (!getCXXABI().classifyReturnType(FI)) 684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 685 for (auto &Arg : FI.arguments()) 686 Arg.info = classifyArgumentType(Arg.type); 687 } 688 689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 690 QualType Ty) const override; 691 }; 692 693 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 694 public: 695 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 696 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 697 }; 698 699 /// \brief Classify argument of given type \p Ty. 700 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 701 Ty = useFirstFieldIfTransparentUnion(Ty); 702 703 if (isAggregateTypeForABI(Ty)) { 704 // Records with non-trivial destructors/copy-constructors should not be 705 // passed by value. 706 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 707 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 708 // Ignore empty structs/unions. 709 if (isEmptyRecord(getContext(), Ty, true)) 710 return ABIArgInfo::getIgnore(); 711 // Lower single-element structs to just pass a regular value. TODO: We 712 // could do reasonable-size multiple-element structs too, using getExpand(), 713 // though watch out for things like bitfields. 714 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 715 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 716 } 717 718 // Otherwise just do the default thing. 719 return DefaultABIInfo::classifyArgumentType(Ty); 720 } 721 722 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 723 if (isAggregateTypeForABI(RetTy)) { 724 // Records with non-trivial destructors/copy-constructors should not be 725 // returned by value. 726 if (!getRecordArgABI(RetTy, getCXXABI())) { 727 // Ignore empty structs/unions. 728 if (isEmptyRecord(getContext(), RetTy, true)) 729 return ABIArgInfo::getIgnore(); 730 // Lower single-element structs to just return a regular value. TODO: We 731 // could do reasonable-size multiple-element structs too, using 732 // ABIArgInfo::getDirect(). 733 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 734 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 735 } 736 } 737 738 // Otherwise just do the default thing. 739 return DefaultABIInfo::classifyReturnType(RetTy); 740 } 741 742 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 743 QualType Ty) const { 744 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 745 getContext().getTypeInfoInChars(Ty), 746 CharUnits::fromQuantity(4), 747 /*AllowHigherAlign=*/ true); 748 } 749 750 //===----------------------------------------------------------------------===// 751 // le32/PNaCl bitcode ABI Implementation 752 // 753 // This is a simplified version of the x86_32 ABI. Arguments and return values 754 // are always passed on the stack. 755 //===----------------------------------------------------------------------===// 756 757 class PNaClABIInfo : public ABIInfo { 758 public: 759 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 760 761 ABIArgInfo classifyReturnType(QualType RetTy) const; 762 ABIArgInfo classifyArgumentType(QualType RetTy) const; 763 764 void computeInfo(CGFunctionInfo &FI) const override; 765 Address EmitVAArg(CodeGenFunction &CGF, 766 Address VAListAddr, QualType Ty) const override; 767 }; 768 769 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 770 public: 771 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 772 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 773 }; 774 775 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 776 if (!getCXXABI().classifyReturnType(FI)) 777 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 778 779 for (auto &I : FI.arguments()) 780 I.info = classifyArgumentType(I.type); 781 } 782 783 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 784 QualType Ty) const { 785 // The PNaCL ABI is a bit odd, in that varargs don't use normal 786 // function classification. Structs get passed directly for varargs 787 // functions, through a rewriting transform in 788 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 789 // this target to actually support a va_arg instructions with an 790 // aggregate type, unlike other targets. 791 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 792 } 793 794 /// \brief Classify argument of given type \p Ty. 795 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 796 if (isAggregateTypeForABI(Ty)) { 797 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 798 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 799 return getNaturalAlignIndirect(Ty); 800 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 801 // Treat an enum type as its underlying type. 802 Ty = EnumTy->getDecl()->getIntegerType(); 803 } else if (Ty->isFloatingType()) { 804 // Floating-point types don't go inreg. 805 return ABIArgInfo::getDirect(); 806 } 807 808 return (Ty->isPromotableIntegerType() ? 809 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 810 } 811 812 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 813 if (RetTy->isVoidType()) 814 return ABIArgInfo::getIgnore(); 815 816 // In the PNaCl ABI we always return records/structures on the stack. 817 if (isAggregateTypeForABI(RetTy)) 818 return getNaturalAlignIndirect(RetTy); 819 820 // Treat an enum type as its underlying type. 821 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 822 RetTy = EnumTy->getDecl()->getIntegerType(); 823 824 return (RetTy->isPromotableIntegerType() ? 825 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 826 } 827 828 /// IsX86_MMXType - Return true if this is an MMX type. 829 bool IsX86_MMXType(llvm::Type *IRType) { 830 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 831 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 832 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 833 IRType->getScalarSizeInBits() != 64; 834 } 835 836 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 837 StringRef Constraint, 838 llvm::Type* Ty) { 839 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 840 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 841 // Invalid MMX constraint 842 return nullptr; 843 } 844 845 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 846 } 847 848 // No operation needed 849 return Ty; 850 } 851 852 /// Returns true if this type can be passed in SSE registers with the 853 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 854 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 855 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 856 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 857 return true; 858 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 859 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 860 // registers specially. 861 unsigned VecSize = Context.getTypeSize(VT); 862 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 863 return true; 864 } 865 return false; 866 } 867 868 /// Returns true if this aggregate is small enough to be passed in SSE registers 869 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 870 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 871 return NumMembers <= 4; 872 } 873 874 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 875 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 876 auto AI = ABIArgInfo::getDirect(T); 877 AI.setInReg(true); 878 AI.setCanBeFlattened(false); 879 return AI; 880 } 881 882 //===----------------------------------------------------------------------===// 883 // X86-32 ABI Implementation 884 //===----------------------------------------------------------------------===// 885 886 /// \brief Similar to llvm::CCState, but for Clang. 887 struct CCState { 888 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 889 890 unsigned CC; 891 unsigned FreeRegs; 892 unsigned FreeSSERegs; 893 }; 894 895 enum { 896 // Vectorcall only allows the first 6 parameters to be passed in registers. 897 VectorcallMaxParamNumAsReg = 6 898 }; 899 900 /// X86_32ABIInfo - The X86-32 ABI information. 901 class X86_32ABIInfo : public SwiftABIInfo { 902 enum Class { 903 Integer, 904 Float 905 }; 906 907 static const unsigned MinABIStackAlignInBytes = 4; 908 909 bool IsDarwinVectorABI; 910 bool IsRetSmallStructInRegABI; 911 bool IsWin32StructABI; 912 bool IsSoftFloatABI; 913 bool IsMCUABI; 914 unsigned DefaultNumRegisterParameters; 915 916 static bool isRegisterSize(unsigned Size) { 917 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 918 } 919 920 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 921 // FIXME: Assumes vectorcall is in use. 922 return isX86VectorTypeForVectorCall(getContext(), Ty); 923 } 924 925 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 926 uint64_t NumMembers) const override { 927 // FIXME: Assumes vectorcall is in use. 928 return isX86VectorCallAggregateSmallEnough(NumMembers); 929 } 930 931 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 932 933 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 934 /// such that the argument will be passed in memory. 935 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 936 937 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 938 939 /// \brief Return the alignment to use for the given type on the stack. 940 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 941 942 Class classify(QualType Ty) const; 943 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 944 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 945 ABIArgInfo reclassifyHvaArgType(QualType RetTy, CCState &State, 946 const ABIArgInfo& current) const; 947 /// \brief Updates the number of available free registers, returns 948 /// true if any registers were allocated. 949 bool updateFreeRegs(QualType Ty, CCState &State) const; 950 951 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 952 bool &NeedsPadding) const; 953 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 954 955 bool canExpandIndirectArgument(QualType Ty) const; 956 957 /// \brief Rewrite the function info so that all memory arguments use 958 /// inalloca. 959 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 960 961 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 962 CharUnits &StackOffset, ABIArgInfo &Info, 963 QualType Type) const; 964 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 965 bool &UsedInAlloca) const; 966 967 public: 968 969 void computeInfo(CGFunctionInfo &FI) const override; 970 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 971 QualType Ty) const override; 972 973 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 974 bool RetSmallStructInRegABI, bool Win32StructABI, 975 unsigned NumRegisterParameters, bool SoftFloatABI) 976 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 977 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 978 IsWin32StructABI(Win32StructABI), 979 IsSoftFloatABI(SoftFloatABI), 980 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 981 DefaultNumRegisterParameters(NumRegisterParameters) {} 982 983 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 984 ArrayRef<llvm::Type*> scalars, 985 bool asReturnValue) const override { 986 // LLVM's x86-32 lowering currently only assigns up to three 987 // integer registers and three fp registers. Oddly, it'll use up to 988 // four vector registers for vectors, but those can overlap with the 989 // scalar registers. 990 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 991 } 992 993 bool isSwiftErrorInRegister() const override { 994 // x86-32 lowering does not support passing swifterror in a register. 995 return false; 996 } 997 }; 998 999 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1000 public: 1001 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1002 bool RetSmallStructInRegABI, bool Win32StructABI, 1003 unsigned NumRegisterParameters, bool SoftFloatABI) 1004 : TargetCodeGenInfo(new X86_32ABIInfo( 1005 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1006 NumRegisterParameters, SoftFloatABI)) {} 1007 1008 static bool isStructReturnInRegABI( 1009 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1010 1011 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1012 CodeGen::CodeGenModule &CGM) const override; 1013 1014 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1015 // Darwin uses different dwarf register numbers for EH. 1016 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1017 return 4; 1018 } 1019 1020 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1021 llvm::Value *Address) const override; 1022 1023 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) const override { 1026 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1027 } 1028 1029 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1030 std::string &Constraints, 1031 std::vector<llvm::Type *> &ResultRegTypes, 1032 std::vector<llvm::Type *> &ResultTruncRegTypes, 1033 std::vector<LValue> &ResultRegDests, 1034 std::string &AsmString, 1035 unsigned NumOutputs) const override; 1036 1037 llvm::Constant * 1038 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1039 unsigned Sig = (0xeb << 0) | // jmp rel8 1040 (0x06 << 8) | // .+0x08 1041 ('F' << 16) | 1042 ('T' << 24); 1043 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1044 } 1045 1046 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1047 return "movl\t%ebp, %ebp" 1048 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1049 } 1050 }; 1051 1052 } 1053 1054 /// Rewrite input constraint references after adding some output constraints. 1055 /// In the case where there is one output and one input and we add one output, 1056 /// we need to replace all operand references greater than or equal to 1: 1057 /// mov $0, $1 1058 /// mov eax, $1 1059 /// The result will be: 1060 /// mov $0, $2 1061 /// mov eax, $2 1062 static void rewriteInputConstraintReferences(unsigned FirstIn, 1063 unsigned NumNewOuts, 1064 std::string &AsmString) { 1065 std::string Buf; 1066 llvm::raw_string_ostream OS(Buf); 1067 size_t Pos = 0; 1068 while (Pos < AsmString.size()) { 1069 size_t DollarStart = AsmString.find('$', Pos); 1070 if (DollarStart == std::string::npos) 1071 DollarStart = AsmString.size(); 1072 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1073 if (DollarEnd == std::string::npos) 1074 DollarEnd = AsmString.size(); 1075 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1076 Pos = DollarEnd; 1077 size_t NumDollars = DollarEnd - DollarStart; 1078 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1079 // We have an operand reference. 1080 size_t DigitStart = Pos; 1081 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1082 if (DigitEnd == std::string::npos) 1083 DigitEnd = AsmString.size(); 1084 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1085 unsigned OperandIndex; 1086 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1087 if (OperandIndex >= FirstIn) 1088 OperandIndex += NumNewOuts; 1089 OS << OperandIndex; 1090 } else { 1091 OS << OperandStr; 1092 } 1093 Pos = DigitEnd; 1094 } 1095 } 1096 AsmString = std::move(OS.str()); 1097 } 1098 1099 /// Add output constraints for EAX:EDX because they are return registers. 1100 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1101 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1102 std::vector<llvm::Type *> &ResultRegTypes, 1103 std::vector<llvm::Type *> &ResultTruncRegTypes, 1104 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1105 unsigned NumOutputs) const { 1106 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1107 1108 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1109 // larger. 1110 if (!Constraints.empty()) 1111 Constraints += ','; 1112 if (RetWidth <= 32) { 1113 Constraints += "={eax}"; 1114 ResultRegTypes.push_back(CGF.Int32Ty); 1115 } else { 1116 // Use the 'A' constraint for EAX:EDX. 1117 Constraints += "=A"; 1118 ResultRegTypes.push_back(CGF.Int64Ty); 1119 } 1120 1121 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1122 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1123 ResultTruncRegTypes.push_back(CoerceTy); 1124 1125 // Coerce the integer by bitcasting the return slot pointer. 1126 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1127 CoerceTy->getPointerTo())); 1128 ResultRegDests.push_back(ReturnSlot); 1129 1130 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1131 } 1132 1133 /// shouldReturnTypeInRegister - Determine if the given type should be 1134 /// returned in a register (for the Darwin and MCU ABI). 1135 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1136 ASTContext &Context) const { 1137 uint64_t Size = Context.getTypeSize(Ty); 1138 1139 // For i386, type must be register sized. 1140 // For the MCU ABI, it only needs to be <= 8-byte 1141 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1142 return false; 1143 1144 if (Ty->isVectorType()) { 1145 // 64- and 128- bit vectors inside structures are not returned in 1146 // registers. 1147 if (Size == 64 || Size == 128) 1148 return false; 1149 1150 return true; 1151 } 1152 1153 // If this is a builtin, pointer, enum, complex type, member pointer, or 1154 // member function pointer it is ok. 1155 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1156 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1157 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1158 return true; 1159 1160 // Arrays are treated like records. 1161 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1162 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1163 1164 // Otherwise, it must be a record type. 1165 const RecordType *RT = Ty->getAs<RecordType>(); 1166 if (!RT) return false; 1167 1168 // FIXME: Traverse bases here too. 1169 1170 // Structure types are passed in register if all fields would be 1171 // passed in a register. 1172 for (const auto *FD : RT->getDecl()->fields()) { 1173 // Empty fields are ignored. 1174 if (isEmptyField(Context, FD, true)) 1175 continue; 1176 1177 // Check fields recursively. 1178 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1179 return false; 1180 } 1181 return true; 1182 } 1183 1184 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1185 // Treat complex types as the element type. 1186 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1187 Ty = CTy->getElementType(); 1188 1189 // Check for a type which we know has a simple scalar argument-passing 1190 // convention without any padding. (We're specifically looking for 32 1191 // and 64-bit integer and integer-equivalents, float, and double.) 1192 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1193 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1194 return false; 1195 1196 uint64_t Size = Context.getTypeSize(Ty); 1197 return Size == 32 || Size == 64; 1198 } 1199 1200 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1201 uint64_t &Size) { 1202 for (const auto *FD : RD->fields()) { 1203 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1204 // argument is smaller than 32-bits, expanding the struct will create 1205 // alignment padding. 1206 if (!is32Or64BitBasicType(FD->getType(), Context)) 1207 return false; 1208 1209 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1210 // how to expand them yet, and the predicate for telling if a bitfield still 1211 // counts as "basic" is more complicated than what we were doing previously. 1212 if (FD->isBitField()) 1213 return false; 1214 1215 Size += Context.getTypeSize(FD->getType()); 1216 } 1217 return true; 1218 } 1219 1220 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1221 uint64_t &Size) { 1222 // Don't do this if there are any non-empty bases. 1223 for (const CXXBaseSpecifier &Base : RD->bases()) { 1224 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1225 Size)) 1226 return false; 1227 } 1228 if (!addFieldSizes(Context, RD, Size)) 1229 return false; 1230 return true; 1231 } 1232 1233 /// Test whether an argument type which is to be passed indirectly (on the 1234 /// stack) would have the equivalent layout if it was expanded into separate 1235 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1236 /// optimizations. 1237 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1238 // We can only expand structure types. 1239 const RecordType *RT = Ty->getAs<RecordType>(); 1240 if (!RT) 1241 return false; 1242 const RecordDecl *RD = RT->getDecl(); 1243 uint64_t Size = 0; 1244 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1245 if (!IsWin32StructABI) { 1246 // On non-Windows, we have to conservatively match our old bitcode 1247 // prototypes in order to be ABI-compatible at the bitcode level. 1248 if (!CXXRD->isCLike()) 1249 return false; 1250 } else { 1251 // Don't do this for dynamic classes. 1252 if (CXXRD->isDynamicClass()) 1253 return false; 1254 } 1255 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1256 return false; 1257 } else { 1258 if (!addFieldSizes(getContext(), RD, Size)) 1259 return false; 1260 } 1261 1262 // We can do this if there was no alignment padding. 1263 return Size == getContext().getTypeSize(Ty); 1264 } 1265 1266 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1267 // If the return value is indirect, then the hidden argument is consuming one 1268 // integer register. 1269 if (State.FreeRegs) { 1270 --State.FreeRegs; 1271 if (!IsMCUABI) 1272 return getNaturalAlignIndirectInReg(RetTy); 1273 } 1274 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1275 } 1276 1277 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1278 CCState &State) const { 1279 if (RetTy->isVoidType()) 1280 return ABIArgInfo::getIgnore(); 1281 1282 const Type *Base = nullptr; 1283 uint64_t NumElts = 0; 1284 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1285 State.CC == llvm::CallingConv::X86_RegCall) && 1286 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1287 // The LLVM struct type for such an aggregate should lower properly. 1288 return ABIArgInfo::getDirect(); 1289 } 1290 1291 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1292 // On Darwin, some vectors are returned in registers. 1293 if (IsDarwinVectorABI) { 1294 uint64_t Size = getContext().getTypeSize(RetTy); 1295 1296 // 128-bit vectors are a special case; they are returned in 1297 // registers and we need to make sure to pick a type the LLVM 1298 // backend will like. 1299 if (Size == 128) 1300 return ABIArgInfo::getDirect(llvm::VectorType::get( 1301 llvm::Type::getInt64Ty(getVMContext()), 2)); 1302 1303 // Always return in register if it fits in a general purpose 1304 // register, or if it is 64 bits and has a single element. 1305 if ((Size == 8 || Size == 16 || Size == 32) || 1306 (Size == 64 && VT->getNumElements() == 1)) 1307 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1308 Size)); 1309 1310 return getIndirectReturnResult(RetTy, State); 1311 } 1312 1313 return ABIArgInfo::getDirect(); 1314 } 1315 1316 if (isAggregateTypeForABI(RetTy)) { 1317 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1318 // Structures with flexible arrays are always indirect. 1319 if (RT->getDecl()->hasFlexibleArrayMember()) 1320 return getIndirectReturnResult(RetTy, State); 1321 } 1322 1323 // If specified, structs and unions are always indirect. 1324 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1325 return getIndirectReturnResult(RetTy, State); 1326 1327 // Ignore empty structs/unions. 1328 if (isEmptyRecord(getContext(), RetTy, true)) 1329 return ABIArgInfo::getIgnore(); 1330 1331 // Small structures which are register sized are generally returned 1332 // in a register. 1333 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1334 uint64_t Size = getContext().getTypeSize(RetTy); 1335 1336 // As a special-case, if the struct is a "single-element" struct, and 1337 // the field is of type "float" or "double", return it in a 1338 // floating-point register. (MSVC does not apply this special case.) 1339 // We apply a similar transformation for pointer types to improve the 1340 // quality of the generated IR. 1341 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1342 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1343 || SeltTy->hasPointerRepresentation()) 1344 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1345 1346 // FIXME: We should be able to narrow this integer in cases with dead 1347 // padding. 1348 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1349 } 1350 1351 return getIndirectReturnResult(RetTy, State); 1352 } 1353 1354 // Treat an enum type as its underlying type. 1355 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1356 RetTy = EnumTy->getDecl()->getIntegerType(); 1357 1358 return (RetTy->isPromotableIntegerType() ? 1359 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1360 } 1361 1362 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1363 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1364 } 1365 1366 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1367 const RecordType *RT = Ty->getAs<RecordType>(); 1368 if (!RT) 1369 return 0; 1370 const RecordDecl *RD = RT->getDecl(); 1371 1372 // If this is a C++ record, check the bases first. 1373 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1374 for (const auto &I : CXXRD->bases()) 1375 if (!isRecordWithSSEVectorType(Context, I.getType())) 1376 return false; 1377 1378 for (const auto *i : RD->fields()) { 1379 QualType FT = i->getType(); 1380 1381 if (isSSEVectorType(Context, FT)) 1382 return true; 1383 1384 if (isRecordWithSSEVectorType(Context, FT)) 1385 return true; 1386 } 1387 1388 return false; 1389 } 1390 1391 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1392 unsigned Align) const { 1393 // Otherwise, if the alignment is less than or equal to the minimum ABI 1394 // alignment, just use the default; the backend will handle this. 1395 if (Align <= MinABIStackAlignInBytes) 1396 return 0; // Use default alignment. 1397 1398 // On non-Darwin, the stack type alignment is always 4. 1399 if (!IsDarwinVectorABI) { 1400 // Set explicit alignment, since we may need to realign the top. 1401 return MinABIStackAlignInBytes; 1402 } 1403 1404 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1405 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1406 isRecordWithSSEVectorType(getContext(), Ty))) 1407 return 16; 1408 1409 return MinABIStackAlignInBytes; 1410 } 1411 1412 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1413 CCState &State) const { 1414 if (!ByVal) { 1415 if (State.FreeRegs) { 1416 --State.FreeRegs; // Non-byval indirects just use one pointer. 1417 if (!IsMCUABI) 1418 return getNaturalAlignIndirectInReg(Ty); 1419 } 1420 return getNaturalAlignIndirect(Ty, false); 1421 } 1422 1423 // Compute the byval alignment. 1424 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1425 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1426 if (StackAlign == 0) 1427 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1428 1429 // If the stack alignment is less than the type alignment, realign the 1430 // argument. 1431 bool Realign = TypeAlign > StackAlign; 1432 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1433 /*ByVal=*/true, Realign); 1434 } 1435 1436 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1437 const Type *T = isSingleElementStruct(Ty, getContext()); 1438 if (!T) 1439 T = Ty.getTypePtr(); 1440 1441 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1442 BuiltinType::Kind K = BT->getKind(); 1443 if (K == BuiltinType::Float || K == BuiltinType::Double) 1444 return Float; 1445 } 1446 return Integer; 1447 } 1448 1449 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1450 if (!IsSoftFloatABI) { 1451 Class C = classify(Ty); 1452 if (C == Float) 1453 return false; 1454 } 1455 1456 unsigned Size = getContext().getTypeSize(Ty); 1457 unsigned SizeInRegs = (Size + 31) / 32; 1458 1459 if (SizeInRegs == 0) 1460 return false; 1461 1462 if (!IsMCUABI) { 1463 if (SizeInRegs > State.FreeRegs) { 1464 State.FreeRegs = 0; 1465 return false; 1466 } 1467 } else { 1468 // The MCU psABI allows passing parameters in-reg even if there are 1469 // earlier parameters that are passed on the stack. Also, 1470 // it does not allow passing >8-byte structs in-register, 1471 // even if there are 3 free registers available. 1472 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1473 return false; 1474 } 1475 1476 State.FreeRegs -= SizeInRegs; 1477 return true; 1478 } 1479 1480 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1481 bool &InReg, 1482 bool &NeedsPadding) const { 1483 // On Windows, aggregates other than HFAs are never passed in registers, and 1484 // they do not consume register slots. Homogenous floating-point aggregates 1485 // (HFAs) have already been dealt with at this point. 1486 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1487 return false; 1488 1489 NeedsPadding = false; 1490 InReg = !IsMCUABI; 1491 1492 if (!updateFreeRegs(Ty, State)) 1493 return false; 1494 1495 if (IsMCUABI) 1496 return true; 1497 1498 if (State.CC == llvm::CallingConv::X86_FastCall || 1499 State.CC == llvm::CallingConv::X86_VectorCall || 1500 State.CC == llvm::CallingConv::X86_RegCall) { 1501 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1502 NeedsPadding = true; 1503 1504 return false; 1505 } 1506 1507 return true; 1508 } 1509 1510 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1511 if (!updateFreeRegs(Ty, State)) 1512 return false; 1513 1514 if (IsMCUABI) 1515 return false; 1516 1517 if (State.CC == llvm::CallingConv::X86_FastCall || 1518 State.CC == llvm::CallingConv::X86_VectorCall || 1519 State.CC == llvm::CallingConv::X86_RegCall) { 1520 if (getContext().getTypeSize(Ty) > 32) 1521 return false; 1522 1523 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1524 Ty->isReferenceType()); 1525 } 1526 1527 return true; 1528 } 1529 1530 ABIArgInfo 1531 X86_32ABIInfo::reclassifyHvaArgType(QualType Ty, CCState &State, 1532 const ABIArgInfo ¤t) const { 1533 // Assumes vectorCall calling convention. 1534 const Type *Base = nullptr; 1535 uint64_t NumElts = 0; 1536 1537 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 1538 isHomogeneousAggregate(Ty, Base, NumElts)) { 1539 if (State.FreeSSERegs >= NumElts) { 1540 // HVA types get passed directly in registers if there is room. 1541 State.FreeSSERegs -= NumElts; 1542 return getDirectX86Hva(); 1543 } 1544 // If there's no room, the HVA gets passed as normal indirect 1545 // structure. 1546 return getIndirectResult(Ty, /*ByVal=*/false, State); 1547 } 1548 return current; 1549 } 1550 1551 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1552 CCState &State) const { 1553 // FIXME: Set alignment on indirect arguments. 1554 1555 Ty = useFirstFieldIfTransparentUnion(Ty); 1556 1557 // Check with the C++ ABI first. 1558 const RecordType *RT = Ty->getAs<RecordType>(); 1559 if (RT) { 1560 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1561 if (RAA == CGCXXABI::RAA_Indirect) { 1562 return getIndirectResult(Ty, false, State); 1563 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1564 // The field index doesn't matter, we'll fix it up later. 1565 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1566 } 1567 } 1568 1569 // vectorcall adds the concept of a homogenous vector aggregate, similar 1570 // to other targets, regcall uses some of the HVA rules. 1571 const Type *Base = nullptr; 1572 uint64_t NumElts = 0; 1573 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1574 State.CC == llvm::CallingConv::X86_RegCall) && 1575 isHomogeneousAggregate(Ty, Base, NumElts)) { 1576 1577 if (State.CC == llvm::CallingConv::X86_RegCall) { 1578 if (State.FreeSSERegs >= NumElts) { 1579 State.FreeSSERegs -= NumElts; 1580 if (Ty->isBuiltinType() || Ty->isVectorType()) 1581 return ABIArgInfo::getDirect(); 1582 return ABIArgInfo::getExpand(); 1583 1584 } 1585 return getIndirectResult(Ty, /*ByVal=*/false, State); 1586 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1587 if (State.FreeSSERegs >= NumElts && (Ty->isBuiltinType() || Ty->isVectorType())) { 1588 // Actual floating-point types get registers first time through if 1589 // there is registers available 1590 State.FreeSSERegs -= NumElts; 1591 return ABIArgInfo::getDirect(); 1592 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 1593 // HVA Types only get registers after everything else has been 1594 // set, so it gets set as indirect for now. 1595 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty)); 1596 } 1597 } 1598 } 1599 1600 if (isAggregateTypeForABI(Ty)) { 1601 // Structures with flexible arrays are always indirect. 1602 // FIXME: This should not be byval! 1603 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1604 return getIndirectResult(Ty, true, State); 1605 1606 // Ignore empty structs/unions on non-Windows. 1607 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1608 return ABIArgInfo::getIgnore(); 1609 1610 llvm::LLVMContext &LLVMContext = getVMContext(); 1611 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1612 bool NeedsPadding = false; 1613 bool InReg; 1614 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1615 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1616 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1617 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1618 if (InReg) 1619 return ABIArgInfo::getDirectInReg(Result); 1620 else 1621 return ABIArgInfo::getDirect(Result); 1622 } 1623 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1624 1625 // Expand small (<= 128-bit) record types when we know that the stack layout 1626 // of those arguments will match the struct. This is important because the 1627 // LLVM backend isn't smart enough to remove byval, which inhibits many 1628 // optimizations. 1629 // Don't do this for the MCU if there are still free integer registers 1630 // (see X86_64 ABI for full explanation). 1631 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1632 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1633 return ABIArgInfo::getExpandWithPadding( 1634 State.CC == llvm::CallingConv::X86_FastCall || 1635 State.CC == llvm::CallingConv::X86_VectorCall || 1636 State.CC == llvm::CallingConv::X86_RegCall, 1637 PaddingType); 1638 1639 return getIndirectResult(Ty, true, State); 1640 } 1641 1642 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1643 // On Darwin, some vectors are passed in memory, we handle this by passing 1644 // it as an i8/i16/i32/i64. 1645 if (IsDarwinVectorABI) { 1646 uint64_t Size = getContext().getTypeSize(Ty); 1647 if ((Size == 8 || Size == 16 || Size == 32) || 1648 (Size == 64 && VT->getNumElements() == 1)) 1649 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1650 Size)); 1651 } 1652 1653 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1654 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1655 1656 return ABIArgInfo::getDirect(); 1657 } 1658 1659 1660 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1661 Ty = EnumTy->getDecl()->getIntegerType(); 1662 1663 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1664 1665 if (Ty->isPromotableIntegerType()) { 1666 if (InReg) 1667 return ABIArgInfo::getExtendInReg(); 1668 return ABIArgInfo::getExtend(); 1669 } 1670 1671 if (InReg) 1672 return ABIArgInfo::getDirectInReg(); 1673 return ABIArgInfo::getDirect(); 1674 } 1675 1676 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1677 bool &UsedInAlloca) const { 1678 // Vectorcall only allows the first 6 parameters to be passed in registers, 1679 // and homogeneous vector aggregates are only put into registers as a second 1680 // priority. 1681 unsigned Count = 0; 1682 CCState ZeroState = State; 1683 ZeroState.FreeRegs = ZeroState.FreeSSERegs = 0; 1684 // HVAs must be done as a second priority for registers, so the deferred 1685 // items are dealt with by going through the pattern a second time. 1686 for (auto &I : FI.arguments()) { 1687 if (Count < VectorcallMaxParamNumAsReg) 1688 I.info = classifyArgumentType(I.type, State); 1689 else 1690 // Parameters after the 6th cannot be passed in registers, 1691 // so pretend there are no registers left for them. 1692 I.info = classifyArgumentType(I.type, ZeroState); 1693 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1694 ++Count; 1695 } 1696 Count = 0; 1697 // Go through the arguments a second time to get HVAs registers if there 1698 // are still some available. 1699 for (auto &I : FI.arguments()) { 1700 if (Count < VectorcallMaxParamNumAsReg) 1701 I.info = reclassifyHvaArgType(I.type, State, I.info); 1702 ++Count; 1703 } 1704 } 1705 1706 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1707 CCState State(FI.getCallingConvention()); 1708 if (IsMCUABI) 1709 State.FreeRegs = 3; 1710 else if (State.CC == llvm::CallingConv::X86_FastCall) 1711 State.FreeRegs = 2; 1712 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1713 State.FreeRegs = 2; 1714 State.FreeSSERegs = 6; 1715 } else if (FI.getHasRegParm()) 1716 State.FreeRegs = FI.getRegParm(); 1717 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1718 State.FreeRegs = 5; 1719 State.FreeSSERegs = 8; 1720 } else 1721 State.FreeRegs = DefaultNumRegisterParameters; 1722 1723 if (!getCXXABI().classifyReturnType(FI)) { 1724 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1725 } else if (FI.getReturnInfo().isIndirect()) { 1726 // The C++ ABI is not aware of register usage, so we have to check if the 1727 // return value was sret and put it in a register ourselves if appropriate. 1728 if (State.FreeRegs) { 1729 --State.FreeRegs; // The sret parameter consumes a register. 1730 if (!IsMCUABI) 1731 FI.getReturnInfo().setInReg(true); 1732 } 1733 } 1734 1735 // The chain argument effectively gives us another free register. 1736 if (FI.isChainCall()) 1737 ++State.FreeRegs; 1738 1739 bool UsedInAlloca = false; 1740 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1741 computeVectorCallArgs(FI, State, UsedInAlloca); 1742 } else { 1743 // If not vectorcall, revert to normal behavior. 1744 for (auto &I : FI.arguments()) { 1745 I.info = classifyArgumentType(I.type, State); 1746 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1747 } 1748 } 1749 1750 // If we needed to use inalloca for any argument, do a second pass and rewrite 1751 // all the memory arguments to use inalloca. 1752 if (UsedInAlloca) 1753 rewriteWithInAlloca(FI); 1754 } 1755 1756 void 1757 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1758 CharUnits &StackOffset, ABIArgInfo &Info, 1759 QualType Type) const { 1760 // Arguments are always 4-byte-aligned. 1761 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1762 1763 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1764 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1765 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1766 StackOffset += getContext().getTypeSizeInChars(Type); 1767 1768 // Insert padding bytes to respect alignment. 1769 CharUnits FieldEnd = StackOffset; 1770 StackOffset = FieldEnd.alignTo(FieldAlign); 1771 if (StackOffset != FieldEnd) { 1772 CharUnits NumBytes = StackOffset - FieldEnd; 1773 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1774 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1775 FrameFields.push_back(Ty); 1776 } 1777 } 1778 1779 static bool isArgInAlloca(const ABIArgInfo &Info) { 1780 // Leave ignored and inreg arguments alone. 1781 switch (Info.getKind()) { 1782 case ABIArgInfo::InAlloca: 1783 return true; 1784 case ABIArgInfo::Indirect: 1785 assert(Info.getIndirectByVal()); 1786 return true; 1787 case ABIArgInfo::Ignore: 1788 return false; 1789 case ABIArgInfo::Direct: 1790 case ABIArgInfo::Extend: 1791 if (Info.getInReg()) 1792 return false; 1793 return true; 1794 case ABIArgInfo::Expand: 1795 case ABIArgInfo::CoerceAndExpand: 1796 // These are aggregate types which are never passed in registers when 1797 // inalloca is involved. 1798 return true; 1799 } 1800 llvm_unreachable("invalid enum"); 1801 } 1802 1803 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1804 assert(IsWin32StructABI && "inalloca only supported on win32"); 1805 1806 // Build a packed struct type for all of the arguments in memory. 1807 SmallVector<llvm::Type *, 6> FrameFields; 1808 1809 // The stack alignment is always 4. 1810 CharUnits StackAlign = CharUnits::fromQuantity(4); 1811 1812 CharUnits StackOffset; 1813 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1814 1815 // Put 'this' into the struct before 'sret', if necessary. 1816 bool IsThisCall = 1817 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1818 ABIArgInfo &Ret = FI.getReturnInfo(); 1819 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1820 isArgInAlloca(I->info)) { 1821 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1822 ++I; 1823 } 1824 1825 // Put the sret parameter into the inalloca struct if it's in memory. 1826 if (Ret.isIndirect() && !Ret.getInReg()) { 1827 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1828 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1829 // On Windows, the hidden sret parameter is always returned in eax. 1830 Ret.setInAllocaSRet(IsWin32StructABI); 1831 } 1832 1833 // Skip the 'this' parameter in ecx. 1834 if (IsThisCall) 1835 ++I; 1836 1837 // Put arguments passed in memory into the struct. 1838 for (; I != E; ++I) { 1839 if (isArgInAlloca(I->info)) 1840 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1841 } 1842 1843 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1844 /*isPacked=*/true), 1845 StackAlign); 1846 } 1847 1848 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1849 Address VAListAddr, QualType Ty) const { 1850 1851 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1852 1853 // x86-32 changes the alignment of certain arguments on the stack. 1854 // 1855 // Just messing with TypeInfo like this works because we never pass 1856 // anything indirectly. 1857 TypeInfo.second = CharUnits::fromQuantity( 1858 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1859 1860 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1861 TypeInfo, CharUnits::fromQuantity(4), 1862 /*AllowHigherAlign*/ true); 1863 } 1864 1865 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1866 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1867 assert(Triple.getArch() == llvm::Triple::x86); 1868 1869 switch (Opts.getStructReturnConvention()) { 1870 case CodeGenOptions::SRCK_Default: 1871 break; 1872 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1873 return false; 1874 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1875 return true; 1876 } 1877 1878 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1879 return true; 1880 1881 switch (Triple.getOS()) { 1882 case llvm::Triple::DragonFly: 1883 case llvm::Triple::FreeBSD: 1884 case llvm::Triple::OpenBSD: 1885 case llvm::Triple::Bitrig: 1886 case llvm::Triple::Win32: 1887 return true; 1888 default: 1889 return false; 1890 } 1891 } 1892 1893 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1894 llvm::GlobalValue *GV, 1895 CodeGen::CodeGenModule &CGM) const { 1896 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1897 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1898 // Get the LLVM function. 1899 llvm::Function *Fn = cast<llvm::Function>(GV); 1900 1901 // Now add the 'alignstack' attribute with a value of 16. 1902 llvm::AttrBuilder B; 1903 B.addStackAlignmentAttr(16); 1904 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 1905 } 1906 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1907 llvm::Function *Fn = cast<llvm::Function>(GV); 1908 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1909 } 1910 } 1911 } 1912 1913 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1914 CodeGen::CodeGenFunction &CGF, 1915 llvm::Value *Address) const { 1916 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1917 1918 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1919 1920 // 0-7 are the eight integer registers; the order is different 1921 // on Darwin (for EH), but the range is the same. 1922 // 8 is %eip. 1923 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1924 1925 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1926 // 12-16 are st(0..4). Not sure why we stop at 4. 1927 // These have size 16, which is sizeof(long double) on 1928 // platforms with 8-byte alignment for that type. 1929 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1930 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1931 1932 } else { 1933 // 9 is %eflags, which doesn't get a size on Darwin for some 1934 // reason. 1935 Builder.CreateAlignedStore( 1936 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1937 CharUnits::One()); 1938 1939 // 11-16 are st(0..5). Not sure why we stop at 5. 1940 // These have size 12, which is sizeof(long double) on 1941 // platforms with 4-byte alignment for that type. 1942 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1943 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1944 } 1945 1946 return false; 1947 } 1948 1949 //===----------------------------------------------------------------------===// 1950 // X86-64 ABI Implementation 1951 //===----------------------------------------------------------------------===// 1952 1953 1954 namespace { 1955 /// The AVX ABI level for X86 targets. 1956 enum class X86AVXABILevel { 1957 None, 1958 AVX, 1959 AVX512 1960 }; 1961 1962 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1963 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1964 switch (AVXLevel) { 1965 case X86AVXABILevel::AVX512: 1966 return 512; 1967 case X86AVXABILevel::AVX: 1968 return 256; 1969 case X86AVXABILevel::None: 1970 return 128; 1971 } 1972 llvm_unreachable("Unknown AVXLevel"); 1973 } 1974 1975 /// X86_64ABIInfo - The X86_64 ABI information. 1976 class X86_64ABIInfo : public SwiftABIInfo { 1977 enum Class { 1978 Integer = 0, 1979 SSE, 1980 SSEUp, 1981 X87, 1982 X87Up, 1983 ComplexX87, 1984 NoClass, 1985 Memory 1986 }; 1987 1988 /// merge - Implement the X86_64 ABI merging algorithm. 1989 /// 1990 /// Merge an accumulating classification \arg Accum with a field 1991 /// classification \arg Field. 1992 /// 1993 /// \param Accum - The accumulating classification. This should 1994 /// always be either NoClass or the result of a previous merge 1995 /// call. In addition, this should never be Memory (the caller 1996 /// should just return Memory for the aggregate). 1997 static Class merge(Class Accum, Class Field); 1998 1999 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2000 /// 2001 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2002 /// final MEMORY or SSE classes when necessary. 2003 /// 2004 /// \param AggregateSize - The size of the current aggregate in 2005 /// the classification process. 2006 /// 2007 /// \param Lo - The classification for the parts of the type 2008 /// residing in the low word of the containing object. 2009 /// 2010 /// \param Hi - The classification for the parts of the type 2011 /// residing in the higher words of the containing object. 2012 /// 2013 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2014 2015 /// classify - Determine the x86_64 register classes in which the 2016 /// given type T should be passed. 2017 /// 2018 /// \param Lo - The classification for the parts of the type 2019 /// residing in the low word of the containing object. 2020 /// 2021 /// \param Hi - The classification for the parts of the type 2022 /// residing in the high word of the containing object. 2023 /// 2024 /// \param OffsetBase - The bit offset of this type in the 2025 /// containing object. Some parameters are classified different 2026 /// depending on whether they straddle an eightbyte boundary. 2027 /// 2028 /// \param isNamedArg - Whether the argument in question is a "named" 2029 /// argument, as used in AMD64-ABI 3.5.7. 2030 /// 2031 /// If a word is unused its result will be NoClass; if a type should 2032 /// be passed in Memory then at least the classification of \arg Lo 2033 /// will be Memory. 2034 /// 2035 /// The \arg Lo class will be NoClass iff the argument is ignored. 2036 /// 2037 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2038 /// also be ComplexX87. 2039 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2040 bool isNamedArg) const; 2041 2042 llvm::Type *GetByteVectorType(QualType Ty) const; 2043 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2044 unsigned IROffset, QualType SourceTy, 2045 unsigned SourceOffset) const; 2046 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2047 unsigned IROffset, QualType SourceTy, 2048 unsigned SourceOffset) const; 2049 2050 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2051 /// such that the argument will be returned in memory. 2052 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2053 2054 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2055 /// such that the argument will be passed in memory. 2056 /// 2057 /// \param freeIntRegs - The number of free integer registers remaining 2058 /// available. 2059 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2060 2061 ABIArgInfo classifyReturnType(QualType RetTy) const; 2062 2063 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2064 unsigned &neededInt, unsigned &neededSSE, 2065 bool isNamedArg) const; 2066 2067 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2068 unsigned &NeededSSE) const; 2069 2070 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2071 unsigned &NeededSSE) const; 2072 2073 bool IsIllegalVectorType(QualType Ty) const; 2074 2075 /// The 0.98 ABI revision clarified a lot of ambiguities, 2076 /// unfortunately in ways that were not always consistent with 2077 /// certain previous compilers. In particular, platforms which 2078 /// required strict binary compatibility with older versions of GCC 2079 /// may need to exempt themselves. 2080 bool honorsRevision0_98() const { 2081 return !getTarget().getTriple().isOSDarwin(); 2082 } 2083 2084 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 2085 // compilers require us to classify it as INTEGER. 2086 bool classifyIntegerMMXAsSSE() const { 2087 const llvm::Triple &Triple = getTarget().getTriple(); 2088 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2089 return false; 2090 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2091 return false; 2092 return true; 2093 } 2094 2095 X86AVXABILevel AVXLevel; 2096 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2097 // 64-bit hardware. 2098 bool Has64BitPointers; 2099 2100 public: 2101 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2102 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2103 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2104 } 2105 2106 bool isPassedUsingAVXType(QualType type) const { 2107 unsigned neededInt, neededSSE; 2108 // The freeIntRegs argument doesn't matter here. 2109 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2110 /*isNamedArg*/true); 2111 if (info.isDirect()) { 2112 llvm::Type *ty = info.getCoerceToType(); 2113 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2114 return (vectorTy->getBitWidth() > 128); 2115 } 2116 return false; 2117 } 2118 2119 void computeInfo(CGFunctionInfo &FI) const override; 2120 2121 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2122 QualType Ty) const override; 2123 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2124 QualType Ty) const override; 2125 2126 bool has64BitPointers() const { 2127 return Has64BitPointers; 2128 } 2129 2130 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2131 ArrayRef<llvm::Type*> scalars, 2132 bool asReturnValue) const override { 2133 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2134 } 2135 bool isSwiftErrorInRegister() const override { 2136 return true; 2137 } 2138 }; 2139 2140 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2141 class WinX86_64ABIInfo : public SwiftABIInfo { 2142 public: 2143 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2144 : SwiftABIInfo(CGT), 2145 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2146 2147 void computeInfo(CGFunctionInfo &FI) const override; 2148 2149 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2150 QualType Ty) const override; 2151 2152 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2153 // FIXME: Assumes vectorcall is in use. 2154 return isX86VectorTypeForVectorCall(getContext(), Ty); 2155 } 2156 2157 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2158 uint64_t NumMembers) const override { 2159 // FIXME: Assumes vectorcall is in use. 2160 return isX86VectorCallAggregateSmallEnough(NumMembers); 2161 } 2162 2163 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2164 ArrayRef<llvm::Type *> scalars, 2165 bool asReturnValue) const override { 2166 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2167 } 2168 2169 bool isSwiftErrorInRegister() const override { 2170 return true; 2171 } 2172 2173 private: 2174 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2175 bool IsVectorCall, bool IsRegCall) const; 2176 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2177 const ABIArgInfo ¤t) const; 2178 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2179 bool IsVectorCall, bool IsRegCall) const; 2180 2181 bool IsMingw64; 2182 }; 2183 2184 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2185 public: 2186 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2187 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2188 2189 const X86_64ABIInfo &getABIInfo() const { 2190 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2191 } 2192 2193 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2194 return 7; 2195 } 2196 2197 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2198 llvm::Value *Address) const override { 2199 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2200 2201 // 0-15 are the 16 integer registers. 2202 // 16 is %rip. 2203 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2204 return false; 2205 } 2206 2207 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2208 StringRef Constraint, 2209 llvm::Type* Ty) const override { 2210 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2211 } 2212 2213 bool isNoProtoCallVariadic(const CallArgList &args, 2214 const FunctionNoProtoType *fnType) const override { 2215 // The default CC on x86-64 sets %al to the number of SSA 2216 // registers used, and GCC sets this when calling an unprototyped 2217 // function, so we override the default behavior. However, don't do 2218 // that when AVX types are involved: the ABI explicitly states it is 2219 // undefined, and it doesn't work in practice because of how the ABI 2220 // defines varargs anyway. 2221 if (fnType->getCallConv() == CC_C) { 2222 bool HasAVXType = false; 2223 for (CallArgList::const_iterator 2224 it = args.begin(), ie = args.end(); it != ie; ++it) { 2225 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2226 HasAVXType = true; 2227 break; 2228 } 2229 } 2230 2231 if (!HasAVXType) 2232 return true; 2233 } 2234 2235 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2236 } 2237 2238 llvm::Constant * 2239 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2240 unsigned Sig; 2241 if (getABIInfo().has64BitPointers()) 2242 Sig = (0xeb << 0) | // jmp rel8 2243 (0x0a << 8) | // .+0x0c 2244 ('F' << 16) | 2245 ('T' << 24); 2246 else 2247 Sig = (0xeb << 0) | // jmp rel8 2248 (0x06 << 8) | // .+0x08 2249 ('F' << 16) | 2250 ('T' << 24); 2251 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2252 } 2253 2254 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2255 CodeGen::CodeGenModule &CGM) const override { 2256 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2257 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2258 llvm::Function *Fn = cast<llvm::Function>(GV); 2259 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2260 } 2261 } 2262 } 2263 }; 2264 2265 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2266 public: 2267 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2268 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2269 2270 void getDependentLibraryOption(llvm::StringRef Lib, 2271 llvm::SmallString<24> &Opt) const override { 2272 Opt = "\01"; 2273 // If the argument contains a space, enclose it in quotes. 2274 if (Lib.find(" ") != StringRef::npos) 2275 Opt += "\"" + Lib.str() + "\""; 2276 else 2277 Opt += Lib; 2278 } 2279 }; 2280 2281 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2282 // If the argument does not end in .lib, automatically add the suffix. 2283 // If the argument contains a space, enclose it in quotes. 2284 // This matches the behavior of MSVC. 2285 bool Quote = (Lib.find(" ") != StringRef::npos); 2286 std::string ArgStr = Quote ? "\"" : ""; 2287 ArgStr += Lib; 2288 if (!Lib.endswith_lower(".lib")) 2289 ArgStr += ".lib"; 2290 ArgStr += Quote ? "\"" : ""; 2291 return ArgStr; 2292 } 2293 2294 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2295 public: 2296 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2297 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2298 unsigned NumRegisterParameters) 2299 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2300 Win32StructABI, NumRegisterParameters, false) {} 2301 2302 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2303 CodeGen::CodeGenModule &CGM) const override; 2304 2305 void getDependentLibraryOption(llvm::StringRef Lib, 2306 llvm::SmallString<24> &Opt) const override { 2307 Opt = "/DEFAULTLIB:"; 2308 Opt += qualifyWindowsLibrary(Lib); 2309 } 2310 2311 void getDetectMismatchOption(llvm::StringRef Name, 2312 llvm::StringRef Value, 2313 llvm::SmallString<32> &Opt) const override { 2314 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2315 } 2316 }; 2317 2318 static void addStackProbeSizeTargetAttribute(const Decl *D, 2319 llvm::GlobalValue *GV, 2320 CodeGen::CodeGenModule &CGM) { 2321 if (D && isa<FunctionDecl>(D)) { 2322 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2323 llvm::Function *Fn = cast<llvm::Function>(GV); 2324 2325 Fn->addFnAttr("stack-probe-size", 2326 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2327 } 2328 } 2329 } 2330 2331 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2332 llvm::GlobalValue *GV, 2333 CodeGen::CodeGenModule &CGM) const { 2334 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2335 2336 addStackProbeSizeTargetAttribute(D, GV, CGM); 2337 } 2338 2339 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2340 public: 2341 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2342 X86AVXABILevel AVXLevel) 2343 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2344 2345 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2346 CodeGen::CodeGenModule &CGM) const override; 2347 2348 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2349 return 7; 2350 } 2351 2352 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2353 llvm::Value *Address) const override { 2354 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2355 2356 // 0-15 are the 16 integer registers. 2357 // 16 is %rip. 2358 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2359 return false; 2360 } 2361 2362 void getDependentLibraryOption(llvm::StringRef Lib, 2363 llvm::SmallString<24> &Opt) const override { 2364 Opt = "/DEFAULTLIB:"; 2365 Opt += qualifyWindowsLibrary(Lib); 2366 } 2367 2368 void getDetectMismatchOption(llvm::StringRef Name, 2369 llvm::StringRef Value, 2370 llvm::SmallString<32> &Opt) const override { 2371 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2372 } 2373 }; 2374 2375 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2376 llvm::GlobalValue *GV, 2377 CodeGen::CodeGenModule &CGM) const { 2378 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2379 2380 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2381 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2382 llvm::Function *Fn = cast<llvm::Function>(GV); 2383 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2384 } 2385 } 2386 2387 addStackProbeSizeTargetAttribute(D, GV, CGM); 2388 } 2389 } 2390 2391 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2392 Class &Hi) const { 2393 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2394 // 2395 // (a) If one of the classes is Memory, the whole argument is passed in 2396 // memory. 2397 // 2398 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2399 // memory. 2400 // 2401 // (c) If the size of the aggregate exceeds two eightbytes and the first 2402 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2403 // argument is passed in memory. NOTE: This is necessary to keep the 2404 // ABI working for processors that don't support the __m256 type. 2405 // 2406 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2407 // 2408 // Some of these are enforced by the merging logic. Others can arise 2409 // only with unions; for example: 2410 // union { _Complex double; unsigned; } 2411 // 2412 // Note that clauses (b) and (c) were added in 0.98. 2413 // 2414 if (Hi == Memory) 2415 Lo = Memory; 2416 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2417 Lo = Memory; 2418 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2419 Lo = Memory; 2420 if (Hi == SSEUp && Lo != SSE) 2421 Hi = SSE; 2422 } 2423 2424 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2425 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2426 // classified recursively so that always two fields are 2427 // considered. The resulting class is calculated according to 2428 // the classes of the fields in the eightbyte: 2429 // 2430 // (a) If both classes are equal, this is the resulting class. 2431 // 2432 // (b) If one of the classes is NO_CLASS, the resulting class is 2433 // the other class. 2434 // 2435 // (c) If one of the classes is MEMORY, the result is the MEMORY 2436 // class. 2437 // 2438 // (d) If one of the classes is INTEGER, the result is the 2439 // INTEGER. 2440 // 2441 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2442 // MEMORY is used as class. 2443 // 2444 // (f) Otherwise class SSE is used. 2445 2446 // Accum should never be memory (we should have returned) or 2447 // ComplexX87 (because this cannot be passed in a structure). 2448 assert((Accum != Memory && Accum != ComplexX87) && 2449 "Invalid accumulated classification during merge."); 2450 if (Accum == Field || Field == NoClass) 2451 return Accum; 2452 if (Field == Memory) 2453 return Memory; 2454 if (Accum == NoClass) 2455 return Field; 2456 if (Accum == Integer || Field == Integer) 2457 return Integer; 2458 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2459 Accum == X87 || Accum == X87Up) 2460 return Memory; 2461 return SSE; 2462 } 2463 2464 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2465 Class &Lo, Class &Hi, bool isNamedArg) const { 2466 // FIXME: This code can be simplified by introducing a simple value class for 2467 // Class pairs with appropriate constructor methods for the various 2468 // situations. 2469 2470 // FIXME: Some of the split computations are wrong; unaligned vectors 2471 // shouldn't be passed in registers for example, so there is no chance they 2472 // can straddle an eightbyte. Verify & simplify. 2473 2474 Lo = Hi = NoClass; 2475 2476 Class &Current = OffsetBase < 64 ? Lo : Hi; 2477 Current = Memory; 2478 2479 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2480 BuiltinType::Kind k = BT->getKind(); 2481 2482 if (k == BuiltinType::Void) { 2483 Current = NoClass; 2484 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2485 Lo = Integer; 2486 Hi = Integer; 2487 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2488 Current = Integer; 2489 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2490 Current = SSE; 2491 } else if (k == BuiltinType::LongDouble) { 2492 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2493 if (LDF == &llvm::APFloat::IEEEquad()) { 2494 Lo = SSE; 2495 Hi = SSEUp; 2496 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2497 Lo = X87; 2498 Hi = X87Up; 2499 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2500 Current = SSE; 2501 } else 2502 llvm_unreachable("unexpected long double representation!"); 2503 } 2504 // FIXME: _Decimal32 and _Decimal64 are SSE. 2505 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2506 return; 2507 } 2508 2509 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2510 // Classify the underlying integer type. 2511 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2512 return; 2513 } 2514 2515 if (Ty->hasPointerRepresentation()) { 2516 Current = Integer; 2517 return; 2518 } 2519 2520 if (Ty->isMemberPointerType()) { 2521 if (Ty->isMemberFunctionPointerType()) { 2522 if (Has64BitPointers) { 2523 // If Has64BitPointers, this is an {i64, i64}, so classify both 2524 // Lo and Hi now. 2525 Lo = Hi = Integer; 2526 } else { 2527 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2528 // straddles an eightbyte boundary, Hi should be classified as well. 2529 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2530 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2531 if (EB_FuncPtr != EB_ThisAdj) { 2532 Lo = Hi = Integer; 2533 } else { 2534 Current = Integer; 2535 } 2536 } 2537 } else { 2538 Current = Integer; 2539 } 2540 return; 2541 } 2542 2543 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2544 uint64_t Size = getContext().getTypeSize(VT); 2545 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2546 // gcc passes the following as integer: 2547 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2548 // 2 bytes - <2 x char>, <1 x short> 2549 // 1 byte - <1 x char> 2550 Current = Integer; 2551 2552 // If this type crosses an eightbyte boundary, it should be 2553 // split. 2554 uint64_t EB_Lo = (OffsetBase) / 64; 2555 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2556 if (EB_Lo != EB_Hi) 2557 Hi = Lo; 2558 } else if (Size == 64) { 2559 QualType ElementType = VT->getElementType(); 2560 2561 // gcc passes <1 x double> in memory. :( 2562 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2563 return; 2564 2565 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2566 // pass them as integer. For platforms where clang is the de facto 2567 // platform compiler, we must continue to use integer. 2568 if (!classifyIntegerMMXAsSSE() && 2569 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2570 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2571 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2572 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2573 Current = Integer; 2574 else 2575 Current = SSE; 2576 2577 // If this type crosses an eightbyte boundary, it should be 2578 // split. 2579 if (OffsetBase && OffsetBase != 64) 2580 Hi = Lo; 2581 } else if (Size == 128 || 2582 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2583 // Arguments of 256-bits are split into four eightbyte chunks. The 2584 // least significant one belongs to class SSE and all the others to class 2585 // SSEUP. The original Lo and Hi design considers that types can't be 2586 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2587 // This design isn't correct for 256-bits, but since there're no cases 2588 // where the upper parts would need to be inspected, avoid adding 2589 // complexity and just consider Hi to match the 64-256 part. 2590 // 2591 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2592 // registers if they are "named", i.e. not part of the "..." of a 2593 // variadic function. 2594 // 2595 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2596 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2597 Lo = SSE; 2598 Hi = SSEUp; 2599 } 2600 return; 2601 } 2602 2603 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2604 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2605 2606 uint64_t Size = getContext().getTypeSize(Ty); 2607 if (ET->isIntegralOrEnumerationType()) { 2608 if (Size <= 64) 2609 Current = Integer; 2610 else if (Size <= 128) 2611 Lo = Hi = Integer; 2612 } else if (ET == getContext().FloatTy) { 2613 Current = SSE; 2614 } else if (ET == getContext().DoubleTy) { 2615 Lo = Hi = SSE; 2616 } else if (ET == getContext().LongDoubleTy) { 2617 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2618 if (LDF == &llvm::APFloat::IEEEquad()) 2619 Current = Memory; 2620 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2621 Current = ComplexX87; 2622 else if (LDF == &llvm::APFloat::IEEEdouble()) 2623 Lo = Hi = SSE; 2624 else 2625 llvm_unreachable("unexpected long double representation!"); 2626 } 2627 2628 // If this complex type crosses an eightbyte boundary then it 2629 // should be split. 2630 uint64_t EB_Real = (OffsetBase) / 64; 2631 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2632 if (Hi == NoClass && EB_Real != EB_Imag) 2633 Hi = Lo; 2634 2635 return; 2636 } 2637 2638 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2639 // Arrays are treated like structures. 2640 2641 uint64_t Size = getContext().getTypeSize(Ty); 2642 2643 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2644 // than eight eightbytes, ..., it has class MEMORY. 2645 if (Size > 512) 2646 return; 2647 2648 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2649 // fields, it has class MEMORY. 2650 // 2651 // Only need to check alignment of array base. 2652 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2653 return; 2654 2655 // Otherwise implement simplified merge. We could be smarter about 2656 // this, but it isn't worth it and would be harder to verify. 2657 Current = NoClass; 2658 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2659 uint64_t ArraySize = AT->getSize().getZExtValue(); 2660 2661 // The only case a 256-bit wide vector could be used is when the array 2662 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2663 // to work for sizes wider than 128, early check and fallback to memory. 2664 // 2665 if (Size > 128 && 2666 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2667 return; 2668 2669 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2670 Class FieldLo, FieldHi; 2671 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2672 Lo = merge(Lo, FieldLo); 2673 Hi = merge(Hi, FieldHi); 2674 if (Lo == Memory || Hi == Memory) 2675 break; 2676 } 2677 2678 postMerge(Size, Lo, Hi); 2679 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2680 return; 2681 } 2682 2683 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2684 uint64_t Size = getContext().getTypeSize(Ty); 2685 2686 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2687 // than eight eightbytes, ..., it has class MEMORY. 2688 if (Size > 512) 2689 return; 2690 2691 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2692 // copy constructor or a non-trivial destructor, it is passed by invisible 2693 // reference. 2694 if (getRecordArgABI(RT, getCXXABI())) 2695 return; 2696 2697 const RecordDecl *RD = RT->getDecl(); 2698 2699 // Assume variable sized types are passed in memory. 2700 if (RD->hasFlexibleArrayMember()) 2701 return; 2702 2703 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2704 2705 // Reset Lo class, this will be recomputed. 2706 Current = NoClass; 2707 2708 // If this is a C++ record, classify the bases first. 2709 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2710 for (const auto &I : CXXRD->bases()) { 2711 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2712 "Unexpected base class!"); 2713 const CXXRecordDecl *Base = 2714 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2715 2716 // Classify this field. 2717 // 2718 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2719 // single eightbyte, each is classified separately. Each eightbyte gets 2720 // initialized to class NO_CLASS. 2721 Class FieldLo, FieldHi; 2722 uint64_t Offset = 2723 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2724 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2725 Lo = merge(Lo, FieldLo); 2726 Hi = merge(Hi, FieldHi); 2727 if (Lo == Memory || Hi == Memory) { 2728 postMerge(Size, Lo, Hi); 2729 return; 2730 } 2731 } 2732 } 2733 2734 // Classify the fields one at a time, merging the results. 2735 unsigned idx = 0; 2736 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2737 i != e; ++i, ++idx) { 2738 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2739 bool BitField = i->isBitField(); 2740 2741 // Ignore padding bit-fields. 2742 if (BitField && i->isUnnamedBitfield()) 2743 continue; 2744 2745 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2746 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2747 // 2748 // The only case a 256-bit wide vector could be used is when the struct 2749 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2750 // to work for sizes wider than 128, early check and fallback to memory. 2751 // 2752 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2753 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2754 Lo = Memory; 2755 postMerge(Size, Lo, Hi); 2756 return; 2757 } 2758 // Note, skip this test for bit-fields, see below. 2759 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2760 Lo = Memory; 2761 postMerge(Size, Lo, Hi); 2762 return; 2763 } 2764 2765 // Classify this field. 2766 // 2767 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2768 // exceeds a single eightbyte, each is classified 2769 // separately. Each eightbyte gets initialized to class 2770 // NO_CLASS. 2771 Class FieldLo, FieldHi; 2772 2773 // Bit-fields require special handling, they do not force the 2774 // structure to be passed in memory even if unaligned, and 2775 // therefore they can straddle an eightbyte. 2776 if (BitField) { 2777 assert(!i->isUnnamedBitfield()); 2778 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2779 uint64_t Size = i->getBitWidthValue(getContext()); 2780 2781 uint64_t EB_Lo = Offset / 64; 2782 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2783 2784 if (EB_Lo) { 2785 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2786 FieldLo = NoClass; 2787 FieldHi = Integer; 2788 } else { 2789 FieldLo = Integer; 2790 FieldHi = EB_Hi ? Integer : NoClass; 2791 } 2792 } else 2793 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2794 Lo = merge(Lo, FieldLo); 2795 Hi = merge(Hi, FieldHi); 2796 if (Lo == Memory || Hi == Memory) 2797 break; 2798 } 2799 2800 postMerge(Size, Lo, Hi); 2801 } 2802 } 2803 2804 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2805 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2806 // place naturally. 2807 if (!isAggregateTypeForABI(Ty)) { 2808 // Treat an enum type as its underlying type. 2809 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2810 Ty = EnumTy->getDecl()->getIntegerType(); 2811 2812 return (Ty->isPromotableIntegerType() ? 2813 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2814 } 2815 2816 return getNaturalAlignIndirect(Ty); 2817 } 2818 2819 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2820 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2821 uint64_t Size = getContext().getTypeSize(VecTy); 2822 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2823 if (Size <= 64 || Size > LargestVector) 2824 return true; 2825 } 2826 2827 return false; 2828 } 2829 2830 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2831 unsigned freeIntRegs) const { 2832 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2833 // place naturally. 2834 // 2835 // This assumption is optimistic, as there could be free registers available 2836 // when we need to pass this argument in memory, and LLVM could try to pass 2837 // the argument in the free register. This does not seem to happen currently, 2838 // but this code would be much safer if we could mark the argument with 2839 // 'onstack'. See PR12193. 2840 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2841 // Treat an enum type as its underlying type. 2842 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2843 Ty = EnumTy->getDecl()->getIntegerType(); 2844 2845 return (Ty->isPromotableIntegerType() ? 2846 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2847 } 2848 2849 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2850 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2851 2852 // Compute the byval alignment. We specify the alignment of the byval in all 2853 // cases so that the mid-level optimizer knows the alignment of the byval. 2854 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2855 2856 // Attempt to avoid passing indirect results using byval when possible. This 2857 // is important for good codegen. 2858 // 2859 // We do this by coercing the value into a scalar type which the backend can 2860 // handle naturally (i.e., without using byval). 2861 // 2862 // For simplicity, we currently only do this when we have exhausted all of the 2863 // free integer registers. Doing this when there are free integer registers 2864 // would require more care, as we would have to ensure that the coerced value 2865 // did not claim the unused register. That would require either reording the 2866 // arguments to the function (so that any subsequent inreg values came first), 2867 // or only doing this optimization when there were no following arguments that 2868 // might be inreg. 2869 // 2870 // We currently expect it to be rare (particularly in well written code) for 2871 // arguments to be passed on the stack when there are still free integer 2872 // registers available (this would typically imply large structs being passed 2873 // by value), so this seems like a fair tradeoff for now. 2874 // 2875 // We can revisit this if the backend grows support for 'onstack' parameter 2876 // attributes. See PR12193. 2877 if (freeIntRegs == 0) { 2878 uint64_t Size = getContext().getTypeSize(Ty); 2879 2880 // If this type fits in an eightbyte, coerce it into the matching integral 2881 // type, which will end up on the stack (with alignment 8). 2882 if (Align == 8 && Size <= 64) 2883 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2884 Size)); 2885 } 2886 2887 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2888 } 2889 2890 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2891 /// register. Pick an LLVM IR type that will be passed as a vector register. 2892 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2893 // Wrapper structs/arrays that only contain vectors are passed just like 2894 // vectors; strip them off if present. 2895 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2896 Ty = QualType(InnerTy, 0); 2897 2898 llvm::Type *IRType = CGT.ConvertType(Ty); 2899 if (isa<llvm::VectorType>(IRType) || 2900 IRType->getTypeID() == llvm::Type::FP128TyID) 2901 return IRType; 2902 2903 // We couldn't find the preferred IR vector type for 'Ty'. 2904 uint64_t Size = getContext().getTypeSize(Ty); 2905 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2906 2907 // Return a LLVM IR vector type based on the size of 'Ty'. 2908 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2909 Size / 64); 2910 } 2911 2912 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2913 /// is known to either be off the end of the specified type or being in 2914 /// alignment padding. The user type specified is known to be at most 128 bits 2915 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2916 /// classification that put one of the two halves in the INTEGER class. 2917 /// 2918 /// It is conservatively correct to return false. 2919 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2920 unsigned EndBit, ASTContext &Context) { 2921 // If the bytes being queried are off the end of the type, there is no user 2922 // data hiding here. This handles analysis of builtins, vectors and other 2923 // types that don't contain interesting padding. 2924 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2925 if (TySize <= StartBit) 2926 return true; 2927 2928 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2929 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2930 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2931 2932 // Check each element to see if the element overlaps with the queried range. 2933 for (unsigned i = 0; i != NumElts; ++i) { 2934 // If the element is after the span we care about, then we're done.. 2935 unsigned EltOffset = i*EltSize; 2936 if (EltOffset >= EndBit) break; 2937 2938 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2939 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2940 EndBit-EltOffset, Context)) 2941 return false; 2942 } 2943 // If it overlaps no elements, then it is safe to process as padding. 2944 return true; 2945 } 2946 2947 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2948 const RecordDecl *RD = RT->getDecl(); 2949 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2950 2951 // If this is a C++ record, check the bases first. 2952 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2953 for (const auto &I : CXXRD->bases()) { 2954 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2955 "Unexpected base class!"); 2956 const CXXRecordDecl *Base = 2957 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2958 2959 // If the base is after the span we care about, ignore it. 2960 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2961 if (BaseOffset >= EndBit) continue; 2962 2963 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2964 if (!BitsContainNoUserData(I.getType(), BaseStart, 2965 EndBit-BaseOffset, Context)) 2966 return false; 2967 } 2968 } 2969 2970 // Verify that no field has data that overlaps the region of interest. Yes 2971 // this could be sped up a lot by being smarter about queried fields, 2972 // however we're only looking at structs up to 16 bytes, so we don't care 2973 // much. 2974 unsigned idx = 0; 2975 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2976 i != e; ++i, ++idx) { 2977 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2978 2979 // If we found a field after the region we care about, then we're done. 2980 if (FieldOffset >= EndBit) break; 2981 2982 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2983 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2984 Context)) 2985 return false; 2986 } 2987 2988 // If nothing in this record overlapped the area of interest, then we're 2989 // clean. 2990 return true; 2991 } 2992 2993 return false; 2994 } 2995 2996 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2997 /// float member at the specified offset. For example, {int,{float}} has a 2998 /// float at offset 4. It is conservatively correct for this routine to return 2999 /// false. 3000 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3001 const llvm::DataLayout &TD) { 3002 // Base case if we find a float. 3003 if (IROffset == 0 && IRType->isFloatTy()) 3004 return true; 3005 3006 // If this is a struct, recurse into the field at the specified offset. 3007 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3008 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3009 unsigned Elt = SL->getElementContainingOffset(IROffset); 3010 IROffset -= SL->getElementOffset(Elt); 3011 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3012 } 3013 3014 // If this is an array, recurse into the field at the specified offset. 3015 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3016 llvm::Type *EltTy = ATy->getElementType(); 3017 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3018 IROffset -= IROffset/EltSize*EltSize; 3019 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3020 } 3021 3022 return false; 3023 } 3024 3025 3026 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3027 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3028 llvm::Type *X86_64ABIInfo:: 3029 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3030 QualType SourceTy, unsigned SourceOffset) const { 3031 // The only three choices we have are either double, <2 x float>, or float. We 3032 // pass as float if the last 4 bytes is just padding. This happens for 3033 // structs that contain 3 floats. 3034 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3035 SourceOffset*8+64, getContext())) 3036 return llvm::Type::getFloatTy(getVMContext()); 3037 3038 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3039 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3040 // case. 3041 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3042 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3043 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3044 3045 return llvm::Type::getDoubleTy(getVMContext()); 3046 } 3047 3048 3049 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3050 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3051 /// about the high or low part of an up-to-16-byte struct. This routine picks 3052 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3053 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3054 /// etc). 3055 /// 3056 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3057 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3058 /// the 8-byte value references. PrefType may be null. 3059 /// 3060 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3061 /// an offset into this that we're processing (which is always either 0 or 8). 3062 /// 3063 llvm::Type *X86_64ABIInfo:: 3064 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3065 QualType SourceTy, unsigned SourceOffset) const { 3066 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3067 // returning an 8-byte unit starting with it. See if we can safely use it. 3068 if (IROffset == 0) { 3069 // Pointers and int64's always fill the 8-byte unit. 3070 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3071 IRType->isIntegerTy(64)) 3072 return IRType; 3073 3074 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3075 // goodness in the source type is just tail padding. This is allowed to 3076 // kick in for struct {double,int} on the int, but not on 3077 // struct{double,int,int} because we wouldn't return the second int. We 3078 // have to do this analysis on the source type because we can't depend on 3079 // unions being lowered a specific way etc. 3080 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3081 IRType->isIntegerTy(32) || 3082 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3083 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3084 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3085 3086 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3087 SourceOffset*8+64, getContext())) 3088 return IRType; 3089 } 3090 } 3091 3092 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3093 // If this is a struct, recurse into the field at the specified offset. 3094 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3095 if (IROffset < SL->getSizeInBytes()) { 3096 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3097 IROffset -= SL->getElementOffset(FieldIdx); 3098 3099 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3100 SourceTy, SourceOffset); 3101 } 3102 } 3103 3104 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3105 llvm::Type *EltTy = ATy->getElementType(); 3106 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3107 unsigned EltOffset = IROffset/EltSize*EltSize; 3108 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3109 SourceOffset); 3110 } 3111 3112 // Okay, we don't have any better idea of what to pass, so we pass this in an 3113 // integer register that isn't too big to fit the rest of the struct. 3114 unsigned TySizeInBytes = 3115 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3116 3117 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3118 3119 // It is always safe to classify this as an integer type up to i64 that 3120 // isn't larger than the structure. 3121 return llvm::IntegerType::get(getVMContext(), 3122 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3123 } 3124 3125 3126 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3127 /// be used as elements of a two register pair to pass or return, return a 3128 /// first class aggregate to represent them. For example, if the low part of 3129 /// a by-value argument should be passed as i32* and the high part as float, 3130 /// return {i32*, float}. 3131 static llvm::Type * 3132 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3133 const llvm::DataLayout &TD) { 3134 // In order to correctly satisfy the ABI, we need to the high part to start 3135 // at offset 8. If the high and low parts we inferred are both 4-byte types 3136 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3137 // the second element at offset 8. Check for this: 3138 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3139 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3140 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3141 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3142 3143 // To handle this, we have to increase the size of the low part so that the 3144 // second element will start at an 8 byte offset. We can't increase the size 3145 // of the second element because it might make us access off the end of the 3146 // struct. 3147 if (HiStart != 8) { 3148 // There are usually two sorts of types the ABI generation code can produce 3149 // for the low part of a pair that aren't 8 bytes in size: float or 3150 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3151 // NaCl). 3152 // Promote these to a larger type. 3153 if (Lo->isFloatTy()) 3154 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3155 else { 3156 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3157 && "Invalid/unknown lo type"); 3158 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3159 } 3160 } 3161 3162 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3163 3164 // Verify that the second element is at an 8-byte offset. 3165 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3166 "Invalid x86-64 argument pair!"); 3167 return Result; 3168 } 3169 3170 ABIArgInfo X86_64ABIInfo:: 3171 classifyReturnType(QualType RetTy) const { 3172 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3173 // classification algorithm. 3174 X86_64ABIInfo::Class Lo, Hi; 3175 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3176 3177 // Check some invariants. 3178 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3179 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3180 3181 llvm::Type *ResType = nullptr; 3182 switch (Lo) { 3183 case NoClass: 3184 if (Hi == NoClass) 3185 return ABIArgInfo::getIgnore(); 3186 // If the low part is just padding, it takes no register, leave ResType 3187 // null. 3188 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3189 "Unknown missing lo part"); 3190 break; 3191 3192 case SSEUp: 3193 case X87Up: 3194 llvm_unreachable("Invalid classification for lo word."); 3195 3196 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3197 // hidden argument. 3198 case Memory: 3199 return getIndirectReturnResult(RetTy); 3200 3201 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3202 // available register of the sequence %rax, %rdx is used. 3203 case Integer: 3204 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3205 3206 // If we have a sign or zero extended integer, make sure to return Extend 3207 // so that the parameter gets the right LLVM IR attributes. 3208 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3209 // Treat an enum type as its underlying type. 3210 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3211 RetTy = EnumTy->getDecl()->getIntegerType(); 3212 3213 if (RetTy->isIntegralOrEnumerationType() && 3214 RetTy->isPromotableIntegerType()) 3215 return ABIArgInfo::getExtend(); 3216 } 3217 break; 3218 3219 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3220 // available SSE register of the sequence %xmm0, %xmm1 is used. 3221 case SSE: 3222 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3223 break; 3224 3225 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3226 // returned on the X87 stack in %st0 as 80-bit x87 number. 3227 case X87: 3228 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3229 break; 3230 3231 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3232 // part of the value is returned in %st0 and the imaginary part in 3233 // %st1. 3234 case ComplexX87: 3235 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3236 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3237 llvm::Type::getX86_FP80Ty(getVMContext())); 3238 break; 3239 } 3240 3241 llvm::Type *HighPart = nullptr; 3242 switch (Hi) { 3243 // Memory was handled previously and X87 should 3244 // never occur as a hi class. 3245 case Memory: 3246 case X87: 3247 llvm_unreachable("Invalid classification for hi word."); 3248 3249 case ComplexX87: // Previously handled. 3250 case NoClass: 3251 break; 3252 3253 case Integer: 3254 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3255 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3256 return ABIArgInfo::getDirect(HighPart, 8); 3257 break; 3258 case SSE: 3259 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3260 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3261 return ABIArgInfo::getDirect(HighPart, 8); 3262 break; 3263 3264 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3265 // is passed in the next available eightbyte chunk if the last used 3266 // vector register. 3267 // 3268 // SSEUP should always be preceded by SSE, just widen. 3269 case SSEUp: 3270 assert(Lo == SSE && "Unexpected SSEUp classification."); 3271 ResType = GetByteVectorType(RetTy); 3272 break; 3273 3274 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3275 // returned together with the previous X87 value in %st0. 3276 case X87Up: 3277 // If X87Up is preceded by X87, we don't need to do 3278 // anything. However, in some cases with unions it may not be 3279 // preceded by X87. In such situations we follow gcc and pass the 3280 // extra bits in an SSE reg. 3281 if (Lo != X87) { 3282 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3283 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3284 return ABIArgInfo::getDirect(HighPart, 8); 3285 } 3286 break; 3287 } 3288 3289 // If a high part was specified, merge it together with the low part. It is 3290 // known to pass in the high eightbyte of the result. We do this by forming a 3291 // first class struct aggregate with the high and low part: {low, high} 3292 if (HighPart) 3293 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3294 3295 return ABIArgInfo::getDirect(ResType); 3296 } 3297 3298 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3299 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3300 bool isNamedArg) 3301 const 3302 { 3303 Ty = useFirstFieldIfTransparentUnion(Ty); 3304 3305 X86_64ABIInfo::Class Lo, Hi; 3306 classify(Ty, 0, Lo, Hi, isNamedArg); 3307 3308 // Check some invariants. 3309 // FIXME: Enforce these by construction. 3310 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3311 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3312 3313 neededInt = 0; 3314 neededSSE = 0; 3315 llvm::Type *ResType = nullptr; 3316 switch (Lo) { 3317 case NoClass: 3318 if (Hi == NoClass) 3319 return ABIArgInfo::getIgnore(); 3320 // If the low part is just padding, it takes no register, leave ResType 3321 // null. 3322 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3323 "Unknown missing lo part"); 3324 break; 3325 3326 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3327 // on the stack. 3328 case Memory: 3329 3330 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3331 // COMPLEX_X87, it is passed in memory. 3332 case X87: 3333 case ComplexX87: 3334 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3335 ++neededInt; 3336 return getIndirectResult(Ty, freeIntRegs); 3337 3338 case SSEUp: 3339 case X87Up: 3340 llvm_unreachable("Invalid classification for lo word."); 3341 3342 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3343 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3344 // and %r9 is used. 3345 case Integer: 3346 ++neededInt; 3347 3348 // Pick an 8-byte type based on the preferred type. 3349 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3350 3351 // If we have a sign or zero extended integer, make sure to return Extend 3352 // so that the parameter gets the right LLVM IR attributes. 3353 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3354 // Treat an enum type as its underlying type. 3355 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3356 Ty = EnumTy->getDecl()->getIntegerType(); 3357 3358 if (Ty->isIntegralOrEnumerationType() && 3359 Ty->isPromotableIntegerType()) 3360 return ABIArgInfo::getExtend(); 3361 } 3362 3363 break; 3364 3365 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3366 // available SSE register is used, the registers are taken in the 3367 // order from %xmm0 to %xmm7. 3368 case SSE: { 3369 llvm::Type *IRType = CGT.ConvertType(Ty); 3370 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3371 ++neededSSE; 3372 break; 3373 } 3374 } 3375 3376 llvm::Type *HighPart = nullptr; 3377 switch (Hi) { 3378 // Memory was handled previously, ComplexX87 and X87 should 3379 // never occur as hi classes, and X87Up must be preceded by X87, 3380 // which is passed in memory. 3381 case Memory: 3382 case X87: 3383 case ComplexX87: 3384 llvm_unreachable("Invalid classification for hi word."); 3385 3386 case NoClass: break; 3387 3388 case Integer: 3389 ++neededInt; 3390 // Pick an 8-byte type based on the preferred type. 3391 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3392 3393 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3394 return ABIArgInfo::getDirect(HighPart, 8); 3395 break; 3396 3397 // X87Up generally doesn't occur here (long double is passed in 3398 // memory), except in situations involving unions. 3399 case X87Up: 3400 case SSE: 3401 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3402 3403 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3404 return ABIArgInfo::getDirect(HighPart, 8); 3405 3406 ++neededSSE; 3407 break; 3408 3409 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3410 // eightbyte is passed in the upper half of the last used SSE 3411 // register. This only happens when 128-bit vectors are passed. 3412 case SSEUp: 3413 assert(Lo == SSE && "Unexpected SSEUp classification"); 3414 ResType = GetByteVectorType(Ty); 3415 break; 3416 } 3417 3418 // If a high part was specified, merge it together with the low part. It is 3419 // known to pass in the high eightbyte of the result. We do this by forming a 3420 // first class struct aggregate with the high and low part: {low, high} 3421 if (HighPart) 3422 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3423 3424 return ABIArgInfo::getDirect(ResType); 3425 } 3426 3427 ABIArgInfo 3428 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3429 unsigned &NeededSSE) const { 3430 auto RT = Ty->getAs<RecordType>(); 3431 assert(RT && "classifyRegCallStructType only valid with struct types"); 3432 3433 if (RT->getDecl()->hasFlexibleArrayMember()) 3434 return getIndirectReturnResult(Ty); 3435 3436 // Sum up bases 3437 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3438 if (CXXRD->isDynamicClass()) { 3439 NeededInt = NeededSSE = 0; 3440 return getIndirectReturnResult(Ty); 3441 } 3442 3443 for (const auto &I : CXXRD->bases()) 3444 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3445 .isIndirect()) { 3446 NeededInt = NeededSSE = 0; 3447 return getIndirectReturnResult(Ty); 3448 } 3449 } 3450 3451 // Sum up members 3452 for (const auto *FD : RT->getDecl()->fields()) { 3453 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3454 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3455 .isIndirect()) { 3456 NeededInt = NeededSSE = 0; 3457 return getIndirectReturnResult(Ty); 3458 } 3459 } else { 3460 unsigned LocalNeededInt, LocalNeededSSE; 3461 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3462 LocalNeededSSE, true) 3463 .isIndirect()) { 3464 NeededInt = NeededSSE = 0; 3465 return getIndirectReturnResult(Ty); 3466 } 3467 NeededInt += LocalNeededInt; 3468 NeededSSE += LocalNeededSSE; 3469 } 3470 } 3471 3472 return ABIArgInfo::getDirect(); 3473 } 3474 3475 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3476 unsigned &NeededInt, 3477 unsigned &NeededSSE) const { 3478 3479 NeededInt = 0; 3480 NeededSSE = 0; 3481 3482 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3483 } 3484 3485 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3486 3487 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3488 3489 // Keep track of the number of assigned registers. 3490 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3491 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3492 unsigned NeededInt, NeededSSE; 3493 3494 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3495 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3496 FI.getReturnInfo() = 3497 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3498 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3499 FreeIntRegs -= NeededInt; 3500 FreeSSERegs -= NeededSSE; 3501 } else { 3502 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3503 } 3504 } else if (!getCXXABI().classifyReturnType(FI)) 3505 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3506 3507 // If the return value is indirect, then the hidden argument is consuming one 3508 // integer register. 3509 if (FI.getReturnInfo().isIndirect()) 3510 --FreeIntRegs; 3511 3512 // The chain argument effectively gives us another free register. 3513 if (FI.isChainCall()) 3514 ++FreeIntRegs; 3515 3516 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3517 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3518 // get assigned (in left-to-right order) for passing as follows... 3519 unsigned ArgNo = 0; 3520 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3521 it != ie; ++it, ++ArgNo) { 3522 bool IsNamedArg = ArgNo < NumRequiredArgs; 3523 3524 if (IsRegCall && it->type->isStructureOrClassType()) 3525 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3526 else 3527 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3528 NeededSSE, IsNamedArg); 3529 3530 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3531 // eightbyte of an argument, the whole argument is passed on the 3532 // stack. If registers have already been assigned for some 3533 // eightbytes of such an argument, the assignments get reverted. 3534 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3535 FreeIntRegs -= NeededInt; 3536 FreeSSERegs -= NeededSSE; 3537 } else { 3538 it->info = getIndirectResult(it->type, FreeIntRegs); 3539 } 3540 } 3541 } 3542 3543 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3544 Address VAListAddr, QualType Ty) { 3545 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3546 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3547 llvm::Value *overflow_arg_area = 3548 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3549 3550 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3551 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3552 // It isn't stated explicitly in the standard, but in practice we use 3553 // alignment greater than 16 where necessary. 3554 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3555 if (Align > CharUnits::fromQuantity(8)) { 3556 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3557 Align); 3558 } 3559 3560 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3561 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3562 llvm::Value *Res = 3563 CGF.Builder.CreateBitCast(overflow_arg_area, 3564 llvm::PointerType::getUnqual(LTy)); 3565 3566 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3567 // l->overflow_arg_area + sizeof(type). 3568 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3569 // an 8 byte boundary. 3570 3571 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3572 llvm::Value *Offset = 3573 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3574 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3575 "overflow_arg_area.next"); 3576 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3577 3578 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3579 return Address(Res, Align); 3580 } 3581 3582 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3583 QualType Ty) const { 3584 // Assume that va_list type is correct; should be pointer to LLVM type: 3585 // struct { 3586 // i32 gp_offset; 3587 // i32 fp_offset; 3588 // i8* overflow_arg_area; 3589 // i8* reg_save_area; 3590 // }; 3591 unsigned neededInt, neededSSE; 3592 3593 Ty = getContext().getCanonicalType(Ty); 3594 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3595 /*isNamedArg*/false); 3596 3597 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3598 // in the registers. If not go to step 7. 3599 if (!neededInt && !neededSSE) 3600 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3601 3602 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3603 // general purpose registers needed to pass type and num_fp to hold 3604 // the number of floating point registers needed. 3605 3606 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3607 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3608 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3609 // 3610 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3611 // register save space). 3612 3613 llvm::Value *InRegs = nullptr; 3614 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3615 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3616 if (neededInt) { 3617 gp_offset_p = 3618 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3619 "gp_offset_p"); 3620 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3621 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3622 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3623 } 3624 3625 if (neededSSE) { 3626 fp_offset_p = 3627 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3628 "fp_offset_p"); 3629 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3630 llvm::Value *FitsInFP = 3631 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3632 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3633 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3634 } 3635 3636 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3637 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3638 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3639 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3640 3641 // Emit code to load the value if it was passed in registers. 3642 3643 CGF.EmitBlock(InRegBlock); 3644 3645 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3646 // an offset of l->gp_offset and/or l->fp_offset. This may require 3647 // copying to a temporary location in case the parameter is passed 3648 // in different register classes or requires an alignment greater 3649 // than 8 for general purpose registers and 16 for XMM registers. 3650 // 3651 // FIXME: This really results in shameful code when we end up needing to 3652 // collect arguments from different places; often what should result in a 3653 // simple assembling of a structure from scattered addresses has many more 3654 // loads than necessary. Can we clean this up? 3655 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3656 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3657 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3658 "reg_save_area"); 3659 3660 Address RegAddr = Address::invalid(); 3661 if (neededInt && neededSSE) { 3662 // FIXME: Cleanup. 3663 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3664 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3665 Address Tmp = CGF.CreateMemTemp(Ty); 3666 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3667 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3668 llvm::Type *TyLo = ST->getElementType(0); 3669 llvm::Type *TyHi = ST->getElementType(1); 3670 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3671 "Unexpected ABI info for mixed regs"); 3672 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3673 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3674 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3675 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3676 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3677 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3678 3679 // Copy the first element. 3680 // FIXME: Our choice of alignment here and below is probably pessimistic. 3681 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3682 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3683 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3684 CGF.Builder.CreateStore(V, 3685 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3686 3687 // Copy the second element. 3688 V = CGF.Builder.CreateAlignedLoad( 3689 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3690 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3691 CharUnits Offset = CharUnits::fromQuantity( 3692 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3693 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3694 3695 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3696 } else if (neededInt) { 3697 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3698 CharUnits::fromQuantity(8)); 3699 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3700 3701 // Copy to a temporary if necessary to ensure the appropriate alignment. 3702 std::pair<CharUnits, CharUnits> SizeAlign = 3703 getContext().getTypeInfoInChars(Ty); 3704 uint64_t TySize = SizeAlign.first.getQuantity(); 3705 CharUnits TyAlign = SizeAlign.second; 3706 3707 // Copy into a temporary if the type is more aligned than the 3708 // register save area. 3709 if (TyAlign.getQuantity() > 8) { 3710 Address Tmp = CGF.CreateMemTemp(Ty); 3711 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3712 RegAddr = Tmp; 3713 } 3714 3715 } else if (neededSSE == 1) { 3716 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3717 CharUnits::fromQuantity(16)); 3718 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3719 } else { 3720 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3721 // SSE registers are spaced 16 bytes apart in the register save 3722 // area, we need to collect the two eightbytes together. 3723 // The ABI isn't explicit about this, but it seems reasonable 3724 // to assume that the slots are 16-byte aligned, since the stack is 3725 // naturally 16-byte aligned and the prologue is expected to store 3726 // all the SSE registers to the RSA. 3727 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3728 CharUnits::fromQuantity(16)); 3729 Address RegAddrHi = 3730 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3731 CharUnits::fromQuantity(16)); 3732 llvm::Type *DoubleTy = CGF.DoubleTy; 3733 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy); 3734 llvm::Value *V; 3735 Address Tmp = CGF.CreateMemTemp(Ty); 3736 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3737 V = CGF.Builder.CreateLoad( 3738 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3739 CGF.Builder.CreateStore(V, 3740 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3741 V = CGF.Builder.CreateLoad( 3742 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3743 CGF.Builder.CreateStore(V, 3744 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3745 3746 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3747 } 3748 3749 // AMD64-ABI 3.5.7p5: Step 5. Set: 3750 // l->gp_offset = l->gp_offset + num_gp * 8 3751 // l->fp_offset = l->fp_offset + num_fp * 16. 3752 if (neededInt) { 3753 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3754 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3755 gp_offset_p); 3756 } 3757 if (neededSSE) { 3758 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3759 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3760 fp_offset_p); 3761 } 3762 CGF.EmitBranch(ContBlock); 3763 3764 // Emit code to load the value if it was passed in memory. 3765 3766 CGF.EmitBlock(InMemBlock); 3767 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3768 3769 // Return the appropriate result. 3770 3771 CGF.EmitBlock(ContBlock); 3772 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3773 "vaarg.addr"); 3774 return ResAddr; 3775 } 3776 3777 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3778 QualType Ty) const { 3779 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3780 CGF.getContext().getTypeInfoInChars(Ty), 3781 CharUnits::fromQuantity(8), 3782 /*allowHigherAlign*/ false); 3783 } 3784 3785 ABIArgInfo 3786 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3787 const ABIArgInfo ¤t) const { 3788 // Assumes vectorCall calling convention. 3789 const Type *Base = nullptr; 3790 uint64_t NumElts = 0; 3791 3792 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3793 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3794 FreeSSERegs -= NumElts; 3795 return getDirectX86Hva(); 3796 } 3797 return current; 3798 } 3799 3800 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3801 bool IsReturnType, bool IsVectorCall, 3802 bool IsRegCall) const { 3803 3804 if (Ty->isVoidType()) 3805 return ABIArgInfo::getIgnore(); 3806 3807 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3808 Ty = EnumTy->getDecl()->getIntegerType(); 3809 3810 TypeInfo Info = getContext().getTypeInfo(Ty); 3811 uint64_t Width = Info.Width; 3812 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3813 3814 const RecordType *RT = Ty->getAs<RecordType>(); 3815 if (RT) { 3816 if (!IsReturnType) { 3817 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3818 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3819 } 3820 3821 if (RT->getDecl()->hasFlexibleArrayMember()) 3822 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3823 3824 } 3825 3826 const Type *Base = nullptr; 3827 uint64_t NumElts = 0; 3828 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3829 // other targets. 3830 if ((IsVectorCall || IsRegCall) && 3831 isHomogeneousAggregate(Ty, Base, NumElts)) { 3832 if (IsRegCall) { 3833 if (FreeSSERegs >= NumElts) { 3834 FreeSSERegs -= NumElts; 3835 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3836 return ABIArgInfo::getDirect(); 3837 return ABIArgInfo::getExpand(); 3838 } 3839 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3840 } else if (IsVectorCall) { 3841 if (FreeSSERegs >= NumElts && 3842 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3843 FreeSSERegs -= NumElts; 3844 return ABIArgInfo::getDirect(); 3845 } else if (IsReturnType) { 3846 return ABIArgInfo::getExpand(); 3847 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3848 // HVAs are delayed and reclassified in the 2nd step. 3849 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3850 } 3851 } 3852 } 3853 3854 if (Ty->isMemberPointerType()) { 3855 // If the member pointer is represented by an LLVM int or ptr, pass it 3856 // directly. 3857 llvm::Type *LLTy = CGT.ConvertType(Ty); 3858 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3859 return ABIArgInfo::getDirect(); 3860 } 3861 3862 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3863 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3864 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3865 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3866 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3867 3868 // Otherwise, coerce it to a small integer. 3869 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3870 } 3871 3872 // Bool type is always extended to the ABI, other builtin types are not 3873 // extended. 3874 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3875 if (BT && BT->getKind() == BuiltinType::Bool) 3876 return ABIArgInfo::getExtend(); 3877 3878 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3879 // passes them indirectly through memory. 3880 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3881 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3882 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3883 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3884 } 3885 3886 return ABIArgInfo::getDirect(); 3887 } 3888 3889 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3890 unsigned FreeSSERegs, 3891 bool IsVectorCall, 3892 bool IsRegCall) const { 3893 unsigned Count = 0; 3894 for (auto &I : FI.arguments()) { 3895 if (Count < VectorcallMaxParamNumAsReg) 3896 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3897 else { 3898 // Since these cannot be passed in registers, pretend no registers 3899 // are left. 3900 unsigned ZeroSSERegsAvail = 0; 3901 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3902 IsVectorCall, IsRegCall); 3903 } 3904 ++Count; 3905 } 3906 3907 Count = 0; 3908 for (auto &I : FI.arguments()) { 3909 if (Count < VectorcallMaxParamNumAsReg) 3910 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3911 ++Count; 3912 } 3913 } 3914 3915 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3916 bool IsVectorCall = 3917 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3918 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3919 3920 unsigned FreeSSERegs = 0; 3921 if (IsVectorCall) { 3922 // We can use up to 4 SSE return registers with vectorcall. 3923 FreeSSERegs = 4; 3924 } else if (IsRegCall) { 3925 // RegCall gives us 16 SSE registers. 3926 FreeSSERegs = 16; 3927 } 3928 3929 if (!getCXXABI().classifyReturnType(FI)) 3930 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3931 IsVectorCall, IsRegCall); 3932 3933 if (IsVectorCall) { 3934 // We can use up to 6 SSE register parameters with vectorcall. 3935 FreeSSERegs = 6; 3936 } else if (IsRegCall) { 3937 // RegCall gives us 16 SSE registers, we can reuse the return registers. 3938 FreeSSERegs = 16; 3939 } 3940 3941 if (IsVectorCall) { 3942 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 3943 } else { 3944 for (auto &I : FI.arguments()) 3945 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3946 } 3947 3948 } 3949 3950 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3951 QualType Ty) const { 3952 3953 bool IsIndirect = false; 3954 3955 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3956 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3957 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 3958 uint64_t Width = getContext().getTypeSize(Ty); 3959 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3960 } 3961 3962 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3963 CGF.getContext().getTypeInfoInChars(Ty), 3964 CharUnits::fromQuantity(8), 3965 /*allowHigherAlign*/ false); 3966 } 3967 3968 // PowerPC-32 3969 namespace { 3970 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3971 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3972 bool IsSoftFloatABI; 3973 public: 3974 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3975 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3976 3977 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3978 QualType Ty) const override; 3979 }; 3980 3981 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3982 public: 3983 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3984 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3985 3986 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3987 // This is recovered from gcc output. 3988 return 1; // r1 is the dedicated stack pointer 3989 } 3990 3991 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3992 llvm::Value *Address) const override; 3993 }; 3994 3995 } 3996 3997 // TODO: this implementation is now likely redundant with 3998 // DefaultABIInfo::EmitVAArg. 3999 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4000 QualType Ty) const { 4001 const unsigned OverflowLimit = 8; 4002 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4003 // TODO: Implement this. For now ignore. 4004 (void)CTy; 4005 return Address::invalid(); // FIXME? 4006 } 4007 4008 // struct __va_list_tag { 4009 // unsigned char gpr; 4010 // unsigned char fpr; 4011 // unsigned short reserved; 4012 // void *overflow_arg_area; 4013 // void *reg_save_area; 4014 // }; 4015 4016 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4017 bool isInt = 4018 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4019 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4020 4021 // All aggregates are passed indirectly? That doesn't seem consistent 4022 // with the argument-lowering code. 4023 bool isIndirect = Ty->isAggregateType(); 4024 4025 CGBuilderTy &Builder = CGF.Builder; 4026 4027 // The calling convention either uses 1-2 GPRs or 1 FPR. 4028 Address NumRegsAddr = Address::invalid(); 4029 if (isInt || IsSoftFloatABI) { 4030 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4031 } else { 4032 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4033 } 4034 4035 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4036 4037 // "Align" the register count when TY is i64. 4038 if (isI64 || (isF64 && IsSoftFloatABI)) { 4039 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4040 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4041 } 4042 4043 llvm::Value *CC = 4044 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4045 4046 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4047 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4048 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4049 4050 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4051 4052 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4053 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4054 4055 // Case 1: consume registers. 4056 Address RegAddr = Address::invalid(); 4057 { 4058 CGF.EmitBlock(UsingRegs); 4059 4060 Address RegSaveAreaPtr = 4061 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4062 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4063 CharUnits::fromQuantity(8)); 4064 assert(RegAddr.getElementType() == CGF.Int8Ty); 4065 4066 // Floating-point registers start after the general-purpose registers. 4067 if (!(isInt || IsSoftFloatABI)) { 4068 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4069 CharUnits::fromQuantity(32)); 4070 } 4071 4072 // Get the address of the saved value by scaling the number of 4073 // registers we've used by the number of 4074 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4075 llvm::Value *RegOffset = 4076 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4077 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4078 RegAddr.getPointer(), RegOffset), 4079 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4080 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4081 4082 // Increase the used-register count. 4083 NumRegs = 4084 Builder.CreateAdd(NumRegs, 4085 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4086 Builder.CreateStore(NumRegs, NumRegsAddr); 4087 4088 CGF.EmitBranch(Cont); 4089 } 4090 4091 // Case 2: consume space in the overflow area. 4092 Address MemAddr = Address::invalid(); 4093 { 4094 CGF.EmitBlock(UsingOverflow); 4095 4096 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4097 4098 // Everything in the overflow area is rounded up to a size of at least 4. 4099 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4100 4101 CharUnits Size; 4102 if (!isIndirect) { 4103 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4104 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4105 } else { 4106 Size = CGF.getPointerSize(); 4107 } 4108 4109 Address OverflowAreaAddr = 4110 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4111 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4112 OverflowAreaAlign); 4113 // Round up address of argument to alignment 4114 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4115 if (Align > OverflowAreaAlign) { 4116 llvm::Value *Ptr = OverflowArea.getPointer(); 4117 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4118 Align); 4119 } 4120 4121 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4122 4123 // Increase the overflow area. 4124 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4125 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4126 CGF.EmitBranch(Cont); 4127 } 4128 4129 CGF.EmitBlock(Cont); 4130 4131 // Merge the cases with a phi. 4132 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4133 "vaarg.addr"); 4134 4135 // Load the pointer if the argument was passed indirectly. 4136 if (isIndirect) { 4137 Result = Address(Builder.CreateLoad(Result, "aggr"), 4138 getContext().getTypeAlignInChars(Ty)); 4139 } 4140 4141 return Result; 4142 } 4143 4144 bool 4145 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4146 llvm::Value *Address) const { 4147 // This is calculated from the LLVM and GCC tables and verified 4148 // against gcc output. AFAIK all ABIs use the same encoding. 4149 4150 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4151 4152 llvm::IntegerType *i8 = CGF.Int8Ty; 4153 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4154 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4155 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4156 4157 // 0-31: r0-31, the 4-byte general-purpose registers 4158 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4159 4160 // 32-63: fp0-31, the 8-byte floating-point registers 4161 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4162 4163 // 64-76 are various 4-byte special-purpose registers: 4164 // 64: mq 4165 // 65: lr 4166 // 66: ctr 4167 // 67: ap 4168 // 68-75 cr0-7 4169 // 76: xer 4170 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4171 4172 // 77-108: v0-31, the 16-byte vector registers 4173 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4174 4175 // 109: vrsave 4176 // 110: vscr 4177 // 111: spe_acc 4178 // 112: spefscr 4179 // 113: sfp 4180 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4181 4182 return false; 4183 } 4184 4185 // PowerPC-64 4186 4187 namespace { 4188 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4189 class PPC64_SVR4_ABIInfo : public ABIInfo { 4190 public: 4191 enum ABIKind { 4192 ELFv1 = 0, 4193 ELFv2 4194 }; 4195 4196 private: 4197 static const unsigned GPRBits = 64; 4198 ABIKind Kind; 4199 bool HasQPX; 4200 bool IsSoftFloatABI; 4201 4202 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4203 // will be passed in a QPX register. 4204 bool IsQPXVectorTy(const Type *Ty) const { 4205 if (!HasQPX) 4206 return false; 4207 4208 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4209 unsigned NumElements = VT->getNumElements(); 4210 if (NumElements == 1) 4211 return false; 4212 4213 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4214 if (getContext().getTypeSize(Ty) <= 256) 4215 return true; 4216 } else if (VT->getElementType()-> 4217 isSpecificBuiltinType(BuiltinType::Float)) { 4218 if (getContext().getTypeSize(Ty) <= 128) 4219 return true; 4220 } 4221 } 4222 4223 return false; 4224 } 4225 4226 bool IsQPXVectorTy(QualType Ty) const { 4227 return IsQPXVectorTy(Ty.getTypePtr()); 4228 } 4229 4230 public: 4231 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4232 bool SoftFloatABI) 4233 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4234 IsSoftFloatABI(SoftFloatABI) {} 4235 4236 bool isPromotableTypeForABI(QualType Ty) const; 4237 CharUnits getParamTypeAlignment(QualType Ty) const; 4238 4239 ABIArgInfo classifyReturnType(QualType RetTy) const; 4240 ABIArgInfo classifyArgumentType(QualType Ty) const; 4241 4242 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4243 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4244 uint64_t Members) const override; 4245 4246 // TODO: We can add more logic to computeInfo to improve performance. 4247 // Example: For aggregate arguments that fit in a register, we could 4248 // use getDirectInReg (as is done below for structs containing a single 4249 // floating-point value) to avoid pushing them to memory on function 4250 // entry. This would require changing the logic in PPCISelLowering 4251 // when lowering the parameters in the caller and args in the callee. 4252 void computeInfo(CGFunctionInfo &FI) const override { 4253 if (!getCXXABI().classifyReturnType(FI)) 4254 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4255 for (auto &I : FI.arguments()) { 4256 // We rely on the default argument classification for the most part. 4257 // One exception: An aggregate containing a single floating-point 4258 // or vector item must be passed in a register if one is available. 4259 const Type *T = isSingleElementStruct(I.type, getContext()); 4260 if (T) { 4261 const BuiltinType *BT = T->getAs<BuiltinType>(); 4262 if (IsQPXVectorTy(T) || 4263 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4264 (BT && BT->isFloatingPoint())) { 4265 QualType QT(T, 0); 4266 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4267 continue; 4268 } 4269 } 4270 I.info = classifyArgumentType(I.type); 4271 } 4272 } 4273 4274 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4275 QualType Ty) const override; 4276 }; 4277 4278 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4279 4280 public: 4281 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4282 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4283 bool SoftFloatABI) 4284 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4285 SoftFloatABI)) {} 4286 4287 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4288 // This is recovered from gcc output. 4289 return 1; // r1 is the dedicated stack pointer 4290 } 4291 4292 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4293 llvm::Value *Address) const override; 4294 }; 4295 4296 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4297 public: 4298 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4299 4300 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4301 // This is recovered from gcc output. 4302 return 1; // r1 is the dedicated stack pointer 4303 } 4304 4305 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4306 llvm::Value *Address) const override; 4307 }; 4308 4309 } 4310 4311 // Return true if the ABI requires Ty to be passed sign- or zero- 4312 // extended to 64 bits. 4313 bool 4314 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4315 // Treat an enum type as its underlying type. 4316 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4317 Ty = EnumTy->getDecl()->getIntegerType(); 4318 4319 // Promotable integer types are required to be promoted by the ABI. 4320 if (Ty->isPromotableIntegerType()) 4321 return true; 4322 4323 // In addition to the usual promotable integer types, we also need to 4324 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4325 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4326 switch (BT->getKind()) { 4327 case BuiltinType::Int: 4328 case BuiltinType::UInt: 4329 return true; 4330 default: 4331 break; 4332 } 4333 4334 return false; 4335 } 4336 4337 /// isAlignedParamType - Determine whether a type requires 16-byte or 4338 /// higher alignment in the parameter area. Always returns at least 8. 4339 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4340 // Complex types are passed just like their elements. 4341 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4342 Ty = CTy->getElementType(); 4343 4344 // Only vector types of size 16 bytes need alignment (larger types are 4345 // passed via reference, smaller types are not aligned). 4346 if (IsQPXVectorTy(Ty)) { 4347 if (getContext().getTypeSize(Ty) > 128) 4348 return CharUnits::fromQuantity(32); 4349 4350 return CharUnits::fromQuantity(16); 4351 } else if (Ty->isVectorType()) { 4352 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4353 } 4354 4355 // For single-element float/vector structs, we consider the whole type 4356 // to have the same alignment requirements as its single element. 4357 const Type *AlignAsType = nullptr; 4358 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4359 if (EltType) { 4360 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4361 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4362 getContext().getTypeSize(EltType) == 128) || 4363 (BT && BT->isFloatingPoint())) 4364 AlignAsType = EltType; 4365 } 4366 4367 // Likewise for ELFv2 homogeneous aggregates. 4368 const Type *Base = nullptr; 4369 uint64_t Members = 0; 4370 if (!AlignAsType && Kind == ELFv2 && 4371 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4372 AlignAsType = Base; 4373 4374 // With special case aggregates, only vector base types need alignment. 4375 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4376 if (getContext().getTypeSize(AlignAsType) > 128) 4377 return CharUnits::fromQuantity(32); 4378 4379 return CharUnits::fromQuantity(16); 4380 } else if (AlignAsType) { 4381 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4382 } 4383 4384 // Otherwise, we only need alignment for any aggregate type that 4385 // has an alignment requirement of >= 16 bytes. 4386 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4387 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4388 return CharUnits::fromQuantity(32); 4389 return CharUnits::fromQuantity(16); 4390 } 4391 4392 return CharUnits::fromQuantity(8); 4393 } 4394 4395 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4396 /// aggregate. Base is set to the base element type, and Members is set 4397 /// to the number of base elements. 4398 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4399 uint64_t &Members) const { 4400 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4401 uint64_t NElements = AT->getSize().getZExtValue(); 4402 if (NElements == 0) 4403 return false; 4404 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4405 return false; 4406 Members *= NElements; 4407 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4408 const RecordDecl *RD = RT->getDecl(); 4409 if (RD->hasFlexibleArrayMember()) 4410 return false; 4411 4412 Members = 0; 4413 4414 // If this is a C++ record, check the bases first. 4415 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4416 for (const auto &I : CXXRD->bases()) { 4417 // Ignore empty records. 4418 if (isEmptyRecord(getContext(), I.getType(), true)) 4419 continue; 4420 4421 uint64_t FldMembers; 4422 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4423 return false; 4424 4425 Members += FldMembers; 4426 } 4427 } 4428 4429 for (const auto *FD : RD->fields()) { 4430 // Ignore (non-zero arrays of) empty records. 4431 QualType FT = FD->getType(); 4432 while (const ConstantArrayType *AT = 4433 getContext().getAsConstantArrayType(FT)) { 4434 if (AT->getSize().getZExtValue() == 0) 4435 return false; 4436 FT = AT->getElementType(); 4437 } 4438 if (isEmptyRecord(getContext(), FT, true)) 4439 continue; 4440 4441 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4442 if (getContext().getLangOpts().CPlusPlus && 4443 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4444 continue; 4445 4446 uint64_t FldMembers; 4447 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4448 return false; 4449 4450 Members = (RD->isUnion() ? 4451 std::max(Members, FldMembers) : Members + FldMembers); 4452 } 4453 4454 if (!Base) 4455 return false; 4456 4457 // Ensure there is no padding. 4458 if (getContext().getTypeSize(Base) * Members != 4459 getContext().getTypeSize(Ty)) 4460 return false; 4461 } else { 4462 Members = 1; 4463 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4464 Members = 2; 4465 Ty = CT->getElementType(); 4466 } 4467 4468 // Most ABIs only support float, double, and some vector type widths. 4469 if (!isHomogeneousAggregateBaseType(Ty)) 4470 return false; 4471 4472 // The base type must be the same for all members. Types that 4473 // agree in both total size and mode (float vs. vector) are 4474 // treated as being equivalent here. 4475 const Type *TyPtr = Ty.getTypePtr(); 4476 if (!Base) { 4477 Base = TyPtr; 4478 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4479 // so make sure to widen it explicitly. 4480 if (const VectorType *VT = Base->getAs<VectorType>()) { 4481 QualType EltTy = VT->getElementType(); 4482 unsigned NumElements = 4483 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4484 Base = getContext() 4485 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4486 .getTypePtr(); 4487 } 4488 } 4489 4490 if (Base->isVectorType() != TyPtr->isVectorType() || 4491 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4492 return false; 4493 } 4494 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4495 } 4496 4497 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4498 // Homogeneous aggregates for ELFv2 must have base types of float, 4499 // double, long double, or 128-bit vectors. 4500 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4501 if (BT->getKind() == BuiltinType::Float || 4502 BT->getKind() == BuiltinType::Double || 4503 BT->getKind() == BuiltinType::LongDouble) { 4504 if (IsSoftFloatABI) 4505 return false; 4506 return true; 4507 } 4508 } 4509 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4510 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4511 return true; 4512 } 4513 return false; 4514 } 4515 4516 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4517 const Type *Base, uint64_t Members) const { 4518 // Vector types require one register, floating point types require one 4519 // or two registers depending on their size. 4520 uint32_t NumRegs = 4521 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4522 4523 // Homogeneous Aggregates may occupy at most 8 registers. 4524 return Members * NumRegs <= 8; 4525 } 4526 4527 ABIArgInfo 4528 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4529 Ty = useFirstFieldIfTransparentUnion(Ty); 4530 4531 if (Ty->isAnyComplexType()) 4532 return ABIArgInfo::getDirect(); 4533 4534 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4535 // or via reference (larger than 16 bytes). 4536 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4537 uint64_t Size = getContext().getTypeSize(Ty); 4538 if (Size > 128) 4539 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4540 else if (Size < 128) { 4541 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4542 return ABIArgInfo::getDirect(CoerceTy); 4543 } 4544 } 4545 4546 if (isAggregateTypeForABI(Ty)) { 4547 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4548 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4549 4550 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4551 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4552 4553 // ELFv2 homogeneous aggregates are passed as array types. 4554 const Type *Base = nullptr; 4555 uint64_t Members = 0; 4556 if (Kind == ELFv2 && 4557 isHomogeneousAggregate(Ty, Base, Members)) { 4558 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4559 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4560 return ABIArgInfo::getDirect(CoerceTy); 4561 } 4562 4563 // If an aggregate may end up fully in registers, we do not 4564 // use the ByVal method, but pass the aggregate as array. 4565 // This is usually beneficial since we avoid forcing the 4566 // back-end to store the argument to memory. 4567 uint64_t Bits = getContext().getTypeSize(Ty); 4568 if (Bits > 0 && Bits <= 8 * GPRBits) { 4569 llvm::Type *CoerceTy; 4570 4571 // Types up to 8 bytes are passed as integer type (which will be 4572 // properly aligned in the argument save area doubleword). 4573 if (Bits <= GPRBits) 4574 CoerceTy = 4575 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4576 // Larger types are passed as arrays, with the base type selected 4577 // according to the required alignment in the save area. 4578 else { 4579 uint64_t RegBits = ABIAlign * 8; 4580 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4581 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4582 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4583 } 4584 4585 return ABIArgInfo::getDirect(CoerceTy); 4586 } 4587 4588 // All other aggregates are passed ByVal. 4589 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4590 /*ByVal=*/true, 4591 /*Realign=*/TyAlign > ABIAlign); 4592 } 4593 4594 return (isPromotableTypeForABI(Ty) ? 4595 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4596 } 4597 4598 ABIArgInfo 4599 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4600 if (RetTy->isVoidType()) 4601 return ABIArgInfo::getIgnore(); 4602 4603 if (RetTy->isAnyComplexType()) 4604 return ABIArgInfo::getDirect(); 4605 4606 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4607 // or via reference (larger than 16 bytes). 4608 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4609 uint64_t Size = getContext().getTypeSize(RetTy); 4610 if (Size > 128) 4611 return getNaturalAlignIndirect(RetTy); 4612 else if (Size < 128) { 4613 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4614 return ABIArgInfo::getDirect(CoerceTy); 4615 } 4616 } 4617 4618 if (isAggregateTypeForABI(RetTy)) { 4619 // ELFv2 homogeneous aggregates are returned as array types. 4620 const Type *Base = nullptr; 4621 uint64_t Members = 0; 4622 if (Kind == ELFv2 && 4623 isHomogeneousAggregate(RetTy, Base, Members)) { 4624 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4625 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4626 return ABIArgInfo::getDirect(CoerceTy); 4627 } 4628 4629 // ELFv2 small aggregates are returned in up to two registers. 4630 uint64_t Bits = getContext().getTypeSize(RetTy); 4631 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4632 if (Bits == 0) 4633 return ABIArgInfo::getIgnore(); 4634 4635 llvm::Type *CoerceTy; 4636 if (Bits > GPRBits) { 4637 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4638 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4639 } else 4640 CoerceTy = 4641 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4642 return ABIArgInfo::getDirect(CoerceTy); 4643 } 4644 4645 // All other aggregates are returned indirectly. 4646 return getNaturalAlignIndirect(RetTy); 4647 } 4648 4649 return (isPromotableTypeForABI(RetTy) ? 4650 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4651 } 4652 4653 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4654 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4655 QualType Ty) const { 4656 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4657 TypeInfo.second = getParamTypeAlignment(Ty); 4658 4659 CharUnits SlotSize = CharUnits::fromQuantity(8); 4660 4661 // If we have a complex type and the base type is smaller than 8 bytes, 4662 // the ABI calls for the real and imaginary parts to be right-adjusted 4663 // in separate doublewords. However, Clang expects us to produce a 4664 // pointer to a structure with the two parts packed tightly. So generate 4665 // loads of the real and imaginary parts relative to the va_list pointer, 4666 // and store them to a temporary structure. 4667 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4668 CharUnits EltSize = TypeInfo.first / 2; 4669 if (EltSize < SlotSize) { 4670 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4671 SlotSize * 2, SlotSize, 4672 SlotSize, /*AllowHigher*/ true); 4673 4674 Address RealAddr = Addr; 4675 Address ImagAddr = RealAddr; 4676 if (CGF.CGM.getDataLayout().isBigEndian()) { 4677 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4678 SlotSize - EltSize); 4679 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4680 2 * SlotSize - EltSize); 4681 } else { 4682 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4683 } 4684 4685 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4686 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4687 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4688 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4689 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4690 4691 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4692 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4693 /*init*/ true); 4694 return Temp; 4695 } 4696 } 4697 4698 // Otherwise, just use the general rule. 4699 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4700 TypeInfo, SlotSize, /*AllowHigher*/ true); 4701 } 4702 4703 static bool 4704 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4705 llvm::Value *Address) { 4706 // This is calculated from the LLVM and GCC tables and verified 4707 // against gcc output. AFAIK all ABIs use the same encoding. 4708 4709 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4710 4711 llvm::IntegerType *i8 = CGF.Int8Ty; 4712 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4713 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4714 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4715 4716 // 0-31: r0-31, the 8-byte general-purpose registers 4717 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4718 4719 // 32-63: fp0-31, the 8-byte floating-point registers 4720 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4721 4722 // 64-67 are various 8-byte special-purpose registers: 4723 // 64: mq 4724 // 65: lr 4725 // 66: ctr 4726 // 67: ap 4727 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4728 4729 // 68-76 are various 4-byte special-purpose registers: 4730 // 68-75 cr0-7 4731 // 76: xer 4732 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4733 4734 // 77-108: v0-31, the 16-byte vector registers 4735 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4736 4737 // 109: vrsave 4738 // 110: vscr 4739 // 111: spe_acc 4740 // 112: spefscr 4741 // 113: sfp 4742 // 114: tfhar 4743 // 115: tfiar 4744 // 116: texasr 4745 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4746 4747 return false; 4748 } 4749 4750 bool 4751 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4752 CodeGen::CodeGenFunction &CGF, 4753 llvm::Value *Address) const { 4754 4755 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4756 } 4757 4758 bool 4759 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4760 llvm::Value *Address) const { 4761 4762 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4763 } 4764 4765 //===----------------------------------------------------------------------===// 4766 // AArch64 ABI Implementation 4767 //===----------------------------------------------------------------------===// 4768 4769 namespace { 4770 4771 class AArch64ABIInfo : public SwiftABIInfo { 4772 public: 4773 enum ABIKind { 4774 AAPCS = 0, 4775 DarwinPCS 4776 }; 4777 4778 private: 4779 ABIKind Kind; 4780 4781 public: 4782 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4783 : SwiftABIInfo(CGT), Kind(Kind) {} 4784 4785 private: 4786 ABIKind getABIKind() const { return Kind; } 4787 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4788 4789 ABIArgInfo classifyReturnType(QualType RetTy) const; 4790 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4791 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4792 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4793 uint64_t Members) const override; 4794 4795 bool isIllegalVectorType(QualType Ty) const; 4796 4797 void computeInfo(CGFunctionInfo &FI) const override { 4798 if (!getCXXABI().classifyReturnType(FI)) 4799 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4800 4801 for (auto &it : FI.arguments()) 4802 it.info = classifyArgumentType(it.type); 4803 } 4804 4805 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4806 CodeGenFunction &CGF) const; 4807 4808 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4809 CodeGenFunction &CGF) const; 4810 4811 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4812 QualType Ty) const override { 4813 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4814 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4815 } 4816 4817 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4818 ArrayRef<llvm::Type*> scalars, 4819 bool asReturnValue) const override { 4820 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4821 } 4822 bool isSwiftErrorInRegister() const override { 4823 return true; 4824 } 4825 }; 4826 4827 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4828 public: 4829 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4830 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4831 4832 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4833 return "mov\tfp, fp\t\t# marker for objc_retainAutoreleaseReturnValue"; 4834 } 4835 4836 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4837 return 31; 4838 } 4839 4840 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4841 }; 4842 } 4843 4844 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4845 Ty = useFirstFieldIfTransparentUnion(Ty); 4846 4847 // Handle illegal vector types here. 4848 if (isIllegalVectorType(Ty)) { 4849 uint64_t Size = getContext().getTypeSize(Ty); 4850 // Android promotes <2 x i8> to i16, not i32 4851 if (isAndroid() && (Size <= 16)) { 4852 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4853 return ABIArgInfo::getDirect(ResType); 4854 } 4855 if (Size <= 32) { 4856 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4857 return ABIArgInfo::getDirect(ResType); 4858 } 4859 if (Size == 64) { 4860 llvm::Type *ResType = 4861 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4862 return ABIArgInfo::getDirect(ResType); 4863 } 4864 if (Size == 128) { 4865 llvm::Type *ResType = 4866 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4867 return ABIArgInfo::getDirect(ResType); 4868 } 4869 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4870 } 4871 4872 if (!isAggregateTypeForABI(Ty)) { 4873 // Treat an enum type as its underlying type. 4874 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4875 Ty = EnumTy->getDecl()->getIntegerType(); 4876 4877 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4878 ? ABIArgInfo::getExtend() 4879 : ABIArgInfo::getDirect()); 4880 } 4881 4882 // Structures with either a non-trivial destructor or a non-trivial 4883 // copy constructor are always indirect. 4884 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4885 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4886 CGCXXABI::RAA_DirectInMemory); 4887 } 4888 4889 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4890 // elsewhere for GNU compatibility. 4891 uint64_t Size = getContext().getTypeSize(Ty); 4892 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 4893 if (IsEmpty || Size == 0) { 4894 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4895 return ABIArgInfo::getIgnore(); 4896 4897 // GNU C mode. The only argument that gets ignored is an empty one with size 4898 // 0. 4899 if (IsEmpty && Size == 0) 4900 return ABIArgInfo::getIgnore(); 4901 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4902 } 4903 4904 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4905 const Type *Base = nullptr; 4906 uint64_t Members = 0; 4907 if (isHomogeneousAggregate(Ty, Base, Members)) { 4908 return ABIArgInfo::getDirect( 4909 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4910 } 4911 4912 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4913 if (Size <= 128) { 4914 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4915 // same size and alignment. 4916 if (getTarget().isRenderScriptTarget()) { 4917 return coerceToIntArray(Ty, getContext(), getVMContext()); 4918 } 4919 unsigned Alignment = getContext().getTypeAlign(Ty); 4920 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 4921 4922 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4923 // For aggregates with 16-byte alignment, we use i128. 4924 if (Alignment < 128 && Size == 128) { 4925 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4926 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4927 } 4928 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4929 } 4930 4931 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4932 } 4933 4934 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4935 if (RetTy->isVoidType()) 4936 return ABIArgInfo::getIgnore(); 4937 4938 // Large vector types should be returned via memory. 4939 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4940 return getNaturalAlignIndirect(RetTy); 4941 4942 if (!isAggregateTypeForABI(RetTy)) { 4943 // Treat an enum type as its underlying type. 4944 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4945 RetTy = EnumTy->getDecl()->getIntegerType(); 4946 4947 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4948 ? ABIArgInfo::getExtend() 4949 : ABIArgInfo::getDirect()); 4950 } 4951 4952 uint64_t Size = getContext().getTypeSize(RetTy); 4953 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 4954 return ABIArgInfo::getIgnore(); 4955 4956 const Type *Base = nullptr; 4957 uint64_t Members = 0; 4958 if (isHomogeneousAggregate(RetTy, Base, Members)) 4959 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4960 return ABIArgInfo::getDirect(); 4961 4962 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4963 if (Size <= 128) { 4964 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4965 // same size and alignment. 4966 if (getTarget().isRenderScriptTarget()) { 4967 return coerceToIntArray(RetTy, getContext(), getVMContext()); 4968 } 4969 unsigned Alignment = getContext().getTypeAlign(RetTy); 4970 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 4971 4972 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4973 // For aggregates with 16-byte alignment, we use i128. 4974 if (Alignment < 128 && Size == 128) { 4975 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4976 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4977 } 4978 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4979 } 4980 4981 return getNaturalAlignIndirect(RetTy); 4982 } 4983 4984 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4985 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4986 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4987 // Check whether VT is legal. 4988 unsigned NumElements = VT->getNumElements(); 4989 uint64_t Size = getContext().getTypeSize(VT); 4990 // NumElements should be power of 2. 4991 if (!llvm::isPowerOf2_32(NumElements)) 4992 return true; 4993 return Size != 64 && (Size != 128 || NumElements == 1); 4994 } 4995 return false; 4996 } 4997 4998 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4999 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5000 // point type or a short-vector type. This is the same as the 32-bit ABI, 5001 // but with the difference that any floating-point type is allowed, 5002 // including __fp16. 5003 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5004 if (BT->isFloatingPoint()) 5005 return true; 5006 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5007 unsigned VecSize = getContext().getTypeSize(VT); 5008 if (VecSize == 64 || VecSize == 128) 5009 return true; 5010 } 5011 return false; 5012 } 5013 5014 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5015 uint64_t Members) const { 5016 return Members <= 4; 5017 } 5018 5019 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5020 QualType Ty, 5021 CodeGenFunction &CGF) const { 5022 ABIArgInfo AI = classifyArgumentType(Ty); 5023 bool IsIndirect = AI.isIndirect(); 5024 5025 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5026 if (IsIndirect) 5027 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5028 else if (AI.getCoerceToType()) 5029 BaseTy = AI.getCoerceToType(); 5030 5031 unsigned NumRegs = 1; 5032 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5033 BaseTy = ArrTy->getElementType(); 5034 NumRegs = ArrTy->getNumElements(); 5035 } 5036 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5037 5038 // The AArch64 va_list type and handling is specified in the Procedure Call 5039 // Standard, section B.4: 5040 // 5041 // struct { 5042 // void *__stack; 5043 // void *__gr_top; 5044 // void *__vr_top; 5045 // int __gr_offs; 5046 // int __vr_offs; 5047 // }; 5048 5049 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5050 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5051 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5052 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5053 5054 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5055 CharUnits TyAlign = TyInfo.second; 5056 5057 Address reg_offs_p = Address::invalid(); 5058 llvm::Value *reg_offs = nullptr; 5059 int reg_top_index; 5060 CharUnits reg_top_offset; 5061 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5062 if (!IsFPR) { 5063 // 3 is the field number of __gr_offs 5064 reg_offs_p = 5065 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5066 "gr_offs_p"); 5067 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5068 reg_top_index = 1; // field number for __gr_top 5069 reg_top_offset = CharUnits::fromQuantity(8); 5070 RegSize = llvm::alignTo(RegSize, 8); 5071 } else { 5072 // 4 is the field number of __vr_offs. 5073 reg_offs_p = 5074 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5075 "vr_offs_p"); 5076 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5077 reg_top_index = 2; // field number for __vr_top 5078 reg_top_offset = CharUnits::fromQuantity(16); 5079 RegSize = 16 * NumRegs; 5080 } 5081 5082 //======================================= 5083 // Find out where argument was passed 5084 //======================================= 5085 5086 // If reg_offs >= 0 we're already using the stack for this type of 5087 // argument. We don't want to keep updating reg_offs (in case it overflows, 5088 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5089 // whatever they get). 5090 llvm::Value *UsingStack = nullptr; 5091 UsingStack = CGF.Builder.CreateICmpSGE( 5092 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5093 5094 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5095 5096 // Otherwise, at least some kind of argument could go in these registers, the 5097 // question is whether this particular type is too big. 5098 CGF.EmitBlock(MaybeRegBlock); 5099 5100 // Integer arguments may need to correct register alignment (for example a 5101 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5102 // align __gr_offs to calculate the potential address. 5103 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5104 int Align = TyAlign.getQuantity(); 5105 5106 reg_offs = CGF.Builder.CreateAdd( 5107 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5108 "align_regoffs"); 5109 reg_offs = CGF.Builder.CreateAnd( 5110 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5111 "aligned_regoffs"); 5112 } 5113 5114 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5115 // The fact that this is done unconditionally reflects the fact that 5116 // allocating an argument to the stack also uses up all the remaining 5117 // registers of the appropriate kind. 5118 llvm::Value *NewOffset = nullptr; 5119 NewOffset = CGF.Builder.CreateAdd( 5120 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5121 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5122 5123 // Now we're in a position to decide whether this argument really was in 5124 // registers or not. 5125 llvm::Value *InRegs = nullptr; 5126 InRegs = CGF.Builder.CreateICmpSLE( 5127 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5128 5129 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5130 5131 //======================================= 5132 // Argument was in registers 5133 //======================================= 5134 5135 // Now we emit the code for if the argument was originally passed in 5136 // registers. First start the appropriate block: 5137 CGF.EmitBlock(InRegBlock); 5138 5139 llvm::Value *reg_top = nullptr; 5140 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5141 reg_top_offset, "reg_top_p"); 5142 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5143 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5144 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5145 Address RegAddr = Address::invalid(); 5146 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5147 5148 if (IsIndirect) { 5149 // If it's been passed indirectly (actually a struct), whatever we find from 5150 // stored registers or on the stack will actually be a struct **. 5151 MemTy = llvm::PointerType::getUnqual(MemTy); 5152 } 5153 5154 const Type *Base = nullptr; 5155 uint64_t NumMembers = 0; 5156 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5157 if (IsHFA && NumMembers > 1) { 5158 // Homogeneous aggregates passed in registers will have their elements split 5159 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5160 // qN+1, ...). We reload and store into a temporary local variable 5161 // contiguously. 5162 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5163 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5164 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5165 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5166 Address Tmp = CGF.CreateTempAlloca(HFATy, 5167 std::max(TyAlign, BaseTyInfo.second)); 5168 5169 // On big-endian platforms, the value will be right-aligned in its slot. 5170 int Offset = 0; 5171 if (CGF.CGM.getDataLayout().isBigEndian() && 5172 BaseTyInfo.first.getQuantity() < 16) 5173 Offset = 16 - BaseTyInfo.first.getQuantity(); 5174 5175 for (unsigned i = 0; i < NumMembers; ++i) { 5176 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5177 Address LoadAddr = 5178 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5179 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5180 5181 Address StoreAddr = 5182 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5183 5184 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5185 CGF.Builder.CreateStore(Elem, StoreAddr); 5186 } 5187 5188 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5189 } else { 5190 // Otherwise the object is contiguous in memory. 5191 5192 // It might be right-aligned in its slot. 5193 CharUnits SlotSize = BaseAddr.getAlignment(); 5194 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5195 (IsHFA || !isAggregateTypeForABI(Ty)) && 5196 TyInfo.first < SlotSize) { 5197 CharUnits Offset = SlotSize - TyInfo.first; 5198 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5199 } 5200 5201 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5202 } 5203 5204 CGF.EmitBranch(ContBlock); 5205 5206 //======================================= 5207 // Argument was on the stack 5208 //======================================= 5209 CGF.EmitBlock(OnStackBlock); 5210 5211 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5212 CharUnits::Zero(), "stack_p"); 5213 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5214 5215 // Again, stack arguments may need realignment. In this case both integer and 5216 // floating-point ones might be affected. 5217 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5218 int Align = TyAlign.getQuantity(); 5219 5220 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5221 5222 OnStackPtr = CGF.Builder.CreateAdd( 5223 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5224 "align_stack"); 5225 OnStackPtr = CGF.Builder.CreateAnd( 5226 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5227 "align_stack"); 5228 5229 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5230 } 5231 Address OnStackAddr(OnStackPtr, 5232 std::max(CharUnits::fromQuantity(8), TyAlign)); 5233 5234 // All stack slots are multiples of 8 bytes. 5235 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5236 CharUnits StackSize; 5237 if (IsIndirect) 5238 StackSize = StackSlotSize; 5239 else 5240 StackSize = TyInfo.first.alignTo(StackSlotSize); 5241 5242 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5243 llvm::Value *NewStack = 5244 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5245 5246 // Write the new value of __stack for the next call to va_arg 5247 CGF.Builder.CreateStore(NewStack, stack_p); 5248 5249 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5250 TyInfo.first < StackSlotSize) { 5251 CharUnits Offset = StackSlotSize - TyInfo.first; 5252 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5253 } 5254 5255 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5256 5257 CGF.EmitBranch(ContBlock); 5258 5259 //======================================= 5260 // Tidy up 5261 //======================================= 5262 CGF.EmitBlock(ContBlock); 5263 5264 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5265 OnStackAddr, OnStackBlock, "vaargs.addr"); 5266 5267 if (IsIndirect) 5268 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5269 TyInfo.second); 5270 5271 return ResAddr; 5272 } 5273 5274 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5275 CodeGenFunction &CGF) const { 5276 // The backend's lowering doesn't support va_arg for aggregates or 5277 // illegal vector types. Lower VAArg here for these cases and use 5278 // the LLVM va_arg instruction for everything else. 5279 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5280 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5281 5282 CharUnits SlotSize = CharUnits::fromQuantity(8); 5283 5284 // Empty records are ignored for parameter passing purposes. 5285 if (isEmptyRecord(getContext(), Ty, true)) { 5286 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5287 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5288 return Addr; 5289 } 5290 5291 // The size of the actual thing passed, which might end up just 5292 // being a pointer for indirect types. 5293 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5294 5295 // Arguments bigger than 16 bytes which aren't homogeneous 5296 // aggregates should be passed indirectly. 5297 bool IsIndirect = false; 5298 if (TyInfo.first.getQuantity() > 16) { 5299 const Type *Base = nullptr; 5300 uint64_t Members = 0; 5301 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5302 } 5303 5304 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5305 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5306 } 5307 5308 //===----------------------------------------------------------------------===// 5309 // ARM ABI Implementation 5310 //===----------------------------------------------------------------------===// 5311 5312 namespace { 5313 5314 class ARMABIInfo : public SwiftABIInfo { 5315 public: 5316 enum ABIKind { 5317 APCS = 0, 5318 AAPCS = 1, 5319 AAPCS_VFP = 2, 5320 AAPCS16_VFP = 3, 5321 }; 5322 5323 private: 5324 ABIKind Kind; 5325 5326 public: 5327 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5328 : SwiftABIInfo(CGT), Kind(_Kind) { 5329 setCCs(); 5330 } 5331 5332 bool isEABI() const { 5333 switch (getTarget().getTriple().getEnvironment()) { 5334 case llvm::Triple::Android: 5335 case llvm::Triple::EABI: 5336 case llvm::Triple::EABIHF: 5337 case llvm::Triple::GNUEABI: 5338 case llvm::Triple::GNUEABIHF: 5339 case llvm::Triple::MuslEABI: 5340 case llvm::Triple::MuslEABIHF: 5341 return true; 5342 default: 5343 return false; 5344 } 5345 } 5346 5347 bool isEABIHF() const { 5348 switch (getTarget().getTriple().getEnvironment()) { 5349 case llvm::Triple::EABIHF: 5350 case llvm::Triple::GNUEABIHF: 5351 case llvm::Triple::MuslEABIHF: 5352 return true; 5353 default: 5354 return false; 5355 } 5356 } 5357 5358 ABIKind getABIKind() const { return Kind; } 5359 5360 private: 5361 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5362 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5363 bool isIllegalVectorType(QualType Ty) const; 5364 5365 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5366 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5367 uint64_t Members) const override; 5368 5369 void computeInfo(CGFunctionInfo &FI) const override; 5370 5371 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5372 QualType Ty) const override; 5373 5374 llvm::CallingConv::ID getLLVMDefaultCC() const; 5375 llvm::CallingConv::ID getABIDefaultCC() const; 5376 void setCCs(); 5377 5378 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5379 ArrayRef<llvm::Type*> scalars, 5380 bool asReturnValue) const override { 5381 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5382 } 5383 bool isSwiftErrorInRegister() const override { 5384 return true; 5385 } 5386 }; 5387 5388 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5389 public: 5390 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5391 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5392 5393 const ARMABIInfo &getABIInfo() const { 5394 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5395 } 5396 5397 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5398 return 13; 5399 } 5400 5401 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5402 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5403 } 5404 5405 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5406 llvm::Value *Address) const override { 5407 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5408 5409 // 0-15 are the 16 integer registers. 5410 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5411 return false; 5412 } 5413 5414 unsigned getSizeOfUnwindException() const override { 5415 if (getABIInfo().isEABI()) return 88; 5416 return TargetCodeGenInfo::getSizeOfUnwindException(); 5417 } 5418 5419 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5420 CodeGen::CodeGenModule &CGM) const override { 5421 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5422 if (!FD) 5423 return; 5424 5425 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5426 if (!Attr) 5427 return; 5428 5429 const char *Kind; 5430 switch (Attr->getInterrupt()) { 5431 case ARMInterruptAttr::Generic: Kind = ""; break; 5432 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5433 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5434 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5435 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5436 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5437 } 5438 5439 llvm::Function *Fn = cast<llvm::Function>(GV); 5440 5441 Fn->addFnAttr("interrupt", Kind); 5442 5443 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5444 if (ABI == ARMABIInfo::APCS) 5445 return; 5446 5447 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5448 // however this is not necessarily true on taking any interrupt. Instruct 5449 // the backend to perform a realignment as part of the function prologue. 5450 llvm::AttrBuilder B; 5451 B.addStackAlignmentAttr(8); 5452 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5453 } 5454 }; 5455 5456 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5457 public: 5458 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5459 : ARMTargetCodeGenInfo(CGT, K) {} 5460 5461 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5462 CodeGen::CodeGenModule &CGM) const override; 5463 5464 void getDependentLibraryOption(llvm::StringRef Lib, 5465 llvm::SmallString<24> &Opt) const override { 5466 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5467 } 5468 5469 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5470 llvm::SmallString<32> &Opt) const override { 5471 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5472 } 5473 }; 5474 5475 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5476 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5477 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5478 addStackProbeSizeTargetAttribute(D, GV, CGM); 5479 } 5480 } 5481 5482 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5483 if (!getCXXABI().classifyReturnType(FI)) 5484 FI.getReturnInfo() = 5485 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5486 5487 for (auto &I : FI.arguments()) 5488 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5489 5490 // Always honor user-specified calling convention. 5491 if (FI.getCallingConvention() != llvm::CallingConv::C) 5492 return; 5493 5494 llvm::CallingConv::ID cc = getRuntimeCC(); 5495 if (cc != llvm::CallingConv::C) 5496 FI.setEffectiveCallingConvention(cc); 5497 } 5498 5499 /// Return the default calling convention that LLVM will use. 5500 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5501 // The default calling convention that LLVM will infer. 5502 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5503 return llvm::CallingConv::ARM_AAPCS_VFP; 5504 else if (isEABI()) 5505 return llvm::CallingConv::ARM_AAPCS; 5506 else 5507 return llvm::CallingConv::ARM_APCS; 5508 } 5509 5510 /// Return the calling convention that our ABI would like us to use 5511 /// as the C calling convention. 5512 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5513 switch (getABIKind()) { 5514 case APCS: return llvm::CallingConv::ARM_APCS; 5515 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5516 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5517 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5518 } 5519 llvm_unreachable("bad ABI kind"); 5520 } 5521 5522 void ARMABIInfo::setCCs() { 5523 assert(getRuntimeCC() == llvm::CallingConv::C); 5524 5525 // Don't muddy up the IR with a ton of explicit annotations if 5526 // they'd just match what LLVM will infer from the triple. 5527 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5528 if (abiCC != getLLVMDefaultCC()) 5529 RuntimeCC = abiCC; 5530 5531 // AAPCS apparently requires runtime support functions to be soft-float, but 5532 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5533 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5534 switch (getABIKind()) { 5535 case APCS: 5536 case AAPCS16_VFP: 5537 if (abiCC != getLLVMDefaultCC()) 5538 BuiltinCC = abiCC; 5539 break; 5540 case AAPCS: 5541 case AAPCS_VFP: 5542 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5543 break; 5544 } 5545 } 5546 5547 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5548 bool isVariadic) const { 5549 // 6.1.2.1 The following argument types are VFP CPRCs: 5550 // A single-precision floating-point type (including promoted 5551 // half-precision types); A double-precision floating-point type; 5552 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5553 // with a Base Type of a single- or double-precision floating-point type, 5554 // 64-bit containerized vectors or 128-bit containerized vectors with one 5555 // to four Elements. 5556 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5557 5558 Ty = useFirstFieldIfTransparentUnion(Ty); 5559 5560 // Handle illegal vector types here. 5561 if (isIllegalVectorType(Ty)) { 5562 uint64_t Size = getContext().getTypeSize(Ty); 5563 if (Size <= 32) { 5564 llvm::Type *ResType = 5565 llvm::Type::getInt32Ty(getVMContext()); 5566 return ABIArgInfo::getDirect(ResType); 5567 } 5568 if (Size == 64) { 5569 llvm::Type *ResType = llvm::VectorType::get( 5570 llvm::Type::getInt32Ty(getVMContext()), 2); 5571 return ABIArgInfo::getDirect(ResType); 5572 } 5573 if (Size == 128) { 5574 llvm::Type *ResType = llvm::VectorType::get( 5575 llvm::Type::getInt32Ty(getVMContext()), 4); 5576 return ABIArgInfo::getDirect(ResType); 5577 } 5578 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5579 } 5580 5581 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5582 // unspecified. This is not done for OpenCL as it handles the half type 5583 // natively, and does not need to interwork with AAPCS code. 5584 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5585 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5586 llvm::Type::getFloatTy(getVMContext()) : 5587 llvm::Type::getInt32Ty(getVMContext()); 5588 return ABIArgInfo::getDirect(ResType); 5589 } 5590 5591 if (!isAggregateTypeForABI(Ty)) { 5592 // Treat an enum type as its underlying type. 5593 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5594 Ty = EnumTy->getDecl()->getIntegerType(); 5595 } 5596 5597 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5598 : ABIArgInfo::getDirect()); 5599 } 5600 5601 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5602 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5603 } 5604 5605 // Ignore empty records. 5606 if (isEmptyRecord(getContext(), Ty, true)) 5607 return ABIArgInfo::getIgnore(); 5608 5609 if (IsEffectivelyAAPCS_VFP) { 5610 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5611 // into VFP registers. 5612 const Type *Base = nullptr; 5613 uint64_t Members = 0; 5614 if (isHomogeneousAggregate(Ty, Base, Members)) { 5615 assert(Base && "Base class should be set for homogeneous aggregate"); 5616 // Base can be a floating-point or a vector. 5617 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5618 } 5619 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5620 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5621 // this convention even for a variadic function: the backend will use GPRs 5622 // if needed. 5623 const Type *Base = nullptr; 5624 uint64_t Members = 0; 5625 if (isHomogeneousAggregate(Ty, Base, Members)) { 5626 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5627 llvm::Type *Ty = 5628 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5629 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5630 } 5631 } 5632 5633 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5634 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5635 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5636 // bigger than 128-bits, they get placed in space allocated by the caller, 5637 // and a pointer is passed. 5638 return ABIArgInfo::getIndirect( 5639 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5640 } 5641 5642 // Support byval for ARM. 5643 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5644 // most 8-byte. We realign the indirect argument if type alignment is bigger 5645 // than ABI alignment. 5646 uint64_t ABIAlign = 4; 5647 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5648 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5649 getABIKind() == ARMABIInfo::AAPCS) 5650 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5651 5652 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5653 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5654 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5655 /*ByVal=*/true, 5656 /*Realign=*/TyAlign > ABIAlign); 5657 } 5658 5659 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5660 // same size and alignment. 5661 if (getTarget().isRenderScriptTarget()) { 5662 return coerceToIntArray(Ty, getContext(), getVMContext()); 5663 } 5664 5665 // Otherwise, pass by coercing to a structure of the appropriate size. 5666 llvm::Type* ElemTy; 5667 unsigned SizeRegs; 5668 // FIXME: Try to match the types of the arguments more accurately where 5669 // we can. 5670 if (getContext().getTypeAlign(Ty) <= 32) { 5671 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5672 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5673 } else { 5674 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5675 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5676 } 5677 5678 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5679 } 5680 5681 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5682 llvm::LLVMContext &VMContext) { 5683 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5684 // is called integer-like if its size is less than or equal to one word, and 5685 // the offset of each of its addressable sub-fields is zero. 5686 5687 uint64_t Size = Context.getTypeSize(Ty); 5688 5689 // Check that the type fits in a word. 5690 if (Size > 32) 5691 return false; 5692 5693 // FIXME: Handle vector types! 5694 if (Ty->isVectorType()) 5695 return false; 5696 5697 // Float types are never treated as "integer like". 5698 if (Ty->isRealFloatingType()) 5699 return false; 5700 5701 // If this is a builtin or pointer type then it is ok. 5702 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5703 return true; 5704 5705 // Small complex integer types are "integer like". 5706 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5707 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5708 5709 // Single element and zero sized arrays should be allowed, by the definition 5710 // above, but they are not. 5711 5712 // Otherwise, it must be a record type. 5713 const RecordType *RT = Ty->getAs<RecordType>(); 5714 if (!RT) return false; 5715 5716 // Ignore records with flexible arrays. 5717 const RecordDecl *RD = RT->getDecl(); 5718 if (RD->hasFlexibleArrayMember()) 5719 return false; 5720 5721 // Check that all sub-fields are at offset 0, and are themselves "integer 5722 // like". 5723 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5724 5725 bool HadField = false; 5726 unsigned idx = 0; 5727 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5728 i != e; ++i, ++idx) { 5729 const FieldDecl *FD = *i; 5730 5731 // Bit-fields are not addressable, we only need to verify they are "integer 5732 // like". We still have to disallow a subsequent non-bitfield, for example: 5733 // struct { int : 0; int x } 5734 // is non-integer like according to gcc. 5735 if (FD->isBitField()) { 5736 if (!RD->isUnion()) 5737 HadField = true; 5738 5739 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5740 return false; 5741 5742 continue; 5743 } 5744 5745 // Check if this field is at offset 0. 5746 if (Layout.getFieldOffset(idx) != 0) 5747 return false; 5748 5749 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5750 return false; 5751 5752 // Only allow at most one field in a structure. This doesn't match the 5753 // wording above, but follows gcc in situations with a field following an 5754 // empty structure. 5755 if (!RD->isUnion()) { 5756 if (HadField) 5757 return false; 5758 5759 HadField = true; 5760 } 5761 } 5762 5763 return true; 5764 } 5765 5766 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5767 bool isVariadic) const { 5768 bool IsEffectivelyAAPCS_VFP = 5769 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5770 5771 if (RetTy->isVoidType()) 5772 return ABIArgInfo::getIgnore(); 5773 5774 // Large vector types should be returned via memory. 5775 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5776 return getNaturalAlignIndirect(RetTy); 5777 } 5778 5779 // __fp16 gets returned as if it were an int or float, but with the top 16 5780 // bits unspecified. This is not done for OpenCL as it handles the half type 5781 // natively, and does not need to interwork with AAPCS code. 5782 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5783 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5784 llvm::Type::getFloatTy(getVMContext()) : 5785 llvm::Type::getInt32Ty(getVMContext()); 5786 return ABIArgInfo::getDirect(ResType); 5787 } 5788 5789 if (!isAggregateTypeForABI(RetTy)) { 5790 // Treat an enum type as its underlying type. 5791 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5792 RetTy = EnumTy->getDecl()->getIntegerType(); 5793 5794 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5795 : ABIArgInfo::getDirect(); 5796 } 5797 5798 // Are we following APCS? 5799 if (getABIKind() == APCS) { 5800 if (isEmptyRecord(getContext(), RetTy, false)) 5801 return ABIArgInfo::getIgnore(); 5802 5803 // Complex types are all returned as packed integers. 5804 // 5805 // FIXME: Consider using 2 x vector types if the back end handles them 5806 // correctly. 5807 if (RetTy->isAnyComplexType()) 5808 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5809 getVMContext(), getContext().getTypeSize(RetTy))); 5810 5811 // Integer like structures are returned in r0. 5812 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5813 // Return in the smallest viable integer type. 5814 uint64_t Size = getContext().getTypeSize(RetTy); 5815 if (Size <= 8) 5816 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5817 if (Size <= 16) 5818 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5819 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5820 } 5821 5822 // Otherwise return in memory. 5823 return getNaturalAlignIndirect(RetTy); 5824 } 5825 5826 // Otherwise this is an AAPCS variant. 5827 5828 if (isEmptyRecord(getContext(), RetTy, true)) 5829 return ABIArgInfo::getIgnore(); 5830 5831 // Check for homogeneous aggregates with AAPCS-VFP. 5832 if (IsEffectivelyAAPCS_VFP) { 5833 const Type *Base = nullptr; 5834 uint64_t Members = 0; 5835 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5836 assert(Base && "Base class should be set for homogeneous aggregate"); 5837 // Homogeneous Aggregates are returned directly. 5838 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5839 } 5840 } 5841 5842 // Aggregates <= 4 bytes are returned in r0; other aggregates 5843 // are returned indirectly. 5844 uint64_t Size = getContext().getTypeSize(RetTy); 5845 if (Size <= 32) { 5846 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5847 // same size and alignment. 5848 if (getTarget().isRenderScriptTarget()) { 5849 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5850 } 5851 if (getDataLayout().isBigEndian()) 5852 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5853 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5854 5855 // Return in the smallest viable integer type. 5856 if (Size <= 8) 5857 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5858 if (Size <= 16) 5859 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5860 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5861 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5862 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5863 llvm::Type *CoerceTy = 5864 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5865 return ABIArgInfo::getDirect(CoerceTy); 5866 } 5867 5868 return getNaturalAlignIndirect(RetTy); 5869 } 5870 5871 /// isIllegalVector - check whether Ty is an illegal vector type. 5872 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5873 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5874 if (isAndroid()) { 5875 // Android shipped using Clang 3.1, which supported a slightly different 5876 // vector ABI. The primary differences were that 3-element vector types 5877 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5878 // accepts that legacy behavior for Android only. 5879 // Check whether VT is legal. 5880 unsigned NumElements = VT->getNumElements(); 5881 // NumElements should be power of 2 or equal to 3. 5882 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5883 return true; 5884 } else { 5885 // Check whether VT is legal. 5886 unsigned NumElements = VT->getNumElements(); 5887 uint64_t Size = getContext().getTypeSize(VT); 5888 // NumElements should be power of 2. 5889 if (!llvm::isPowerOf2_32(NumElements)) 5890 return true; 5891 // Size should be greater than 32 bits. 5892 return Size <= 32; 5893 } 5894 } 5895 return false; 5896 } 5897 5898 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5899 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5900 // double, or 64-bit or 128-bit vectors. 5901 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5902 if (BT->getKind() == BuiltinType::Float || 5903 BT->getKind() == BuiltinType::Double || 5904 BT->getKind() == BuiltinType::LongDouble) 5905 return true; 5906 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5907 unsigned VecSize = getContext().getTypeSize(VT); 5908 if (VecSize == 64 || VecSize == 128) 5909 return true; 5910 } 5911 return false; 5912 } 5913 5914 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5915 uint64_t Members) const { 5916 return Members <= 4; 5917 } 5918 5919 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5920 QualType Ty) const { 5921 CharUnits SlotSize = CharUnits::fromQuantity(4); 5922 5923 // Empty records are ignored for parameter passing purposes. 5924 if (isEmptyRecord(getContext(), Ty, true)) { 5925 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5926 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5927 return Addr; 5928 } 5929 5930 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5931 CharUnits TyAlignForABI = TyInfo.second; 5932 5933 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5934 bool IsIndirect = false; 5935 const Type *Base = nullptr; 5936 uint64_t Members = 0; 5937 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5938 IsIndirect = true; 5939 5940 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5941 // allocated by the caller. 5942 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5943 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5944 !isHomogeneousAggregate(Ty, Base, Members)) { 5945 IsIndirect = true; 5946 5947 // Otherwise, bound the type's ABI alignment. 5948 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5949 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5950 // Our callers should be prepared to handle an under-aligned address. 5951 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5952 getABIKind() == ARMABIInfo::AAPCS) { 5953 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5954 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5955 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5956 // ARMv7k allows type alignment up to 16 bytes. 5957 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5958 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5959 } else { 5960 TyAlignForABI = CharUnits::fromQuantity(4); 5961 } 5962 TyInfo.second = TyAlignForABI; 5963 5964 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5965 SlotSize, /*AllowHigherAlign*/ true); 5966 } 5967 5968 //===----------------------------------------------------------------------===// 5969 // NVPTX ABI Implementation 5970 //===----------------------------------------------------------------------===// 5971 5972 namespace { 5973 5974 class NVPTXABIInfo : public ABIInfo { 5975 public: 5976 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5977 5978 ABIArgInfo classifyReturnType(QualType RetTy) const; 5979 ABIArgInfo classifyArgumentType(QualType Ty) const; 5980 5981 void computeInfo(CGFunctionInfo &FI) const override; 5982 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5983 QualType Ty) const override; 5984 }; 5985 5986 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5987 public: 5988 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5989 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5990 5991 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5992 CodeGen::CodeGenModule &M) const override; 5993 private: 5994 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5995 // resulting MDNode to the nvvm.annotations MDNode. 5996 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5997 }; 5998 5999 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6000 if (RetTy->isVoidType()) 6001 return ABIArgInfo::getIgnore(); 6002 6003 // note: this is different from default ABI 6004 if (!RetTy->isScalarType()) 6005 return ABIArgInfo::getDirect(); 6006 6007 // Treat an enum type as its underlying type. 6008 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6009 RetTy = EnumTy->getDecl()->getIntegerType(); 6010 6011 return (RetTy->isPromotableIntegerType() ? 6012 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6013 } 6014 6015 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6016 // Treat an enum type as its underlying type. 6017 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6018 Ty = EnumTy->getDecl()->getIntegerType(); 6019 6020 // Return aggregates type as indirect by value 6021 if (isAggregateTypeForABI(Ty)) 6022 return getNaturalAlignIndirect(Ty, /* byval */ true); 6023 6024 return (Ty->isPromotableIntegerType() ? 6025 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6026 } 6027 6028 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6029 if (!getCXXABI().classifyReturnType(FI)) 6030 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6031 for (auto &I : FI.arguments()) 6032 I.info = classifyArgumentType(I.type); 6033 6034 // Always honor user-specified calling convention. 6035 if (FI.getCallingConvention() != llvm::CallingConv::C) 6036 return; 6037 6038 FI.setEffectiveCallingConvention(getRuntimeCC()); 6039 } 6040 6041 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6042 QualType Ty) const { 6043 llvm_unreachable("NVPTX does not support varargs"); 6044 } 6045 6046 void NVPTXTargetCodeGenInfo:: 6047 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6048 CodeGen::CodeGenModule &M) const{ 6049 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6050 if (!FD) return; 6051 6052 llvm::Function *F = cast<llvm::Function>(GV); 6053 6054 // Perform special handling in OpenCL mode 6055 if (M.getLangOpts().OpenCL) { 6056 // Use OpenCL function attributes to check for kernel functions 6057 // By default, all functions are device functions 6058 if (FD->hasAttr<OpenCLKernelAttr>()) { 6059 // OpenCL __kernel functions get kernel metadata 6060 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6061 addNVVMMetadata(F, "kernel", 1); 6062 // And kernel functions are not subject to inlining 6063 F->addFnAttr(llvm::Attribute::NoInline); 6064 } 6065 } 6066 6067 // Perform special handling in CUDA mode. 6068 if (M.getLangOpts().CUDA) { 6069 // CUDA __global__ functions get a kernel metadata entry. Since 6070 // __global__ functions cannot be called from the device, we do not 6071 // need to set the noinline attribute. 6072 if (FD->hasAttr<CUDAGlobalAttr>()) { 6073 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6074 addNVVMMetadata(F, "kernel", 1); 6075 } 6076 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6077 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6078 llvm::APSInt MaxThreads(32); 6079 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6080 if (MaxThreads > 0) 6081 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6082 6083 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6084 // not specified in __launch_bounds__ or if the user specified a 0 value, 6085 // we don't have to add a PTX directive. 6086 if (Attr->getMinBlocks()) { 6087 llvm::APSInt MinBlocks(32); 6088 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6089 if (MinBlocks > 0) 6090 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6091 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6092 } 6093 } 6094 } 6095 } 6096 6097 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6098 int Operand) { 6099 llvm::Module *M = F->getParent(); 6100 llvm::LLVMContext &Ctx = M->getContext(); 6101 6102 // Get "nvvm.annotations" metadata node 6103 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6104 6105 llvm::Metadata *MDVals[] = { 6106 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6107 llvm::ConstantAsMetadata::get( 6108 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6109 // Append metadata to nvvm.annotations 6110 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6111 } 6112 } 6113 6114 //===----------------------------------------------------------------------===// 6115 // SystemZ ABI Implementation 6116 //===----------------------------------------------------------------------===// 6117 6118 namespace { 6119 6120 class SystemZABIInfo : public SwiftABIInfo { 6121 bool HasVector; 6122 6123 public: 6124 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6125 : SwiftABIInfo(CGT), HasVector(HV) {} 6126 6127 bool isPromotableIntegerType(QualType Ty) const; 6128 bool isCompoundType(QualType Ty) const; 6129 bool isVectorArgumentType(QualType Ty) const; 6130 bool isFPArgumentType(QualType Ty) const; 6131 QualType GetSingleElementType(QualType Ty) const; 6132 6133 ABIArgInfo classifyReturnType(QualType RetTy) const; 6134 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6135 6136 void computeInfo(CGFunctionInfo &FI) const override { 6137 if (!getCXXABI().classifyReturnType(FI)) 6138 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6139 for (auto &I : FI.arguments()) 6140 I.info = classifyArgumentType(I.type); 6141 } 6142 6143 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6144 QualType Ty) const override; 6145 6146 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 6147 ArrayRef<llvm::Type*> scalars, 6148 bool asReturnValue) const override { 6149 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6150 } 6151 bool isSwiftErrorInRegister() const override { 6152 return true; 6153 } 6154 }; 6155 6156 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6157 public: 6158 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6159 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6160 }; 6161 6162 } 6163 6164 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6165 // Treat an enum type as its underlying type. 6166 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6167 Ty = EnumTy->getDecl()->getIntegerType(); 6168 6169 // Promotable integer types are required to be promoted by the ABI. 6170 if (Ty->isPromotableIntegerType()) 6171 return true; 6172 6173 // 32-bit values must also be promoted. 6174 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6175 switch (BT->getKind()) { 6176 case BuiltinType::Int: 6177 case BuiltinType::UInt: 6178 return true; 6179 default: 6180 return false; 6181 } 6182 return false; 6183 } 6184 6185 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6186 return (Ty->isAnyComplexType() || 6187 Ty->isVectorType() || 6188 isAggregateTypeForABI(Ty)); 6189 } 6190 6191 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6192 return (HasVector && 6193 Ty->isVectorType() && 6194 getContext().getTypeSize(Ty) <= 128); 6195 } 6196 6197 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6198 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6199 switch (BT->getKind()) { 6200 case BuiltinType::Float: 6201 case BuiltinType::Double: 6202 return true; 6203 default: 6204 return false; 6205 } 6206 6207 return false; 6208 } 6209 6210 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6211 if (const RecordType *RT = Ty->getAsStructureType()) { 6212 const RecordDecl *RD = RT->getDecl(); 6213 QualType Found; 6214 6215 // If this is a C++ record, check the bases first. 6216 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6217 for (const auto &I : CXXRD->bases()) { 6218 QualType Base = I.getType(); 6219 6220 // Empty bases don't affect things either way. 6221 if (isEmptyRecord(getContext(), Base, true)) 6222 continue; 6223 6224 if (!Found.isNull()) 6225 return Ty; 6226 Found = GetSingleElementType(Base); 6227 } 6228 6229 // Check the fields. 6230 for (const auto *FD : RD->fields()) { 6231 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6232 // Unlike isSingleElementStruct(), empty structure and array fields 6233 // do count. So do anonymous bitfields that aren't zero-sized. 6234 if (getContext().getLangOpts().CPlusPlus && 6235 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6236 continue; 6237 6238 // Unlike isSingleElementStruct(), arrays do not count. 6239 // Nested structures still do though. 6240 if (!Found.isNull()) 6241 return Ty; 6242 Found = GetSingleElementType(FD->getType()); 6243 } 6244 6245 // Unlike isSingleElementStruct(), trailing padding is allowed. 6246 // An 8-byte aligned struct s { float f; } is passed as a double. 6247 if (!Found.isNull()) 6248 return Found; 6249 } 6250 6251 return Ty; 6252 } 6253 6254 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6255 QualType Ty) const { 6256 // Assume that va_list type is correct; should be pointer to LLVM type: 6257 // struct { 6258 // i64 __gpr; 6259 // i64 __fpr; 6260 // i8 *__overflow_arg_area; 6261 // i8 *__reg_save_area; 6262 // }; 6263 6264 // Every non-vector argument occupies 8 bytes and is passed by preference 6265 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6266 // always passed on the stack. 6267 Ty = getContext().getCanonicalType(Ty); 6268 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6269 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6270 llvm::Type *DirectTy = ArgTy; 6271 ABIArgInfo AI = classifyArgumentType(Ty); 6272 bool IsIndirect = AI.isIndirect(); 6273 bool InFPRs = false; 6274 bool IsVector = false; 6275 CharUnits UnpaddedSize; 6276 CharUnits DirectAlign; 6277 if (IsIndirect) { 6278 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6279 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6280 } else { 6281 if (AI.getCoerceToType()) 6282 ArgTy = AI.getCoerceToType(); 6283 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6284 IsVector = ArgTy->isVectorTy(); 6285 UnpaddedSize = TyInfo.first; 6286 DirectAlign = TyInfo.second; 6287 } 6288 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6289 if (IsVector && UnpaddedSize > PaddedSize) 6290 PaddedSize = CharUnits::fromQuantity(16); 6291 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6292 6293 CharUnits Padding = (PaddedSize - UnpaddedSize); 6294 6295 llvm::Type *IndexTy = CGF.Int64Ty; 6296 llvm::Value *PaddedSizeV = 6297 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6298 6299 if (IsVector) { 6300 // Work out the address of a vector argument on the stack. 6301 // Vector arguments are always passed in the high bits of a 6302 // single (8 byte) or double (16 byte) stack slot. 6303 Address OverflowArgAreaPtr = 6304 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6305 "overflow_arg_area_ptr"); 6306 Address OverflowArgArea = 6307 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6308 TyInfo.second); 6309 Address MemAddr = 6310 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6311 6312 // Update overflow_arg_area_ptr pointer 6313 llvm::Value *NewOverflowArgArea = 6314 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6315 "overflow_arg_area"); 6316 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6317 6318 return MemAddr; 6319 } 6320 6321 assert(PaddedSize.getQuantity() == 8); 6322 6323 unsigned MaxRegs, RegCountField, RegSaveIndex; 6324 CharUnits RegPadding; 6325 if (InFPRs) { 6326 MaxRegs = 4; // Maximum of 4 FPR arguments 6327 RegCountField = 1; // __fpr 6328 RegSaveIndex = 16; // save offset for f0 6329 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6330 } else { 6331 MaxRegs = 5; // Maximum of 5 GPR arguments 6332 RegCountField = 0; // __gpr 6333 RegSaveIndex = 2; // save offset for r2 6334 RegPadding = Padding; // values are passed in the low bits of a GPR 6335 } 6336 6337 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6338 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6339 "reg_count_ptr"); 6340 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6341 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6342 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6343 "fits_in_regs"); 6344 6345 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6346 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6347 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6348 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6349 6350 // Emit code to load the value if it was passed in registers. 6351 CGF.EmitBlock(InRegBlock); 6352 6353 // Work out the address of an argument register. 6354 llvm::Value *ScaledRegCount = 6355 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6356 llvm::Value *RegBase = 6357 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6358 + RegPadding.getQuantity()); 6359 llvm::Value *RegOffset = 6360 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6361 Address RegSaveAreaPtr = 6362 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6363 "reg_save_area_ptr"); 6364 llvm::Value *RegSaveArea = 6365 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6366 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6367 "raw_reg_addr"), 6368 PaddedSize); 6369 Address RegAddr = 6370 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6371 6372 // Update the register count 6373 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6374 llvm::Value *NewRegCount = 6375 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6376 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6377 CGF.EmitBranch(ContBlock); 6378 6379 // Emit code to load the value if it was passed in memory. 6380 CGF.EmitBlock(InMemBlock); 6381 6382 // Work out the address of a stack argument. 6383 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6384 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6385 Address OverflowArgArea = 6386 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6387 PaddedSize); 6388 Address RawMemAddr = 6389 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6390 Address MemAddr = 6391 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6392 6393 // Update overflow_arg_area_ptr pointer 6394 llvm::Value *NewOverflowArgArea = 6395 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6396 "overflow_arg_area"); 6397 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6398 CGF.EmitBranch(ContBlock); 6399 6400 // Return the appropriate result. 6401 CGF.EmitBlock(ContBlock); 6402 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6403 MemAddr, InMemBlock, "va_arg.addr"); 6404 6405 if (IsIndirect) 6406 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6407 TyInfo.second); 6408 6409 return ResAddr; 6410 } 6411 6412 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6413 if (RetTy->isVoidType()) 6414 return ABIArgInfo::getIgnore(); 6415 if (isVectorArgumentType(RetTy)) 6416 return ABIArgInfo::getDirect(); 6417 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6418 return getNaturalAlignIndirect(RetTy); 6419 return (isPromotableIntegerType(RetTy) ? 6420 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6421 } 6422 6423 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6424 // Handle the generic C++ ABI. 6425 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6426 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6427 6428 // Integers and enums are extended to full register width. 6429 if (isPromotableIntegerType(Ty)) 6430 return ABIArgInfo::getExtend(); 6431 6432 // Handle vector types and vector-like structure types. Note that 6433 // as opposed to float-like structure types, we do not allow any 6434 // padding for vector-like structures, so verify the sizes match. 6435 uint64_t Size = getContext().getTypeSize(Ty); 6436 QualType SingleElementTy = GetSingleElementType(Ty); 6437 if (isVectorArgumentType(SingleElementTy) && 6438 getContext().getTypeSize(SingleElementTy) == Size) 6439 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6440 6441 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6442 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6443 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6444 6445 // Handle small structures. 6446 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6447 // Structures with flexible arrays have variable length, so really 6448 // fail the size test above. 6449 const RecordDecl *RD = RT->getDecl(); 6450 if (RD->hasFlexibleArrayMember()) 6451 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6452 6453 // The structure is passed as an unextended integer, a float, or a double. 6454 llvm::Type *PassTy; 6455 if (isFPArgumentType(SingleElementTy)) { 6456 assert(Size == 32 || Size == 64); 6457 if (Size == 32) 6458 PassTy = llvm::Type::getFloatTy(getVMContext()); 6459 else 6460 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6461 } else 6462 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6463 return ABIArgInfo::getDirect(PassTy); 6464 } 6465 6466 // Non-structure compounds are passed indirectly. 6467 if (isCompoundType(Ty)) 6468 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6469 6470 return ABIArgInfo::getDirect(nullptr); 6471 } 6472 6473 //===----------------------------------------------------------------------===// 6474 // MSP430 ABI Implementation 6475 //===----------------------------------------------------------------------===// 6476 6477 namespace { 6478 6479 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6480 public: 6481 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6482 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6483 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6484 CodeGen::CodeGenModule &M) const override; 6485 }; 6486 6487 } 6488 6489 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6490 llvm::GlobalValue *GV, 6491 CodeGen::CodeGenModule &M) const { 6492 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6493 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6494 // Handle 'interrupt' attribute: 6495 llvm::Function *F = cast<llvm::Function>(GV); 6496 6497 // Step 1: Set ISR calling convention. 6498 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6499 6500 // Step 2: Add attributes goodness. 6501 F->addFnAttr(llvm::Attribute::NoInline); 6502 6503 // Step 3: Emit ISR vector alias. 6504 unsigned Num = attr->getNumber() / 2; 6505 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6506 "__isr_" + Twine(Num), F); 6507 } 6508 } 6509 } 6510 6511 //===----------------------------------------------------------------------===// 6512 // MIPS ABI Implementation. This works for both little-endian and 6513 // big-endian variants. 6514 //===----------------------------------------------------------------------===// 6515 6516 namespace { 6517 class MipsABIInfo : public ABIInfo { 6518 bool IsO32; 6519 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6520 void CoerceToIntArgs(uint64_t TySize, 6521 SmallVectorImpl<llvm::Type *> &ArgList) const; 6522 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6523 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6524 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6525 public: 6526 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6527 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6528 StackAlignInBytes(IsO32 ? 8 : 16) {} 6529 6530 ABIArgInfo classifyReturnType(QualType RetTy) const; 6531 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6532 void computeInfo(CGFunctionInfo &FI) const override; 6533 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6534 QualType Ty) const override; 6535 bool shouldSignExtUnsignedType(QualType Ty) const override; 6536 }; 6537 6538 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6539 unsigned SizeOfUnwindException; 6540 public: 6541 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6542 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6543 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6544 6545 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6546 return 29; 6547 } 6548 6549 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6550 CodeGen::CodeGenModule &CGM) const override { 6551 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6552 if (!FD) return; 6553 llvm::Function *Fn = cast<llvm::Function>(GV); 6554 if (FD->hasAttr<Mips16Attr>()) { 6555 Fn->addFnAttr("mips16"); 6556 } 6557 else if (FD->hasAttr<NoMips16Attr>()) { 6558 Fn->addFnAttr("nomips16"); 6559 } 6560 6561 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6562 if (!Attr) 6563 return; 6564 6565 const char *Kind; 6566 switch (Attr->getInterrupt()) { 6567 case MipsInterruptAttr::eic: Kind = "eic"; break; 6568 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6569 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6570 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6571 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6572 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6573 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6574 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6575 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6576 } 6577 6578 Fn->addFnAttr("interrupt", Kind); 6579 6580 } 6581 6582 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6583 llvm::Value *Address) const override; 6584 6585 unsigned getSizeOfUnwindException() const override { 6586 return SizeOfUnwindException; 6587 } 6588 }; 6589 } 6590 6591 void MipsABIInfo::CoerceToIntArgs( 6592 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6593 llvm::IntegerType *IntTy = 6594 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6595 6596 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6597 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6598 ArgList.push_back(IntTy); 6599 6600 // If necessary, add one more integer type to ArgList. 6601 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6602 6603 if (R) 6604 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6605 } 6606 6607 // In N32/64, an aligned double precision floating point field is passed in 6608 // a register. 6609 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6610 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6611 6612 if (IsO32) { 6613 CoerceToIntArgs(TySize, ArgList); 6614 return llvm::StructType::get(getVMContext(), ArgList); 6615 } 6616 6617 if (Ty->isComplexType()) 6618 return CGT.ConvertType(Ty); 6619 6620 const RecordType *RT = Ty->getAs<RecordType>(); 6621 6622 // Unions/vectors are passed in integer registers. 6623 if (!RT || !RT->isStructureOrClassType()) { 6624 CoerceToIntArgs(TySize, ArgList); 6625 return llvm::StructType::get(getVMContext(), ArgList); 6626 } 6627 6628 const RecordDecl *RD = RT->getDecl(); 6629 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6630 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6631 6632 uint64_t LastOffset = 0; 6633 unsigned idx = 0; 6634 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6635 6636 // Iterate over fields in the struct/class and check if there are any aligned 6637 // double fields. 6638 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6639 i != e; ++i, ++idx) { 6640 const QualType Ty = i->getType(); 6641 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6642 6643 if (!BT || BT->getKind() != BuiltinType::Double) 6644 continue; 6645 6646 uint64_t Offset = Layout.getFieldOffset(idx); 6647 if (Offset % 64) // Ignore doubles that are not aligned. 6648 continue; 6649 6650 // Add ((Offset - LastOffset) / 64) args of type i64. 6651 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6652 ArgList.push_back(I64); 6653 6654 // Add double type. 6655 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6656 LastOffset = Offset + 64; 6657 } 6658 6659 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6660 ArgList.append(IntArgList.begin(), IntArgList.end()); 6661 6662 return llvm::StructType::get(getVMContext(), ArgList); 6663 } 6664 6665 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6666 uint64_t Offset) const { 6667 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6668 return nullptr; 6669 6670 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6671 } 6672 6673 ABIArgInfo 6674 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6675 Ty = useFirstFieldIfTransparentUnion(Ty); 6676 6677 uint64_t OrigOffset = Offset; 6678 uint64_t TySize = getContext().getTypeSize(Ty); 6679 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6680 6681 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6682 (uint64_t)StackAlignInBytes); 6683 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6684 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6685 6686 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6687 // Ignore empty aggregates. 6688 if (TySize == 0) 6689 return ABIArgInfo::getIgnore(); 6690 6691 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6692 Offset = OrigOffset + MinABIStackAlignInBytes; 6693 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6694 } 6695 6696 // Use indirect if the aggregate cannot fit into registers for 6697 // passing arguments according to the ABI 6698 unsigned Threshold = IsO32 ? 16 : 64; 6699 6700 if(getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(Threshold)) 6701 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align), true, 6702 getContext().getTypeAlign(Ty) / 8 > Align); 6703 6704 // If we have reached here, aggregates are passed directly by coercing to 6705 // another structure type. Padding is inserted if the offset of the 6706 // aggregate is unaligned. 6707 ABIArgInfo ArgInfo = 6708 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6709 getPaddingType(OrigOffset, CurrOffset)); 6710 ArgInfo.setInReg(true); 6711 return ArgInfo; 6712 } 6713 6714 // Treat an enum type as its underlying type. 6715 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6716 Ty = EnumTy->getDecl()->getIntegerType(); 6717 6718 // All integral types are promoted to the GPR width. 6719 if (Ty->isIntegralOrEnumerationType()) 6720 return ABIArgInfo::getExtend(); 6721 6722 return ABIArgInfo::getDirect( 6723 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6724 } 6725 6726 llvm::Type* 6727 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6728 const RecordType *RT = RetTy->getAs<RecordType>(); 6729 SmallVector<llvm::Type*, 8> RTList; 6730 6731 if (RT && RT->isStructureOrClassType()) { 6732 const RecordDecl *RD = RT->getDecl(); 6733 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6734 unsigned FieldCnt = Layout.getFieldCount(); 6735 6736 // N32/64 returns struct/classes in floating point registers if the 6737 // following conditions are met: 6738 // 1. The size of the struct/class is no larger than 128-bit. 6739 // 2. The struct/class has one or two fields all of which are floating 6740 // point types. 6741 // 3. The offset of the first field is zero (this follows what gcc does). 6742 // 6743 // Any other composite results are returned in integer registers. 6744 // 6745 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6746 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6747 for (; b != e; ++b) { 6748 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6749 6750 if (!BT || !BT->isFloatingPoint()) 6751 break; 6752 6753 RTList.push_back(CGT.ConvertType(b->getType())); 6754 } 6755 6756 if (b == e) 6757 return llvm::StructType::get(getVMContext(), RTList, 6758 RD->hasAttr<PackedAttr>()); 6759 6760 RTList.clear(); 6761 } 6762 } 6763 6764 CoerceToIntArgs(Size, RTList); 6765 return llvm::StructType::get(getVMContext(), RTList); 6766 } 6767 6768 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6769 uint64_t Size = getContext().getTypeSize(RetTy); 6770 6771 if (RetTy->isVoidType()) 6772 return ABIArgInfo::getIgnore(); 6773 6774 // O32 doesn't treat zero-sized structs differently from other structs. 6775 // However, N32/N64 ignores zero sized return values. 6776 if (!IsO32 && Size == 0) 6777 return ABIArgInfo::getIgnore(); 6778 6779 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6780 if (Size <= 128) { 6781 if (RetTy->isAnyComplexType()) 6782 return ABIArgInfo::getDirect(); 6783 6784 // O32 returns integer vectors in registers and N32/N64 returns all small 6785 // aggregates in registers. 6786 if (!IsO32 || 6787 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6788 ABIArgInfo ArgInfo = 6789 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6790 ArgInfo.setInReg(true); 6791 return ArgInfo; 6792 } 6793 } 6794 6795 return getNaturalAlignIndirect(RetTy); 6796 } 6797 6798 // Treat an enum type as its underlying type. 6799 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6800 RetTy = EnumTy->getDecl()->getIntegerType(); 6801 6802 return (RetTy->isPromotableIntegerType() ? 6803 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6804 } 6805 6806 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6807 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6808 if (!getCXXABI().classifyReturnType(FI)) 6809 RetInfo = classifyReturnType(FI.getReturnType()); 6810 6811 // Check if a pointer to an aggregate is passed as a hidden argument. 6812 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6813 6814 for (auto &I : FI.arguments()) 6815 I.info = classifyArgumentType(I.type, Offset); 6816 } 6817 6818 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6819 QualType OrigTy) const { 6820 QualType Ty = OrigTy; 6821 6822 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6823 // Pointers are also promoted in the same way but this only matters for N32. 6824 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6825 unsigned PtrWidth = getTarget().getPointerWidth(0); 6826 bool DidPromote = false; 6827 if ((Ty->isIntegerType() && 6828 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6829 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6830 DidPromote = true; 6831 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6832 Ty->isSignedIntegerType()); 6833 } 6834 6835 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6836 6837 // The alignment of things in the argument area is never larger than 6838 // StackAlignInBytes. 6839 TyInfo.second = 6840 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6841 6842 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6843 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6844 6845 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6846 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6847 6848 6849 // If there was a promotion, "unpromote" into a temporary. 6850 // TODO: can we just use a pointer into a subset of the original slot? 6851 if (DidPromote) { 6852 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6853 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6854 6855 // Truncate down to the right width. 6856 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6857 : CGF.IntPtrTy); 6858 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6859 if (OrigTy->isPointerType()) 6860 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6861 6862 CGF.Builder.CreateStore(V, Temp); 6863 Addr = Temp; 6864 } 6865 6866 return Addr; 6867 } 6868 6869 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6870 int TySize = getContext().getTypeSize(Ty); 6871 6872 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6873 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6874 return true; 6875 6876 return false; 6877 } 6878 6879 bool 6880 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6881 llvm::Value *Address) const { 6882 // This information comes from gcc's implementation, which seems to 6883 // as canonical as it gets. 6884 6885 // Everything on MIPS is 4 bytes. Double-precision FP registers 6886 // are aliased to pairs of single-precision FP registers. 6887 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6888 6889 // 0-31 are the general purpose registers, $0 - $31. 6890 // 32-63 are the floating-point registers, $f0 - $f31. 6891 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6892 // 66 is the (notional, I think) register for signal-handler return. 6893 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6894 6895 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6896 // They are one bit wide and ignored here. 6897 6898 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6899 // (coprocessor 1 is the FP unit) 6900 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6901 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6902 // 176-181 are the DSP accumulator registers. 6903 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6904 return false; 6905 } 6906 6907 //===----------------------------------------------------------------------===// 6908 // AVR ABI Implementation. 6909 //===----------------------------------------------------------------------===// 6910 6911 namespace { 6912 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 6913 public: 6914 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 6915 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 6916 6917 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6918 CodeGen::CodeGenModule &CGM) const override { 6919 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 6920 if (!FD) return; 6921 auto *Fn = cast<llvm::Function>(GV); 6922 6923 if (FD->getAttr<AVRInterruptAttr>()) 6924 Fn->addFnAttr("interrupt"); 6925 6926 if (FD->getAttr<AVRSignalAttr>()) 6927 Fn->addFnAttr("signal"); 6928 } 6929 }; 6930 } 6931 6932 //===----------------------------------------------------------------------===// 6933 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6934 // Currently subclassed only to implement custom OpenCL C function attribute 6935 // handling. 6936 //===----------------------------------------------------------------------===// 6937 6938 namespace { 6939 6940 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6941 public: 6942 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6943 : DefaultTargetCodeGenInfo(CGT) {} 6944 6945 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6946 CodeGen::CodeGenModule &M) const override; 6947 }; 6948 6949 void TCETargetCodeGenInfo::setTargetAttributes( 6950 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6951 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6952 if (!FD) return; 6953 6954 llvm::Function *F = cast<llvm::Function>(GV); 6955 6956 if (M.getLangOpts().OpenCL) { 6957 if (FD->hasAttr<OpenCLKernelAttr>()) { 6958 // OpenCL C Kernel functions are not subject to inlining 6959 F->addFnAttr(llvm::Attribute::NoInline); 6960 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6961 if (Attr) { 6962 // Convert the reqd_work_group_size() attributes to metadata. 6963 llvm::LLVMContext &Context = F->getContext(); 6964 llvm::NamedMDNode *OpenCLMetadata = 6965 M.getModule().getOrInsertNamedMetadata( 6966 "opencl.kernel_wg_size_info"); 6967 6968 SmallVector<llvm::Metadata *, 5> Operands; 6969 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6970 6971 Operands.push_back( 6972 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6973 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6974 Operands.push_back( 6975 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6976 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6977 Operands.push_back( 6978 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6979 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6980 6981 // Add a boolean constant operand for "required" (true) or "hint" 6982 // (false) for implementing the work_group_size_hint attr later. 6983 // Currently always true as the hint is not yet implemented. 6984 Operands.push_back( 6985 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6986 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6987 } 6988 } 6989 } 6990 } 6991 6992 } 6993 6994 //===----------------------------------------------------------------------===// 6995 // Hexagon ABI Implementation 6996 //===----------------------------------------------------------------------===// 6997 6998 namespace { 6999 7000 class HexagonABIInfo : public ABIInfo { 7001 7002 7003 public: 7004 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7005 7006 private: 7007 7008 ABIArgInfo classifyReturnType(QualType RetTy) const; 7009 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7010 7011 void computeInfo(CGFunctionInfo &FI) const override; 7012 7013 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7014 QualType Ty) const override; 7015 }; 7016 7017 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7018 public: 7019 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7020 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7021 7022 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7023 return 29; 7024 } 7025 }; 7026 7027 } 7028 7029 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7030 if (!getCXXABI().classifyReturnType(FI)) 7031 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7032 for (auto &I : FI.arguments()) 7033 I.info = classifyArgumentType(I.type); 7034 } 7035 7036 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7037 if (!isAggregateTypeForABI(Ty)) { 7038 // Treat an enum type as its underlying type. 7039 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7040 Ty = EnumTy->getDecl()->getIntegerType(); 7041 7042 return (Ty->isPromotableIntegerType() ? 7043 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7044 } 7045 7046 // Ignore empty records. 7047 if (isEmptyRecord(getContext(), Ty, true)) 7048 return ABIArgInfo::getIgnore(); 7049 7050 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7051 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7052 7053 uint64_t Size = getContext().getTypeSize(Ty); 7054 if (Size > 64) 7055 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7056 // Pass in the smallest viable integer type. 7057 else if (Size > 32) 7058 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7059 else if (Size > 16) 7060 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7061 else if (Size > 8) 7062 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7063 else 7064 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7065 } 7066 7067 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7068 if (RetTy->isVoidType()) 7069 return ABIArgInfo::getIgnore(); 7070 7071 // Large vector types should be returned via memory. 7072 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7073 return getNaturalAlignIndirect(RetTy); 7074 7075 if (!isAggregateTypeForABI(RetTy)) { 7076 // Treat an enum type as its underlying type. 7077 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7078 RetTy = EnumTy->getDecl()->getIntegerType(); 7079 7080 return (RetTy->isPromotableIntegerType() ? 7081 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7082 } 7083 7084 if (isEmptyRecord(getContext(), RetTy, true)) 7085 return ABIArgInfo::getIgnore(); 7086 7087 // Aggregates <= 8 bytes are returned in r0; other aggregates 7088 // are returned indirectly. 7089 uint64_t Size = getContext().getTypeSize(RetTy); 7090 if (Size <= 64) { 7091 // Return in the smallest viable integer type. 7092 if (Size <= 8) 7093 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7094 if (Size <= 16) 7095 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7096 if (Size <= 32) 7097 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7098 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7099 } 7100 7101 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7102 } 7103 7104 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7105 QualType Ty) const { 7106 // FIXME: Someone needs to audit that this handle alignment correctly. 7107 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7108 getContext().getTypeInfoInChars(Ty), 7109 CharUnits::fromQuantity(4), 7110 /*AllowHigherAlign*/ true); 7111 } 7112 7113 //===----------------------------------------------------------------------===// 7114 // Lanai ABI Implementation 7115 //===----------------------------------------------------------------------===// 7116 7117 namespace { 7118 class LanaiABIInfo : public DefaultABIInfo { 7119 public: 7120 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7121 7122 bool shouldUseInReg(QualType Ty, CCState &State) const; 7123 7124 void computeInfo(CGFunctionInfo &FI) const override { 7125 CCState State(FI.getCallingConvention()); 7126 // Lanai uses 4 registers to pass arguments unless the function has the 7127 // regparm attribute set. 7128 if (FI.getHasRegParm()) { 7129 State.FreeRegs = FI.getRegParm(); 7130 } else { 7131 State.FreeRegs = 4; 7132 } 7133 7134 if (!getCXXABI().classifyReturnType(FI)) 7135 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7136 for (auto &I : FI.arguments()) 7137 I.info = classifyArgumentType(I.type, State); 7138 } 7139 7140 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7141 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7142 }; 7143 } // end anonymous namespace 7144 7145 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7146 unsigned Size = getContext().getTypeSize(Ty); 7147 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7148 7149 if (SizeInRegs == 0) 7150 return false; 7151 7152 if (SizeInRegs > State.FreeRegs) { 7153 State.FreeRegs = 0; 7154 return false; 7155 } 7156 7157 State.FreeRegs -= SizeInRegs; 7158 7159 return true; 7160 } 7161 7162 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7163 CCState &State) const { 7164 if (!ByVal) { 7165 if (State.FreeRegs) { 7166 --State.FreeRegs; // Non-byval indirects just use one pointer. 7167 return getNaturalAlignIndirectInReg(Ty); 7168 } 7169 return getNaturalAlignIndirect(Ty, false); 7170 } 7171 7172 // Compute the byval alignment. 7173 const unsigned MinABIStackAlignInBytes = 4; 7174 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7175 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7176 /*Realign=*/TypeAlign > 7177 MinABIStackAlignInBytes); 7178 } 7179 7180 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7181 CCState &State) const { 7182 // Check with the C++ ABI first. 7183 const RecordType *RT = Ty->getAs<RecordType>(); 7184 if (RT) { 7185 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7186 if (RAA == CGCXXABI::RAA_Indirect) { 7187 return getIndirectResult(Ty, /*ByVal=*/false, State); 7188 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7189 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7190 } 7191 } 7192 7193 if (isAggregateTypeForABI(Ty)) { 7194 // Structures with flexible arrays are always indirect. 7195 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7196 return getIndirectResult(Ty, /*ByVal=*/true, State); 7197 7198 // Ignore empty structs/unions. 7199 if (isEmptyRecord(getContext(), Ty, true)) 7200 return ABIArgInfo::getIgnore(); 7201 7202 llvm::LLVMContext &LLVMContext = getVMContext(); 7203 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7204 if (SizeInRegs <= State.FreeRegs) { 7205 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7206 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7207 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7208 State.FreeRegs -= SizeInRegs; 7209 return ABIArgInfo::getDirectInReg(Result); 7210 } else { 7211 State.FreeRegs = 0; 7212 } 7213 return getIndirectResult(Ty, true, State); 7214 } 7215 7216 // Treat an enum type as its underlying type. 7217 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7218 Ty = EnumTy->getDecl()->getIntegerType(); 7219 7220 bool InReg = shouldUseInReg(Ty, State); 7221 if (Ty->isPromotableIntegerType()) { 7222 if (InReg) 7223 return ABIArgInfo::getDirectInReg(); 7224 return ABIArgInfo::getExtend(); 7225 } 7226 if (InReg) 7227 return ABIArgInfo::getDirectInReg(); 7228 return ABIArgInfo::getDirect(); 7229 } 7230 7231 namespace { 7232 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7233 public: 7234 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7235 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7236 }; 7237 } 7238 7239 //===----------------------------------------------------------------------===// 7240 // AMDGPU ABI Implementation 7241 //===----------------------------------------------------------------------===// 7242 7243 namespace { 7244 7245 class AMDGPUABIInfo final : public DefaultABIInfo { 7246 public: 7247 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7248 7249 private: 7250 ABIArgInfo classifyArgumentType(QualType Ty) const; 7251 7252 void computeInfo(CGFunctionInfo &FI) const override; 7253 }; 7254 7255 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7256 if (!getCXXABI().classifyReturnType(FI)) 7257 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7258 7259 unsigned CC = FI.getCallingConvention(); 7260 for (auto &Arg : FI.arguments()) 7261 if (CC == llvm::CallingConv::AMDGPU_KERNEL) 7262 Arg.info = classifyArgumentType(Arg.type); 7263 else 7264 Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type); 7265 } 7266 7267 /// \brief Classify argument of given type \p Ty. 7268 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const { 7269 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7270 if (!StrTy) { 7271 return DefaultABIInfo::classifyArgumentType(Ty); 7272 } 7273 7274 // Coerce single element structs to its element. 7275 if (StrTy->getNumElements() == 1) { 7276 return ABIArgInfo::getDirect(); 7277 } 7278 7279 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7280 // individual elements, which confuses the Clover OpenCL backend; therefore we 7281 // have to set it to false here. Other args of getDirect() are just defaults. 7282 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7283 } 7284 7285 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7286 public: 7287 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7288 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7289 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7290 CodeGen::CodeGenModule &M) const override; 7291 unsigned getOpenCLKernelCallingConv() const override; 7292 7293 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7294 llvm::PointerType *T, QualType QT) const override; 7295 }; 7296 } 7297 7298 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM); 7299 7300 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7301 const Decl *D, 7302 llvm::GlobalValue *GV, 7303 CodeGen::CodeGenModule &M) const { 7304 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7305 if (!FD) 7306 return; 7307 7308 llvm::Function *F = cast<llvm::Function>(GV); 7309 7310 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7311 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7312 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7313 if (ReqdWGS || FlatWGS) { 7314 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7315 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7316 if (ReqdWGS && Min == 0 && Max == 0) 7317 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7318 7319 if (Min != 0) { 7320 assert(Min <= Max && "Min must be less than or equal Max"); 7321 7322 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7323 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7324 } else 7325 assert(Max == 0 && "Max must be zero"); 7326 } 7327 7328 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7329 unsigned Min = Attr->getMin(); 7330 unsigned Max = Attr->getMax(); 7331 7332 if (Min != 0) { 7333 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7334 7335 std::string AttrVal = llvm::utostr(Min); 7336 if (Max != 0) 7337 AttrVal = AttrVal + "," + llvm::utostr(Max); 7338 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7339 } else 7340 assert(Max == 0 && "Max must be zero"); 7341 } 7342 7343 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7344 unsigned NumSGPR = Attr->getNumSGPR(); 7345 7346 if (NumSGPR != 0) 7347 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7348 } 7349 7350 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7351 uint32_t NumVGPR = Attr->getNumVGPR(); 7352 7353 if (NumVGPR != 0) 7354 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7355 } 7356 7357 appendOpenCLVersionMD(M); 7358 } 7359 7360 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7361 return llvm::CallingConv::AMDGPU_KERNEL; 7362 } 7363 7364 // Currently LLVM assumes null pointers always have value 0, 7365 // which results in incorrectly transformed IR. Therefore, instead of 7366 // emitting null pointers in private and local address spaces, a null 7367 // pointer in generic address space is emitted which is casted to a 7368 // pointer in local or private address space. 7369 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7370 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7371 QualType QT) const { 7372 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7373 return llvm::ConstantPointerNull::get(PT); 7374 7375 auto &Ctx = CGM.getContext(); 7376 auto NPT = llvm::PointerType::get(PT->getElementType(), 7377 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7378 return llvm::ConstantExpr::getAddrSpaceCast( 7379 llvm::ConstantPointerNull::get(NPT), PT); 7380 } 7381 7382 //===----------------------------------------------------------------------===// 7383 // SPARC v8 ABI Implementation. 7384 // Based on the SPARC Compliance Definition version 2.4.1. 7385 // 7386 // Ensures that complex values are passed in registers. 7387 // 7388 namespace { 7389 class SparcV8ABIInfo : public DefaultABIInfo { 7390 public: 7391 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7392 7393 private: 7394 ABIArgInfo classifyReturnType(QualType RetTy) const; 7395 void computeInfo(CGFunctionInfo &FI) const override; 7396 }; 7397 } // end anonymous namespace 7398 7399 7400 ABIArgInfo 7401 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7402 if (Ty->isAnyComplexType()) { 7403 return ABIArgInfo::getDirect(); 7404 } 7405 else { 7406 return DefaultABIInfo::classifyReturnType(Ty); 7407 } 7408 } 7409 7410 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7411 7412 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7413 for (auto &Arg : FI.arguments()) 7414 Arg.info = classifyArgumentType(Arg.type); 7415 } 7416 7417 namespace { 7418 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7419 public: 7420 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7421 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7422 }; 7423 } // end anonymous namespace 7424 7425 //===----------------------------------------------------------------------===// 7426 // SPARC v9 ABI Implementation. 7427 // Based on the SPARC Compliance Definition version 2.4.1. 7428 // 7429 // Function arguments a mapped to a nominal "parameter array" and promoted to 7430 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7431 // the array, structs larger than 16 bytes are passed indirectly. 7432 // 7433 // One case requires special care: 7434 // 7435 // struct mixed { 7436 // int i; 7437 // float f; 7438 // }; 7439 // 7440 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7441 // parameter array, but the int is passed in an integer register, and the float 7442 // is passed in a floating point register. This is represented as two arguments 7443 // with the LLVM IR inreg attribute: 7444 // 7445 // declare void f(i32 inreg %i, float inreg %f) 7446 // 7447 // The code generator will only allocate 4 bytes from the parameter array for 7448 // the inreg arguments. All other arguments are allocated a multiple of 8 7449 // bytes. 7450 // 7451 namespace { 7452 class SparcV9ABIInfo : public ABIInfo { 7453 public: 7454 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7455 7456 private: 7457 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7458 void computeInfo(CGFunctionInfo &FI) const override; 7459 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7460 QualType Ty) const override; 7461 7462 // Coercion type builder for structs passed in registers. The coercion type 7463 // serves two purposes: 7464 // 7465 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7466 // in registers. 7467 // 2. Expose aligned floating point elements as first-level elements, so the 7468 // code generator knows to pass them in floating point registers. 7469 // 7470 // We also compute the InReg flag which indicates that the struct contains 7471 // aligned 32-bit floats. 7472 // 7473 struct CoerceBuilder { 7474 llvm::LLVMContext &Context; 7475 const llvm::DataLayout &DL; 7476 SmallVector<llvm::Type*, 8> Elems; 7477 uint64_t Size; 7478 bool InReg; 7479 7480 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7481 : Context(c), DL(dl), Size(0), InReg(false) {} 7482 7483 // Pad Elems with integers until Size is ToSize. 7484 void pad(uint64_t ToSize) { 7485 assert(ToSize >= Size && "Cannot remove elements"); 7486 if (ToSize == Size) 7487 return; 7488 7489 // Finish the current 64-bit word. 7490 uint64_t Aligned = llvm::alignTo(Size, 64); 7491 if (Aligned > Size && Aligned <= ToSize) { 7492 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7493 Size = Aligned; 7494 } 7495 7496 // Add whole 64-bit words. 7497 while (Size + 64 <= ToSize) { 7498 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7499 Size += 64; 7500 } 7501 7502 // Final in-word padding. 7503 if (Size < ToSize) { 7504 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7505 Size = ToSize; 7506 } 7507 } 7508 7509 // Add a floating point element at Offset. 7510 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7511 // Unaligned floats are treated as integers. 7512 if (Offset % Bits) 7513 return; 7514 // The InReg flag is only required if there are any floats < 64 bits. 7515 if (Bits < 64) 7516 InReg = true; 7517 pad(Offset); 7518 Elems.push_back(Ty); 7519 Size = Offset + Bits; 7520 } 7521 7522 // Add a struct type to the coercion type, starting at Offset (in bits). 7523 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7524 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7525 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7526 llvm::Type *ElemTy = StrTy->getElementType(i); 7527 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7528 switch (ElemTy->getTypeID()) { 7529 case llvm::Type::StructTyID: 7530 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7531 break; 7532 case llvm::Type::FloatTyID: 7533 addFloat(ElemOffset, ElemTy, 32); 7534 break; 7535 case llvm::Type::DoubleTyID: 7536 addFloat(ElemOffset, ElemTy, 64); 7537 break; 7538 case llvm::Type::FP128TyID: 7539 addFloat(ElemOffset, ElemTy, 128); 7540 break; 7541 case llvm::Type::PointerTyID: 7542 if (ElemOffset % 64 == 0) { 7543 pad(ElemOffset); 7544 Elems.push_back(ElemTy); 7545 Size += 64; 7546 } 7547 break; 7548 default: 7549 break; 7550 } 7551 } 7552 } 7553 7554 // Check if Ty is a usable substitute for the coercion type. 7555 bool isUsableType(llvm::StructType *Ty) const { 7556 return llvm::makeArrayRef(Elems) == Ty->elements(); 7557 } 7558 7559 // Get the coercion type as a literal struct type. 7560 llvm::Type *getType() const { 7561 if (Elems.size() == 1) 7562 return Elems.front(); 7563 else 7564 return llvm::StructType::get(Context, Elems); 7565 } 7566 }; 7567 }; 7568 } // end anonymous namespace 7569 7570 ABIArgInfo 7571 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7572 if (Ty->isVoidType()) 7573 return ABIArgInfo::getIgnore(); 7574 7575 uint64_t Size = getContext().getTypeSize(Ty); 7576 7577 // Anything too big to fit in registers is passed with an explicit indirect 7578 // pointer / sret pointer. 7579 if (Size > SizeLimit) 7580 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7581 7582 // Treat an enum type as its underlying type. 7583 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7584 Ty = EnumTy->getDecl()->getIntegerType(); 7585 7586 // Integer types smaller than a register are extended. 7587 if (Size < 64 && Ty->isIntegerType()) 7588 return ABIArgInfo::getExtend(); 7589 7590 // Other non-aggregates go in registers. 7591 if (!isAggregateTypeForABI(Ty)) 7592 return ABIArgInfo::getDirect(); 7593 7594 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7595 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7596 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7597 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7598 7599 // This is a small aggregate type that should be passed in registers. 7600 // Build a coercion type from the LLVM struct type. 7601 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7602 if (!StrTy) 7603 return ABIArgInfo::getDirect(); 7604 7605 CoerceBuilder CB(getVMContext(), getDataLayout()); 7606 CB.addStruct(0, StrTy); 7607 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7608 7609 // Try to use the original type for coercion. 7610 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7611 7612 if (CB.InReg) 7613 return ABIArgInfo::getDirectInReg(CoerceTy); 7614 else 7615 return ABIArgInfo::getDirect(CoerceTy); 7616 } 7617 7618 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7619 QualType Ty) const { 7620 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7621 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7622 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7623 AI.setCoerceToType(ArgTy); 7624 7625 CharUnits SlotSize = CharUnits::fromQuantity(8); 7626 7627 CGBuilderTy &Builder = CGF.Builder; 7628 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7629 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7630 7631 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7632 7633 Address ArgAddr = Address::invalid(); 7634 CharUnits Stride; 7635 switch (AI.getKind()) { 7636 case ABIArgInfo::Expand: 7637 case ABIArgInfo::CoerceAndExpand: 7638 case ABIArgInfo::InAlloca: 7639 llvm_unreachable("Unsupported ABI kind for va_arg"); 7640 7641 case ABIArgInfo::Extend: { 7642 Stride = SlotSize; 7643 CharUnits Offset = SlotSize - TypeInfo.first; 7644 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7645 break; 7646 } 7647 7648 case ABIArgInfo::Direct: { 7649 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7650 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7651 ArgAddr = Addr; 7652 break; 7653 } 7654 7655 case ABIArgInfo::Indirect: 7656 Stride = SlotSize; 7657 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7658 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7659 TypeInfo.second); 7660 break; 7661 7662 case ABIArgInfo::Ignore: 7663 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7664 } 7665 7666 // Update VAList. 7667 llvm::Value *NextPtr = 7668 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7669 Builder.CreateStore(NextPtr, VAListAddr); 7670 7671 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7672 } 7673 7674 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7675 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7676 for (auto &I : FI.arguments()) 7677 I.info = classifyType(I.type, 16 * 8); 7678 } 7679 7680 namespace { 7681 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7682 public: 7683 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7684 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7685 7686 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7687 return 14; 7688 } 7689 7690 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7691 llvm::Value *Address) const override; 7692 }; 7693 } // end anonymous namespace 7694 7695 bool 7696 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7697 llvm::Value *Address) const { 7698 // This is calculated from the LLVM and GCC tables and verified 7699 // against gcc output. AFAIK all ABIs use the same encoding. 7700 7701 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7702 7703 llvm::IntegerType *i8 = CGF.Int8Ty; 7704 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7705 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7706 7707 // 0-31: the 8-byte general-purpose registers 7708 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7709 7710 // 32-63: f0-31, the 4-byte floating-point registers 7711 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7712 7713 // Y = 64 7714 // PSR = 65 7715 // WIM = 66 7716 // TBR = 67 7717 // PC = 68 7718 // NPC = 69 7719 // FSR = 70 7720 // CSR = 71 7721 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7722 7723 // 72-87: d0-15, the 8-byte floating-point registers 7724 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7725 7726 return false; 7727 } 7728 7729 7730 //===----------------------------------------------------------------------===// 7731 // XCore ABI Implementation 7732 //===----------------------------------------------------------------------===// 7733 7734 namespace { 7735 7736 /// A SmallStringEnc instance is used to build up the TypeString by passing 7737 /// it by reference between functions that append to it. 7738 typedef llvm::SmallString<128> SmallStringEnc; 7739 7740 /// TypeStringCache caches the meta encodings of Types. 7741 /// 7742 /// The reason for caching TypeStrings is two fold: 7743 /// 1. To cache a type's encoding for later uses; 7744 /// 2. As a means to break recursive member type inclusion. 7745 /// 7746 /// A cache Entry can have a Status of: 7747 /// NonRecursive: The type encoding is not recursive; 7748 /// Recursive: The type encoding is recursive; 7749 /// Incomplete: An incomplete TypeString; 7750 /// IncompleteUsed: An incomplete TypeString that has been used in a 7751 /// Recursive type encoding. 7752 /// 7753 /// A NonRecursive entry will have all of its sub-members expanded as fully 7754 /// as possible. Whilst it may contain types which are recursive, the type 7755 /// itself is not recursive and thus its encoding may be safely used whenever 7756 /// the type is encountered. 7757 /// 7758 /// A Recursive entry will have all of its sub-members expanded as fully as 7759 /// possible. The type itself is recursive and it may contain other types which 7760 /// are recursive. The Recursive encoding must not be used during the expansion 7761 /// of a recursive type's recursive branch. For simplicity the code uses 7762 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7763 /// 7764 /// An Incomplete entry is always a RecordType and only encodes its 7765 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7766 /// are placed into the cache during type expansion as a means to identify and 7767 /// handle recursive inclusion of types as sub-members. If there is recursion 7768 /// the entry becomes IncompleteUsed. 7769 /// 7770 /// During the expansion of a RecordType's members: 7771 /// 7772 /// If the cache contains a NonRecursive encoding for the member type, the 7773 /// cached encoding is used; 7774 /// 7775 /// If the cache contains a Recursive encoding for the member type, the 7776 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7777 /// 7778 /// If the member is a RecordType, an Incomplete encoding is placed into the 7779 /// cache to break potential recursive inclusion of itself as a sub-member; 7780 /// 7781 /// Once a member RecordType has been expanded, its temporary incomplete 7782 /// entry is removed from the cache. If a Recursive encoding was swapped out 7783 /// it is swapped back in; 7784 /// 7785 /// If an incomplete entry is used to expand a sub-member, the incomplete 7786 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7787 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7788 /// 7789 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7790 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7791 /// Else the member is part of a recursive type and thus the recursion has 7792 /// been exited too soon for the encoding to be correct for the member. 7793 /// 7794 class TypeStringCache { 7795 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7796 struct Entry { 7797 std::string Str; // The encoded TypeString for the type. 7798 enum Status State; // Information about the encoding in 'Str'. 7799 std::string Swapped; // A temporary place holder for a Recursive encoding 7800 // during the expansion of RecordType's members. 7801 }; 7802 std::map<const IdentifierInfo *, struct Entry> Map; 7803 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7804 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7805 public: 7806 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7807 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7808 bool removeIncomplete(const IdentifierInfo *ID); 7809 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7810 bool IsRecursive); 7811 StringRef lookupStr(const IdentifierInfo *ID); 7812 }; 7813 7814 /// TypeString encodings for enum & union fields must be order. 7815 /// FieldEncoding is a helper for this ordering process. 7816 class FieldEncoding { 7817 bool HasName; 7818 std::string Enc; 7819 public: 7820 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7821 StringRef str() { return Enc; } 7822 bool operator<(const FieldEncoding &rhs) const { 7823 if (HasName != rhs.HasName) return HasName; 7824 return Enc < rhs.Enc; 7825 } 7826 }; 7827 7828 class XCoreABIInfo : public DefaultABIInfo { 7829 public: 7830 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7831 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7832 QualType Ty) const override; 7833 }; 7834 7835 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7836 mutable TypeStringCache TSC; 7837 public: 7838 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7839 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7840 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7841 CodeGen::CodeGenModule &M) const override; 7842 }; 7843 7844 } // End anonymous namespace. 7845 7846 // TODO: this implementation is likely now redundant with the default 7847 // EmitVAArg. 7848 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7849 QualType Ty) const { 7850 CGBuilderTy &Builder = CGF.Builder; 7851 7852 // Get the VAList. 7853 CharUnits SlotSize = CharUnits::fromQuantity(4); 7854 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7855 7856 // Handle the argument. 7857 ABIArgInfo AI = classifyArgumentType(Ty); 7858 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7859 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7860 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7861 AI.setCoerceToType(ArgTy); 7862 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7863 7864 Address Val = Address::invalid(); 7865 CharUnits ArgSize = CharUnits::Zero(); 7866 switch (AI.getKind()) { 7867 case ABIArgInfo::Expand: 7868 case ABIArgInfo::CoerceAndExpand: 7869 case ABIArgInfo::InAlloca: 7870 llvm_unreachable("Unsupported ABI kind for va_arg"); 7871 case ABIArgInfo::Ignore: 7872 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7873 ArgSize = CharUnits::Zero(); 7874 break; 7875 case ABIArgInfo::Extend: 7876 case ABIArgInfo::Direct: 7877 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7878 ArgSize = CharUnits::fromQuantity( 7879 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7880 ArgSize = ArgSize.alignTo(SlotSize); 7881 break; 7882 case ABIArgInfo::Indirect: 7883 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7884 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7885 ArgSize = SlotSize; 7886 break; 7887 } 7888 7889 // Increment the VAList. 7890 if (!ArgSize.isZero()) { 7891 llvm::Value *APN = 7892 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7893 Builder.CreateStore(APN, VAListAddr); 7894 } 7895 7896 return Val; 7897 } 7898 7899 /// During the expansion of a RecordType, an incomplete TypeString is placed 7900 /// into the cache as a means to identify and break recursion. 7901 /// If there is a Recursive encoding in the cache, it is swapped out and will 7902 /// be reinserted by removeIncomplete(). 7903 /// All other types of encoding should have been used rather than arriving here. 7904 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7905 std::string StubEnc) { 7906 if (!ID) 7907 return; 7908 Entry &E = Map[ID]; 7909 assert( (E.Str.empty() || E.State == Recursive) && 7910 "Incorrectly use of addIncomplete"); 7911 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7912 E.Swapped.swap(E.Str); // swap out the Recursive 7913 E.Str.swap(StubEnc); 7914 E.State = Incomplete; 7915 ++IncompleteCount; 7916 } 7917 7918 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7919 /// must be removed from the cache. 7920 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7921 /// Returns true if the RecordType was defined recursively. 7922 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7923 if (!ID) 7924 return false; 7925 auto I = Map.find(ID); 7926 assert(I != Map.end() && "Entry not present"); 7927 Entry &E = I->second; 7928 assert( (E.State == Incomplete || 7929 E.State == IncompleteUsed) && 7930 "Entry must be an incomplete type"); 7931 bool IsRecursive = false; 7932 if (E.State == IncompleteUsed) { 7933 // We made use of our Incomplete encoding, thus we are recursive. 7934 IsRecursive = true; 7935 --IncompleteUsedCount; 7936 } 7937 if (E.Swapped.empty()) 7938 Map.erase(I); 7939 else { 7940 // Swap the Recursive back. 7941 E.Swapped.swap(E.Str); 7942 E.Swapped.clear(); 7943 E.State = Recursive; 7944 } 7945 --IncompleteCount; 7946 return IsRecursive; 7947 } 7948 7949 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7950 /// Recursive (viz: all sub-members were expanded as fully as possible). 7951 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7952 bool IsRecursive) { 7953 if (!ID || IncompleteUsedCount) 7954 return; // No key or it is is an incomplete sub-type so don't add. 7955 Entry &E = Map[ID]; 7956 if (IsRecursive && !E.Str.empty()) { 7957 assert(E.State==Recursive && E.Str.size() == Str.size() && 7958 "This is not the same Recursive entry"); 7959 // The parent container was not recursive after all, so we could have used 7960 // this Recursive sub-member entry after all, but we assumed the worse when 7961 // we started viz: IncompleteCount!=0. 7962 return; 7963 } 7964 assert(E.Str.empty() && "Entry already present"); 7965 E.Str = Str.str(); 7966 E.State = IsRecursive? Recursive : NonRecursive; 7967 } 7968 7969 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7970 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7971 /// encoding is Recursive, return an empty StringRef. 7972 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7973 if (!ID) 7974 return StringRef(); // We have no key. 7975 auto I = Map.find(ID); 7976 if (I == Map.end()) 7977 return StringRef(); // We have no encoding. 7978 Entry &E = I->second; 7979 if (E.State == Recursive && IncompleteCount) 7980 return StringRef(); // We don't use Recursive encodings for member types. 7981 7982 if (E.State == Incomplete) { 7983 // The incomplete type is being used to break out of recursion. 7984 E.State = IncompleteUsed; 7985 ++IncompleteUsedCount; 7986 } 7987 return E.Str; 7988 } 7989 7990 /// The XCore ABI includes a type information section that communicates symbol 7991 /// type information to the linker. The linker uses this information to verify 7992 /// safety/correctness of things such as array bound and pointers et al. 7993 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7994 /// This type information (TypeString) is emitted into meta data for all global 7995 /// symbols: definitions, declarations, functions & variables. 7996 /// 7997 /// The TypeString carries type, qualifier, name, size & value details. 7998 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7999 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8000 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8001 /// 8002 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8003 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8004 8005 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8006 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8007 CodeGen::CodeGenModule &CGM) const { 8008 SmallStringEnc Enc; 8009 if (getTypeString(Enc, D, CGM, TSC)) { 8010 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8011 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8012 llvm::MDString::get(Ctx, Enc.str())}; 8013 llvm::NamedMDNode *MD = 8014 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8015 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8016 } 8017 } 8018 8019 //===----------------------------------------------------------------------===// 8020 // SPIR ABI Implementation 8021 //===----------------------------------------------------------------------===// 8022 8023 namespace { 8024 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8025 public: 8026 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8027 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8028 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8029 CodeGen::CodeGenModule &M) const override; 8030 unsigned getOpenCLKernelCallingConv() const override; 8031 }; 8032 } // End anonymous namespace. 8033 8034 /// Emit SPIR specific metadata: OpenCL and SPIR version. 8035 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8036 CodeGen::CodeGenModule &CGM) const { 8037 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8038 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 8039 llvm::Module &M = CGM.getModule(); 8040 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 8041 // opencl.spir.version named metadata. 8042 llvm::Metadata *SPIRVerElts[] = { 8043 llvm::ConstantAsMetadata::get( 8044 llvm::ConstantInt::get(Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 8045 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 8046 Int32Ty, (CGM.getLangOpts().OpenCLVersion / 100 > 1) ? 0 : 2))}; 8047 llvm::NamedMDNode *SPIRVerMD = 8048 M.getOrInsertNamedMetadata("opencl.spir.version"); 8049 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 8050 appendOpenCLVersionMD(CGM); 8051 } 8052 8053 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) { 8054 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8055 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 8056 llvm::Module &M = CGM.getModule(); 8057 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 8058 // opencl.ocl.version named metadata node. 8059 llvm::Metadata *OCLVerElts[] = { 8060 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 8061 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 8062 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 8063 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 8064 llvm::NamedMDNode *OCLVerMD = 8065 M.getOrInsertNamedMetadata("opencl.ocl.version"); 8066 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 8067 } 8068 8069 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8070 return llvm::CallingConv::SPIR_KERNEL; 8071 } 8072 8073 static bool appendType(SmallStringEnc &Enc, QualType QType, 8074 const CodeGen::CodeGenModule &CGM, 8075 TypeStringCache &TSC); 8076 8077 /// Helper function for appendRecordType(). 8078 /// Builds a SmallVector containing the encoded field types in declaration 8079 /// order. 8080 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8081 const RecordDecl *RD, 8082 const CodeGen::CodeGenModule &CGM, 8083 TypeStringCache &TSC) { 8084 for (const auto *Field : RD->fields()) { 8085 SmallStringEnc Enc; 8086 Enc += "m("; 8087 Enc += Field->getName(); 8088 Enc += "){"; 8089 if (Field->isBitField()) { 8090 Enc += "b("; 8091 llvm::raw_svector_ostream OS(Enc); 8092 OS << Field->getBitWidthValue(CGM.getContext()); 8093 Enc += ':'; 8094 } 8095 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8096 return false; 8097 if (Field->isBitField()) 8098 Enc += ')'; 8099 Enc += '}'; 8100 FE.emplace_back(!Field->getName().empty(), Enc); 8101 } 8102 return true; 8103 } 8104 8105 /// Appends structure and union types to Enc and adds encoding to cache. 8106 /// Recursively calls appendType (via extractFieldType) for each field. 8107 /// Union types have their fields ordered according to the ABI. 8108 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8109 const CodeGen::CodeGenModule &CGM, 8110 TypeStringCache &TSC, const IdentifierInfo *ID) { 8111 // Append the cached TypeString if we have one. 8112 StringRef TypeString = TSC.lookupStr(ID); 8113 if (!TypeString.empty()) { 8114 Enc += TypeString; 8115 return true; 8116 } 8117 8118 // Start to emit an incomplete TypeString. 8119 size_t Start = Enc.size(); 8120 Enc += (RT->isUnionType()? 'u' : 's'); 8121 Enc += '('; 8122 if (ID) 8123 Enc += ID->getName(); 8124 Enc += "){"; 8125 8126 // We collect all encoded fields and order as necessary. 8127 bool IsRecursive = false; 8128 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8129 if (RD && !RD->field_empty()) { 8130 // An incomplete TypeString stub is placed in the cache for this RecordType 8131 // so that recursive calls to this RecordType will use it whilst building a 8132 // complete TypeString for this RecordType. 8133 SmallVector<FieldEncoding, 16> FE; 8134 std::string StubEnc(Enc.substr(Start).str()); 8135 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8136 TSC.addIncomplete(ID, std::move(StubEnc)); 8137 if (!extractFieldType(FE, RD, CGM, TSC)) { 8138 (void) TSC.removeIncomplete(ID); 8139 return false; 8140 } 8141 IsRecursive = TSC.removeIncomplete(ID); 8142 // The ABI requires unions to be sorted but not structures. 8143 // See FieldEncoding::operator< for sort algorithm. 8144 if (RT->isUnionType()) 8145 std::sort(FE.begin(), FE.end()); 8146 // We can now complete the TypeString. 8147 unsigned E = FE.size(); 8148 for (unsigned I = 0; I != E; ++I) { 8149 if (I) 8150 Enc += ','; 8151 Enc += FE[I].str(); 8152 } 8153 } 8154 Enc += '}'; 8155 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8156 return true; 8157 } 8158 8159 /// Appends enum types to Enc and adds the encoding to the cache. 8160 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8161 TypeStringCache &TSC, 8162 const IdentifierInfo *ID) { 8163 // Append the cached TypeString if we have one. 8164 StringRef TypeString = TSC.lookupStr(ID); 8165 if (!TypeString.empty()) { 8166 Enc += TypeString; 8167 return true; 8168 } 8169 8170 size_t Start = Enc.size(); 8171 Enc += "e("; 8172 if (ID) 8173 Enc += ID->getName(); 8174 Enc += "){"; 8175 8176 // We collect all encoded enumerations and order them alphanumerically. 8177 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8178 SmallVector<FieldEncoding, 16> FE; 8179 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8180 ++I) { 8181 SmallStringEnc EnumEnc; 8182 EnumEnc += "m("; 8183 EnumEnc += I->getName(); 8184 EnumEnc += "){"; 8185 I->getInitVal().toString(EnumEnc); 8186 EnumEnc += '}'; 8187 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8188 } 8189 std::sort(FE.begin(), FE.end()); 8190 unsigned E = FE.size(); 8191 for (unsigned I = 0; I != E; ++I) { 8192 if (I) 8193 Enc += ','; 8194 Enc += FE[I].str(); 8195 } 8196 } 8197 Enc += '}'; 8198 TSC.addIfComplete(ID, Enc.substr(Start), false); 8199 return true; 8200 } 8201 8202 /// Appends type's qualifier to Enc. 8203 /// This is done prior to appending the type's encoding. 8204 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8205 // Qualifiers are emitted in alphabetical order. 8206 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8207 int Lookup = 0; 8208 if (QT.isConstQualified()) 8209 Lookup += 1<<0; 8210 if (QT.isRestrictQualified()) 8211 Lookup += 1<<1; 8212 if (QT.isVolatileQualified()) 8213 Lookup += 1<<2; 8214 Enc += Table[Lookup]; 8215 } 8216 8217 /// Appends built-in types to Enc. 8218 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8219 const char *EncType; 8220 switch (BT->getKind()) { 8221 case BuiltinType::Void: 8222 EncType = "0"; 8223 break; 8224 case BuiltinType::Bool: 8225 EncType = "b"; 8226 break; 8227 case BuiltinType::Char_U: 8228 EncType = "uc"; 8229 break; 8230 case BuiltinType::UChar: 8231 EncType = "uc"; 8232 break; 8233 case BuiltinType::SChar: 8234 EncType = "sc"; 8235 break; 8236 case BuiltinType::UShort: 8237 EncType = "us"; 8238 break; 8239 case BuiltinType::Short: 8240 EncType = "ss"; 8241 break; 8242 case BuiltinType::UInt: 8243 EncType = "ui"; 8244 break; 8245 case BuiltinType::Int: 8246 EncType = "si"; 8247 break; 8248 case BuiltinType::ULong: 8249 EncType = "ul"; 8250 break; 8251 case BuiltinType::Long: 8252 EncType = "sl"; 8253 break; 8254 case BuiltinType::ULongLong: 8255 EncType = "ull"; 8256 break; 8257 case BuiltinType::LongLong: 8258 EncType = "sll"; 8259 break; 8260 case BuiltinType::Float: 8261 EncType = "ft"; 8262 break; 8263 case BuiltinType::Double: 8264 EncType = "d"; 8265 break; 8266 case BuiltinType::LongDouble: 8267 EncType = "ld"; 8268 break; 8269 default: 8270 return false; 8271 } 8272 Enc += EncType; 8273 return true; 8274 } 8275 8276 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8277 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8278 const CodeGen::CodeGenModule &CGM, 8279 TypeStringCache &TSC) { 8280 Enc += "p("; 8281 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8282 return false; 8283 Enc += ')'; 8284 return true; 8285 } 8286 8287 /// Appends array encoding to Enc before calling appendType for the element. 8288 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8289 const ArrayType *AT, 8290 const CodeGen::CodeGenModule &CGM, 8291 TypeStringCache &TSC, StringRef NoSizeEnc) { 8292 if (AT->getSizeModifier() != ArrayType::Normal) 8293 return false; 8294 Enc += "a("; 8295 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8296 CAT->getSize().toStringUnsigned(Enc); 8297 else 8298 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8299 Enc += ':'; 8300 // The Qualifiers should be attached to the type rather than the array. 8301 appendQualifier(Enc, QT); 8302 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8303 return false; 8304 Enc += ')'; 8305 return true; 8306 } 8307 8308 /// Appends a function encoding to Enc, calling appendType for the return type 8309 /// and the arguments. 8310 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8311 const CodeGen::CodeGenModule &CGM, 8312 TypeStringCache &TSC) { 8313 Enc += "f{"; 8314 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8315 return false; 8316 Enc += "}("; 8317 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8318 // N.B. we are only interested in the adjusted param types. 8319 auto I = FPT->param_type_begin(); 8320 auto E = FPT->param_type_end(); 8321 if (I != E) { 8322 do { 8323 if (!appendType(Enc, *I, CGM, TSC)) 8324 return false; 8325 ++I; 8326 if (I != E) 8327 Enc += ','; 8328 } while (I != E); 8329 if (FPT->isVariadic()) 8330 Enc += ",va"; 8331 } else { 8332 if (FPT->isVariadic()) 8333 Enc += "va"; 8334 else 8335 Enc += '0'; 8336 } 8337 } 8338 Enc += ')'; 8339 return true; 8340 } 8341 8342 /// Handles the type's qualifier before dispatching a call to handle specific 8343 /// type encodings. 8344 static bool appendType(SmallStringEnc &Enc, QualType QType, 8345 const CodeGen::CodeGenModule &CGM, 8346 TypeStringCache &TSC) { 8347 8348 QualType QT = QType.getCanonicalType(); 8349 8350 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8351 // The Qualifiers should be attached to the type rather than the array. 8352 // Thus we don't call appendQualifier() here. 8353 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8354 8355 appendQualifier(Enc, QT); 8356 8357 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8358 return appendBuiltinType(Enc, BT); 8359 8360 if (const PointerType *PT = QT->getAs<PointerType>()) 8361 return appendPointerType(Enc, PT, CGM, TSC); 8362 8363 if (const EnumType *ET = QT->getAs<EnumType>()) 8364 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8365 8366 if (const RecordType *RT = QT->getAsStructureType()) 8367 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8368 8369 if (const RecordType *RT = QT->getAsUnionType()) 8370 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8371 8372 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8373 return appendFunctionType(Enc, FT, CGM, TSC); 8374 8375 return false; 8376 } 8377 8378 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8379 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8380 if (!D) 8381 return false; 8382 8383 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8384 if (FD->getLanguageLinkage() != CLanguageLinkage) 8385 return false; 8386 return appendType(Enc, FD->getType(), CGM, TSC); 8387 } 8388 8389 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8390 if (VD->getLanguageLinkage() != CLanguageLinkage) 8391 return false; 8392 QualType QT = VD->getType().getCanonicalType(); 8393 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8394 // Global ArrayTypes are given a size of '*' if the size is unknown. 8395 // The Qualifiers should be attached to the type rather than the array. 8396 // Thus we don't call appendQualifier() here. 8397 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8398 } 8399 return appendType(Enc, QT, CGM, TSC); 8400 } 8401 return false; 8402 } 8403 8404 8405 //===----------------------------------------------------------------------===// 8406 // Driver code 8407 //===----------------------------------------------------------------------===// 8408 8409 bool CodeGenModule::supportsCOMDAT() const { 8410 return getTriple().supportsCOMDAT(); 8411 } 8412 8413 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8414 if (TheTargetCodeGenInfo) 8415 return *TheTargetCodeGenInfo; 8416 8417 // Helper to set the unique_ptr while still keeping the return value. 8418 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8419 this->TheTargetCodeGenInfo.reset(P); 8420 return *P; 8421 }; 8422 8423 const llvm::Triple &Triple = getTarget().getTriple(); 8424 switch (Triple.getArch()) { 8425 default: 8426 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8427 8428 case llvm::Triple::le32: 8429 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8430 case llvm::Triple::mips: 8431 case llvm::Triple::mipsel: 8432 if (Triple.getOS() == llvm::Triple::NaCl) 8433 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8434 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8435 8436 case llvm::Triple::mips64: 8437 case llvm::Triple::mips64el: 8438 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8439 8440 case llvm::Triple::avr: 8441 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8442 8443 case llvm::Triple::aarch64: 8444 case llvm::Triple::aarch64_be: { 8445 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8446 if (getTarget().getABI() == "darwinpcs") 8447 Kind = AArch64ABIInfo::DarwinPCS; 8448 8449 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8450 } 8451 8452 case llvm::Triple::wasm32: 8453 case llvm::Triple::wasm64: 8454 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8455 8456 case llvm::Triple::arm: 8457 case llvm::Triple::armeb: 8458 case llvm::Triple::thumb: 8459 case llvm::Triple::thumbeb: { 8460 if (Triple.getOS() == llvm::Triple::Win32) { 8461 return SetCGInfo( 8462 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8463 } 8464 8465 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8466 StringRef ABIStr = getTarget().getABI(); 8467 if (ABIStr == "apcs-gnu") 8468 Kind = ARMABIInfo::APCS; 8469 else if (ABIStr == "aapcs16") 8470 Kind = ARMABIInfo::AAPCS16_VFP; 8471 else if (CodeGenOpts.FloatABI == "hard" || 8472 (CodeGenOpts.FloatABI != "soft" && 8473 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8474 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8475 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8476 Kind = ARMABIInfo::AAPCS_VFP; 8477 8478 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8479 } 8480 8481 case llvm::Triple::ppc: 8482 return SetCGInfo( 8483 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8484 case llvm::Triple::ppc64: 8485 if (Triple.isOSBinFormatELF()) { 8486 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8487 if (getTarget().getABI() == "elfv2") 8488 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8489 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8490 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8491 8492 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8493 IsSoftFloat)); 8494 } else 8495 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8496 case llvm::Triple::ppc64le: { 8497 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8498 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8499 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8500 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8501 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8502 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8503 8504 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8505 IsSoftFloat)); 8506 } 8507 8508 case llvm::Triple::nvptx: 8509 case llvm::Triple::nvptx64: 8510 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8511 8512 case llvm::Triple::msp430: 8513 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8514 8515 case llvm::Triple::systemz: { 8516 bool HasVector = getTarget().getABI() == "vector"; 8517 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8518 } 8519 8520 case llvm::Triple::tce: 8521 case llvm::Triple::tcele: 8522 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8523 8524 case llvm::Triple::x86: { 8525 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8526 bool RetSmallStructInRegABI = 8527 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8528 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8529 8530 if (Triple.getOS() == llvm::Triple::Win32) { 8531 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8532 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8533 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8534 } else { 8535 return SetCGInfo(new X86_32TargetCodeGenInfo( 8536 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8537 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8538 CodeGenOpts.FloatABI == "soft")); 8539 } 8540 } 8541 8542 case llvm::Triple::x86_64: { 8543 StringRef ABI = getTarget().getABI(); 8544 X86AVXABILevel AVXLevel = 8545 (ABI == "avx512" 8546 ? X86AVXABILevel::AVX512 8547 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8548 8549 switch (Triple.getOS()) { 8550 case llvm::Triple::Win32: 8551 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8552 case llvm::Triple::PS4: 8553 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8554 default: 8555 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8556 } 8557 } 8558 case llvm::Triple::hexagon: 8559 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8560 case llvm::Triple::lanai: 8561 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8562 case llvm::Triple::r600: 8563 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8564 case llvm::Triple::amdgcn: 8565 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8566 case llvm::Triple::sparc: 8567 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8568 case llvm::Triple::sparcv9: 8569 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8570 case llvm::Triple::xcore: 8571 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8572 case llvm::Triple::spir: 8573 case llvm::Triple::spir64: 8574 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8575 } 8576 } 8577