1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address emitMergePHI(CodeGenFunction &CGF, 396 Address Addr1, llvm::BasicBlock *Block1, 397 Address Addr2, llvm::BasicBlock *Block2, 398 const llvm::Twine &Name = "") { 399 assert(Addr1.getType() == Addr2.getType()); 400 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 401 PHI->addIncoming(Addr1.getPointer(), Block1); 402 PHI->addIncoming(Addr2.getPointer(), Block2); 403 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 404 return Address(PHI, Align); 405 } 406 407 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 408 409 // If someone can figure out a general rule for this, that would be great. 410 // It's probably just doomed to be platform-dependent, though. 411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 412 // Verified for: 413 // x86-64 FreeBSD, Linux, Darwin 414 // x86-32 FreeBSD, Linux, Darwin 415 // PowerPC Linux, Darwin 416 // ARM Darwin (*not* EABI) 417 // AArch64 Linux 418 return 32; 419 } 420 421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 422 const FunctionNoProtoType *fnType) const { 423 // The following conventions are known to require this to be false: 424 // x86_stdcall 425 // MIPS 426 // For everything else, we just prefer false unless we opt out. 427 return false; 428 } 429 430 void 431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 432 llvm::SmallString<24> &Opt) const { 433 // This assumes the user is passing a library name like "rt" instead of a 434 // filename like "librt.a/so", and that they don't care whether it's static or 435 // dynamic. 436 Opt = "-l"; 437 Opt += Lib; 438 } 439 440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 441 // OpenCL kernels are called via an explicit runtime API with arguments 442 // set with clSetKernelArg(), not as normal sub-functions. 443 // Return SPIR_KERNEL by default as the kernel calling convention to 444 // ensure the fingerprint is fixed such way that each OpenCL argument 445 // gets one matching argument in the produced kernel function argument 446 // list to enable feasible implementation of clSetKernelArg() with 447 // aggregates etc. In case we would use the default C calling conv here, 448 // clSetKernelArg() might break depending on the target-specific 449 // conventions; different targets might split structs passed as values 450 // to multiple function arguments etc. 451 return llvm::CallingConv::SPIR_KERNEL; 452 } 453 454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 455 llvm::PointerType *T, QualType QT) const { 456 return llvm::ConstantPointerNull::get(T); 457 } 458 459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 460 const VarDecl *D) const { 461 assert(!CGM.getLangOpts().OpenCL && 462 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 463 "Address space agnostic languages only"); 464 return D ? D->getType().getAddressSpace() : LangAS::Default; 465 } 466 467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 468 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 469 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 470 // Since target may map different address spaces in AST to the same address 471 // space, an address space conversion may end up as a bitcast. 472 if (auto *C = dyn_cast<llvm::Constant>(Src)) 473 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 474 // Try to preserve the source's name to make IR more readable. 475 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 476 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 477 } 478 479 llvm::Constant * 480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 481 LangAS SrcAddr, LangAS DestAddr, 482 llvm::Type *DestTy) const { 483 // Since target may map different address spaces in AST to the same address 484 // space, an address space conversion may end up as a bitcast. 485 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 486 } 487 488 llvm::SyncScope::ID 489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 490 SyncScope Scope, 491 llvm::AtomicOrdering Ordering, 492 llvm::LLVMContext &Ctx) const { 493 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 494 } 495 496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 497 498 /// isEmptyField - Return true iff a the field is "empty", that is it 499 /// is an unnamed bit-field or an (array of) empty record(s). 500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 501 bool AllowArrays) { 502 if (FD->isUnnamedBitfield()) 503 return true; 504 505 QualType FT = FD->getType(); 506 507 // Constant arrays of empty records count as empty, strip them off. 508 // Constant arrays of zero length always count as empty. 509 bool WasArray = false; 510 if (AllowArrays) 511 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 512 if (AT->getSize() == 0) 513 return true; 514 FT = AT->getElementType(); 515 // The [[no_unique_address]] special case below does not apply to 516 // arrays of C++ empty records, so we need to remember this fact. 517 WasArray = true; 518 } 519 520 const RecordType *RT = FT->getAs<RecordType>(); 521 if (!RT) 522 return false; 523 524 // C++ record fields are never empty, at least in the Itanium ABI. 525 // 526 // FIXME: We should use a predicate for whether this behavior is true in the 527 // current ABI. 528 // 529 // The exception to the above rule are fields marked with the 530 // [[no_unique_address]] attribute (since C++20). Those do count as empty 531 // according to the Itanium ABI. The exception applies only to records, 532 // not arrays of records, so we must also check whether we stripped off an 533 // array type above. 534 if (isa<CXXRecordDecl>(RT->getDecl()) && 535 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 536 return false; 537 538 return isEmptyRecord(Context, FT, AllowArrays); 539 } 540 541 /// isEmptyRecord - Return true iff a structure contains only empty 542 /// fields. Note that a structure with a flexible array member is not 543 /// considered empty. 544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 545 const RecordType *RT = T->getAs<RecordType>(); 546 if (!RT) 547 return false; 548 const RecordDecl *RD = RT->getDecl(); 549 if (RD->hasFlexibleArrayMember()) 550 return false; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 554 for (const auto &I : CXXRD->bases()) 555 if (!isEmptyRecord(Context, I.getType(), true)) 556 return false; 557 558 for (const auto *I : RD->fields()) 559 if (!isEmptyField(Context, I, AllowArrays)) 560 return false; 561 return true; 562 } 563 564 /// isSingleElementStruct - Determine if a structure is a "single 565 /// element struct", i.e. it has exactly one non-empty field or 566 /// exactly one field which is itself a single element 567 /// struct. Structures with flexible array members are never 568 /// considered single element structs. 569 /// 570 /// \return The field declaration for the single non-empty field, if 571 /// it exists. 572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 573 const RecordType *RT = T->getAs<RecordType>(); 574 if (!RT) 575 return nullptr; 576 577 const RecordDecl *RD = RT->getDecl(); 578 if (RD->hasFlexibleArrayMember()) 579 return nullptr; 580 581 const Type *Found = nullptr; 582 583 // If this is a C++ record, check the bases first. 584 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 585 for (const auto &I : CXXRD->bases()) { 586 // Ignore empty records. 587 if (isEmptyRecord(Context, I.getType(), true)) 588 continue; 589 590 // If we already found an element then this isn't a single-element struct. 591 if (Found) 592 return nullptr; 593 594 // If this is non-empty and not a single element struct, the composite 595 // cannot be a single element struct. 596 Found = isSingleElementStruct(I.getType(), Context); 597 if (!Found) 598 return nullptr; 599 } 600 } 601 602 // Check for single element. 603 for (const auto *FD : RD->fields()) { 604 QualType FT = FD->getType(); 605 606 // Ignore empty fields. 607 if (isEmptyField(Context, FD, true)) 608 continue; 609 610 // If we already found an element then this isn't a single-element 611 // struct. 612 if (Found) 613 return nullptr; 614 615 // Treat single element arrays as the element. 616 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 617 if (AT->getSize().getZExtValue() != 1) 618 break; 619 FT = AT->getElementType(); 620 } 621 622 if (!isAggregateTypeForABI(FT)) { 623 Found = FT.getTypePtr(); 624 } else { 625 Found = isSingleElementStruct(FT, Context); 626 if (!Found) 627 return nullptr; 628 } 629 } 630 631 // We don't consider a struct a single-element struct if it has 632 // padding beyond the element type. 633 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 634 return nullptr; 635 636 return Found; 637 } 638 639 namespace { 640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 641 const ABIArgInfo &AI) { 642 // This default implementation defers to the llvm backend's va_arg 643 // instruction. It can handle only passing arguments directly 644 // (typically only handled in the backend for primitive types), or 645 // aggregates passed indirectly by pointer (NOTE: if the "byval" 646 // flag has ABI impact in the callee, this implementation cannot 647 // work.) 648 649 // Only a few cases are covered here at the moment -- those needed 650 // by the default abi. 651 llvm::Value *Val; 652 653 if (AI.isIndirect()) { 654 assert(!AI.getPaddingType() && 655 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 656 assert( 657 !AI.getIndirectRealign() && 658 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 659 660 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 661 CharUnits TyAlignForABI = TyInfo.Align; 662 663 llvm::Type *BaseTy = 664 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 665 llvm::Value *Addr = 666 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 667 return Address(Addr, TyAlignForABI); 668 } else { 669 assert((AI.isDirect() || AI.isExtend()) && 670 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 671 672 assert(!AI.getInReg() && 673 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getPaddingType() && 675 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getDirectOffset() && 677 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 678 assert(!AI.getCoerceToType() && 679 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 680 681 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 682 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 683 CGF.Builder.CreateStore(Val, Temp); 684 return Temp; 685 } 686 } 687 688 /// DefaultABIInfo - The default implementation for ABI specific 689 /// details. This implementation provides information which results in 690 /// self-consistent and sensible LLVM IR generation, but does not 691 /// conform to any particular ABI. 692 class DefaultABIInfo : public ABIInfo { 693 public: 694 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 695 696 ABIArgInfo classifyReturnType(QualType RetTy) const; 697 ABIArgInfo classifyArgumentType(QualType RetTy) const; 698 699 void computeInfo(CGFunctionInfo &FI) const override { 700 if (!getCXXABI().classifyReturnType(FI)) 701 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 702 for (auto &I : FI.arguments()) 703 I.info = classifyArgumentType(I.type); 704 } 705 706 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 707 QualType Ty) const override { 708 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 709 } 710 }; 711 712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 713 public: 714 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 715 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 716 }; 717 718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 719 Ty = useFirstFieldIfTransparentUnion(Ty); 720 721 if (isAggregateTypeForABI(Ty)) { 722 // Records with non-trivial destructors/copy-constructors should not be 723 // passed by value. 724 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 725 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 726 727 return getNaturalAlignIndirect(Ty); 728 } 729 730 // Treat an enum type as its underlying type. 731 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 732 Ty = EnumTy->getDecl()->getIntegerType(); 733 734 ASTContext &Context = getContext(); 735 if (const auto *EIT = Ty->getAs<ExtIntType>()) 736 if (EIT->getNumBits() > 737 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 738 ? Context.Int128Ty 739 : Context.LongLongTy)) 740 return getNaturalAlignIndirect(Ty); 741 742 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 743 : ABIArgInfo::getDirect()); 744 } 745 746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 747 if (RetTy->isVoidType()) 748 return ABIArgInfo::getIgnore(); 749 750 if (isAggregateTypeForABI(RetTy)) 751 return getNaturalAlignIndirect(RetTy); 752 753 // Treat an enum type as its underlying type. 754 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 755 RetTy = EnumTy->getDecl()->getIntegerType(); 756 757 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 758 if (EIT->getNumBits() > 759 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 760 ? getContext().Int128Ty 761 : getContext().LongLongTy)) 762 return getNaturalAlignIndirect(RetTy); 763 764 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 765 : ABIArgInfo::getDirect()); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // WebAssembly ABI Implementation 770 // 771 // This is a very simple ABI that relies a lot on DefaultABIInfo. 772 //===----------------------------------------------------------------------===// 773 774 class WebAssemblyABIInfo final : public SwiftABIInfo { 775 public: 776 enum ABIKind { 777 MVP = 0, 778 ExperimentalMV = 1, 779 }; 780 781 private: 782 DefaultABIInfo defaultInfo; 783 ABIKind Kind; 784 785 public: 786 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 787 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 788 789 private: 790 ABIArgInfo classifyReturnType(QualType RetTy) const; 791 ABIArgInfo classifyArgumentType(QualType Ty) const; 792 793 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 794 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 795 // overload them. 796 void computeInfo(CGFunctionInfo &FI) const override { 797 if (!getCXXABI().classifyReturnType(FI)) 798 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 799 for (auto &Arg : FI.arguments()) 800 Arg.info = classifyArgumentType(Arg.type); 801 } 802 803 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 804 QualType Ty) const override; 805 806 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 807 bool asReturnValue) const override { 808 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 809 } 810 811 bool isSwiftErrorInRegister() const override { 812 return false; 813 } 814 }; 815 816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 817 public: 818 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 819 WebAssemblyABIInfo::ABIKind K) 820 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 821 822 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 823 CodeGen::CodeGenModule &CGM) const override { 824 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 825 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 826 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 827 llvm::Function *Fn = cast<llvm::Function>(GV); 828 llvm::AttrBuilder B; 829 B.addAttribute("wasm-import-module", Attr->getImportModule()); 830 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 831 } 832 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 833 llvm::Function *Fn = cast<llvm::Function>(GV); 834 llvm::AttrBuilder B; 835 B.addAttribute("wasm-import-name", Attr->getImportName()); 836 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 837 } 838 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 839 llvm::Function *Fn = cast<llvm::Function>(GV); 840 llvm::AttrBuilder B; 841 B.addAttribute("wasm-export-name", Attr->getExportName()); 842 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 843 } 844 } 845 846 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 847 llvm::Function *Fn = cast<llvm::Function>(GV); 848 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 849 Fn->addFnAttr("no-prototype"); 850 } 851 } 852 }; 853 854 /// Classify argument of given type \p Ty. 855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 856 Ty = useFirstFieldIfTransparentUnion(Ty); 857 858 if (isAggregateTypeForABI(Ty)) { 859 // Records with non-trivial destructors/copy-constructors should not be 860 // passed by value. 861 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 862 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 863 // Ignore empty structs/unions. 864 if (isEmptyRecord(getContext(), Ty, true)) 865 return ABIArgInfo::getIgnore(); 866 // Lower single-element structs to just pass a regular value. TODO: We 867 // could do reasonable-size multiple-element structs too, using getExpand(), 868 // though watch out for things like bitfields. 869 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 870 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 871 // For the experimental multivalue ABI, fully expand all other aggregates 872 if (Kind == ABIKind::ExperimentalMV) { 873 const RecordType *RT = Ty->getAs<RecordType>(); 874 assert(RT); 875 bool HasBitField = false; 876 for (auto *Field : RT->getDecl()->fields()) { 877 if (Field->isBitField()) { 878 HasBitField = true; 879 break; 880 } 881 } 882 if (!HasBitField) 883 return ABIArgInfo::getExpand(); 884 } 885 } 886 887 // Otherwise just do the default thing. 888 return defaultInfo.classifyArgumentType(Ty); 889 } 890 891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 892 if (isAggregateTypeForABI(RetTy)) { 893 // Records with non-trivial destructors/copy-constructors should not be 894 // returned by value. 895 if (!getRecordArgABI(RetTy, getCXXABI())) { 896 // Ignore empty structs/unions. 897 if (isEmptyRecord(getContext(), RetTy, true)) 898 return ABIArgInfo::getIgnore(); 899 // Lower single-element structs to just return a regular value. TODO: We 900 // could do reasonable-size multiple-element structs too, using 901 // ABIArgInfo::getDirect(). 902 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 903 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 904 // For the experimental multivalue ABI, return all other aggregates 905 if (Kind == ABIKind::ExperimentalMV) 906 return ABIArgInfo::getDirect(); 907 } 908 } 909 910 // Otherwise just do the default thing. 911 return defaultInfo.classifyReturnType(RetTy); 912 } 913 914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 915 QualType Ty) const { 916 bool IsIndirect = isAggregateTypeForABI(Ty) && 917 !isEmptyRecord(getContext(), Ty, true) && 918 !isSingleElementStruct(Ty, getContext()); 919 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 920 getContext().getTypeInfoInChars(Ty), 921 CharUnits::fromQuantity(4), 922 /*AllowHigherAlign=*/true); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // le32/PNaCl bitcode ABI Implementation 927 // 928 // This is a simplified version of the x86_32 ABI. Arguments and return values 929 // are always passed on the stack. 930 //===----------------------------------------------------------------------===// 931 932 class PNaClABIInfo : public ABIInfo { 933 public: 934 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 935 936 ABIArgInfo classifyReturnType(QualType RetTy) const; 937 ABIArgInfo classifyArgumentType(QualType RetTy) const; 938 939 void computeInfo(CGFunctionInfo &FI) const override; 940 Address EmitVAArg(CodeGenFunction &CGF, 941 Address VAListAddr, QualType Ty) const override; 942 }; 943 944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 945 public: 946 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 947 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 948 }; 949 950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 951 if (!getCXXABI().classifyReturnType(FI)) 952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 953 954 for (auto &I : FI.arguments()) 955 I.info = classifyArgumentType(I.type); 956 } 957 958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 959 QualType Ty) const { 960 // The PNaCL ABI is a bit odd, in that varargs don't use normal 961 // function classification. Structs get passed directly for varargs 962 // functions, through a rewriting transform in 963 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 964 // this target to actually support a va_arg instructions with an 965 // aggregate type, unlike other targets. 966 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 967 } 968 969 /// Classify argument of given type \p Ty. 970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 971 if (isAggregateTypeForABI(Ty)) { 972 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 973 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 974 return getNaturalAlignIndirect(Ty); 975 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 976 // Treat an enum type as its underlying type. 977 Ty = EnumTy->getDecl()->getIntegerType(); 978 } else if (Ty->isFloatingType()) { 979 // Floating-point types don't go inreg. 980 return ABIArgInfo::getDirect(); 981 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 982 // Treat extended integers as integers if <=64, otherwise pass indirectly. 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(Ty); 985 return ABIArgInfo::getDirect(); 986 } 987 988 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 989 : ABIArgInfo::getDirect()); 990 } 991 992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 993 if (RetTy->isVoidType()) 994 return ABIArgInfo::getIgnore(); 995 996 // In the PNaCl ABI we always return records/structures on the stack. 997 if (isAggregateTypeForABI(RetTy)) 998 return getNaturalAlignIndirect(RetTy); 999 1000 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1001 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1002 if (EIT->getNumBits() > 64) 1003 return getNaturalAlignIndirect(RetTy); 1004 return ABIArgInfo::getDirect(); 1005 } 1006 1007 // Treat an enum type as its underlying type. 1008 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1009 RetTy = EnumTy->getDecl()->getIntegerType(); 1010 1011 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1012 : ABIArgInfo::getDirect()); 1013 } 1014 1015 /// IsX86_MMXType - Return true if this is an MMX type. 1016 bool IsX86_MMXType(llvm::Type *IRType) { 1017 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1018 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1019 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1020 IRType->getScalarSizeInBits() != 64; 1021 } 1022 1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) { 1026 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1027 .Cases("y", "&y", "^Ym", true) 1028 .Default(false); 1029 if (IsMMXCons && Ty->isVectorTy()) { 1030 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1031 64) { 1032 // Invalid MMX constraint 1033 return nullptr; 1034 } 1035 1036 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1037 } 1038 1039 // No operation needed 1040 return Ty; 1041 } 1042 1043 /// Returns true if this type can be passed in SSE registers with the 1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1046 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1047 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1048 if (BT->getKind() == BuiltinType::LongDouble) { 1049 if (&Context.getTargetInfo().getLongDoubleFormat() == 1050 &llvm::APFloat::x87DoubleExtended()) 1051 return false; 1052 } 1053 return true; 1054 } 1055 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1056 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1057 // registers specially. 1058 unsigned VecSize = Context.getTypeSize(VT); 1059 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1060 return true; 1061 } 1062 return false; 1063 } 1064 1065 /// Returns true if this aggregate is small enough to be passed in SSE registers 1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1068 return NumMembers <= 4; 1069 } 1070 1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1073 auto AI = ABIArgInfo::getDirect(T); 1074 AI.setInReg(true); 1075 AI.setCanBeFlattened(false); 1076 return AI; 1077 } 1078 1079 //===----------------------------------------------------------------------===// 1080 // X86-32 ABI Implementation 1081 //===----------------------------------------------------------------------===// 1082 1083 /// Similar to llvm::CCState, but for Clang. 1084 struct CCState { 1085 CCState(CGFunctionInfo &FI) 1086 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1087 1088 llvm::SmallBitVector IsPreassigned; 1089 unsigned CC = CallingConv::CC_C; 1090 unsigned FreeRegs = 0; 1091 unsigned FreeSSERegs = 0; 1092 }; 1093 1094 /// X86_32ABIInfo - The X86-32 ABI information. 1095 class X86_32ABIInfo : public SwiftABIInfo { 1096 enum Class { 1097 Integer, 1098 Float 1099 }; 1100 1101 static const unsigned MinABIStackAlignInBytes = 4; 1102 1103 bool IsDarwinVectorABI; 1104 bool IsRetSmallStructInRegABI; 1105 bool IsWin32StructABI; 1106 bool IsSoftFloatABI; 1107 bool IsMCUABI; 1108 bool IsLinuxABI; 1109 unsigned DefaultNumRegisterParameters; 1110 1111 static bool isRegisterSize(unsigned Size) { 1112 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1113 } 1114 1115 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1116 // FIXME: Assumes vectorcall is in use. 1117 return isX86VectorTypeForVectorCall(getContext(), Ty); 1118 } 1119 1120 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1121 uint64_t NumMembers) const override { 1122 // FIXME: Assumes vectorcall is in use. 1123 return isX86VectorCallAggregateSmallEnough(NumMembers); 1124 } 1125 1126 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1127 1128 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1129 /// such that the argument will be passed in memory. 1130 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1131 1132 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1133 1134 /// Return the alignment to use for the given type on the stack. 1135 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1136 1137 Class classify(QualType Ty) const; 1138 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1139 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1140 1141 /// Updates the number of available free registers, returns 1142 /// true if any registers were allocated. 1143 bool updateFreeRegs(QualType Ty, CCState &State) const; 1144 1145 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1146 bool &NeedsPadding) const; 1147 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1148 1149 bool canExpandIndirectArgument(QualType Ty) const; 1150 1151 /// Rewrite the function info so that all memory arguments use 1152 /// inalloca. 1153 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1154 1155 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1156 CharUnits &StackOffset, ABIArgInfo &Info, 1157 QualType Type) const; 1158 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1159 1160 public: 1161 1162 void computeInfo(CGFunctionInfo &FI) const override; 1163 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1164 QualType Ty) const override; 1165 1166 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1167 bool RetSmallStructInRegABI, bool Win32StructABI, 1168 unsigned NumRegisterParameters, bool SoftFloatABI) 1169 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1170 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1171 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1172 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1173 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux()), 1174 DefaultNumRegisterParameters(NumRegisterParameters) {} 1175 1176 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1177 bool asReturnValue) const override { 1178 // LLVM's x86-32 lowering currently only assigns up to three 1179 // integer registers and three fp registers. Oddly, it'll use up to 1180 // four vector registers for vectors, but those can overlap with the 1181 // scalar registers. 1182 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1183 } 1184 1185 bool isSwiftErrorInRegister() const override { 1186 // x86-32 lowering does not support passing swifterror in a register. 1187 return false; 1188 } 1189 }; 1190 1191 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1192 public: 1193 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1194 bool RetSmallStructInRegABI, bool Win32StructABI, 1195 unsigned NumRegisterParameters, bool SoftFloatABI) 1196 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1197 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1198 NumRegisterParameters, SoftFloatABI)) {} 1199 1200 static bool isStructReturnInRegABI( 1201 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1202 1203 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1204 CodeGen::CodeGenModule &CGM) const override; 1205 1206 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1207 // Darwin uses different dwarf register numbers for EH. 1208 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1209 return 4; 1210 } 1211 1212 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1213 llvm::Value *Address) const override; 1214 1215 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1216 StringRef Constraint, 1217 llvm::Type* Ty) const override { 1218 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1219 } 1220 1221 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1222 std::string &Constraints, 1223 std::vector<llvm::Type *> &ResultRegTypes, 1224 std::vector<llvm::Type *> &ResultTruncRegTypes, 1225 std::vector<LValue> &ResultRegDests, 1226 std::string &AsmString, 1227 unsigned NumOutputs) const override; 1228 1229 llvm::Constant * 1230 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1231 unsigned Sig = (0xeb << 0) | // jmp rel8 1232 (0x06 << 8) | // .+0x08 1233 ('v' << 16) | 1234 ('2' << 24); 1235 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1236 } 1237 1238 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1239 return "movl\t%ebp, %ebp" 1240 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1241 } 1242 }; 1243 1244 } 1245 1246 /// Rewrite input constraint references after adding some output constraints. 1247 /// In the case where there is one output and one input and we add one output, 1248 /// we need to replace all operand references greater than or equal to 1: 1249 /// mov $0, $1 1250 /// mov eax, $1 1251 /// The result will be: 1252 /// mov $0, $2 1253 /// mov eax, $2 1254 static void rewriteInputConstraintReferences(unsigned FirstIn, 1255 unsigned NumNewOuts, 1256 std::string &AsmString) { 1257 std::string Buf; 1258 llvm::raw_string_ostream OS(Buf); 1259 size_t Pos = 0; 1260 while (Pos < AsmString.size()) { 1261 size_t DollarStart = AsmString.find('$', Pos); 1262 if (DollarStart == std::string::npos) 1263 DollarStart = AsmString.size(); 1264 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1265 if (DollarEnd == std::string::npos) 1266 DollarEnd = AsmString.size(); 1267 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1268 Pos = DollarEnd; 1269 size_t NumDollars = DollarEnd - DollarStart; 1270 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1271 // We have an operand reference. 1272 size_t DigitStart = Pos; 1273 if (AsmString[DigitStart] == '{') { 1274 OS << '{'; 1275 ++DigitStart; 1276 } 1277 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1278 if (DigitEnd == std::string::npos) 1279 DigitEnd = AsmString.size(); 1280 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1281 unsigned OperandIndex; 1282 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1283 if (OperandIndex >= FirstIn) 1284 OperandIndex += NumNewOuts; 1285 OS << OperandIndex; 1286 } else { 1287 OS << OperandStr; 1288 } 1289 Pos = DigitEnd; 1290 } 1291 } 1292 AsmString = std::move(OS.str()); 1293 } 1294 1295 /// Add output constraints for EAX:EDX because they are return registers. 1296 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1297 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1298 std::vector<llvm::Type *> &ResultRegTypes, 1299 std::vector<llvm::Type *> &ResultTruncRegTypes, 1300 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1301 unsigned NumOutputs) const { 1302 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1303 1304 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1305 // larger. 1306 if (!Constraints.empty()) 1307 Constraints += ','; 1308 if (RetWidth <= 32) { 1309 Constraints += "={eax}"; 1310 ResultRegTypes.push_back(CGF.Int32Ty); 1311 } else { 1312 // Use the 'A' constraint for EAX:EDX. 1313 Constraints += "=A"; 1314 ResultRegTypes.push_back(CGF.Int64Ty); 1315 } 1316 1317 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1318 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1319 ResultTruncRegTypes.push_back(CoerceTy); 1320 1321 // Coerce the integer by bitcasting the return slot pointer. 1322 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1323 CoerceTy->getPointerTo())); 1324 ResultRegDests.push_back(ReturnSlot); 1325 1326 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1327 } 1328 1329 /// shouldReturnTypeInRegister - Determine if the given type should be 1330 /// returned in a register (for the Darwin and MCU ABI). 1331 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1332 ASTContext &Context) const { 1333 uint64_t Size = Context.getTypeSize(Ty); 1334 1335 // For i386, type must be register sized. 1336 // For the MCU ABI, it only needs to be <= 8-byte 1337 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1338 return false; 1339 1340 if (Ty->isVectorType()) { 1341 // 64- and 128- bit vectors inside structures are not returned in 1342 // registers. 1343 if (Size == 64 || Size == 128) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 // If this is a builtin, pointer, enum, complex type, member pointer, or 1350 // member function pointer it is ok. 1351 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1352 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1353 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1354 return true; 1355 1356 // Arrays are treated like records. 1357 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1358 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1359 1360 // Otherwise, it must be a record type. 1361 const RecordType *RT = Ty->getAs<RecordType>(); 1362 if (!RT) return false; 1363 1364 // FIXME: Traverse bases here too. 1365 1366 // Structure types are passed in register if all fields would be 1367 // passed in a register. 1368 for (const auto *FD : RT->getDecl()->fields()) { 1369 // Empty fields are ignored. 1370 if (isEmptyField(Context, FD, true)) 1371 continue; 1372 1373 // Check fields recursively. 1374 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1375 return false; 1376 } 1377 return true; 1378 } 1379 1380 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1381 // Treat complex types as the element type. 1382 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1383 Ty = CTy->getElementType(); 1384 1385 // Check for a type which we know has a simple scalar argument-passing 1386 // convention without any padding. (We're specifically looking for 32 1387 // and 64-bit integer and integer-equivalents, float, and double.) 1388 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1389 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1390 return false; 1391 1392 uint64_t Size = Context.getTypeSize(Ty); 1393 return Size == 32 || Size == 64; 1394 } 1395 1396 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1397 uint64_t &Size) { 1398 for (const auto *FD : RD->fields()) { 1399 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1400 // argument is smaller than 32-bits, expanding the struct will create 1401 // alignment padding. 1402 if (!is32Or64BitBasicType(FD->getType(), Context)) 1403 return false; 1404 1405 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1406 // how to expand them yet, and the predicate for telling if a bitfield still 1407 // counts as "basic" is more complicated than what we were doing previously. 1408 if (FD->isBitField()) 1409 return false; 1410 1411 Size += Context.getTypeSize(FD->getType()); 1412 } 1413 return true; 1414 } 1415 1416 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1417 uint64_t &Size) { 1418 // Don't do this if there are any non-empty bases. 1419 for (const CXXBaseSpecifier &Base : RD->bases()) { 1420 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1421 Size)) 1422 return false; 1423 } 1424 if (!addFieldSizes(Context, RD, Size)) 1425 return false; 1426 return true; 1427 } 1428 1429 /// Test whether an argument type which is to be passed indirectly (on the 1430 /// stack) would have the equivalent layout if it was expanded into separate 1431 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1432 /// optimizations. 1433 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1434 // We can only expand structure types. 1435 const RecordType *RT = Ty->getAs<RecordType>(); 1436 if (!RT) 1437 return false; 1438 const RecordDecl *RD = RT->getDecl(); 1439 uint64_t Size = 0; 1440 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1441 if (!IsWin32StructABI) { 1442 // On non-Windows, we have to conservatively match our old bitcode 1443 // prototypes in order to be ABI-compatible at the bitcode level. 1444 if (!CXXRD->isCLike()) 1445 return false; 1446 } else { 1447 // Don't do this for dynamic classes. 1448 if (CXXRD->isDynamicClass()) 1449 return false; 1450 } 1451 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1452 return false; 1453 } else { 1454 if (!addFieldSizes(getContext(), RD, Size)) 1455 return false; 1456 } 1457 1458 // We can do this if there was no alignment padding. 1459 return Size == getContext().getTypeSize(Ty); 1460 } 1461 1462 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1463 // If the return value is indirect, then the hidden argument is consuming one 1464 // integer register. 1465 if (State.FreeRegs) { 1466 --State.FreeRegs; 1467 if (!IsMCUABI) 1468 return getNaturalAlignIndirectInReg(RetTy); 1469 } 1470 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1471 } 1472 1473 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1474 CCState &State) const { 1475 if (RetTy->isVoidType()) 1476 return ABIArgInfo::getIgnore(); 1477 1478 const Type *Base = nullptr; 1479 uint64_t NumElts = 0; 1480 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1481 State.CC == llvm::CallingConv::X86_RegCall) && 1482 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1483 // The LLVM struct type for such an aggregate should lower properly. 1484 return ABIArgInfo::getDirect(); 1485 } 1486 1487 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1488 // On Darwin, some vectors are returned in registers. 1489 if (IsDarwinVectorABI) { 1490 uint64_t Size = getContext().getTypeSize(RetTy); 1491 1492 // 128-bit vectors are a special case; they are returned in 1493 // registers and we need to make sure to pick a type the LLVM 1494 // backend will like. 1495 if (Size == 128) 1496 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1497 llvm::Type::getInt64Ty(getVMContext()), 2)); 1498 1499 // Always return in register if it fits in a general purpose 1500 // register, or if it is 64 bits and has a single element. 1501 if ((Size == 8 || Size == 16 || Size == 32) || 1502 (Size == 64 && VT->getNumElements() == 1)) 1503 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1504 Size)); 1505 1506 return getIndirectReturnResult(RetTy, State); 1507 } 1508 1509 return ABIArgInfo::getDirect(); 1510 } 1511 1512 if (isAggregateTypeForABI(RetTy)) { 1513 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1514 // Structures with flexible arrays are always indirect. 1515 if (RT->getDecl()->hasFlexibleArrayMember()) 1516 return getIndirectReturnResult(RetTy, State); 1517 } 1518 1519 // If specified, structs and unions are always indirect. 1520 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1521 return getIndirectReturnResult(RetTy, State); 1522 1523 // Ignore empty structs/unions. 1524 if (isEmptyRecord(getContext(), RetTy, true)) 1525 return ABIArgInfo::getIgnore(); 1526 1527 // Small structures which are register sized are generally returned 1528 // in a register. 1529 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1530 uint64_t Size = getContext().getTypeSize(RetTy); 1531 1532 // As a special-case, if the struct is a "single-element" struct, and 1533 // the field is of type "float" or "double", return it in a 1534 // floating-point register. (MSVC does not apply this special case.) 1535 // We apply a similar transformation for pointer types to improve the 1536 // quality of the generated IR. 1537 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1538 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1539 || SeltTy->hasPointerRepresentation()) 1540 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1541 1542 // FIXME: We should be able to narrow this integer in cases with dead 1543 // padding. 1544 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1545 } 1546 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // Treat an enum type as its underlying type. 1551 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1552 RetTy = EnumTy->getDecl()->getIntegerType(); 1553 1554 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1555 if (EIT->getNumBits() > 64) 1556 return getIndirectReturnResult(RetTy, State); 1557 1558 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1559 : ABIArgInfo::getDirect()); 1560 } 1561 1562 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1563 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1564 } 1565 1566 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1567 const RecordType *RT = Ty->getAs<RecordType>(); 1568 if (!RT) 1569 return 0; 1570 const RecordDecl *RD = RT->getDecl(); 1571 1572 // If this is a C++ record, check the bases first. 1573 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1574 for (const auto &I : CXXRD->bases()) 1575 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1576 return false; 1577 1578 for (const auto *i : RD->fields()) { 1579 QualType FT = i->getType(); 1580 1581 if (isSIMDVectorType(Context, FT)) 1582 return true; 1583 1584 if (isRecordWithSIMDVectorType(Context, FT)) 1585 return true; 1586 } 1587 1588 return false; 1589 } 1590 1591 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1592 unsigned Align) const { 1593 // Otherwise, if the alignment is less than or equal to the minimum ABI 1594 // alignment, just use the default; the backend will handle this. 1595 if (Align <= MinABIStackAlignInBytes) 1596 return 0; // Use default alignment. 1597 1598 if (IsLinuxABI) { 1599 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1600 // want to spend any effort dealing with the ramifications of ABI breaks. 1601 // 1602 // If the vector type is __m128/__m256/__m512, return the default alignment. 1603 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1604 return Align; 1605 } 1606 // On non-Darwin, the stack type alignment is always 4. 1607 if (!IsDarwinVectorABI) { 1608 // Set explicit alignment, since we may need to realign the top. 1609 return MinABIStackAlignInBytes; 1610 } 1611 1612 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1613 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1614 isRecordWithSIMDVectorType(getContext(), Ty))) 1615 return 16; 1616 1617 return MinABIStackAlignInBytes; 1618 } 1619 1620 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1621 CCState &State) const { 1622 if (!ByVal) { 1623 if (State.FreeRegs) { 1624 --State.FreeRegs; // Non-byval indirects just use one pointer. 1625 if (!IsMCUABI) 1626 return getNaturalAlignIndirectInReg(Ty); 1627 } 1628 return getNaturalAlignIndirect(Ty, false); 1629 } 1630 1631 // Compute the byval alignment. 1632 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1633 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1634 if (StackAlign == 0) 1635 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1636 1637 // If the stack alignment is less than the type alignment, realign the 1638 // argument. 1639 bool Realign = TypeAlign > StackAlign; 1640 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1641 /*ByVal=*/true, Realign); 1642 } 1643 1644 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1645 const Type *T = isSingleElementStruct(Ty, getContext()); 1646 if (!T) 1647 T = Ty.getTypePtr(); 1648 1649 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1650 BuiltinType::Kind K = BT->getKind(); 1651 if (K == BuiltinType::Float || K == BuiltinType::Double) 1652 return Float; 1653 } 1654 return Integer; 1655 } 1656 1657 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1658 if (!IsSoftFloatABI) { 1659 Class C = classify(Ty); 1660 if (C == Float) 1661 return false; 1662 } 1663 1664 unsigned Size = getContext().getTypeSize(Ty); 1665 unsigned SizeInRegs = (Size + 31) / 32; 1666 1667 if (SizeInRegs == 0) 1668 return false; 1669 1670 if (!IsMCUABI) { 1671 if (SizeInRegs > State.FreeRegs) { 1672 State.FreeRegs = 0; 1673 return false; 1674 } 1675 } else { 1676 // The MCU psABI allows passing parameters in-reg even if there are 1677 // earlier parameters that are passed on the stack. Also, 1678 // it does not allow passing >8-byte structs in-register, 1679 // even if there are 3 free registers available. 1680 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1681 return false; 1682 } 1683 1684 State.FreeRegs -= SizeInRegs; 1685 return true; 1686 } 1687 1688 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1689 bool &InReg, 1690 bool &NeedsPadding) const { 1691 // On Windows, aggregates other than HFAs are never passed in registers, and 1692 // they do not consume register slots. Homogenous floating-point aggregates 1693 // (HFAs) have already been dealt with at this point. 1694 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1695 return false; 1696 1697 NeedsPadding = false; 1698 InReg = !IsMCUABI; 1699 1700 if (!updateFreeRegs(Ty, State)) 1701 return false; 1702 1703 if (IsMCUABI) 1704 return true; 1705 1706 if (State.CC == llvm::CallingConv::X86_FastCall || 1707 State.CC == llvm::CallingConv::X86_VectorCall || 1708 State.CC == llvm::CallingConv::X86_RegCall) { 1709 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1710 NeedsPadding = true; 1711 1712 return false; 1713 } 1714 1715 return true; 1716 } 1717 1718 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1719 if (!updateFreeRegs(Ty, State)) 1720 return false; 1721 1722 if (IsMCUABI) 1723 return false; 1724 1725 if (State.CC == llvm::CallingConv::X86_FastCall || 1726 State.CC == llvm::CallingConv::X86_VectorCall || 1727 State.CC == llvm::CallingConv::X86_RegCall) { 1728 if (getContext().getTypeSize(Ty) > 32) 1729 return false; 1730 1731 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1732 Ty->isReferenceType()); 1733 } 1734 1735 return true; 1736 } 1737 1738 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1739 // Vectorcall x86 works subtly different than in x64, so the format is 1740 // a bit different than the x64 version. First, all vector types (not HVAs) 1741 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1742 // This differs from the x64 implementation, where the first 6 by INDEX get 1743 // registers. 1744 // In the second pass over the arguments, HVAs are passed in the remaining 1745 // vector registers if possible, or indirectly by address. The address will be 1746 // passed in ECX/EDX if available. Any other arguments are passed according to 1747 // the usual fastcall rules. 1748 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1749 for (int I = 0, E = Args.size(); I < E; ++I) { 1750 const Type *Base = nullptr; 1751 uint64_t NumElts = 0; 1752 const QualType &Ty = Args[I].type; 1753 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1754 isHomogeneousAggregate(Ty, Base, NumElts)) { 1755 if (State.FreeSSERegs >= NumElts) { 1756 State.FreeSSERegs -= NumElts; 1757 Args[I].info = ABIArgInfo::getDirectInReg(); 1758 State.IsPreassigned.set(I); 1759 } 1760 } 1761 } 1762 } 1763 1764 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1765 CCState &State) const { 1766 // FIXME: Set alignment on indirect arguments. 1767 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1768 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1769 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1770 1771 Ty = useFirstFieldIfTransparentUnion(Ty); 1772 TypeInfo TI = getContext().getTypeInfo(Ty); 1773 1774 // Check with the C++ ABI first. 1775 const RecordType *RT = Ty->getAs<RecordType>(); 1776 if (RT) { 1777 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1778 if (RAA == CGCXXABI::RAA_Indirect) { 1779 return getIndirectResult(Ty, false, State); 1780 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1781 // The field index doesn't matter, we'll fix it up later. 1782 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1783 } 1784 } 1785 1786 // Regcall uses the concept of a homogenous vector aggregate, similar 1787 // to other targets. 1788 const Type *Base = nullptr; 1789 uint64_t NumElts = 0; 1790 if ((IsRegCall || IsVectorCall) && 1791 isHomogeneousAggregate(Ty, Base, NumElts)) { 1792 if (State.FreeSSERegs >= NumElts) { 1793 State.FreeSSERegs -= NumElts; 1794 1795 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1796 // does. 1797 if (IsVectorCall) 1798 return getDirectX86Hva(); 1799 1800 if (Ty->isBuiltinType() || Ty->isVectorType()) 1801 return ABIArgInfo::getDirect(); 1802 return ABIArgInfo::getExpand(); 1803 } 1804 return getIndirectResult(Ty, /*ByVal=*/false, State); 1805 } 1806 1807 if (isAggregateTypeForABI(Ty)) { 1808 // Structures with flexible arrays are always indirect. 1809 // FIXME: This should not be byval! 1810 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1811 return getIndirectResult(Ty, true, State); 1812 1813 // Ignore empty structs/unions on non-Windows. 1814 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1815 return ABIArgInfo::getIgnore(); 1816 1817 llvm::LLVMContext &LLVMContext = getVMContext(); 1818 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1819 bool NeedsPadding = false; 1820 bool InReg; 1821 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1822 unsigned SizeInRegs = (TI.Width + 31) / 32; 1823 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1824 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1825 if (InReg) 1826 return ABIArgInfo::getDirectInReg(Result); 1827 else 1828 return ABIArgInfo::getDirect(Result); 1829 } 1830 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1831 1832 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1833 // added in MSVC 2015. 1834 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1835 return getIndirectResult(Ty, /*ByVal=*/false, State); 1836 1837 // Expand small (<= 128-bit) record types when we know that the stack layout 1838 // of those arguments will match the struct. This is important because the 1839 // LLVM backend isn't smart enough to remove byval, which inhibits many 1840 // optimizations. 1841 // Don't do this for the MCU if there are still free integer registers 1842 // (see X86_64 ABI for full explanation). 1843 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1844 canExpandIndirectArgument(Ty)) 1845 return ABIArgInfo::getExpandWithPadding( 1846 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1847 1848 return getIndirectResult(Ty, true, State); 1849 } 1850 1851 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1852 // On Windows, vectors are passed directly if registers are available, or 1853 // indirectly if not. This avoids the need to align argument memory. Pass 1854 // user-defined vector types larger than 512 bits indirectly for simplicity. 1855 if (IsWin32StructABI) { 1856 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1857 --State.FreeSSERegs; 1858 return ABIArgInfo::getDirectInReg(); 1859 } 1860 return getIndirectResult(Ty, /*ByVal=*/false, State); 1861 } 1862 1863 // On Darwin, some vectors are passed in memory, we handle this by passing 1864 // it as an i8/i16/i32/i64. 1865 if (IsDarwinVectorABI) { 1866 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1867 (TI.Width == 64 && VT->getNumElements() == 1)) 1868 return ABIArgInfo::getDirect( 1869 llvm::IntegerType::get(getVMContext(), TI.Width)); 1870 } 1871 1872 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1873 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1874 1875 return ABIArgInfo::getDirect(); 1876 } 1877 1878 1879 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1880 Ty = EnumTy->getDecl()->getIntegerType(); 1881 1882 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1883 1884 if (isPromotableIntegerTypeForABI(Ty)) { 1885 if (InReg) 1886 return ABIArgInfo::getExtendInReg(Ty); 1887 return ABIArgInfo::getExtend(Ty); 1888 } 1889 1890 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1891 if (EIT->getNumBits() <= 64) { 1892 if (InReg) 1893 return ABIArgInfo::getDirectInReg(); 1894 return ABIArgInfo::getDirect(); 1895 } 1896 return getIndirectResult(Ty, /*ByVal=*/false, State); 1897 } 1898 1899 if (InReg) 1900 return ABIArgInfo::getDirectInReg(); 1901 return ABIArgInfo::getDirect(); 1902 } 1903 1904 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1905 CCState State(FI); 1906 if (IsMCUABI) 1907 State.FreeRegs = 3; 1908 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1909 State.FreeRegs = 2; 1910 State.FreeSSERegs = 3; 1911 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1912 State.FreeRegs = 2; 1913 State.FreeSSERegs = 6; 1914 } else if (FI.getHasRegParm()) 1915 State.FreeRegs = FI.getRegParm(); 1916 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1917 State.FreeRegs = 5; 1918 State.FreeSSERegs = 8; 1919 } else if (IsWin32StructABI) { 1920 // Since MSVC 2015, the first three SSE vectors have been passed in 1921 // registers. The rest are passed indirectly. 1922 State.FreeRegs = DefaultNumRegisterParameters; 1923 State.FreeSSERegs = 3; 1924 } else 1925 State.FreeRegs = DefaultNumRegisterParameters; 1926 1927 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1928 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1929 } else if (FI.getReturnInfo().isIndirect()) { 1930 // The C++ ABI is not aware of register usage, so we have to check if the 1931 // return value was sret and put it in a register ourselves if appropriate. 1932 if (State.FreeRegs) { 1933 --State.FreeRegs; // The sret parameter consumes a register. 1934 if (!IsMCUABI) 1935 FI.getReturnInfo().setInReg(true); 1936 } 1937 } 1938 1939 // The chain argument effectively gives us another free register. 1940 if (FI.isChainCall()) 1941 ++State.FreeRegs; 1942 1943 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1944 // arguments to XMM registers as available. 1945 if (State.CC == llvm::CallingConv::X86_VectorCall) 1946 runVectorCallFirstPass(FI, State); 1947 1948 bool UsedInAlloca = false; 1949 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1950 for (int I = 0, E = Args.size(); I < E; ++I) { 1951 // Skip arguments that have already been assigned. 1952 if (State.IsPreassigned.test(I)) 1953 continue; 1954 1955 Args[I].info = classifyArgumentType(Args[I].type, State); 1956 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1957 } 1958 1959 // If we needed to use inalloca for any argument, do a second pass and rewrite 1960 // all the memory arguments to use inalloca. 1961 if (UsedInAlloca) 1962 rewriteWithInAlloca(FI); 1963 } 1964 1965 void 1966 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1967 CharUnits &StackOffset, ABIArgInfo &Info, 1968 QualType Type) const { 1969 // Arguments are always 4-byte-aligned. 1970 CharUnits WordSize = CharUnits::fromQuantity(4); 1971 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1972 1973 // sret pointers and indirect things will require an extra pointer 1974 // indirection, unless they are byval. Most things are byval, and will not 1975 // require this indirection. 1976 bool IsIndirect = false; 1977 if (Info.isIndirect() && !Info.getIndirectByVal()) 1978 IsIndirect = true; 1979 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1980 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1981 if (IsIndirect) 1982 LLTy = LLTy->getPointerTo(0); 1983 FrameFields.push_back(LLTy); 1984 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1985 1986 // Insert padding bytes to respect alignment. 1987 CharUnits FieldEnd = StackOffset; 1988 StackOffset = FieldEnd.alignTo(WordSize); 1989 if (StackOffset != FieldEnd) { 1990 CharUnits NumBytes = StackOffset - FieldEnd; 1991 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1992 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1993 FrameFields.push_back(Ty); 1994 } 1995 } 1996 1997 static bool isArgInAlloca(const ABIArgInfo &Info) { 1998 // Leave ignored and inreg arguments alone. 1999 switch (Info.getKind()) { 2000 case ABIArgInfo::InAlloca: 2001 return true; 2002 case ABIArgInfo::Ignore: 2003 case ABIArgInfo::IndirectAliased: 2004 return false; 2005 case ABIArgInfo::Indirect: 2006 case ABIArgInfo::Direct: 2007 case ABIArgInfo::Extend: 2008 return !Info.getInReg(); 2009 case ABIArgInfo::Expand: 2010 case ABIArgInfo::CoerceAndExpand: 2011 // These are aggregate types which are never passed in registers when 2012 // inalloca is involved. 2013 return true; 2014 } 2015 llvm_unreachable("invalid enum"); 2016 } 2017 2018 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2019 assert(IsWin32StructABI && "inalloca only supported on win32"); 2020 2021 // Build a packed struct type for all of the arguments in memory. 2022 SmallVector<llvm::Type *, 6> FrameFields; 2023 2024 // The stack alignment is always 4. 2025 CharUnits StackAlign = CharUnits::fromQuantity(4); 2026 2027 CharUnits StackOffset; 2028 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2029 2030 // Put 'this' into the struct before 'sret', if necessary. 2031 bool IsThisCall = 2032 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2033 ABIArgInfo &Ret = FI.getReturnInfo(); 2034 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2035 isArgInAlloca(I->info)) { 2036 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2037 ++I; 2038 } 2039 2040 // Put the sret parameter into the inalloca struct if it's in memory. 2041 if (Ret.isIndirect() && !Ret.getInReg()) { 2042 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2043 // On Windows, the hidden sret parameter is always returned in eax. 2044 Ret.setInAllocaSRet(IsWin32StructABI); 2045 } 2046 2047 // Skip the 'this' parameter in ecx. 2048 if (IsThisCall) 2049 ++I; 2050 2051 // Put arguments passed in memory into the struct. 2052 for (; I != E; ++I) { 2053 if (isArgInAlloca(I->info)) 2054 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2055 } 2056 2057 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2058 /*isPacked=*/true), 2059 StackAlign); 2060 } 2061 2062 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2063 Address VAListAddr, QualType Ty) const { 2064 2065 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2066 2067 // x86-32 changes the alignment of certain arguments on the stack. 2068 // 2069 // Just messing with TypeInfo like this works because we never pass 2070 // anything indirectly. 2071 TypeInfo.Align = CharUnits::fromQuantity( 2072 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2073 2074 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2075 TypeInfo, CharUnits::fromQuantity(4), 2076 /*AllowHigherAlign*/ true); 2077 } 2078 2079 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2080 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2081 assert(Triple.getArch() == llvm::Triple::x86); 2082 2083 switch (Opts.getStructReturnConvention()) { 2084 case CodeGenOptions::SRCK_Default: 2085 break; 2086 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2087 return false; 2088 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2089 return true; 2090 } 2091 2092 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2093 return true; 2094 2095 switch (Triple.getOS()) { 2096 case llvm::Triple::DragonFly: 2097 case llvm::Triple::FreeBSD: 2098 case llvm::Triple::OpenBSD: 2099 case llvm::Triple::Win32: 2100 return true; 2101 default: 2102 return false; 2103 } 2104 } 2105 2106 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2107 CodeGen::CodeGenModule &CGM) { 2108 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2109 return; 2110 2111 llvm::Function *Fn = cast<llvm::Function>(GV); 2112 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2113 if (FD->getNumParams() == 0) 2114 return; 2115 2116 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2117 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2118 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2119 Fn->getContext(), ByValTy); 2120 Fn->addParamAttr(0, NewAttr); 2121 } 2122 2123 void X86_32TargetCodeGenInfo::setTargetAttributes( 2124 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2125 if (GV->isDeclaration()) 2126 return; 2127 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2128 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2129 llvm::Function *Fn = cast<llvm::Function>(GV); 2130 Fn->addFnAttr("stackrealign"); 2131 } 2132 2133 addX86InterruptAttrs(FD, GV, CGM); 2134 } 2135 } 2136 2137 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2138 CodeGen::CodeGenFunction &CGF, 2139 llvm::Value *Address) const { 2140 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2141 2142 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2143 2144 // 0-7 are the eight integer registers; the order is different 2145 // on Darwin (for EH), but the range is the same. 2146 // 8 is %eip. 2147 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2148 2149 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2150 // 12-16 are st(0..4). Not sure why we stop at 4. 2151 // These have size 16, which is sizeof(long double) on 2152 // platforms with 8-byte alignment for that type. 2153 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2154 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2155 2156 } else { 2157 // 9 is %eflags, which doesn't get a size on Darwin for some 2158 // reason. 2159 Builder.CreateAlignedStore( 2160 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2161 CharUnits::One()); 2162 2163 // 11-16 are st(0..5). Not sure why we stop at 5. 2164 // These have size 12, which is sizeof(long double) on 2165 // platforms with 4-byte alignment for that type. 2166 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2167 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2168 } 2169 2170 return false; 2171 } 2172 2173 //===----------------------------------------------------------------------===// 2174 // X86-64 ABI Implementation 2175 //===----------------------------------------------------------------------===// 2176 2177 2178 namespace { 2179 /// The AVX ABI level for X86 targets. 2180 enum class X86AVXABILevel { 2181 None, 2182 AVX, 2183 AVX512 2184 }; 2185 2186 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2187 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2188 switch (AVXLevel) { 2189 case X86AVXABILevel::AVX512: 2190 return 512; 2191 case X86AVXABILevel::AVX: 2192 return 256; 2193 case X86AVXABILevel::None: 2194 return 128; 2195 } 2196 llvm_unreachable("Unknown AVXLevel"); 2197 } 2198 2199 /// X86_64ABIInfo - The X86_64 ABI information. 2200 class X86_64ABIInfo : public SwiftABIInfo { 2201 enum Class { 2202 Integer = 0, 2203 SSE, 2204 SSEUp, 2205 X87, 2206 X87Up, 2207 ComplexX87, 2208 NoClass, 2209 Memory 2210 }; 2211 2212 /// merge - Implement the X86_64 ABI merging algorithm. 2213 /// 2214 /// Merge an accumulating classification \arg Accum with a field 2215 /// classification \arg Field. 2216 /// 2217 /// \param Accum - The accumulating classification. This should 2218 /// always be either NoClass or the result of a previous merge 2219 /// call. In addition, this should never be Memory (the caller 2220 /// should just return Memory for the aggregate). 2221 static Class merge(Class Accum, Class Field); 2222 2223 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2224 /// 2225 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2226 /// final MEMORY or SSE classes when necessary. 2227 /// 2228 /// \param AggregateSize - The size of the current aggregate in 2229 /// the classification process. 2230 /// 2231 /// \param Lo - The classification for the parts of the type 2232 /// residing in the low word of the containing object. 2233 /// 2234 /// \param Hi - The classification for the parts of the type 2235 /// residing in the higher words of the containing object. 2236 /// 2237 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2238 2239 /// classify - Determine the x86_64 register classes in which the 2240 /// given type T should be passed. 2241 /// 2242 /// \param Lo - The classification for the parts of the type 2243 /// residing in the low word of the containing object. 2244 /// 2245 /// \param Hi - The classification for the parts of the type 2246 /// residing in the high word of the containing object. 2247 /// 2248 /// \param OffsetBase - The bit offset of this type in the 2249 /// containing object. Some parameters are classified different 2250 /// depending on whether they straddle an eightbyte boundary. 2251 /// 2252 /// \param isNamedArg - Whether the argument in question is a "named" 2253 /// argument, as used in AMD64-ABI 3.5.7. 2254 /// 2255 /// If a word is unused its result will be NoClass; if a type should 2256 /// be passed in Memory then at least the classification of \arg Lo 2257 /// will be Memory. 2258 /// 2259 /// The \arg Lo class will be NoClass iff the argument is ignored. 2260 /// 2261 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2262 /// also be ComplexX87. 2263 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2264 bool isNamedArg) const; 2265 2266 llvm::Type *GetByteVectorType(QualType Ty) const; 2267 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2268 unsigned IROffset, QualType SourceTy, 2269 unsigned SourceOffset) const; 2270 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2271 unsigned IROffset, QualType SourceTy, 2272 unsigned SourceOffset) const; 2273 2274 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2275 /// such that the argument will be returned in memory. 2276 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2277 2278 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2279 /// such that the argument will be passed in memory. 2280 /// 2281 /// \param freeIntRegs - The number of free integer registers remaining 2282 /// available. 2283 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2284 2285 ABIArgInfo classifyReturnType(QualType RetTy) const; 2286 2287 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2288 unsigned &neededInt, unsigned &neededSSE, 2289 bool isNamedArg) const; 2290 2291 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2292 unsigned &NeededSSE) const; 2293 2294 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2295 unsigned &NeededSSE) const; 2296 2297 bool IsIllegalVectorType(QualType Ty) const; 2298 2299 /// The 0.98 ABI revision clarified a lot of ambiguities, 2300 /// unfortunately in ways that were not always consistent with 2301 /// certain previous compilers. In particular, platforms which 2302 /// required strict binary compatibility with older versions of GCC 2303 /// may need to exempt themselves. 2304 bool honorsRevision0_98() const { 2305 return !getTarget().getTriple().isOSDarwin(); 2306 } 2307 2308 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2309 /// classify it as INTEGER (for compatibility with older clang compilers). 2310 bool classifyIntegerMMXAsSSE() const { 2311 // Clang <= 3.8 did not do this. 2312 if (getContext().getLangOpts().getClangABICompat() <= 2313 LangOptions::ClangABI::Ver3_8) 2314 return false; 2315 2316 const llvm::Triple &Triple = getTarget().getTriple(); 2317 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2318 return false; 2319 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2320 return false; 2321 return true; 2322 } 2323 2324 // GCC classifies vectors of __int128 as memory. 2325 bool passInt128VectorsInMem() const { 2326 // Clang <= 9.0 did not do this. 2327 if (getContext().getLangOpts().getClangABICompat() <= 2328 LangOptions::ClangABI::Ver9) 2329 return false; 2330 2331 const llvm::Triple &T = getTarget().getTriple(); 2332 return T.isOSLinux() || T.isOSNetBSD(); 2333 } 2334 2335 X86AVXABILevel AVXLevel; 2336 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2337 // 64-bit hardware. 2338 bool Has64BitPointers; 2339 2340 public: 2341 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2342 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2343 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2344 } 2345 2346 bool isPassedUsingAVXType(QualType type) const { 2347 unsigned neededInt, neededSSE; 2348 // The freeIntRegs argument doesn't matter here. 2349 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2350 /*isNamedArg*/true); 2351 if (info.isDirect()) { 2352 llvm::Type *ty = info.getCoerceToType(); 2353 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2354 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2355 } 2356 return false; 2357 } 2358 2359 void computeInfo(CGFunctionInfo &FI) const override; 2360 2361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2362 QualType Ty) const override; 2363 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2364 QualType Ty) const override; 2365 2366 bool has64BitPointers() const { 2367 return Has64BitPointers; 2368 } 2369 2370 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2371 bool asReturnValue) const override { 2372 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2373 } 2374 bool isSwiftErrorInRegister() const override { 2375 return true; 2376 } 2377 }; 2378 2379 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2380 class WinX86_64ABIInfo : public SwiftABIInfo { 2381 public: 2382 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2383 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2384 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2385 2386 void computeInfo(CGFunctionInfo &FI) const override; 2387 2388 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2389 QualType Ty) const override; 2390 2391 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2392 // FIXME: Assumes vectorcall is in use. 2393 return isX86VectorTypeForVectorCall(getContext(), Ty); 2394 } 2395 2396 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2397 uint64_t NumMembers) const override { 2398 // FIXME: Assumes vectorcall is in use. 2399 return isX86VectorCallAggregateSmallEnough(NumMembers); 2400 } 2401 2402 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2403 bool asReturnValue) const override { 2404 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2405 } 2406 2407 bool isSwiftErrorInRegister() const override { 2408 return true; 2409 } 2410 2411 private: 2412 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2413 bool IsVectorCall, bool IsRegCall) const; 2414 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2415 const ABIArgInfo ¤t) const; 2416 2417 X86AVXABILevel AVXLevel; 2418 2419 bool IsMingw64; 2420 }; 2421 2422 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2423 public: 2424 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2425 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2426 2427 const X86_64ABIInfo &getABIInfo() const { 2428 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2429 } 2430 2431 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2432 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2433 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2434 2435 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2436 return 7; 2437 } 2438 2439 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2440 llvm::Value *Address) const override { 2441 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2442 2443 // 0-15 are the 16 integer registers. 2444 // 16 is %rip. 2445 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2446 return false; 2447 } 2448 2449 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2450 StringRef Constraint, 2451 llvm::Type* Ty) const override { 2452 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2453 } 2454 2455 bool isNoProtoCallVariadic(const CallArgList &args, 2456 const FunctionNoProtoType *fnType) const override { 2457 // The default CC on x86-64 sets %al to the number of SSA 2458 // registers used, and GCC sets this when calling an unprototyped 2459 // function, so we override the default behavior. However, don't do 2460 // that when AVX types are involved: the ABI explicitly states it is 2461 // undefined, and it doesn't work in practice because of how the ABI 2462 // defines varargs anyway. 2463 if (fnType->getCallConv() == CC_C) { 2464 bool HasAVXType = false; 2465 for (CallArgList::const_iterator 2466 it = args.begin(), ie = args.end(); it != ie; ++it) { 2467 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2468 HasAVXType = true; 2469 break; 2470 } 2471 } 2472 2473 if (!HasAVXType) 2474 return true; 2475 } 2476 2477 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2478 } 2479 2480 llvm::Constant * 2481 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2482 unsigned Sig = (0xeb << 0) | // jmp rel8 2483 (0x06 << 8) | // .+0x08 2484 ('v' << 16) | 2485 ('2' << 24); 2486 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2487 } 2488 2489 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2490 CodeGen::CodeGenModule &CGM) const override { 2491 if (GV->isDeclaration()) 2492 return; 2493 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2494 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2495 llvm::Function *Fn = cast<llvm::Function>(GV); 2496 Fn->addFnAttr("stackrealign"); 2497 } 2498 2499 addX86InterruptAttrs(FD, GV, CGM); 2500 } 2501 } 2502 2503 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2504 const FunctionDecl *Caller, 2505 const FunctionDecl *Callee, 2506 const CallArgList &Args) const override; 2507 }; 2508 2509 static void initFeatureMaps(const ASTContext &Ctx, 2510 llvm::StringMap<bool> &CallerMap, 2511 const FunctionDecl *Caller, 2512 llvm::StringMap<bool> &CalleeMap, 2513 const FunctionDecl *Callee) { 2514 if (CalleeMap.empty() && CallerMap.empty()) { 2515 // The caller is potentially nullptr in the case where the call isn't in a 2516 // function. In this case, the getFunctionFeatureMap ensures we just get 2517 // the TU level setting (since it cannot be modified by 'target'.. 2518 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2519 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2520 } 2521 } 2522 2523 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2524 SourceLocation CallLoc, 2525 const llvm::StringMap<bool> &CallerMap, 2526 const llvm::StringMap<bool> &CalleeMap, 2527 QualType Ty, StringRef Feature, 2528 bool IsArgument) { 2529 bool CallerHasFeat = CallerMap.lookup(Feature); 2530 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2531 if (!CallerHasFeat && !CalleeHasFeat) 2532 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2533 << IsArgument << Ty << Feature; 2534 2535 // Mixing calling conventions here is very clearly an error. 2536 if (!CallerHasFeat || !CalleeHasFeat) 2537 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2538 << IsArgument << Ty << Feature; 2539 2540 // Else, both caller and callee have the required feature, so there is no need 2541 // to diagnose. 2542 return false; 2543 } 2544 2545 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2546 SourceLocation CallLoc, 2547 const llvm::StringMap<bool> &CallerMap, 2548 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2549 bool IsArgument) { 2550 uint64_t Size = Ctx.getTypeSize(Ty); 2551 if (Size > 256) 2552 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2553 "avx512f", IsArgument); 2554 2555 if (Size > 128) 2556 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2557 IsArgument); 2558 2559 return false; 2560 } 2561 2562 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2563 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2564 const FunctionDecl *Callee, const CallArgList &Args) const { 2565 llvm::StringMap<bool> CallerMap; 2566 llvm::StringMap<bool> CalleeMap; 2567 unsigned ArgIndex = 0; 2568 2569 // We need to loop through the actual call arguments rather than the the 2570 // function's parameters, in case this variadic. 2571 for (const CallArg &Arg : Args) { 2572 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2573 // additionally changes how vectors >256 in size are passed. Like GCC, we 2574 // warn when a function is called with an argument where this will change. 2575 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2576 // the caller and callee features are mismatched. 2577 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2578 // change its ABI with attribute-target after this call. 2579 if (Arg.getType()->isVectorType() && 2580 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2581 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2582 QualType Ty = Arg.getType(); 2583 // The CallArg seems to have desugared the type already, so for clearer 2584 // diagnostics, replace it with the type in the FunctionDecl if possible. 2585 if (ArgIndex < Callee->getNumParams()) 2586 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2587 2588 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2589 CalleeMap, Ty, /*IsArgument*/ true)) 2590 return; 2591 } 2592 ++ArgIndex; 2593 } 2594 2595 // Check return always, as we don't have a good way of knowing in codegen 2596 // whether this value is used, tail-called, etc. 2597 if (Callee->getReturnType()->isVectorType() && 2598 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2599 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2600 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2601 CalleeMap, Callee->getReturnType(), 2602 /*IsArgument*/ false); 2603 } 2604 } 2605 2606 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2607 // If the argument does not end in .lib, automatically add the suffix. 2608 // If the argument contains a space, enclose it in quotes. 2609 // This matches the behavior of MSVC. 2610 bool Quote = (Lib.find(' ') != StringRef::npos); 2611 std::string ArgStr = Quote ? "\"" : ""; 2612 ArgStr += Lib; 2613 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2614 ArgStr += ".lib"; 2615 ArgStr += Quote ? "\"" : ""; 2616 return ArgStr; 2617 } 2618 2619 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2620 public: 2621 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2622 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2623 unsigned NumRegisterParameters) 2624 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2625 Win32StructABI, NumRegisterParameters, false) {} 2626 2627 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2628 CodeGen::CodeGenModule &CGM) const override; 2629 2630 void getDependentLibraryOption(llvm::StringRef Lib, 2631 llvm::SmallString<24> &Opt) const override { 2632 Opt = "/DEFAULTLIB:"; 2633 Opt += qualifyWindowsLibrary(Lib); 2634 } 2635 2636 void getDetectMismatchOption(llvm::StringRef Name, 2637 llvm::StringRef Value, 2638 llvm::SmallString<32> &Opt) const override { 2639 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2640 } 2641 }; 2642 2643 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2644 CodeGen::CodeGenModule &CGM) { 2645 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2646 2647 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2648 Fn->addFnAttr("stack-probe-size", 2649 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2650 if (CGM.getCodeGenOpts().NoStackArgProbe) 2651 Fn->addFnAttr("no-stack-arg-probe"); 2652 } 2653 } 2654 2655 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2656 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2657 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2658 if (GV->isDeclaration()) 2659 return; 2660 addStackProbeTargetAttributes(D, GV, CGM); 2661 } 2662 2663 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2664 public: 2665 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2666 X86AVXABILevel AVXLevel) 2667 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2668 2669 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2670 CodeGen::CodeGenModule &CGM) const override; 2671 2672 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2673 return 7; 2674 } 2675 2676 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2677 llvm::Value *Address) const override { 2678 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2679 2680 // 0-15 are the 16 integer registers. 2681 // 16 is %rip. 2682 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2683 return false; 2684 } 2685 2686 void getDependentLibraryOption(llvm::StringRef Lib, 2687 llvm::SmallString<24> &Opt) const override { 2688 Opt = "/DEFAULTLIB:"; 2689 Opt += qualifyWindowsLibrary(Lib); 2690 } 2691 2692 void getDetectMismatchOption(llvm::StringRef Name, 2693 llvm::StringRef Value, 2694 llvm::SmallString<32> &Opt) const override { 2695 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2696 } 2697 }; 2698 2699 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2700 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2701 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2702 if (GV->isDeclaration()) 2703 return; 2704 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2705 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2706 llvm::Function *Fn = cast<llvm::Function>(GV); 2707 Fn->addFnAttr("stackrealign"); 2708 } 2709 2710 addX86InterruptAttrs(FD, GV, CGM); 2711 } 2712 2713 addStackProbeTargetAttributes(D, GV, CGM); 2714 } 2715 } 2716 2717 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2718 Class &Hi) const { 2719 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2720 // 2721 // (a) If one of the classes is Memory, the whole argument is passed in 2722 // memory. 2723 // 2724 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2725 // memory. 2726 // 2727 // (c) If the size of the aggregate exceeds two eightbytes and the first 2728 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2729 // argument is passed in memory. NOTE: This is necessary to keep the 2730 // ABI working for processors that don't support the __m256 type. 2731 // 2732 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2733 // 2734 // Some of these are enforced by the merging logic. Others can arise 2735 // only with unions; for example: 2736 // union { _Complex double; unsigned; } 2737 // 2738 // Note that clauses (b) and (c) were added in 0.98. 2739 // 2740 if (Hi == Memory) 2741 Lo = Memory; 2742 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2743 Lo = Memory; 2744 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2745 Lo = Memory; 2746 if (Hi == SSEUp && Lo != SSE) 2747 Hi = SSE; 2748 } 2749 2750 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2751 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2752 // classified recursively so that always two fields are 2753 // considered. The resulting class is calculated according to 2754 // the classes of the fields in the eightbyte: 2755 // 2756 // (a) If both classes are equal, this is the resulting class. 2757 // 2758 // (b) If one of the classes is NO_CLASS, the resulting class is 2759 // the other class. 2760 // 2761 // (c) If one of the classes is MEMORY, the result is the MEMORY 2762 // class. 2763 // 2764 // (d) If one of the classes is INTEGER, the result is the 2765 // INTEGER. 2766 // 2767 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2768 // MEMORY is used as class. 2769 // 2770 // (f) Otherwise class SSE is used. 2771 2772 // Accum should never be memory (we should have returned) or 2773 // ComplexX87 (because this cannot be passed in a structure). 2774 assert((Accum != Memory && Accum != ComplexX87) && 2775 "Invalid accumulated classification during merge."); 2776 if (Accum == Field || Field == NoClass) 2777 return Accum; 2778 if (Field == Memory) 2779 return Memory; 2780 if (Accum == NoClass) 2781 return Field; 2782 if (Accum == Integer || Field == Integer) 2783 return Integer; 2784 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2785 Accum == X87 || Accum == X87Up) 2786 return Memory; 2787 return SSE; 2788 } 2789 2790 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2791 Class &Lo, Class &Hi, bool isNamedArg) const { 2792 // FIXME: This code can be simplified by introducing a simple value class for 2793 // Class pairs with appropriate constructor methods for the various 2794 // situations. 2795 2796 // FIXME: Some of the split computations are wrong; unaligned vectors 2797 // shouldn't be passed in registers for example, so there is no chance they 2798 // can straddle an eightbyte. Verify & simplify. 2799 2800 Lo = Hi = NoClass; 2801 2802 Class &Current = OffsetBase < 64 ? Lo : Hi; 2803 Current = Memory; 2804 2805 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2806 BuiltinType::Kind k = BT->getKind(); 2807 2808 if (k == BuiltinType::Void) { 2809 Current = NoClass; 2810 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2811 Lo = Integer; 2812 Hi = Integer; 2813 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2814 Current = Integer; 2815 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2816 Current = SSE; 2817 } else if (k == BuiltinType::LongDouble) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) { 2820 Lo = SSE; 2821 Hi = SSEUp; 2822 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2823 Lo = X87; 2824 Hi = X87Up; 2825 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2826 Current = SSE; 2827 } else 2828 llvm_unreachable("unexpected long double representation!"); 2829 } 2830 // FIXME: _Decimal32 and _Decimal64 are SSE. 2831 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2832 return; 2833 } 2834 2835 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2836 // Classify the underlying integer type. 2837 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2838 return; 2839 } 2840 2841 if (Ty->hasPointerRepresentation()) { 2842 Current = Integer; 2843 return; 2844 } 2845 2846 if (Ty->isMemberPointerType()) { 2847 if (Ty->isMemberFunctionPointerType()) { 2848 if (Has64BitPointers) { 2849 // If Has64BitPointers, this is an {i64, i64}, so classify both 2850 // Lo and Hi now. 2851 Lo = Hi = Integer; 2852 } else { 2853 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2854 // straddles an eightbyte boundary, Hi should be classified as well. 2855 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2856 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2857 if (EB_FuncPtr != EB_ThisAdj) { 2858 Lo = Hi = Integer; 2859 } else { 2860 Current = Integer; 2861 } 2862 } 2863 } else { 2864 Current = Integer; 2865 } 2866 return; 2867 } 2868 2869 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2870 uint64_t Size = getContext().getTypeSize(VT); 2871 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2872 // gcc passes the following as integer: 2873 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2874 // 2 bytes - <2 x char>, <1 x short> 2875 // 1 byte - <1 x char> 2876 Current = Integer; 2877 2878 // If this type crosses an eightbyte boundary, it should be 2879 // split. 2880 uint64_t EB_Lo = (OffsetBase) / 64; 2881 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2882 if (EB_Lo != EB_Hi) 2883 Hi = Lo; 2884 } else if (Size == 64) { 2885 QualType ElementType = VT->getElementType(); 2886 2887 // gcc passes <1 x double> in memory. :( 2888 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2889 return; 2890 2891 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2892 // pass them as integer. For platforms where clang is the de facto 2893 // platform compiler, we must continue to use integer. 2894 if (!classifyIntegerMMXAsSSE() && 2895 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2896 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2897 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2898 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2899 Current = Integer; 2900 else 2901 Current = SSE; 2902 2903 // If this type crosses an eightbyte boundary, it should be 2904 // split. 2905 if (OffsetBase && OffsetBase != 64) 2906 Hi = Lo; 2907 } else if (Size == 128 || 2908 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2909 QualType ElementType = VT->getElementType(); 2910 2911 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2912 if (passInt128VectorsInMem() && Size != 128 && 2913 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2914 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2915 return; 2916 2917 // Arguments of 256-bits are split into four eightbyte chunks. The 2918 // least significant one belongs to class SSE and all the others to class 2919 // SSEUP. The original Lo and Hi design considers that types can't be 2920 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2921 // This design isn't correct for 256-bits, but since there're no cases 2922 // where the upper parts would need to be inspected, avoid adding 2923 // complexity and just consider Hi to match the 64-256 part. 2924 // 2925 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2926 // registers if they are "named", i.e. not part of the "..." of a 2927 // variadic function. 2928 // 2929 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2930 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2931 Lo = SSE; 2932 Hi = SSEUp; 2933 } 2934 return; 2935 } 2936 2937 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2938 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2939 2940 uint64_t Size = getContext().getTypeSize(Ty); 2941 if (ET->isIntegralOrEnumerationType()) { 2942 if (Size <= 64) 2943 Current = Integer; 2944 else if (Size <= 128) 2945 Lo = Hi = Integer; 2946 } else if (ET == getContext().FloatTy) { 2947 Current = SSE; 2948 } else if (ET == getContext().DoubleTy) { 2949 Lo = Hi = SSE; 2950 } else if (ET == getContext().LongDoubleTy) { 2951 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2952 if (LDF == &llvm::APFloat::IEEEquad()) 2953 Current = Memory; 2954 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2955 Current = ComplexX87; 2956 else if (LDF == &llvm::APFloat::IEEEdouble()) 2957 Lo = Hi = SSE; 2958 else 2959 llvm_unreachable("unexpected long double representation!"); 2960 } 2961 2962 // If this complex type crosses an eightbyte boundary then it 2963 // should be split. 2964 uint64_t EB_Real = (OffsetBase) / 64; 2965 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2966 if (Hi == NoClass && EB_Real != EB_Imag) 2967 Hi = Lo; 2968 2969 return; 2970 } 2971 2972 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2973 if (EITy->getNumBits() <= 64) 2974 Current = Integer; 2975 else if (EITy->getNumBits() <= 128) 2976 Lo = Hi = Integer; 2977 // Larger values need to get passed in memory. 2978 return; 2979 } 2980 2981 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2982 // Arrays are treated like structures. 2983 2984 uint64_t Size = getContext().getTypeSize(Ty); 2985 2986 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2987 // than eight eightbytes, ..., it has class MEMORY. 2988 if (Size > 512) 2989 return; 2990 2991 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2992 // fields, it has class MEMORY. 2993 // 2994 // Only need to check alignment of array base. 2995 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2996 return; 2997 2998 // Otherwise implement simplified merge. We could be smarter about 2999 // this, but it isn't worth it and would be harder to verify. 3000 Current = NoClass; 3001 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3002 uint64_t ArraySize = AT->getSize().getZExtValue(); 3003 3004 // The only case a 256-bit wide vector could be used is when the array 3005 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3006 // to work for sizes wider than 128, early check and fallback to memory. 3007 // 3008 if (Size > 128 && 3009 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3010 return; 3011 3012 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3013 Class FieldLo, FieldHi; 3014 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3015 Lo = merge(Lo, FieldLo); 3016 Hi = merge(Hi, FieldHi); 3017 if (Lo == Memory || Hi == Memory) 3018 break; 3019 } 3020 3021 postMerge(Size, Lo, Hi); 3022 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3023 return; 3024 } 3025 3026 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3027 uint64_t Size = getContext().getTypeSize(Ty); 3028 3029 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3030 // than eight eightbytes, ..., it has class MEMORY. 3031 if (Size > 512) 3032 return; 3033 3034 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3035 // copy constructor or a non-trivial destructor, it is passed by invisible 3036 // reference. 3037 if (getRecordArgABI(RT, getCXXABI())) 3038 return; 3039 3040 const RecordDecl *RD = RT->getDecl(); 3041 3042 // Assume variable sized types are passed in memory. 3043 if (RD->hasFlexibleArrayMember()) 3044 return; 3045 3046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3047 3048 // Reset Lo class, this will be recomputed. 3049 Current = NoClass; 3050 3051 // If this is a C++ record, classify the bases first. 3052 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3053 for (const auto &I : CXXRD->bases()) { 3054 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3055 "Unexpected base class!"); 3056 const auto *Base = 3057 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3058 3059 // Classify this field. 3060 // 3061 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3062 // single eightbyte, each is classified separately. Each eightbyte gets 3063 // initialized to class NO_CLASS. 3064 Class FieldLo, FieldHi; 3065 uint64_t Offset = 3066 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3067 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3068 Lo = merge(Lo, FieldLo); 3069 Hi = merge(Hi, FieldHi); 3070 if (Lo == Memory || Hi == Memory) { 3071 postMerge(Size, Lo, Hi); 3072 return; 3073 } 3074 } 3075 } 3076 3077 // Classify the fields one at a time, merging the results. 3078 unsigned idx = 0; 3079 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3080 LangOptions::ClangABI::Ver11 || 3081 getContext().getTargetInfo().getTriple().isPS4(); 3082 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3083 3084 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3085 i != e; ++i, ++idx) { 3086 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3087 bool BitField = i->isBitField(); 3088 3089 // Ignore padding bit-fields. 3090 if (BitField && i->isUnnamedBitfield()) 3091 continue; 3092 3093 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3094 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3095 // 3096 // The only case a 256-bit or a 512-bit wide vector could be used is when 3097 // the struct contains a single 256-bit or 512-bit element. Early check 3098 // and fallback to memory. 3099 // 3100 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3101 // than 128. 3102 if (Size > 128 && 3103 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3104 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3105 Lo = Memory; 3106 postMerge(Size, Lo, Hi); 3107 return; 3108 } 3109 // Note, skip this test for bit-fields, see below. 3110 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3111 Lo = Memory; 3112 postMerge(Size, Lo, Hi); 3113 return; 3114 } 3115 3116 // Classify this field. 3117 // 3118 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3119 // exceeds a single eightbyte, each is classified 3120 // separately. Each eightbyte gets initialized to class 3121 // NO_CLASS. 3122 Class FieldLo, FieldHi; 3123 3124 // Bit-fields require special handling, they do not force the 3125 // structure to be passed in memory even if unaligned, and 3126 // therefore they can straddle an eightbyte. 3127 if (BitField) { 3128 assert(!i->isUnnamedBitfield()); 3129 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3130 uint64_t Size = i->getBitWidthValue(getContext()); 3131 3132 uint64_t EB_Lo = Offset / 64; 3133 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3134 3135 if (EB_Lo) { 3136 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3137 FieldLo = NoClass; 3138 FieldHi = Integer; 3139 } else { 3140 FieldLo = Integer; 3141 FieldHi = EB_Hi ? Integer : NoClass; 3142 } 3143 } else 3144 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3145 Lo = merge(Lo, FieldLo); 3146 Hi = merge(Hi, FieldHi); 3147 if (Lo == Memory || Hi == Memory) 3148 break; 3149 } 3150 3151 postMerge(Size, Lo, Hi); 3152 } 3153 } 3154 3155 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3156 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3157 // place naturally. 3158 if (!isAggregateTypeForABI(Ty)) { 3159 // Treat an enum type as its underlying type. 3160 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3161 Ty = EnumTy->getDecl()->getIntegerType(); 3162 3163 if (Ty->isExtIntType()) 3164 return getNaturalAlignIndirect(Ty); 3165 3166 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3167 : ABIArgInfo::getDirect()); 3168 } 3169 3170 return getNaturalAlignIndirect(Ty); 3171 } 3172 3173 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3174 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3175 uint64_t Size = getContext().getTypeSize(VecTy); 3176 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3177 if (Size <= 64 || Size > LargestVector) 3178 return true; 3179 QualType EltTy = VecTy->getElementType(); 3180 if (passInt128VectorsInMem() && 3181 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3182 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3183 return true; 3184 } 3185 3186 return false; 3187 } 3188 3189 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3190 unsigned freeIntRegs) const { 3191 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3192 // place naturally. 3193 // 3194 // This assumption is optimistic, as there could be free registers available 3195 // when we need to pass this argument in memory, and LLVM could try to pass 3196 // the argument in the free register. This does not seem to happen currently, 3197 // but this code would be much safer if we could mark the argument with 3198 // 'onstack'. See PR12193. 3199 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3200 !Ty->isExtIntType()) { 3201 // Treat an enum type as its underlying type. 3202 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3203 Ty = EnumTy->getDecl()->getIntegerType(); 3204 3205 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3206 : ABIArgInfo::getDirect()); 3207 } 3208 3209 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3210 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3211 3212 // Compute the byval alignment. We specify the alignment of the byval in all 3213 // cases so that the mid-level optimizer knows the alignment of the byval. 3214 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3215 3216 // Attempt to avoid passing indirect results using byval when possible. This 3217 // is important for good codegen. 3218 // 3219 // We do this by coercing the value into a scalar type which the backend can 3220 // handle naturally (i.e., without using byval). 3221 // 3222 // For simplicity, we currently only do this when we have exhausted all of the 3223 // free integer registers. Doing this when there are free integer registers 3224 // would require more care, as we would have to ensure that the coerced value 3225 // did not claim the unused register. That would require either reording the 3226 // arguments to the function (so that any subsequent inreg values came first), 3227 // or only doing this optimization when there were no following arguments that 3228 // might be inreg. 3229 // 3230 // We currently expect it to be rare (particularly in well written code) for 3231 // arguments to be passed on the stack when there are still free integer 3232 // registers available (this would typically imply large structs being passed 3233 // by value), so this seems like a fair tradeoff for now. 3234 // 3235 // We can revisit this if the backend grows support for 'onstack' parameter 3236 // attributes. See PR12193. 3237 if (freeIntRegs == 0) { 3238 uint64_t Size = getContext().getTypeSize(Ty); 3239 3240 // If this type fits in an eightbyte, coerce it into the matching integral 3241 // type, which will end up on the stack (with alignment 8). 3242 if (Align == 8 && Size <= 64) 3243 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3244 Size)); 3245 } 3246 3247 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3248 } 3249 3250 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3251 /// register. Pick an LLVM IR type that will be passed as a vector register. 3252 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3253 // Wrapper structs/arrays that only contain vectors are passed just like 3254 // vectors; strip them off if present. 3255 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3256 Ty = QualType(InnerTy, 0); 3257 3258 llvm::Type *IRType = CGT.ConvertType(Ty); 3259 if (isa<llvm::VectorType>(IRType)) { 3260 // Don't pass vXi128 vectors in their native type, the backend can't 3261 // legalize them. 3262 if (passInt128VectorsInMem() && 3263 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3264 // Use a vXi64 vector. 3265 uint64_t Size = getContext().getTypeSize(Ty); 3266 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3267 Size / 64); 3268 } 3269 3270 return IRType; 3271 } 3272 3273 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3274 return IRType; 3275 3276 // We couldn't find the preferred IR vector type for 'Ty'. 3277 uint64_t Size = getContext().getTypeSize(Ty); 3278 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3279 3280 3281 // Return a LLVM IR vector type based on the size of 'Ty'. 3282 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3283 Size / 64); 3284 } 3285 3286 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3287 /// is known to either be off the end of the specified type or being in 3288 /// alignment padding. The user type specified is known to be at most 128 bits 3289 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3290 /// classification that put one of the two halves in the INTEGER class. 3291 /// 3292 /// It is conservatively correct to return false. 3293 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3294 unsigned EndBit, ASTContext &Context) { 3295 // If the bytes being queried are off the end of the type, there is no user 3296 // data hiding here. This handles analysis of builtins, vectors and other 3297 // types that don't contain interesting padding. 3298 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3299 if (TySize <= StartBit) 3300 return true; 3301 3302 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3303 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3304 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3305 3306 // Check each element to see if the element overlaps with the queried range. 3307 for (unsigned i = 0; i != NumElts; ++i) { 3308 // If the element is after the span we care about, then we're done.. 3309 unsigned EltOffset = i*EltSize; 3310 if (EltOffset >= EndBit) break; 3311 3312 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3313 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3314 EndBit-EltOffset, Context)) 3315 return false; 3316 } 3317 // If it overlaps no elements, then it is safe to process as padding. 3318 return true; 3319 } 3320 3321 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3322 const RecordDecl *RD = RT->getDecl(); 3323 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3324 3325 // If this is a C++ record, check the bases first. 3326 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3327 for (const auto &I : CXXRD->bases()) { 3328 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3329 "Unexpected base class!"); 3330 const auto *Base = 3331 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3332 3333 // If the base is after the span we care about, ignore it. 3334 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3335 if (BaseOffset >= EndBit) continue; 3336 3337 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3338 if (!BitsContainNoUserData(I.getType(), BaseStart, 3339 EndBit-BaseOffset, Context)) 3340 return false; 3341 } 3342 } 3343 3344 // Verify that no field has data that overlaps the region of interest. Yes 3345 // this could be sped up a lot by being smarter about queried fields, 3346 // however we're only looking at structs up to 16 bytes, so we don't care 3347 // much. 3348 unsigned idx = 0; 3349 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3350 i != e; ++i, ++idx) { 3351 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3352 3353 // If we found a field after the region we care about, then we're done. 3354 if (FieldOffset >= EndBit) break; 3355 3356 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3357 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3358 Context)) 3359 return false; 3360 } 3361 3362 // If nothing in this record overlapped the area of interest, then we're 3363 // clean. 3364 return true; 3365 } 3366 3367 return false; 3368 } 3369 3370 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3371 /// float member at the specified offset. For example, {int,{float}} has a 3372 /// float at offset 4. It is conservatively correct for this routine to return 3373 /// false. 3374 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3375 const llvm::DataLayout &TD) { 3376 // Base case if we find a float. 3377 if (IROffset == 0 && IRType->isFloatTy()) 3378 return true; 3379 3380 // If this is a struct, recurse into the field at the specified offset. 3381 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3382 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3383 unsigned Elt = SL->getElementContainingOffset(IROffset); 3384 IROffset -= SL->getElementOffset(Elt); 3385 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3386 } 3387 3388 // If this is an array, recurse into the field at the specified offset. 3389 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3390 llvm::Type *EltTy = ATy->getElementType(); 3391 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3392 IROffset -= IROffset/EltSize*EltSize; 3393 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3394 } 3395 3396 return false; 3397 } 3398 3399 3400 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3401 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3402 llvm::Type *X86_64ABIInfo:: 3403 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3404 QualType SourceTy, unsigned SourceOffset) const { 3405 // The only three choices we have are either double, <2 x float>, or float. We 3406 // pass as float if the last 4 bytes is just padding. This happens for 3407 // structs that contain 3 floats. 3408 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3409 SourceOffset*8+64, getContext())) 3410 return llvm::Type::getFloatTy(getVMContext()); 3411 3412 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3413 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3414 // case. 3415 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3416 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3417 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3418 2); 3419 3420 return llvm::Type::getDoubleTy(getVMContext()); 3421 } 3422 3423 3424 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3425 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3426 /// about the high or low part of an up-to-16-byte struct. This routine picks 3427 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3428 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3429 /// etc). 3430 /// 3431 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3432 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3433 /// the 8-byte value references. PrefType may be null. 3434 /// 3435 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3436 /// an offset into this that we're processing (which is always either 0 or 8). 3437 /// 3438 llvm::Type *X86_64ABIInfo:: 3439 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3440 QualType SourceTy, unsigned SourceOffset) const { 3441 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3442 // returning an 8-byte unit starting with it. See if we can safely use it. 3443 if (IROffset == 0) { 3444 // Pointers and int64's always fill the 8-byte unit. 3445 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3446 IRType->isIntegerTy(64)) 3447 return IRType; 3448 3449 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3450 // goodness in the source type is just tail padding. This is allowed to 3451 // kick in for struct {double,int} on the int, but not on 3452 // struct{double,int,int} because we wouldn't return the second int. We 3453 // have to do this analysis on the source type because we can't depend on 3454 // unions being lowered a specific way etc. 3455 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3456 IRType->isIntegerTy(32) || 3457 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3458 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3459 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3460 3461 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3462 SourceOffset*8+64, getContext())) 3463 return IRType; 3464 } 3465 } 3466 3467 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3468 // If this is a struct, recurse into the field at the specified offset. 3469 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3470 if (IROffset < SL->getSizeInBytes()) { 3471 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3472 IROffset -= SL->getElementOffset(FieldIdx); 3473 3474 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3475 SourceTy, SourceOffset); 3476 } 3477 } 3478 3479 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3480 llvm::Type *EltTy = ATy->getElementType(); 3481 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3482 unsigned EltOffset = IROffset/EltSize*EltSize; 3483 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3484 SourceOffset); 3485 } 3486 3487 // Okay, we don't have any better idea of what to pass, so we pass this in an 3488 // integer register that isn't too big to fit the rest of the struct. 3489 unsigned TySizeInBytes = 3490 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3491 3492 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3493 3494 // It is always safe to classify this as an integer type up to i64 that 3495 // isn't larger than the structure. 3496 return llvm::IntegerType::get(getVMContext(), 3497 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3498 } 3499 3500 3501 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3502 /// be used as elements of a two register pair to pass or return, return a 3503 /// first class aggregate to represent them. For example, if the low part of 3504 /// a by-value argument should be passed as i32* and the high part as float, 3505 /// return {i32*, float}. 3506 static llvm::Type * 3507 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3508 const llvm::DataLayout &TD) { 3509 // In order to correctly satisfy the ABI, we need to the high part to start 3510 // at offset 8. If the high and low parts we inferred are both 4-byte types 3511 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3512 // the second element at offset 8. Check for this: 3513 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3514 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3515 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3516 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3517 3518 // To handle this, we have to increase the size of the low part so that the 3519 // second element will start at an 8 byte offset. We can't increase the size 3520 // of the second element because it might make us access off the end of the 3521 // struct. 3522 if (HiStart != 8) { 3523 // There are usually two sorts of types the ABI generation code can produce 3524 // for the low part of a pair that aren't 8 bytes in size: float or 3525 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3526 // NaCl). 3527 // Promote these to a larger type. 3528 if (Lo->isFloatTy()) 3529 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3530 else { 3531 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3532 && "Invalid/unknown lo type"); 3533 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3534 } 3535 } 3536 3537 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3538 3539 // Verify that the second element is at an 8-byte offset. 3540 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3541 "Invalid x86-64 argument pair!"); 3542 return Result; 3543 } 3544 3545 ABIArgInfo X86_64ABIInfo:: 3546 classifyReturnType(QualType RetTy) const { 3547 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3548 // classification algorithm. 3549 X86_64ABIInfo::Class Lo, Hi; 3550 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3551 3552 // Check some invariants. 3553 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3554 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3555 3556 llvm::Type *ResType = nullptr; 3557 switch (Lo) { 3558 case NoClass: 3559 if (Hi == NoClass) 3560 return ABIArgInfo::getIgnore(); 3561 // If the low part is just padding, it takes no register, leave ResType 3562 // null. 3563 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3564 "Unknown missing lo part"); 3565 break; 3566 3567 case SSEUp: 3568 case X87Up: 3569 llvm_unreachable("Invalid classification for lo word."); 3570 3571 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3572 // hidden argument. 3573 case Memory: 3574 return getIndirectReturnResult(RetTy); 3575 3576 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3577 // available register of the sequence %rax, %rdx is used. 3578 case Integer: 3579 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3580 3581 // If we have a sign or zero extended integer, make sure to return Extend 3582 // so that the parameter gets the right LLVM IR attributes. 3583 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3584 // Treat an enum type as its underlying type. 3585 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3586 RetTy = EnumTy->getDecl()->getIntegerType(); 3587 3588 if (RetTy->isIntegralOrEnumerationType() && 3589 isPromotableIntegerTypeForABI(RetTy)) 3590 return ABIArgInfo::getExtend(RetTy); 3591 } 3592 break; 3593 3594 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3595 // available SSE register of the sequence %xmm0, %xmm1 is used. 3596 case SSE: 3597 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3598 break; 3599 3600 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3601 // returned on the X87 stack in %st0 as 80-bit x87 number. 3602 case X87: 3603 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3604 break; 3605 3606 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3607 // part of the value is returned in %st0 and the imaginary part in 3608 // %st1. 3609 case ComplexX87: 3610 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3611 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3612 llvm::Type::getX86_FP80Ty(getVMContext())); 3613 break; 3614 } 3615 3616 llvm::Type *HighPart = nullptr; 3617 switch (Hi) { 3618 // Memory was handled previously and X87 should 3619 // never occur as a hi class. 3620 case Memory: 3621 case X87: 3622 llvm_unreachable("Invalid classification for hi word."); 3623 3624 case ComplexX87: // Previously handled. 3625 case NoClass: 3626 break; 3627 3628 case Integer: 3629 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3630 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3631 return ABIArgInfo::getDirect(HighPart, 8); 3632 break; 3633 case SSE: 3634 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3635 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3636 return ABIArgInfo::getDirect(HighPart, 8); 3637 break; 3638 3639 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3640 // is passed in the next available eightbyte chunk if the last used 3641 // vector register. 3642 // 3643 // SSEUP should always be preceded by SSE, just widen. 3644 case SSEUp: 3645 assert(Lo == SSE && "Unexpected SSEUp classification."); 3646 ResType = GetByteVectorType(RetTy); 3647 break; 3648 3649 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3650 // returned together with the previous X87 value in %st0. 3651 case X87Up: 3652 // If X87Up is preceded by X87, we don't need to do 3653 // anything. However, in some cases with unions it may not be 3654 // preceded by X87. In such situations we follow gcc and pass the 3655 // extra bits in an SSE reg. 3656 if (Lo != X87) { 3657 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3658 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3659 return ABIArgInfo::getDirect(HighPart, 8); 3660 } 3661 break; 3662 } 3663 3664 // If a high part was specified, merge it together with the low part. It is 3665 // known to pass in the high eightbyte of the result. We do this by forming a 3666 // first class struct aggregate with the high and low part: {low, high} 3667 if (HighPart) 3668 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3669 3670 return ABIArgInfo::getDirect(ResType); 3671 } 3672 3673 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3674 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3675 bool isNamedArg) 3676 const 3677 { 3678 Ty = useFirstFieldIfTransparentUnion(Ty); 3679 3680 X86_64ABIInfo::Class Lo, Hi; 3681 classify(Ty, 0, Lo, Hi, isNamedArg); 3682 3683 // Check some invariants. 3684 // FIXME: Enforce these by construction. 3685 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3686 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3687 3688 neededInt = 0; 3689 neededSSE = 0; 3690 llvm::Type *ResType = nullptr; 3691 switch (Lo) { 3692 case NoClass: 3693 if (Hi == NoClass) 3694 return ABIArgInfo::getIgnore(); 3695 // If the low part is just padding, it takes no register, leave ResType 3696 // null. 3697 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3698 "Unknown missing lo part"); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3702 // on the stack. 3703 case Memory: 3704 3705 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3706 // COMPLEX_X87, it is passed in memory. 3707 case X87: 3708 case ComplexX87: 3709 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3710 ++neededInt; 3711 return getIndirectResult(Ty, freeIntRegs); 3712 3713 case SSEUp: 3714 case X87Up: 3715 llvm_unreachable("Invalid classification for lo word."); 3716 3717 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3718 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3719 // and %r9 is used. 3720 case Integer: 3721 ++neededInt; 3722 3723 // Pick an 8-byte type based on the preferred type. 3724 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3725 3726 // If we have a sign or zero extended integer, make sure to return Extend 3727 // so that the parameter gets the right LLVM IR attributes. 3728 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3729 // Treat an enum type as its underlying type. 3730 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3731 Ty = EnumTy->getDecl()->getIntegerType(); 3732 3733 if (Ty->isIntegralOrEnumerationType() && 3734 isPromotableIntegerTypeForABI(Ty)) 3735 return ABIArgInfo::getExtend(Ty); 3736 } 3737 3738 break; 3739 3740 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3741 // available SSE register is used, the registers are taken in the 3742 // order from %xmm0 to %xmm7. 3743 case SSE: { 3744 llvm::Type *IRType = CGT.ConvertType(Ty); 3745 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3746 ++neededSSE; 3747 break; 3748 } 3749 } 3750 3751 llvm::Type *HighPart = nullptr; 3752 switch (Hi) { 3753 // Memory was handled previously, ComplexX87 and X87 should 3754 // never occur as hi classes, and X87Up must be preceded by X87, 3755 // which is passed in memory. 3756 case Memory: 3757 case X87: 3758 case ComplexX87: 3759 llvm_unreachable("Invalid classification for hi word."); 3760 3761 case NoClass: break; 3762 3763 case Integer: 3764 ++neededInt; 3765 // Pick an 8-byte type based on the preferred type. 3766 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3767 3768 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3769 return ABIArgInfo::getDirect(HighPart, 8); 3770 break; 3771 3772 // X87Up generally doesn't occur here (long double is passed in 3773 // memory), except in situations involving unions. 3774 case X87Up: 3775 case SSE: 3776 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3777 3778 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3779 return ABIArgInfo::getDirect(HighPart, 8); 3780 3781 ++neededSSE; 3782 break; 3783 3784 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3785 // eightbyte is passed in the upper half of the last used SSE 3786 // register. This only happens when 128-bit vectors are passed. 3787 case SSEUp: 3788 assert(Lo == SSE && "Unexpected SSEUp classification"); 3789 ResType = GetByteVectorType(Ty); 3790 break; 3791 } 3792 3793 // If a high part was specified, merge it together with the low part. It is 3794 // known to pass in the high eightbyte of the result. We do this by forming a 3795 // first class struct aggregate with the high and low part: {low, high} 3796 if (HighPart) 3797 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3798 3799 return ABIArgInfo::getDirect(ResType); 3800 } 3801 3802 ABIArgInfo 3803 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3804 unsigned &NeededSSE) const { 3805 auto RT = Ty->getAs<RecordType>(); 3806 assert(RT && "classifyRegCallStructType only valid with struct types"); 3807 3808 if (RT->getDecl()->hasFlexibleArrayMember()) 3809 return getIndirectReturnResult(Ty); 3810 3811 // Sum up bases 3812 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3813 if (CXXRD->isDynamicClass()) { 3814 NeededInt = NeededSSE = 0; 3815 return getIndirectReturnResult(Ty); 3816 } 3817 3818 for (const auto &I : CXXRD->bases()) 3819 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3820 .isIndirect()) { 3821 NeededInt = NeededSSE = 0; 3822 return getIndirectReturnResult(Ty); 3823 } 3824 } 3825 3826 // Sum up members 3827 for (const auto *FD : RT->getDecl()->fields()) { 3828 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3829 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3830 .isIndirect()) { 3831 NeededInt = NeededSSE = 0; 3832 return getIndirectReturnResult(Ty); 3833 } 3834 } else { 3835 unsigned LocalNeededInt, LocalNeededSSE; 3836 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3837 LocalNeededSSE, true) 3838 .isIndirect()) { 3839 NeededInt = NeededSSE = 0; 3840 return getIndirectReturnResult(Ty); 3841 } 3842 NeededInt += LocalNeededInt; 3843 NeededSSE += LocalNeededSSE; 3844 } 3845 } 3846 3847 return ABIArgInfo::getDirect(); 3848 } 3849 3850 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3851 unsigned &NeededInt, 3852 unsigned &NeededSSE) const { 3853 3854 NeededInt = 0; 3855 NeededSSE = 0; 3856 3857 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3858 } 3859 3860 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3861 3862 const unsigned CallingConv = FI.getCallingConvention(); 3863 // It is possible to force Win64 calling convention on any x86_64 target by 3864 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3865 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3866 if (CallingConv == llvm::CallingConv::Win64) { 3867 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3868 Win64ABIInfo.computeInfo(FI); 3869 return; 3870 } 3871 3872 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3873 3874 // Keep track of the number of assigned registers. 3875 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3876 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3877 unsigned NeededInt, NeededSSE; 3878 3879 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3880 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3881 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3882 FI.getReturnInfo() = 3883 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3884 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3885 FreeIntRegs -= NeededInt; 3886 FreeSSERegs -= NeededSSE; 3887 } else { 3888 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3889 } 3890 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3891 getContext().getCanonicalType(FI.getReturnType() 3892 ->getAs<ComplexType>() 3893 ->getElementType()) == 3894 getContext().LongDoubleTy) 3895 // Complex Long Double Type is passed in Memory when Regcall 3896 // calling convention is used. 3897 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3898 else 3899 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3900 } 3901 3902 // If the return value is indirect, then the hidden argument is consuming one 3903 // integer register. 3904 if (FI.getReturnInfo().isIndirect()) 3905 --FreeIntRegs; 3906 3907 // The chain argument effectively gives us another free register. 3908 if (FI.isChainCall()) 3909 ++FreeIntRegs; 3910 3911 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3912 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3913 // get assigned (in left-to-right order) for passing as follows... 3914 unsigned ArgNo = 0; 3915 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3916 it != ie; ++it, ++ArgNo) { 3917 bool IsNamedArg = ArgNo < NumRequiredArgs; 3918 3919 if (IsRegCall && it->type->isStructureOrClassType()) 3920 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3921 else 3922 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3923 NeededSSE, IsNamedArg); 3924 3925 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3926 // eightbyte of an argument, the whole argument is passed on the 3927 // stack. If registers have already been assigned for some 3928 // eightbytes of such an argument, the assignments get reverted. 3929 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3930 FreeIntRegs -= NeededInt; 3931 FreeSSERegs -= NeededSSE; 3932 } else { 3933 it->info = getIndirectResult(it->type, FreeIntRegs); 3934 } 3935 } 3936 } 3937 3938 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3939 Address VAListAddr, QualType Ty) { 3940 Address overflow_arg_area_p = 3941 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3942 llvm::Value *overflow_arg_area = 3943 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3944 3945 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3946 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3947 // It isn't stated explicitly in the standard, but in practice we use 3948 // alignment greater than 16 where necessary. 3949 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3950 if (Align > CharUnits::fromQuantity(8)) { 3951 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3952 Align); 3953 } 3954 3955 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3956 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3957 llvm::Value *Res = 3958 CGF.Builder.CreateBitCast(overflow_arg_area, 3959 llvm::PointerType::getUnqual(LTy)); 3960 3961 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3962 // l->overflow_arg_area + sizeof(type). 3963 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3964 // an 8 byte boundary. 3965 3966 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3967 llvm::Value *Offset = 3968 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3969 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3970 "overflow_arg_area.next"); 3971 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3972 3973 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3974 return Address(Res, Align); 3975 } 3976 3977 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3978 QualType Ty) const { 3979 // Assume that va_list type is correct; should be pointer to LLVM type: 3980 // struct { 3981 // i32 gp_offset; 3982 // i32 fp_offset; 3983 // i8* overflow_arg_area; 3984 // i8* reg_save_area; 3985 // }; 3986 unsigned neededInt, neededSSE; 3987 3988 Ty = getContext().getCanonicalType(Ty); 3989 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3990 /*isNamedArg*/false); 3991 3992 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3993 // in the registers. If not go to step 7. 3994 if (!neededInt && !neededSSE) 3995 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3996 3997 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3998 // general purpose registers needed to pass type and num_fp to hold 3999 // the number of floating point registers needed. 4000 4001 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4002 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4003 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4004 // 4005 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4006 // register save space). 4007 4008 llvm::Value *InRegs = nullptr; 4009 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4010 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4011 if (neededInt) { 4012 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4013 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4014 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4015 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4016 } 4017 4018 if (neededSSE) { 4019 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4020 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4021 llvm::Value *FitsInFP = 4022 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4023 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4024 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4025 } 4026 4027 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4028 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4029 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4030 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4031 4032 // Emit code to load the value if it was passed in registers. 4033 4034 CGF.EmitBlock(InRegBlock); 4035 4036 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4037 // an offset of l->gp_offset and/or l->fp_offset. This may require 4038 // copying to a temporary location in case the parameter is passed 4039 // in different register classes or requires an alignment greater 4040 // than 8 for general purpose registers and 16 for XMM registers. 4041 // 4042 // FIXME: This really results in shameful code when we end up needing to 4043 // collect arguments from different places; often what should result in a 4044 // simple assembling of a structure from scattered addresses has many more 4045 // loads than necessary. Can we clean this up? 4046 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4047 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4048 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4049 4050 Address RegAddr = Address::invalid(); 4051 if (neededInt && neededSSE) { 4052 // FIXME: Cleanup. 4053 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4054 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4055 Address Tmp = CGF.CreateMemTemp(Ty); 4056 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4057 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4058 llvm::Type *TyLo = ST->getElementType(0); 4059 llvm::Type *TyHi = ST->getElementType(1); 4060 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4061 "Unexpected ABI info for mixed regs"); 4062 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4063 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4064 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4065 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4066 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4067 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4068 4069 // Copy the first element. 4070 // FIXME: Our choice of alignment here and below is probably pessimistic. 4071 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4072 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4073 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4074 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4075 4076 // Copy the second element. 4077 V = CGF.Builder.CreateAlignedLoad( 4078 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4079 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4080 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4081 4082 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4083 } else if (neededInt) { 4084 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4085 CharUnits::fromQuantity(8)); 4086 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4087 4088 // Copy to a temporary if necessary to ensure the appropriate alignment. 4089 auto TInfo = getContext().getTypeInfoInChars(Ty); 4090 uint64_t TySize = TInfo.Width.getQuantity(); 4091 CharUnits TyAlign = TInfo.Align; 4092 4093 // Copy into a temporary if the type is more aligned than the 4094 // register save area. 4095 if (TyAlign.getQuantity() > 8) { 4096 Address Tmp = CGF.CreateMemTemp(Ty); 4097 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4098 RegAddr = Tmp; 4099 } 4100 4101 } else if (neededSSE == 1) { 4102 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4103 CharUnits::fromQuantity(16)); 4104 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4105 } else { 4106 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4107 // SSE registers are spaced 16 bytes apart in the register save 4108 // area, we need to collect the two eightbytes together. 4109 // The ABI isn't explicit about this, but it seems reasonable 4110 // to assume that the slots are 16-byte aligned, since the stack is 4111 // naturally 16-byte aligned and the prologue is expected to store 4112 // all the SSE registers to the RSA. 4113 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4114 CharUnits::fromQuantity(16)); 4115 Address RegAddrHi = 4116 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4117 CharUnits::fromQuantity(16)); 4118 llvm::Type *ST = AI.canHaveCoerceToType() 4119 ? AI.getCoerceToType() 4120 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4121 llvm::Value *V; 4122 Address Tmp = CGF.CreateMemTemp(Ty); 4123 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4124 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4125 RegAddrLo, ST->getStructElementType(0))); 4126 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4127 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4128 RegAddrHi, ST->getStructElementType(1))); 4129 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4130 4131 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4132 } 4133 4134 // AMD64-ABI 3.5.7p5: Step 5. Set: 4135 // l->gp_offset = l->gp_offset + num_gp * 8 4136 // l->fp_offset = l->fp_offset + num_fp * 16. 4137 if (neededInt) { 4138 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4139 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4140 gp_offset_p); 4141 } 4142 if (neededSSE) { 4143 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4144 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4145 fp_offset_p); 4146 } 4147 CGF.EmitBranch(ContBlock); 4148 4149 // Emit code to load the value if it was passed in memory. 4150 4151 CGF.EmitBlock(InMemBlock); 4152 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4153 4154 // Return the appropriate result. 4155 4156 CGF.EmitBlock(ContBlock); 4157 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4158 "vaarg.addr"); 4159 return ResAddr; 4160 } 4161 4162 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4163 QualType Ty) const { 4164 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4165 CGF.getContext().getTypeInfoInChars(Ty), 4166 CharUnits::fromQuantity(8), 4167 /*allowHigherAlign*/ false); 4168 } 4169 4170 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4171 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4172 const Type *Base = nullptr; 4173 uint64_t NumElts = 0; 4174 4175 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4176 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4177 FreeSSERegs -= NumElts; 4178 return getDirectX86Hva(); 4179 } 4180 return current; 4181 } 4182 4183 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4184 bool IsReturnType, bool IsVectorCall, 4185 bool IsRegCall) const { 4186 4187 if (Ty->isVoidType()) 4188 return ABIArgInfo::getIgnore(); 4189 4190 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4191 Ty = EnumTy->getDecl()->getIntegerType(); 4192 4193 TypeInfo Info = getContext().getTypeInfo(Ty); 4194 uint64_t Width = Info.Width; 4195 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4196 4197 const RecordType *RT = Ty->getAs<RecordType>(); 4198 if (RT) { 4199 if (!IsReturnType) { 4200 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4201 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4202 } 4203 4204 if (RT->getDecl()->hasFlexibleArrayMember()) 4205 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4206 4207 } 4208 4209 const Type *Base = nullptr; 4210 uint64_t NumElts = 0; 4211 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4212 // other targets. 4213 if ((IsVectorCall || IsRegCall) && 4214 isHomogeneousAggregate(Ty, Base, NumElts)) { 4215 if (IsRegCall) { 4216 if (FreeSSERegs >= NumElts) { 4217 FreeSSERegs -= NumElts; 4218 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4219 return ABIArgInfo::getDirect(); 4220 return ABIArgInfo::getExpand(); 4221 } 4222 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4223 } else if (IsVectorCall) { 4224 if (FreeSSERegs >= NumElts && 4225 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4226 FreeSSERegs -= NumElts; 4227 return ABIArgInfo::getDirect(); 4228 } else if (IsReturnType) { 4229 return ABIArgInfo::getExpand(); 4230 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4231 // HVAs are delayed and reclassified in the 2nd step. 4232 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4233 } 4234 } 4235 } 4236 4237 if (Ty->isMemberPointerType()) { 4238 // If the member pointer is represented by an LLVM int or ptr, pass it 4239 // directly. 4240 llvm::Type *LLTy = CGT.ConvertType(Ty); 4241 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4242 return ABIArgInfo::getDirect(); 4243 } 4244 4245 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4246 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4247 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4248 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4249 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4250 4251 // Otherwise, coerce it to a small integer. 4252 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4253 } 4254 4255 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4256 switch (BT->getKind()) { 4257 case BuiltinType::Bool: 4258 // Bool type is always extended to the ABI, other builtin types are not 4259 // extended. 4260 return ABIArgInfo::getExtend(Ty); 4261 4262 case BuiltinType::LongDouble: 4263 // Mingw64 GCC uses the old 80 bit extended precision floating point 4264 // unit. It passes them indirectly through memory. 4265 if (IsMingw64) { 4266 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4267 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4268 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4269 } 4270 break; 4271 4272 case BuiltinType::Int128: 4273 case BuiltinType::UInt128: 4274 // If it's a parameter type, the normal ABI rule is that arguments larger 4275 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4276 // even though it isn't particularly efficient. 4277 if (!IsReturnType) 4278 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4279 4280 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4281 // Clang matches them for compatibility. 4282 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4283 llvm::Type::getInt64Ty(getVMContext()), 2)); 4284 4285 default: 4286 break; 4287 } 4288 } 4289 4290 if (Ty->isExtIntType()) { 4291 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4292 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4293 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4294 // anyway as long is it fits in them, so we don't have to check the power of 4295 // 2. 4296 if (Width <= 64) 4297 return ABIArgInfo::getDirect(); 4298 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4299 } 4300 4301 return ABIArgInfo::getDirect(); 4302 } 4303 4304 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4305 const unsigned CC = FI.getCallingConvention(); 4306 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4307 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4308 4309 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4310 // classification rules. 4311 if (CC == llvm::CallingConv::X86_64_SysV) { 4312 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4313 SysVABIInfo.computeInfo(FI); 4314 return; 4315 } 4316 4317 unsigned FreeSSERegs = 0; 4318 if (IsVectorCall) { 4319 // We can use up to 4 SSE return registers with vectorcall. 4320 FreeSSERegs = 4; 4321 } else if (IsRegCall) { 4322 // RegCall gives us 16 SSE registers. 4323 FreeSSERegs = 16; 4324 } 4325 4326 if (!getCXXABI().classifyReturnType(FI)) 4327 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4328 IsVectorCall, IsRegCall); 4329 4330 if (IsVectorCall) { 4331 // We can use up to 6 SSE register parameters with vectorcall. 4332 FreeSSERegs = 6; 4333 } else if (IsRegCall) { 4334 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4335 FreeSSERegs = 16; 4336 } 4337 4338 unsigned ArgNum = 0; 4339 unsigned ZeroSSERegs = 0; 4340 for (auto &I : FI.arguments()) { 4341 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4342 // XMM/YMM registers. After the sixth argument, pretend no vector 4343 // registers are left. 4344 unsigned *MaybeFreeSSERegs = 4345 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4346 I.info = 4347 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4348 ++ArgNum; 4349 } 4350 4351 if (IsVectorCall) { 4352 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4353 // second pass. 4354 for (auto &I : FI.arguments()) 4355 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4356 } 4357 } 4358 4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4360 QualType Ty) const { 4361 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4362 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4363 uint64_t Width = getContext().getTypeSize(Ty); 4364 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4365 4366 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4367 CGF.getContext().getTypeInfoInChars(Ty), 4368 CharUnits::fromQuantity(8), 4369 /*allowHigherAlign*/ false); 4370 } 4371 4372 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4373 llvm::Value *Address, bool Is64Bit, 4374 bool IsAIX) { 4375 // This is calculated from the LLVM and GCC tables and verified 4376 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4377 4378 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4379 4380 llvm::IntegerType *i8 = CGF.Int8Ty; 4381 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4382 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4383 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4384 4385 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4386 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4387 4388 // 32-63: fp0-31, the 8-byte floating-point registers 4389 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4390 4391 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4392 // 64: mq 4393 // 65: lr 4394 // 66: ctr 4395 // 67: ap 4396 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4397 4398 // 68-76 are various 4-byte special-purpose registers: 4399 // 68-75 cr0-7 4400 // 76: xer 4401 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4402 4403 // 77-108: v0-31, the 16-byte vector registers 4404 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4405 4406 // 109: vrsave 4407 // 110: vscr 4408 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4409 4410 // AIX does not utilize the rest of the registers. 4411 if (IsAIX) 4412 return false; 4413 4414 // 111: spe_acc 4415 // 112: spefscr 4416 // 113: sfp 4417 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4418 4419 if (!Is64Bit) 4420 return false; 4421 4422 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4423 // or above CPU. 4424 // 64-bit only registers: 4425 // 114: tfhar 4426 // 115: tfiar 4427 // 116: texasr 4428 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4429 4430 return false; 4431 } 4432 4433 // AIX 4434 namespace { 4435 /// AIXABIInfo - The AIX XCOFF ABI information. 4436 class AIXABIInfo : public ABIInfo { 4437 const bool Is64Bit; 4438 const unsigned PtrByteSize; 4439 CharUnits getParamTypeAlignment(QualType Ty) const; 4440 4441 public: 4442 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4443 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4444 4445 bool isPromotableTypeForABI(QualType Ty) const; 4446 4447 ABIArgInfo classifyReturnType(QualType RetTy) const; 4448 ABIArgInfo classifyArgumentType(QualType Ty) const; 4449 4450 void computeInfo(CGFunctionInfo &FI) const override { 4451 if (!getCXXABI().classifyReturnType(FI)) 4452 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4453 4454 for (auto &I : FI.arguments()) 4455 I.info = classifyArgumentType(I.type); 4456 } 4457 4458 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4459 QualType Ty) const override; 4460 }; 4461 4462 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4463 const bool Is64Bit; 4464 4465 public: 4466 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4467 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4468 Is64Bit(Is64Bit) {} 4469 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4470 return 1; // r1 is the dedicated stack pointer 4471 } 4472 4473 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4474 llvm::Value *Address) const override; 4475 }; 4476 } // namespace 4477 4478 // Return true if the ABI requires Ty to be passed sign- or zero- 4479 // extended to 32/64 bits. 4480 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4481 // Treat an enum type as its underlying type. 4482 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4483 Ty = EnumTy->getDecl()->getIntegerType(); 4484 4485 // Promotable integer types are required to be promoted by the ABI. 4486 if (Ty->isPromotableIntegerType()) 4487 return true; 4488 4489 if (!Is64Bit) 4490 return false; 4491 4492 // For 64 bit mode, in addition to the usual promotable integer types, we also 4493 // need to extend all 32-bit types, since the ABI requires promotion to 64 4494 // bits. 4495 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4496 switch (BT->getKind()) { 4497 case BuiltinType::Int: 4498 case BuiltinType::UInt: 4499 return true; 4500 default: 4501 break; 4502 } 4503 4504 return false; 4505 } 4506 4507 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4508 if (RetTy->isAnyComplexType()) 4509 return ABIArgInfo::getDirect(); 4510 4511 if (RetTy->isVectorType()) 4512 return ABIArgInfo::getDirect(); 4513 4514 if (RetTy->isVoidType()) 4515 return ABIArgInfo::getIgnore(); 4516 4517 if (isAggregateTypeForABI(RetTy)) 4518 return getNaturalAlignIndirect(RetTy); 4519 4520 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4521 : ABIArgInfo::getDirect()); 4522 } 4523 4524 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4525 Ty = useFirstFieldIfTransparentUnion(Ty); 4526 4527 if (Ty->isAnyComplexType()) 4528 return ABIArgInfo::getDirect(); 4529 4530 if (Ty->isVectorType()) 4531 return ABIArgInfo::getDirect(); 4532 4533 if (isAggregateTypeForABI(Ty)) { 4534 // Records with non-trivial destructors/copy-constructors should not be 4535 // passed by value. 4536 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4537 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4538 4539 CharUnits CCAlign = getParamTypeAlignment(Ty); 4540 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4541 4542 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4543 /*Realign*/ TyAlign > CCAlign); 4544 } 4545 4546 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4547 : ABIArgInfo::getDirect()); 4548 } 4549 4550 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4551 // Complex types are passed just like their elements. 4552 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4553 Ty = CTy->getElementType(); 4554 4555 if (Ty->isVectorType()) 4556 return CharUnits::fromQuantity(16); 4557 4558 // If the structure contains a vector type, the alignment is 16. 4559 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4560 return CharUnits::fromQuantity(16); 4561 4562 return CharUnits::fromQuantity(PtrByteSize); 4563 } 4564 4565 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4566 QualType Ty) const { 4567 if (Ty->isAnyComplexType()) 4568 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4569 4570 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4571 TypeInfo.Align = getParamTypeAlignment(Ty); 4572 4573 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4574 4575 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4576 SlotSize, /*AllowHigher*/ true); 4577 } 4578 4579 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4580 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4581 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4582 } 4583 4584 // PowerPC-32 4585 namespace { 4586 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4587 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4588 bool IsSoftFloatABI; 4589 bool IsRetSmallStructInRegABI; 4590 4591 CharUnits getParamTypeAlignment(QualType Ty) const; 4592 4593 public: 4594 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4595 bool RetSmallStructInRegABI) 4596 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4597 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4598 4599 ABIArgInfo classifyReturnType(QualType RetTy) const; 4600 4601 void computeInfo(CGFunctionInfo &FI) const override { 4602 if (!getCXXABI().classifyReturnType(FI)) 4603 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4604 for (auto &I : FI.arguments()) 4605 I.info = classifyArgumentType(I.type); 4606 } 4607 4608 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4609 QualType Ty) const override; 4610 }; 4611 4612 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4613 public: 4614 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4615 bool RetSmallStructInRegABI) 4616 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4617 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4618 4619 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4620 const CodeGenOptions &Opts); 4621 4622 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4623 // This is recovered from gcc output. 4624 return 1; // r1 is the dedicated stack pointer 4625 } 4626 4627 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4628 llvm::Value *Address) const override; 4629 }; 4630 } 4631 4632 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4633 // Complex types are passed just like their elements. 4634 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4635 Ty = CTy->getElementType(); 4636 4637 if (Ty->isVectorType()) 4638 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4639 : 4); 4640 4641 // For single-element float/vector structs, we consider the whole type 4642 // to have the same alignment requirements as its single element. 4643 const Type *AlignTy = nullptr; 4644 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4645 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4646 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4647 (BT && BT->isFloatingPoint())) 4648 AlignTy = EltType; 4649 } 4650 4651 if (AlignTy) 4652 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4653 return CharUnits::fromQuantity(4); 4654 } 4655 4656 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4657 uint64_t Size; 4658 4659 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4660 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4661 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4662 // System V ABI (1995), page 3-22, specified: 4663 // > A structure or union whose size is less than or equal to 8 bytes 4664 // > shall be returned in r3 and r4, as if it were first stored in the 4665 // > 8-byte aligned memory area and then the low addressed word were 4666 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4667 // > the last member of the structure or union are not defined. 4668 // 4669 // GCC for big-endian PPC32 inserts the pad before the first member, 4670 // not "beyond the last member" of the struct. To stay compatible 4671 // with GCC, we coerce the struct to an integer of the same size. 4672 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4673 if (Size == 0) 4674 return ABIArgInfo::getIgnore(); 4675 else { 4676 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4677 return ABIArgInfo::getDirect(CoerceTy); 4678 } 4679 } 4680 4681 return DefaultABIInfo::classifyReturnType(RetTy); 4682 } 4683 4684 // TODO: this implementation is now likely redundant with 4685 // DefaultABIInfo::EmitVAArg. 4686 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4687 QualType Ty) const { 4688 if (getTarget().getTriple().isOSDarwin()) { 4689 auto TI = getContext().getTypeInfoInChars(Ty); 4690 TI.Align = getParamTypeAlignment(Ty); 4691 4692 CharUnits SlotSize = CharUnits::fromQuantity(4); 4693 return emitVoidPtrVAArg(CGF, VAList, Ty, 4694 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4695 /*AllowHigherAlign=*/true); 4696 } 4697 4698 const unsigned OverflowLimit = 8; 4699 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4700 // TODO: Implement this. For now ignore. 4701 (void)CTy; 4702 return Address::invalid(); // FIXME? 4703 } 4704 4705 // struct __va_list_tag { 4706 // unsigned char gpr; 4707 // unsigned char fpr; 4708 // unsigned short reserved; 4709 // void *overflow_arg_area; 4710 // void *reg_save_area; 4711 // }; 4712 4713 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4714 bool isInt = !Ty->isFloatingType(); 4715 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4716 4717 // All aggregates are passed indirectly? That doesn't seem consistent 4718 // with the argument-lowering code. 4719 bool isIndirect = isAggregateTypeForABI(Ty); 4720 4721 CGBuilderTy &Builder = CGF.Builder; 4722 4723 // The calling convention either uses 1-2 GPRs or 1 FPR. 4724 Address NumRegsAddr = Address::invalid(); 4725 if (isInt || IsSoftFloatABI) { 4726 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4727 } else { 4728 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4729 } 4730 4731 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4732 4733 // "Align" the register count when TY is i64. 4734 if (isI64 || (isF64 && IsSoftFloatABI)) { 4735 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4736 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4737 } 4738 4739 llvm::Value *CC = 4740 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4741 4742 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4743 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4744 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4745 4746 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4747 4748 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4749 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4750 4751 // Case 1: consume registers. 4752 Address RegAddr = Address::invalid(); 4753 { 4754 CGF.EmitBlock(UsingRegs); 4755 4756 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4757 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4758 CharUnits::fromQuantity(8)); 4759 assert(RegAddr.getElementType() == CGF.Int8Ty); 4760 4761 // Floating-point registers start after the general-purpose registers. 4762 if (!(isInt || IsSoftFloatABI)) { 4763 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4764 CharUnits::fromQuantity(32)); 4765 } 4766 4767 // Get the address of the saved value by scaling the number of 4768 // registers we've used by the number of 4769 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4770 llvm::Value *RegOffset = 4771 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4772 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4773 RegAddr.getPointer(), RegOffset), 4774 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4775 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4776 4777 // Increase the used-register count. 4778 NumRegs = 4779 Builder.CreateAdd(NumRegs, 4780 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4781 Builder.CreateStore(NumRegs, NumRegsAddr); 4782 4783 CGF.EmitBranch(Cont); 4784 } 4785 4786 // Case 2: consume space in the overflow area. 4787 Address MemAddr = Address::invalid(); 4788 { 4789 CGF.EmitBlock(UsingOverflow); 4790 4791 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4792 4793 // Everything in the overflow area is rounded up to a size of at least 4. 4794 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4795 4796 CharUnits Size; 4797 if (!isIndirect) { 4798 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4799 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4800 } else { 4801 Size = CGF.getPointerSize(); 4802 } 4803 4804 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4805 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4806 OverflowAreaAlign); 4807 // Round up address of argument to alignment 4808 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4809 if (Align > OverflowAreaAlign) { 4810 llvm::Value *Ptr = OverflowArea.getPointer(); 4811 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4812 Align); 4813 } 4814 4815 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4816 4817 // Increase the overflow area. 4818 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4819 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4820 CGF.EmitBranch(Cont); 4821 } 4822 4823 CGF.EmitBlock(Cont); 4824 4825 // Merge the cases with a phi. 4826 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4827 "vaarg.addr"); 4828 4829 // Load the pointer if the argument was passed indirectly. 4830 if (isIndirect) { 4831 Result = Address(Builder.CreateLoad(Result, "aggr"), 4832 getContext().getTypeAlignInChars(Ty)); 4833 } 4834 4835 return Result; 4836 } 4837 4838 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4839 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4840 assert(Triple.isPPC32()); 4841 4842 switch (Opts.getStructReturnConvention()) { 4843 case CodeGenOptions::SRCK_Default: 4844 break; 4845 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4846 return false; 4847 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4848 return true; 4849 } 4850 4851 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4852 return true; 4853 4854 return false; 4855 } 4856 4857 bool 4858 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4859 llvm::Value *Address) const { 4860 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4861 /*IsAIX*/ false); 4862 } 4863 4864 // PowerPC-64 4865 4866 namespace { 4867 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4868 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4869 public: 4870 enum ABIKind { 4871 ELFv1 = 0, 4872 ELFv2 4873 }; 4874 4875 private: 4876 static const unsigned GPRBits = 64; 4877 ABIKind Kind; 4878 bool IsSoftFloatABI; 4879 4880 public: 4881 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4882 bool SoftFloatABI) 4883 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4884 4885 bool isPromotableTypeForABI(QualType Ty) const; 4886 CharUnits getParamTypeAlignment(QualType Ty) const; 4887 4888 ABIArgInfo classifyReturnType(QualType RetTy) const; 4889 ABIArgInfo classifyArgumentType(QualType Ty) const; 4890 4891 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4892 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4893 uint64_t Members) const override; 4894 4895 // TODO: We can add more logic to computeInfo to improve performance. 4896 // Example: For aggregate arguments that fit in a register, we could 4897 // use getDirectInReg (as is done below for structs containing a single 4898 // floating-point value) to avoid pushing them to memory on function 4899 // entry. This would require changing the logic in PPCISelLowering 4900 // when lowering the parameters in the caller and args in the callee. 4901 void computeInfo(CGFunctionInfo &FI) const override { 4902 if (!getCXXABI().classifyReturnType(FI)) 4903 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4904 for (auto &I : FI.arguments()) { 4905 // We rely on the default argument classification for the most part. 4906 // One exception: An aggregate containing a single floating-point 4907 // or vector item must be passed in a register if one is available. 4908 const Type *T = isSingleElementStruct(I.type, getContext()); 4909 if (T) { 4910 const BuiltinType *BT = T->getAs<BuiltinType>(); 4911 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4912 (BT && BT->isFloatingPoint())) { 4913 QualType QT(T, 0); 4914 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4915 continue; 4916 } 4917 } 4918 I.info = classifyArgumentType(I.type); 4919 } 4920 } 4921 4922 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4923 QualType Ty) const override; 4924 4925 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4926 bool asReturnValue) const override { 4927 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4928 } 4929 4930 bool isSwiftErrorInRegister() const override { 4931 return false; 4932 } 4933 }; 4934 4935 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4936 4937 public: 4938 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4939 PPC64_SVR4_ABIInfo::ABIKind Kind, 4940 bool SoftFloatABI) 4941 : TargetCodeGenInfo( 4942 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4943 4944 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4945 // This is recovered from gcc output. 4946 return 1; // r1 is the dedicated stack pointer 4947 } 4948 4949 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4950 llvm::Value *Address) const override; 4951 }; 4952 4953 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4954 public: 4955 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4956 4957 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4958 // This is recovered from gcc output. 4959 return 1; // r1 is the dedicated stack pointer 4960 } 4961 4962 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4963 llvm::Value *Address) const override; 4964 }; 4965 4966 } 4967 4968 // Return true if the ABI requires Ty to be passed sign- or zero- 4969 // extended to 64 bits. 4970 bool 4971 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4972 // Treat an enum type as its underlying type. 4973 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4974 Ty = EnumTy->getDecl()->getIntegerType(); 4975 4976 // Promotable integer types are required to be promoted by the ABI. 4977 if (isPromotableIntegerTypeForABI(Ty)) 4978 return true; 4979 4980 // In addition to the usual promotable integer types, we also need to 4981 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4982 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4983 switch (BT->getKind()) { 4984 case BuiltinType::Int: 4985 case BuiltinType::UInt: 4986 return true; 4987 default: 4988 break; 4989 } 4990 4991 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4992 if (EIT->getNumBits() < 64) 4993 return true; 4994 4995 return false; 4996 } 4997 4998 /// isAlignedParamType - Determine whether a type requires 16-byte or 4999 /// higher alignment in the parameter area. Always returns at least 8. 5000 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5001 // Complex types are passed just like their elements. 5002 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5003 Ty = CTy->getElementType(); 5004 5005 // Only vector types of size 16 bytes need alignment (larger types are 5006 // passed via reference, smaller types are not aligned). 5007 if (Ty->isVectorType()) { 5008 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5009 } else if (Ty->isRealFloatingType() && 5010 &getContext().getFloatTypeSemantics(Ty) == 5011 &llvm::APFloat::IEEEquad()) { 5012 // According to ABI document section 'Optional Save Areas': If extended 5013 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5014 // format are supported, map them to a single quadword, quadword aligned. 5015 return CharUnits::fromQuantity(16); 5016 } 5017 5018 // For single-element float/vector structs, we consider the whole type 5019 // to have the same alignment requirements as its single element. 5020 const Type *AlignAsType = nullptr; 5021 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5022 if (EltType) { 5023 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5024 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5025 (BT && BT->isFloatingPoint())) 5026 AlignAsType = EltType; 5027 } 5028 5029 // Likewise for ELFv2 homogeneous aggregates. 5030 const Type *Base = nullptr; 5031 uint64_t Members = 0; 5032 if (!AlignAsType && Kind == ELFv2 && 5033 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5034 AlignAsType = Base; 5035 5036 // With special case aggregates, only vector base types need alignment. 5037 if (AlignAsType) { 5038 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5039 } 5040 5041 // Otherwise, we only need alignment for any aggregate type that 5042 // has an alignment requirement of >= 16 bytes. 5043 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5044 return CharUnits::fromQuantity(16); 5045 } 5046 5047 return CharUnits::fromQuantity(8); 5048 } 5049 5050 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5051 /// aggregate. Base is set to the base element type, and Members is set 5052 /// to the number of base elements. 5053 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5054 uint64_t &Members) const { 5055 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5056 uint64_t NElements = AT->getSize().getZExtValue(); 5057 if (NElements == 0) 5058 return false; 5059 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5060 return false; 5061 Members *= NElements; 5062 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5063 const RecordDecl *RD = RT->getDecl(); 5064 if (RD->hasFlexibleArrayMember()) 5065 return false; 5066 5067 Members = 0; 5068 5069 // If this is a C++ record, check the properties of the record such as 5070 // bases and ABI specific restrictions 5071 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5072 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5073 return false; 5074 5075 for (const auto &I : CXXRD->bases()) { 5076 // Ignore empty records. 5077 if (isEmptyRecord(getContext(), I.getType(), true)) 5078 continue; 5079 5080 uint64_t FldMembers; 5081 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5082 return false; 5083 5084 Members += FldMembers; 5085 } 5086 } 5087 5088 for (const auto *FD : RD->fields()) { 5089 // Ignore (non-zero arrays of) empty records. 5090 QualType FT = FD->getType(); 5091 while (const ConstantArrayType *AT = 5092 getContext().getAsConstantArrayType(FT)) { 5093 if (AT->getSize().getZExtValue() == 0) 5094 return false; 5095 FT = AT->getElementType(); 5096 } 5097 if (isEmptyRecord(getContext(), FT, true)) 5098 continue; 5099 5100 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5101 if (getContext().getLangOpts().CPlusPlus && 5102 FD->isZeroLengthBitField(getContext())) 5103 continue; 5104 5105 uint64_t FldMembers; 5106 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5107 return false; 5108 5109 Members = (RD->isUnion() ? 5110 std::max(Members, FldMembers) : Members + FldMembers); 5111 } 5112 5113 if (!Base) 5114 return false; 5115 5116 // Ensure there is no padding. 5117 if (getContext().getTypeSize(Base) * Members != 5118 getContext().getTypeSize(Ty)) 5119 return false; 5120 } else { 5121 Members = 1; 5122 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5123 Members = 2; 5124 Ty = CT->getElementType(); 5125 } 5126 5127 // Most ABIs only support float, double, and some vector type widths. 5128 if (!isHomogeneousAggregateBaseType(Ty)) 5129 return false; 5130 5131 // The base type must be the same for all members. Types that 5132 // agree in both total size and mode (float vs. vector) are 5133 // treated as being equivalent here. 5134 const Type *TyPtr = Ty.getTypePtr(); 5135 if (!Base) { 5136 Base = TyPtr; 5137 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5138 // so make sure to widen it explicitly. 5139 if (const VectorType *VT = Base->getAs<VectorType>()) { 5140 QualType EltTy = VT->getElementType(); 5141 unsigned NumElements = 5142 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5143 Base = getContext() 5144 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5145 .getTypePtr(); 5146 } 5147 } 5148 5149 if (Base->isVectorType() != TyPtr->isVectorType() || 5150 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5151 return false; 5152 } 5153 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5154 } 5155 5156 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5157 // Homogeneous aggregates for ELFv2 must have base types of float, 5158 // double, long double, or 128-bit vectors. 5159 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5160 if (BT->getKind() == BuiltinType::Float || 5161 BT->getKind() == BuiltinType::Double || 5162 BT->getKind() == BuiltinType::LongDouble || 5163 (getContext().getTargetInfo().hasFloat128Type() && 5164 (BT->getKind() == BuiltinType::Float128))) { 5165 if (IsSoftFloatABI) 5166 return false; 5167 return true; 5168 } 5169 } 5170 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5171 if (getContext().getTypeSize(VT) == 128) 5172 return true; 5173 } 5174 return false; 5175 } 5176 5177 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5178 const Type *Base, uint64_t Members) const { 5179 // Vector and fp128 types require one register, other floating point types 5180 // require one or two registers depending on their size. 5181 uint32_t NumRegs = 5182 ((getContext().getTargetInfo().hasFloat128Type() && 5183 Base->isFloat128Type()) || 5184 Base->isVectorType()) ? 1 5185 : (getContext().getTypeSize(Base) + 63) / 64; 5186 5187 // Homogeneous Aggregates may occupy at most 8 registers. 5188 return Members * NumRegs <= 8; 5189 } 5190 5191 ABIArgInfo 5192 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5193 Ty = useFirstFieldIfTransparentUnion(Ty); 5194 5195 if (Ty->isAnyComplexType()) 5196 return ABIArgInfo::getDirect(); 5197 5198 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5199 // or via reference (larger than 16 bytes). 5200 if (Ty->isVectorType()) { 5201 uint64_t Size = getContext().getTypeSize(Ty); 5202 if (Size > 128) 5203 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5204 else if (Size < 128) { 5205 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5206 return ABIArgInfo::getDirect(CoerceTy); 5207 } 5208 } 5209 5210 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5211 if (EIT->getNumBits() > 128) 5212 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5213 5214 if (isAggregateTypeForABI(Ty)) { 5215 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5216 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5217 5218 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5219 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5220 5221 // ELFv2 homogeneous aggregates are passed as array types. 5222 const Type *Base = nullptr; 5223 uint64_t Members = 0; 5224 if (Kind == ELFv2 && 5225 isHomogeneousAggregate(Ty, Base, Members)) { 5226 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5227 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5228 return ABIArgInfo::getDirect(CoerceTy); 5229 } 5230 5231 // If an aggregate may end up fully in registers, we do not 5232 // use the ByVal method, but pass the aggregate as array. 5233 // This is usually beneficial since we avoid forcing the 5234 // back-end to store the argument to memory. 5235 uint64_t Bits = getContext().getTypeSize(Ty); 5236 if (Bits > 0 && Bits <= 8 * GPRBits) { 5237 llvm::Type *CoerceTy; 5238 5239 // Types up to 8 bytes are passed as integer type (which will be 5240 // properly aligned in the argument save area doubleword). 5241 if (Bits <= GPRBits) 5242 CoerceTy = 5243 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5244 // Larger types are passed as arrays, with the base type selected 5245 // according to the required alignment in the save area. 5246 else { 5247 uint64_t RegBits = ABIAlign * 8; 5248 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5249 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5250 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5251 } 5252 5253 return ABIArgInfo::getDirect(CoerceTy); 5254 } 5255 5256 // All other aggregates are passed ByVal. 5257 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5258 /*ByVal=*/true, 5259 /*Realign=*/TyAlign > ABIAlign); 5260 } 5261 5262 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5263 : ABIArgInfo::getDirect()); 5264 } 5265 5266 ABIArgInfo 5267 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5268 if (RetTy->isVoidType()) 5269 return ABIArgInfo::getIgnore(); 5270 5271 if (RetTy->isAnyComplexType()) 5272 return ABIArgInfo::getDirect(); 5273 5274 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5275 // or via reference (larger than 16 bytes). 5276 if (RetTy->isVectorType()) { 5277 uint64_t Size = getContext().getTypeSize(RetTy); 5278 if (Size > 128) 5279 return getNaturalAlignIndirect(RetTy); 5280 else if (Size < 128) { 5281 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5282 return ABIArgInfo::getDirect(CoerceTy); 5283 } 5284 } 5285 5286 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5287 if (EIT->getNumBits() > 128) 5288 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5289 5290 if (isAggregateTypeForABI(RetTy)) { 5291 // ELFv2 homogeneous aggregates are returned as array types. 5292 const Type *Base = nullptr; 5293 uint64_t Members = 0; 5294 if (Kind == ELFv2 && 5295 isHomogeneousAggregate(RetTy, Base, Members)) { 5296 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5297 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5298 return ABIArgInfo::getDirect(CoerceTy); 5299 } 5300 5301 // ELFv2 small aggregates are returned in up to two registers. 5302 uint64_t Bits = getContext().getTypeSize(RetTy); 5303 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5304 if (Bits == 0) 5305 return ABIArgInfo::getIgnore(); 5306 5307 llvm::Type *CoerceTy; 5308 if (Bits > GPRBits) { 5309 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5310 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5311 } else 5312 CoerceTy = 5313 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5314 return ABIArgInfo::getDirect(CoerceTy); 5315 } 5316 5317 // All other aggregates are returned indirectly. 5318 return getNaturalAlignIndirect(RetTy); 5319 } 5320 5321 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5322 : ABIArgInfo::getDirect()); 5323 } 5324 5325 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5326 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5327 QualType Ty) const { 5328 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5329 TypeInfo.Align = getParamTypeAlignment(Ty); 5330 5331 CharUnits SlotSize = CharUnits::fromQuantity(8); 5332 5333 // If we have a complex type and the base type is smaller than 8 bytes, 5334 // the ABI calls for the real and imaginary parts to be right-adjusted 5335 // in separate doublewords. However, Clang expects us to produce a 5336 // pointer to a structure with the two parts packed tightly. So generate 5337 // loads of the real and imaginary parts relative to the va_list pointer, 5338 // and store them to a temporary structure. 5339 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5340 CharUnits EltSize = TypeInfo.Width / 2; 5341 if (EltSize < SlotSize) { 5342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5343 SlotSize * 2, SlotSize, 5344 SlotSize, /*AllowHigher*/ true); 5345 5346 Address RealAddr = Addr; 5347 Address ImagAddr = RealAddr; 5348 if (CGF.CGM.getDataLayout().isBigEndian()) { 5349 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5350 SlotSize - EltSize); 5351 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5352 2 * SlotSize - EltSize); 5353 } else { 5354 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5355 } 5356 5357 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5358 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5359 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5360 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5361 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5362 5363 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5364 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5365 /*init*/ true); 5366 return Temp; 5367 } 5368 } 5369 5370 // Otherwise, just use the general rule. 5371 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5372 TypeInfo, SlotSize, /*AllowHigher*/ true); 5373 } 5374 5375 bool 5376 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5377 CodeGen::CodeGenFunction &CGF, 5378 llvm::Value *Address) const { 5379 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5380 /*IsAIX*/ false); 5381 } 5382 5383 bool 5384 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5385 llvm::Value *Address) const { 5386 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5387 /*IsAIX*/ false); 5388 } 5389 5390 //===----------------------------------------------------------------------===// 5391 // AArch64 ABI Implementation 5392 //===----------------------------------------------------------------------===// 5393 5394 namespace { 5395 5396 class AArch64ABIInfo : public SwiftABIInfo { 5397 public: 5398 enum ABIKind { 5399 AAPCS = 0, 5400 DarwinPCS, 5401 Win64 5402 }; 5403 5404 private: 5405 ABIKind Kind; 5406 5407 public: 5408 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5409 : SwiftABIInfo(CGT), Kind(Kind) {} 5410 5411 private: 5412 ABIKind getABIKind() const { return Kind; } 5413 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5414 5415 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5416 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5417 unsigned CallingConvention) const; 5418 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5419 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5420 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5421 uint64_t Members) const override; 5422 5423 bool isIllegalVectorType(QualType Ty) const; 5424 5425 void computeInfo(CGFunctionInfo &FI) const override { 5426 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5427 FI.getReturnInfo() = 5428 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5429 5430 for (auto &it : FI.arguments()) 5431 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5432 FI.getCallingConvention()); 5433 } 5434 5435 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5436 CodeGenFunction &CGF) const; 5437 5438 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5439 CodeGenFunction &CGF) const; 5440 5441 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5442 QualType Ty) const override { 5443 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5444 if (isa<llvm::ScalableVectorType>(BaseTy)) 5445 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5446 "currently not supported"); 5447 5448 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5449 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5450 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5451 } 5452 5453 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5454 QualType Ty) const override; 5455 5456 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5457 bool asReturnValue) const override { 5458 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5459 } 5460 bool isSwiftErrorInRegister() const override { 5461 return true; 5462 } 5463 5464 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5465 unsigned elts) const override; 5466 5467 bool allowBFloatArgsAndRet() const override { 5468 return getTarget().hasBFloat16Type(); 5469 } 5470 }; 5471 5472 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5473 public: 5474 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5475 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5476 5477 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5478 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5479 } 5480 5481 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5482 return 31; 5483 } 5484 5485 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5486 5487 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5488 CodeGen::CodeGenModule &CGM) const override { 5489 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5490 if (!FD) 5491 return; 5492 5493 const auto *TA = FD->getAttr<TargetAttr>(); 5494 if (TA == nullptr) 5495 return; 5496 5497 ParsedTargetAttr Attr = TA->parse(); 5498 if (Attr.BranchProtection.empty()) 5499 return; 5500 5501 TargetInfo::BranchProtectionInfo BPI; 5502 StringRef Error; 5503 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5504 BPI, Error); 5505 assert(Error.empty()); 5506 5507 auto *Fn = cast<llvm::Function>(GV); 5508 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5509 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5510 5511 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5512 Fn->addFnAttr("sign-return-address-key", 5513 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5514 ? "a_key" 5515 : "b_key"); 5516 } 5517 5518 Fn->addFnAttr("branch-target-enforcement", 5519 BPI.BranchTargetEnforcement ? "true" : "false"); 5520 } 5521 }; 5522 5523 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5524 public: 5525 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5526 : AArch64TargetCodeGenInfo(CGT, K) {} 5527 5528 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5529 CodeGen::CodeGenModule &CGM) const override; 5530 5531 void getDependentLibraryOption(llvm::StringRef Lib, 5532 llvm::SmallString<24> &Opt) const override { 5533 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5534 } 5535 5536 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5537 llvm::SmallString<32> &Opt) const override { 5538 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5539 } 5540 }; 5541 5542 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5543 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5544 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5545 if (GV->isDeclaration()) 5546 return; 5547 addStackProbeTargetAttributes(D, GV, CGM); 5548 } 5549 } 5550 5551 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5552 assert(Ty->isVectorType() && "expected vector type!"); 5553 5554 const auto *VT = Ty->castAs<VectorType>(); 5555 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5556 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5557 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5558 BuiltinType::UChar && 5559 "unexpected builtin type for SVE predicate!"); 5560 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5561 llvm::Type::getInt1Ty(getVMContext()), 16)); 5562 } 5563 5564 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5565 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5566 5567 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5568 llvm::ScalableVectorType *ResType = nullptr; 5569 switch (BT->getKind()) { 5570 default: 5571 llvm_unreachable("unexpected builtin type for SVE vector!"); 5572 case BuiltinType::SChar: 5573 case BuiltinType::UChar: 5574 ResType = llvm::ScalableVectorType::get( 5575 llvm::Type::getInt8Ty(getVMContext()), 16); 5576 break; 5577 case BuiltinType::Short: 5578 case BuiltinType::UShort: 5579 ResType = llvm::ScalableVectorType::get( 5580 llvm::Type::getInt16Ty(getVMContext()), 8); 5581 break; 5582 case BuiltinType::Int: 5583 case BuiltinType::UInt: 5584 ResType = llvm::ScalableVectorType::get( 5585 llvm::Type::getInt32Ty(getVMContext()), 4); 5586 break; 5587 case BuiltinType::Long: 5588 case BuiltinType::ULong: 5589 ResType = llvm::ScalableVectorType::get( 5590 llvm::Type::getInt64Ty(getVMContext()), 2); 5591 break; 5592 case BuiltinType::Half: 5593 ResType = llvm::ScalableVectorType::get( 5594 llvm::Type::getHalfTy(getVMContext()), 8); 5595 break; 5596 case BuiltinType::Float: 5597 ResType = llvm::ScalableVectorType::get( 5598 llvm::Type::getFloatTy(getVMContext()), 4); 5599 break; 5600 case BuiltinType::Double: 5601 ResType = llvm::ScalableVectorType::get( 5602 llvm::Type::getDoubleTy(getVMContext()), 2); 5603 break; 5604 case BuiltinType::BFloat16: 5605 ResType = llvm::ScalableVectorType::get( 5606 llvm::Type::getBFloatTy(getVMContext()), 8); 5607 break; 5608 } 5609 return ABIArgInfo::getDirect(ResType); 5610 } 5611 5612 uint64_t Size = getContext().getTypeSize(Ty); 5613 // Android promotes <2 x i8> to i16, not i32 5614 if (isAndroid() && (Size <= 16)) { 5615 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5616 return ABIArgInfo::getDirect(ResType); 5617 } 5618 if (Size <= 32) { 5619 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5620 return ABIArgInfo::getDirect(ResType); 5621 } 5622 if (Size == 64) { 5623 auto *ResType = 5624 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5625 return ABIArgInfo::getDirect(ResType); 5626 } 5627 if (Size == 128) { 5628 auto *ResType = 5629 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5630 return ABIArgInfo::getDirect(ResType); 5631 } 5632 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5633 } 5634 5635 ABIArgInfo 5636 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5637 unsigned CallingConvention) const { 5638 Ty = useFirstFieldIfTransparentUnion(Ty); 5639 5640 // Handle illegal vector types here. 5641 if (isIllegalVectorType(Ty)) 5642 return coerceIllegalVector(Ty); 5643 5644 if (!isAggregateTypeForABI(Ty)) { 5645 // Treat an enum type as its underlying type. 5646 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5647 Ty = EnumTy->getDecl()->getIntegerType(); 5648 5649 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5650 if (EIT->getNumBits() > 128) 5651 return getNaturalAlignIndirect(Ty); 5652 5653 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5654 ? ABIArgInfo::getExtend(Ty) 5655 : ABIArgInfo::getDirect()); 5656 } 5657 5658 // Structures with either a non-trivial destructor or a non-trivial 5659 // copy constructor are always indirect. 5660 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5661 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5662 CGCXXABI::RAA_DirectInMemory); 5663 } 5664 5665 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5666 // elsewhere for GNU compatibility. 5667 uint64_t Size = getContext().getTypeSize(Ty); 5668 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5669 if (IsEmpty || Size == 0) { 5670 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5671 return ABIArgInfo::getIgnore(); 5672 5673 // GNU C mode. The only argument that gets ignored is an empty one with size 5674 // 0. 5675 if (IsEmpty && Size == 0) 5676 return ABIArgInfo::getIgnore(); 5677 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5678 } 5679 5680 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5681 const Type *Base = nullptr; 5682 uint64_t Members = 0; 5683 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5684 bool IsWinVariadic = IsWin64 && IsVariadic; 5685 // In variadic functions on Windows, all composite types are treated alike, 5686 // no special handling of HFAs/HVAs. 5687 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5688 if (Kind != AArch64ABIInfo::AAPCS) 5689 return ABIArgInfo::getDirect( 5690 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5691 5692 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5693 // default otherwise. 5694 unsigned Align = 5695 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5696 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5697 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5698 return ABIArgInfo::getDirect( 5699 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5700 nullptr, true, Align); 5701 } 5702 5703 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5704 if (Size <= 128) { 5705 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5706 // same size and alignment. 5707 if (getTarget().isRenderScriptTarget()) { 5708 return coerceToIntArray(Ty, getContext(), getVMContext()); 5709 } 5710 unsigned Alignment; 5711 if (Kind == AArch64ABIInfo::AAPCS) { 5712 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5713 Alignment = Alignment < 128 ? 64 : 128; 5714 } else { 5715 Alignment = std::max(getContext().getTypeAlign(Ty), 5716 (unsigned)getTarget().getPointerWidth(0)); 5717 } 5718 Size = llvm::alignTo(Size, Alignment); 5719 5720 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5721 // For aggregates with 16-byte alignment, we use i128. 5722 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5723 return ABIArgInfo::getDirect( 5724 Size == Alignment ? BaseTy 5725 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5726 } 5727 5728 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5729 } 5730 5731 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5732 bool IsVariadic) const { 5733 if (RetTy->isVoidType()) 5734 return ABIArgInfo::getIgnore(); 5735 5736 if (const auto *VT = RetTy->getAs<VectorType>()) { 5737 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5738 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5739 return coerceIllegalVector(RetTy); 5740 } 5741 5742 // Large vector types should be returned via memory. 5743 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5744 return getNaturalAlignIndirect(RetTy); 5745 5746 if (!isAggregateTypeForABI(RetTy)) { 5747 // Treat an enum type as its underlying type. 5748 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5749 RetTy = EnumTy->getDecl()->getIntegerType(); 5750 5751 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5752 if (EIT->getNumBits() > 128) 5753 return getNaturalAlignIndirect(RetTy); 5754 5755 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5756 ? ABIArgInfo::getExtend(RetTy) 5757 : ABIArgInfo::getDirect()); 5758 } 5759 5760 uint64_t Size = getContext().getTypeSize(RetTy); 5761 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5762 return ABIArgInfo::getIgnore(); 5763 5764 const Type *Base = nullptr; 5765 uint64_t Members = 0; 5766 if (isHomogeneousAggregate(RetTy, Base, Members) && 5767 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5768 IsVariadic)) 5769 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5770 return ABIArgInfo::getDirect(); 5771 5772 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5773 if (Size <= 128) { 5774 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5775 // same size and alignment. 5776 if (getTarget().isRenderScriptTarget()) { 5777 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5778 } 5779 5780 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5781 // Composite types are returned in lower bits of a 64-bit register for LE, 5782 // and in higher bits for BE. However, integer types are always returned 5783 // in lower bits for both LE and BE, and they are not rounded up to 5784 // 64-bits. We can skip rounding up of composite types for LE, but not for 5785 // BE, otherwise composite types will be indistinguishable from integer 5786 // types. 5787 return ABIArgInfo::getDirect( 5788 llvm::IntegerType::get(getVMContext(), Size)); 5789 } 5790 5791 unsigned Alignment = getContext().getTypeAlign(RetTy); 5792 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5793 5794 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5795 // For aggregates with 16-byte alignment, we use i128. 5796 if (Alignment < 128 && Size == 128) { 5797 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5798 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5799 } 5800 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5801 } 5802 5803 return getNaturalAlignIndirect(RetTy); 5804 } 5805 5806 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5807 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5808 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5809 // Check whether VT is a fixed-length SVE vector. These types are 5810 // represented as scalable vectors in function args/return and must be 5811 // coerced from fixed vectors. 5812 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5813 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5814 return true; 5815 5816 // Check whether VT is legal. 5817 unsigned NumElements = VT->getNumElements(); 5818 uint64_t Size = getContext().getTypeSize(VT); 5819 // NumElements should be power of 2. 5820 if (!llvm::isPowerOf2_32(NumElements)) 5821 return true; 5822 5823 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5824 // vectors for some reason. 5825 llvm::Triple Triple = getTarget().getTriple(); 5826 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5827 Triple.isOSBinFormatMachO()) 5828 return Size <= 32; 5829 5830 return Size != 64 && (Size != 128 || NumElements == 1); 5831 } 5832 return false; 5833 } 5834 5835 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5836 llvm::Type *eltTy, 5837 unsigned elts) const { 5838 if (!llvm::isPowerOf2_32(elts)) 5839 return false; 5840 if (totalSize.getQuantity() != 8 && 5841 (totalSize.getQuantity() != 16 || elts == 1)) 5842 return false; 5843 return true; 5844 } 5845 5846 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5847 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5848 // point type or a short-vector type. This is the same as the 32-bit ABI, 5849 // but with the difference that any floating-point type is allowed, 5850 // including __fp16. 5851 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5852 if (BT->isFloatingPoint()) 5853 return true; 5854 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5855 unsigned VecSize = getContext().getTypeSize(VT); 5856 if (VecSize == 64 || VecSize == 128) 5857 return true; 5858 } 5859 return false; 5860 } 5861 5862 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5863 uint64_t Members) const { 5864 return Members <= 4; 5865 } 5866 5867 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5868 CodeGenFunction &CGF) const { 5869 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5870 CGF.CurFnInfo->getCallingConvention()); 5871 bool IsIndirect = AI.isIndirect(); 5872 5873 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5874 if (IsIndirect) 5875 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5876 else if (AI.getCoerceToType()) 5877 BaseTy = AI.getCoerceToType(); 5878 5879 unsigned NumRegs = 1; 5880 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5881 BaseTy = ArrTy->getElementType(); 5882 NumRegs = ArrTy->getNumElements(); 5883 } 5884 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5885 5886 // The AArch64 va_list type and handling is specified in the Procedure Call 5887 // Standard, section B.4: 5888 // 5889 // struct { 5890 // void *__stack; 5891 // void *__gr_top; 5892 // void *__vr_top; 5893 // int __gr_offs; 5894 // int __vr_offs; 5895 // }; 5896 5897 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5898 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5899 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5900 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5901 5902 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5903 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5904 5905 Address reg_offs_p = Address::invalid(); 5906 llvm::Value *reg_offs = nullptr; 5907 int reg_top_index; 5908 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5909 if (!IsFPR) { 5910 // 3 is the field number of __gr_offs 5911 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5912 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5913 reg_top_index = 1; // field number for __gr_top 5914 RegSize = llvm::alignTo(RegSize, 8); 5915 } else { 5916 // 4 is the field number of __vr_offs. 5917 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5918 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5919 reg_top_index = 2; // field number for __vr_top 5920 RegSize = 16 * NumRegs; 5921 } 5922 5923 //======================================= 5924 // Find out where argument was passed 5925 //======================================= 5926 5927 // If reg_offs >= 0 we're already using the stack for this type of 5928 // argument. We don't want to keep updating reg_offs (in case it overflows, 5929 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5930 // whatever they get). 5931 llvm::Value *UsingStack = nullptr; 5932 UsingStack = CGF.Builder.CreateICmpSGE( 5933 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5934 5935 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5936 5937 // Otherwise, at least some kind of argument could go in these registers, the 5938 // question is whether this particular type is too big. 5939 CGF.EmitBlock(MaybeRegBlock); 5940 5941 // Integer arguments may need to correct register alignment (for example a 5942 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5943 // align __gr_offs to calculate the potential address. 5944 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5945 int Align = TyAlign.getQuantity(); 5946 5947 reg_offs = CGF.Builder.CreateAdd( 5948 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5949 "align_regoffs"); 5950 reg_offs = CGF.Builder.CreateAnd( 5951 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5952 "aligned_regoffs"); 5953 } 5954 5955 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5956 // The fact that this is done unconditionally reflects the fact that 5957 // allocating an argument to the stack also uses up all the remaining 5958 // registers of the appropriate kind. 5959 llvm::Value *NewOffset = nullptr; 5960 NewOffset = CGF.Builder.CreateAdd( 5961 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5962 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5963 5964 // Now we're in a position to decide whether this argument really was in 5965 // registers or not. 5966 llvm::Value *InRegs = nullptr; 5967 InRegs = CGF.Builder.CreateICmpSLE( 5968 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5969 5970 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5971 5972 //======================================= 5973 // Argument was in registers 5974 //======================================= 5975 5976 // Now we emit the code for if the argument was originally passed in 5977 // registers. First start the appropriate block: 5978 CGF.EmitBlock(InRegBlock); 5979 5980 llvm::Value *reg_top = nullptr; 5981 Address reg_top_p = 5982 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5983 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5984 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 5985 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5986 Address RegAddr = Address::invalid(); 5987 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5988 5989 if (IsIndirect) { 5990 // If it's been passed indirectly (actually a struct), whatever we find from 5991 // stored registers or on the stack will actually be a struct **. 5992 MemTy = llvm::PointerType::getUnqual(MemTy); 5993 } 5994 5995 const Type *Base = nullptr; 5996 uint64_t NumMembers = 0; 5997 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5998 if (IsHFA && NumMembers > 1) { 5999 // Homogeneous aggregates passed in registers will have their elements split 6000 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6001 // qN+1, ...). We reload and store into a temporary local variable 6002 // contiguously. 6003 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6004 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6005 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6006 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6007 Address Tmp = CGF.CreateTempAlloca(HFATy, 6008 std::max(TyAlign, BaseTyInfo.Align)); 6009 6010 // On big-endian platforms, the value will be right-aligned in its slot. 6011 int Offset = 0; 6012 if (CGF.CGM.getDataLayout().isBigEndian() && 6013 BaseTyInfo.Width.getQuantity() < 16) 6014 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6015 6016 for (unsigned i = 0; i < NumMembers; ++i) { 6017 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6018 Address LoadAddr = 6019 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6020 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6021 6022 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6023 6024 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6025 CGF.Builder.CreateStore(Elem, StoreAddr); 6026 } 6027 6028 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6029 } else { 6030 // Otherwise the object is contiguous in memory. 6031 6032 // It might be right-aligned in its slot. 6033 CharUnits SlotSize = BaseAddr.getAlignment(); 6034 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6035 (IsHFA || !isAggregateTypeForABI(Ty)) && 6036 TySize < SlotSize) { 6037 CharUnits Offset = SlotSize - TySize; 6038 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6039 } 6040 6041 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6042 } 6043 6044 CGF.EmitBranch(ContBlock); 6045 6046 //======================================= 6047 // Argument was on the stack 6048 //======================================= 6049 CGF.EmitBlock(OnStackBlock); 6050 6051 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6052 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6053 6054 // Again, stack arguments may need realignment. In this case both integer and 6055 // floating-point ones might be affected. 6056 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6057 int Align = TyAlign.getQuantity(); 6058 6059 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6060 6061 OnStackPtr = CGF.Builder.CreateAdd( 6062 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6063 "align_stack"); 6064 OnStackPtr = CGF.Builder.CreateAnd( 6065 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6066 "align_stack"); 6067 6068 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6069 } 6070 Address OnStackAddr(OnStackPtr, 6071 std::max(CharUnits::fromQuantity(8), TyAlign)); 6072 6073 // All stack slots are multiples of 8 bytes. 6074 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6075 CharUnits StackSize; 6076 if (IsIndirect) 6077 StackSize = StackSlotSize; 6078 else 6079 StackSize = TySize.alignTo(StackSlotSize); 6080 6081 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6082 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6083 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6084 6085 // Write the new value of __stack for the next call to va_arg 6086 CGF.Builder.CreateStore(NewStack, stack_p); 6087 6088 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6089 TySize < StackSlotSize) { 6090 CharUnits Offset = StackSlotSize - TySize; 6091 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6092 } 6093 6094 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6095 6096 CGF.EmitBranch(ContBlock); 6097 6098 //======================================= 6099 // Tidy up 6100 //======================================= 6101 CGF.EmitBlock(ContBlock); 6102 6103 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6104 OnStackAddr, OnStackBlock, "vaargs.addr"); 6105 6106 if (IsIndirect) 6107 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6108 TyAlign); 6109 6110 return ResAddr; 6111 } 6112 6113 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6114 CodeGenFunction &CGF) const { 6115 // The backend's lowering doesn't support va_arg for aggregates or 6116 // illegal vector types. Lower VAArg here for these cases and use 6117 // the LLVM va_arg instruction for everything else. 6118 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6119 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6120 6121 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6122 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6123 6124 // Empty records are ignored for parameter passing purposes. 6125 if (isEmptyRecord(getContext(), Ty, true)) { 6126 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6127 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6128 return Addr; 6129 } 6130 6131 // The size of the actual thing passed, which might end up just 6132 // being a pointer for indirect types. 6133 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6134 6135 // Arguments bigger than 16 bytes which aren't homogeneous 6136 // aggregates should be passed indirectly. 6137 bool IsIndirect = false; 6138 if (TyInfo.Width.getQuantity() > 16) { 6139 const Type *Base = nullptr; 6140 uint64_t Members = 0; 6141 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6142 } 6143 6144 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6145 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6146 } 6147 6148 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6149 QualType Ty) const { 6150 bool IsIndirect = false; 6151 6152 // Composites larger than 16 bytes are passed by reference. 6153 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6154 IsIndirect = true; 6155 6156 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6157 CGF.getContext().getTypeInfoInChars(Ty), 6158 CharUnits::fromQuantity(8), 6159 /*allowHigherAlign*/ false); 6160 } 6161 6162 //===----------------------------------------------------------------------===// 6163 // ARM ABI Implementation 6164 //===----------------------------------------------------------------------===// 6165 6166 namespace { 6167 6168 class ARMABIInfo : public SwiftABIInfo { 6169 public: 6170 enum ABIKind { 6171 APCS = 0, 6172 AAPCS = 1, 6173 AAPCS_VFP = 2, 6174 AAPCS16_VFP = 3, 6175 }; 6176 6177 private: 6178 ABIKind Kind; 6179 bool IsFloatABISoftFP; 6180 6181 public: 6182 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6183 : SwiftABIInfo(CGT), Kind(_Kind) { 6184 setCCs(); 6185 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6186 CGT.getCodeGenOpts().FloatABI == ""; // default 6187 } 6188 6189 bool isEABI() const { 6190 switch (getTarget().getTriple().getEnvironment()) { 6191 case llvm::Triple::Android: 6192 case llvm::Triple::EABI: 6193 case llvm::Triple::EABIHF: 6194 case llvm::Triple::GNUEABI: 6195 case llvm::Triple::GNUEABIHF: 6196 case llvm::Triple::MuslEABI: 6197 case llvm::Triple::MuslEABIHF: 6198 return true; 6199 default: 6200 return false; 6201 } 6202 } 6203 6204 bool isEABIHF() const { 6205 switch (getTarget().getTriple().getEnvironment()) { 6206 case llvm::Triple::EABIHF: 6207 case llvm::Triple::GNUEABIHF: 6208 case llvm::Triple::MuslEABIHF: 6209 return true; 6210 default: 6211 return false; 6212 } 6213 } 6214 6215 ABIKind getABIKind() const { return Kind; } 6216 6217 bool allowBFloatArgsAndRet() const override { 6218 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6219 } 6220 6221 private: 6222 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6223 unsigned functionCallConv) const; 6224 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6225 unsigned functionCallConv) const; 6226 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6227 uint64_t Members) const; 6228 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6229 bool isIllegalVectorType(QualType Ty) const; 6230 bool containsAnyFP16Vectors(QualType Ty) const; 6231 6232 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6233 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6234 uint64_t Members) const override; 6235 6236 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6237 6238 void computeInfo(CGFunctionInfo &FI) const override; 6239 6240 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6241 QualType Ty) const override; 6242 6243 llvm::CallingConv::ID getLLVMDefaultCC() const; 6244 llvm::CallingConv::ID getABIDefaultCC() const; 6245 void setCCs(); 6246 6247 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6248 bool asReturnValue) const override { 6249 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6250 } 6251 bool isSwiftErrorInRegister() const override { 6252 return true; 6253 } 6254 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6255 unsigned elts) const override; 6256 }; 6257 6258 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6259 public: 6260 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6261 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6262 6263 const ARMABIInfo &getABIInfo() const { 6264 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6265 } 6266 6267 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6268 return 13; 6269 } 6270 6271 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6272 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6273 } 6274 6275 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6276 llvm::Value *Address) const override { 6277 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6278 6279 // 0-15 are the 16 integer registers. 6280 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6281 return false; 6282 } 6283 6284 unsigned getSizeOfUnwindException() const override { 6285 if (getABIInfo().isEABI()) return 88; 6286 return TargetCodeGenInfo::getSizeOfUnwindException(); 6287 } 6288 6289 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6290 CodeGen::CodeGenModule &CGM) const override { 6291 if (GV->isDeclaration()) 6292 return; 6293 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6294 if (!FD) 6295 return; 6296 6297 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6298 if (!Attr) 6299 return; 6300 6301 const char *Kind; 6302 switch (Attr->getInterrupt()) { 6303 case ARMInterruptAttr::Generic: Kind = ""; break; 6304 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6305 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6306 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6307 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6308 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6309 } 6310 6311 llvm::Function *Fn = cast<llvm::Function>(GV); 6312 6313 Fn->addFnAttr("interrupt", Kind); 6314 6315 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6316 if (ABI == ARMABIInfo::APCS) 6317 return; 6318 6319 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6320 // however this is not necessarily true on taking any interrupt. Instruct 6321 // the backend to perform a realignment as part of the function prologue. 6322 llvm::AttrBuilder B; 6323 B.addStackAlignmentAttr(8); 6324 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6325 } 6326 }; 6327 6328 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6329 public: 6330 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6331 : ARMTargetCodeGenInfo(CGT, K) {} 6332 6333 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6334 CodeGen::CodeGenModule &CGM) const override; 6335 6336 void getDependentLibraryOption(llvm::StringRef Lib, 6337 llvm::SmallString<24> &Opt) const override { 6338 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6339 } 6340 6341 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6342 llvm::SmallString<32> &Opt) const override { 6343 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6344 } 6345 }; 6346 6347 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6348 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6349 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6350 if (GV->isDeclaration()) 6351 return; 6352 addStackProbeTargetAttributes(D, GV, CGM); 6353 } 6354 } 6355 6356 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6357 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6358 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6359 FI.getCallingConvention()); 6360 6361 for (auto &I : FI.arguments()) 6362 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6363 FI.getCallingConvention()); 6364 6365 6366 // Always honor user-specified calling convention. 6367 if (FI.getCallingConvention() != llvm::CallingConv::C) 6368 return; 6369 6370 llvm::CallingConv::ID cc = getRuntimeCC(); 6371 if (cc != llvm::CallingConv::C) 6372 FI.setEffectiveCallingConvention(cc); 6373 } 6374 6375 /// Return the default calling convention that LLVM will use. 6376 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6377 // The default calling convention that LLVM will infer. 6378 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6379 return llvm::CallingConv::ARM_AAPCS_VFP; 6380 else if (isEABI()) 6381 return llvm::CallingConv::ARM_AAPCS; 6382 else 6383 return llvm::CallingConv::ARM_APCS; 6384 } 6385 6386 /// Return the calling convention that our ABI would like us to use 6387 /// as the C calling convention. 6388 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6389 switch (getABIKind()) { 6390 case APCS: return llvm::CallingConv::ARM_APCS; 6391 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6392 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6393 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6394 } 6395 llvm_unreachable("bad ABI kind"); 6396 } 6397 6398 void ARMABIInfo::setCCs() { 6399 assert(getRuntimeCC() == llvm::CallingConv::C); 6400 6401 // Don't muddy up the IR with a ton of explicit annotations if 6402 // they'd just match what LLVM will infer from the triple. 6403 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6404 if (abiCC != getLLVMDefaultCC()) 6405 RuntimeCC = abiCC; 6406 } 6407 6408 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6409 uint64_t Size = getContext().getTypeSize(Ty); 6410 if (Size <= 32) { 6411 llvm::Type *ResType = 6412 llvm::Type::getInt32Ty(getVMContext()); 6413 return ABIArgInfo::getDirect(ResType); 6414 } 6415 if (Size == 64 || Size == 128) { 6416 auto *ResType = llvm::FixedVectorType::get( 6417 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6418 return ABIArgInfo::getDirect(ResType); 6419 } 6420 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6421 } 6422 6423 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6424 const Type *Base, 6425 uint64_t Members) const { 6426 assert(Base && "Base class should be set for homogeneous aggregate"); 6427 // Base can be a floating-point or a vector. 6428 if (const VectorType *VT = Base->getAs<VectorType>()) { 6429 // FP16 vectors should be converted to integer vectors 6430 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6431 uint64_t Size = getContext().getTypeSize(VT); 6432 auto *NewVecTy = llvm::FixedVectorType::get( 6433 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6434 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6435 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6436 } 6437 } 6438 unsigned Align = 0; 6439 if (getABIKind() == ARMABIInfo::AAPCS || 6440 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6441 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6442 // default otherwise. 6443 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6444 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6445 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6446 } 6447 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6448 } 6449 6450 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6451 unsigned functionCallConv) const { 6452 // 6.1.2.1 The following argument types are VFP CPRCs: 6453 // A single-precision floating-point type (including promoted 6454 // half-precision types); A double-precision floating-point type; 6455 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6456 // with a Base Type of a single- or double-precision floating-point type, 6457 // 64-bit containerized vectors or 128-bit containerized vectors with one 6458 // to four Elements. 6459 // Variadic functions should always marshal to the base standard. 6460 bool IsAAPCS_VFP = 6461 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6462 6463 Ty = useFirstFieldIfTransparentUnion(Ty); 6464 6465 // Handle illegal vector types here. 6466 if (isIllegalVectorType(Ty)) 6467 return coerceIllegalVector(Ty); 6468 6469 if (!isAggregateTypeForABI(Ty)) { 6470 // Treat an enum type as its underlying type. 6471 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6472 Ty = EnumTy->getDecl()->getIntegerType(); 6473 } 6474 6475 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6476 if (EIT->getNumBits() > 64) 6477 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6478 6479 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6480 : ABIArgInfo::getDirect()); 6481 } 6482 6483 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6484 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6485 } 6486 6487 // Ignore empty records. 6488 if (isEmptyRecord(getContext(), Ty, true)) 6489 return ABIArgInfo::getIgnore(); 6490 6491 if (IsAAPCS_VFP) { 6492 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6493 // into VFP registers. 6494 const Type *Base = nullptr; 6495 uint64_t Members = 0; 6496 if (isHomogeneousAggregate(Ty, Base, Members)) 6497 return classifyHomogeneousAggregate(Ty, Base, Members); 6498 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6499 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6500 // this convention even for a variadic function: the backend will use GPRs 6501 // if needed. 6502 const Type *Base = nullptr; 6503 uint64_t Members = 0; 6504 if (isHomogeneousAggregate(Ty, Base, Members)) { 6505 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6506 llvm::Type *Ty = 6507 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6508 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6509 } 6510 } 6511 6512 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6513 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6514 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6515 // bigger than 128-bits, they get placed in space allocated by the caller, 6516 // and a pointer is passed. 6517 return ABIArgInfo::getIndirect( 6518 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6519 } 6520 6521 // Support byval for ARM. 6522 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6523 // most 8-byte. We realign the indirect argument if type alignment is bigger 6524 // than ABI alignment. 6525 uint64_t ABIAlign = 4; 6526 uint64_t TyAlign; 6527 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6528 getABIKind() == ARMABIInfo::AAPCS) { 6529 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6530 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6531 } else { 6532 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6533 } 6534 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6535 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6536 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6537 /*ByVal=*/true, 6538 /*Realign=*/TyAlign > ABIAlign); 6539 } 6540 6541 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6542 // same size and alignment. 6543 if (getTarget().isRenderScriptTarget()) { 6544 return coerceToIntArray(Ty, getContext(), getVMContext()); 6545 } 6546 6547 // Otherwise, pass by coercing to a structure of the appropriate size. 6548 llvm::Type* ElemTy; 6549 unsigned SizeRegs; 6550 // FIXME: Try to match the types of the arguments more accurately where 6551 // we can. 6552 if (TyAlign <= 4) { 6553 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6554 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6555 } else { 6556 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6557 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6558 } 6559 6560 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6561 } 6562 6563 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6564 llvm::LLVMContext &VMContext) { 6565 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6566 // is called integer-like if its size is less than or equal to one word, and 6567 // the offset of each of its addressable sub-fields is zero. 6568 6569 uint64_t Size = Context.getTypeSize(Ty); 6570 6571 // Check that the type fits in a word. 6572 if (Size > 32) 6573 return false; 6574 6575 // FIXME: Handle vector types! 6576 if (Ty->isVectorType()) 6577 return false; 6578 6579 // Float types are never treated as "integer like". 6580 if (Ty->isRealFloatingType()) 6581 return false; 6582 6583 // If this is a builtin or pointer type then it is ok. 6584 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6585 return true; 6586 6587 // Small complex integer types are "integer like". 6588 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6589 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6590 6591 // Single element and zero sized arrays should be allowed, by the definition 6592 // above, but they are not. 6593 6594 // Otherwise, it must be a record type. 6595 const RecordType *RT = Ty->getAs<RecordType>(); 6596 if (!RT) return false; 6597 6598 // Ignore records with flexible arrays. 6599 const RecordDecl *RD = RT->getDecl(); 6600 if (RD->hasFlexibleArrayMember()) 6601 return false; 6602 6603 // Check that all sub-fields are at offset 0, and are themselves "integer 6604 // like". 6605 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6606 6607 bool HadField = false; 6608 unsigned idx = 0; 6609 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6610 i != e; ++i, ++idx) { 6611 const FieldDecl *FD = *i; 6612 6613 // Bit-fields are not addressable, we only need to verify they are "integer 6614 // like". We still have to disallow a subsequent non-bitfield, for example: 6615 // struct { int : 0; int x } 6616 // is non-integer like according to gcc. 6617 if (FD->isBitField()) { 6618 if (!RD->isUnion()) 6619 HadField = true; 6620 6621 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6622 return false; 6623 6624 continue; 6625 } 6626 6627 // Check if this field is at offset 0. 6628 if (Layout.getFieldOffset(idx) != 0) 6629 return false; 6630 6631 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6632 return false; 6633 6634 // Only allow at most one field in a structure. This doesn't match the 6635 // wording above, but follows gcc in situations with a field following an 6636 // empty structure. 6637 if (!RD->isUnion()) { 6638 if (HadField) 6639 return false; 6640 6641 HadField = true; 6642 } 6643 } 6644 6645 return true; 6646 } 6647 6648 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6649 unsigned functionCallConv) const { 6650 6651 // Variadic functions should always marshal to the base standard. 6652 bool IsAAPCS_VFP = 6653 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6654 6655 if (RetTy->isVoidType()) 6656 return ABIArgInfo::getIgnore(); 6657 6658 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6659 // Large vector types should be returned via memory. 6660 if (getContext().getTypeSize(RetTy) > 128) 6661 return getNaturalAlignIndirect(RetTy); 6662 // TODO: FP16/BF16 vectors should be converted to integer vectors 6663 // This check is similar to isIllegalVectorType - refactor? 6664 if ((!getTarget().hasLegalHalfType() && 6665 (VT->getElementType()->isFloat16Type() || 6666 VT->getElementType()->isHalfType())) || 6667 (IsFloatABISoftFP && 6668 VT->getElementType()->isBFloat16Type())) 6669 return coerceIllegalVector(RetTy); 6670 } 6671 6672 if (!isAggregateTypeForABI(RetTy)) { 6673 // Treat an enum type as its underlying type. 6674 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6675 RetTy = EnumTy->getDecl()->getIntegerType(); 6676 6677 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6678 if (EIT->getNumBits() > 64) 6679 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6680 6681 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6682 : ABIArgInfo::getDirect(); 6683 } 6684 6685 // Are we following APCS? 6686 if (getABIKind() == APCS) { 6687 if (isEmptyRecord(getContext(), RetTy, false)) 6688 return ABIArgInfo::getIgnore(); 6689 6690 // Complex types are all returned as packed integers. 6691 // 6692 // FIXME: Consider using 2 x vector types if the back end handles them 6693 // correctly. 6694 if (RetTy->isAnyComplexType()) 6695 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6696 getVMContext(), getContext().getTypeSize(RetTy))); 6697 6698 // Integer like structures are returned in r0. 6699 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6700 // Return in the smallest viable integer type. 6701 uint64_t Size = getContext().getTypeSize(RetTy); 6702 if (Size <= 8) 6703 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6704 if (Size <= 16) 6705 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6706 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6707 } 6708 6709 // Otherwise return in memory. 6710 return getNaturalAlignIndirect(RetTy); 6711 } 6712 6713 // Otherwise this is an AAPCS variant. 6714 6715 if (isEmptyRecord(getContext(), RetTy, true)) 6716 return ABIArgInfo::getIgnore(); 6717 6718 // Check for homogeneous aggregates with AAPCS-VFP. 6719 if (IsAAPCS_VFP) { 6720 const Type *Base = nullptr; 6721 uint64_t Members = 0; 6722 if (isHomogeneousAggregate(RetTy, Base, Members)) 6723 return classifyHomogeneousAggregate(RetTy, Base, Members); 6724 } 6725 6726 // Aggregates <= 4 bytes are returned in r0; other aggregates 6727 // are returned indirectly. 6728 uint64_t Size = getContext().getTypeSize(RetTy); 6729 if (Size <= 32) { 6730 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6731 // same size and alignment. 6732 if (getTarget().isRenderScriptTarget()) { 6733 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6734 } 6735 if (getDataLayout().isBigEndian()) 6736 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6737 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6738 6739 // Return in the smallest viable integer type. 6740 if (Size <= 8) 6741 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6742 if (Size <= 16) 6743 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6744 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6745 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6746 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6747 llvm::Type *CoerceTy = 6748 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6749 return ABIArgInfo::getDirect(CoerceTy); 6750 } 6751 6752 return getNaturalAlignIndirect(RetTy); 6753 } 6754 6755 /// isIllegalVector - check whether Ty is an illegal vector type. 6756 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6757 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6758 // On targets that don't support half, fp16 or bfloat, they are expanded 6759 // into float, and we don't want the ABI to depend on whether or not they 6760 // are supported in hardware. Thus return false to coerce vectors of these 6761 // types into integer vectors. 6762 // We do not depend on hasLegalHalfType for bfloat as it is a 6763 // separate IR type. 6764 if ((!getTarget().hasLegalHalfType() && 6765 (VT->getElementType()->isFloat16Type() || 6766 VT->getElementType()->isHalfType())) || 6767 (IsFloatABISoftFP && 6768 VT->getElementType()->isBFloat16Type())) 6769 return true; 6770 if (isAndroid()) { 6771 // Android shipped using Clang 3.1, which supported a slightly different 6772 // vector ABI. The primary differences were that 3-element vector types 6773 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6774 // accepts that legacy behavior for Android only. 6775 // Check whether VT is legal. 6776 unsigned NumElements = VT->getNumElements(); 6777 // NumElements should be power of 2 or equal to 3. 6778 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6779 return true; 6780 } else { 6781 // Check whether VT is legal. 6782 unsigned NumElements = VT->getNumElements(); 6783 uint64_t Size = getContext().getTypeSize(VT); 6784 // NumElements should be power of 2. 6785 if (!llvm::isPowerOf2_32(NumElements)) 6786 return true; 6787 // Size should be greater than 32 bits. 6788 return Size <= 32; 6789 } 6790 } 6791 return false; 6792 } 6793 6794 /// Return true if a type contains any 16-bit floating point vectors 6795 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6796 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6797 uint64_t NElements = AT->getSize().getZExtValue(); 6798 if (NElements == 0) 6799 return false; 6800 return containsAnyFP16Vectors(AT->getElementType()); 6801 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6802 const RecordDecl *RD = RT->getDecl(); 6803 6804 // If this is a C++ record, check the bases first. 6805 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6806 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6807 return containsAnyFP16Vectors(B.getType()); 6808 })) 6809 return true; 6810 6811 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6812 return FD && containsAnyFP16Vectors(FD->getType()); 6813 })) 6814 return true; 6815 6816 return false; 6817 } else { 6818 if (const VectorType *VT = Ty->getAs<VectorType>()) 6819 return (VT->getElementType()->isFloat16Type() || 6820 VT->getElementType()->isBFloat16Type() || 6821 VT->getElementType()->isHalfType()); 6822 return false; 6823 } 6824 } 6825 6826 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6827 llvm::Type *eltTy, 6828 unsigned numElts) const { 6829 if (!llvm::isPowerOf2_32(numElts)) 6830 return false; 6831 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6832 if (size > 64) 6833 return false; 6834 if (vectorSize.getQuantity() != 8 && 6835 (vectorSize.getQuantity() != 16 || numElts == 1)) 6836 return false; 6837 return true; 6838 } 6839 6840 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6841 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6842 // double, or 64-bit or 128-bit vectors. 6843 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6844 if (BT->getKind() == BuiltinType::Float || 6845 BT->getKind() == BuiltinType::Double || 6846 BT->getKind() == BuiltinType::LongDouble) 6847 return true; 6848 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6849 unsigned VecSize = getContext().getTypeSize(VT); 6850 if (VecSize == 64 || VecSize == 128) 6851 return true; 6852 } 6853 return false; 6854 } 6855 6856 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6857 uint64_t Members) const { 6858 return Members <= 4; 6859 } 6860 6861 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6862 bool acceptHalf) const { 6863 // Give precedence to user-specified calling conventions. 6864 if (callConvention != llvm::CallingConv::C) 6865 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6866 else 6867 return (getABIKind() == AAPCS_VFP) || 6868 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6869 } 6870 6871 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6872 QualType Ty) const { 6873 CharUnits SlotSize = CharUnits::fromQuantity(4); 6874 6875 // Empty records are ignored for parameter passing purposes. 6876 if (isEmptyRecord(getContext(), Ty, true)) { 6877 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6878 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6879 return Addr; 6880 } 6881 6882 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6883 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6884 6885 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6886 bool IsIndirect = false; 6887 const Type *Base = nullptr; 6888 uint64_t Members = 0; 6889 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6890 IsIndirect = true; 6891 6892 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6893 // allocated by the caller. 6894 } else if (TySize > CharUnits::fromQuantity(16) && 6895 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6896 !isHomogeneousAggregate(Ty, Base, Members)) { 6897 IsIndirect = true; 6898 6899 // Otherwise, bound the type's ABI alignment. 6900 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6901 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6902 // Our callers should be prepared to handle an under-aligned address. 6903 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6904 getABIKind() == ARMABIInfo::AAPCS) { 6905 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6906 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6907 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6908 // ARMv7k allows type alignment up to 16 bytes. 6909 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6910 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6911 } else { 6912 TyAlignForABI = CharUnits::fromQuantity(4); 6913 } 6914 6915 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6916 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6917 SlotSize, /*AllowHigherAlign*/ true); 6918 } 6919 6920 //===----------------------------------------------------------------------===// 6921 // NVPTX ABI Implementation 6922 //===----------------------------------------------------------------------===// 6923 6924 namespace { 6925 6926 class NVPTXTargetCodeGenInfo; 6927 6928 class NVPTXABIInfo : public ABIInfo { 6929 NVPTXTargetCodeGenInfo &CGInfo; 6930 6931 public: 6932 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6933 : ABIInfo(CGT), CGInfo(Info) {} 6934 6935 ABIArgInfo classifyReturnType(QualType RetTy) const; 6936 ABIArgInfo classifyArgumentType(QualType Ty) const; 6937 6938 void computeInfo(CGFunctionInfo &FI) const override; 6939 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6940 QualType Ty) const override; 6941 bool isUnsupportedType(QualType T) const; 6942 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6943 }; 6944 6945 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6946 public: 6947 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6948 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6949 6950 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6951 CodeGen::CodeGenModule &M) const override; 6952 bool shouldEmitStaticExternCAliases() const override; 6953 6954 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6955 // On the device side, surface reference is represented as an object handle 6956 // in 64-bit integer. 6957 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6958 } 6959 6960 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6961 // On the device side, texture reference is represented as an object handle 6962 // in 64-bit integer. 6963 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6964 } 6965 6966 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6967 LValue Src) const override { 6968 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6969 return true; 6970 } 6971 6972 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6973 LValue Src) const override { 6974 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6975 return true; 6976 } 6977 6978 private: 6979 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6980 // resulting MDNode to the nvvm.annotations MDNode. 6981 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6982 int Operand); 6983 6984 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6985 LValue Src) { 6986 llvm::Value *Handle = nullptr; 6987 llvm::Constant *C = 6988 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6989 // Lookup `addrspacecast` through the constant pointer if any. 6990 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6991 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6992 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6993 // Load the handle from the specific global variable using 6994 // `nvvm.texsurf.handle.internal` intrinsic. 6995 Handle = CGF.EmitRuntimeCall( 6996 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6997 {GV->getType()}), 6998 {GV}, "texsurf_handle"); 6999 } else 7000 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7001 CGF.EmitStoreOfScalar(Handle, Dst); 7002 } 7003 }; 7004 7005 /// Checks if the type is unsupported directly by the current target. 7006 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7007 ASTContext &Context = getContext(); 7008 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7009 return true; 7010 if (!Context.getTargetInfo().hasFloat128Type() && 7011 (T->isFloat128Type() || 7012 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7013 return true; 7014 if (const auto *EIT = T->getAs<ExtIntType>()) 7015 return EIT->getNumBits() > 7016 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7017 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7018 Context.getTypeSize(T) > 64U) 7019 return true; 7020 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7021 return isUnsupportedType(AT->getElementType()); 7022 const auto *RT = T->getAs<RecordType>(); 7023 if (!RT) 7024 return false; 7025 const RecordDecl *RD = RT->getDecl(); 7026 7027 // If this is a C++ record, check the bases first. 7028 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7029 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7030 if (isUnsupportedType(I.getType())) 7031 return true; 7032 7033 for (const FieldDecl *I : RD->fields()) 7034 if (isUnsupportedType(I->getType())) 7035 return true; 7036 return false; 7037 } 7038 7039 /// Coerce the given type into an array with maximum allowed size of elements. 7040 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7041 unsigned MaxSize) const { 7042 // Alignment and Size are measured in bits. 7043 const uint64_t Size = getContext().getTypeSize(Ty); 7044 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7045 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7046 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7047 const uint64_t NumElements = (Size + Div - 1) / Div; 7048 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7049 } 7050 7051 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7052 if (RetTy->isVoidType()) 7053 return ABIArgInfo::getIgnore(); 7054 7055 if (getContext().getLangOpts().OpenMP && 7056 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7057 return coerceToIntArrayWithLimit(RetTy, 64); 7058 7059 // note: this is different from default ABI 7060 if (!RetTy->isScalarType()) 7061 return ABIArgInfo::getDirect(); 7062 7063 // Treat an enum type as its underlying type. 7064 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7065 RetTy = EnumTy->getDecl()->getIntegerType(); 7066 7067 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7068 : ABIArgInfo::getDirect()); 7069 } 7070 7071 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7072 // Treat an enum type as its underlying type. 7073 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7074 Ty = EnumTy->getDecl()->getIntegerType(); 7075 7076 // Return aggregates type as indirect by value 7077 if (isAggregateTypeForABI(Ty)) { 7078 // Under CUDA device compilation, tex/surf builtin types are replaced with 7079 // object types and passed directly. 7080 if (getContext().getLangOpts().CUDAIsDevice) { 7081 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7082 return ABIArgInfo::getDirect( 7083 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7084 if (Ty->isCUDADeviceBuiltinTextureType()) 7085 return ABIArgInfo::getDirect( 7086 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7087 } 7088 return getNaturalAlignIndirect(Ty, /* byval */ true); 7089 } 7090 7091 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7092 if ((EIT->getNumBits() > 128) || 7093 (!getContext().getTargetInfo().hasInt128Type() && 7094 EIT->getNumBits() > 64)) 7095 return getNaturalAlignIndirect(Ty, /* byval */ true); 7096 } 7097 7098 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7099 : ABIArgInfo::getDirect()); 7100 } 7101 7102 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7103 if (!getCXXABI().classifyReturnType(FI)) 7104 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7105 for (auto &I : FI.arguments()) 7106 I.info = classifyArgumentType(I.type); 7107 7108 // Always honor user-specified calling convention. 7109 if (FI.getCallingConvention() != llvm::CallingConv::C) 7110 return; 7111 7112 FI.setEffectiveCallingConvention(getRuntimeCC()); 7113 } 7114 7115 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7116 QualType Ty) const { 7117 llvm_unreachable("NVPTX does not support varargs"); 7118 } 7119 7120 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7121 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7122 if (GV->isDeclaration()) 7123 return; 7124 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7125 if (VD) { 7126 if (M.getLangOpts().CUDA) { 7127 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7128 addNVVMMetadata(GV, "surface", 1); 7129 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7130 addNVVMMetadata(GV, "texture", 1); 7131 return; 7132 } 7133 } 7134 7135 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7136 if (!FD) return; 7137 7138 llvm::Function *F = cast<llvm::Function>(GV); 7139 7140 // Perform special handling in OpenCL mode 7141 if (M.getLangOpts().OpenCL) { 7142 // Use OpenCL function attributes to check for kernel functions 7143 // By default, all functions are device functions 7144 if (FD->hasAttr<OpenCLKernelAttr>()) { 7145 // OpenCL __kernel functions get kernel metadata 7146 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7147 addNVVMMetadata(F, "kernel", 1); 7148 // And kernel functions are not subject to inlining 7149 F->addFnAttr(llvm::Attribute::NoInline); 7150 } 7151 } 7152 7153 // Perform special handling in CUDA mode. 7154 if (M.getLangOpts().CUDA) { 7155 // CUDA __global__ functions get a kernel metadata entry. Since 7156 // __global__ functions cannot be called from the device, we do not 7157 // need to set the noinline attribute. 7158 if (FD->hasAttr<CUDAGlobalAttr>()) { 7159 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7160 addNVVMMetadata(F, "kernel", 1); 7161 } 7162 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7163 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7164 llvm::APSInt MaxThreads(32); 7165 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7166 if (MaxThreads > 0) 7167 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7168 7169 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7170 // not specified in __launch_bounds__ or if the user specified a 0 value, 7171 // we don't have to add a PTX directive. 7172 if (Attr->getMinBlocks()) { 7173 llvm::APSInt MinBlocks(32); 7174 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7175 if (MinBlocks > 0) 7176 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7177 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7178 } 7179 } 7180 } 7181 } 7182 7183 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7184 StringRef Name, int Operand) { 7185 llvm::Module *M = GV->getParent(); 7186 llvm::LLVMContext &Ctx = M->getContext(); 7187 7188 // Get "nvvm.annotations" metadata node 7189 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7190 7191 llvm::Metadata *MDVals[] = { 7192 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7193 llvm::ConstantAsMetadata::get( 7194 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7195 // Append metadata to nvvm.annotations 7196 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7197 } 7198 7199 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7200 return false; 7201 } 7202 } 7203 7204 //===----------------------------------------------------------------------===// 7205 // SystemZ ABI Implementation 7206 //===----------------------------------------------------------------------===// 7207 7208 namespace { 7209 7210 class SystemZABIInfo : public SwiftABIInfo { 7211 bool HasVector; 7212 bool IsSoftFloatABI; 7213 7214 public: 7215 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7216 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7217 7218 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7219 bool isCompoundType(QualType Ty) const; 7220 bool isVectorArgumentType(QualType Ty) const; 7221 bool isFPArgumentType(QualType Ty) const; 7222 QualType GetSingleElementType(QualType Ty) const; 7223 7224 ABIArgInfo classifyReturnType(QualType RetTy) const; 7225 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7226 7227 void computeInfo(CGFunctionInfo &FI) const override { 7228 if (!getCXXABI().classifyReturnType(FI)) 7229 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7230 for (auto &I : FI.arguments()) 7231 I.info = classifyArgumentType(I.type); 7232 } 7233 7234 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7235 QualType Ty) const override; 7236 7237 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7238 bool asReturnValue) const override { 7239 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7240 } 7241 bool isSwiftErrorInRegister() const override { 7242 return false; 7243 } 7244 }; 7245 7246 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7247 public: 7248 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7249 : TargetCodeGenInfo( 7250 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7251 7252 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7253 CGBuilderTy &Builder, 7254 CodeGenModule &CGM) const override { 7255 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7256 // Only use TDC in constrained FP mode. 7257 if (!Builder.getIsFPConstrained()) 7258 return nullptr; 7259 7260 llvm::Type *Ty = V->getType(); 7261 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7262 llvm::Module &M = CGM.getModule(); 7263 auto &Ctx = M.getContext(); 7264 llvm::Function *TDCFunc = 7265 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7266 unsigned TDCBits = 0; 7267 switch (BuiltinID) { 7268 case Builtin::BI__builtin_isnan: 7269 TDCBits = 0xf; 7270 break; 7271 case Builtin::BIfinite: 7272 case Builtin::BI__finite: 7273 case Builtin::BIfinitef: 7274 case Builtin::BI__finitef: 7275 case Builtin::BIfinitel: 7276 case Builtin::BI__finitel: 7277 case Builtin::BI__builtin_isfinite: 7278 TDCBits = 0xfc0; 7279 break; 7280 case Builtin::BI__builtin_isinf: 7281 TDCBits = 0x30; 7282 break; 7283 default: 7284 break; 7285 } 7286 if (TDCBits) 7287 return Builder.CreateCall( 7288 TDCFunc, 7289 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7290 } 7291 return nullptr; 7292 } 7293 }; 7294 } 7295 7296 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7297 // Treat an enum type as its underlying type. 7298 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7299 Ty = EnumTy->getDecl()->getIntegerType(); 7300 7301 // Promotable integer types are required to be promoted by the ABI. 7302 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7303 return true; 7304 7305 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7306 if (EIT->getNumBits() < 64) 7307 return true; 7308 7309 // 32-bit values must also be promoted. 7310 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7311 switch (BT->getKind()) { 7312 case BuiltinType::Int: 7313 case BuiltinType::UInt: 7314 return true; 7315 default: 7316 return false; 7317 } 7318 return false; 7319 } 7320 7321 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7322 return (Ty->isAnyComplexType() || 7323 Ty->isVectorType() || 7324 isAggregateTypeForABI(Ty)); 7325 } 7326 7327 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7328 return (HasVector && 7329 Ty->isVectorType() && 7330 getContext().getTypeSize(Ty) <= 128); 7331 } 7332 7333 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7334 if (IsSoftFloatABI) 7335 return false; 7336 7337 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7338 switch (BT->getKind()) { 7339 case BuiltinType::Float: 7340 case BuiltinType::Double: 7341 return true; 7342 default: 7343 return false; 7344 } 7345 7346 return false; 7347 } 7348 7349 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7350 const RecordType *RT = Ty->getAs<RecordType>(); 7351 7352 if (RT && RT->isStructureOrClassType()) { 7353 const RecordDecl *RD = RT->getDecl(); 7354 QualType Found; 7355 7356 // If this is a C++ record, check the bases first. 7357 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7358 for (const auto &I : CXXRD->bases()) { 7359 QualType Base = I.getType(); 7360 7361 // Empty bases don't affect things either way. 7362 if (isEmptyRecord(getContext(), Base, true)) 7363 continue; 7364 7365 if (!Found.isNull()) 7366 return Ty; 7367 Found = GetSingleElementType(Base); 7368 } 7369 7370 // Check the fields. 7371 for (const auto *FD : RD->fields()) { 7372 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7373 // Unlike isSingleElementStruct(), empty structure and array fields 7374 // do count. So do anonymous bitfields that aren't zero-sized. 7375 if (getContext().getLangOpts().CPlusPlus && 7376 FD->isZeroLengthBitField(getContext())) 7377 continue; 7378 // Like isSingleElementStruct(), ignore C++20 empty data members. 7379 if (FD->hasAttr<NoUniqueAddressAttr>() && 7380 isEmptyRecord(getContext(), FD->getType(), true)) 7381 continue; 7382 7383 // Unlike isSingleElementStruct(), arrays do not count. 7384 // Nested structures still do though. 7385 if (!Found.isNull()) 7386 return Ty; 7387 Found = GetSingleElementType(FD->getType()); 7388 } 7389 7390 // Unlike isSingleElementStruct(), trailing padding is allowed. 7391 // An 8-byte aligned struct s { float f; } is passed as a double. 7392 if (!Found.isNull()) 7393 return Found; 7394 } 7395 7396 return Ty; 7397 } 7398 7399 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7400 QualType Ty) const { 7401 // Assume that va_list type is correct; should be pointer to LLVM type: 7402 // struct { 7403 // i64 __gpr; 7404 // i64 __fpr; 7405 // i8 *__overflow_arg_area; 7406 // i8 *__reg_save_area; 7407 // }; 7408 7409 // Every non-vector argument occupies 8 bytes and is passed by preference 7410 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7411 // always passed on the stack. 7412 Ty = getContext().getCanonicalType(Ty); 7413 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7414 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7415 llvm::Type *DirectTy = ArgTy; 7416 ABIArgInfo AI = classifyArgumentType(Ty); 7417 bool IsIndirect = AI.isIndirect(); 7418 bool InFPRs = false; 7419 bool IsVector = false; 7420 CharUnits UnpaddedSize; 7421 CharUnits DirectAlign; 7422 if (IsIndirect) { 7423 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7424 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7425 } else { 7426 if (AI.getCoerceToType()) 7427 ArgTy = AI.getCoerceToType(); 7428 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7429 IsVector = ArgTy->isVectorTy(); 7430 UnpaddedSize = TyInfo.Width; 7431 DirectAlign = TyInfo.Align; 7432 } 7433 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7434 if (IsVector && UnpaddedSize > PaddedSize) 7435 PaddedSize = CharUnits::fromQuantity(16); 7436 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7437 7438 CharUnits Padding = (PaddedSize - UnpaddedSize); 7439 7440 llvm::Type *IndexTy = CGF.Int64Ty; 7441 llvm::Value *PaddedSizeV = 7442 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7443 7444 if (IsVector) { 7445 // Work out the address of a vector argument on the stack. 7446 // Vector arguments are always passed in the high bits of a 7447 // single (8 byte) or double (16 byte) stack slot. 7448 Address OverflowArgAreaPtr = 7449 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7450 Address OverflowArgArea = 7451 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7452 TyInfo.Align); 7453 Address MemAddr = 7454 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7455 7456 // Update overflow_arg_area_ptr pointer 7457 llvm::Value *NewOverflowArgArea = 7458 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7459 "overflow_arg_area"); 7460 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7461 7462 return MemAddr; 7463 } 7464 7465 assert(PaddedSize.getQuantity() == 8); 7466 7467 unsigned MaxRegs, RegCountField, RegSaveIndex; 7468 CharUnits RegPadding; 7469 if (InFPRs) { 7470 MaxRegs = 4; // Maximum of 4 FPR arguments 7471 RegCountField = 1; // __fpr 7472 RegSaveIndex = 16; // save offset for f0 7473 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7474 } else { 7475 MaxRegs = 5; // Maximum of 5 GPR arguments 7476 RegCountField = 0; // __gpr 7477 RegSaveIndex = 2; // save offset for r2 7478 RegPadding = Padding; // values are passed in the low bits of a GPR 7479 } 7480 7481 Address RegCountPtr = 7482 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7483 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7484 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7485 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7486 "fits_in_regs"); 7487 7488 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7489 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7490 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7491 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7492 7493 // Emit code to load the value if it was passed in registers. 7494 CGF.EmitBlock(InRegBlock); 7495 7496 // Work out the address of an argument register. 7497 llvm::Value *ScaledRegCount = 7498 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7499 llvm::Value *RegBase = 7500 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7501 + RegPadding.getQuantity()); 7502 llvm::Value *RegOffset = 7503 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7504 Address RegSaveAreaPtr = 7505 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7506 llvm::Value *RegSaveArea = 7507 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7508 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7509 "raw_reg_addr"), 7510 PaddedSize); 7511 Address RegAddr = 7512 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7513 7514 // Update the register count 7515 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7516 llvm::Value *NewRegCount = 7517 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7518 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7519 CGF.EmitBranch(ContBlock); 7520 7521 // Emit code to load the value if it was passed in memory. 7522 CGF.EmitBlock(InMemBlock); 7523 7524 // Work out the address of a stack argument. 7525 Address OverflowArgAreaPtr = 7526 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7527 Address OverflowArgArea = 7528 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7529 PaddedSize); 7530 Address RawMemAddr = 7531 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7532 Address MemAddr = 7533 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7534 7535 // Update overflow_arg_area_ptr pointer 7536 llvm::Value *NewOverflowArgArea = 7537 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7538 "overflow_arg_area"); 7539 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7540 CGF.EmitBranch(ContBlock); 7541 7542 // Return the appropriate result. 7543 CGF.EmitBlock(ContBlock); 7544 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7545 MemAddr, InMemBlock, "va_arg.addr"); 7546 7547 if (IsIndirect) 7548 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7549 TyInfo.Align); 7550 7551 return ResAddr; 7552 } 7553 7554 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7555 if (RetTy->isVoidType()) 7556 return ABIArgInfo::getIgnore(); 7557 if (isVectorArgumentType(RetTy)) 7558 return ABIArgInfo::getDirect(); 7559 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7560 return getNaturalAlignIndirect(RetTy); 7561 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7562 : ABIArgInfo::getDirect()); 7563 } 7564 7565 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7566 // Handle the generic C++ ABI. 7567 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7568 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7569 7570 // Integers and enums are extended to full register width. 7571 if (isPromotableIntegerTypeForABI(Ty)) 7572 return ABIArgInfo::getExtend(Ty); 7573 7574 // Handle vector types and vector-like structure types. Note that 7575 // as opposed to float-like structure types, we do not allow any 7576 // padding for vector-like structures, so verify the sizes match. 7577 uint64_t Size = getContext().getTypeSize(Ty); 7578 QualType SingleElementTy = GetSingleElementType(Ty); 7579 if (isVectorArgumentType(SingleElementTy) && 7580 getContext().getTypeSize(SingleElementTy) == Size) 7581 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7582 7583 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7584 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7585 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7586 7587 // Handle small structures. 7588 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7589 // Structures with flexible arrays have variable length, so really 7590 // fail the size test above. 7591 const RecordDecl *RD = RT->getDecl(); 7592 if (RD->hasFlexibleArrayMember()) 7593 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7594 7595 // The structure is passed as an unextended integer, a float, or a double. 7596 llvm::Type *PassTy; 7597 if (isFPArgumentType(SingleElementTy)) { 7598 assert(Size == 32 || Size == 64); 7599 if (Size == 32) 7600 PassTy = llvm::Type::getFloatTy(getVMContext()); 7601 else 7602 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7603 } else 7604 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7605 return ABIArgInfo::getDirect(PassTy); 7606 } 7607 7608 // Non-structure compounds are passed indirectly. 7609 if (isCompoundType(Ty)) 7610 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7611 7612 return ABIArgInfo::getDirect(nullptr); 7613 } 7614 7615 //===----------------------------------------------------------------------===// 7616 // MSP430 ABI Implementation 7617 //===----------------------------------------------------------------------===// 7618 7619 namespace { 7620 7621 class MSP430ABIInfo : public DefaultABIInfo { 7622 static ABIArgInfo complexArgInfo() { 7623 ABIArgInfo Info = ABIArgInfo::getDirect(); 7624 Info.setCanBeFlattened(false); 7625 return Info; 7626 } 7627 7628 public: 7629 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7630 7631 ABIArgInfo classifyReturnType(QualType RetTy) const { 7632 if (RetTy->isAnyComplexType()) 7633 return complexArgInfo(); 7634 7635 return DefaultABIInfo::classifyReturnType(RetTy); 7636 } 7637 7638 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7639 if (RetTy->isAnyComplexType()) 7640 return complexArgInfo(); 7641 7642 return DefaultABIInfo::classifyArgumentType(RetTy); 7643 } 7644 7645 // Just copy the original implementations because 7646 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7647 void computeInfo(CGFunctionInfo &FI) const override { 7648 if (!getCXXABI().classifyReturnType(FI)) 7649 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7650 for (auto &I : FI.arguments()) 7651 I.info = classifyArgumentType(I.type); 7652 } 7653 7654 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7655 QualType Ty) const override { 7656 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7657 } 7658 }; 7659 7660 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7661 public: 7662 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7663 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7664 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7665 CodeGen::CodeGenModule &M) const override; 7666 }; 7667 7668 } 7669 7670 void MSP430TargetCodeGenInfo::setTargetAttributes( 7671 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7672 if (GV->isDeclaration()) 7673 return; 7674 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7675 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7676 if (!InterruptAttr) 7677 return; 7678 7679 // Handle 'interrupt' attribute: 7680 llvm::Function *F = cast<llvm::Function>(GV); 7681 7682 // Step 1: Set ISR calling convention. 7683 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7684 7685 // Step 2: Add attributes goodness. 7686 F->addFnAttr(llvm::Attribute::NoInline); 7687 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7688 } 7689 } 7690 7691 //===----------------------------------------------------------------------===// 7692 // MIPS ABI Implementation. This works for both little-endian and 7693 // big-endian variants. 7694 //===----------------------------------------------------------------------===// 7695 7696 namespace { 7697 class MipsABIInfo : public ABIInfo { 7698 bool IsO32; 7699 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7700 void CoerceToIntArgs(uint64_t TySize, 7701 SmallVectorImpl<llvm::Type *> &ArgList) const; 7702 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7703 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7704 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7705 public: 7706 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7707 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7708 StackAlignInBytes(IsO32 ? 8 : 16) {} 7709 7710 ABIArgInfo classifyReturnType(QualType RetTy) const; 7711 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7712 void computeInfo(CGFunctionInfo &FI) const override; 7713 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7714 QualType Ty) const override; 7715 ABIArgInfo extendType(QualType Ty) const; 7716 }; 7717 7718 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7719 unsigned SizeOfUnwindException; 7720 public: 7721 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7722 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7723 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7724 7725 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7726 return 29; 7727 } 7728 7729 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7730 CodeGen::CodeGenModule &CGM) const override { 7731 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7732 if (!FD) return; 7733 llvm::Function *Fn = cast<llvm::Function>(GV); 7734 7735 if (FD->hasAttr<MipsLongCallAttr>()) 7736 Fn->addFnAttr("long-call"); 7737 else if (FD->hasAttr<MipsShortCallAttr>()) 7738 Fn->addFnAttr("short-call"); 7739 7740 // Other attributes do not have a meaning for declarations. 7741 if (GV->isDeclaration()) 7742 return; 7743 7744 if (FD->hasAttr<Mips16Attr>()) { 7745 Fn->addFnAttr("mips16"); 7746 } 7747 else if (FD->hasAttr<NoMips16Attr>()) { 7748 Fn->addFnAttr("nomips16"); 7749 } 7750 7751 if (FD->hasAttr<MicroMipsAttr>()) 7752 Fn->addFnAttr("micromips"); 7753 else if (FD->hasAttr<NoMicroMipsAttr>()) 7754 Fn->addFnAttr("nomicromips"); 7755 7756 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7757 if (!Attr) 7758 return; 7759 7760 const char *Kind; 7761 switch (Attr->getInterrupt()) { 7762 case MipsInterruptAttr::eic: Kind = "eic"; break; 7763 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7764 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7765 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7766 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7767 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7768 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7769 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7770 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7771 } 7772 7773 Fn->addFnAttr("interrupt", Kind); 7774 7775 } 7776 7777 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7778 llvm::Value *Address) const override; 7779 7780 unsigned getSizeOfUnwindException() const override { 7781 return SizeOfUnwindException; 7782 } 7783 }; 7784 } 7785 7786 void MipsABIInfo::CoerceToIntArgs( 7787 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7788 llvm::IntegerType *IntTy = 7789 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7790 7791 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7792 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7793 ArgList.push_back(IntTy); 7794 7795 // If necessary, add one more integer type to ArgList. 7796 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7797 7798 if (R) 7799 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7800 } 7801 7802 // In N32/64, an aligned double precision floating point field is passed in 7803 // a register. 7804 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7805 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7806 7807 if (IsO32) { 7808 CoerceToIntArgs(TySize, ArgList); 7809 return llvm::StructType::get(getVMContext(), ArgList); 7810 } 7811 7812 if (Ty->isComplexType()) 7813 return CGT.ConvertType(Ty); 7814 7815 const RecordType *RT = Ty->getAs<RecordType>(); 7816 7817 // Unions/vectors are passed in integer registers. 7818 if (!RT || !RT->isStructureOrClassType()) { 7819 CoerceToIntArgs(TySize, ArgList); 7820 return llvm::StructType::get(getVMContext(), ArgList); 7821 } 7822 7823 const RecordDecl *RD = RT->getDecl(); 7824 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7825 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7826 7827 uint64_t LastOffset = 0; 7828 unsigned idx = 0; 7829 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7830 7831 // Iterate over fields in the struct/class and check if there are any aligned 7832 // double fields. 7833 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7834 i != e; ++i, ++idx) { 7835 const QualType Ty = i->getType(); 7836 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7837 7838 if (!BT || BT->getKind() != BuiltinType::Double) 7839 continue; 7840 7841 uint64_t Offset = Layout.getFieldOffset(idx); 7842 if (Offset % 64) // Ignore doubles that are not aligned. 7843 continue; 7844 7845 // Add ((Offset - LastOffset) / 64) args of type i64. 7846 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7847 ArgList.push_back(I64); 7848 7849 // Add double type. 7850 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7851 LastOffset = Offset + 64; 7852 } 7853 7854 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7855 ArgList.append(IntArgList.begin(), IntArgList.end()); 7856 7857 return llvm::StructType::get(getVMContext(), ArgList); 7858 } 7859 7860 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7861 uint64_t Offset) const { 7862 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7863 return nullptr; 7864 7865 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7866 } 7867 7868 ABIArgInfo 7869 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7870 Ty = useFirstFieldIfTransparentUnion(Ty); 7871 7872 uint64_t OrigOffset = Offset; 7873 uint64_t TySize = getContext().getTypeSize(Ty); 7874 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7875 7876 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7877 (uint64_t)StackAlignInBytes); 7878 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7879 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7880 7881 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7882 // Ignore empty aggregates. 7883 if (TySize == 0) 7884 return ABIArgInfo::getIgnore(); 7885 7886 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7887 Offset = OrigOffset + MinABIStackAlignInBytes; 7888 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7889 } 7890 7891 // If we have reached here, aggregates are passed directly by coercing to 7892 // another structure type. Padding is inserted if the offset of the 7893 // aggregate is unaligned. 7894 ABIArgInfo ArgInfo = 7895 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7896 getPaddingType(OrigOffset, CurrOffset)); 7897 ArgInfo.setInReg(true); 7898 return ArgInfo; 7899 } 7900 7901 // Treat an enum type as its underlying type. 7902 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7903 Ty = EnumTy->getDecl()->getIntegerType(); 7904 7905 // Make sure we pass indirectly things that are too large. 7906 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7907 if (EIT->getNumBits() > 128 || 7908 (EIT->getNumBits() > 64 && 7909 !getContext().getTargetInfo().hasInt128Type())) 7910 return getNaturalAlignIndirect(Ty); 7911 7912 // All integral types are promoted to the GPR width. 7913 if (Ty->isIntegralOrEnumerationType()) 7914 return extendType(Ty); 7915 7916 return ABIArgInfo::getDirect( 7917 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7918 } 7919 7920 llvm::Type* 7921 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7922 const RecordType *RT = RetTy->getAs<RecordType>(); 7923 SmallVector<llvm::Type*, 8> RTList; 7924 7925 if (RT && RT->isStructureOrClassType()) { 7926 const RecordDecl *RD = RT->getDecl(); 7927 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7928 unsigned FieldCnt = Layout.getFieldCount(); 7929 7930 // N32/64 returns struct/classes in floating point registers if the 7931 // following conditions are met: 7932 // 1. The size of the struct/class is no larger than 128-bit. 7933 // 2. The struct/class has one or two fields all of which are floating 7934 // point types. 7935 // 3. The offset of the first field is zero (this follows what gcc does). 7936 // 7937 // Any other composite results are returned in integer registers. 7938 // 7939 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7940 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7941 for (; b != e; ++b) { 7942 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7943 7944 if (!BT || !BT->isFloatingPoint()) 7945 break; 7946 7947 RTList.push_back(CGT.ConvertType(b->getType())); 7948 } 7949 7950 if (b == e) 7951 return llvm::StructType::get(getVMContext(), RTList, 7952 RD->hasAttr<PackedAttr>()); 7953 7954 RTList.clear(); 7955 } 7956 } 7957 7958 CoerceToIntArgs(Size, RTList); 7959 return llvm::StructType::get(getVMContext(), RTList); 7960 } 7961 7962 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7963 uint64_t Size = getContext().getTypeSize(RetTy); 7964 7965 if (RetTy->isVoidType()) 7966 return ABIArgInfo::getIgnore(); 7967 7968 // O32 doesn't treat zero-sized structs differently from other structs. 7969 // However, N32/N64 ignores zero sized return values. 7970 if (!IsO32 && Size == 0) 7971 return ABIArgInfo::getIgnore(); 7972 7973 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7974 if (Size <= 128) { 7975 if (RetTy->isAnyComplexType()) 7976 return ABIArgInfo::getDirect(); 7977 7978 // O32 returns integer vectors in registers and N32/N64 returns all small 7979 // aggregates in registers. 7980 if (!IsO32 || 7981 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7982 ABIArgInfo ArgInfo = 7983 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7984 ArgInfo.setInReg(true); 7985 return ArgInfo; 7986 } 7987 } 7988 7989 return getNaturalAlignIndirect(RetTy); 7990 } 7991 7992 // Treat an enum type as its underlying type. 7993 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7994 RetTy = EnumTy->getDecl()->getIntegerType(); 7995 7996 // Make sure we pass indirectly things that are too large. 7997 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7998 if (EIT->getNumBits() > 128 || 7999 (EIT->getNumBits() > 64 && 8000 !getContext().getTargetInfo().hasInt128Type())) 8001 return getNaturalAlignIndirect(RetTy); 8002 8003 if (isPromotableIntegerTypeForABI(RetTy)) 8004 return ABIArgInfo::getExtend(RetTy); 8005 8006 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8007 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8008 return ABIArgInfo::getSignExtend(RetTy); 8009 8010 return ABIArgInfo::getDirect(); 8011 } 8012 8013 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8014 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8015 if (!getCXXABI().classifyReturnType(FI)) 8016 RetInfo = classifyReturnType(FI.getReturnType()); 8017 8018 // Check if a pointer to an aggregate is passed as a hidden argument. 8019 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8020 8021 for (auto &I : FI.arguments()) 8022 I.info = classifyArgumentType(I.type, Offset); 8023 } 8024 8025 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8026 QualType OrigTy) const { 8027 QualType Ty = OrigTy; 8028 8029 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8030 // Pointers are also promoted in the same way but this only matters for N32. 8031 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8032 unsigned PtrWidth = getTarget().getPointerWidth(0); 8033 bool DidPromote = false; 8034 if ((Ty->isIntegerType() && 8035 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8036 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8037 DidPromote = true; 8038 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8039 Ty->isSignedIntegerType()); 8040 } 8041 8042 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8043 8044 // The alignment of things in the argument area is never larger than 8045 // StackAlignInBytes. 8046 TyInfo.Align = 8047 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8048 8049 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8050 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8051 8052 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8053 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8054 8055 8056 // If there was a promotion, "unpromote" into a temporary. 8057 // TODO: can we just use a pointer into a subset of the original slot? 8058 if (DidPromote) { 8059 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8060 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8061 8062 // Truncate down to the right width. 8063 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8064 : CGF.IntPtrTy); 8065 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8066 if (OrigTy->isPointerType()) 8067 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8068 8069 CGF.Builder.CreateStore(V, Temp); 8070 Addr = Temp; 8071 } 8072 8073 return Addr; 8074 } 8075 8076 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8077 int TySize = getContext().getTypeSize(Ty); 8078 8079 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8080 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8081 return ABIArgInfo::getSignExtend(Ty); 8082 8083 return ABIArgInfo::getExtend(Ty); 8084 } 8085 8086 bool 8087 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8088 llvm::Value *Address) const { 8089 // This information comes from gcc's implementation, which seems to 8090 // as canonical as it gets. 8091 8092 // Everything on MIPS is 4 bytes. Double-precision FP registers 8093 // are aliased to pairs of single-precision FP registers. 8094 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8095 8096 // 0-31 are the general purpose registers, $0 - $31. 8097 // 32-63 are the floating-point registers, $f0 - $f31. 8098 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8099 // 66 is the (notional, I think) register for signal-handler return. 8100 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8101 8102 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8103 // They are one bit wide and ignored here. 8104 8105 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8106 // (coprocessor 1 is the FP unit) 8107 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8108 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8109 // 176-181 are the DSP accumulator registers. 8110 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8111 return false; 8112 } 8113 8114 //===----------------------------------------------------------------------===// 8115 // M68k ABI Implementation 8116 //===----------------------------------------------------------------------===// 8117 8118 namespace { 8119 8120 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8121 public: 8122 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8123 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8124 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8125 CodeGen::CodeGenModule &M) const override; 8126 }; 8127 8128 } // namespace 8129 8130 void M68kTargetCodeGenInfo::setTargetAttributes( 8131 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8132 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8133 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8134 // Handle 'interrupt' attribute: 8135 llvm::Function *F = cast<llvm::Function>(GV); 8136 8137 // Step 1: Set ISR calling convention. 8138 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8139 8140 // Step 2: Add attributes goodness. 8141 F->addFnAttr(llvm::Attribute::NoInline); 8142 8143 // Step 3: Emit ISR vector alias. 8144 unsigned Num = attr->getNumber() / 2; 8145 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8146 "__isr_" + Twine(Num), F); 8147 } 8148 } 8149 } 8150 8151 //===----------------------------------------------------------------------===// 8152 // AVR ABI Implementation. 8153 //===----------------------------------------------------------------------===// 8154 8155 namespace { 8156 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8157 public: 8158 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8159 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8160 8161 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8162 const VarDecl *D) const override { 8163 // Check if a global/static variable is defined within address space 1 8164 // but not constant. 8165 LangAS AS = D->getType().getAddressSpace(); 8166 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8167 !D->getType().isConstQualified()) 8168 CGM.getDiags().Report(D->getLocation(), 8169 diag::err_verify_nonconst_addrspace) 8170 << "__flash"; 8171 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8172 } 8173 8174 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8175 CodeGen::CodeGenModule &CGM) const override { 8176 if (GV->isDeclaration()) 8177 return; 8178 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8179 if (!FD) return; 8180 auto *Fn = cast<llvm::Function>(GV); 8181 8182 if (FD->getAttr<AVRInterruptAttr>()) 8183 Fn->addFnAttr("interrupt"); 8184 8185 if (FD->getAttr<AVRSignalAttr>()) 8186 Fn->addFnAttr("signal"); 8187 } 8188 }; 8189 } 8190 8191 //===----------------------------------------------------------------------===// 8192 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8193 // Currently subclassed only to implement custom OpenCL C function attribute 8194 // handling. 8195 //===----------------------------------------------------------------------===// 8196 8197 namespace { 8198 8199 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8200 public: 8201 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8202 : DefaultTargetCodeGenInfo(CGT) {} 8203 8204 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8205 CodeGen::CodeGenModule &M) const override; 8206 }; 8207 8208 void TCETargetCodeGenInfo::setTargetAttributes( 8209 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8210 if (GV->isDeclaration()) 8211 return; 8212 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8213 if (!FD) return; 8214 8215 llvm::Function *F = cast<llvm::Function>(GV); 8216 8217 if (M.getLangOpts().OpenCL) { 8218 if (FD->hasAttr<OpenCLKernelAttr>()) { 8219 // OpenCL C Kernel functions are not subject to inlining 8220 F->addFnAttr(llvm::Attribute::NoInline); 8221 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8222 if (Attr) { 8223 // Convert the reqd_work_group_size() attributes to metadata. 8224 llvm::LLVMContext &Context = F->getContext(); 8225 llvm::NamedMDNode *OpenCLMetadata = 8226 M.getModule().getOrInsertNamedMetadata( 8227 "opencl.kernel_wg_size_info"); 8228 8229 SmallVector<llvm::Metadata *, 5> Operands; 8230 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8231 8232 Operands.push_back( 8233 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8234 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8235 Operands.push_back( 8236 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8237 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8238 Operands.push_back( 8239 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8240 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8241 8242 // Add a boolean constant operand for "required" (true) or "hint" 8243 // (false) for implementing the work_group_size_hint attr later. 8244 // Currently always true as the hint is not yet implemented. 8245 Operands.push_back( 8246 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8247 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8248 } 8249 } 8250 } 8251 } 8252 8253 } 8254 8255 //===----------------------------------------------------------------------===// 8256 // Hexagon ABI Implementation 8257 //===----------------------------------------------------------------------===// 8258 8259 namespace { 8260 8261 class HexagonABIInfo : public DefaultABIInfo { 8262 public: 8263 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8264 8265 private: 8266 ABIArgInfo classifyReturnType(QualType RetTy) const; 8267 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8268 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8269 8270 void computeInfo(CGFunctionInfo &FI) const override; 8271 8272 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8273 QualType Ty) const override; 8274 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8275 QualType Ty) const; 8276 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8277 QualType Ty) const; 8278 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8279 QualType Ty) const; 8280 }; 8281 8282 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8283 public: 8284 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8285 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8286 8287 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8288 return 29; 8289 } 8290 8291 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8292 CodeGen::CodeGenModule &GCM) const override { 8293 if (GV->isDeclaration()) 8294 return; 8295 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8296 if (!FD) 8297 return; 8298 } 8299 }; 8300 8301 } // namespace 8302 8303 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8304 unsigned RegsLeft = 6; 8305 if (!getCXXABI().classifyReturnType(FI)) 8306 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8307 for (auto &I : FI.arguments()) 8308 I.info = classifyArgumentType(I.type, &RegsLeft); 8309 } 8310 8311 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8312 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8313 " through registers"); 8314 8315 if (*RegsLeft == 0) 8316 return false; 8317 8318 if (Size <= 32) { 8319 (*RegsLeft)--; 8320 return true; 8321 } 8322 8323 if (2 <= (*RegsLeft & (~1U))) { 8324 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8325 return true; 8326 } 8327 8328 // Next available register was r5 but candidate was greater than 32-bits so it 8329 // has to go on the stack. However we still consume r5 8330 if (*RegsLeft == 1) 8331 *RegsLeft = 0; 8332 8333 return false; 8334 } 8335 8336 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8337 unsigned *RegsLeft) const { 8338 if (!isAggregateTypeForABI(Ty)) { 8339 // Treat an enum type as its underlying type. 8340 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8341 Ty = EnumTy->getDecl()->getIntegerType(); 8342 8343 uint64_t Size = getContext().getTypeSize(Ty); 8344 if (Size <= 64) 8345 HexagonAdjustRegsLeft(Size, RegsLeft); 8346 8347 if (Size > 64 && Ty->isExtIntType()) 8348 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8349 8350 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8351 : ABIArgInfo::getDirect(); 8352 } 8353 8354 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8355 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8356 8357 // Ignore empty records. 8358 if (isEmptyRecord(getContext(), Ty, true)) 8359 return ABIArgInfo::getIgnore(); 8360 8361 uint64_t Size = getContext().getTypeSize(Ty); 8362 unsigned Align = getContext().getTypeAlign(Ty); 8363 8364 if (Size > 64) 8365 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8366 8367 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8368 Align = Size <= 32 ? 32 : 64; 8369 if (Size <= Align) { 8370 // Pass in the smallest viable integer type. 8371 if (!llvm::isPowerOf2_64(Size)) 8372 Size = llvm::NextPowerOf2(Size); 8373 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8374 } 8375 return DefaultABIInfo::classifyArgumentType(Ty); 8376 } 8377 8378 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8379 if (RetTy->isVoidType()) 8380 return ABIArgInfo::getIgnore(); 8381 8382 const TargetInfo &T = CGT.getTarget(); 8383 uint64_t Size = getContext().getTypeSize(RetTy); 8384 8385 if (RetTy->getAs<VectorType>()) { 8386 // HVX vectors are returned in vector registers or register pairs. 8387 if (T.hasFeature("hvx")) { 8388 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8389 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8390 if (Size == VecSize || Size == 2*VecSize) 8391 return ABIArgInfo::getDirectInReg(); 8392 } 8393 // Large vector types should be returned via memory. 8394 if (Size > 64) 8395 return getNaturalAlignIndirect(RetTy); 8396 } 8397 8398 if (!isAggregateTypeForABI(RetTy)) { 8399 // Treat an enum type as its underlying type. 8400 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8401 RetTy = EnumTy->getDecl()->getIntegerType(); 8402 8403 if (Size > 64 && RetTy->isExtIntType()) 8404 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8405 8406 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8407 : ABIArgInfo::getDirect(); 8408 } 8409 8410 if (isEmptyRecord(getContext(), RetTy, true)) 8411 return ABIArgInfo::getIgnore(); 8412 8413 // Aggregates <= 8 bytes are returned in registers, other aggregates 8414 // are returned indirectly. 8415 if (Size <= 64) { 8416 // Return in the smallest viable integer type. 8417 if (!llvm::isPowerOf2_64(Size)) 8418 Size = llvm::NextPowerOf2(Size); 8419 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8420 } 8421 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8422 } 8423 8424 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8425 Address VAListAddr, 8426 QualType Ty) const { 8427 // Load the overflow area pointer. 8428 Address __overflow_area_pointer_p = 8429 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8430 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8431 __overflow_area_pointer_p, "__overflow_area_pointer"); 8432 8433 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8434 if (Align > 4) { 8435 // Alignment should be a power of 2. 8436 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8437 8438 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8439 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8440 8441 // Add offset to the current pointer to access the argument. 8442 __overflow_area_pointer = 8443 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8444 llvm::Value *AsInt = 8445 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8446 8447 // Create a mask which should be "AND"ed 8448 // with (overflow_arg_area + align - 1) 8449 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8450 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8451 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8452 "__overflow_area_pointer.align"); 8453 } 8454 8455 // Get the type of the argument from memory and bitcast 8456 // overflow area pointer to the argument type. 8457 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8458 Address AddrTyped = CGF.Builder.CreateBitCast( 8459 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8460 llvm::PointerType::getUnqual(PTy)); 8461 8462 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8463 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8464 8465 __overflow_area_pointer = CGF.Builder.CreateGEP( 8466 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8467 "__overflow_area_pointer.next"); 8468 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8469 8470 return AddrTyped; 8471 } 8472 8473 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8474 Address VAListAddr, 8475 QualType Ty) const { 8476 // FIXME: Need to handle alignment 8477 llvm::Type *BP = CGF.Int8PtrTy; 8478 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8479 CGBuilderTy &Builder = CGF.Builder; 8480 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8481 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8482 // Handle address alignment for type alignment > 32 bits 8483 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8484 if (TyAlign > 4) { 8485 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8486 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8487 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8488 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8489 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8490 } 8491 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8492 Address AddrTyped = Builder.CreateBitCast( 8493 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8494 8495 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8496 llvm::Value *NextAddr = Builder.CreateGEP( 8497 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8498 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8499 8500 return AddrTyped; 8501 } 8502 8503 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8504 Address VAListAddr, 8505 QualType Ty) const { 8506 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8507 8508 if (ArgSize > 8) 8509 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8510 8511 // Here we have check if the argument is in register area or 8512 // in overflow area. 8513 // If the saved register area pointer + argsize rounded up to alignment > 8514 // saved register area end pointer, argument is in overflow area. 8515 unsigned RegsLeft = 6; 8516 Ty = CGF.getContext().getCanonicalType(Ty); 8517 (void)classifyArgumentType(Ty, &RegsLeft); 8518 8519 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8520 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8521 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8522 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8523 8524 // Get rounded size of the argument.GCC does not allow vararg of 8525 // size < 4 bytes. We follow the same logic here. 8526 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8527 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8528 8529 // Argument may be in saved register area 8530 CGF.EmitBlock(MaybeRegBlock); 8531 8532 // Load the current saved register area pointer. 8533 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8534 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8535 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8536 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8537 8538 // Load the saved register area end pointer. 8539 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8540 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8541 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8542 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8543 8544 // If the size of argument is > 4 bytes, check if the stack 8545 // location is aligned to 8 bytes 8546 if (ArgAlign > 4) { 8547 8548 llvm::Value *__current_saved_reg_area_pointer_int = 8549 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8550 CGF.Int32Ty); 8551 8552 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8553 __current_saved_reg_area_pointer_int, 8554 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8555 "align_current_saved_reg_area_pointer"); 8556 8557 __current_saved_reg_area_pointer_int = 8558 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8559 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8560 "align_current_saved_reg_area_pointer"); 8561 8562 __current_saved_reg_area_pointer = 8563 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8564 __current_saved_reg_area_pointer->getType(), 8565 "align_current_saved_reg_area_pointer"); 8566 } 8567 8568 llvm::Value *__new_saved_reg_area_pointer = 8569 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8570 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8571 "__new_saved_reg_area_pointer"); 8572 8573 llvm::Value *UsingStack = 0; 8574 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8575 __saved_reg_area_end_pointer); 8576 8577 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8578 8579 // Argument in saved register area 8580 // Implement the block where argument is in register saved area 8581 CGF.EmitBlock(InRegBlock); 8582 8583 llvm::Type *PTy = CGF.ConvertType(Ty); 8584 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8585 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8586 8587 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8588 __current_saved_reg_area_pointer_p); 8589 8590 CGF.EmitBranch(ContBlock); 8591 8592 // Argument in overflow area 8593 // Implement the block where the argument is in overflow area. 8594 CGF.EmitBlock(OnStackBlock); 8595 8596 // Load the overflow area pointer 8597 Address __overflow_area_pointer_p = 8598 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8599 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8600 __overflow_area_pointer_p, "__overflow_area_pointer"); 8601 8602 // Align the overflow area pointer according to the alignment of the argument 8603 if (ArgAlign > 4) { 8604 llvm::Value *__overflow_area_pointer_int = 8605 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8606 8607 __overflow_area_pointer_int = 8608 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8609 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8610 "align_overflow_area_pointer"); 8611 8612 __overflow_area_pointer_int = 8613 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8614 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8615 "align_overflow_area_pointer"); 8616 8617 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8618 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8619 "align_overflow_area_pointer"); 8620 } 8621 8622 // Get the pointer for next argument in overflow area and store it 8623 // to overflow area pointer. 8624 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8625 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8626 "__overflow_area_pointer.next"); 8627 8628 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8629 __overflow_area_pointer_p); 8630 8631 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8632 __current_saved_reg_area_pointer_p); 8633 8634 // Bitcast the overflow area pointer to the type of argument. 8635 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8636 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8637 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8638 8639 CGF.EmitBranch(ContBlock); 8640 8641 // Get the correct pointer to load the variable argument 8642 // Implement the ContBlock 8643 CGF.EmitBlock(ContBlock); 8644 8645 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8646 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8647 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8648 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8649 8650 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8651 } 8652 8653 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8654 QualType Ty) const { 8655 8656 if (getTarget().getTriple().isMusl()) 8657 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8658 8659 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8660 } 8661 8662 //===----------------------------------------------------------------------===// 8663 // Lanai ABI Implementation 8664 //===----------------------------------------------------------------------===// 8665 8666 namespace { 8667 class LanaiABIInfo : public DefaultABIInfo { 8668 public: 8669 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8670 8671 bool shouldUseInReg(QualType Ty, CCState &State) const; 8672 8673 void computeInfo(CGFunctionInfo &FI) const override { 8674 CCState State(FI); 8675 // Lanai uses 4 registers to pass arguments unless the function has the 8676 // regparm attribute set. 8677 if (FI.getHasRegParm()) { 8678 State.FreeRegs = FI.getRegParm(); 8679 } else { 8680 State.FreeRegs = 4; 8681 } 8682 8683 if (!getCXXABI().classifyReturnType(FI)) 8684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8685 for (auto &I : FI.arguments()) 8686 I.info = classifyArgumentType(I.type, State); 8687 } 8688 8689 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8690 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8691 }; 8692 } // end anonymous namespace 8693 8694 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8695 unsigned Size = getContext().getTypeSize(Ty); 8696 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8697 8698 if (SizeInRegs == 0) 8699 return false; 8700 8701 if (SizeInRegs > State.FreeRegs) { 8702 State.FreeRegs = 0; 8703 return false; 8704 } 8705 8706 State.FreeRegs -= SizeInRegs; 8707 8708 return true; 8709 } 8710 8711 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8712 CCState &State) const { 8713 if (!ByVal) { 8714 if (State.FreeRegs) { 8715 --State.FreeRegs; // Non-byval indirects just use one pointer. 8716 return getNaturalAlignIndirectInReg(Ty); 8717 } 8718 return getNaturalAlignIndirect(Ty, false); 8719 } 8720 8721 // Compute the byval alignment. 8722 const unsigned MinABIStackAlignInBytes = 4; 8723 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8724 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8725 /*Realign=*/TypeAlign > 8726 MinABIStackAlignInBytes); 8727 } 8728 8729 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8730 CCState &State) const { 8731 // Check with the C++ ABI first. 8732 const RecordType *RT = Ty->getAs<RecordType>(); 8733 if (RT) { 8734 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8735 if (RAA == CGCXXABI::RAA_Indirect) { 8736 return getIndirectResult(Ty, /*ByVal=*/false, State); 8737 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8738 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8739 } 8740 } 8741 8742 if (isAggregateTypeForABI(Ty)) { 8743 // Structures with flexible arrays are always indirect. 8744 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8745 return getIndirectResult(Ty, /*ByVal=*/true, State); 8746 8747 // Ignore empty structs/unions. 8748 if (isEmptyRecord(getContext(), Ty, true)) 8749 return ABIArgInfo::getIgnore(); 8750 8751 llvm::LLVMContext &LLVMContext = getVMContext(); 8752 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8753 if (SizeInRegs <= State.FreeRegs) { 8754 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8755 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8756 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8757 State.FreeRegs -= SizeInRegs; 8758 return ABIArgInfo::getDirectInReg(Result); 8759 } else { 8760 State.FreeRegs = 0; 8761 } 8762 return getIndirectResult(Ty, true, State); 8763 } 8764 8765 // Treat an enum type as its underlying type. 8766 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8767 Ty = EnumTy->getDecl()->getIntegerType(); 8768 8769 bool InReg = shouldUseInReg(Ty, State); 8770 8771 // Don't pass >64 bit integers in registers. 8772 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8773 if (EIT->getNumBits() > 64) 8774 return getIndirectResult(Ty, /*ByVal=*/true, State); 8775 8776 if (isPromotableIntegerTypeForABI(Ty)) { 8777 if (InReg) 8778 return ABIArgInfo::getDirectInReg(); 8779 return ABIArgInfo::getExtend(Ty); 8780 } 8781 if (InReg) 8782 return ABIArgInfo::getDirectInReg(); 8783 return ABIArgInfo::getDirect(); 8784 } 8785 8786 namespace { 8787 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8788 public: 8789 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8790 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8791 }; 8792 } 8793 8794 //===----------------------------------------------------------------------===// 8795 // AMDGPU ABI Implementation 8796 //===----------------------------------------------------------------------===// 8797 8798 namespace { 8799 8800 class AMDGPUABIInfo final : public DefaultABIInfo { 8801 private: 8802 static const unsigned MaxNumRegsForArgsRet = 16; 8803 8804 unsigned numRegsForType(QualType Ty) const; 8805 8806 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8807 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8808 uint64_t Members) const override; 8809 8810 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8811 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8812 unsigned ToAS) const { 8813 // Single value types. 8814 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8815 return llvm::PointerType::get( 8816 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8817 return Ty; 8818 } 8819 8820 public: 8821 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8822 DefaultABIInfo(CGT) {} 8823 8824 ABIArgInfo classifyReturnType(QualType RetTy) const; 8825 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8826 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8827 8828 void computeInfo(CGFunctionInfo &FI) const override; 8829 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8830 QualType Ty) const override; 8831 }; 8832 8833 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8834 return true; 8835 } 8836 8837 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8838 const Type *Base, uint64_t Members) const { 8839 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8840 8841 // Homogeneous Aggregates may occupy at most 16 registers. 8842 return Members * NumRegs <= MaxNumRegsForArgsRet; 8843 } 8844 8845 /// Estimate number of registers the type will use when passed in registers. 8846 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8847 unsigned NumRegs = 0; 8848 8849 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8850 // Compute from the number of elements. The reported size is based on the 8851 // in-memory size, which includes the padding 4th element for 3-vectors. 8852 QualType EltTy = VT->getElementType(); 8853 unsigned EltSize = getContext().getTypeSize(EltTy); 8854 8855 // 16-bit element vectors should be passed as packed. 8856 if (EltSize == 16) 8857 return (VT->getNumElements() + 1) / 2; 8858 8859 unsigned EltNumRegs = (EltSize + 31) / 32; 8860 return EltNumRegs * VT->getNumElements(); 8861 } 8862 8863 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8864 const RecordDecl *RD = RT->getDecl(); 8865 assert(!RD->hasFlexibleArrayMember()); 8866 8867 for (const FieldDecl *Field : RD->fields()) { 8868 QualType FieldTy = Field->getType(); 8869 NumRegs += numRegsForType(FieldTy); 8870 } 8871 8872 return NumRegs; 8873 } 8874 8875 return (getContext().getTypeSize(Ty) + 31) / 32; 8876 } 8877 8878 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8879 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8880 8881 if (!getCXXABI().classifyReturnType(FI)) 8882 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8883 8884 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8885 for (auto &Arg : FI.arguments()) { 8886 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8887 Arg.info = classifyKernelArgumentType(Arg.type); 8888 } else { 8889 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8890 } 8891 } 8892 } 8893 8894 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8895 QualType Ty) const { 8896 llvm_unreachable("AMDGPU does not support varargs"); 8897 } 8898 8899 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8900 if (isAggregateTypeForABI(RetTy)) { 8901 // Records with non-trivial destructors/copy-constructors should not be 8902 // returned by value. 8903 if (!getRecordArgABI(RetTy, getCXXABI())) { 8904 // Ignore empty structs/unions. 8905 if (isEmptyRecord(getContext(), RetTy, true)) 8906 return ABIArgInfo::getIgnore(); 8907 8908 // Lower single-element structs to just return a regular value. 8909 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8910 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8911 8912 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8913 const RecordDecl *RD = RT->getDecl(); 8914 if (RD->hasFlexibleArrayMember()) 8915 return DefaultABIInfo::classifyReturnType(RetTy); 8916 } 8917 8918 // Pack aggregates <= 4 bytes into single VGPR or pair. 8919 uint64_t Size = getContext().getTypeSize(RetTy); 8920 if (Size <= 16) 8921 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8922 8923 if (Size <= 32) 8924 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8925 8926 if (Size <= 64) { 8927 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8928 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8929 } 8930 8931 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8932 return ABIArgInfo::getDirect(); 8933 } 8934 } 8935 8936 // Otherwise just do the default thing. 8937 return DefaultABIInfo::classifyReturnType(RetTy); 8938 } 8939 8940 /// For kernels all parameters are really passed in a special buffer. It doesn't 8941 /// make sense to pass anything byval, so everything must be direct. 8942 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8943 Ty = useFirstFieldIfTransparentUnion(Ty); 8944 8945 // TODO: Can we omit empty structs? 8946 8947 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8948 Ty = QualType(SeltTy, 0); 8949 8950 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8951 llvm::Type *LTy = OrigLTy; 8952 if (getContext().getLangOpts().HIP) { 8953 LTy = coerceKernelArgumentType( 8954 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8955 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8956 } 8957 8958 // FIXME: Should also use this for OpenCL, but it requires addressing the 8959 // problem of kernels being called. 8960 // 8961 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8962 // to global address space when using byref. This would require implementing a 8963 // new kind of coercion of the in-memory type when for indirect arguments. 8964 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8965 isAggregateTypeForABI(Ty)) { 8966 return ABIArgInfo::getIndirectAliased( 8967 getContext().getTypeAlignInChars(Ty), 8968 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8969 false /*Realign*/, nullptr /*Padding*/); 8970 } 8971 8972 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8973 // individual elements, which confuses the Clover OpenCL backend; therefore we 8974 // have to set it to false here. Other args of getDirect() are just defaults. 8975 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8976 } 8977 8978 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8979 unsigned &NumRegsLeft) const { 8980 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8981 8982 Ty = useFirstFieldIfTransparentUnion(Ty); 8983 8984 if (isAggregateTypeForABI(Ty)) { 8985 // Records with non-trivial destructors/copy-constructors should not be 8986 // passed by value. 8987 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8988 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8989 8990 // Ignore empty structs/unions. 8991 if (isEmptyRecord(getContext(), Ty, true)) 8992 return ABIArgInfo::getIgnore(); 8993 8994 // Lower single-element structs to just pass a regular value. TODO: We 8995 // could do reasonable-size multiple-element structs too, using getExpand(), 8996 // though watch out for things like bitfields. 8997 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8998 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8999 9000 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9001 const RecordDecl *RD = RT->getDecl(); 9002 if (RD->hasFlexibleArrayMember()) 9003 return DefaultABIInfo::classifyArgumentType(Ty); 9004 } 9005 9006 // Pack aggregates <= 8 bytes into single VGPR or pair. 9007 uint64_t Size = getContext().getTypeSize(Ty); 9008 if (Size <= 64) { 9009 unsigned NumRegs = (Size + 31) / 32; 9010 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9011 9012 if (Size <= 16) 9013 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9014 9015 if (Size <= 32) 9016 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9017 9018 // XXX: Should this be i64 instead, and should the limit increase? 9019 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9020 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9021 } 9022 9023 if (NumRegsLeft > 0) { 9024 unsigned NumRegs = numRegsForType(Ty); 9025 if (NumRegsLeft >= NumRegs) { 9026 NumRegsLeft -= NumRegs; 9027 return ABIArgInfo::getDirect(); 9028 } 9029 } 9030 } 9031 9032 // Otherwise just do the default thing. 9033 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9034 if (!ArgInfo.isIndirect()) { 9035 unsigned NumRegs = numRegsForType(Ty); 9036 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9037 } 9038 9039 return ArgInfo; 9040 } 9041 9042 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9043 public: 9044 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9045 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9046 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9047 CodeGen::CodeGenModule &M) const override; 9048 unsigned getOpenCLKernelCallingConv() const override; 9049 9050 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9051 llvm::PointerType *T, QualType QT) const override; 9052 9053 LangAS getASTAllocaAddressSpace() const override { 9054 return getLangASFromTargetAS( 9055 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9056 } 9057 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9058 const VarDecl *D) const override; 9059 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9060 SyncScope Scope, 9061 llvm::AtomicOrdering Ordering, 9062 llvm::LLVMContext &Ctx) const override; 9063 llvm::Function * 9064 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9065 llvm::Function *BlockInvokeFunc, 9066 llvm::Value *BlockLiteral) const override; 9067 bool shouldEmitStaticExternCAliases() const override; 9068 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9069 }; 9070 } 9071 9072 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9073 llvm::GlobalValue *GV) { 9074 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9075 return false; 9076 9077 return D->hasAttr<OpenCLKernelAttr>() || 9078 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9079 (isa<VarDecl>(D) && 9080 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9081 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9082 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9083 } 9084 9085 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9086 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9087 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9088 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9089 GV->setDSOLocal(true); 9090 } 9091 9092 if (GV->isDeclaration()) 9093 return; 9094 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9095 if (!FD) 9096 return; 9097 9098 llvm::Function *F = cast<llvm::Function>(GV); 9099 9100 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9101 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9102 9103 9104 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9105 FD->hasAttr<OpenCLKernelAttr>(); 9106 const bool IsHIPKernel = M.getLangOpts().HIP && 9107 FD->hasAttr<CUDAGlobalAttr>(); 9108 if ((IsOpenCLKernel || IsHIPKernel) && 9109 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9110 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9111 9112 if (IsHIPKernel) 9113 F->addFnAttr("uniform-work-group-size", "true"); 9114 9115 9116 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9117 if (ReqdWGS || FlatWGS) { 9118 unsigned Min = 0; 9119 unsigned Max = 0; 9120 if (FlatWGS) { 9121 Min = FlatWGS->getMin() 9122 ->EvaluateKnownConstInt(M.getContext()) 9123 .getExtValue(); 9124 Max = FlatWGS->getMax() 9125 ->EvaluateKnownConstInt(M.getContext()) 9126 .getExtValue(); 9127 } 9128 if (ReqdWGS && Min == 0 && Max == 0) 9129 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9130 9131 if (Min != 0) { 9132 assert(Min <= Max && "Min must be less than or equal Max"); 9133 9134 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9135 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9136 } else 9137 assert(Max == 0 && "Max must be zero"); 9138 } else if (IsOpenCLKernel || IsHIPKernel) { 9139 // By default, restrict the maximum size to a value specified by 9140 // --gpu-max-threads-per-block=n or its default value for HIP. 9141 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9142 const unsigned DefaultMaxWorkGroupSize = 9143 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9144 : M.getLangOpts().GPUMaxThreadsPerBlock; 9145 std::string AttrVal = 9146 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9147 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9148 } 9149 9150 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9151 unsigned Min = 9152 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9153 unsigned Max = Attr->getMax() ? Attr->getMax() 9154 ->EvaluateKnownConstInt(M.getContext()) 9155 .getExtValue() 9156 : 0; 9157 9158 if (Min != 0) { 9159 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9160 9161 std::string AttrVal = llvm::utostr(Min); 9162 if (Max != 0) 9163 AttrVal = AttrVal + "," + llvm::utostr(Max); 9164 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9165 } else 9166 assert(Max == 0 && "Max must be zero"); 9167 } 9168 9169 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9170 unsigned NumSGPR = Attr->getNumSGPR(); 9171 9172 if (NumSGPR != 0) 9173 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9174 } 9175 9176 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9177 uint32_t NumVGPR = Attr->getNumVGPR(); 9178 9179 if (NumVGPR != 0) 9180 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9181 } 9182 9183 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9184 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9185 9186 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9187 F->addFnAttr("amdgpu-ieee", "false"); 9188 } 9189 9190 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9191 return llvm::CallingConv::AMDGPU_KERNEL; 9192 } 9193 9194 // Currently LLVM assumes null pointers always have value 0, 9195 // which results in incorrectly transformed IR. Therefore, instead of 9196 // emitting null pointers in private and local address spaces, a null 9197 // pointer in generic address space is emitted which is casted to a 9198 // pointer in local or private address space. 9199 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9200 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9201 QualType QT) const { 9202 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9203 return llvm::ConstantPointerNull::get(PT); 9204 9205 auto &Ctx = CGM.getContext(); 9206 auto NPT = llvm::PointerType::get(PT->getElementType(), 9207 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9208 return llvm::ConstantExpr::getAddrSpaceCast( 9209 llvm::ConstantPointerNull::get(NPT), PT); 9210 } 9211 9212 LangAS 9213 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9214 const VarDecl *D) const { 9215 assert(!CGM.getLangOpts().OpenCL && 9216 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9217 "Address space agnostic languages only"); 9218 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9219 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9220 if (!D) 9221 return DefaultGlobalAS; 9222 9223 LangAS AddrSpace = D->getType().getAddressSpace(); 9224 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9225 if (AddrSpace != LangAS::Default) 9226 return AddrSpace; 9227 9228 if (CGM.isTypeConstant(D->getType(), false)) { 9229 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9230 return ConstAS.getValue(); 9231 } 9232 return DefaultGlobalAS; 9233 } 9234 9235 llvm::SyncScope::ID 9236 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9237 SyncScope Scope, 9238 llvm::AtomicOrdering Ordering, 9239 llvm::LLVMContext &Ctx) const { 9240 std::string Name; 9241 switch (Scope) { 9242 case SyncScope::OpenCLWorkGroup: 9243 Name = "workgroup"; 9244 break; 9245 case SyncScope::OpenCLDevice: 9246 Name = "agent"; 9247 break; 9248 case SyncScope::OpenCLAllSVMDevices: 9249 Name = ""; 9250 break; 9251 case SyncScope::OpenCLSubGroup: 9252 Name = "wavefront"; 9253 } 9254 9255 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9256 if (!Name.empty()) 9257 Name = Twine(Twine(Name) + Twine("-")).str(); 9258 9259 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9260 } 9261 9262 return Ctx.getOrInsertSyncScopeID(Name); 9263 } 9264 9265 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9266 return false; 9267 } 9268 9269 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9270 const FunctionType *&FT) const { 9271 FT = getABIInfo().getContext().adjustFunctionType( 9272 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9273 } 9274 9275 //===----------------------------------------------------------------------===// 9276 // SPARC v8 ABI Implementation. 9277 // Based on the SPARC Compliance Definition version 2.4.1. 9278 // 9279 // Ensures that complex values are passed in registers. 9280 // 9281 namespace { 9282 class SparcV8ABIInfo : public DefaultABIInfo { 9283 public: 9284 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9285 9286 private: 9287 ABIArgInfo classifyReturnType(QualType RetTy) const; 9288 void computeInfo(CGFunctionInfo &FI) const override; 9289 }; 9290 } // end anonymous namespace 9291 9292 9293 ABIArgInfo 9294 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9295 if (Ty->isAnyComplexType()) { 9296 return ABIArgInfo::getDirect(); 9297 } 9298 else { 9299 return DefaultABIInfo::classifyReturnType(Ty); 9300 } 9301 } 9302 9303 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9304 9305 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9306 for (auto &Arg : FI.arguments()) 9307 Arg.info = classifyArgumentType(Arg.type); 9308 } 9309 9310 namespace { 9311 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9312 public: 9313 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9314 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9315 }; 9316 } // end anonymous namespace 9317 9318 //===----------------------------------------------------------------------===// 9319 // SPARC v9 ABI Implementation. 9320 // Based on the SPARC Compliance Definition version 2.4.1. 9321 // 9322 // Function arguments a mapped to a nominal "parameter array" and promoted to 9323 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9324 // the array, structs larger than 16 bytes are passed indirectly. 9325 // 9326 // One case requires special care: 9327 // 9328 // struct mixed { 9329 // int i; 9330 // float f; 9331 // }; 9332 // 9333 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9334 // parameter array, but the int is passed in an integer register, and the float 9335 // is passed in a floating point register. This is represented as two arguments 9336 // with the LLVM IR inreg attribute: 9337 // 9338 // declare void f(i32 inreg %i, float inreg %f) 9339 // 9340 // The code generator will only allocate 4 bytes from the parameter array for 9341 // the inreg arguments. All other arguments are allocated a multiple of 8 9342 // bytes. 9343 // 9344 namespace { 9345 class SparcV9ABIInfo : public ABIInfo { 9346 public: 9347 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9348 9349 private: 9350 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9351 void computeInfo(CGFunctionInfo &FI) const override; 9352 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9353 QualType Ty) const override; 9354 9355 // Coercion type builder for structs passed in registers. The coercion type 9356 // serves two purposes: 9357 // 9358 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9359 // in registers. 9360 // 2. Expose aligned floating point elements as first-level elements, so the 9361 // code generator knows to pass them in floating point registers. 9362 // 9363 // We also compute the InReg flag which indicates that the struct contains 9364 // aligned 32-bit floats. 9365 // 9366 struct CoerceBuilder { 9367 llvm::LLVMContext &Context; 9368 const llvm::DataLayout &DL; 9369 SmallVector<llvm::Type*, 8> Elems; 9370 uint64_t Size; 9371 bool InReg; 9372 9373 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9374 : Context(c), DL(dl), Size(0), InReg(false) {} 9375 9376 // Pad Elems with integers until Size is ToSize. 9377 void pad(uint64_t ToSize) { 9378 assert(ToSize >= Size && "Cannot remove elements"); 9379 if (ToSize == Size) 9380 return; 9381 9382 // Finish the current 64-bit word. 9383 uint64_t Aligned = llvm::alignTo(Size, 64); 9384 if (Aligned > Size && Aligned <= ToSize) { 9385 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9386 Size = Aligned; 9387 } 9388 9389 // Add whole 64-bit words. 9390 while (Size + 64 <= ToSize) { 9391 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9392 Size += 64; 9393 } 9394 9395 // Final in-word padding. 9396 if (Size < ToSize) { 9397 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9398 Size = ToSize; 9399 } 9400 } 9401 9402 // Add a floating point element at Offset. 9403 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9404 // Unaligned floats are treated as integers. 9405 if (Offset % Bits) 9406 return; 9407 // The InReg flag is only required if there are any floats < 64 bits. 9408 if (Bits < 64) 9409 InReg = true; 9410 pad(Offset); 9411 Elems.push_back(Ty); 9412 Size = Offset + Bits; 9413 } 9414 9415 // Add a struct type to the coercion type, starting at Offset (in bits). 9416 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9417 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9418 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9419 llvm::Type *ElemTy = StrTy->getElementType(i); 9420 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9421 switch (ElemTy->getTypeID()) { 9422 case llvm::Type::StructTyID: 9423 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9424 break; 9425 case llvm::Type::FloatTyID: 9426 addFloat(ElemOffset, ElemTy, 32); 9427 break; 9428 case llvm::Type::DoubleTyID: 9429 addFloat(ElemOffset, ElemTy, 64); 9430 break; 9431 case llvm::Type::FP128TyID: 9432 addFloat(ElemOffset, ElemTy, 128); 9433 break; 9434 case llvm::Type::PointerTyID: 9435 if (ElemOffset % 64 == 0) { 9436 pad(ElemOffset); 9437 Elems.push_back(ElemTy); 9438 Size += 64; 9439 } 9440 break; 9441 default: 9442 break; 9443 } 9444 } 9445 } 9446 9447 // Check if Ty is a usable substitute for the coercion type. 9448 bool isUsableType(llvm::StructType *Ty) const { 9449 return llvm::makeArrayRef(Elems) == Ty->elements(); 9450 } 9451 9452 // Get the coercion type as a literal struct type. 9453 llvm::Type *getType() const { 9454 if (Elems.size() == 1) 9455 return Elems.front(); 9456 else 9457 return llvm::StructType::get(Context, Elems); 9458 } 9459 }; 9460 }; 9461 } // end anonymous namespace 9462 9463 ABIArgInfo 9464 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9465 if (Ty->isVoidType()) 9466 return ABIArgInfo::getIgnore(); 9467 9468 uint64_t Size = getContext().getTypeSize(Ty); 9469 9470 // Anything too big to fit in registers is passed with an explicit indirect 9471 // pointer / sret pointer. 9472 if (Size > SizeLimit) 9473 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9474 9475 // Treat an enum type as its underlying type. 9476 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9477 Ty = EnumTy->getDecl()->getIntegerType(); 9478 9479 // Integer types smaller than a register are extended. 9480 if (Size < 64 && Ty->isIntegerType()) 9481 return ABIArgInfo::getExtend(Ty); 9482 9483 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9484 if (EIT->getNumBits() < 64) 9485 return ABIArgInfo::getExtend(Ty); 9486 9487 // Other non-aggregates go in registers. 9488 if (!isAggregateTypeForABI(Ty)) 9489 return ABIArgInfo::getDirect(); 9490 9491 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9492 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9493 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9494 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9495 9496 // This is a small aggregate type that should be passed in registers. 9497 // Build a coercion type from the LLVM struct type. 9498 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9499 if (!StrTy) 9500 return ABIArgInfo::getDirect(); 9501 9502 CoerceBuilder CB(getVMContext(), getDataLayout()); 9503 CB.addStruct(0, StrTy); 9504 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9505 9506 // Try to use the original type for coercion. 9507 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9508 9509 if (CB.InReg) 9510 return ABIArgInfo::getDirectInReg(CoerceTy); 9511 else 9512 return ABIArgInfo::getDirect(CoerceTy); 9513 } 9514 9515 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9516 QualType Ty) const { 9517 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9518 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9519 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9520 AI.setCoerceToType(ArgTy); 9521 9522 CharUnits SlotSize = CharUnits::fromQuantity(8); 9523 9524 CGBuilderTy &Builder = CGF.Builder; 9525 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9526 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9527 9528 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9529 9530 Address ArgAddr = Address::invalid(); 9531 CharUnits Stride; 9532 switch (AI.getKind()) { 9533 case ABIArgInfo::Expand: 9534 case ABIArgInfo::CoerceAndExpand: 9535 case ABIArgInfo::InAlloca: 9536 llvm_unreachable("Unsupported ABI kind for va_arg"); 9537 9538 case ABIArgInfo::Extend: { 9539 Stride = SlotSize; 9540 CharUnits Offset = SlotSize - TypeInfo.Width; 9541 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9542 break; 9543 } 9544 9545 case ABIArgInfo::Direct: { 9546 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9547 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9548 ArgAddr = Addr; 9549 break; 9550 } 9551 9552 case ABIArgInfo::Indirect: 9553 case ABIArgInfo::IndirectAliased: 9554 Stride = SlotSize; 9555 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9556 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9557 TypeInfo.Align); 9558 break; 9559 9560 case ABIArgInfo::Ignore: 9561 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9562 } 9563 9564 // Update VAList. 9565 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9566 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9567 9568 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9569 } 9570 9571 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9572 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9573 for (auto &I : FI.arguments()) 9574 I.info = classifyType(I.type, 16 * 8); 9575 } 9576 9577 namespace { 9578 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9579 public: 9580 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9581 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9582 9583 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9584 return 14; 9585 } 9586 9587 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9588 llvm::Value *Address) const override; 9589 }; 9590 } // end anonymous namespace 9591 9592 bool 9593 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9594 llvm::Value *Address) const { 9595 // This is calculated from the LLVM and GCC tables and verified 9596 // against gcc output. AFAIK all ABIs use the same encoding. 9597 9598 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9599 9600 llvm::IntegerType *i8 = CGF.Int8Ty; 9601 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9602 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9603 9604 // 0-31: the 8-byte general-purpose registers 9605 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9606 9607 // 32-63: f0-31, the 4-byte floating-point registers 9608 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9609 9610 // Y = 64 9611 // PSR = 65 9612 // WIM = 66 9613 // TBR = 67 9614 // PC = 68 9615 // NPC = 69 9616 // FSR = 70 9617 // CSR = 71 9618 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9619 9620 // 72-87: d0-15, the 8-byte floating-point registers 9621 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9622 9623 return false; 9624 } 9625 9626 // ARC ABI implementation. 9627 namespace { 9628 9629 class ARCABIInfo : public DefaultABIInfo { 9630 public: 9631 using DefaultABIInfo::DefaultABIInfo; 9632 9633 private: 9634 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9635 QualType Ty) const override; 9636 9637 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9638 if (!State.FreeRegs) 9639 return; 9640 if (Info.isIndirect() && Info.getInReg()) 9641 State.FreeRegs--; 9642 else if (Info.isDirect() && Info.getInReg()) { 9643 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9644 if (sz < State.FreeRegs) 9645 State.FreeRegs -= sz; 9646 else 9647 State.FreeRegs = 0; 9648 } 9649 } 9650 9651 void computeInfo(CGFunctionInfo &FI) const override { 9652 CCState State(FI); 9653 // ARC uses 8 registers to pass arguments. 9654 State.FreeRegs = 8; 9655 9656 if (!getCXXABI().classifyReturnType(FI)) 9657 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9658 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9659 for (auto &I : FI.arguments()) { 9660 I.info = classifyArgumentType(I.type, State.FreeRegs); 9661 updateState(I.info, I.type, State); 9662 } 9663 } 9664 9665 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9666 ABIArgInfo getIndirectByValue(QualType Ty) const; 9667 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9668 ABIArgInfo classifyReturnType(QualType RetTy) const; 9669 }; 9670 9671 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9672 public: 9673 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9674 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9675 }; 9676 9677 9678 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9679 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9680 getNaturalAlignIndirect(Ty, false); 9681 } 9682 9683 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9684 // Compute the byval alignment. 9685 const unsigned MinABIStackAlignInBytes = 4; 9686 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9687 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9688 TypeAlign > MinABIStackAlignInBytes); 9689 } 9690 9691 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9692 QualType Ty) const { 9693 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9694 getContext().getTypeInfoInChars(Ty), 9695 CharUnits::fromQuantity(4), true); 9696 } 9697 9698 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9699 uint8_t FreeRegs) const { 9700 // Handle the generic C++ ABI. 9701 const RecordType *RT = Ty->getAs<RecordType>(); 9702 if (RT) { 9703 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9704 if (RAA == CGCXXABI::RAA_Indirect) 9705 return getIndirectByRef(Ty, FreeRegs > 0); 9706 9707 if (RAA == CGCXXABI::RAA_DirectInMemory) 9708 return getIndirectByValue(Ty); 9709 } 9710 9711 // Treat an enum type as its underlying type. 9712 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9713 Ty = EnumTy->getDecl()->getIntegerType(); 9714 9715 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9716 9717 if (isAggregateTypeForABI(Ty)) { 9718 // Structures with flexible arrays are always indirect. 9719 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9720 return getIndirectByValue(Ty); 9721 9722 // Ignore empty structs/unions. 9723 if (isEmptyRecord(getContext(), Ty, true)) 9724 return ABIArgInfo::getIgnore(); 9725 9726 llvm::LLVMContext &LLVMContext = getVMContext(); 9727 9728 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9729 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9730 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9731 9732 return FreeRegs >= SizeInRegs ? 9733 ABIArgInfo::getDirectInReg(Result) : 9734 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9735 } 9736 9737 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9738 if (EIT->getNumBits() > 64) 9739 return getIndirectByValue(Ty); 9740 9741 return isPromotableIntegerTypeForABI(Ty) 9742 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9743 : ABIArgInfo::getExtend(Ty)) 9744 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9745 : ABIArgInfo::getDirect()); 9746 } 9747 9748 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9749 if (RetTy->isAnyComplexType()) 9750 return ABIArgInfo::getDirectInReg(); 9751 9752 // Arguments of size > 4 registers are indirect. 9753 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9754 if (RetSize > 4) 9755 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9756 9757 return DefaultABIInfo::classifyReturnType(RetTy); 9758 } 9759 9760 } // End anonymous namespace. 9761 9762 //===----------------------------------------------------------------------===// 9763 // XCore ABI Implementation 9764 //===----------------------------------------------------------------------===// 9765 9766 namespace { 9767 9768 /// A SmallStringEnc instance is used to build up the TypeString by passing 9769 /// it by reference between functions that append to it. 9770 typedef llvm::SmallString<128> SmallStringEnc; 9771 9772 /// TypeStringCache caches the meta encodings of Types. 9773 /// 9774 /// The reason for caching TypeStrings is two fold: 9775 /// 1. To cache a type's encoding for later uses; 9776 /// 2. As a means to break recursive member type inclusion. 9777 /// 9778 /// A cache Entry can have a Status of: 9779 /// NonRecursive: The type encoding is not recursive; 9780 /// Recursive: The type encoding is recursive; 9781 /// Incomplete: An incomplete TypeString; 9782 /// IncompleteUsed: An incomplete TypeString that has been used in a 9783 /// Recursive type encoding. 9784 /// 9785 /// A NonRecursive entry will have all of its sub-members expanded as fully 9786 /// as possible. Whilst it may contain types which are recursive, the type 9787 /// itself is not recursive and thus its encoding may be safely used whenever 9788 /// the type is encountered. 9789 /// 9790 /// A Recursive entry will have all of its sub-members expanded as fully as 9791 /// possible. The type itself is recursive and it may contain other types which 9792 /// are recursive. The Recursive encoding must not be used during the expansion 9793 /// of a recursive type's recursive branch. For simplicity the code uses 9794 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9795 /// 9796 /// An Incomplete entry is always a RecordType and only encodes its 9797 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9798 /// are placed into the cache during type expansion as a means to identify and 9799 /// handle recursive inclusion of types as sub-members. If there is recursion 9800 /// the entry becomes IncompleteUsed. 9801 /// 9802 /// During the expansion of a RecordType's members: 9803 /// 9804 /// If the cache contains a NonRecursive encoding for the member type, the 9805 /// cached encoding is used; 9806 /// 9807 /// If the cache contains a Recursive encoding for the member type, the 9808 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9809 /// 9810 /// If the member is a RecordType, an Incomplete encoding is placed into the 9811 /// cache to break potential recursive inclusion of itself as a sub-member; 9812 /// 9813 /// Once a member RecordType has been expanded, its temporary incomplete 9814 /// entry is removed from the cache. If a Recursive encoding was swapped out 9815 /// it is swapped back in; 9816 /// 9817 /// If an incomplete entry is used to expand a sub-member, the incomplete 9818 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9819 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9820 /// 9821 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9822 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9823 /// Else the member is part of a recursive type and thus the recursion has 9824 /// been exited too soon for the encoding to be correct for the member. 9825 /// 9826 class TypeStringCache { 9827 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9828 struct Entry { 9829 std::string Str; // The encoded TypeString for the type. 9830 enum Status State; // Information about the encoding in 'Str'. 9831 std::string Swapped; // A temporary place holder for a Recursive encoding 9832 // during the expansion of RecordType's members. 9833 }; 9834 std::map<const IdentifierInfo *, struct Entry> Map; 9835 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9836 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9837 public: 9838 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9839 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9840 bool removeIncomplete(const IdentifierInfo *ID); 9841 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9842 bool IsRecursive); 9843 StringRef lookupStr(const IdentifierInfo *ID); 9844 }; 9845 9846 /// TypeString encodings for enum & union fields must be order. 9847 /// FieldEncoding is a helper for this ordering process. 9848 class FieldEncoding { 9849 bool HasName; 9850 std::string Enc; 9851 public: 9852 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9853 StringRef str() { return Enc; } 9854 bool operator<(const FieldEncoding &rhs) const { 9855 if (HasName != rhs.HasName) return HasName; 9856 return Enc < rhs.Enc; 9857 } 9858 }; 9859 9860 class XCoreABIInfo : public DefaultABIInfo { 9861 public: 9862 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9863 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9864 QualType Ty) const override; 9865 }; 9866 9867 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9868 mutable TypeStringCache TSC; 9869 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9870 const CodeGen::CodeGenModule &M) const; 9871 9872 public: 9873 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9874 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9875 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9876 const llvm::MapVector<GlobalDecl, StringRef> 9877 &MangledDeclNames) const override; 9878 }; 9879 9880 } // End anonymous namespace. 9881 9882 // TODO: this implementation is likely now redundant with the default 9883 // EmitVAArg. 9884 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9885 QualType Ty) const { 9886 CGBuilderTy &Builder = CGF.Builder; 9887 9888 // Get the VAList. 9889 CharUnits SlotSize = CharUnits::fromQuantity(4); 9890 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9891 9892 // Handle the argument. 9893 ABIArgInfo AI = classifyArgumentType(Ty); 9894 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9895 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9896 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9897 AI.setCoerceToType(ArgTy); 9898 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9899 9900 Address Val = Address::invalid(); 9901 CharUnits ArgSize = CharUnits::Zero(); 9902 switch (AI.getKind()) { 9903 case ABIArgInfo::Expand: 9904 case ABIArgInfo::CoerceAndExpand: 9905 case ABIArgInfo::InAlloca: 9906 llvm_unreachable("Unsupported ABI kind for va_arg"); 9907 case ABIArgInfo::Ignore: 9908 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9909 ArgSize = CharUnits::Zero(); 9910 break; 9911 case ABIArgInfo::Extend: 9912 case ABIArgInfo::Direct: 9913 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9914 ArgSize = CharUnits::fromQuantity( 9915 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9916 ArgSize = ArgSize.alignTo(SlotSize); 9917 break; 9918 case ABIArgInfo::Indirect: 9919 case ABIArgInfo::IndirectAliased: 9920 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9921 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9922 ArgSize = SlotSize; 9923 break; 9924 } 9925 9926 // Increment the VAList. 9927 if (!ArgSize.isZero()) { 9928 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9929 Builder.CreateStore(APN.getPointer(), VAListAddr); 9930 } 9931 9932 return Val; 9933 } 9934 9935 /// During the expansion of a RecordType, an incomplete TypeString is placed 9936 /// into the cache as a means to identify and break recursion. 9937 /// If there is a Recursive encoding in the cache, it is swapped out and will 9938 /// be reinserted by removeIncomplete(). 9939 /// All other types of encoding should have been used rather than arriving here. 9940 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9941 std::string StubEnc) { 9942 if (!ID) 9943 return; 9944 Entry &E = Map[ID]; 9945 assert( (E.Str.empty() || E.State == Recursive) && 9946 "Incorrectly use of addIncomplete"); 9947 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9948 E.Swapped.swap(E.Str); // swap out the Recursive 9949 E.Str.swap(StubEnc); 9950 E.State = Incomplete; 9951 ++IncompleteCount; 9952 } 9953 9954 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9955 /// must be removed from the cache. 9956 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9957 /// Returns true if the RecordType was defined recursively. 9958 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9959 if (!ID) 9960 return false; 9961 auto I = Map.find(ID); 9962 assert(I != Map.end() && "Entry not present"); 9963 Entry &E = I->second; 9964 assert( (E.State == Incomplete || 9965 E.State == IncompleteUsed) && 9966 "Entry must be an incomplete type"); 9967 bool IsRecursive = false; 9968 if (E.State == IncompleteUsed) { 9969 // We made use of our Incomplete encoding, thus we are recursive. 9970 IsRecursive = true; 9971 --IncompleteUsedCount; 9972 } 9973 if (E.Swapped.empty()) 9974 Map.erase(I); 9975 else { 9976 // Swap the Recursive back. 9977 E.Swapped.swap(E.Str); 9978 E.Swapped.clear(); 9979 E.State = Recursive; 9980 } 9981 --IncompleteCount; 9982 return IsRecursive; 9983 } 9984 9985 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9986 /// Recursive (viz: all sub-members were expanded as fully as possible). 9987 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9988 bool IsRecursive) { 9989 if (!ID || IncompleteUsedCount) 9990 return; // No key or it is is an incomplete sub-type so don't add. 9991 Entry &E = Map[ID]; 9992 if (IsRecursive && !E.Str.empty()) { 9993 assert(E.State==Recursive && E.Str.size() == Str.size() && 9994 "This is not the same Recursive entry"); 9995 // The parent container was not recursive after all, so we could have used 9996 // this Recursive sub-member entry after all, but we assumed the worse when 9997 // we started viz: IncompleteCount!=0. 9998 return; 9999 } 10000 assert(E.Str.empty() && "Entry already present"); 10001 E.Str = Str.str(); 10002 E.State = IsRecursive? Recursive : NonRecursive; 10003 } 10004 10005 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10006 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10007 /// encoding is Recursive, return an empty StringRef. 10008 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10009 if (!ID) 10010 return StringRef(); // We have no key. 10011 auto I = Map.find(ID); 10012 if (I == Map.end()) 10013 return StringRef(); // We have no encoding. 10014 Entry &E = I->second; 10015 if (E.State == Recursive && IncompleteCount) 10016 return StringRef(); // We don't use Recursive encodings for member types. 10017 10018 if (E.State == Incomplete) { 10019 // The incomplete type is being used to break out of recursion. 10020 E.State = IncompleteUsed; 10021 ++IncompleteUsedCount; 10022 } 10023 return E.Str; 10024 } 10025 10026 /// The XCore ABI includes a type information section that communicates symbol 10027 /// type information to the linker. The linker uses this information to verify 10028 /// safety/correctness of things such as array bound and pointers et al. 10029 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10030 /// This type information (TypeString) is emitted into meta data for all global 10031 /// symbols: definitions, declarations, functions & variables. 10032 /// 10033 /// The TypeString carries type, qualifier, name, size & value details. 10034 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10035 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10036 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10037 /// 10038 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10039 const CodeGen::CodeGenModule &CGM, 10040 TypeStringCache &TSC); 10041 10042 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10043 void XCoreTargetCodeGenInfo::emitTargetMD( 10044 const Decl *D, llvm::GlobalValue *GV, 10045 const CodeGen::CodeGenModule &CGM) const { 10046 SmallStringEnc Enc; 10047 if (getTypeString(Enc, D, CGM, TSC)) { 10048 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10049 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10050 llvm::MDString::get(Ctx, Enc.str())}; 10051 llvm::NamedMDNode *MD = 10052 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10053 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10054 } 10055 } 10056 10057 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10058 CodeGen::CodeGenModule &CGM, 10059 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10060 // Warning, new MangledDeclNames may be appended within this loop. 10061 // We rely on MapVector insertions adding new elements to the end 10062 // of the container. 10063 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10064 auto Val = *(MangledDeclNames.begin() + I); 10065 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10066 if (GV) { 10067 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10068 emitTargetMD(D, GV, CGM); 10069 } 10070 } 10071 } 10072 //===----------------------------------------------------------------------===// 10073 // SPIR ABI Implementation 10074 //===----------------------------------------------------------------------===// 10075 10076 namespace { 10077 class SPIRABIInfo : public DefaultABIInfo { 10078 public: 10079 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10080 10081 private: 10082 void setCCs(); 10083 }; 10084 } // end anonymous namespace 10085 namespace { 10086 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10087 public: 10088 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10089 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 10090 10091 LangAS getASTAllocaAddressSpace() const override { 10092 return getLangASFromTargetAS( 10093 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10094 } 10095 10096 unsigned getOpenCLKernelCallingConv() const override; 10097 }; 10098 10099 } // End anonymous namespace. 10100 void SPIRABIInfo::setCCs() { 10101 assert(getRuntimeCC() == llvm::CallingConv::C); 10102 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10103 } 10104 10105 namespace clang { 10106 namespace CodeGen { 10107 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10108 DefaultABIInfo SPIRABI(CGM.getTypes()); 10109 SPIRABI.computeInfo(FI); 10110 } 10111 } 10112 } 10113 10114 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10115 return llvm::CallingConv::SPIR_KERNEL; 10116 } 10117 10118 static bool appendType(SmallStringEnc &Enc, QualType QType, 10119 const CodeGen::CodeGenModule &CGM, 10120 TypeStringCache &TSC); 10121 10122 /// Helper function for appendRecordType(). 10123 /// Builds a SmallVector containing the encoded field types in declaration 10124 /// order. 10125 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10126 const RecordDecl *RD, 10127 const CodeGen::CodeGenModule &CGM, 10128 TypeStringCache &TSC) { 10129 for (const auto *Field : RD->fields()) { 10130 SmallStringEnc Enc; 10131 Enc += "m("; 10132 Enc += Field->getName(); 10133 Enc += "){"; 10134 if (Field->isBitField()) { 10135 Enc += "b("; 10136 llvm::raw_svector_ostream OS(Enc); 10137 OS << Field->getBitWidthValue(CGM.getContext()); 10138 Enc += ':'; 10139 } 10140 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10141 return false; 10142 if (Field->isBitField()) 10143 Enc += ')'; 10144 Enc += '}'; 10145 FE.emplace_back(!Field->getName().empty(), Enc); 10146 } 10147 return true; 10148 } 10149 10150 /// Appends structure and union types to Enc and adds encoding to cache. 10151 /// Recursively calls appendType (via extractFieldType) for each field. 10152 /// Union types have their fields ordered according to the ABI. 10153 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10154 const CodeGen::CodeGenModule &CGM, 10155 TypeStringCache &TSC, const IdentifierInfo *ID) { 10156 // Append the cached TypeString if we have one. 10157 StringRef TypeString = TSC.lookupStr(ID); 10158 if (!TypeString.empty()) { 10159 Enc += TypeString; 10160 return true; 10161 } 10162 10163 // Start to emit an incomplete TypeString. 10164 size_t Start = Enc.size(); 10165 Enc += (RT->isUnionType()? 'u' : 's'); 10166 Enc += '('; 10167 if (ID) 10168 Enc += ID->getName(); 10169 Enc += "){"; 10170 10171 // We collect all encoded fields and order as necessary. 10172 bool IsRecursive = false; 10173 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10174 if (RD && !RD->field_empty()) { 10175 // An incomplete TypeString stub is placed in the cache for this RecordType 10176 // so that recursive calls to this RecordType will use it whilst building a 10177 // complete TypeString for this RecordType. 10178 SmallVector<FieldEncoding, 16> FE; 10179 std::string StubEnc(Enc.substr(Start).str()); 10180 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10181 TSC.addIncomplete(ID, std::move(StubEnc)); 10182 if (!extractFieldType(FE, RD, CGM, TSC)) { 10183 (void) TSC.removeIncomplete(ID); 10184 return false; 10185 } 10186 IsRecursive = TSC.removeIncomplete(ID); 10187 // The ABI requires unions to be sorted but not structures. 10188 // See FieldEncoding::operator< for sort algorithm. 10189 if (RT->isUnionType()) 10190 llvm::sort(FE); 10191 // We can now complete the TypeString. 10192 unsigned E = FE.size(); 10193 for (unsigned I = 0; I != E; ++I) { 10194 if (I) 10195 Enc += ','; 10196 Enc += FE[I].str(); 10197 } 10198 } 10199 Enc += '}'; 10200 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10201 return true; 10202 } 10203 10204 /// Appends enum types to Enc and adds the encoding to the cache. 10205 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10206 TypeStringCache &TSC, 10207 const IdentifierInfo *ID) { 10208 // Append the cached TypeString if we have one. 10209 StringRef TypeString = TSC.lookupStr(ID); 10210 if (!TypeString.empty()) { 10211 Enc += TypeString; 10212 return true; 10213 } 10214 10215 size_t Start = Enc.size(); 10216 Enc += "e("; 10217 if (ID) 10218 Enc += ID->getName(); 10219 Enc += "){"; 10220 10221 // We collect all encoded enumerations and order them alphanumerically. 10222 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10223 SmallVector<FieldEncoding, 16> FE; 10224 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10225 ++I) { 10226 SmallStringEnc EnumEnc; 10227 EnumEnc += "m("; 10228 EnumEnc += I->getName(); 10229 EnumEnc += "){"; 10230 I->getInitVal().toString(EnumEnc); 10231 EnumEnc += '}'; 10232 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10233 } 10234 llvm::sort(FE); 10235 unsigned E = FE.size(); 10236 for (unsigned I = 0; I != E; ++I) { 10237 if (I) 10238 Enc += ','; 10239 Enc += FE[I].str(); 10240 } 10241 } 10242 Enc += '}'; 10243 TSC.addIfComplete(ID, Enc.substr(Start), false); 10244 return true; 10245 } 10246 10247 /// Appends type's qualifier to Enc. 10248 /// This is done prior to appending the type's encoding. 10249 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10250 // Qualifiers are emitted in alphabetical order. 10251 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10252 int Lookup = 0; 10253 if (QT.isConstQualified()) 10254 Lookup += 1<<0; 10255 if (QT.isRestrictQualified()) 10256 Lookup += 1<<1; 10257 if (QT.isVolatileQualified()) 10258 Lookup += 1<<2; 10259 Enc += Table[Lookup]; 10260 } 10261 10262 /// Appends built-in types to Enc. 10263 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10264 const char *EncType; 10265 switch (BT->getKind()) { 10266 case BuiltinType::Void: 10267 EncType = "0"; 10268 break; 10269 case BuiltinType::Bool: 10270 EncType = "b"; 10271 break; 10272 case BuiltinType::Char_U: 10273 EncType = "uc"; 10274 break; 10275 case BuiltinType::UChar: 10276 EncType = "uc"; 10277 break; 10278 case BuiltinType::SChar: 10279 EncType = "sc"; 10280 break; 10281 case BuiltinType::UShort: 10282 EncType = "us"; 10283 break; 10284 case BuiltinType::Short: 10285 EncType = "ss"; 10286 break; 10287 case BuiltinType::UInt: 10288 EncType = "ui"; 10289 break; 10290 case BuiltinType::Int: 10291 EncType = "si"; 10292 break; 10293 case BuiltinType::ULong: 10294 EncType = "ul"; 10295 break; 10296 case BuiltinType::Long: 10297 EncType = "sl"; 10298 break; 10299 case BuiltinType::ULongLong: 10300 EncType = "ull"; 10301 break; 10302 case BuiltinType::LongLong: 10303 EncType = "sll"; 10304 break; 10305 case BuiltinType::Float: 10306 EncType = "ft"; 10307 break; 10308 case BuiltinType::Double: 10309 EncType = "d"; 10310 break; 10311 case BuiltinType::LongDouble: 10312 EncType = "ld"; 10313 break; 10314 default: 10315 return false; 10316 } 10317 Enc += EncType; 10318 return true; 10319 } 10320 10321 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10322 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10323 const CodeGen::CodeGenModule &CGM, 10324 TypeStringCache &TSC) { 10325 Enc += "p("; 10326 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10327 return false; 10328 Enc += ')'; 10329 return true; 10330 } 10331 10332 /// Appends array encoding to Enc before calling appendType for the element. 10333 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10334 const ArrayType *AT, 10335 const CodeGen::CodeGenModule &CGM, 10336 TypeStringCache &TSC, StringRef NoSizeEnc) { 10337 if (AT->getSizeModifier() != ArrayType::Normal) 10338 return false; 10339 Enc += "a("; 10340 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10341 CAT->getSize().toStringUnsigned(Enc); 10342 else 10343 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10344 Enc += ':'; 10345 // The Qualifiers should be attached to the type rather than the array. 10346 appendQualifier(Enc, QT); 10347 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10348 return false; 10349 Enc += ')'; 10350 return true; 10351 } 10352 10353 /// Appends a function encoding to Enc, calling appendType for the return type 10354 /// and the arguments. 10355 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10356 const CodeGen::CodeGenModule &CGM, 10357 TypeStringCache &TSC) { 10358 Enc += "f{"; 10359 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10360 return false; 10361 Enc += "}("; 10362 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10363 // N.B. we are only interested in the adjusted param types. 10364 auto I = FPT->param_type_begin(); 10365 auto E = FPT->param_type_end(); 10366 if (I != E) { 10367 do { 10368 if (!appendType(Enc, *I, CGM, TSC)) 10369 return false; 10370 ++I; 10371 if (I != E) 10372 Enc += ','; 10373 } while (I != E); 10374 if (FPT->isVariadic()) 10375 Enc += ",va"; 10376 } else { 10377 if (FPT->isVariadic()) 10378 Enc += "va"; 10379 else 10380 Enc += '0'; 10381 } 10382 } 10383 Enc += ')'; 10384 return true; 10385 } 10386 10387 /// Handles the type's qualifier before dispatching a call to handle specific 10388 /// type encodings. 10389 static bool appendType(SmallStringEnc &Enc, QualType QType, 10390 const CodeGen::CodeGenModule &CGM, 10391 TypeStringCache &TSC) { 10392 10393 QualType QT = QType.getCanonicalType(); 10394 10395 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10396 // The Qualifiers should be attached to the type rather than the array. 10397 // Thus we don't call appendQualifier() here. 10398 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10399 10400 appendQualifier(Enc, QT); 10401 10402 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10403 return appendBuiltinType(Enc, BT); 10404 10405 if (const PointerType *PT = QT->getAs<PointerType>()) 10406 return appendPointerType(Enc, PT, CGM, TSC); 10407 10408 if (const EnumType *ET = QT->getAs<EnumType>()) 10409 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10410 10411 if (const RecordType *RT = QT->getAsStructureType()) 10412 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10413 10414 if (const RecordType *RT = QT->getAsUnionType()) 10415 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10416 10417 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10418 return appendFunctionType(Enc, FT, CGM, TSC); 10419 10420 return false; 10421 } 10422 10423 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10424 const CodeGen::CodeGenModule &CGM, 10425 TypeStringCache &TSC) { 10426 if (!D) 10427 return false; 10428 10429 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10430 if (FD->getLanguageLinkage() != CLanguageLinkage) 10431 return false; 10432 return appendType(Enc, FD->getType(), CGM, TSC); 10433 } 10434 10435 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10436 if (VD->getLanguageLinkage() != CLanguageLinkage) 10437 return false; 10438 QualType QT = VD->getType().getCanonicalType(); 10439 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10440 // Global ArrayTypes are given a size of '*' if the size is unknown. 10441 // The Qualifiers should be attached to the type rather than the array. 10442 // Thus we don't call appendQualifier() here. 10443 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10444 } 10445 return appendType(Enc, QT, CGM, TSC); 10446 } 10447 return false; 10448 } 10449 10450 //===----------------------------------------------------------------------===// 10451 // RISCV ABI Implementation 10452 //===----------------------------------------------------------------------===// 10453 10454 namespace { 10455 class RISCVABIInfo : public DefaultABIInfo { 10456 private: 10457 // Size of the integer ('x') registers in bits. 10458 unsigned XLen; 10459 // Size of the floating point ('f') registers in bits. Note that the target 10460 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10461 // with soft float ABI has FLen==0). 10462 unsigned FLen; 10463 static const int NumArgGPRs = 8; 10464 static const int NumArgFPRs = 8; 10465 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10466 llvm::Type *&Field1Ty, 10467 CharUnits &Field1Off, 10468 llvm::Type *&Field2Ty, 10469 CharUnits &Field2Off) const; 10470 10471 public: 10472 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10473 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10474 10475 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10476 // non-virtual, but computeInfo is virtual, so we overload it. 10477 void computeInfo(CGFunctionInfo &FI) const override; 10478 10479 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10480 int &ArgFPRsLeft) const; 10481 ABIArgInfo classifyReturnType(QualType RetTy) const; 10482 10483 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10484 QualType Ty) const override; 10485 10486 ABIArgInfo extendType(QualType Ty) const; 10487 10488 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10489 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10490 CharUnits &Field2Off, int &NeededArgGPRs, 10491 int &NeededArgFPRs) const; 10492 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10493 CharUnits Field1Off, 10494 llvm::Type *Field2Ty, 10495 CharUnits Field2Off) const; 10496 }; 10497 } // end anonymous namespace 10498 10499 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10500 QualType RetTy = FI.getReturnType(); 10501 if (!getCXXABI().classifyReturnType(FI)) 10502 FI.getReturnInfo() = classifyReturnType(RetTy); 10503 10504 // IsRetIndirect is true if classifyArgumentType indicated the value should 10505 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10506 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10507 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10508 // list and pass indirectly on RV32. 10509 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10510 if (!IsRetIndirect && RetTy->isScalarType() && 10511 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10512 if (RetTy->isComplexType() && FLen) { 10513 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10514 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10515 } else { 10516 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10517 IsRetIndirect = true; 10518 } 10519 } 10520 10521 // We must track the number of GPRs used in order to conform to the RISC-V 10522 // ABI, as integer scalars passed in registers should have signext/zeroext 10523 // when promoted, but are anyext if passed on the stack. As GPR usage is 10524 // different for variadic arguments, we must also track whether we are 10525 // examining a vararg or not. 10526 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10527 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10528 int NumFixedArgs = FI.getNumRequiredArgs(); 10529 10530 int ArgNum = 0; 10531 for (auto &ArgInfo : FI.arguments()) { 10532 bool IsFixed = ArgNum < NumFixedArgs; 10533 ArgInfo.info = 10534 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10535 ArgNum++; 10536 } 10537 } 10538 10539 // Returns true if the struct is a potential candidate for the floating point 10540 // calling convention. If this function returns true, the caller is 10541 // responsible for checking that if there is only a single field then that 10542 // field is a float. 10543 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10544 llvm::Type *&Field1Ty, 10545 CharUnits &Field1Off, 10546 llvm::Type *&Field2Ty, 10547 CharUnits &Field2Off) const { 10548 bool IsInt = Ty->isIntegralOrEnumerationType(); 10549 bool IsFloat = Ty->isRealFloatingType(); 10550 10551 if (IsInt || IsFloat) { 10552 uint64_t Size = getContext().getTypeSize(Ty); 10553 if (IsInt && Size > XLen) 10554 return false; 10555 // Can't be eligible if larger than the FP registers. Half precision isn't 10556 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10557 // default to the integer ABI in that case. 10558 if (IsFloat && (Size > FLen || Size < 32)) 10559 return false; 10560 // Can't be eligible if an integer type was already found (int+int pairs 10561 // are not eligible). 10562 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10563 return false; 10564 if (!Field1Ty) { 10565 Field1Ty = CGT.ConvertType(Ty); 10566 Field1Off = CurOff; 10567 return true; 10568 } 10569 if (!Field2Ty) { 10570 Field2Ty = CGT.ConvertType(Ty); 10571 Field2Off = CurOff; 10572 return true; 10573 } 10574 return false; 10575 } 10576 10577 if (auto CTy = Ty->getAs<ComplexType>()) { 10578 if (Field1Ty) 10579 return false; 10580 QualType EltTy = CTy->getElementType(); 10581 if (getContext().getTypeSize(EltTy) > FLen) 10582 return false; 10583 Field1Ty = CGT.ConvertType(EltTy); 10584 Field1Off = CurOff; 10585 Field2Ty = Field1Ty; 10586 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10587 return true; 10588 } 10589 10590 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10591 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10592 QualType EltTy = ATy->getElementType(); 10593 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10594 for (uint64_t i = 0; i < ArraySize; ++i) { 10595 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10596 Field1Off, Field2Ty, Field2Off); 10597 if (!Ret) 10598 return false; 10599 CurOff += EltSize; 10600 } 10601 return true; 10602 } 10603 10604 if (const auto *RTy = Ty->getAs<RecordType>()) { 10605 // Structures with either a non-trivial destructor or a non-trivial 10606 // copy constructor are not eligible for the FP calling convention. 10607 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10608 return false; 10609 if (isEmptyRecord(getContext(), Ty, true)) 10610 return true; 10611 const RecordDecl *RD = RTy->getDecl(); 10612 // Unions aren't eligible unless they're empty (which is caught above). 10613 if (RD->isUnion()) 10614 return false; 10615 int ZeroWidthBitFieldCount = 0; 10616 for (const FieldDecl *FD : RD->fields()) { 10617 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10618 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10619 QualType QTy = FD->getType(); 10620 if (FD->isBitField()) { 10621 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10622 // Allow a bitfield with a type greater than XLen as long as the 10623 // bitwidth is XLen or less. 10624 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10625 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10626 if (BitWidth == 0) { 10627 ZeroWidthBitFieldCount++; 10628 continue; 10629 } 10630 } 10631 10632 bool Ret = detectFPCCEligibleStructHelper( 10633 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10634 Field1Ty, Field1Off, Field2Ty, Field2Off); 10635 if (!Ret) 10636 return false; 10637 10638 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10639 // or int+fp structs, but are ignored for a struct with an fp field and 10640 // any number of zero-width bitfields. 10641 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10642 return false; 10643 } 10644 return Field1Ty != nullptr; 10645 } 10646 10647 return false; 10648 } 10649 10650 // Determine if a struct is eligible for passing according to the floating 10651 // point calling convention (i.e., when flattened it contains a single fp 10652 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10653 // NeededArgGPRs are incremented appropriately. 10654 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10655 CharUnits &Field1Off, 10656 llvm::Type *&Field2Ty, 10657 CharUnits &Field2Off, 10658 int &NeededArgGPRs, 10659 int &NeededArgFPRs) const { 10660 Field1Ty = nullptr; 10661 Field2Ty = nullptr; 10662 NeededArgGPRs = 0; 10663 NeededArgFPRs = 0; 10664 bool IsCandidate = detectFPCCEligibleStructHelper( 10665 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10666 // Not really a candidate if we have a single int but no float. 10667 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10668 return false; 10669 if (!IsCandidate) 10670 return false; 10671 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10672 NeededArgFPRs++; 10673 else if (Field1Ty) 10674 NeededArgGPRs++; 10675 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10676 NeededArgFPRs++; 10677 else if (Field2Ty) 10678 NeededArgGPRs++; 10679 return true; 10680 } 10681 10682 // Call getCoerceAndExpand for the two-element flattened struct described by 10683 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10684 // appropriate coerceToType and unpaddedCoerceToType. 10685 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10686 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10687 CharUnits Field2Off) const { 10688 SmallVector<llvm::Type *, 3> CoerceElts; 10689 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10690 if (!Field1Off.isZero()) 10691 CoerceElts.push_back(llvm::ArrayType::get( 10692 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10693 10694 CoerceElts.push_back(Field1Ty); 10695 UnpaddedCoerceElts.push_back(Field1Ty); 10696 10697 if (!Field2Ty) { 10698 return ABIArgInfo::getCoerceAndExpand( 10699 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10700 UnpaddedCoerceElts[0]); 10701 } 10702 10703 CharUnits Field2Align = 10704 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10705 CharUnits Field1End = Field1Off + 10706 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10707 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10708 10709 CharUnits Padding = CharUnits::Zero(); 10710 if (Field2Off > Field2OffNoPadNoPack) 10711 Padding = Field2Off - Field2OffNoPadNoPack; 10712 else if (Field2Off != Field2Align && Field2Off > Field1End) 10713 Padding = Field2Off - Field1End; 10714 10715 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10716 10717 if (!Padding.isZero()) 10718 CoerceElts.push_back(llvm::ArrayType::get( 10719 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10720 10721 CoerceElts.push_back(Field2Ty); 10722 UnpaddedCoerceElts.push_back(Field2Ty); 10723 10724 auto CoerceToType = 10725 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10726 auto UnpaddedCoerceToType = 10727 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10728 10729 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10730 } 10731 10732 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10733 int &ArgGPRsLeft, 10734 int &ArgFPRsLeft) const { 10735 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10736 Ty = useFirstFieldIfTransparentUnion(Ty); 10737 10738 // Structures with either a non-trivial destructor or a non-trivial 10739 // copy constructor are always passed indirectly. 10740 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10741 if (ArgGPRsLeft) 10742 ArgGPRsLeft -= 1; 10743 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10744 CGCXXABI::RAA_DirectInMemory); 10745 } 10746 10747 // Ignore empty structs/unions. 10748 if (isEmptyRecord(getContext(), Ty, true)) 10749 return ABIArgInfo::getIgnore(); 10750 10751 uint64_t Size = getContext().getTypeSize(Ty); 10752 10753 // Pass floating point values via FPRs if possible. 10754 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10755 FLen >= Size && ArgFPRsLeft) { 10756 ArgFPRsLeft--; 10757 return ABIArgInfo::getDirect(); 10758 } 10759 10760 // Complex types for the hard float ABI must be passed direct rather than 10761 // using CoerceAndExpand. 10762 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10763 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10764 if (getContext().getTypeSize(EltTy) <= FLen) { 10765 ArgFPRsLeft -= 2; 10766 return ABIArgInfo::getDirect(); 10767 } 10768 } 10769 10770 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10771 llvm::Type *Field1Ty = nullptr; 10772 llvm::Type *Field2Ty = nullptr; 10773 CharUnits Field1Off = CharUnits::Zero(); 10774 CharUnits Field2Off = CharUnits::Zero(); 10775 int NeededArgGPRs = 0; 10776 int NeededArgFPRs = 0; 10777 bool IsCandidate = 10778 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10779 NeededArgGPRs, NeededArgFPRs); 10780 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10781 NeededArgFPRs <= ArgFPRsLeft) { 10782 ArgGPRsLeft -= NeededArgGPRs; 10783 ArgFPRsLeft -= NeededArgFPRs; 10784 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10785 Field2Off); 10786 } 10787 } 10788 10789 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10790 bool MustUseStack = false; 10791 // Determine the number of GPRs needed to pass the current argument 10792 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10793 // register pairs, so may consume 3 registers. 10794 int NeededArgGPRs = 1; 10795 if (!IsFixed && NeededAlign == 2 * XLen) 10796 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10797 else if (Size > XLen && Size <= 2 * XLen) 10798 NeededArgGPRs = 2; 10799 10800 if (NeededArgGPRs > ArgGPRsLeft) { 10801 MustUseStack = true; 10802 NeededArgGPRs = ArgGPRsLeft; 10803 } 10804 10805 ArgGPRsLeft -= NeededArgGPRs; 10806 10807 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10808 // Treat an enum type as its underlying type. 10809 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10810 Ty = EnumTy->getDecl()->getIntegerType(); 10811 10812 // All integral types are promoted to XLen width, unless passed on the 10813 // stack. 10814 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10815 return extendType(Ty); 10816 } 10817 10818 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10819 if (EIT->getNumBits() < XLen && !MustUseStack) 10820 return extendType(Ty); 10821 if (EIT->getNumBits() > 128 || 10822 (!getContext().getTargetInfo().hasInt128Type() && 10823 EIT->getNumBits() > 64)) 10824 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10825 } 10826 10827 return ABIArgInfo::getDirect(); 10828 } 10829 10830 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10831 // so coerce to integers. 10832 if (Size <= 2 * XLen) { 10833 unsigned Alignment = getContext().getTypeAlign(Ty); 10834 10835 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10836 // required, and a 2-element XLen array if only XLen alignment is required. 10837 if (Size <= XLen) { 10838 return ABIArgInfo::getDirect( 10839 llvm::IntegerType::get(getVMContext(), XLen)); 10840 } else if (Alignment == 2 * XLen) { 10841 return ABIArgInfo::getDirect( 10842 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10843 } else { 10844 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10845 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10846 } 10847 } 10848 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10849 } 10850 10851 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10852 if (RetTy->isVoidType()) 10853 return ABIArgInfo::getIgnore(); 10854 10855 int ArgGPRsLeft = 2; 10856 int ArgFPRsLeft = FLen ? 2 : 0; 10857 10858 // The rules for return and argument types are the same, so defer to 10859 // classifyArgumentType. 10860 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10861 ArgFPRsLeft); 10862 } 10863 10864 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10865 QualType Ty) const { 10866 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10867 10868 // Empty records are ignored for parameter passing purposes. 10869 if (isEmptyRecord(getContext(), Ty, true)) { 10870 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10871 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10872 return Addr; 10873 } 10874 10875 auto TInfo = getContext().getTypeInfoInChars(Ty); 10876 10877 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10878 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10879 10880 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10881 SlotSize, /*AllowHigherAlign=*/true); 10882 } 10883 10884 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10885 int TySize = getContext().getTypeSize(Ty); 10886 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10887 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10888 return ABIArgInfo::getSignExtend(Ty); 10889 return ABIArgInfo::getExtend(Ty); 10890 } 10891 10892 namespace { 10893 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10894 public: 10895 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10896 unsigned FLen) 10897 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10898 10899 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10900 CodeGen::CodeGenModule &CGM) const override { 10901 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10902 if (!FD) return; 10903 10904 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10905 if (!Attr) 10906 return; 10907 10908 const char *Kind; 10909 switch (Attr->getInterrupt()) { 10910 case RISCVInterruptAttr::user: Kind = "user"; break; 10911 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10912 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10913 } 10914 10915 auto *Fn = cast<llvm::Function>(GV); 10916 10917 Fn->addFnAttr("interrupt", Kind); 10918 } 10919 }; 10920 } // namespace 10921 10922 //===----------------------------------------------------------------------===// 10923 // VE ABI Implementation. 10924 // 10925 namespace { 10926 class VEABIInfo : public DefaultABIInfo { 10927 public: 10928 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10929 10930 private: 10931 ABIArgInfo classifyReturnType(QualType RetTy) const; 10932 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10933 void computeInfo(CGFunctionInfo &FI) const override; 10934 }; 10935 } // end anonymous namespace 10936 10937 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10938 if (Ty->isAnyComplexType()) 10939 return ABIArgInfo::getDirect(); 10940 uint64_t Size = getContext().getTypeSize(Ty); 10941 if (Size < 64 && Ty->isIntegerType()) 10942 return ABIArgInfo::getExtend(Ty); 10943 return DefaultABIInfo::classifyReturnType(Ty); 10944 } 10945 10946 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10947 if (Ty->isAnyComplexType()) 10948 return ABIArgInfo::getDirect(); 10949 uint64_t Size = getContext().getTypeSize(Ty); 10950 if (Size < 64 && Ty->isIntegerType()) 10951 return ABIArgInfo::getExtend(Ty); 10952 return DefaultABIInfo::classifyArgumentType(Ty); 10953 } 10954 10955 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10956 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10957 for (auto &Arg : FI.arguments()) 10958 Arg.info = classifyArgumentType(Arg.type); 10959 } 10960 10961 namespace { 10962 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10963 public: 10964 VETargetCodeGenInfo(CodeGenTypes &CGT) 10965 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10966 // VE ABI requires the arguments of variadic and prototype-less functions 10967 // are passed in both registers and memory. 10968 bool isNoProtoCallVariadic(const CallArgList &args, 10969 const FunctionNoProtoType *fnType) const override { 10970 return true; 10971 } 10972 }; 10973 } // end anonymous namespace 10974 10975 //===----------------------------------------------------------------------===// 10976 // Driver code 10977 //===----------------------------------------------------------------------===// 10978 10979 bool CodeGenModule::supportsCOMDAT() const { 10980 return getTriple().supportsCOMDAT(); 10981 } 10982 10983 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10984 if (TheTargetCodeGenInfo) 10985 return *TheTargetCodeGenInfo; 10986 10987 // Helper to set the unique_ptr while still keeping the return value. 10988 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10989 this->TheTargetCodeGenInfo.reset(P); 10990 return *P; 10991 }; 10992 10993 const llvm::Triple &Triple = getTarget().getTriple(); 10994 switch (Triple.getArch()) { 10995 default: 10996 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10997 10998 case llvm::Triple::le32: 10999 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11000 case llvm::Triple::m68k: 11001 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11002 case llvm::Triple::mips: 11003 case llvm::Triple::mipsel: 11004 if (Triple.getOS() == llvm::Triple::NaCl) 11005 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11006 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11007 11008 case llvm::Triple::mips64: 11009 case llvm::Triple::mips64el: 11010 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11011 11012 case llvm::Triple::avr: 11013 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11014 11015 case llvm::Triple::aarch64: 11016 case llvm::Triple::aarch64_32: 11017 case llvm::Triple::aarch64_be: { 11018 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11019 if (getTarget().getABI() == "darwinpcs") 11020 Kind = AArch64ABIInfo::DarwinPCS; 11021 else if (Triple.isOSWindows()) 11022 return SetCGInfo( 11023 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11024 11025 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11026 } 11027 11028 case llvm::Triple::wasm32: 11029 case llvm::Triple::wasm64: { 11030 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11031 if (getTarget().getABI() == "experimental-mv") 11032 Kind = WebAssemblyABIInfo::ExperimentalMV; 11033 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11034 } 11035 11036 case llvm::Triple::arm: 11037 case llvm::Triple::armeb: 11038 case llvm::Triple::thumb: 11039 case llvm::Triple::thumbeb: { 11040 if (Triple.getOS() == llvm::Triple::Win32) { 11041 return SetCGInfo( 11042 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11043 } 11044 11045 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11046 StringRef ABIStr = getTarget().getABI(); 11047 if (ABIStr == "apcs-gnu") 11048 Kind = ARMABIInfo::APCS; 11049 else if (ABIStr == "aapcs16") 11050 Kind = ARMABIInfo::AAPCS16_VFP; 11051 else if (CodeGenOpts.FloatABI == "hard" || 11052 (CodeGenOpts.FloatABI != "soft" && 11053 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11054 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11055 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11056 Kind = ARMABIInfo::AAPCS_VFP; 11057 11058 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11059 } 11060 11061 case llvm::Triple::ppc: { 11062 if (Triple.isOSAIX()) 11063 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11064 11065 bool IsSoftFloat = 11066 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11067 bool RetSmallStructInRegABI = 11068 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11069 return SetCGInfo( 11070 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11071 } 11072 case llvm::Triple::ppcle: { 11073 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11074 bool RetSmallStructInRegABI = 11075 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11076 return SetCGInfo( 11077 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11078 } 11079 case llvm::Triple::ppc64: 11080 if (Triple.isOSAIX()) 11081 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11082 11083 if (Triple.isOSBinFormatELF()) { 11084 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11085 if (getTarget().getABI() == "elfv2") 11086 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11087 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11088 11089 return SetCGInfo( 11090 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11091 } 11092 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11093 case llvm::Triple::ppc64le: { 11094 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11095 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11096 if (getTarget().getABI() == "elfv1") 11097 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11098 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11099 11100 return SetCGInfo( 11101 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11102 } 11103 11104 case llvm::Triple::nvptx: 11105 case llvm::Triple::nvptx64: 11106 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11107 11108 case llvm::Triple::msp430: 11109 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11110 11111 case llvm::Triple::riscv32: 11112 case llvm::Triple::riscv64: { 11113 StringRef ABIStr = getTarget().getABI(); 11114 unsigned XLen = getTarget().getPointerWidth(0); 11115 unsigned ABIFLen = 0; 11116 if (ABIStr.endswith("f")) 11117 ABIFLen = 32; 11118 else if (ABIStr.endswith("d")) 11119 ABIFLen = 64; 11120 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11121 } 11122 11123 case llvm::Triple::systemz: { 11124 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11125 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11126 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11127 } 11128 11129 case llvm::Triple::tce: 11130 case llvm::Triple::tcele: 11131 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11132 11133 case llvm::Triple::x86: { 11134 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11135 bool RetSmallStructInRegABI = 11136 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11137 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11138 11139 if (Triple.getOS() == llvm::Triple::Win32) { 11140 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11141 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11142 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11143 } else { 11144 return SetCGInfo(new X86_32TargetCodeGenInfo( 11145 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11146 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11147 CodeGenOpts.FloatABI == "soft")); 11148 } 11149 } 11150 11151 case llvm::Triple::x86_64: { 11152 StringRef ABI = getTarget().getABI(); 11153 X86AVXABILevel AVXLevel = 11154 (ABI == "avx512" 11155 ? X86AVXABILevel::AVX512 11156 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11157 11158 switch (Triple.getOS()) { 11159 case llvm::Triple::Win32: 11160 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11161 default: 11162 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11163 } 11164 } 11165 case llvm::Triple::hexagon: 11166 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11167 case llvm::Triple::lanai: 11168 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11169 case llvm::Triple::r600: 11170 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11171 case llvm::Triple::amdgcn: 11172 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11173 case llvm::Triple::sparc: 11174 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11175 case llvm::Triple::sparcv9: 11176 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11177 case llvm::Triple::xcore: 11178 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11179 case llvm::Triple::arc: 11180 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11181 case llvm::Triple::spir: 11182 case llvm::Triple::spir64: 11183 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11184 case llvm::Triple::ve: 11185 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11186 } 11187 } 11188 11189 /// Create an OpenCL kernel for an enqueued block. 11190 /// 11191 /// The kernel has the same function type as the block invoke function. Its 11192 /// name is the name of the block invoke function postfixed with "_kernel". 11193 /// It simply calls the block invoke function then returns. 11194 llvm::Function * 11195 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11196 llvm::Function *Invoke, 11197 llvm::Value *BlockLiteral) const { 11198 auto *InvokeFT = Invoke->getFunctionType(); 11199 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11200 for (auto &P : InvokeFT->params()) 11201 ArgTys.push_back(P); 11202 auto &C = CGF.getLLVMContext(); 11203 std::string Name = Invoke->getName().str() + "_kernel"; 11204 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11205 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11206 &CGF.CGM.getModule()); 11207 auto IP = CGF.Builder.saveIP(); 11208 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11209 auto &Builder = CGF.Builder; 11210 Builder.SetInsertPoint(BB); 11211 llvm::SmallVector<llvm::Value *, 2> Args; 11212 for (auto &A : F->args()) 11213 Args.push_back(&A); 11214 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11215 call->setCallingConv(Invoke->getCallingConv()); 11216 Builder.CreateRetVoid(); 11217 Builder.restoreIP(IP); 11218 return F; 11219 } 11220 11221 /// Create an OpenCL kernel for an enqueued block. 11222 /// 11223 /// The type of the first argument (the block literal) is the struct type 11224 /// of the block literal instead of a pointer type. The first argument 11225 /// (block literal) is passed directly by value to the kernel. The kernel 11226 /// allocates the same type of struct on stack and stores the block literal 11227 /// to it and passes its pointer to the block invoke function. The kernel 11228 /// has "enqueued-block" function attribute and kernel argument metadata. 11229 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11230 CodeGenFunction &CGF, llvm::Function *Invoke, 11231 llvm::Value *BlockLiteral) const { 11232 auto &Builder = CGF.Builder; 11233 auto &C = CGF.getLLVMContext(); 11234 11235 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11236 auto *InvokeFT = Invoke->getFunctionType(); 11237 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11238 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11239 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11240 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11241 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11242 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11243 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11244 11245 ArgTys.push_back(BlockTy); 11246 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11247 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11248 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11249 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11250 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11251 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11252 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11253 ArgTys.push_back(InvokeFT->getParamType(I)); 11254 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11255 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11256 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11257 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11258 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11259 ArgNames.push_back( 11260 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11261 } 11262 std::string Name = Invoke->getName().str() + "_kernel"; 11263 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11264 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11265 &CGF.CGM.getModule()); 11266 F->addFnAttr("enqueued-block"); 11267 auto IP = CGF.Builder.saveIP(); 11268 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11269 Builder.SetInsertPoint(BB); 11270 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11271 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11272 BlockPtr->setAlignment(BlockAlign); 11273 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11274 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11275 llvm::SmallVector<llvm::Value *, 2> Args; 11276 Args.push_back(Cast); 11277 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11278 Args.push_back(I); 11279 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11280 call->setCallingConv(Invoke->getCallingConv()); 11281 Builder.CreateRetVoid(); 11282 Builder.restoreIP(IP); 11283 11284 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11285 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11286 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11287 F->setMetadata("kernel_arg_base_type", 11288 llvm::MDNode::get(C, ArgBaseTypeNames)); 11289 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11290 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11291 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11292 11293 return F; 11294 } 11295