1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGValue.h" 20 #include "CodeGenFunction.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) 144 return CGCXXABI::RAA_Default; 145 return CXXABI.getRecordArgABI(RD); 146 } 147 148 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 149 CGCXXABI &CXXABI) { 150 const RecordType *RT = T->getAs<RecordType>(); 151 if (!RT) 152 return CGCXXABI::RAA_Default; 153 return getRecordArgABI(RT, CXXABI); 154 } 155 156 /// Pass transparent unions as if they were the type of the first element. Sema 157 /// should ensure that all elements of the union have the same "machine type". 158 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 159 if (const RecordType *UT = Ty->getAsUnionType()) { 160 const RecordDecl *UD = UT->getDecl(); 161 if (UD->hasAttr<TransparentUnionAttr>()) { 162 assert(!UD->field_empty() && "sema created an empty transparent union"); 163 return UD->field_begin()->getType(); 164 } 165 } 166 return Ty; 167 } 168 169 CGCXXABI &ABIInfo::getCXXABI() const { 170 return CGT.getCXXABI(); 171 } 172 173 ASTContext &ABIInfo::getContext() const { 174 return CGT.getContext(); 175 } 176 177 llvm::LLVMContext &ABIInfo::getVMContext() const { 178 return CGT.getLLVMContext(); 179 } 180 181 const llvm::DataLayout &ABIInfo::getDataLayout() const { 182 return CGT.getDataLayout(); 183 } 184 185 const TargetInfo &ABIInfo::getTarget() const { 186 return CGT.getTarget(); 187 } 188 189 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 190 return CGT.getCodeGenOpts(); 191 } 192 193 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 194 195 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 196 return false; 197 } 198 199 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 200 uint64_t Members) const { 201 return false; 202 } 203 204 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 205 raw_ostream &OS = llvm::errs(); 206 OS << "(ABIArgInfo Kind="; 207 switch (TheKind) { 208 case Direct: 209 OS << "Direct Type="; 210 if (llvm::Type *Ty = getCoerceToType()) 211 Ty->print(OS); 212 else 213 OS << "null"; 214 break; 215 case Extend: 216 OS << "Extend"; 217 break; 218 case Ignore: 219 OS << "Ignore"; 220 break; 221 case InAlloca: 222 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 223 break; 224 case Indirect: 225 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 226 << " ByVal=" << getIndirectByVal() 227 << " Realign=" << getIndirectRealign(); 228 break; 229 case Expand: 230 OS << "Expand"; 231 break; 232 case CoerceAndExpand: 233 OS << "CoerceAndExpand Type="; 234 getCoerceAndExpandType()->print(OS); 235 break; 236 } 237 OS << ")\n"; 238 } 239 240 // Dynamically round a pointer up to a multiple of the given alignment. 241 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 242 llvm::Value *Ptr, 243 CharUnits Align) { 244 llvm::Value *PtrAsInt = Ptr; 245 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 246 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 247 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 248 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 249 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 250 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 251 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 252 Ptr->getType(), 253 Ptr->getName() + ".aligned"); 254 return PtrAsInt; 255 } 256 257 /// Emit va_arg for a platform using the common void* representation, 258 /// where arguments are simply emitted in an array of slots on the stack. 259 /// 260 /// This version implements the core direct-value passing rules. 261 /// 262 /// \param SlotSize - The size and alignment of a stack slot. 263 /// Each argument will be allocated to a multiple of this number of 264 /// slots, and all the slots will be aligned to this value. 265 /// \param AllowHigherAlign - The slot alignment is not a cap; 266 /// an argument type with an alignment greater than the slot size 267 /// will be emitted on a higher-alignment address, potentially 268 /// leaving one or more empty slots behind as padding. If this 269 /// is false, the returned address might be less-aligned than 270 /// DirectAlign. 271 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 272 Address VAListAddr, 273 llvm::Type *DirectTy, 274 CharUnits DirectSize, 275 CharUnits DirectAlign, 276 CharUnits SlotSize, 277 bool AllowHigherAlign) { 278 // Cast the element type to i8* if necessary. Some platforms define 279 // va_list as a struct containing an i8* instead of just an i8*. 280 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 281 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 282 283 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 284 285 // If the CC aligns values higher than the slot size, do so if needed. 286 Address Addr = Address::invalid(); 287 if (AllowHigherAlign && DirectAlign > SlotSize) { 288 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 289 DirectAlign); 290 } else { 291 Addr = Address(Ptr, SlotSize); 292 } 293 294 // Advance the pointer past the argument, then store that back. 295 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 296 llvm::Value *NextPtr = 297 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 298 "argp.next"); 299 CGF.Builder.CreateStore(NextPtr, VAListAddr); 300 301 // If the argument is smaller than a slot, and this is a big-endian 302 // target, the argument will be right-adjusted in its slot. 303 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 304 !DirectTy->isStructTy()) { 305 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 306 } 307 308 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 309 return Addr; 310 } 311 312 /// Emit va_arg for a platform using the common void* representation, 313 /// where arguments are simply emitted in an array of slots on the stack. 314 /// 315 /// \param IsIndirect - Values of this type are passed indirectly. 316 /// \param ValueInfo - The size and alignment of this type, generally 317 /// computed with getContext().getTypeInfoInChars(ValueTy). 318 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 319 /// Each argument will be allocated to a multiple of this number of 320 /// slots, and all the slots will be aligned to this value. 321 /// \param AllowHigherAlign - The slot alignment is not a cap; 322 /// an argument type with an alignment greater than the slot size 323 /// will be emitted on a higher-alignment address, potentially 324 /// leaving one or more empty slots behind as padding. 325 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 326 QualType ValueTy, bool IsIndirect, 327 std::pair<CharUnits, CharUnits> ValueInfo, 328 CharUnits SlotSizeAndAlign, 329 bool AllowHigherAlign) { 330 // The size and alignment of the value that was passed directly. 331 CharUnits DirectSize, DirectAlign; 332 if (IsIndirect) { 333 DirectSize = CGF.getPointerSize(); 334 DirectAlign = CGF.getPointerAlign(); 335 } else { 336 DirectSize = ValueInfo.first; 337 DirectAlign = ValueInfo.second; 338 } 339 340 // Cast the address we've calculated to the right type. 341 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 342 if (IsIndirect) 343 DirectTy = DirectTy->getPointerTo(0); 344 345 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 346 DirectSize, DirectAlign, 347 SlotSizeAndAlign, 348 AllowHigherAlign); 349 350 if (IsIndirect) { 351 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 352 } 353 354 return Addr; 355 356 } 357 358 static Address emitMergePHI(CodeGenFunction &CGF, 359 Address Addr1, llvm::BasicBlock *Block1, 360 Address Addr2, llvm::BasicBlock *Block2, 361 const llvm::Twine &Name = "") { 362 assert(Addr1.getType() == Addr2.getType()); 363 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 364 PHI->addIncoming(Addr1.getPointer(), Block1); 365 PHI->addIncoming(Addr2.getPointer(), Block2); 366 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 367 return Address(PHI, Align); 368 } 369 370 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 371 372 // If someone can figure out a general rule for this, that would be great. 373 // It's probably just doomed to be platform-dependent, though. 374 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 375 // Verified for: 376 // x86-64 FreeBSD, Linux, Darwin 377 // x86-32 FreeBSD, Linux, Darwin 378 // PowerPC Linux, Darwin 379 // ARM Darwin (*not* EABI) 380 // AArch64 Linux 381 return 32; 382 } 383 384 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 385 const FunctionNoProtoType *fnType) const { 386 // The following conventions are known to require this to be false: 387 // x86_stdcall 388 // MIPS 389 // For everything else, we just prefer false unless we opt out. 390 return false; 391 } 392 393 void 394 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 395 llvm::SmallString<24> &Opt) const { 396 // This assumes the user is passing a library name like "rt" instead of a 397 // filename like "librt.a/so", and that they don't care whether it's static or 398 // dynamic. 399 Opt = "-l"; 400 Opt += Lib; 401 } 402 403 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 404 // OpenCL kernels are called via an explicit runtime API with arguments 405 // set with clSetKernelArg(), not as normal sub-functions. 406 // Return SPIR_KERNEL by default as the kernel calling convention to 407 // ensure the fingerprint is fixed such way that each OpenCL argument 408 // gets one matching argument in the produced kernel function argument 409 // list to enable feasible implementation of clSetKernelArg() with 410 // aggregates etc. In case we would use the default C calling conv here, 411 // clSetKernelArg() might break depending on the target-specific 412 // conventions; different targets might split structs passed as values 413 // to multiple function arguments etc. 414 return llvm::CallingConv::SPIR_KERNEL; 415 } 416 417 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 418 llvm::PointerType *T, QualType QT) const { 419 return llvm::ConstantPointerNull::get(T); 420 } 421 422 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 423 const VarDecl *D) const { 424 assert(!CGM.getLangOpts().OpenCL && 425 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 426 "Address space agnostic languages only"); 427 return D ? D->getType().getAddressSpace() : LangAS::Default; 428 } 429 430 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 431 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 432 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 433 // Since target may map different address spaces in AST to the same address 434 // space, an address space conversion may end up as a bitcast. 435 if (auto *C = dyn_cast<llvm::Constant>(Src)) 436 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 437 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 438 } 439 440 llvm::Constant * 441 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 442 LangAS SrcAddr, LangAS DestAddr, 443 llvm::Type *DestTy) const { 444 // Since target may map different address spaces in AST to the same address 445 // space, an address space conversion may end up as a bitcast. 446 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 447 } 448 449 llvm::SyncScope::ID 450 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 451 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 452 } 453 454 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 455 456 /// isEmptyField - Return true iff a the field is "empty", that is it 457 /// is an unnamed bit-field or an (array of) empty record(s). 458 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 459 bool AllowArrays) { 460 if (FD->isUnnamedBitfield()) 461 return true; 462 463 QualType FT = FD->getType(); 464 465 // Constant arrays of empty records count as empty, strip them off. 466 // Constant arrays of zero length always count as empty. 467 if (AllowArrays) 468 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 469 if (AT->getSize() == 0) 470 return true; 471 FT = AT->getElementType(); 472 } 473 474 const RecordType *RT = FT->getAs<RecordType>(); 475 if (!RT) 476 return false; 477 478 // C++ record fields are never empty, at least in the Itanium ABI. 479 // 480 // FIXME: We should use a predicate for whether this behavior is true in the 481 // current ABI. 482 if (isa<CXXRecordDecl>(RT->getDecl())) 483 return false; 484 485 return isEmptyRecord(Context, FT, AllowArrays); 486 } 487 488 /// isEmptyRecord - Return true iff a structure contains only empty 489 /// fields. Note that a structure with a flexible array member is not 490 /// considered empty. 491 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 492 const RecordType *RT = T->getAs<RecordType>(); 493 if (!RT) 494 return false; 495 const RecordDecl *RD = RT->getDecl(); 496 if (RD->hasFlexibleArrayMember()) 497 return false; 498 499 // If this is a C++ record, check the bases first. 500 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 501 for (const auto &I : CXXRD->bases()) 502 if (!isEmptyRecord(Context, I.getType(), true)) 503 return false; 504 505 for (const auto *I : RD->fields()) 506 if (!isEmptyField(Context, I, AllowArrays)) 507 return false; 508 return true; 509 } 510 511 /// isSingleElementStruct - Determine if a structure is a "single 512 /// element struct", i.e. it has exactly one non-empty field or 513 /// exactly one field which is itself a single element 514 /// struct. Structures with flexible array members are never 515 /// considered single element structs. 516 /// 517 /// \return The field declaration for the single non-empty field, if 518 /// it exists. 519 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 520 const RecordType *RT = T->getAs<RecordType>(); 521 if (!RT) 522 return nullptr; 523 524 const RecordDecl *RD = RT->getDecl(); 525 if (RD->hasFlexibleArrayMember()) 526 return nullptr; 527 528 const Type *Found = nullptr; 529 530 // If this is a C++ record, check the bases first. 531 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 532 for (const auto &I : CXXRD->bases()) { 533 // Ignore empty records. 534 if (isEmptyRecord(Context, I.getType(), true)) 535 continue; 536 537 // If we already found an element then this isn't a single-element struct. 538 if (Found) 539 return nullptr; 540 541 // If this is non-empty and not a single element struct, the composite 542 // cannot be a single element struct. 543 Found = isSingleElementStruct(I.getType(), Context); 544 if (!Found) 545 return nullptr; 546 } 547 } 548 549 // Check for single element. 550 for (const auto *FD : RD->fields()) { 551 QualType FT = FD->getType(); 552 553 // Ignore empty fields. 554 if (isEmptyField(Context, FD, true)) 555 continue; 556 557 // If we already found an element then this isn't a single-element 558 // struct. 559 if (Found) 560 return nullptr; 561 562 // Treat single element arrays as the element. 563 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 564 if (AT->getSize().getZExtValue() != 1) 565 break; 566 FT = AT->getElementType(); 567 } 568 569 if (!isAggregateTypeForABI(FT)) { 570 Found = FT.getTypePtr(); 571 } else { 572 Found = isSingleElementStruct(FT, Context); 573 if (!Found) 574 return nullptr; 575 } 576 } 577 578 // We don't consider a struct a single-element struct if it has 579 // padding beyond the element type. 580 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 581 return nullptr; 582 583 return Found; 584 } 585 586 namespace { 587 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 588 const ABIArgInfo &AI) { 589 // This default implementation defers to the llvm backend's va_arg 590 // instruction. It can handle only passing arguments directly 591 // (typically only handled in the backend for primitive types), or 592 // aggregates passed indirectly by pointer (NOTE: if the "byval" 593 // flag has ABI impact in the callee, this implementation cannot 594 // work.) 595 596 // Only a few cases are covered here at the moment -- those needed 597 // by the default abi. 598 llvm::Value *Val; 599 600 if (AI.isIndirect()) { 601 assert(!AI.getPaddingType() && 602 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 603 assert( 604 !AI.getIndirectRealign() && 605 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 606 607 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 608 CharUnits TyAlignForABI = TyInfo.second; 609 610 llvm::Type *BaseTy = 611 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 612 llvm::Value *Addr = 613 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 614 return Address(Addr, TyAlignForABI); 615 } else { 616 assert((AI.isDirect() || AI.isExtend()) && 617 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 618 619 assert(!AI.getInReg() && 620 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 621 assert(!AI.getPaddingType() && 622 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 623 assert(!AI.getDirectOffset() && 624 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 625 assert(!AI.getCoerceToType() && 626 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 627 628 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 629 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 630 CGF.Builder.CreateStore(Val, Temp); 631 return Temp; 632 } 633 } 634 635 /// DefaultABIInfo - The default implementation for ABI specific 636 /// details. This implementation provides information which results in 637 /// self-consistent and sensible LLVM IR generation, but does not 638 /// conform to any particular ABI. 639 class DefaultABIInfo : public ABIInfo { 640 public: 641 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 642 643 ABIArgInfo classifyReturnType(QualType RetTy) const; 644 ABIArgInfo classifyArgumentType(QualType RetTy) const; 645 646 void computeInfo(CGFunctionInfo &FI) const override { 647 if (!getCXXABI().classifyReturnType(FI)) 648 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 649 for (auto &I : FI.arguments()) 650 I.info = classifyArgumentType(I.type); 651 } 652 653 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 654 QualType Ty) const override { 655 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 656 } 657 }; 658 659 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 660 public: 661 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 662 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 663 }; 664 665 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 666 Ty = useFirstFieldIfTransparentUnion(Ty); 667 668 if (isAggregateTypeForABI(Ty)) { 669 // Records with non-trivial destructors/copy-constructors should not be 670 // passed by value. 671 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 672 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 673 674 return getNaturalAlignIndirect(Ty); 675 } 676 677 // Treat an enum type as its underlying type. 678 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 679 Ty = EnumTy->getDecl()->getIntegerType(); 680 681 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 682 : ABIArgInfo::getDirect()); 683 } 684 685 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 686 if (RetTy->isVoidType()) 687 return ABIArgInfo::getIgnore(); 688 689 if (isAggregateTypeForABI(RetTy)) 690 return getNaturalAlignIndirect(RetTy); 691 692 // Treat an enum type as its underlying type. 693 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 694 RetTy = EnumTy->getDecl()->getIntegerType(); 695 696 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 697 : ABIArgInfo::getDirect()); 698 } 699 700 //===----------------------------------------------------------------------===// 701 // WebAssembly ABI Implementation 702 // 703 // This is a very simple ABI that relies a lot on DefaultABIInfo. 704 //===----------------------------------------------------------------------===// 705 706 class WebAssemblyABIInfo final : public DefaultABIInfo { 707 public: 708 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 709 : DefaultABIInfo(CGT) {} 710 711 private: 712 ABIArgInfo classifyReturnType(QualType RetTy) const; 713 ABIArgInfo classifyArgumentType(QualType Ty) const; 714 715 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 716 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 717 // overload them. 718 void computeInfo(CGFunctionInfo &FI) const override { 719 if (!getCXXABI().classifyReturnType(FI)) 720 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 721 for (auto &Arg : FI.arguments()) 722 Arg.info = classifyArgumentType(Arg.type); 723 } 724 725 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 726 QualType Ty) const override; 727 }; 728 729 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 730 public: 731 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 732 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 733 }; 734 735 /// \brief Classify argument of given type \p Ty. 736 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 737 Ty = useFirstFieldIfTransparentUnion(Ty); 738 739 if (isAggregateTypeForABI(Ty)) { 740 // Records with non-trivial destructors/copy-constructors should not be 741 // passed by value. 742 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 743 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 744 // Ignore empty structs/unions. 745 if (isEmptyRecord(getContext(), Ty, true)) 746 return ABIArgInfo::getIgnore(); 747 // Lower single-element structs to just pass a regular value. TODO: We 748 // could do reasonable-size multiple-element structs too, using getExpand(), 749 // though watch out for things like bitfields. 750 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 751 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 752 } 753 754 // Otherwise just do the default thing. 755 return DefaultABIInfo::classifyArgumentType(Ty); 756 } 757 758 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 759 if (isAggregateTypeForABI(RetTy)) { 760 // Records with non-trivial destructors/copy-constructors should not be 761 // returned by value. 762 if (!getRecordArgABI(RetTy, getCXXABI())) { 763 // Ignore empty structs/unions. 764 if (isEmptyRecord(getContext(), RetTy, true)) 765 return ABIArgInfo::getIgnore(); 766 // Lower single-element structs to just return a regular value. TODO: We 767 // could do reasonable-size multiple-element structs too, using 768 // ABIArgInfo::getDirect(). 769 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 770 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 771 } 772 } 773 774 // Otherwise just do the default thing. 775 return DefaultABIInfo::classifyReturnType(RetTy); 776 } 777 778 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 779 QualType Ty) const { 780 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 781 getContext().getTypeInfoInChars(Ty), 782 CharUnits::fromQuantity(4), 783 /*AllowHigherAlign=*/ true); 784 } 785 786 //===----------------------------------------------------------------------===// 787 // le32/PNaCl bitcode ABI Implementation 788 // 789 // This is a simplified version of the x86_32 ABI. Arguments and return values 790 // are always passed on the stack. 791 //===----------------------------------------------------------------------===// 792 793 class PNaClABIInfo : public ABIInfo { 794 public: 795 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 796 797 ABIArgInfo classifyReturnType(QualType RetTy) const; 798 ABIArgInfo classifyArgumentType(QualType RetTy) const; 799 800 void computeInfo(CGFunctionInfo &FI) const override; 801 Address EmitVAArg(CodeGenFunction &CGF, 802 Address VAListAddr, QualType Ty) const override; 803 }; 804 805 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 806 public: 807 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 808 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 809 }; 810 811 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 812 if (!getCXXABI().classifyReturnType(FI)) 813 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 814 815 for (auto &I : FI.arguments()) 816 I.info = classifyArgumentType(I.type); 817 } 818 819 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 820 QualType Ty) const { 821 // The PNaCL ABI is a bit odd, in that varargs don't use normal 822 // function classification. Structs get passed directly for varargs 823 // functions, through a rewriting transform in 824 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 825 // this target to actually support a va_arg instructions with an 826 // aggregate type, unlike other targets. 827 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 828 } 829 830 /// \brief Classify argument of given type \p Ty. 831 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 832 if (isAggregateTypeForABI(Ty)) { 833 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 834 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 835 return getNaturalAlignIndirect(Ty); 836 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 837 // Treat an enum type as its underlying type. 838 Ty = EnumTy->getDecl()->getIntegerType(); 839 } else if (Ty->isFloatingType()) { 840 // Floating-point types don't go inreg. 841 return ABIArgInfo::getDirect(); 842 } 843 844 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 845 : ABIArgInfo::getDirect()); 846 } 847 848 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 849 if (RetTy->isVoidType()) 850 return ABIArgInfo::getIgnore(); 851 852 // In the PNaCl ABI we always return records/structures on the stack. 853 if (isAggregateTypeForABI(RetTy)) 854 return getNaturalAlignIndirect(RetTy); 855 856 // Treat an enum type as its underlying type. 857 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 858 RetTy = EnumTy->getDecl()->getIntegerType(); 859 860 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 861 : ABIArgInfo::getDirect()); 862 } 863 864 /// IsX86_MMXType - Return true if this is an MMX type. 865 bool IsX86_MMXType(llvm::Type *IRType) { 866 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 867 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 868 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 869 IRType->getScalarSizeInBits() != 64; 870 } 871 872 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 873 StringRef Constraint, 874 llvm::Type* Ty) { 875 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 876 .Cases("y", "&y", "^Ym", true) 877 .Default(false); 878 if (IsMMXCons && Ty->isVectorTy()) { 879 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 880 // Invalid MMX constraint 881 return nullptr; 882 } 883 884 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 885 } 886 887 // No operation needed 888 return Ty; 889 } 890 891 /// Returns true if this type can be passed in SSE registers with the 892 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 893 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 894 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 895 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 896 if (BT->getKind() == BuiltinType::LongDouble) { 897 if (&Context.getTargetInfo().getLongDoubleFormat() == 898 &llvm::APFloat::x87DoubleExtended()) 899 return false; 900 } 901 return true; 902 } 903 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 904 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 905 // registers specially. 906 unsigned VecSize = Context.getTypeSize(VT); 907 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 908 return true; 909 } 910 return false; 911 } 912 913 /// Returns true if this aggregate is small enough to be passed in SSE registers 914 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 915 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 916 return NumMembers <= 4; 917 } 918 919 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 920 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 921 auto AI = ABIArgInfo::getDirect(T); 922 AI.setInReg(true); 923 AI.setCanBeFlattened(false); 924 return AI; 925 } 926 927 //===----------------------------------------------------------------------===// 928 // X86-32 ABI Implementation 929 //===----------------------------------------------------------------------===// 930 931 /// \brief Similar to llvm::CCState, but for Clang. 932 struct CCState { 933 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 934 935 unsigned CC; 936 unsigned FreeRegs; 937 unsigned FreeSSERegs; 938 }; 939 940 enum { 941 // Vectorcall only allows the first 6 parameters to be passed in registers. 942 VectorcallMaxParamNumAsReg = 6 943 }; 944 945 /// X86_32ABIInfo - The X86-32 ABI information. 946 class X86_32ABIInfo : public SwiftABIInfo { 947 enum Class { 948 Integer, 949 Float 950 }; 951 952 static const unsigned MinABIStackAlignInBytes = 4; 953 954 bool IsDarwinVectorABI; 955 bool IsRetSmallStructInRegABI; 956 bool IsWin32StructABI; 957 bool IsSoftFloatABI; 958 bool IsMCUABI; 959 unsigned DefaultNumRegisterParameters; 960 961 static bool isRegisterSize(unsigned Size) { 962 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 963 } 964 965 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 966 // FIXME: Assumes vectorcall is in use. 967 return isX86VectorTypeForVectorCall(getContext(), Ty); 968 } 969 970 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 971 uint64_t NumMembers) const override { 972 // FIXME: Assumes vectorcall is in use. 973 return isX86VectorCallAggregateSmallEnough(NumMembers); 974 } 975 976 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 977 978 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 979 /// such that the argument will be passed in memory. 980 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 981 982 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 983 984 /// \brief Return the alignment to use for the given type on the stack. 985 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 986 987 Class classify(QualType Ty) const; 988 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 989 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 990 991 /// \brief Updates the number of available free registers, returns 992 /// true if any registers were allocated. 993 bool updateFreeRegs(QualType Ty, CCState &State) const; 994 995 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 996 bool &NeedsPadding) const; 997 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 998 999 bool canExpandIndirectArgument(QualType Ty) const; 1000 1001 /// \brief Rewrite the function info so that all memory arguments use 1002 /// inalloca. 1003 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1004 1005 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1006 CharUnits &StackOffset, ABIArgInfo &Info, 1007 QualType Type) const; 1008 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1009 bool &UsedInAlloca) const; 1010 1011 public: 1012 1013 void computeInfo(CGFunctionInfo &FI) const override; 1014 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1015 QualType Ty) const override; 1016 1017 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1018 bool RetSmallStructInRegABI, bool Win32StructABI, 1019 unsigned NumRegisterParameters, bool SoftFloatABI) 1020 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1021 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1022 IsWin32StructABI(Win32StructABI), 1023 IsSoftFloatABI(SoftFloatABI), 1024 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1025 DefaultNumRegisterParameters(NumRegisterParameters) {} 1026 1027 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1028 bool asReturnValue) const override { 1029 // LLVM's x86-32 lowering currently only assigns up to three 1030 // integer registers and three fp registers. Oddly, it'll use up to 1031 // four vector registers for vectors, but those can overlap with the 1032 // scalar registers. 1033 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1034 } 1035 1036 bool isSwiftErrorInRegister() const override { 1037 // x86-32 lowering does not support passing swifterror in a register. 1038 return false; 1039 } 1040 }; 1041 1042 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1043 public: 1044 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1045 bool RetSmallStructInRegABI, bool Win32StructABI, 1046 unsigned NumRegisterParameters, bool SoftFloatABI) 1047 : TargetCodeGenInfo(new X86_32ABIInfo( 1048 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1049 NumRegisterParameters, SoftFloatABI)) {} 1050 1051 static bool isStructReturnInRegABI( 1052 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1053 1054 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1055 CodeGen::CodeGenModule &CGM) const override; 1056 1057 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1058 // Darwin uses different dwarf register numbers for EH. 1059 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1060 return 4; 1061 } 1062 1063 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1064 llvm::Value *Address) const override; 1065 1066 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1067 StringRef Constraint, 1068 llvm::Type* Ty) const override { 1069 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1070 } 1071 1072 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1073 std::string &Constraints, 1074 std::vector<llvm::Type *> &ResultRegTypes, 1075 std::vector<llvm::Type *> &ResultTruncRegTypes, 1076 std::vector<LValue> &ResultRegDests, 1077 std::string &AsmString, 1078 unsigned NumOutputs) const override; 1079 1080 llvm::Constant * 1081 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1082 unsigned Sig = (0xeb << 0) | // jmp rel8 1083 (0x06 << 8) | // .+0x08 1084 ('v' << 16) | 1085 ('2' << 24); 1086 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1087 } 1088 1089 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1090 return "movl\t%ebp, %ebp" 1091 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1092 } 1093 }; 1094 1095 } 1096 1097 /// Rewrite input constraint references after adding some output constraints. 1098 /// In the case where there is one output and one input and we add one output, 1099 /// we need to replace all operand references greater than or equal to 1: 1100 /// mov $0, $1 1101 /// mov eax, $1 1102 /// The result will be: 1103 /// mov $0, $2 1104 /// mov eax, $2 1105 static void rewriteInputConstraintReferences(unsigned FirstIn, 1106 unsigned NumNewOuts, 1107 std::string &AsmString) { 1108 std::string Buf; 1109 llvm::raw_string_ostream OS(Buf); 1110 size_t Pos = 0; 1111 while (Pos < AsmString.size()) { 1112 size_t DollarStart = AsmString.find('$', Pos); 1113 if (DollarStart == std::string::npos) 1114 DollarStart = AsmString.size(); 1115 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1116 if (DollarEnd == std::string::npos) 1117 DollarEnd = AsmString.size(); 1118 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1119 Pos = DollarEnd; 1120 size_t NumDollars = DollarEnd - DollarStart; 1121 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1122 // We have an operand reference. 1123 size_t DigitStart = Pos; 1124 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1125 if (DigitEnd == std::string::npos) 1126 DigitEnd = AsmString.size(); 1127 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1128 unsigned OperandIndex; 1129 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1130 if (OperandIndex >= FirstIn) 1131 OperandIndex += NumNewOuts; 1132 OS << OperandIndex; 1133 } else { 1134 OS << OperandStr; 1135 } 1136 Pos = DigitEnd; 1137 } 1138 } 1139 AsmString = std::move(OS.str()); 1140 } 1141 1142 /// Add output constraints for EAX:EDX because they are return registers. 1143 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1144 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1145 std::vector<llvm::Type *> &ResultRegTypes, 1146 std::vector<llvm::Type *> &ResultTruncRegTypes, 1147 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1148 unsigned NumOutputs) const { 1149 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1150 1151 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1152 // larger. 1153 if (!Constraints.empty()) 1154 Constraints += ','; 1155 if (RetWidth <= 32) { 1156 Constraints += "={eax}"; 1157 ResultRegTypes.push_back(CGF.Int32Ty); 1158 } else { 1159 // Use the 'A' constraint for EAX:EDX. 1160 Constraints += "=A"; 1161 ResultRegTypes.push_back(CGF.Int64Ty); 1162 } 1163 1164 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1165 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1166 ResultTruncRegTypes.push_back(CoerceTy); 1167 1168 // Coerce the integer by bitcasting the return slot pointer. 1169 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1170 CoerceTy->getPointerTo())); 1171 ResultRegDests.push_back(ReturnSlot); 1172 1173 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1174 } 1175 1176 /// shouldReturnTypeInRegister - Determine if the given type should be 1177 /// returned in a register (for the Darwin and MCU ABI). 1178 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1179 ASTContext &Context) const { 1180 uint64_t Size = Context.getTypeSize(Ty); 1181 1182 // For i386, type must be register sized. 1183 // For the MCU ABI, it only needs to be <= 8-byte 1184 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1185 return false; 1186 1187 if (Ty->isVectorType()) { 1188 // 64- and 128- bit vectors inside structures are not returned in 1189 // registers. 1190 if (Size == 64 || Size == 128) 1191 return false; 1192 1193 return true; 1194 } 1195 1196 // If this is a builtin, pointer, enum, complex type, member pointer, or 1197 // member function pointer it is ok. 1198 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1199 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1200 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1201 return true; 1202 1203 // Arrays are treated like records. 1204 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1205 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1206 1207 // Otherwise, it must be a record type. 1208 const RecordType *RT = Ty->getAs<RecordType>(); 1209 if (!RT) return false; 1210 1211 // FIXME: Traverse bases here too. 1212 1213 // Structure types are passed in register if all fields would be 1214 // passed in a register. 1215 for (const auto *FD : RT->getDecl()->fields()) { 1216 // Empty fields are ignored. 1217 if (isEmptyField(Context, FD, true)) 1218 continue; 1219 1220 // Check fields recursively. 1221 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1222 return false; 1223 } 1224 return true; 1225 } 1226 1227 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1228 // Treat complex types as the element type. 1229 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1230 Ty = CTy->getElementType(); 1231 1232 // Check for a type which we know has a simple scalar argument-passing 1233 // convention without any padding. (We're specifically looking for 32 1234 // and 64-bit integer and integer-equivalents, float, and double.) 1235 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1236 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1237 return false; 1238 1239 uint64_t Size = Context.getTypeSize(Ty); 1240 return Size == 32 || Size == 64; 1241 } 1242 1243 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1244 uint64_t &Size) { 1245 for (const auto *FD : RD->fields()) { 1246 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1247 // argument is smaller than 32-bits, expanding the struct will create 1248 // alignment padding. 1249 if (!is32Or64BitBasicType(FD->getType(), Context)) 1250 return false; 1251 1252 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1253 // how to expand them yet, and the predicate for telling if a bitfield still 1254 // counts as "basic" is more complicated than what we were doing previously. 1255 if (FD->isBitField()) 1256 return false; 1257 1258 Size += Context.getTypeSize(FD->getType()); 1259 } 1260 return true; 1261 } 1262 1263 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1264 uint64_t &Size) { 1265 // Don't do this if there are any non-empty bases. 1266 for (const CXXBaseSpecifier &Base : RD->bases()) { 1267 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1268 Size)) 1269 return false; 1270 } 1271 if (!addFieldSizes(Context, RD, Size)) 1272 return false; 1273 return true; 1274 } 1275 1276 /// Test whether an argument type which is to be passed indirectly (on the 1277 /// stack) would have the equivalent layout if it was expanded into separate 1278 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1279 /// optimizations. 1280 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1281 // We can only expand structure types. 1282 const RecordType *RT = Ty->getAs<RecordType>(); 1283 if (!RT) 1284 return false; 1285 const RecordDecl *RD = RT->getDecl(); 1286 uint64_t Size = 0; 1287 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1288 if (!IsWin32StructABI) { 1289 // On non-Windows, we have to conservatively match our old bitcode 1290 // prototypes in order to be ABI-compatible at the bitcode level. 1291 if (!CXXRD->isCLike()) 1292 return false; 1293 } else { 1294 // Don't do this for dynamic classes. 1295 if (CXXRD->isDynamicClass()) 1296 return false; 1297 } 1298 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1299 return false; 1300 } else { 1301 if (!addFieldSizes(getContext(), RD, Size)) 1302 return false; 1303 } 1304 1305 // We can do this if there was no alignment padding. 1306 return Size == getContext().getTypeSize(Ty); 1307 } 1308 1309 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1310 // If the return value is indirect, then the hidden argument is consuming one 1311 // integer register. 1312 if (State.FreeRegs) { 1313 --State.FreeRegs; 1314 if (!IsMCUABI) 1315 return getNaturalAlignIndirectInReg(RetTy); 1316 } 1317 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1318 } 1319 1320 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1321 CCState &State) const { 1322 if (RetTy->isVoidType()) 1323 return ABIArgInfo::getIgnore(); 1324 1325 const Type *Base = nullptr; 1326 uint64_t NumElts = 0; 1327 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1328 State.CC == llvm::CallingConv::X86_RegCall) && 1329 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1330 // The LLVM struct type for such an aggregate should lower properly. 1331 return ABIArgInfo::getDirect(); 1332 } 1333 1334 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1335 // On Darwin, some vectors are returned in registers. 1336 if (IsDarwinVectorABI) { 1337 uint64_t Size = getContext().getTypeSize(RetTy); 1338 1339 // 128-bit vectors are a special case; they are returned in 1340 // registers and we need to make sure to pick a type the LLVM 1341 // backend will like. 1342 if (Size == 128) 1343 return ABIArgInfo::getDirect(llvm::VectorType::get( 1344 llvm::Type::getInt64Ty(getVMContext()), 2)); 1345 1346 // Always return in register if it fits in a general purpose 1347 // register, or if it is 64 bits and has a single element. 1348 if ((Size == 8 || Size == 16 || Size == 32) || 1349 (Size == 64 && VT->getNumElements() == 1)) 1350 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1351 Size)); 1352 1353 return getIndirectReturnResult(RetTy, State); 1354 } 1355 1356 return ABIArgInfo::getDirect(); 1357 } 1358 1359 if (isAggregateTypeForABI(RetTy)) { 1360 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1361 // Structures with flexible arrays are always indirect. 1362 if (RT->getDecl()->hasFlexibleArrayMember()) 1363 return getIndirectReturnResult(RetTy, State); 1364 } 1365 1366 // If specified, structs and unions are always indirect. 1367 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1368 return getIndirectReturnResult(RetTy, State); 1369 1370 // Ignore empty structs/unions. 1371 if (isEmptyRecord(getContext(), RetTy, true)) 1372 return ABIArgInfo::getIgnore(); 1373 1374 // Small structures which are register sized are generally returned 1375 // in a register. 1376 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1377 uint64_t Size = getContext().getTypeSize(RetTy); 1378 1379 // As a special-case, if the struct is a "single-element" struct, and 1380 // the field is of type "float" or "double", return it in a 1381 // floating-point register. (MSVC does not apply this special case.) 1382 // We apply a similar transformation for pointer types to improve the 1383 // quality of the generated IR. 1384 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1385 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1386 || SeltTy->hasPointerRepresentation()) 1387 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1388 1389 // FIXME: We should be able to narrow this integer in cases with dead 1390 // padding. 1391 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1392 } 1393 1394 return getIndirectReturnResult(RetTy, State); 1395 } 1396 1397 // Treat an enum type as its underlying type. 1398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1399 RetTy = EnumTy->getDecl()->getIntegerType(); 1400 1401 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1402 : ABIArgInfo::getDirect()); 1403 } 1404 1405 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1406 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1407 } 1408 1409 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1410 const RecordType *RT = Ty->getAs<RecordType>(); 1411 if (!RT) 1412 return 0; 1413 const RecordDecl *RD = RT->getDecl(); 1414 1415 // If this is a C++ record, check the bases first. 1416 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1417 for (const auto &I : CXXRD->bases()) 1418 if (!isRecordWithSSEVectorType(Context, I.getType())) 1419 return false; 1420 1421 for (const auto *i : RD->fields()) { 1422 QualType FT = i->getType(); 1423 1424 if (isSSEVectorType(Context, FT)) 1425 return true; 1426 1427 if (isRecordWithSSEVectorType(Context, FT)) 1428 return true; 1429 } 1430 1431 return false; 1432 } 1433 1434 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1435 unsigned Align) const { 1436 // Otherwise, if the alignment is less than or equal to the minimum ABI 1437 // alignment, just use the default; the backend will handle this. 1438 if (Align <= MinABIStackAlignInBytes) 1439 return 0; // Use default alignment. 1440 1441 // On non-Darwin, the stack type alignment is always 4. 1442 if (!IsDarwinVectorABI) { 1443 // Set explicit alignment, since we may need to realign the top. 1444 return MinABIStackAlignInBytes; 1445 } 1446 1447 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1448 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1449 isRecordWithSSEVectorType(getContext(), Ty))) 1450 return 16; 1451 1452 return MinABIStackAlignInBytes; 1453 } 1454 1455 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1456 CCState &State) const { 1457 if (!ByVal) { 1458 if (State.FreeRegs) { 1459 --State.FreeRegs; // Non-byval indirects just use one pointer. 1460 if (!IsMCUABI) 1461 return getNaturalAlignIndirectInReg(Ty); 1462 } 1463 return getNaturalAlignIndirect(Ty, false); 1464 } 1465 1466 // Compute the byval alignment. 1467 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1468 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1469 if (StackAlign == 0) 1470 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1471 1472 // If the stack alignment is less than the type alignment, realign the 1473 // argument. 1474 bool Realign = TypeAlign > StackAlign; 1475 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1476 /*ByVal=*/true, Realign); 1477 } 1478 1479 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1480 const Type *T = isSingleElementStruct(Ty, getContext()); 1481 if (!T) 1482 T = Ty.getTypePtr(); 1483 1484 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1485 BuiltinType::Kind K = BT->getKind(); 1486 if (K == BuiltinType::Float || K == BuiltinType::Double) 1487 return Float; 1488 } 1489 return Integer; 1490 } 1491 1492 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1493 if (!IsSoftFloatABI) { 1494 Class C = classify(Ty); 1495 if (C == Float) 1496 return false; 1497 } 1498 1499 unsigned Size = getContext().getTypeSize(Ty); 1500 unsigned SizeInRegs = (Size + 31) / 32; 1501 1502 if (SizeInRegs == 0) 1503 return false; 1504 1505 if (!IsMCUABI) { 1506 if (SizeInRegs > State.FreeRegs) { 1507 State.FreeRegs = 0; 1508 return false; 1509 } 1510 } else { 1511 // The MCU psABI allows passing parameters in-reg even if there are 1512 // earlier parameters that are passed on the stack. Also, 1513 // it does not allow passing >8-byte structs in-register, 1514 // even if there are 3 free registers available. 1515 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1516 return false; 1517 } 1518 1519 State.FreeRegs -= SizeInRegs; 1520 return true; 1521 } 1522 1523 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1524 bool &InReg, 1525 bool &NeedsPadding) const { 1526 // On Windows, aggregates other than HFAs are never passed in registers, and 1527 // they do not consume register slots. Homogenous floating-point aggregates 1528 // (HFAs) have already been dealt with at this point. 1529 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1530 return false; 1531 1532 NeedsPadding = false; 1533 InReg = !IsMCUABI; 1534 1535 if (!updateFreeRegs(Ty, State)) 1536 return false; 1537 1538 if (IsMCUABI) 1539 return true; 1540 1541 if (State.CC == llvm::CallingConv::X86_FastCall || 1542 State.CC == llvm::CallingConv::X86_VectorCall || 1543 State.CC == llvm::CallingConv::X86_RegCall) { 1544 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1545 NeedsPadding = true; 1546 1547 return false; 1548 } 1549 1550 return true; 1551 } 1552 1553 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1554 if (!updateFreeRegs(Ty, State)) 1555 return false; 1556 1557 if (IsMCUABI) 1558 return false; 1559 1560 if (State.CC == llvm::CallingConv::X86_FastCall || 1561 State.CC == llvm::CallingConv::X86_VectorCall || 1562 State.CC == llvm::CallingConv::X86_RegCall) { 1563 if (getContext().getTypeSize(Ty) > 32) 1564 return false; 1565 1566 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1567 Ty->isReferenceType()); 1568 } 1569 1570 return true; 1571 } 1572 1573 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1574 CCState &State) const { 1575 // FIXME: Set alignment on indirect arguments. 1576 1577 Ty = useFirstFieldIfTransparentUnion(Ty); 1578 1579 // Check with the C++ ABI first. 1580 const RecordType *RT = Ty->getAs<RecordType>(); 1581 if (RT) { 1582 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1583 if (RAA == CGCXXABI::RAA_Indirect) { 1584 return getIndirectResult(Ty, false, State); 1585 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1586 // The field index doesn't matter, we'll fix it up later. 1587 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1588 } 1589 } 1590 1591 // Regcall uses the concept of a homogenous vector aggregate, similar 1592 // to other targets. 1593 const Type *Base = nullptr; 1594 uint64_t NumElts = 0; 1595 if (State.CC == llvm::CallingConv::X86_RegCall && 1596 isHomogeneousAggregate(Ty, Base, NumElts)) { 1597 1598 if (State.FreeSSERegs >= NumElts) { 1599 State.FreeSSERegs -= NumElts; 1600 if (Ty->isBuiltinType() || Ty->isVectorType()) 1601 return ABIArgInfo::getDirect(); 1602 return ABIArgInfo::getExpand(); 1603 } 1604 return getIndirectResult(Ty, /*ByVal=*/false, State); 1605 } 1606 1607 if (isAggregateTypeForABI(Ty)) { 1608 // Structures with flexible arrays are always indirect. 1609 // FIXME: This should not be byval! 1610 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1611 return getIndirectResult(Ty, true, State); 1612 1613 // Ignore empty structs/unions on non-Windows. 1614 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1615 return ABIArgInfo::getIgnore(); 1616 1617 llvm::LLVMContext &LLVMContext = getVMContext(); 1618 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1619 bool NeedsPadding = false; 1620 bool InReg; 1621 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1622 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1623 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1624 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1625 if (InReg) 1626 return ABIArgInfo::getDirectInReg(Result); 1627 else 1628 return ABIArgInfo::getDirect(Result); 1629 } 1630 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1631 1632 // Expand small (<= 128-bit) record types when we know that the stack layout 1633 // of those arguments will match the struct. This is important because the 1634 // LLVM backend isn't smart enough to remove byval, which inhibits many 1635 // optimizations. 1636 // Don't do this for the MCU if there are still free integer registers 1637 // (see X86_64 ABI for full explanation). 1638 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1639 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1640 return ABIArgInfo::getExpandWithPadding( 1641 State.CC == llvm::CallingConv::X86_FastCall || 1642 State.CC == llvm::CallingConv::X86_VectorCall || 1643 State.CC == llvm::CallingConv::X86_RegCall, 1644 PaddingType); 1645 1646 return getIndirectResult(Ty, true, State); 1647 } 1648 1649 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1650 // On Darwin, some vectors are passed in memory, we handle this by passing 1651 // it as an i8/i16/i32/i64. 1652 if (IsDarwinVectorABI) { 1653 uint64_t Size = getContext().getTypeSize(Ty); 1654 if ((Size == 8 || Size == 16 || Size == 32) || 1655 (Size == 64 && VT->getNumElements() == 1)) 1656 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1657 Size)); 1658 } 1659 1660 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1661 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1662 1663 return ABIArgInfo::getDirect(); 1664 } 1665 1666 1667 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1668 Ty = EnumTy->getDecl()->getIntegerType(); 1669 1670 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1671 1672 if (Ty->isPromotableIntegerType()) { 1673 if (InReg) 1674 return ABIArgInfo::getExtendInReg(Ty); 1675 return ABIArgInfo::getExtend(Ty); 1676 } 1677 1678 if (InReg) 1679 return ABIArgInfo::getDirectInReg(); 1680 return ABIArgInfo::getDirect(); 1681 } 1682 1683 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1684 bool &UsedInAlloca) const { 1685 // Vectorcall x86 works subtly different than in x64, so the format is 1686 // a bit different than the x64 version. First, all vector types (not HVAs) 1687 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1688 // This differs from the x64 implementation, where the first 6 by INDEX get 1689 // registers. 1690 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1691 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1692 // first take up the remaining YMM/XMM registers. If insufficient registers 1693 // remain but an integer register (ECX/EDX) is available, it will be passed 1694 // in that, else, on the stack. 1695 for (auto &I : FI.arguments()) { 1696 // First pass do all the vector types. 1697 const Type *Base = nullptr; 1698 uint64_t NumElts = 0; 1699 const QualType& Ty = I.type; 1700 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1701 isHomogeneousAggregate(Ty, Base, NumElts)) { 1702 if (State.FreeSSERegs >= NumElts) { 1703 State.FreeSSERegs -= NumElts; 1704 I.info = ABIArgInfo::getDirect(); 1705 } else { 1706 I.info = classifyArgumentType(Ty, State); 1707 } 1708 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1709 } 1710 } 1711 1712 for (auto &I : FI.arguments()) { 1713 // Second pass, do the rest! 1714 const Type *Base = nullptr; 1715 uint64_t NumElts = 0; 1716 const QualType& Ty = I.type; 1717 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1718 1719 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1720 // Assign true HVAs (non vector/native FP types). 1721 if (State.FreeSSERegs >= NumElts) { 1722 State.FreeSSERegs -= NumElts; 1723 I.info = getDirectX86Hva(); 1724 } else { 1725 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1726 } 1727 } else if (!IsHva) { 1728 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1729 I.info = classifyArgumentType(Ty, State); 1730 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1731 } 1732 } 1733 } 1734 1735 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1736 CCState State(FI.getCallingConvention()); 1737 if (IsMCUABI) 1738 State.FreeRegs = 3; 1739 else if (State.CC == llvm::CallingConv::X86_FastCall) 1740 State.FreeRegs = 2; 1741 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1742 State.FreeRegs = 2; 1743 State.FreeSSERegs = 6; 1744 } else if (FI.getHasRegParm()) 1745 State.FreeRegs = FI.getRegParm(); 1746 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1747 State.FreeRegs = 5; 1748 State.FreeSSERegs = 8; 1749 } else 1750 State.FreeRegs = DefaultNumRegisterParameters; 1751 1752 if (!getCXXABI().classifyReturnType(FI)) { 1753 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1754 } else if (FI.getReturnInfo().isIndirect()) { 1755 // The C++ ABI is not aware of register usage, so we have to check if the 1756 // return value was sret and put it in a register ourselves if appropriate. 1757 if (State.FreeRegs) { 1758 --State.FreeRegs; // The sret parameter consumes a register. 1759 if (!IsMCUABI) 1760 FI.getReturnInfo().setInReg(true); 1761 } 1762 } 1763 1764 // The chain argument effectively gives us another free register. 1765 if (FI.isChainCall()) 1766 ++State.FreeRegs; 1767 1768 bool UsedInAlloca = false; 1769 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1770 computeVectorCallArgs(FI, State, UsedInAlloca); 1771 } else { 1772 // If not vectorcall, revert to normal behavior. 1773 for (auto &I : FI.arguments()) { 1774 I.info = classifyArgumentType(I.type, State); 1775 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1776 } 1777 } 1778 1779 // If we needed to use inalloca for any argument, do a second pass and rewrite 1780 // all the memory arguments to use inalloca. 1781 if (UsedInAlloca) 1782 rewriteWithInAlloca(FI); 1783 } 1784 1785 void 1786 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1787 CharUnits &StackOffset, ABIArgInfo &Info, 1788 QualType Type) const { 1789 // Arguments are always 4-byte-aligned. 1790 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1791 1792 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1793 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1794 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1795 StackOffset += getContext().getTypeSizeInChars(Type); 1796 1797 // Insert padding bytes to respect alignment. 1798 CharUnits FieldEnd = StackOffset; 1799 StackOffset = FieldEnd.alignTo(FieldAlign); 1800 if (StackOffset != FieldEnd) { 1801 CharUnits NumBytes = StackOffset - FieldEnd; 1802 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1803 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1804 FrameFields.push_back(Ty); 1805 } 1806 } 1807 1808 static bool isArgInAlloca(const ABIArgInfo &Info) { 1809 // Leave ignored and inreg arguments alone. 1810 switch (Info.getKind()) { 1811 case ABIArgInfo::InAlloca: 1812 return true; 1813 case ABIArgInfo::Indirect: 1814 assert(Info.getIndirectByVal()); 1815 return true; 1816 case ABIArgInfo::Ignore: 1817 return false; 1818 case ABIArgInfo::Direct: 1819 case ABIArgInfo::Extend: 1820 if (Info.getInReg()) 1821 return false; 1822 return true; 1823 case ABIArgInfo::Expand: 1824 case ABIArgInfo::CoerceAndExpand: 1825 // These are aggregate types which are never passed in registers when 1826 // inalloca is involved. 1827 return true; 1828 } 1829 llvm_unreachable("invalid enum"); 1830 } 1831 1832 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1833 assert(IsWin32StructABI && "inalloca only supported on win32"); 1834 1835 // Build a packed struct type for all of the arguments in memory. 1836 SmallVector<llvm::Type *, 6> FrameFields; 1837 1838 // The stack alignment is always 4. 1839 CharUnits StackAlign = CharUnits::fromQuantity(4); 1840 1841 CharUnits StackOffset; 1842 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1843 1844 // Put 'this' into the struct before 'sret', if necessary. 1845 bool IsThisCall = 1846 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1847 ABIArgInfo &Ret = FI.getReturnInfo(); 1848 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1849 isArgInAlloca(I->info)) { 1850 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1851 ++I; 1852 } 1853 1854 // Put the sret parameter into the inalloca struct if it's in memory. 1855 if (Ret.isIndirect() && !Ret.getInReg()) { 1856 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1857 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1858 // On Windows, the hidden sret parameter is always returned in eax. 1859 Ret.setInAllocaSRet(IsWin32StructABI); 1860 } 1861 1862 // Skip the 'this' parameter in ecx. 1863 if (IsThisCall) 1864 ++I; 1865 1866 // Put arguments passed in memory into the struct. 1867 for (; I != E; ++I) { 1868 if (isArgInAlloca(I->info)) 1869 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1870 } 1871 1872 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1873 /*isPacked=*/true), 1874 StackAlign); 1875 } 1876 1877 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1878 Address VAListAddr, QualType Ty) const { 1879 1880 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1881 1882 // x86-32 changes the alignment of certain arguments on the stack. 1883 // 1884 // Just messing with TypeInfo like this works because we never pass 1885 // anything indirectly. 1886 TypeInfo.second = CharUnits::fromQuantity( 1887 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1888 1889 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1890 TypeInfo, CharUnits::fromQuantity(4), 1891 /*AllowHigherAlign*/ true); 1892 } 1893 1894 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1895 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1896 assert(Triple.getArch() == llvm::Triple::x86); 1897 1898 switch (Opts.getStructReturnConvention()) { 1899 case CodeGenOptions::SRCK_Default: 1900 break; 1901 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1902 return false; 1903 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1904 return true; 1905 } 1906 1907 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1908 return true; 1909 1910 switch (Triple.getOS()) { 1911 case llvm::Triple::DragonFly: 1912 case llvm::Triple::FreeBSD: 1913 case llvm::Triple::OpenBSD: 1914 case llvm::Triple::Win32: 1915 return true; 1916 default: 1917 return false; 1918 } 1919 } 1920 1921 void X86_32TargetCodeGenInfo::setTargetAttributes( 1922 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1923 if (GV->isDeclaration()) 1924 return; 1925 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1926 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1927 // Get the LLVM function. 1928 llvm::Function *Fn = cast<llvm::Function>(GV); 1929 1930 // Now add the 'alignstack' attribute with a value of 16. 1931 llvm::AttrBuilder B; 1932 B.addStackAlignmentAttr(16); 1933 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 1934 } 1935 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1936 llvm::Function *Fn = cast<llvm::Function>(GV); 1937 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1938 } 1939 } 1940 } 1941 1942 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1943 CodeGen::CodeGenFunction &CGF, 1944 llvm::Value *Address) const { 1945 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1946 1947 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1948 1949 // 0-7 are the eight integer registers; the order is different 1950 // on Darwin (for EH), but the range is the same. 1951 // 8 is %eip. 1952 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1953 1954 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1955 // 12-16 are st(0..4). Not sure why we stop at 4. 1956 // These have size 16, which is sizeof(long double) on 1957 // platforms with 8-byte alignment for that type. 1958 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1959 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1960 1961 } else { 1962 // 9 is %eflags, which doesn't get a size on Darwin for some 1963 // reason. 1964 Builder.CreateAlignedStore( 1965 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1966 CharUnits::One()); 1967 1968 // 11-16 are st(0..5). Not sure why we stop at 5. 1969 // These have size 12, which is sizeof(long double) on 1970 // platforms with 4-byte alignment for that type. 1971 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1972 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1973 } 1974 1975 return false; 1976 } 1977 1978 //===----------------------------------------------------------------------===// 1979 // X86-64 ABI Implementation 1980 //===----------------------------------------------------------------------===// 1981 1982 1983 namespace { 1984 /// The AVX ABI level for X86 targets. 1985 enum class X86AVXABILevel { 1986 None, 1987 AVX, 1988 AVX512 1989 }; 1990 1991 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1992 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1993 switch (AVXLevel) { 1994 case X86AVXABILevel::AVX512: 1995 return 512; 1996 case X86AVXABILevel::AVX: 1997 return 256; 1998 case X86AVXABILevel::None: 1999 return 128; 2000 } 2001 llvm_unreachable("Unknown AVXLevel"); 2002 } 2003 2004 /// X86_64ABIInfo - The X86_64 ABI information. 2005 class X86_64ABIInfo : public SwiftABIInfo { 2006 enum Class { 2007 Integer = 0, 2008 SSE, 2009 SSEUp, 2010 X87, 2011 X87Up, 2012 ComplexX87, 2013 NoClass, 2014 Memory 2015 }; 2016 2017 /// merge - Implement the X86_64 ABI merging algorithm. 2018 /// 2019 /// Merge an accumulating classification \arg Accum with a field 2020 /// classification \arg Field. 2021 /// 2022 /// \param Accum - The accumulating classification. This should 2023 /// always be either NoClass or the result of a previous merge 2024 /// call. In addition, this should never be Memory (the caller 2025 /// should just return Memory for the aggregate). 2026 static Class merge(Class Accum, Class Field); 2027 2028 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2029 /// 2030 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2031 /// final MEMORY or SSE classes when necessary. 2032 /// 2033 /// \param AggregateSize - The size of the current aggregate in 2034 /// the classification process. 2035 /// 2036 /// \param Lo - The classification for the parts of the type 2037 /// residing in the low word of the containing object. 2038 /// 2039 /// \param Hi - The classification for the parts of the type 2040 /// residing in the higher words of the containing object. 2041 /// 2042 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2043 2044 /// classify - Determine the x86_64 register classes in which the 2045 /// given type T should be passed. 2046 /// 2047 /// \param Lo - The classification for the parts of the type 2048 /// residing in the low word of the containing object. 2049 /// 2050 /// \param Hi - The classification for the parts of the type 2051 /// residing in the high word of the containing object. 2052 /// 2053 /// \param OffsetBase - The bit offset of this type in the 2054 /// containing object. Some parameters are classified different 2055 /// depending on whether they straddle an eightbyte boundary. 2056 /// 2057 /// \param isNamedArg - Whether the argument in question is a "named" 2058 /// argument, as used in AMD64-ABI 3.5.7. 2059 /// 2060 /// If a word is unused its result will be NoClass; if a type should 2061 /// be passed in Memory then at least the classification of \arg Lo 2062 /// will be Memory. 2063 /// 2064 /// The \arg Lo class will be NoClass iff the argument is ignored. 2065 /// 2066 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2067 /// also be ComplexX87. 2068 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2069 bool isNamedArg) const; 2070 2071 llvm::Type *GetByteVectorType(QualType Ty) const; 2072 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2073 unsigned IROffset, QualType SourceTy, 2074 unsigned SourceOffset) const; 2075 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2076 unsigned IROffset, QualType SourceTy, 2077 unsigned SourceOffset) const; 2078 2079 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2080 /// such that the argument will be returned in memory. 2081 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2082 2083 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2084 /// such that the argument will be passed in memory. 2085 /// 2086 /// \param freeIntRegs - The number of free integer registers remaining 2087 /// available. 2088 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2089 2090 ABIArgInfo classifyReturnType(QualType RetTy) const; 2091 2092 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2093 unsigned &neededInt, unsigned &neededSSE, 2094 bool isNamedArg) const; 2095 2096 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2097 unsigned &NeededSSE) const; 2098 2099 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2100 unsigned &NeededSSE) const; 2101 2102 bool IsIllegalVectorType(QualType Ty) const; 2103 2104 /// The 0.98 ABI revision clarified a lot of ambiguities, 2105 /// unfortunately in ways that were not always consistent with 2106 /// certain previous compilers. In particular, platforms which 2107 /// required strict binary compatibility with older versions of GCC 2108 /// may need to exempt themselves. 2109 bool honorsRevision0_98() const { 2110 return !getTarget().getTriple().isOSDarwin(); 2111 } 2112 2113 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2114 /// classify it as INTEGER (for compatibility with older clang compilers). 2115 bool classifyIntegerMMXAsSSE() const { 2116 // Clang <= 3.8 did not do this. 2117 if (getCodeGenOpts().getClangABICompat() <= 2118 CodeGenOptions::ClangABI::Ver3_8) 2119 return false; 2120 2121 const llvm::Triple &Triple = getTarget().getTriple(); 2122 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2123 return false; 2124 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2125 return false; 2126 return true; 2127 } 2128 2129 X86AVXABILevel AVXLevel; 2130 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2131 // 64-bit hardware. 2132 bool Has64BitPointers; 2133 2134 public: 2135 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2136 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2137 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2138 } 2139 2140 bool isPassedUsingAVXType(QualType type) const { 2141 unsigned neededInt, neededSSE; 2142 // The freeIntRegs argument doesn't matter here. 2143 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2144 /*isNamedArg*/true); 2145 if (info.isDirect()) { 2146 llvm::Type *ty = info.getCoerceToType(); 2147 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2148 return (vectorTy->getBitWidth() > 128); 2149 } 2150 return false; 2151 } 2152 2153 void computeInfo(CGFunctionInfo &FI) const override; 2154 2155 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2156 QualType Ty) const override; 2157 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2158 QualType Ty) const override; 2159 2160 bool has64BitPointers() const { 2161 return Has64BitPointers; 2162 } 2163 2164 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2165 bool asReturnValue) const override { 2166 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2167 } 2168 bool isSwiftErrorInRegister() const override { 2169 return true; 2170 } 2171 }; 2172 2173 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2174 class WinX86_64ABIInfo : public SwiftABIInfo { 2175 public: 2176 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2177 : SwiftABIInfo(CGT), 2178 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2179 2180 void computeInfo(CGFunctionInfo &FI) const override; 2181 2182 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2183 QualType Ty) const override; 2184 2185 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2186 // FIXME: Assumes vectorcall is in use. 2187 return isX86VectorTypeForVectorCall(getContext(), Ty); 2188 } 2189 2190 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2191 uint64_t NumMembers) const override { 2192 // FIXME: Assumes vectorcall is in use. 2193 return isX86VectorCallAggregateSmallEnough(NumMembers); 2194 } 2195 2196 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2197 bool asReturnValue) const override { 2198 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2199 } 2200 2201 bool isSwiftErrorInRegister() const override { 2202 return true; 2203 } 2204 2205 private: 2206 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2207 bool IsVectorCall, bool IsRegCall) const; 2208 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2209 const ABIArgInfo ¤t) const; 2210 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2211 bool IsVectorCall, bool IsRegCall) const; 2212 2213 bool IsMingw64; 2214 }; 2215 2216 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2217 public: 2218 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2219 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2220 2221 const X86_64ABIInfo &getABIInfo() const { 2222 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2223 } 2224 2225 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2226 return 7; 2227 } 2228 2229 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2230 llvm::Value *Address) const override { 2231 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2232 2233 // 0-15 are the 16 integer registers. 2234 // 16 is %rip. 2235 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2236 return false; 2237 } 2238 2239 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2240 StringRef Constraint, 2241 llvm::Type* Ty) const override { 2242 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2243 } 2244 2245 bool isNoProtoCallVariadic(const CallArgList &args, 2246 const FunctionNoProtoType *fnType) const override { 2247 // The default CC on x86-64 sets %al to the number of SSA 2248 // registers used, and GCC sets this when calling an unprototyped 2249 // function, so we override the default behavior. However, don't do 2250 // that when AVX types are involved: the ABI explicitly states it is 2251 // undefined, and it doesn't work in practice because of how the ABI 2252 // defines varargs anyway. 2253 if (fnType->getCallConv() == CC_C) { 2254 bool HasAVXType = false; 2255 for (CallArgList::const_iterator 2256 it = args.begin(), ie = args.end(); it != ie; ++it) { 2257 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2258 HasAVXType = true; 2259 break; 2260 } 2261 } 2262 2263 if (!HasAVXType) 2264 return true; 2265 } 2266 2267 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2268 } 2269 2270 llvm::Constant * 2271 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2272 unsigned Sig = (0xeb << 0) | // jmp rel8 2273 (0x06 << 8) | // .+0x08 2274 ('v' << 16) | 2275 ('2' << 24); 2276 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2277 } 2278 2279 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2280 CodeGen::CodeGenModule &CGM) const override { 2281 if (GV->isDeclaration()) 2282 return; 2283 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2284 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2285 // Get the LLVM function. 2286 auto *Fn = cast<llvm::Function>(GV); 2287 2288 // Now add the 'alignstack' attribute with a value of 16. 2289 llvm::AttrBuilder B; 2290 B.addStackAlignmentAttr(16); 2291 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2292 } 2293 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2294 llvm::Function *Fn = cast<llvm::Function>(GV); 2295 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2296 } 2297 } 2298 } 2299 }; 2300 2301 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2302 public: 2303 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2304 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2305 2306 void getDependentLibraryOption(llvm::StringRef Lib, 2307 llvm::SmallString<24> &Opt) const override { 2308 Opt = "\01"; 2309 // If the argument contains a space, enclose it in quotes. 2310 if (Lib.find(" ") != StringRef::npos) 2311 Opt += "\"" + Lib.str() + "\""; 2312 else 2313 Opt += Lib; 2314 } 2315 }; 2316 2317 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2318 // If the argument does not end in .lib, automatically add the suffix. 2319 // If the argument contains a space, enclose it in quotes. 2320 // This matches the behavior of MSVC. 2321 bool Quote = (Lib.find(" ") != StringRef::npos); 2322 std::string ArgStr = Quote ? "\"" : ""; 2323 ArgStr += Lib; 2324 if (!Lib.endswith_lower(".lib")) 2325 ArgStr += ".lib"; 2326 ArgStr += Quote ? "\"" : ""; 2327 return ArgStr; 2328 } 2329 2330 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2331 public: 2332 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2333 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2334 unsigned NumRegisterParameters) 2335 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2336 Win32StructABI, NumRegisterParameters, false) {} 2337 2338 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2339 CodeGen::CodeGenModule &CGM) const override; 2340 2341 void getDependentLibraryOption(llvm::StringRef Lib, 2342 llvm::SmallString<24> &Opt) const override { 2343 Opt = "/DEFAULTLIB:"; 2344 Opt += qualifyWindowsLibrary(Lib); 2345 } 2346 2347 void getDetectMismatchOption(llvm::StringRef Name, 2348 llvm::StringRef Value, 2349 llvm::SmallString<32> &Opt) const override { 2350 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2351 } 2352 }; 2353 2354 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2355 CodeGen::CodeGenModule &CGM) { 2356 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2357 2358 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2359 Fn->addFnAttr("stack-probe-size", 2360 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2361 if (CGM.getCodeGenOpts().NoStackArgProbe) 2362 Fn->addFnAttr("no-stack-arg-probe"); 2363 } 2364 } 2365 2366 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2367 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2368 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2369 if (GV->isDeclaration()) 2370 return; 2371 addStackProbeTargetAttributes(D, GV, CGM); 2372 } 2373 2374 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2375 public: 2376 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2377 X86AVXABILevel AVXLevel) 2378 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2379 2380 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2381 CodeGen::CodeGenModule &CGM) const override; 2382 2383 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2384 return 7; 2385 } 2386 2387 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2388 llvm::Value *Address) const override { 2389 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2390 2391 // 0-15 are the 16 integer registers. 2392 // 16 is %rip. 2393 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2394 return false; 2395 } 2396 2397 void getDependentLibraryOption(llvm::StringRef Lib, 2398 llvm::SmallString<24> &Opt) const override { 2399 Opt = "/DEFAULTLIB:"; 2400 Opt += qualifyWindowsLibrary(Lib); 2401 } 2402 2403 void getDetectMismatchOption(llvm::StringRef Name, 2404 llvm::StringRef Value, 2405 llvm::SmallString<32> &Opt) const override { 2406 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2407 } 2408 }; 2409 2410 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2411 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2412 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2413 if (GV->isDeclaration()) 2414 return; 2415 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2416 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2417 // Get the LLVM function. 2418 auto *Fn = cast<llvm::Function>(GV); 2419 2420 // Now add the 'alignstack' attribute with a value of 16. 2421 llvm::AttrBuilder B; 2422 B.addStackAlignmentAttr(16); 2423 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2424 } 2425 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2426 llvm::Function *Fn = cast<llvm::Function>(GV); 2427 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2428 } 2429 } 2430 2431 addStackProbeTargetAttributes(D, GV, CGM); 2432 } 2433 } 2434 2435 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2436 Class &Hi) const { 2437 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2438 // 2439 // (a) If one of the classes is Memory, the whole argument is passed in 2440 // memory. 2441 // 2442 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2443 // memory. 2444 // 2445 // (c) If the size of the aggregate exceeds two eightbytes and the first 2446 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2447 // argument is passed in memory. NOTE: This is necessary to keep the 2448 // ABI working for processors that don't support the __m256 type. 2449 // 2450 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2451 // 2452 // Some of these are enforced by the merging logic. Others can arise 2453 // only with unions; for example: 2454 // union { _Complex double; unsigned; } 2455 // 2456 // Note that clauses (b) and (c) were added in 0.98. 2457 // 2458 if (Hi == Memory) 2459 Lo = Memory; 2460 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2461 Lo = Memory; 2462 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2463 Lo = Memory; 2464 if (Hi == SSEUp && Lo != SSE) 2465 Hi = SSE; 2466 } 2467 2468 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2469 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2470 // classified recursively so that always two fields are 2471 // considered. The resulting class is calculated according to 2472 // the classes of the fields in the eightbyte: 2473 // 2474 // (a) If both classes are equal, this is the resulting class. 2475 // 2476 // (b) If one of the classes is NO_CLASS, the resulting class is 2477 // the other class. 2478 // 2479 // (c) If one of the classes is MEMORY, the result is the MEMORY 2480 // class. 2481 // 2482 // (d) If one of the classes is INTEGER, the result is the 2483 // INTEGER. 2484 // 2485 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2486 // MEMORY is used as class. 2487 // 2488 // (f) Otherwise class SSE is used. 2489 2490 // Accum should never be memory (we should have returned) or 2491 // ComplexX87 (because this cannot be passed in a structure). 2492 assert((Accum != Memory && Accum != ComplexX87) && 2493 "Invalid accumulated classification during merge."); 2494 if (Accum == Field || Field == NoClass) 2495 return Accum; 2496 if (Field == Memory) 2497 return Memory; 2498 if (Accum == NoClass) 2499 return Field; 2500 if (Accum == Integer || Field == Integer) 2501 return Integer; 2502 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2503 Accum == X87 || Accum == X87Up) 2504 return Memory; 2505 return SSE; 2506 } 2507 2508 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2509 Class &Lo, Class &Hi, bool isNamedArg) const { 2510 // FIXME: This code can be simplified by introducing a simple value class for 2511 // Class pairs with appropriate constructor methods for the various 2512 // situations. 2513 2514 // FIXME: Some of the split computations are wrong; unaligned vectors 2515 // shouldn't be passed in registers for example, so there is no chance they 2516 // can straddle an eightbyte. Verify & simplify. 2517 2518 Lo = Hi = NoClass; 2519 2520 Class &Current = OffsetBase < 64 ? Lo : Hi; 2521 Current = Memory; 2522 2523 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2524 BuiltinType::Kind k = BT->getKind(); 2525 2526 if (k == BuiltinType::Void) { 2527 Current = NoClass; 2528 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2529 Lo = Integer; 2530 Hi = Integer; 2531 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2532 Current = Integer; 2533 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2534 Current = SSE; 2535 } else if (k == BuiltinType::LongDouble) { 2536 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2537 if (LDF == &llvm::APFloat::IEEEquad()) { 2538 Lo = SSE; 2539 Hi = SSEUp; 2540 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2541 Lo = X87; 2542 Hi = X87Up; 2543 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2544 Current = SSE; 2545 } else 2546 llvm_unreachable("unexpected long double representation!"); 2547 } 2548 // FIXME: _Decimal32 and _Decimal64 are SSE. 2549 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2550 return; 2551 } 2552 2553 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2554 // Classify the underlying integer type. 2555 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2556 return; 2557 } 2558 2559 if (Ty->hasPointerRepresentation()) { 2560 Current = Integer; 2561 return; 2562 } 2563 2564 if (Ty->isMemberPointerType()) { 2565 if (Ty->isMemberFunctionPointerType()) { 2566 if (Has64BitPointers) { 2567 // If Has64BitPointers, this is an {i64, i64}, so classify both 2568 // Lo and Hi now. 2569 Lo = Hi = Integer; 2570 } else { 2571 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2572 // straddles an eightbyte boundary, Hi should be classified as well. 2573 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2574 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2575 if (EB_FuncPtr != EB_ThisAdj) { 2576 Lo = Hi = Integer; 2577 } else { 2578 Current = Integer; 2579 } 2580 } 2581 } else { 2582 Current = Integer; 2583 } 2584 return; 2585 } 2586 2587 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2588 uint64_t Size = getContext().getTypeSize(VT); 2589 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2590 // gcc passes the following as integer: 2591 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2592 // 2 bytes - <2 x char>, <1 x short> 2593 // 1 byte - <1 x char> 2594 Current = Integer; 2595 2596 // If this type crosses an eightbyte boundary, it should be 2597 // split. 2598 uint64_t EB_Lo = (OffsetBase) / 64; 2599 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2600 if (EB_Lo != EB_Hi) 2601 Hi = Lo; 2602 } else if (Size == 64) { 2603 QualType ElementType = VT->getElementType(); 2604 2605 // gcc passes <1 x double> in memory. :( 2606 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2607 return; 2608 2609 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2610 // pass them as integer. For platforms where clang is the de facto 2611 // platform compiler, we must continue to use integer. 2612 if (!classifyIntegerMMXAsSSE() && 2613 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2614 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2615 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2616 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2617 Current = Integer; 2618 else 2619 Current = SSE; 2620 2621 // If this type crosses an eightbyte boundary, it should be 2622 // split. 2623 if (OffsetBase && OffsetBase != 64) 2624 Hi = Lo; 2625 } else if (Size == 128 || 2626 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2627 // Arguments of 256-bits are split into four eightbyte chunks. The 2628 // least significant one belongs to class SSE and all the others to class 2629 // SSEUP. The original Lo and Hi design considers that types can't be 2630 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2631 // This design isn't correct for 256-bits, but since there're no cases 2632 // where the upper parts would need to be inspected, avoid adding 2633 // complexity and just consider Hi to match the 64-256 part. 2634 // 2635 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2636 // registers if they are "named", i.e. not part of the "..." of a 2637 // variadic function. 2638 // 2639 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2640 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2641 Lo = SSE; 2642 Hi = SSEUp; 2643 } 2644 return; 2645 } 2646 2647 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2648 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2649 2650 uint64_t Size = getContext().getTypeSize(Ty); 2651 if (ET->isIntegralOrEnumerationType()) { 2652 if (Size <= 64) 2653 Current = Integer; 2654 else if (Size <= 128) 2655 Lo = Hi = Integer; 2656 } else if (ET == getContext().FloatTy) { 2657 Current = SSE; 2658 } else if (ET == getContext().DoubleTy) { 2659 Lo = Hi = SSE; 2660 } else if (ET == getContext().LongDoubleTy) { 2661 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2662 if (LDF == &llvm::APFloat::IEEEquad()) 2663 Current = Memory; 2664 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2665 Current = ComplexX87; 2666 else if (LDF == &llvm::APFloat::IEEEdouble()) 2667 Lo = Hi = SSE; 2668 else 2669 llvm_unreachable("unexpected long double representation!"); 2670 } 2671 2672 // If this complex type crosses an eightbyte boundary then it 2673 // should be split. 2674 uint64_t EB_Real = (OffsetBase) / 64; 2675 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2676 if (Hi == NoClass && EB_Real != EB_Imag) 2677 Hi = Lo; 2678 2679 return; 2680 } 2681 2682 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2683 // Arrays are treated like structures. 2684 2685 uint64_t Size = getContext().getTypeSize(Ty); 2686 2687 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2688 // than eight eightbytes, ..., it has class MEMORY. 2689 if (Size > 512) 2690 return; 2691 2692 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2693 // fields, it has class MEMORY. 2694 // 2695 // Only need to check alignment of array base. 2696 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2697 return; 2698 2699 // Otherwise implement simplified merge. We could be smarter about 2700 // this, but it isn't worth it and would be harder to verify. 2701 Current = NoClass; 2702 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2703 uint64_t ArraySize = AT->getSize().getZExtValue(); 2704 2705 // The only case a 256-bit wide vector could be used is when the array 2706 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2707 // to work for sizes wider than 128, early check and fallback to memory. 2708 // 2709 if (Size > 128 && 2710 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2711 return; 2712 2713 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2714 Class FieldLo, FieldHi; 2715 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2716 Lo = merge(Lo, FieldLo); 2717 Hi = merge(Hi, FieldHi); 2718 if (Lo == Memory || Hi == Memory) 2719 break; 2720 } 2721 2722 postMerge(Size, Lo, Hi); 2723 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2724 return; 2725 } 2726 2727 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2728 uint64_t Size = getContext().getTypeSize(Ty); 2729 2730 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2731 // than eight eightbytes, ..., it has class MEMORY. 2732 if (Size > 512) 2733 return; 2734 2735 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2736 // copy constructor or a non-trivial destructor, it is passed by invisible 2737 // reference. 2738 if (getRecordArgABI(RT, getCXXABI())) 2739 return; 2740 2741 const RecordDecl *RD = RT->getDecl(); 2742 2743 // Assume variable sized types are passed in memory. 2744 if (RD->hasFlexibleArrayMember()) 2745 return; 2746 2747 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2748 2749 // Reset Lo class, this will be recomputed. 2750 Current = NoClass; 2751 2752 // If this is a C++ record, classify the bases first. 2753 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2754 for (const auto &I : CXXRD->bases()) { 2755 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2756 "Unexpected base class!"); 2757 const CXXRecordDecl *Base = 2758 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2759 2760 // Classify this field. 2761 // 2762 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2763 // single eightbyte, each is classified separately. Each eightbyte gets 2764 // initialized to class NO_CLASS. 2765 Class FieldLo, FieldHi; 2766 uint64_t Offset = 2767 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2768 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2769 Lo = merge(Lo, FieldLo); 2770 Hi = merge(Hi, FieldHi); 2771 if (Lo == Memory || Hi == Memory) { 2772 postMerge(Size, Lo, Hi); 2773 return; 2774 } 2775 } 2776 } 2777 2778 // Classify the fields one at a time, merging the results. 2779 unsigned idx = 0; 2780 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2781 i != e; ++i, ++idx) { 2782 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2783 bool BitField = i->isBitField(); 2784 2785 // Ignore padding bit-fields. 2786 if (BitField && i->isUnnamedBitfield()) 2787 continue; 2788 2789 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2790 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2791 // 2792 // The only case a 256-bit wide vector could be used is when the struct 2793 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2794 // to work for sizes wider than 128, early check and fallback to memory. 2795 // 2796 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2797 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2798 Lo = Memory; 2799 postMerge(Size, Lo, Hi); 2800 return; 2801 } 2802 // Note, skip this test for bit-fields, see below. 2803 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2804 Lo = Memory; 2805 postMerge(Size, Lo, Hi); 2806 return; 2807 } 2808 2809 // Classify this field. 2810 // 2811 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2812 // exceeds a single eightbyte, each is classified 2813 // separately. Each eightbyte gets initialized to class 2814 // NO_CLASS. 2815 Class FieldLo, FieldHi; 2816 2817 // Bit-fields require special handling, they do not force the 2818 // structure to be passed in memory even if unaligned, and 2819 // therefore they can straddle an eightbyte. 2820 if (BitField) { 2821 assert(!i->isUnnamedBitfield()); 2822 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2823 uint64_t Size = i->getBitWidthValue(getContext()); 2824 2825 uint64_t EB_Lo = Offset / 64; 2826 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2827 2828 if (EB_Lo) { 2829 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2830 FieldLo = NoClass; 2831 FieldHi = Integer; 2832 } else { 2833 FieldLo = Integer; 2834 FieldHi = EB_Hi ? Integer : NoClass; 2835 } 2836 } else 2837 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2838 Lo = merge(Lo, FieldLo); 2839 Hi = merge(Hi, FieldHi); 2840 if (Lo == Memory || Hi == Memory) 2841 break; 2842 } 2843 2844 postMerge(Size, Lo, Hi); 2845 } 2846 } 2847 2848 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2849 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2850 // place naturally. 2851 if (!isAggregateTypeForABI(Ty)) { 2852 // Treat an enum type as its underlying type. 2853 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2854 Ty = EnumTy->getDecl()->getIntegerType(); 2855 2856 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2857 : ABIArgInfo::getDirect()); 2858 } 2859 2860 return getNaturalAlignIndirect(Ty); 2861 } 2862 2863 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2864 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2865 uint64_t Size = getContext().getTypeSize(VecTy); 2866 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2867 if (Size <= 64 || Size > LargestVector) 2868 return true; 2869 } 2870 2871 return false; 2872 } 2873 2874 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2875 unsigned freeIntRegs) const { 2876 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2877 // place naturally. 2878 // 2879 // This assumption is optimistic, as there could be free registers available 2880 // when we need to pass this argument in memory, and LLVM could try to pass 2881 // the argument in the free register. This does not seem to happen currently, 2882 // but this code would be much safer if we could mark the argument with 2883 // 'onstack'. See PR12193. 2884 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2885 // Treat an enum type as its underlying type. 2886 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2887 Ty = EnumTy->getDecl()->getIntegerType(); 2888 2889 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2890 : ABIArgInfo::getDirect()); 2891 } 2892 2893 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2894 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2895 2896 // Compute the byval alignment. We specify the alignment of the byval in all 2897 // cases so that the mid-level optimizer knows the alignment of the byval. 2898 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2899 2900 // Attempt to avoid passing indirect results using byval when possible. This 2901 // is important for good codegen. 2902 // 2903 // We do this by coercing the value into a scalar type which the backend can 2904 // handle naturally (i.e., without using byval). 2905 // 2906 // For simplicity, we currently only do this when we have exhausted all of the 2907 // free integer registers. Doing this when there are free integer registers 2908 // would require more care, as we would have to ensure that the coerced value 2909 // did not claim the unused register. That would require either reording the 2910 // arguments to the function (so that any subsequent inreg values came first), 2911 // or only doing this optimization when there were no following arguments that 2912 // might be inreg. 2913 // 2914 // We currently expect it to be rare (particularly in well written code) for 2915 // arguments to be passed on the stack when there are still free integer 2916 // registers available (this would typically imply large structs being passed 2917 // by value), so this seems like a fair tradeoff for now. 2918 // 2919 // We can revisit this if the backend grows support for 'onstack' parameter 2920 // attributes. See PR12193. 2921 if (freeIntRegs == 0) { 2922 uint64_t Size = getContext().getTypeSize(Ty); 2923 2924 // If this type fits in an eightbyte, coerce it into the matching integral 2925 // type, which will end up on the stack (with alignment 8). 2926 if (Align == 8 && Size <= 64) 2927 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2928 Size)); 2929 } 2930 2931 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2932 } 2933 2934 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2935 /// register. Pick an LLVM IR type that will be passed as a vector register. 2936 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2937 // Wrapper structs/arrays that only contain vectors are passed just like 2938 // vectors; strip them off if present. 2939 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2940 Ty = QualType(InnerTy, 0); 2941 2942 llvm::Type *IRType = CGT.ConvertType(Ty); 2943 if (isa<llvm::VectorType>(IRType) || 2944 IRType->getTypeID() == llvm::Type::FP128TyID) 2945 return IRType; 2946 2947 // We couldn't find the preferred IR vector type for 'Ty'. 2948 uint64_t Size = getContext().getTypeSize(Ty); 2949 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2950 2951 // Return a LLVM IR vector type based on the size of 'Ty'. 2952 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2953 Size / 64); 2954 } 2955 2956 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2957 /// is known to either be off the end of the specified type or being in 2958 /// alignment padding. The user type specified is known to be at most 128 bits 2959 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2960 /// classification that put one of the two halves in the INTEGER class. 2961 /// 2962 /// It is conservatively correct to return false. 2963 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2964 unsigned EndBit, ASTContext &Context) { 2965 // If the bytes being queried are off the end of the type, there is no user 2966 // data hiding here. This handles analysis of builtins, vectors and other 2967 // types that don't contain interesting padding. 2968 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2969 if (TySize <= StartBit) 2970 return true; 2971 2972 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2973 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2974 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2975 2976 // Check each element to see if the element overlaps with the queried range. 2977 for (unsigned i = 0; i != NumElts; ++i) { 2978 // If the element is after the span we care about, then we're done.. 2979 unsigned EltOffset = i*EltSize; 2980 if (EltOffset >= EndBit) break; 2981 2982 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2983 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2984 EndBit-EltOffset, Context)) 2985 return false; 2986 } 2987 // If it overlaps no elements, then it is safe to process as padding. 2988 return true; 2989 } 2990 2991 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2992 const RecordDecl *RD = RT->getDecl(); 2993 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2994 2995 // If this is a C++ record, check the bases first. 2996 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2997 for (const auto &I : CXXRD->bases()) { 2998 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2999 "Unexpected base class!"); 3000 const CXXRecordDecl *Base = 3001 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3002 3003 // If the base is after the span we care about, ignore it. 3004 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3005 if (BaseOffset >= EndBit) continue; 3006 3007 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3008 if (!BitsContainNoUserData(I.getType(), BaseStart, 3009 EndBit-BaseOffset, Context)) 3010 return false; 3011 } 3012 } 3013 3014 // Verify that no field has data that overlaps the region of interest. Yes 3015 // this could be sped up a lot by being smarter about queried fields, 3016 // however we're only looking at structs up to 16 bytes, so we don't care 3017 // much. 3018 unsigned idx = 0; 3019 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3020 i != e; ++i, ++idx) { 3021 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3022 3023 // If we found a field after the region we care about, then we're done. 3024 if (FieldOffset >= EndBit) break; 3025 3026 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3027 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3028 Context)) 3029 return false; 3030 } 3031 3032 // If nothing in this record overlapped the area of interest, then we're 3033 // clean. 3034 return true; 3035 } 3036 3037 return false; 3038 } 3039 3040 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3041 /// float member at the specified offset. For example, {int,{float}} has a 3042 /// float at offset 4. It is conservatively correct for this routine to return 3043 /// false. 3044 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3045 const llvm::DataLayout &TD) { 3046 // Base case if we find a float. 3047 if (IROffset == 0 && IRType->isFloatTy()) 3048 return true; 3049 3050 // If this is a struct, recurse into the field at the specified offset. 3051 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3052 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3053 unsigned Elt = SL->getElementContainingOffset(IROffset); 3054 IROffset -= SL->getElementOffset(Elt); 3055 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3056 } 3057 3058 // If this is an array, recurse into the field at the specified offset. 3059 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3060 llvm::Type *EltTy = ATy->getElementType(); 3061 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3062 IROffset -= IROffset/EltSize*EltSize; 3063 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3064 } 3065 3066 return false; 3067 } 3068 3069 3070 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3071 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3072 llvm::Type *X86_64ABIInfo:: 3073 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3074 QualType SourceTy, unsigned SourceOffset) const { 3075 // The only three choices we have are either double, <2 x float>, or float. We 3076 // pass as float if the last 4 bytes is just padding. This happens for 3077 // structs that contain 3 floats. 3078 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3079 SourceOffset*8+64, getContext())) 3080 return llvm::Type::getFloatTy(getVMContext()); 3081 3082 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3083 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3084 // case. 3085 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3086 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3087 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3088 3089 return llvm::Type::getDoubleTy(getVMContext()); 3090 } 3091 3092 3093 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3094 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3095 /// about the high or low part of an up-to-16-byte struct. This routine picks 3096 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3097 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3098 /// etc). 3099 /// 3100 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3101 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3102 /// the 8-byte value references. PrefType may be null. 3103 /// 3104 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3105 /// an offset into this that we're processing (which is always either 0 or 8). 3106 /// 3107 llvm::Type *X86_64ABIInfo:: 3108 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3109 QualType SourceTy, unsigned SourceOffset) const { 3110 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3111 // returning an 8-byte unit starting with it. See if we can safely use it. 3112 if (IROffset == 0) { 3113 // Pointers and int64's always fill the 8-byte unit. 3114 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3115 IRType->isIntegerTy(64)) 3116 return IRType; 3117 3118 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3119 // goodness in the source type is just tail padding. This is allowed to 3120 // kick in for struct {double,int} on the int, but not on 3121 // struct{double,int,int} because we wouldn't return the second int. We 3122 // have to do this analysis on the source type because we can't depend on 3123 // unions being lowered a specific way etc. 3124 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3125 IRType->isIntegerTy(32) || 3126 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3127 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3128 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3129 3130 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3131 SourceOffset*8+64, getContext())) 3132 return IRType; 3133 } 3134 } 3135 3136 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3137 // If this is a struct, recurse into the field at the specified offset. 3138 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3139 if (IROffset < SL->getSizeInBytes()) { 3140 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3141 IROffset -= SL->getElementOffset(FieldIdx); 3142 3143 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3144 SourceTy, SourceOffset); 3145 } 3146 } 3147 3148 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3149 llvm::Type *EltTy = ATy->getElementType(); 3150 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3151 unsigned EltOffset = IROffset/EltSize*EltSize; 3152 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3153 SourceOffset); 3154 } 3155 3156 // Okay, we don't have any better idea of what to pass, so we pass this in an 3157 // integer register that isn't too big to fit the rest of the struct. 3158 unsigned TySizeInBytes = 3159 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3160 3161 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3162 3163 // It is always safe to classify this as an integer type up to i64 that 3164 // isn't larger than the structure. 3165 return llvm::IntegerType::get(getVMContext(), 3166 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3167 } 3168 3169 3170 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3171 /// be used as elements of a two register pair to pass or return, return a 3172 /// first class aggregate to represent them. For example, if the low part of 3173 /// a by-value argument should be passed as i32* and the high part as float, 3174 /// return {i32*, float}. 3175 static llvm::Type * 3176 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3177 const llvm::DataLayout &TD) { 3178 // In order to correctly satisfy the ABI, we need to the high part to start 3179 // at offset 8. If the high and low parts we inferred are both 4-byte types 3180 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3181 // the second element at offset 8. Check for this: 3182 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3183 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3184 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3185 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3186 3187 // To handle this, we have to increase the size of the low part so that the 3188 // second element will start at an 8 byte offset. We can't increase the size 3189 // of the second element because it might make us access off the end of the 3190 // struct. 3191 if (HiStart != 8) { 3192 // There are usually two sorts of types the ABI generation code can produce 3193 // for the low part of a pair that aren't 8 bytes in size: float or 3194 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3195 // NaCl). 3196 // Promote these to a larger type. 3197 if (Lo->isFloatTy()) 3198 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3199 else { 3200 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3201 && "Invalid/unknown lo type"); 3202 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3203 } 3204 } 3205 3206 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3207 3208 // Verify that the second element is at an 8-byte offset. 3209 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3210 "Invalid x86-64 argument pair!"); 3211 return Result; 3212 } 3213 3214 ABIArgInfo X86_64ABIInfo:: 3215 classifyReturnType(QualType RetTy) const { 3216 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3217 // classification algorithm. 3218 X86_64ABIInfo::Class Lo, Hi; 3219 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3220 3221 // Check some invariants. 3222 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3223 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3224 3225 llvm::Type *ResType = nullptr; 3226 switch (Lo) { 3227 case NoClass: 3228 if (Hi == NoClass) 3229 return ABIArgInfo::getIgnore(); 3230 // If the low part is just padding, it takes no register, leave ResType 3231 // null. 3232 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3233 "Unknown missing lo part"); 3234 break; 3235 3236 case SSEUp: 3237 case X87Up: 3238 llvm_unreachable("Invalid classification for lo word."); 3239 3240 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3241 // hidden argument. 3242 case Memory: 3243 return getIndirectReturnResult(RetTy); 3244 3245 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3246 // available register of the sequence %rax, %rdx is used. 3247 case Integer: 3248 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3249 3250 // If we have a sign or zero extended integer, make sure to return Extend 3251 // so that the parameter gets the right LLVM IR attributes. 3252 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3253 // Treat an enum type as its underlying type. 3254 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3255 RetTy = EnumTy->getDecl()->getIntegerType(); 3256 3257 if (RetTy->isIntegralOrEnumerationType() && 3258 RetTy->isPromotableIntegerType()) 3259 return ABIArgInfo::getExtend(RetTy); 3260 } 3261 break; 3262 3263 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3264 // available SSE register of the sequence %xmm0, %xmm1 is used. 3265 case SSE: 3266 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3267 break; 3268 3269 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3270 // returned on the X87 stack in %st0 as 80-bit x87 number. 3271 case X87: 3272 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3273 break; 3274 3275 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3276 // part of the value is returned in %st0 and the imaginary part in 3277 // %st1. 3278 case ComplexX87: 3279 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3280 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3281 llvm::Type::getX86_FP80Ty(getVMContext())); 3282 break; 3283 } 3284 3285 llvm::Type *HighPart = nullptr; 3286 switch (Hi) { 3287 // Memory was handled previously and X87 should 3288 // never occur as a hi class. 3289 case Memory: 3290 case X87: 3291 llvm_unreachable("Invalid classification for hi word."); 3292 3293 case ComplexX87: // Previously handled. 3294 case NoClass: 3295 break; 3296 3297 case Integer: 3298 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3299 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3300 return ABIArgInfo::getDirect(HighPart, 8); 3301 break; 3302 case SSE: 3303 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3304 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3305 return ABIArgInfo::getDirect(HighPart, 8); 3306 break; 3307 3308 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3309 // is passed in the next available eightbyte chunk if the last used 3310 // vector register. 3311 // 3312 // SSEUP should always be preceded by SSE, just widen. 3313 case SSEUp: 3314 assert(Lo == SSE && "Unexpected SSEUp classification."); 3315 ResType = GetByteVectorType(RetTy); 3316 break; 3317 3318 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3319 // returned together with the previous X87 value in %st0. 3320 case X87Up: 3321 // If X87Up is preceded by X87, we don't need to do 3322 // anything. However, in some cases with unions it may not be 3323 // preceded by X87. In such situations we follow gcc and pass the 3324 // extra bits in an SSE reg. 3325 if (Lo != X87) { 3326 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3327 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3328 return ABIArgInfo::getDirect(HighPart, 8); 3329 } 3330 break; 3331 } 3332 3333 // If a high part was specified, merge it together with the low part. It is 3334 // known to pass in the high eightbyte of the result. We do this by forming a 3335 // first class struct aggregate with the high and low part: {low, high} 3336 if (HighPart) 3337 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3338 3339 return ABIArgInfo::getDirect(ResType); 3340 } 3341 3342 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3343 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3344 bool isNamedArg) 3345 const 3346 { 3347 Ty = useFirstFieldIfTransparentUnion(Ty); 3348 3349 X86_64ABIInfo::Class Lo, Hi; 3350 classify(Ty, 0, Lo, Hi, isNamedArg); 3351 3352 // Check some invariants. 3353 // FIXME: Enforce these by construction. 3354 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3355 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3356 3357 neededInt = 0; 3358 neededSSE = 0; 3359 llvm::Type *ResType = nullptr; 3360 switch (Lo) { 3361 case NoClass: 3362 if (Hi == NoClass) 3363 return ABIArgInfo::getIgnore(); 3364 // If the low part is just padding, it takes no register, leave ResType 3365 // null. 3366 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3367 "Unknown missing lo part"); 3368 break; 3369 3370 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3371 // on the stack. 3372 case Memory: 3373 3374 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3375 // COMPLEX_X87, it is passed in memory. 3376 case X87: 3377 case ComplexX87: 3378 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3379 ++neededInt; 3380 return getIndirectResult(Ty, freeIntRegs); 3381 3382 case SSEUp: 3383 case X87Up: 3384 llvm_unreachable("Invalid classification for lo word."); 3385 3386 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3387 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3388 // and %r9 is used. 3389 case Integer: 3390 ++neededInt; 3391 3392 // Pick an 8-byte type based on the preferred type. 3393 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3394 3395 // If we have a sign or zero extended integer, make sure to return Extend 3396 // so that the parameter gets the right LLVM IR attributes. 3397 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3398 // Treat an enum type as its underlying type. 3399 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3400 Ty = EnumTy->getDecl()->getIntegerType(); 3401 3402 if (Ty->isIntegralOrEnumerationType() && 3403 Ty->isPromotableIntegerType()) 3404 return ABIArgInfo::getExtend(Ty); 3405 } 3406 3407 break; 3408 3409 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3410 // available SSE register is used, the registers are taken in the 3411 // order from %xmm0 to %xmm7. 3412 case SSE: { 3413 llvm::Type *IRType = CGT.ConvertType(Ty); 3414 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3415 ++neededSSE; 3416 break; 3417 } 3418 } 3419 3420 llvm::Type *HighPart = nullptr; 3421 switch (Hi) { 3422 // Memory was handled previously, ComplexX87 and X87 should 3423 // never occur as hi classes, and X87Up must be preceded by X87, 3424 // which is passed in memory. 3425 case Memory: 3426 case X87: 3427 case ComplexX87: 3428 llvm_unreachable("Invalid classification for hi word."); 3429 3430 case NoClass: break; 3431 3432 case Integer: 3433 ++neededInt; 3434 // Pick an 8-byte type based on the preferred type. 3435 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3436 3437 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3438 return ABIArgInfo::getDirect(HighPart, 8); 3439 break; 3440 3441 // X87Up generally doesn't occur here (long double is passed in 3442 // memory), except in situations involving unions. 3443 case X87Up: 3444 case SSE: 3445 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3446 3447 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3448 return ABIArgInfo::getDirect(HighPart, 8); 3449 3450 ++neededSSE; 3451 break; 3452 3453 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3454 // eightbyte is passed in the upper half of the last used SSE 3455 // register. This only happens when 128-bit vectors are passed. 3456 case SSEUp: 3457 assert(Lo == SSE && "Unexpected SSEUp classification"); 3458 ResType = GetByteVectorType(Ty); 3459 break; 3460 } 3461 3462 // If a high part was specified, merge it together with the low part. It is 3463 // known to pass in the high eightbyte of the result. We do this by forming a 3464 // first class struct aggregate with the high and low part: {low, high} 3465 if (HighPart) 3466 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3467 3468 return ABIArgInfo::getDirect(ResType); 3469 } 3470 3471 ABIArgInfo 3472 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3473 unsigned &NeededSSE) const { 3474 auto RT = Ty->getAs<RecordType>(); 3475 assert(RT && "classifyRegCallStructType only valid with struct types"); 3476 3477 if (RT->getDecl()->hasFlexibleArrayMember()) 3478 return getIndirectReturnResult(Ty); 3479 3480 // Sum up bases 3481 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3482 if (CXXRD->isDynamicClass()) { 3483 NeededInt = NeededSSE = 0; 3484 return getIndirectReturnResult(Ty); 3485 } 3486 3487 for (const auto &I : CXXRD->bases()) 3488 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3489 .isIndirect()) { 3490 NeededInt = NeededSSE = 0; 3491 return getIndirectReturnResult(Ty); 3492 } 3493 } 3494 3495 // Sum up members 3496 for (const auto *FD : RT->getDecl()->fields()) { 3497 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3498 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3499 .isIndirect()) { 3500 NeededInt = NeededSSE = 0; 3501 return getIndirectReturnResult(Ty); 3502 } 3503 } else { 3504 unsigned LocalNeededInt, LocalNeededSSE; 3505 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3506 LocalNeededSSE, true) 3507 .isIndirect()) { 3508 NeededInt = NeededSSE = 0; 3509 return getIndirectReturnResult(Ty); 3510 } 3511 NeededInt += LocalNeededInt; 3512 NeededSSE += LocalNeededSSE; 3513 } 3514 } 3515 3516 return ABIArgInfo::getDirect(); 3517 } 3518 3519 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3520 unsigned &NeededInt, 3521 unsigned &NeededSSE) const { 3522 3523 NeededInt = 0; 3524 NeededSSE = 0; 3525 3526 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3527 } 3528 3529 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3530 3531 const unsigned CallingConv = FI.getCallingConvention(); 3532 // It is possible to force Win64 calling convention on any x86_64 target by 3533 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3534 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3535 if (CallingConv == llvm::CallingConv::Win64) { 3536 WinX86_64ABIInfo Win64ABIInfo(CGT); 3537 Win64ABIInfo.computeInfo(FI); 3538 return; 3539 } 3540 3541 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3542 3543 // Keep track of the number of assigned registers. 3544 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3545 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3546 unsigned NeededInt, NeededSSE; 3547 3548 if (!getCXXABI().classifyReturnType(FI)) { 3549 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3550 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3551 FI.getReturnInfo() = 3552 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3553 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3554 FreeIntRegs -= NeededInt; 3555 FreeSSERegs -= NeededSSE; 3556 } else { 3557 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3558 } 3559 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3560 // Complex Long Double Type is passed in Memory when Regcall 3561 // calling convention is used. 3562 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3563 if (getContext().getCanonicalType(CT->getElementType()) == 3564 getContext().LongDoubleTy) 3565 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3566 } else 3567 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3568 } 3569 3570 // If the return value is indirect, then the hidden argument is consuming one 3571 // integer register. 3572 if (FI.getReturnInfo().isIndirect()) 3573 --FreeIntRegs; 3574 3575 // The chain argument effectively gives us another free register. 3576 if (FI.isChainCall()) 3577 ++FreeIntRegs; 3578 3579 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3580 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3581 // get assigned (in left-to-right order) for passing as follows... 3582 unsigned ArgNo = 0; 3583 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3584 it != ie; ++it, ++ArgNo) { 3585 bool IsNamedArg = ArgNo < NumRequiredArgs; 3586 3587 if (IsRegCall && it->type->isStructureOrClassType()) 3588 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3589 else 3590 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3591 NeededSSE, IsNamedArg); 3592 3593 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3594 // eightbyte of an argument, the whole argument is passed on the 3595 // stack. If registers have already been assigned for some 3596 // eightbytes of such an argument, the assignments get reverted. 3597 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3598 FreeIntRegs -= NeededInt; 3599 FreeSSERegs -= NeededSSE; 3600 } else { 3601 it->info = getIndirectResult(it->type, FreeIntRegs); 3602 } 3603 } 3604 } 3605 3606 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3607 Address VAListAddr, QualType Ty) { 3608 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3609 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3610 llvm::Value *overflow_arg_area = 3611 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3612 3613 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3614 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3615 // It isn't stated explicitly in the standard, but in practice we use 3616 // alignment greater than 16 where necessary. 3617 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3618 if (Align > CharUnits::fromQuantity(8)) { 3619 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3620 Align); 3621 } 3622 3623 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3624 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3625 llvm::Value *Res = 3626 CGF.Builder.CreateBitCast(overflow_arg_area, 3627 llvm::PointerType::getUnqual(LTy)); 3628 3629 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3630 // l->overflow_arg_area + sizeof(type). 3631 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3632 // an 8 byte boundary. 3633 3634 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3635 llvm::Value *Offset = 3636 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3637 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3638 "overflow_arg_area.next"); 3639 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3640 3641 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3642 return Address(Res, Align); 3643 } 3644 3645 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3646 QualType Ty) const { 3647 // Assume that va_list type is correct; should be pointer to LLVM type: 3648 // struct { 3649 // i32 gp_offset; 3650 // i32 fp_offset; 3651 // i8* overflow_arg_area; 3652 // i8* reg_save_area; 3653 // }; 3654 unsigned neededInt, neededSSE; 3655 3656 Ty = getContext().getCanonicalType(Ty); 3657 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3658 /*isNamedArg*/false); 3659 3660 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3661 // in the registers. If not go to step 7. 3662 if (!neededInt && !neededSSE) 3663 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3664 3665 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3666 // general purpose registers needed to pass type and num_fp to hold 3667 // the number of floating point registers needed. 3668 3669 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3670 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3671 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3672 // 3673 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3674 // register save space). 3675 3676 llvm::Value *InRegs = nullptr; 3677 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3678 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3679 if (neededInt) { 3680 gp_offset_p = 3681 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3682 "gp_offset_p"); 3683 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3684 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3685 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3686 } 3687 3688 if (neededSSE) { 3689 fp_offset_p = 3690 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3691 "fp_offset_p"); 3692 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3693 llvm::Value *FitsInFP = 3694 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3695 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3696 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3697 } 3698 3699 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3700 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3701 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3702 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3703 3704 // Emit code to load the value if it was passed in registers. 3705 3706 CGF.EmitBlock(InRegBlock); 3707 3708 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3709 // an offset of l->gp_offset and/or l->fp_offset. This may require 3710 // copying to a temporary location in case the parameter is passed 3711 // in different register classes or requires an alignment greater 3712 // than 8 for general purpose registers and 16 for XMM registers. 3713 // 3714 // FIXME: This really results in shameful code when we end up needing to 3715 // collect arguments from different places; often what should result in a 3716 // simple assembling of a structure from scattered addresses has many more 3717 // loads than necessary. Can we clean this up? 3718 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3719 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3720 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3721 "reg_save_area"); 3722 3723 Address RegAddr = Address::invalid(); 3724 if (neededInt && neededSSE) { 3725 // FIXME: Cleanup. 3726 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3727 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3728 Address Tmp = CGF.CreateMemTemp(Ty); 3729 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3730 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3731 llvm::Type *TyLo = ST->getElementType(0); 3732 llvm::Type *TyHi = ST->getElementType(1); 3733 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3734 "Unexpected ABI info for mixed regs"); 3735 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3736 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3737 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3738 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3739 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3740 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3741 3742 // Copy the first element. 3743 // FIXME: Our choice of alignment here and below is probably pessimistic. 3744 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3745 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3746 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3747 CGF.Builder.CreateStore(V, 3748 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3749 3750 // Copy the second element. 3751 V = CGF.Builder.CreateAlignedLoad( 3752 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3753 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3754 CharUnits Offset = CharUnits::fromQuantity( 3755 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3756 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3757 3758 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3759 } else if (neededInt) { 3760 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3761 CharUnits::fromQuantity(8)); 3762 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3763 3764 // Copy to a temporary if necessary to ensure the appropriate alignment. 3765 std::pair<CharUnits, CharUnits> SizeAlign = 3766 getContext().getTypeInfoInChars(Ty); 3767 uint64_t TySize = SizeAlign.first.getQuantity(); 3768 CharUnits TyAlign = SizeAlign.second; 3769 3770 // Copy into a temporary if the type is more aligned than the 3771 // register save area. 3772 if (TyAlign.getQuantity() > 8) { 3773 Address Tmp = CGF.CreateMemTemp(Ty); 3774 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3775 RegAddr = Tmp; 3776 } 3777 3778 } else if (neededSSE == 1) { 3779 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3780 CharUnits::fromQuantity(16)); 3781 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3782 } else { 3783 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3784 // SSE registers are spaced 16 bytes apart in the register save 3785 // area, we need to collect the two eightbytes together. 3786 // The ABI isn't explicit about this, but it seems reasonable 3787 // to assume that the slots are 16-byte aligned, since the stack is 3788 // naturally 16-byte aligned and the prologue is expected to store 3789 // all the SSE registers to the RSA. 3790 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3791 CharUnits::fromQuantity(16)); 3792 Address RegAddrHi = 3793 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3794 CharUnits::fromQuantity(16)); 3795 llvm::Type *ST = AI.canHaveCoerceToType() 3796 ? AI.getCoerceToType() 3797 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3798 llvm::Value *V; 3799 Address Tmp = CGF.CreateMemTemp(Ty); 3800 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3801 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3802 RegAddrLo, ST->getStructElementType(0))); 3803 CGF.Builder.CreateStore(V, 3804 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3805 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3806 RegAddrHi, ST->getStructElementType(1))); 3807 CGF.Builder.CreateStore(V, 3808 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3809 3810 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3811 } 3812 3813 // AMD64-ABI 3.5.7p5: Step 5. Set: 3814 // l->gp_offset = l->gp_offset + num_gp * 8 3815 // l->fp_offset = l->fp_offset + num_fp * 16. 3816 if (neededInt) { 3817 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3818 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3819 gp_offset_p); 3820 } 3821 if (neededSSE) { 3822 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3823 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3824 fp_offset_p); 3825 } 3826 CGF.EmitBranch(ContBlock); 3827 3828 // Emit code to load the value if it was passed in memory. 3829 3830 CGF.EmitBlock(InMemBlock); 3831 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3832 3833 // Return the appropriate result. 3834 3835 CGF.EmitBlock(ContBlock); 3836 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3837 "vaarg.addr"); 3838 return ResAddr; 3839 } 3840 3841 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3842 QualType Ty) const { 3843 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3844 CGF.getContext().getTypeInfoInChars(Ty), 3845 CharUnits::fromQuantity(8), 3846 /*allowHigherAlign*/ false); 3847 } 3848 3849 ABIArgInfo 3850 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3851 const ABIArgInfo ¤t) const { 3852 // Assumes vectorCall calling convention. 3853 const Type *Base = nullptr; 3854 uint64_t NumElts = 0; 3855 3856 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3857 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3858 FreeSSERegs -= NumElts; 3859 return getDirectX86Hva(); 3860 } 3861 return current; 3862 } 3863 3864 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3865 bool IsReturnType, bool IsVectorCall, 3866 bool IsRegCall) const { 3867 3868 if (Ty->isVoidType()) 3869 return ABIArgInfo::getIgnore(); 3870 3871 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3872 Ty = EnumTy->getDecl()->getIntegerType(); 3873 3874 TypeInfo Info = getContext().getTypeInfo(Ty); 3875 uint64_t Width = Info.Width; 3876 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3877 3878 const RecordType *RT = Ty->getAs<RecordType>(); 3879 if (RT) { 3880 if (!IsReturnType) { 3881 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3882 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3883 } 3884 3885 if (RT->getDecl()->hasFlexibleArrayMember()) 3886 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3887 3888 } 3889 3890 const Type *Base = nullptr; 3891 uint64_t NumElts = 0; 3892 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3893 // other targets. 3894 if ((IsVectorCall || IsRegCall) && 3895 isHomogeneousAggregate(Ty, Base, NumElts)) { 3896 if (IsRegCall) { 3897 if (FreeSSERegs >= NumElts) { 3898 FreeSSERegs -= NumElts; 3899 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3900 return ABIArgInfo::getDirect(); 3901 return ABIArgInfo::getExpand(); 3902 } 3903 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3904 } else if (IsVectorCall) { 3905 if (FreeSSERegs >= NumElts && 3906 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3907 FreeSSERegs -= NumElts; 3908 return ABIArgInfo::getDirect(); 3909 } else if (IsReturnType) { 3910 return ABIArgInfo::getExpand(); 3911 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3912 // HVAs are delayed and reclassified in the 2nd step. 3913 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3914 } 3915 } 3916 } 3917 3918 if (Ty->isMemberPointerType()) { 3919 // If the member pointer is represented by an LLVM int or ptr, pass it 3920 // directly. 3921 llvm::Type *LLTy = CGT.ConvertType(Ty); 3922 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3923 return ABIArgInfo::getDirect(); 3924 } 3925 3926 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3927 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3928 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3929 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3930 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3931 3932 // Otherwise, coerce it to a small integer. 3933 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3934 } 3935 3936 // Bool type is always extended to the ABI, other builtin types are not 3937 // extended. 3938 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3939 if (BT && BT->getKind() == BuiltinType::Bool) 3940 return ABIArgInfo::getExtend(Ty); 3941 3942 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3943 // passes them indirectly through memory. 3944 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3945 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3946 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3947 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3948 } 3949 3950 return ABIArgInfo::getDirect(); 3951 } 3952 3953 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3954 unsigned FreeSSERegs, 3955 bool IsVectorCall, 3956 bool IsRegCall) const { 3957 unsigned Count = 0; 3958 for (auto &I : FI.arguments()) { 3959 // Vectorcall in x64 only permits the first 6 arguments to be passed 3960 // as XMM/YMM registers. 3961 if (Count < VectorcallMaxParamNumAsReg) 3962 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3963 else { 3964 // Since these cannot be passed in registers, pretend no registers 3965 // are left. 3966 unsigned ZeroSSERegsAvail = 0; 3967 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3968 IsVectorCall, IsRegCall); 3969 } 3970 ++Count; 3971 } 3972 3973 for (auto &I : FI.arguments()) { 3974 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3975 } 3976 } 3977 3978 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3979 bool IsVectorCall = 3980 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3981 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3982 3983 unsigned FreeSSERegs = 0; 3984 if (IsVectorCall) { 3985 // We can use up to 4 SSE return registers with vectorcall. 3986 FreeSSERegs = 4; 3987 } else if (IsRegCall) { 3988 // RegCall gives us 16 SSE registers. 3989 FreeSSERegs = 16; 3990 } 3991 3992 if (!getCXXABI().classifyReturnType(FI)) 3993 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3994 IsVectorCall, IsRegCall); 3995 3996 if (IsVectorCall) { 3997 // We can use up to 6 SSE register parameters with vectorcall. 3998 FreeSSERegs = 6; 3999 } else if (IsRegCall) { 4000 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4001 FreeSSERegs = 16; 4002 } 4003 4004 if (IsVectorCall) { 4005 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4006 } else { 4007 for (auto &I : FI.arguments()) 4008 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4009 } 4010 4011 } 4012 4013 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4014 QualType Ty) const { 4015 4016 bool IsIndirect = false; 4017 4018 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4019 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4020 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4021 uint64_t Width = getContext().getTypeSize(Ty); 4022 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4023 } 4024 4025 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4026 CGF.getContext().getTypeInfoInChars(Ty), 4027 CharUnits::fromQuantity(8), 4028 /*allowHigherAlign*/ false); 4029 } 4030 4031 // PowerPC-32 4032 namespace { 4033 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4034 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4035 bool IsSoftFloatABI; 4036 4037 CharUnits getParamTypeAlignment(QualType Ty) const; 4038 4039 public: 4040 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4041 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4042 4043 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4044 QualType Ty) const override; 4045 }; 4046 4047 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4048 public: 4049 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4050 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4051 4052 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4053 // This is recovered from gcc output. 4054 return 1; // r1 is the dedicated stack pointer 4055 } 4056 4057 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4058 llvm::Value *Address) const override; 4059 }; 4060 } 4061 4062 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4063 // Complex types are passed just like their elements 4064 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4065 Ty = CTy->getElementType(); 4066 4067 if (Ty->isVectorType()) 4068 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4069 : 4); 4070 4071 // For single-element float/vector structs, we consider the whole type 4072 // to have the same alignment requirements as its single element. 4073 const Type *AlignTy = nullptr; 4074 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4075 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4076 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4077 (BT && BT->isFloatingPoint())) 4078 AlignTy = EltType; 4079 } 4080 4081 if (AlignTy) 4082 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4083 return CharUnits::fromQuantity(4); 4084 } 4085 4086 // TODO: this implementation is now likely redundant with 4087 // DefaultABIInfo::EmitVAArg. 4088 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4089 QualType Ty) const { 4090 if (getTarget().getTriple().isOSDarwin()) { 4091 auto TI = getContext().getTypeInfoInChars(Ty); 4092 TI.second = getParamTypeAlignment(Ty); 4093 4094 CharUnits SlotSize = CharUnits::fromQuantity(4); 4095 return emitVoidPtrVAArg(CGF, VAList, Ty, 4096 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4097 /*AllowHigherAlign=*/true); 4098 } 4099 4100 const unsigned OverflowLimit = 8; 4101 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4102 // TODO: Implement this. For now ignore. 4103 (void)CTy; 4104 return Address::invalid(); // FIXME? 4105 } 4106 4107 // struct __va_list_tag { 4108 // unsigned char gpr; 4109 // unsigned char fpr; 4110 // unsigned short reserved; 4111 // void *overflow_arg_area; 4112 // void *reg_save_area; 4113 // }; 4114 4115 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4116 bool isInt = 4117 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4118 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4119 4120 // All aggregates are passed indirectly? That doesn't seem consistent 4121 // with the argument-lowering code. 4122 bool isIndirect = Ty->isAggregateType(); 4123 4124 CGBuilderTy &Builder = CGF.Builder; 4125 4126 // The calling convention either uses 1-2 GPRs or 1 FPR. 4127 Address NumRegsAddr = Address::invalid(); 4128 if (isInt || IsSoftFloatABI) { 4129 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4130 } else { 4131 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4132 } 4133 4134 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4135 4136 // "Align" the register count when TY is i64. 4137 if (isI64 || (isF64 && IsSoftFloatABI)) { 4138 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4139 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4140 } 4141 4142 llvm::Value *CC = 4143 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4144 4145 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4146 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4147 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4148 4149 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4150 4151 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4152 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4153 4154 // Case 1: consume registers. 4155 Address RegAddr = Address::invalid(); 4156 { 4157 CGF.EmitBlock(UsingRegs); 4158 4159 Address RegSaveAreaPtr = 4160 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4161 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4162 CharUnits::fromQuantity(8)); 4163 assert(RegAddr.getElementType() == CGF.Int8Ty); 4164 4165 // Floating-point registers start after the general-purpose registers. 4166 if (!(isInt || IsSoftFloatABI)) { 4167 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4168 CharUnits::fromQuantity(32)); 4169 } 4170 4171 // Get the address of the saved value by scaling the number of 4172 // registers we've used by the number of 4173 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4174 llvm::Value *RegOffset = 4175 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4176 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4177 RegAddr.getPointer(), RegOffset), 4178 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4179 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4180 4181 // Increase the used-register count. 4182 NumRegs = 4183 Builder.CreateAdd(NumRegs, 4184 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4185 Builder.CreateStore(NumRegs, NumRegsAddr); 4186 4187 CGF.EmitBranch(Cont); 4188 } 4189 4190 // Case 2: consume space in the overflow area. 4191 Address MemAddr = Address::invalid(); 4192 { 4193 CGF.EmitBlock(UsingOverflow); 4194 4195 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4196 4197 // Everything in the overflow area is rounded up to a size of at least 4. 4198 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4199 4200 CharUnits Size; 4201 if (!isIndirect) { 4202 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4203 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4204 } else { 4205 Size = CGF.getPointerSize(); 4206 } 4207 4208 Address OverflowAreaAddr = 4209 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4210 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4211 OverflowAreaAlign); 4212 // Round up address of argument to alignment 4213 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4214 if (Align > OverflowAreaAlign) { 4215 llvm::Value *Ptr = OverflowArea.getPointer(); 4216 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4217 Align); 4218 } 4219 4220 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4221 4222 // Increase the overflow area. 4223 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4224 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4225 CGF.EmitBranch(Cont); 4226 } 4227 4228 CGF.EmitBlock(Cont); 4229 4230 // Merge the cases with a phi. 4231 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4232 "vaarg.addr"); 4233 4234 // Load the pointer if the argument was passed indirectly. 4235 if (isIndirect) { 4236 Result = Address(Builder.CreateLoad(Result, "aggr"), 4237 getContext().getTypeAlignInChars(Ty)); 4238 } 4239 4240 return Result; 4241 } 4242 4243 bool 4244 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4245 llvm::Value *Address) const { 4246 // This is calculated from the LLVM and GCC tables and verified 4247 // against gcc output. AFAIK all ABIs use the same encoding. 4248 4249 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4250 4251 llvm::IntegerType *i8 = CGF.Int8Ty; 4252 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4253 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4254 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4255 4256 // 0-31: r0-31, the 4-byte general-purpose registers 4257 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4258 4259 // 32-63: fp0-31, the 8-byte floating-point registers 4260 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4261 4262 // 64-76 are various 4-byte special-purpose registers: 4263 // 64: mq 4264 // 65: lr 4265 // 66: ctr 4266 // 67: ap 4267 // 68-75 cr0-7 4268 // 76: xer 4269 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4270 4271 // 77-108: v0-31, the 16-byte vector registers 4272 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4273 4274 // 109: vrsave 4275 // 110: vscr 4276 // 111: spe_acc 4277 // 112: spefscr 4278 // 113: sfp 4279 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4280 4281 return false; 4282 } 4283 4284 // PowerPC-64 4285 4286 namespace { 4287 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4288 class PPC64_SVR4_ABIInfo : public ABIInfo { 4289 public: 4290 enum ABIKind { 4291 ELFv1 = 0, 4292 ELFv2 4293 }; 4294 4295 private: 4296 static const unsigned GPRBits = 64; 4297 ABIKind Kind; 4298 bool HasQPX; 4299 bool IsSoftFloatABI; 4300 4301 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4302 // will be passed in a QPX register. 4303 bool IsQPXVectorTy(const Type *Ty) const { 4304 if (!HasQPX) 4305 return false; 4306 4307 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4308 unsigned NumElements = VT->getNumElements(); 4309 if (NumElements == 1) 4310 return false; 4311 4312 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4313 if (getContext().getTypeSize(Ty) <= 256) 4314 return true; 4315 } else if (VT->getElementType()-> 4316 isSpecificBuiltinType(BuiltinType::Float)) { 4317 if (getContext().getTypeSize(Ty) <= 128) 4318 return true; 4319 } 4320 } 4321 4322 return false; 4323 } 4324 4325 bool IsQPXVectorTy(QualType Ty) const { 4326 return IsQPXVectorTy(Ty.getTypePtr()); 4327 } 4328 4329 public: 4330 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4331 bool SoftFloatABI) 4332 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4333 IsSoftFloatABI(SoftFloatABI) {} 4334 4335 bool isPromotableTypeForABI(QualType Ty) const; 4336 CharUnits getParamTypeAlignment(QualType Ty) const; 4337 4338 ABIArgInfo classifyReturnType(QualType RetTy) const; 4339 ABIArgInfo classifyArgumentType(QualType Ty) const; 4340 4341 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4342 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4343 uint64_t Members) const override; 4344 4345 // TODO: We can add more logic to computeInfo to improve performance. 4346 // Example: For aggregate arguments that fit in a register, we could 4347 // use getDirectInReg (as is done below for structs containing a single 4348 // floating-point value) to avoid pushing them to memory on function 4349 // entry. This would require changing the logic in PPCISelLowering 4350 // when lowering the parameters in the caller and args in the callee. 4351 void computeInfo(CGFunctionInfo &FI) const override { 4352 if (!getCXXABI().classifyReturnType(FI)) 4353 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4354 for (auto &I : FI.arguments()) { 4355 // We rely on the default argument classification for the most part. 4356 // One exception: An aggregate containing a single floating-point 4357 // or vector item must be passed in a register if one is available. 4358 const Type *T = isSingleElementStruct(I.type, getContext()); 4359 if (T) { 4360 const BuiltinType *BT = T->getAs<BuiltinType>(); 4361 if (IsQPXVectorTy(T) || 4362 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4363 (BT && BT->isFloatingPoint())) { 4364 QualType QT(T, 0); 4365 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4366 continue; 4367 } 4368 } 4369 I.info = classifyArgumentType(I.type); 4370 } 4371 } 4372 4373 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4374 QualType Ty) const override; 4375 }; 4376 4377 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4378 4379 public: 4380 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4381 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4382 bool SoftFloatABI) 4383 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4384 SoftFloatABI)) {} 4385 4386 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4387 // This is recovered from gcc output. 4388 return 1; // r1 is the dedicated stack pointer 4389 } 4390 4391 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4392 llvm::Value *Address) const override; 4393 }; 4394 4395 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4396 public: 4397 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4398 4399 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4400 // This is recovered from gcc output. 4401 return 1; // r1 is the dedicated stack pointer 4402 } 4403 4404 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4405 llvm::Value *Address) const override; 4406 }; 4407 4408 } 4409 4410 // Return true if the ABI requires Ty to be passed sign- or zero- 4411 // extended to 64 bits. 4412 bool 4413 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4414 // Treat an enum type as its underlying type. 4415 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4416 Ty = EnumTy->getDecl()->getIntegerType(); 4417 4418 // Promotable integer types are required to be promoted by the ABI. 4419 if (Ty->isPromotableIntegerType()) 4420 return true; 4421 4422 // In addition to the usual promotable integer types, we also need to 4423 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4424 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4425 switch (BT->getKind()) { 4426 case BuiltinType::Int: 4427 case BuiltinType::UInt: 4428 return true; 4429 default: 4430 break; 4431 } 4432 4433 return false; 4434 } 4435 4436 /// isAlignedParamType - Determine whether a type requires 16-byte or 4437 /// higher alignment in the parameter area. Always returns at least 8. 4438 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4439 // Complex types are passed just like their elements. 4440 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4441 Ty = CTy->getElementType(); 4442 4443 // Only vector types of size 16 bytes need alignment (larger types are 4444 // passed via reference, smaller types are not aligned). 4445 if (IsQPXVectorTy(Ty)) { 4446 if (getContext().getTypeSize(Ty) > 128) 4447 return CharUnits::fromQuantity(32); 4448 4449 return CharUnits::fromQuantity(16); 4450 } else if (Ty->isVectorType()) { 4451 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4452 } 4453 4454 // For single-element float/vector structs, we consider the whole type 4455 // to have the same alignment requirements as its single element. 4456 const Type *AlignAsType = nullptr; 4457 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4458 if (EltType) { 4459 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4460 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4461 getContext().getTypeSize(EltType) == 128) || 4462 (BT && BT->isFloatingPoint())) 4463 AlignAsType = EltType; 4464 } 4465 4466 // Likewise for ELFv2 homogeneous aggregates. 4467 const Type *Base = nullptr; 4468 uint64_t Members = 0; 4469 if (!AlignAsType && Kind == ELFv2 && 4470 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4471 AlignAsType = Base; 4472 4473 // With special case aggregates, only vector base types need alignment. 4474 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4475 if (getContext().getTypeSize(AlignAsType) > 128) 4476 return CharUnits::fromQuantity(32); 4477 4478 return CharUnits::fromQuantity(16); 4479 } else if (AlignAsType) { 4480 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4481 } 4482 4483 // Otherwise, we only need alignment for any aggregate type that 4484 // has an alignment requirement of >= 16 bytes. 4485 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4486 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4487 return CharUnits::fromQuantity(32); 4488 return CharUnits::fromQuantity(16); 4489 } 4490 4491 return CharUnits::fromQuantity(8); 4492 } 4493 4494 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4495 /// aggregate. Base is set to the base element type, and Members is set 4496 /// to the number of base elements. 4497 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4498 uint64_t &Members) const { 4499 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4500 uint64_t NElements = AT->getSize().getZExtValue(); 4501 if (NElements == 0) 4502 return false; 4503 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4504 return false; 4505 Members *= NElements; 4506 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4507 const RecordDecl *RD = RT->getDecl(); 4508 if (RD->hasFlexibleArrayMember()) 4509 return false; 4510 4511 Members = 0; 4512 4513 // If this is a C++ record, check the bases first. 4514 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4515 for (const auto &I : CXXRD->bases()) { 4516 // Ignore empty records. 4517 if (isEmptyRecord(getContext(), I.getType(), true)) 4518 continue; 4519 4520 uint64_t FldMembers; 4521 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4522 return false; 4523 4524 Members += FldMembers; 4525 } 4526 } 4527 4528 for (const auto *FD : RD->fields()) { 4529 // Ignore (non-zero arrays of) empty records. 4530 QualType FT = FD->getType(); 4531 while (const ConstantArrayType *AT = 4532 getContext().getAsConstantArrayType(FT)) { 4533 if (AT->getSize().getZExtValue() == 0) 4534 return false; 4535 FT = AT->getElementType(); 4536 } 4537 if (isEmptyRecord(getContext(), FT, true)) 4538 continue; 4539 4540 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4541 if (getContext().getLangOpts().CPlusPlus && 4542 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4543 continue; 4544 4545 uint64_t FldMembers; 4546 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4547 return false; 4548 4549 Members = (RD->isUnion() ? 4550 std::max(Members, FldMembers) : Members + FldMembers); 4551 } 4552 4553 if (!Base) 4554 return false; 4555 4556 // Ensure there is no padding. 4557 if (getContext().getTypeSize(Base) * Members != 4558 getContext().getTypeSize(Ty)) 4559 return false; 4560 } else { 4561 Members = 1; 4562 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4563 Members = 2; 4564 Ty = CT->getElementType(); 4565 } 4566 4567 // Most ABIs only support float, double, and some vector type widths. 4568 if (!isHomogeneousAggregateBaseType(Ty)) 4569 return false; 4570 4571 // The base type must be the same for all members. Types that 4572 // agree in both total size and mode (float vs. vector) are 4573 // treated as being equivalent here. 4574 const Type *TyPtr = Ty.getTypePtr(); 4575 if (!Base) { 4576 Base = TyPtr; 4577 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4578 // so make sure to widen it explicitly. 4579 if (const VectorType *VT = Base->getAs<VectorType>()) { 4580 QualType EltTy = VT->getElementType(); 4581 unsigned NumElements = 4582 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4583 Base = getContext() 4584 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4585 .getTypePtr(); 4586 } 4587 } 4588 4589 if (Base->isVectorType() != TyPtr->isVectorType() || 4590 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4591 return false; 4592 } 4593 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4594 } 4595 4596 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4597 // Homogeneous aggregates for ELFv2 must have base types of float, 4598 // double, long double, or 128-bit vectors. 4599 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4600 if (BT->getKind() == BuiltinType::Float || 4601 BT->getKind() == BuiltinType::Double || 4602 BT->getKind() == BuiltinType::LongDouble) { 4603 if (IsSoftFloatABI) 4604 return false; 4605 return true; 4606 } 4607 } 4608 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4609 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4610 return true; 4611 } 4612 return false; 4613 } 4614 4615 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4616 const Type *Base, uint64_t Members) const { 4617 // Vector types require one register, floating point types require one 4618 // or two registers depending on their size. 4619 uint32_t NumRegs = 4620 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4621 4622 // Homogeneous Aggregates may occupy at most 8 registers. 4623 return Members * NumRegs <= 8; 4624 } 4625 4626 ABIArgInfo 4627 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4628 Ty = useFirstFieldIfTransparentUnion(Ty); 4629 4630 if (Ty->isAnyComplexType()) 4631 return ABIArgInfo::getDirect(); 4632 4633 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4634 // or via reference (larger than 16 bytes). 4635 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4636 uint64_t Size = getContext().getTypeSize(Ty); 4637 if (Size > 128) 4638 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4639 else if (Size < 128) { 4640 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4641 return ABIArgInfo::getDirect(CoerceTy); 4642 } 4643 } 4644 4645 if (isAggregateTypeForABI(Ty)) { 4646 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4647 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4648 4649 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4650 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4651 4652 // ELFv2 homogeneous aggregates are passed as array types. 4653 const Type *Base = nullptr; 4654 uint64_t Members = 0; 4655 if (Kind == ELFv2 && 4656 isHomogeneousAggregate(Ty, Base, Members)) { 4657 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4658 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4659 return ABIArgInfo::getDirect(CoerceTy); 4660 } 4661 4662 // If an aggregate may end up fully in registers, we do not 4663 // use the ByVal method, but pass the aggregate as array. 4664 // This is usually beneficial since we avoid forcing the 4665 // back-end to store the argument to memory. 4666 uint64_t Bits = getContext().getTypeSize(Ty); 4667 if (Bits > 0 && Bits <= 8 * GPRBits) { 4668 llvm::Type *CoerceTy; 4669 4670 // Types up to 8 bytes are passed as integer type (which will be 4671 // properly aligned in the argument save area doubleword). 4672 if (Bits <= GPRBits) 4673 CoerceTy = 4674 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4675 // Larger types are passed as arrays, with the base type selected 4676 // according to the required alignment in the save area. 4677 else { 4678 uint64_t RegBits = ABIAlign * 8; 4679 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4680 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4681 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4682 } 4683 4684 return ABIArgInfo::getDirect(CoerceTy); 4685 } 4686 4687 // All other aggregates are passed ByVal. 4688 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4689 /*ByVal=*/true, 4690 /*Realign=*/TyAlign > ABIAlign); 4691 } 4692 4693 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4694 : ABIArgInfo::getDirect()); 4695 } 4696 4697 ABIArgInfo 4698 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4699 if (RetTy->isVoidType()) 4700 return ABIArgInfo::getIgnore(); 4701 4702 if (RetTy->isAnyComplexType()) 4703 return ABIArgInfo::getDirect(); 4704 4705 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4706 // or via reference (larger than 16 bytes). 4707 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4708 uint64_t Size = getContext().getTypeSize(RetTy); 4709 if (Size > 128) 4710 return getNaturalAlignIndirect(RetTy); 4711 else if (Size < 128) { 4712 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4713 return ABIArgInfo::getDirect(CoerceTy); 4714 } 4715 } 4716 4717 if (isAggregateTypeForABI(RetTy)) { 4718 // ELFv2 homogeneous aggregates are returned as array types. 4719 const Type *Base = nullptr; 4720 uint64_t Members = 0; 4721 if (Kind == ELFv2 && 4722 isHomogeneousAggregate(RetTy, Base, Members)) { 4723 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4724 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4725 return ABIArgInfo::getDirect(CoerceTy); 4726 } 4727 4728 // ELFv2 small aggregates are returned in up to two registers. 4729 uint64_t Bits = getContext().getTypeSize(RetTy); 4730 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4731 if (Bits == 0) 4732 return ABIArgInfo::getIgnore(); 4733 4734 llvm::Type *CoerceTy; 4735 if (Bits > GPRBits) { 4736 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4737 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4738 } else 4739 CoerceTy = 4740 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4741 return ABIArgInfo::getDirect(CoerceTy); 4742 } 4743 4744 // All other aggregates are returned indirectly. 4745 return getNaturalAlignIndirect(RetTy); 4746 } 4747 4748 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4749 : ABIArgInfo::getDirect()); 4750 } 4751 4752 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4753 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4754 QualType Ty) const { 4755 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4756 TypeInfo.second = getParamTypeAlignment(Ty); 4757 4758 CharUnits SlotSize = CharUnits::fromQuantity(8); 4759 4760 // If we have a complex type and the base type is smaller than 8 bytes, 4761 // the ABI calls for the real and imaginary parts to be right-adjusted 4762 // in separate doublewords. However, Clang expects us to produce a 4763 // pointer to a structure with the two parts packed tightly. So generate 4764 // loads of the real and imaginary parts relative to the va_list pointer, 4765 // and store them to a temporary structure. 4766 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4767 CharUnits EltSize = TypeInfo.first / 2; 4768 if (EltSize < SlotSize) { 4769 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4770 SlotSize * 2, SlotSize, 4771 SlotSize, /*AllowHigher*/ true); 4772 4773 Address RealAddr = Addr; 4774 Address ImagAddr = RealAddr; 4775 if (CGF.CGM.getDataLayout().isBigEndian()) { 4776 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4777 SlotSize - EltSize); 4778 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4779 2 * SlotSize - EltSize); 4780 } else { 4781 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4782 } 4783 4784 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4785 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4786 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4787 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4788 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4789 4790 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4791 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4792 /*init*/ true); 4793 return Temp; 4794 } 4795 } 4796 4797 // Otherwise, just use the general rule. 4798 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4799 TypeInfo, SlotSize, /*AllowHigher*/ true); 4800 } 4801 4802 static bool 4803 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4804 llvm::Value *Address) { 4805 // This is calculated from the LLVM and GCC tables and verified 4806 // against gcc output. AFAIK all ABIs use the same encoding. 4807 4808 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4809 4810 llvm::IntegerType *i8 = CGF.Int8Ty; 4811 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4812 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4813 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4814 4815 // 0-31: r0-31, the 8-byte general-purpose registers 4816 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4817 4818 // 32-63: fp0-31, the 8-byte floating-point registers 4819 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4820 4821 // 64-67 are various 8-byte special-purpose registers: 4822 // 64: mq 4823 // 65: lr 4824 // 66: ctr 4825 // 67: ap 4826 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4827 4828 // 68-76 are various 4-byte special-purpose registers: 4829 // 68-75 cr0-7 4830 // 76: xer 4831 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4832 4833 // 77-108: v0-31, the 16-byte vector registers 4834 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4835 4836 // 109: vrsave 4837 // 110: vscr 4838 // 111: spe_acc 4839 // 112: spefscr 4840 // 113: sfp 4841 // 114: tfhar 4842 // 115: tfiar 4843 // 116: texasr 4844 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4845 4846 return false; 4847 } 4848 4849 bool 4850 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4851 CodeGen::CodeGenFunction &CGF, 4852 llvm::Value *Address) const { 4853 4854 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4855 } 4856 4857 bool 4858 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4859 llvm::Value *Address) const { 4860 4861 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4862 } 4863 4864 //===----------------------------------------------------------------------===// 4865 // AArch64 ABI Implementation 4866 //===----------------------------------------------------------------------===// 4867 4868 namespace { 4869 4870 class AArch64ABIInfo : public SwiftABIInfo { 4871 public: 4872 enum ABIKind { 4873 AAPCS = 0, 4874 DarwinPCS, 4875 Win64 4876 }; 4877 4878 private: 4879 ABIKind Kind; 4880 4881 public: 4882 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4883 : SwiftABIInfo(CGT), Kind(Kind) {} 4884 4885 private: 4886 ABIKind getABIKind() const { return Kind; } 4887 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4888 4889 ABIArgInfo classifyReturnType(QualType RetTy) const; 4890 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4891 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4892 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4893 uint64_t Members) const override; 4894 4895 bool isIllegalVectorType(QualType Ty) const; 4896 4897 void computeInfo(CGFunctionInfo &FI) const override { 4898 if (!getCXXABI().classifyReturnType(FI)) 4899 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4900 4901 for (auto &it : FI.arguments()) 4902 it.info = classifyArgumentType(it.type); 4903 } 4904 4905 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4906 CodeGenFunction &CGF) const; 4907 4908 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4909 CodeGenFunction &CGF) const; 4910 4911 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4912 QualType Ty) const override { 4913 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4914 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4915 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4916 } 4917 4918 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4919 QualType Ty) const override; 4920 4921 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4922 bool asReturnValue) const override { 4923 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4924 } 4925 bool isSwiftErrorInRegister() const override { 4926 return true; 4927 } 4928 4929 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4930 unsigned elts) const override; 4931 }; 4932 4933 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4934 public: 4935 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4936 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4937 4938 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4939 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4940 } 4941 4942 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4943 return 31; 4944 } 4945 4946 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4947 }; 4948 4949 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4950 public: 4951 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4952 : AArch64TargetCodeGenInfo(CGT, K) {} 4953 4954 void getDependentLibraryOption(llvm::StringRef Lib, 4955 llvm::SmallString<24> &Opt) const override { 4956 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4957 } 4958 4959 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 4960 llvm::SmallString<32> &Opt) const override { 4961 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 4962 } 4963 }; 4964 } 4965 4966 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4967 Ty = useFirstFieldIfTransparentUnion(Ty); 4968 4969 // Handle illegal vector types here. 4970 if (isIllegalVectorType(Ty)) { 4971 uint64_t Size = getContext().getTypeSize(Ty); 4972 // Android promotes <2 x i8> to i16, not i32 4973 if (isAndroid() && (Size <= 16)) { 4974 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4975 return ABIArgInfo::getDirect(ResType); 4976 } 4977 if (Size <= 32) { 4978 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4979 return ABIArgInfo::getDirect(ResType); 4980 } 4981 if (Size == 64) { 4982 llvm::Type *ResType = 4983 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4984 return ABIArgInfo::getDirect(ResType); 4985 } 4986 if (Size == 128) { 4987 llvm::Type *ResType = 4988 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4989 return ABIArgInfo::getDirect(ResType); 4990 } 4991 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4992 } 4993 4994 if (!isAggregateTypeForABI(Ty)) { 4995 // Treat an enum type as its underlying type. 4996 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4997 Ty = EnumTy->getDecl()->getIntegerType(); 4998 4999 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5000 ? ABIArgInfo::getExtend(Ty) 5001 : ABIArgInfo::getDirect()); 5002 } 5003 5004 // Structures with either a non-trivial destructor or a non-trivial 5005 // copy constructor are always indirect. 5006 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5007 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5008 CGCXXABI::RAA_DirectInMemory); 5009 } 5010 5011 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5012 // elsewhere for GNU compatibility. 5013 uint64_t Size = getContext().getTypeSize(Ty); 5014 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5015 if (IsEmpty || Size == 0) { 5016 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5017 return ABIArgInfo::getIgnore(); 5018 5019 // GNU C mode. The only argument that gets ignored is an empty one with size 5020 // 0. 5021 if (IsEmpty && Size == 0) 5022 return ABIArgInfo::getIgnore(); 5023 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5024 } 5025 5026 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5027 const Type *Base = nullptr; 5028 uint64_t Members = 0; 5029 if (isHomogeneousAggregate(Ty, Base, Members)) { 5030 return ABIArgInfo::getDirect( 5031 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5032 } 5033 5034 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5035 if (Size <= 128) { 5036 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5037 // same size and alignment. 5038 if (getTarget().isRenderScriptTarget()) { 5039 return coerceToIntArray(Ty, getContext(), getVMContext()); 5040 } 5041 unsigned Alignment = getContext().getTypeAlign(Ty); 5042 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5043 5044 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5045 // For aggregates with 16-byte alignment, we use i128. 5046 if (Alignment < 128 && Size == 128) { 5047 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5048 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5049 } 5050 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5051 } 5052 5053 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5054 } 5055 5056 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5057 if (RetTy->isVoidType()) 5058 return ABIArgInfo::getIgnore(); 5059 5060 // Large vector types should be returned via memory. 5061 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5062 return getNaturalAlignIndirect(RetTy); 5063 5064 if (!isAggregateTypeForABI(RetTy)) { 5065 // Treat an enum type as its underlying type. 5066 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5067 RetTy = EnumTy->getDecl()->getIntegerType(); 5068 5069 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5070 ? ABIArgInfo::getExtend(RetTy) 5071 : ABIArgInfo::getDirect()); 5072 } 5073 5074 uint64_t Size = getContext().getTypeSize(RetTy); 5075 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5076 return ABIArgInfo::getIgnore(); 5077 5078 const Type *Base = nullptr; 5079 uint64_t Members = 0; 5080 if (isHomogeneousAggregate(RetTy, Base, Members)) 5081 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5082 return ABIArgInfo::getDirect(); 5083 5084 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5085 if (Size <= 128) { 5086 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5087 // same size and alignment. 5088 if (getTarget().isRenderScriptTarget()) { 5089 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5090 } 5091 unsigned Alignment = getContext().getTypeAlign(RetTy); 5092 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5093 5094 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5095 // For aggregates with 16-byte alignment, we use i128. 5096 if (Alignment < 128 && Size == 128) { 5097 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5098 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5099 } 5100 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5101 } 5102 5103 return getNaturalAlignIndirect(RetTy); 5104 } 5105 5106 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5107 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5108 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5109 // Check whether VT is legal. 5110 unsigned NumElements = VT->getNumElements(); 5111 uint64_t Size = getContext().getTypeSize(VT); 5112 // NumElements should be power of 2. 5113 if (!llvm::isPowerOf2_32(NumElements)) 5114 return true; 5115 return Size != 64 && (Size != 128 || NumElements == 1); 5116 } 5117 return false; 5118 } 5119 5120 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5121 llvm::Type *eltTy, 5122 unsigned elts) const { 5123 if (!llvm::isPowerOf2_32(elts)) 5124 return false; 5125 if (totalSize.getQuantity() != 8 && 5126 (totalSize.getQuantity() != 16 || elts == 1)) 5127 return false; 5128 return true; 5129 } 5130 5131 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5132 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5133 // point type or a short-vector type. This is the same as the 32-bit ABI, 5134 // but with the difference that any floating-point type is allowed, 5135 // including __fp16. 5136 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5137 if (BT->isFloatingPoint()) 5138 return true; 5139 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5140 unsigned VecSize = getContext().getTypeSize(VT); 5141 if (VecSize == 64 || VecSize == 128) 5142 return true; 5143 } 5144 return false; 5145 } 5146 5147 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5148 uint64_t Members) const { 5149 return Members <= 4; 5150 } 5151 5152 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5153 QualType Ty, 5154 CodeGenFunction &CGF) const { 5155 ABIArgInfo AI = classifyArgumentType(Ty); 5156 bool IsIndirect = AI.isIndirect(); 5157 5158 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5159 if (IsIndirect) 5160 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5161 else if (AI.getCoerceToType()) 5162 BaseTy = AI.getCoerceToType(); 5163 5164 unsigned NumRegs = 1; 5165 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5166 BaseTy = ArrTy->getElementType(); 5167 NumRegs = ArrTy->getNumElements(); 5168 } 5169 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5170 5171 // The AArch64 va_list type and handling is specified in the Procedure Call 5172 // Standard, section B.4: 5173 // 5174 // struct { 5175 // void *__stack; 5176 // void *__gr_top; 5177 // void *__vr_top; 5178 // int __gr_offs; 5179 // int __vr_offs; 5180 // }; 5181 5182 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5183 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5184 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5185 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5186 5187 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5188 CharUnits TyAlign = TyInfo.second; 5189 5190 Address reg_offs_p = Address::invalid(); 5191 llvm::Value *reg_offs = nullptr; 5192 int reg_top_index; 5193 CharUnits reg_top_offset; 5194 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5195 if (!IsFPR) { 5196 // 3 is the field number of __gr_offs 5197 reg_offs_p = 5198 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5199 "gr_offs_p"); 5200 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5201 reg_top_index = 1; // field number for __gr_top 5202 reg_top_offset = CharUnits::fromQuantity(8); 5203 RegSize = llvm::alignTo(RegSize, 8); 5204 } else { 5205 // 4 is the field number of __vr_offs. 5206 reg_offs_p = 5207 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5208 "vr_offs_p"); 5209 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5210 reg_top_index = 2; // field number for __vr_top 5211 reg_top_offset = CharUnits::fromQuantity(16); 5212 RegSize = 16 * NumRegs; 5213 } 5214 5215 //======================================= 5216 // Find out where argument was passed 5217 //======================================= 5218 5219 // If reg_offs >= 0 we're already using the stack for this type of 5220 // argument. We don't want to keep updating reg_offs (in case it overflows, 5221 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5222 // whatever they get). 5223 llvm::Value *UsingStack = nullptr; 5224 UsingStack = CGF.Builder.CreateICmpSGE( 5225 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5226 5227 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5228 5229 // Otherwise, at least some kind of argument could go in these registers, the 5230 // question is whether this particular type is too big. 5231 CGF.EmitBlock(MaybeRegBlock); 5232 5233 // Integer arguments may need to correct register alignment (for example a 5234 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5235 // align __gr_offs to calculate the potential address. 5236 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5237 int Align = TyAlign.getQuantity(); 5238 5239 reg_offs = CGF.Builder.CreateAdd( 5240 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5241 "align_regoffs"); 5242 reg_offs = CGF.Builder.CreateAnd( 5243 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5244 "aligned_regoffs"); 5245 } 5246 5247 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5248 // The fact that this is done unconditionally reflects the fact that 5249 // allocating an argument to the stack also uses up all the remaining 5250 // registers of the appropriate kind. 5251 llvm::Value *NewOffset = nullptr; 5252 NewOffset = CGF.Builder.CreateAdd( 5253 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5254 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5255 5256 // Now we're in a position to decide whether this argument really was in 5257 // registers or not. 5258 llvm::Value *InRegs = nullptr; 5259 InRegs = CGF.Builder.CreateICmpSLE( 5260 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5261 5262 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5263 5264 //======================================= 5265 // Argument was in registers 5266 //======================================= 5267 5268 // Now we emit the code for if the argument was originally passed in 5269 // registers. First start the appropriate block: 5270 CGF.EmitBlock(InRegBlock); 5271 5272 llvm::Value *reg_top = nullptr; 5273 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5274 reg_top_offset, "reg_top_p"); 5275 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5276 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5277 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5278 Address RegAddr = Address::invalid(); 5279 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5280 5281 if (IsIndirect) { 5282 // If it's been passed indirectly (actually a struct), whatever we find from 5283 // stored registers or on the stack will actually be a struct **. 5284 MemTy = llvm::PointerType::getUnqual(MemTy); 5285 } 5286 5287 const Type *Base = nullptr; 5288 uint64_t NumMembers = 0; 5289 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5290 if (IsHFA && NumMembers > 1) { 5291 // Homogeneous aggregates passed in registers will have their elements split 5292 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5293 // qN+1, ...). We reload and store into a temporary local variable 5294 // contiguously. 5295 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5296 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5297 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5298 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5299 Address Tmp = CGF.CreateTempAlloca(HFATy, 5300 std::max(TyAlign, BaseTyInfo.second)); 5301 5302 // On big-endian platforms, the value will be right-aligned in its slot. 5303 int Offset = 0; 5304 if (CGF.CGM.getDataLayout().isBigEndian() && 5305 BaseTyInfo.first.getQuantity() < 16) 5306 Offset = 16 - BaseTyInfo.first.getQuantity(); 5307 5308 for (unsigned i = 0; i < NumMembers; ++i) { 5309 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5310 Address LoadAddr = 5311 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5312 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5313 5314 Address StoreAddr = 5315 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5316 5317 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5318 CGF.Builder.CreateStore(Elem, StoreAddr); 5319 } 5320 5321 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5322 } else { 5323 // Otherwise the object is contiguous in memory. 5324 5325 // It might be right-aligned in its slot. 5326 CharUnits SlotSize = BaseAddr.getAlignment(); 5327 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5328 (IsHFA || !isAggregateTypeForABI(Ty)) && 5329 TyInfo.first < SlotSize) { 5330 CharUnits Offset = SlotSize - TyInfo.first; 5331 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5332 } 5333 5334 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5335 } 5336 5337 CGF.EmitBranch(ContBlock); 5338 5339 //======================================= 5340 // Argument was on the stack 5341 //======================================= 5342 CGF.EmitBlock(OnStackBlock); 5343 5344 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5345 CharUnits::Zero(), "stack_p"); 5346 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5347 5348 // Again, stack arguments may need realignment. In this case both integer and 5349 // floating-point ones might be affected. 5350 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5351 int Align = TyAlign.getQuantity(); 5352 5353 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5354 5355 OnStackPtr = CGF.Builder.CreateAdd( 5356 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5357 "align_stack"); 5358 OnStackPtr = CGF.Builder.CreateAnd( 5359 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5360 "align_stack"); 5361 5362 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5363 } 5364 Address OnStackAddr(OnStackPtr, 5365 std::max(CharUnits::fromQuantity(8), TyAlign)); 5366 5367 // All stack slots are multiples of 8 bytes. 5368 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5369 CharUnits StackSize; 5370 if (IsIndirect) 5371 StackSize = StackSlotSize; 5372 else 5373 StackSize = TyInfo.first.alignTo(StackSlotSize); 5374 5375 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5376 llvm::Value *NewStack = 5377 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5378 5379 // Write the new value of __stack for the next call to va_arg 5380 CGF.Builder.CreateStore(NewStack, stack_p); 5381 5382 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5383 TyInfo.first < StackSlotSize) { 5384 CharUnits Offset = StackSlotSize - TyInfo.first; 5385 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5386 } 5387 5388 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5389 5390 CGF.EmitBranch(ContBlock); 5391 5392 //======================================= 5393 // Tidy up 5394 //======================================= 5395 CGF.EmitBlock(ContBlock); 5396 5397 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5398 OnStackAddr, OnStackBlock, "vaargs.addr"); 5399 5400 if (IsIndirect) 5401 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5402 TyInfo.second); 5403 5404 return ResAddr; 5405 } 5406 5407 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5408 CodeGenFunction &CGF) const { 5409 // The backend's lowering doesn't support va_arg for aggregates or 5410 // illegal vector types. Lower VAArg here for these cases and use 5411 // the LLVM va_arg instruction for everything else. 5412 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5413 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5414 5415 CharUnits SlotSize = CharUnits::fromQuantity(8); 5416 5417 // Empty records are ignored for parameter passing purposes. 5418 if (isEmptyRecord(getContext(), Ty, true)) { 5419 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5420 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5421 return Addr; 5422 } 5423 5424 // The size of the actual thing passed, which might end up just 5425 // being a pointer for indirect types. 5426 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5427 5428 // Arguments bigger than 16 bytes which aren't homogeneous 5429 // aggregates should be passed indirectly. 5430 bool IsIndirect = false; 5431 if (TyInfo.first.getQuantity() > 16) { 5432 const Type *Base = nullptr; 5433 uint64_t Members = 0; 5434 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5435 } 5436 5437 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5438 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5439 } 5440 5441 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5442 QualType Ty) const { 5443 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5444 CGF.getContext().getTypeInfoInChars(Ty), 5445 CharUnits::fromQuantity(8), 5446 /*allowHigherAlign*/ false); 5447 } 5448 5449 //===----------------------------------------------------------------------===// 5450 // ARM ABI Implementation 5451 //===----------------------------------------------------------------------===// 5452 5453 namespace { 5454 5455 class ARMABIInfo : public SwiftABIInfo { 5456 public: 5457 enum ABIKind { 5458 APCS = 0, 5459 AAPCS = 1, 5460 AAPCS_VFP = 2, 5461 AAPCS16_VFP = 3, 5462 }; 5463 5464 private: 5465 ABIKind Kind; 5466 5467 public: 5468 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5469 : SwiftABIInfo(CGT), Kind(_Kind) { 5470 setCCs(); 5471 } 5472 5473 bool isEABI() const { 5474 switch (getTarget().getTriple().getEnvironment()) { 5475 case llvm::Triple::Android: 5476 case llvm::Triple::EABI: 5477 case llvm::Triple::EABIHF: 5478 case llvm::Triple::GNUEABI: 5479 case llvm::Triple::GNUEABIHF: 5480 case llvm::Triple::MuslEABI: 5481 case llvm::Triple::MuslEABIHF: 5482 return true; 5483 default: 5484 return false; 5485 } 5486 } 5487 5488 bool isEABIHF() const { 5489 switch (getTarget().getTriple().getEnvironment()) { 5490 case llvm::Triple::EABIHF: 5491 case llvm::Triple::GNUEABIHF: 5492 case llvm::Triple::MuslEABIHF: 5493 return true; 5494 default: 5495 return false; 5496 } 5497 } 5498 5499 ABIKind getABIKind() const { return Kind; } 5500 5501 private: 5502 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5503 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5504 bool isIllegalVectorType(QualType Ty) const; 5505 5506 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5507 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5508 uint64_t Members) const override; 5509 5510 void computeInfo(CGFunctionInfo &FI) const override; 5511 5512 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5513 QualType Ty) const override; 5514 5515 llvm::CallingConv::ID getLLVMDefaultCC() const; 5516 llvm::CallingConv::ID getABIDefaultCC() const; 5517 void setCCs(); 5518 5519 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5520 bool asReturnValue) const override { 5521 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5522 } 5523 bool isSwiftErrorInRegister() const override { 5524 return true; 5525 } 5526 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5527 unsigned elts) const override; 5528 }; 5529 5530 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5531 public: 5532 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5533 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5534 5535 const ARMABIInfo &getABIInfo() const { 5536 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5537 } 5538 5539 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5540 return 13; 5541 } 5542 5543 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5544 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5545 } 5546 5547 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5548 llvm::Value *Address) const override { 5549 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5550 5551 // 0-15 are the 16 integer registers. 5552 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5553 return false; 5554 } 5555 5556 unsigned getSizeOfUnwindException() const override { 5557 if (getABIInfo().isEABI()) return 88; 5558 return TargetCodeGenInfo::getSizeOfUnwindException(); 5559 } 5560 5561 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5562 CodeGen::CodeGenModule &CGM) const override { 5563 if (GV->isDeclaration()) 5564 return; 5565 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5566 if (!FD) 5567 return; 5568 5569 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5570 if (!Attr) 5571 return; 5572 5573 const char *Kind; 5574 switch (Attr->getInterrupt()) { 5575 case ARMInterruptAttr::Generic: Kind = ""; break; 5576 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5577 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5578 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5579 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5580 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5581 } 5582 5583 llvm::Function *Fn = cast<llvm::Function>(GV); 5584 5585 Fn->addFnAttr("interrupt", Kind); 5586 5587 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5588 if (ABI == ARMABIInfo::APCS) 5589 return; 5590 5591 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5592 // however this is not necessarily true on taking any interrupt. Instruct 5593 // the backend to perform a realignment as part of the function prologue. 5594 llvm::AttrBuilder B; 5595 B.addStackAlignmentAttr(8); 5596 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5597 } 5598 }; 5599 5600 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5601 public: 5602 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5603 : ARMTargetCodeGenInfo(CGT, K) {} 5604 5605 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5606 CodeGen::CodeGenModule &CGM) const override; 5607 5608 void getDependentLibraryOption(llvm::StringRef Lib, 5609 llvm::SmallString<24> &Opt) const override { 5610 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5611 } 5612 5613 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5614 llvm::SmallString<32> &Opt) const override { 5615 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5616 } 5617 }; 5618 5619 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5620 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5621 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5622 if (GV->isDeclaration()) 5623 return; 5624 addStackProbeTargetAttributes(D, GV, CGM); 5625 } 5626 } 5627 5628 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5629 if (!getCXXABI().classifyReturnType(FI)) 5630 FI.getReturnInfo() = 5631 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5632 5633 for (auto &I : FI.arguments()) 5634 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5635 5636 // Always honor user-specified calling convention. 5637 if (FI.getCallingConvention() != llvm::CallingConv::C) 5638 return; 5639 5640 llvm::CallingConv::ID cc = getRuntimeCC(); 5641 if (cc != llvm::CallingConv::C) 5642 FI.setEffectiveCallingConvention(cc); 5643 } 5644 5645 /// Return the default calling convention that LLVM will use. 5646 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5647 // The default calling convention that LLVM will infer. 5648 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5649 return llvm::CallingConv::ARM_AAPCS_VFP; 5650 else if (isEABI()) 5651 return llvm::CallingConv::ARM_AAPCS; 5652 else 5653 return llvm::CallingConv::ARM_APCS; 5654 } 5655 5656 /// Return the calling convention that our ABI would like us to use 5657 /// as the C calling convention. 5658 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5659 switch (getABIKind()) { 5660 case APCS: return llvm::CallingConv::ARM_APCS; 5661 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5662 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5663 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5664 } 5665 llvm_unreachable("bad ABI kind"); 5666 } 5667 5668 void ARMABIInfo::setCCs() { 5669 assert(getRuntimeCC() == llvm::CallingConv::C); 5670 5671 // Don't muddy up the IR with a ton of explicit annotations if 5672 // they'd just match what LLVM will infer from the triple. 5673 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5674 if (abiCC != getLLVMDefaultCC()) 5675 RuntimeCC = abiCC; 5676 5677 // AAPCS apparently requires runtime support functions to be soft-float, but 5678 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5679 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5680 5681 // The Run-time ABI for the ARM Architecture section 4.1.2 requires 5682 // AEABI-complying FP helper functions to use the base AAPCS. 5683 // These AEABI functions are expanded in the ARM llvm backend, all the builtin 5684 // support functions emitted by clang such as the _Complex helpers follow the 5685 // abiCC. 5686 if (abiCC != getLLVMDefaultCC()) 5687 BuiltinCC = abiCC; 5688 } 5689 5690 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5691 bool isVariadic) const { 5692 // 6.1.2.1 The following argument types are VFP CPRCs: 5693 // A single-precision floating-point type (including promoted 5694 // half-precision types); A double-precision floating-point type; 5695 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5696 // with a Base Type of a single- or double-precision floating-point type, 5697 // 64-bit containerized vectors or 128-bit containerized vectors with one 5698 // to four Elements. 5699 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5700 5701 Ty = useFirstFieldIfTransparentUnion(Ty); 5702 5703 // Handle illegal vector types here. 5704 if (isIllegalVectorType(Ty)) { 5705 uint64_t Size = getContext().getTypeSize(Ty); 5706 if (Size <= 32) { 5707 llvm::Type *ResType = 5708 llvm::Type::getInt32Ty(getVMContext()); 5709 return ABIArgInfo::getDirect(ResType); 5710 } 5711 if (Size == 64) { 5712 llvm::Type *ResType = llvm::VectorType::get( 5713 llvm::Type::getInt32Ty(getVMContext()), 2); 5714 return ABIArgInfo::getDirect(ResType); 5715 } 5716 if (Size == 128) { 5717 llvm::Type *ResType = llvm::VectorType::get( 5718 llvm::Type::getInt32Ty(getVMContext()), 4); 5719 return ABIArgInfo::getDirect(ResType); 5720 } 5721 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5722 } 5723 5724 // _Float16 and __fp16 get passed as if it were an int or float, but with 5725 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5726 // half type natively, and does not need to interwork with AAPCS code. 5727 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5728 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5729 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5730 llvm::Type::getFloatTy(getVMContext()) : 5731 llvm::Type::getInt32Ty(getVMContext()); 5732 return ABIArgInfo::getDirect(ResType); 5733 } 5734 5735 if (!isAggregateTypeForABI(Ty)) { 5736 // Treat an enum type as its underlying type. 5737 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5738 Ty = EnumTy->getDecl()->getIntegerType(); 5739 } 5740 5741 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5742 : ABIArgInfo::getDirect()); 5743 } 5744 5745 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5746 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5747 } 5748 5749 // Ignore empty records. 5750 if (isEmptyRecord(getContext(), Ty, true)) 5751 return ABIArgInfo::getIgnore(); 5752 5753 if (IsEffectivelyAAPCS_VFP) { 5754 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5755 // into VFP registers. 5756 const Type *Base = nullptr; 5757 uint64_t Members = 0; 5758 if (isHomogeneousAggregate(Ty, Base, Members)) { 5759 assert(Base && "Base class should be set for homogeneous aggregate"); 5760 // Base can be a floating-point or a vector. 5761 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5762 } 5763 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5764 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5765 // this convention even for a variadic function: the backend will use GPRs 5766 // if needed. 5767 const Type *Base = nullptr; 5768 uint64_t Members = 0; 5769 if (isHomogeneousAggregate(Ty, Base, Members)) { 5770 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5771 llvm::Type *Ty = 5772 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5773 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5774 } 5775 } 5776 5777 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5778 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5779 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5780 // bigger than 128-bits, they get placed in space allocated by the caller, 5781 // and a pointer is passed. 5782 return ABIArgInfo::getIndirect( 5783 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5784 } 5785 5786 // Support byval for ARM. 5787 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5788 // most 8-byte. We realign the indirect argument if type alignment is bigger 5789 // than ABI alignment. 5790 uint64_t ABIAlign = 4; 5791 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5792 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5793 getABIKind() == ARMABIInfo::AAPCS) 5794 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5795 5796 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5797 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5798 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5799 /*ByVal=*/true, 5800 /*Realign=*/TyAlign > ABIAlign); 5801 } 5802 5803 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5804 // same size and alignment. 5805 if (getTarget().isRenderScriptTarget()) { 5806 return coerceToIntArray(Ty, getContext(), getVMContext()); 5807 } 5808 5809 // Otherwise, pass by coercing to a structure of the appropriate size. 5810 llvm::Type* ElemTy; 5811 unsigned SizeRegs; 5812 // FIXME: Try to match the types of the arguments more accurately where 5813 // we can. 5814 if (getContext().getTypeAlign(Ty) <= 32) { 5815 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5816 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5817 } else { 5818 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5819 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5820 } 5821 5822 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5823 } 5824 5825 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5826 llvm::LLVMContext &VMContext) { 5827 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5828 // is called integer-like if its size is less than or equal to one word, and 5829 // the offset of each of its addressable sub-fields is zero. 5830 5831 uint64_t Size = Context.getTypeSize(Ty); 5832 5833 // Check that the type fits in a word. 5834 if (Size > 32) 5835 return false; 5836 5837 // FIXME: Handle vector types! 5838 if (Ty->isVectorType()) 5839 return false; 5840 5841 // Float types are never treated as "integer like". 5842 if (Ty->isRealFloatingType()) 5843 return false; 5844 5845 // If this is a builtin or pointer type then it is ok. 5846 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5847 return true; 5848 5849 // Small complex integer types are "integer like". 5850 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5851 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5852 5853 // Single element and zero sized arrays should be allowed, by the definition 5854 // above, but they are not. 5855 5856 // Otherwise, it must be a record type. 5857 const RecordType *RT = Ty->getAs<RecordType>(); 5858 if (!RT) return false; 5859 5860 // Ignore records with flexible arrays. 5861 const RecordDecl *RD = RT->getDecl(); 5862 if (RD->hasFlexibleArrayMember()) 5863 return false; 5864 5865 // Check that all sub-fields are at offset 0, and are themselves "integer 5866 // like". 5867 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5868 5869 bool HadField = false; 5870 unsigned idx = 0; 5871 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5872 i != e; ++i, ++idx) { 5873 const FieldDecl *FD = *i; 5874 5875 // Bit-fields are not addressable, we only need to verify they are "integer 5876 // like". We still have to disallow a subsequent non-bitfield, for example: 5877 // struct { int : 0; int x } 5878 // is non-integer like according to gcc. 5879 if (FD->isBitField()) { 5880 if (!RD->isUnion()) 5881 HadField = true; 5882 5883 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5884 return false; 5885 5886 continue; 5887 } 5888 5889 // Check if this field is at offset 0. 5890 if (Layout.getFieldOffset(idx) != 0) 5891 return false; 5892 5893 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5894 return false; 5895 5896 // Only allow at most one field in a structure. This doesn't match the 5897 // wording above, but follows gcc in situations with a field following an 5898 // empty structure. 5899 if (!RD->isUnion()) { 5900 if (HadField) 5901 return false; 5902 5903 HadField = true; 5904 } 5905 } 5906 5907 return true; 5908 } 5909 5910 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5911 bool isVariadic) const { 5912 bool IsEffectivelyAAPCS_VFP = 5913 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5914 5915 if (RetTy->isVoidType()) 5916 return ABIArgInfo::getIgnore(); 5917 5918 // Large vector types should be returned via memory. 5919 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5920 return getNaturalAlignIndirect(RetTy); 5921 } 5922 5923 // _Float16 and __fp16 get returned as if it were an int or float, but with 5924 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5925 // half type natively, and does not need to interwork with AAPCS code. 5926 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 5927 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5928 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5929 llvm::Type::getFloatTy(getVMContext()) : 5930 llvm::Type::getInt32Ty(getVMContext()); 5931 return ABIArgInfo::getDirect(ResType); 5932 } 5933 5934 if (!isAggregateTypeForABI(RetTy)) { 5935 // Treat an enum type as its underlying type. 5936 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5937 RetTy = EnumTy->getDecl()->getIntegerType(); 5938 5939 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 5940 : ABIArgInfo::getDirect(); 5941 } 5942 5943 // Are we following APCS? 5944 if (getABIKind() == APCS) { 5945 if (isEmptyRecord(getContext(), RetTy, false)) 5946 return ABIArgInfo::getIgnore(); 5947 5948 // Complex types are all returned as packed integers. 5949 // 5950 // FIXME: Consider using 2 x vector types if the back end handles them 5951 // correctly. 5952 if (RetTy->isAnyComplexType()) 5953 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5954 getVMContext(), getContext().getTypeSize(RetTy))); 5955 5956 // Integer like structures are returned in r0. 5957 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5958 // Return in the smallest viable integer type. 5959 uint64_t Size = getContext().getTypeSize(RetTy); 5960 if (Size <= 8) 5961 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5962 if (Size <= 16) 5963 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5964 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5965 } 5966 5967 // Otherwise return in memory. 5968 return getNaturalAlignIndirect(RetTy); 5969 } 5970 5971 // Otherwise this is an AAPCS variant. 5972 5973 if (isEmptyRecord(getContext(), RetTy, true)) 5974 return ABIArgInfo::getIgnore(); 5975 5976 // Check for homogeneous aggregates with AAPCS-VFP. 5977 if (IsEffectivelyAAPCS_VFP) { 5978 const Type *Base = nullptr; 5979 uint64_t Members = 0; 5980 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5981 assert(Base && "Base class should be set for homogeneous aggregate"); 5982 // Homogeneous Aggregates are returned directly. 5983 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5984 } 5985 } 5986 5987 // Aggregates <= 4 bytes are returned in r0; other aggregates 5988 // are returned indirectly. 5989 uint64_t Size = getContext().getTypeSize(RetTy); 5990 if (Size <= 32) { 5991 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5992 // same size and alignment. 5993 if (getTarget().isRenderScriptTarget()) { 5994 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5995 } 5996 if (getDataLayout().isBigEndian()) 5997 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5998 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5999 6000 // Return in the smallest viable integer type. 6001 if (Size <= 8) 6002 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6003 if (Size <= 16) 6004 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6005 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6006 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6007 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6008 llvm::Type *CoerceTy = 6009 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6010 return ABIArgInfo::getDirect(CoerceTy); 6011 } 6012 6013 return getNaturalAlignIndirect(RetTy); 6014 } 6015 6016 /// isIllegalVector - check whether Ty is an illegal vector type. 6017 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6018 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6019 if (isAndroid()) { 6020 // Android shipped using Clang 3.1, which supported a slightly different 6021 // vector ABI. The primary differences were that 3-element vector types 6022 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6023 // accepts that legacy behavior for Android only. 6024 // Check whether VT is legal. 6025 unsigned NumElements = VT->getNumElements(); 6026 // NumElements should be power of 2 or equal to 3. 6027 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6028 return true; 6029 } else { 6030 // Check whether VT is legal. 6031 unsigned NumElements = VT->getNumElements(); 6032 uint64_t Size = getContext().getTypeSize(VT); 6033 // NumElements should be power of 2. 6034 if (!llvm::isPowerOf2_32(NumElements)) 6035 return true; 6036 // Size should be greater than 32 bits. 6037 return Size <= 32; 6038 } 6039 } 6040 return false; 6041 } 6042 6043 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6044 llvm::Type *eltTy, 6045 unsigned numElts) const { 6046 if (!llvm::isPowerOf2_32(numElts)) 6047 return false; 6048 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6049 if (size > 64) 6050 return false; 6051 if (vectorSize.getQuantity() != 8 && 6052 (vectorSize.getQuantity() != 16 || numElts == 1)) 6053 return false; 6054 return true; 6055 } 6056 6057 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6058 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6059 // double, or 64-bit or 128-bit vectors. 6060 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6061 if (BT->getKind() == BuiltinType::Float || 6062 BT->getKind() == BuiltinType::Double || 6063 BT->getKind() == BuiltinType::LongDouble) 6064 return true; 6065 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6066 unsigned VecSize = getContext().getTypeSize(VT); 6067 if (VecSize == 64 || VecSize == 128) 6068 return true; 6069 } 6070 return false; 6071 } 6072 6073 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6074 uint64_t Members) const { 6075 return Members <= 4; 6076 } 6077 6078 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6079 QualType Ty) const { 6080 CharUnits SlotSize = CharUnits::fromQuantity(4); 6081 6082 // Empty records are ignored for parameter passing purposes. 6083 if (isEmptyRecord(getContext(), Ty, true)) { 6084 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6085 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6086 return Addr; 6087 } 6088 6089 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6090 CharUnits TyAlignForABI = TyInfo.second; 6091 6092 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6093 bool IsIndirect = false; 6094 const Type *Base = nullptr; 6095 uint64_t Members = 0; 6096 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6097 IsIndirect = true; 6098 6099 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6100 // allocated by the caller. 6101 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6102 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6103 !isHomogeneousAggregate(Ty, Base, Members)) { 6104 IsIndirect = true; 6105 6106 // Otherwise, bound the type's ABI alignment. 6107 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6108 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6109 // Our callers should be prepared to handle an under-aligned address. 6110 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6111 getABIKind() == ARMABIInfo::AAPCS) { 6112 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6113 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6114 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6115 // ARMv7k allows type alignment up to 16 bytes. 6116 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6117 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6118 } else { 6119 TyAlignForABI = CharUnits::fromQuantity(4); 6120 } 6121 TyInfo.second = TyAlignForABI; 6122 6123 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6124 SlotSize, /*AllowHigherAlign*/ true); 6125 } 6126 6127 //===----------------------------------------------------------------------===// 6128 // NVPTX ABI Implementation 6129 //===----------------------------------------------------------------------===// 6130 6131 namespace { 6132 6133 class NVPTXABIInfo : public ABIInfo { 6134 public: 6135 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6136 6137 ABIArgInfo classifyReturnType(QualType RetTy) const; 6138 ABIArgInfo classifyArgumentType(QualType Ty) const; 6139 6140 void computeInfo(CGFunctionInfo &FI) const override; 6141 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6142 QualType Ty) const override; 6143 }; 6144 6145 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6146 public: 6147 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6148 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6149 6150 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6151 CodeGen::CodeGenModule &M) const override; 6152 6153 private: 6154 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6155 // resulting MDNode to the nvvm.annotations MDNode. 6156 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6157 }; 6158 6159 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6160 if (RetTy->isVoidType()) 6161 return ABIArgInfo::getIgnore(); 6162 6163 // note: this is different from default ABI 6164 if (!RetTy->isScalarType()) 6165 return ABIArgInfo::getDirect(); 6166 6167 // Treat an enum type as its underlying type. 6168 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6169 RetTy = EnumTy->getDecl()->getIntegerType(); 6170 6171 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6172 : ABIArgInfo::getDirect()); 6173 } 6174 6175 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6176 // Treat an enum type as its underlying type. 6177 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6178 Ty = EnumTy->getDecl()->getIntegerType(); 6179 6180 // Return aggregates type as indirect by value 6181 if (isAggregateTypeForABI(Ty)) 6182 return getNaturalAlignIndirect(Ty, /* byval */ true); 6183 6184 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6185 : ABIArgInfo::getDirect()); 6186 } 6187 6188 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6189 if (!getCXXABI().classifyReturnType(FI)) 6190 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6191 for (auto &I : FI.arguments()) 6192 I.info = classifyArgumentType(I.type); 6193 6194 // Always honor user-specified calling convention. 6195 if (FI.getCallingConvention() != llvm::CallingConv::C) 6196 return; 6197 6198 FI.setEffectiveCallingConvention(getRuntimeCC()); 6199 } 6200 6201 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6202 QualType Ty) const { 6203 llvm_unreachable("NVPTX does not support varargs"); 6204 } 6205 6206 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6207 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6208 if (GV->isDeclaration()) 6209 return; 6210 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6211 if (!FD) return; 6212 6213 llvm::Function *F = cast<llvm::Function>(GV); 6214 6215 // Perform special handling in OpenCL mode 6216 if (M.getLangOpts().OpenCL) { 6217 // Use OpenCL function attributes to check for kernel functions 6218 // By default, all functions are device functions 6219 if (FD->hasAttr<OpenCLKernelAttr>()) { 6220 // OpenCL __kernel functions get kernel metadata 6221 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6222 addNVVMMetadata(F, "kernel", 1); 6223 // And kernel functions are not subject to inlining 6224 F->addFnAttr(llvm::Attribute::NoInline); 6225 } 6226 } 6227 6228 // Perform special handling in CUDA mode. 6229 if (M.getLangOpts().CUDA) { 6230 // CUDA __global__ functions get a kernel metadata entry. Since 6231 // __global__ functions cannot be called from the device, we do not 6232 // need to set the noinline attribute. 6233 if (FD->hasAttr<CUDAGlobalAttr>()) { 6234 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6235 addNVVMMetadata(F, "kernel", 1); 6236 } 6237 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6238 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6239 llvm::APSInt MaxThreads(32); 6240 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6241 if (MaxThreads > 0) 6242 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6243 6244 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6245 // not specified in __launch_bounds__ or if the user specified a 0 value, 6246 // we don't have to add a PTX directive. 6247 if (Attr->getMinBlocks()) { 6248 llvm::APSInt MinBlocks(32); 6249 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6250 if (MinBlocks > 0) 6251 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6252 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6253 } 6254 } 6255 } 6256 } 6257 6258 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6259 int Operand) { 6260 llvm::Module *M = F->getParent(); 6261 llvm::LLVMContext &Ctx = M->getContext(); 6262 6263 // Get "nvvm.annotations" metadata node 6264 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6265 6266 llvm::Metadata *MDVals[] = { 6267 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6268 llvm::ConstantAsMetadata::get( 6269 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6270 // Append metadata to nvvm.annotations 6271 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6272 } 6273 } 6274 6275 //===----------------------------------------------------------------------===// 6276 // SystemZ ABI Implementation 6277 //===----------------------------------------------------------------------===// 6278 6279 namespace { 6280 6281 class SystemZABIInfo : public SwiftABIInfo { 6282 bool HasVector; 6283 6284 public: 6285 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6286 : SwiftABIInfo(CGT), HasVector(HV) {} 6287 6288 bool isPromotableIntegerType(QualType Ty) const; 6289 bool isCompoundType(QualType Ty) const; 6290 bool isVectorArgumentType(QualType Ty) const; 6291 bool isFPArgumentType(QualType Ty) const; 6292 QualType GetSingleElementType(QualType Ty) const; 6293 6294 ABIArgInfo classifyReturnType(QualType RetTy) const; 6295 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6296 6297 void computeInfo(CGFunctionInfo &FI) const override { 6298 if (!getCXXABI().classifyReturnType(FI)) 6299 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6300 for (auto &I : FI.arguments()) 6301 I.info = classifyArgumentType(I.type); 6302 } 6303 6304 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6305 QualType Ty) const override; 6306 6307 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6308 bool asReturnValue) const override { 6309 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6310 } 6311 bool isSwiftErrorInRegister() const override { 6312 return false; 6313 } 6314 }; 6315 6316 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6317 public: 6318 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6319 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6320 }; 6321 6322 } 6323 6324 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6325 // Treat an enum type as its underlying type. 6326 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6327 Ty = EnumTy->getDecl()->getIntegerType(); 6328 6329 // Promotable integer types are required to be promoted by the ABI. 6330 if (Ty->isPromotableIntegerType()) 6331 return true; 6332 6333 // 32-bit values must also be promoted. 6334 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6335 switch (BT->getKind()) { 6336 case BuiltinType::Int: 6337 case BuiltinType::UInt: 6338 return true; 6339 default: 6340 return false; 6341 } 6342 return false; 6343 } 6344 6345 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6346 return (Ty->isAnyComplexType() || 6347 Ty->isVectorType() || 6348 isAggregateTypeForABI(Ty)); 6349 } 6350 6351 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6352 return (HasVector && 6353 Ty->isVectorType() && 6354 getContext().getTypeSize(Ty) <= 128); 6355 } 6356 6357 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6358 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6359 switch (BT->getKind()) { 6360 case BuiltinType::Float: 6361 case BuiltinType::Double: 6362 return true; 6363 default: 6364 return false; 6365 } 6366 6367 return false; 6368 } 6369 6370 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6371 if (const RecordType *RT = Ty->getAsStructureType()) { 6372 const RecordDecl *RD = RT->getDecl(); 6373 QualType Found; 6374 6375 // If this is a C++ record, check the bases first. 6376 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6377 for (const auto &I : CXXRD->bases()) { 6378 QualType Base = I.getType(); 6379 6380 // Empty bases don't affect things either way. 6381 if (isEmptyRecord(getContext(), Base, true)) 6382 continue; 6383 6384 if (!Found.isNull()) 6385 return Ty; 6386 Found = GetSingleElementType(Base); 6387 } 6388 6389 // Check the fields. 6390 for (const auto *FD : RD->fields()) { 6391 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6392 // Unlike isSingleElementStruct(), empty structure and array fields 6393 // do count. So do anonymous bitfields that aren't zero-sized. 6394 if (getContext().getLangOpts().CPlusPlus && 6395 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6396 continue; 6397 6398 // Unlike isSingleElementStruct(), arrays do not count. 6399 // Nested structures still do though. 6400 if (!Found.isNull()) 6401 return Ty; 6402 Found = GetSingleElementType(FD->getType()); 6403 } 6404 6405 // Unlike isSingleElementStruct(), trailing padding is allowed. 6406 // An 8-byte aligned struct s { float f; } is passed as a double. 6407 if (!Found.isNull()) 6408 return Found; 6409 } 6410 6411 return Ty; 6412 } 6413 6414 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6415 QualType Ty) const { 6416 // Assume that va_list type is correct; should be pointer to LLVM type: 6417 // struct { 6418 // i64 __gpr; 6419 // i64 __fpr; 6420 // i8 *__overflow_arg_area; 6421 // i8 *__reg_save_area; 6422 // }; 6423 6424 // Every non-vector argument occupies 8 bytes and is passed by preference 6425 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6426 // always passed on the stack. 6427 Ty = getContext().getCanonicalType(Ty); 6428 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6429 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6430 llvm::Type *DirectTy = ArgTy; 6431 ABIArgInfo AI = classifyArgumentType(Ty); 6432 bool IsIndirect = AI.isIndirect(); 6433 bool InFPRs = false; 6434 bool IsVector = false; 6435 CharUnits UnpaddedSize; 6436 CharUnits DirectAlign; 6437 if (IsIndirect) { 6438 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6439 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6440 } else { 6441 if (AI.getCoerceToType()) 6442 ArgTy = AI.getCoerceToType(); 6443 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6444 IsVector = ArgTy->isVectorTy(); 6445 UnpaddedSize = TyInfo.first; 6446 DirectAlign = TyInfo.second; 6447 } 6448 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6449 if (IsVector && UnpaddedSize > PaddedSize) 6450 PaddedSize = CharUnits::fromQuantity(16); 6451 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6452 6453 CharUnits Padding = (PaddedSize - UnpaddedSize); 6454 6455 llvm::Type *IndexTy = CGF.Int64Ty; 6456 llvm::Value *PaddedSizeV = 6457 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6458 6459 if (IsVector) { 6460 // Work out the address of a vector argument on the stack. 6461 // Vector arguments are always passed in the high bits of a 6462 // single (8 byte) or double (16 byte) stack slot. 6463 Address OverflowArgAreaPtr = 6464 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6465 "overflow_arg_area_ptr"); 6466 Address OverflowArgArea = 6467 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6468 TyInfo.second); 6469 Address MemAddr = 6470 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6471 6472 // Update overflow_arg_area_ptr pointer 6473 llvm::Value *NewOverflowArgArea = 6474 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6475 "overflow_arg_area"); 6476 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6477 6478 return MemAddr; 6479 } 6480 6481 assert(PaddedSize.getQuantity() == 8); 6482 6483 unsigned MaxRegs, RegCountField, RegSaveIndex; 6484 CharUnits RegPadding; 6485 if (InFPRs) { 6486 MaxRegs = 4; // Maximum of 4 FPR arguments 6487 RegCountField = 1; // __fpr 6488 RegSaveIndex = 16; // save offset for f0 6489 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6490 } else { 6491 MaxRegs = 5; // Maximum of 5 GPR arguments 6492 RegCountField = 0; // __gpr 6493 RegSaveIndex = 2; // save offset for r2 6494 RegPadding = Padding; // values are passed in the low bits of a GPR 6495 } 6496 6497 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6498 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6499 "reg_count_ptr"); 6500 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6501 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6502 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6503 "fits_in_regs"); 6504 6505 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6506 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6507 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6508 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6509 6510 // Emit code to load the value if it was passed in registers. 6511 CGF.EmitBlock(InRegBlock); 6512 6513 // Work out the address of an argument register. 6514 llvm::Value *ScaledRegCount = 6515 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6516 llvm::Value *RegBase = 6517 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6518 + RegPadding.getQuantity()); 6519 llvm::Value *RegOffset = 6520 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6521 Address RegSaveAreaPtr = 6522 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6523 "reg_save_area_ptr"); 6524 llvm::Value *RegSaveArea = 6525 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6526 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6527 "raw_reg_addr"), 6528 PaddedSize); 6529 Address RegAddr = 6530 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6531 6532 // Update the register count 6533 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6534 llvm::Value *NewRegCount = 6535 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6536 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6537 CGF.EmitBranch(ContBlock); 6538 6539 // Emit code to load the value if it was passed in memory. 6540 CGF.EmitBlock(InMemBlock); 6541 6542 // Work out the address of a stack argument. 6543 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6544 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6545 Address OverflowArgArea = 6546 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6547 PaddedSize); 6548 Address RawMemAddr = 6549 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6550 Address MemAddr = 6551 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6552 6553 // Update overflow_arg_area_ptr pointer 6554 llvm::Value *NewOverflowArgArea = 6555 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6556 "overflow_arg_area"); 6557 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6558 CGF.EmitBranch(ContBlock); 6559 6560 // Return the appropriate result. 6561 CGF.EmitBlock(ContBlock); 6562 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6563 MemAddr, InMemBlock, "va_arg.addr"); 6564 6565 if (IsIndirect) 6566 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6567 TyInfo.second); 6568 6569 return ResAddr; 6570 } 6571 6572 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6573 if (RetTy->isVoidType()) 6574 return ABIArgInfo::getIgnore(); 6575 if (isVectorArgumentType(RetTy)) 6576 return ABIArgInfo::getDirect(); 6577 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6578 return getNaturalAlignIndirect(RetTy); 6579 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6580 : ABIArgInfo::getDirect()); 6581 } 6582 6583 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6584 // Handle the generic C++ ABI. 6585 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6586 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6587 6588 // Integers and enums are extended to full register width. 6589 if (isPromotableIntegerType(Ty)) 6590 return ABIArgInfo::getExtend(Ty); 6591 6592 // Handle vector types and vector-like structure types. Note that 6593 // as opposed to float-like structure types, we do not allow any 6594 // padding for vector-like structures, so verify the sizes match. 6595 uint64_t Size = getContext().getTypeSize(Ty); 6596 QualType SingleElementTy = GetSingleElementType(Ty); 6597 if (isVectorArgumentType(SingleElementTy) && 6598 getContext().getTypeSize(SingleElementTy) == Size) 6599 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6600 6601 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6602 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6603 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6604 6605 // Handle small structures. 6606 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6607 // Structures with flexible arrays have variable length, so really 6608 // fail the size test above. 6609 const RecordDecl *RD = RT->getDecl(); 6610 if (RD->hasFlexibleArrayMember()) 6611 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6612 6613 // The structure is passed as an unextended integer, a float, or a double. 6614 llvm::Type *PassTy; 6615 if (isFPArgumentType(SingleElementTy)) { 6616 assert(Size == 32 || Size == 64); 6617 if (Size == 32) 6618 PassTy = llvm::Type::getFloatTy(getVMContext()); 6619 else 6620 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6621 } else 6622 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6623 return ABIArgInfo::getDirect(PassTy); 6624 } 6625 6626 // Non-structure compounds are passed indirectly. 6627 if (isCompoundType(Ty)) 6628 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6629 6630 return ABIArgInfo::getDirect(nullptr); 6631 } 6632 6633 //===----------------------------------------------------------------------===// 6634 // MSP430 ABI Implementation 6635 //===----------------------------------------------------------------------===// 6636 6637 namespace { 6638 6639 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6640 public: 6641 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6642 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6643 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6644 CodeGen::CodeGenModule &M) const override; 6645 }; 6646 6647 } 6648 6649 void MSP430TargetCodeGenInfo::setTargetAttributes( 6650 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6651 if (GV->isDeclaration()) 6652 return; 6653 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6654 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6655 // Handle 'interrupt' attribute: 6656 llvm::Function *F = cast<llvm::Function>(GV); 6657 6658 // Step 1: Set ISR calling convention. 6659 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6660 6661 // Step 2: Add attributes goodness. 6662 F->addFnAttr(llvm::Attribute::NoInline); 6663 6664 // Step 3: Emit ISR vector alias. 6665 unsigned Num = attr->getNumber() / 2; 6666 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6667 "__isr_" + Twine(Num), F); 6668 } 6669 } 6670 } 6671 6672 //===----------------------------------------------------------------------===// 6673 // MIPS ABI Implementation. This works for both little-endian and 6674 // big-endian variants. 6675 //===----------------------------------------------------------------------===// 6676 6677 namespace { 6678 class MipsABIInfo : public ABIInfo { 6679 bool IsO32; 6680 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6681 void CoerceToIntArgs(uint64_t TySize, 6682 SmallVectorImpl<llvm::Type *> &ArgList) const; 6683 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6684 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6685 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6686 public: 6687 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6688 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6689 StackAlignInBytes(IsO32 ? 8 : 16) {} 6690 6691 ABIArgInfo classifyReturnType(QualType RetTy) const; 6692 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6693 void computeInfo(CGFunctionInfo &FI) const override; 6694 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6695 QualType Ty) const override; 6696 ABIArgInfo extendType(QualType Ty) const; 6697 }; 6698 6699 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6700 unsigned SizeOfUnwindException; 6701 public: 6702 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6703 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6704 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6705 6706 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6707 return 29; 6708 } 6709 6710 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6711 CodeGen::CodeGenModule &CGM) const override { 6712 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6713 if (!FD) return; 6714 llvm::Function *Fn = cast<llvm::Function>(GV); 6715 6716 if (FD->hasAttr<MipsLongCallAttr>()) 6717 Fn->addFnAttr("long-call"); 6718 else if (FD->hasAttr<MipsShortCallAttr>()) 6719 Fn->addFnAttr("short-call"); 6720 6721 // Other attributes do not have a meaning for declarations. 6722 if (GV->isDeclaration()) 6723 return; 6724 6725 if (FD->hasAttr<Mips16Attr>()) { 6726 Fn->addFnAttr("mips16"); 6727 } 6728 else if (FD->hasAttr<NoMips16Attr>()) { 6729 Fn->addFnAttr("nomips16"); 6730 } 6731 6732 if (FD->hasAttr<MicroMipsAttr>()) 6733 Fn->addFnAttr("micromips"); 6734 else if (FD->hasAttr<NoMicroMipsAttr>()) 6735 Fn->addFnAttr("nomicromips"); 6736 6737 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6738 if (!Attr) 6739 return; 6740 6741 const char *Kind; 6742 switch (Attr->getInterrupt()) { 6743 case MipsInterruptAttr::eic: Kind = "eic"; break; 6744 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6745 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6746 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6747 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6748 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6749 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6750 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6751 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6752 } 6753 6754 Fn->addFnAttr("interrupt", Kind); 6755 6756 } 6757 6758 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6759 llvm::Value *Address) const override; 6760 6761 unsigned getSizeOfUnwindException() const override { 6762 return SizeOfUnwindException; 6763 } 6764 }; 6765 } 6766 6767 void MipsABIInfo::CoerceToIntArgs( 6768 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6769 llvm::IntegerType *IntTy = 6770 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6771 6772 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6773 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6774 ArgList.push_back(IntTy); 6775 6776 // If necessary, add one more integer type to ArgList. 6777 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6778 6779 if (R) 6780 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6781 } 6782 6783 // In N32/64, an aligned double precision floating point field is passed in 6784 // a register. 6785 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6786 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6787 6788 if (IsO32) { 6789 CoerceToIntArgs(TySize, ArgList); 6790 return llvm::StructType::get(getVMContext(), ArgList); 6791 } 6792 6793 if (Ty->isComplexType()) 6794 return CGT.ConvertType(Ty); 6795 6796 const RecordType *RT = Ty->getAs<RecordType>(); 6797 6798 // Unions/vectors are passed in integer registers. 6799 if (!RT || !RT->isStructureOrClassType()) { 6800 CoerceToIntArgs(TySize, ArgList); 6801 return llvm::StructType::get(getVMContext(), ArgList); 6802 } 6803 6804 const RecordDecl *RD = RT->getDecl(); 6805 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6806 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6807 6808 uint64_t LastOffset = 0; 6809 unsigned idx = 0; 6810 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6811 6812 // Iterate over fields in the struct/class and check if there are any aligned 6813 // double fields. 6814 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6815 i != e; ++i, ++idx) { 6816 const QualType Ty = i->getType(); 6817 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6818 6819 if (!BT || BT->getKind() != BuiltinType::Double) 6820 continue; 6821 6822 uint64_t Offset = Layout.getFieldOffset(idx); 6823 if (Offset % 64) // Ignore doubles that are not aligned. 6824 continue; 6825 6826 // Add ((Offset - LastOffset) / 64) args of type i64. 6827 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6828 ArgList.push_back(I64); 6829 6830 // Add double type. 6831 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6832 LastOffset = Offset + 64; 6833 } 6834 6835 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6836 ArgList.append(IntArgList.begin(), IntArgList.end()); 6837 6838 return llvm::StructType::get(getVMContext(), ArgList); 6839 } 6840 6841 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6842 uint64_t Offset) const { 6843 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6844 return nullptr; 6845 6846 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6847 } 6848 6849 ABIArgInfo 6850 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6851 Ty = useFirstFieldIfTransparentUnion(Ty); 6852 6853 uint64_t OrigOffset = Offset; 6854 uint64_t TySize = getContext().getTypeSize(Ty); 6855 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6856 6857 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6858 (uint64_t)StackAlignInBytes); 6859 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6860 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6861 6862 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6863 // Ignore empty aggregates. 6864 if (TySize == 0) 6865 return ABIArgInfo::getIgnore(); 6866 6867 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6868 Offset = OrigOffset + MinABIStackAlignInBytes; 6869 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6870 } 6871 6872 // If we have reached here, aggregates are passed directly by coercing to 6873 // another structure type. Padding is inserted if the offset of the 6874 // aggregate is unaligned. 6875 ABIArgInfo ArgInfo = 6876 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6877 getPaddingType(OrigOffset, CurrOffset)); 6878 ArgInfo.setInReg(true); 6879 return ArgInfo; 6880 } 6881 6882 // Treat an enum type as its underlying type. 6883 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6884 Ty = EnumTy->getDecl()->getIntegerType(); 6885 6886 // All integral types are promoted to the GPR width. 6887 if (Ty->isIntegralOrEnumerationType()) 6888 return extendType(Ty); 6889 6890 return ABIArgInfo::getDirect( 6891 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6892 } 6893 6894 llvm::Type* 6895 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6896 const RecordType *RT = RetTy->getAs<RecordType>(); 6897 SmallVector<llvm::Type*, 8> RTList; 6898 6899 if (RT && RT->isStructureOrClassType()) { 6900 const RecordDecl *RD = RT->getDecl(); 6901 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6902 unsigned FieldCnt = Layout.getFieldCount(); 6903 6904 // N32/64 returns struct/classes in floating point registers if the 6905 // following conditions are met: 6906 // 1. The size of the struct/class is no larger than 128-bit. 6907 // 2. The struct/class has one or two fields all of which are floating 6908 // point types. 6909 // 3. The offset of the first field is zero (this follows what gcc does). 6910 // 6911 // Any other composite results are returned in integer registers. 6912 // 6913 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6914 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6915 for (; b != e; ++b) { 6916 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6917 6918 if (!BT || !BT->isFloatingPoint()) 6919 break; 6920 6921 RTList.push_back(CGT.ConvertType(b->getType())); 6922 } 6923 6924 if (b == e) 6925 return llvm::StructType::get(getVMContext(), RTList, 6926 RD->hasAttr<PackedAttr>()); 6927 6928 RTList.clear(); 6929 } 6930 } 6931 6932 CoerceToIntArgs(Size, RTList); 6933 return llvm::StructType::get(getVMContext(), RTList); 6934 } 6935 6936 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6937 uint64_t Size = getContext().getTypeSize(RetTy); 6938 6939 if (RetTy->isVoidType()) 6940 return ABIArgInfo::getIgnore(); 6941 6942 // O32 doesn't treat zero-sized structs differently from other structs. 6943 // However, N32/N64 ignores zero sized return values. 6944 if (!IsO32 && Size == 0) 6945 return ABIArgInfo::getIgnore(); 6946 6947 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6948 if (Size <= 128) { 6949 if (RetTy->isAnyComplexType()) 6950 return ABIArgInfo::getDirect(); 6951 6952 // O32 returns integer vectors in registers and N32/N64 returns all small 6953 // aggregates in registers. 6954 if (!IsO32 || 6955 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6956 ABIArgInfo ArgInfo = 6957 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6958 ArgInfo.setInReg(true); 6959 return ArgInfo; 6960 } 6961 } 6962 6963 return getNaturalAlignIndirect(RetTy); 6964 } 6965 6966 // Treat an enum type as its underlying type. 6967 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6968 RetTy = EnumTy->getDecl()->getIntegerType(); 6969 6970 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6971 : ABIArgInfo::getDirect()); 6972 } 6973 6974 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6975 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6976 if (!getCXXABI().classifyReturnType(FI)) 6977 RetInfo = classifyReturnType(FI.getReturnType()); 6978 6979 // Check if a pointer to an aggregate is passed as a hidden argument. 6980 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6981 6982 for (auto &I : FI.arguments()) 6983 I.info = classifyArgumentType(I.type, Offset); 6984 } 6985 6986 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6987 QualType OrigTy) const { 6988 QualType Ty = OrigTy; 6989 6990 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6991 // Pointers are also promoted in the same way but this only matters for N32. 6992 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6993 unsigned PtrWidth = getTarget().getPointerWidth(0); 6994 bool DidPromote = false; 6995 if ((Ty->isIntegerType() && 6996 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6997 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6998 DidPromote = true; 6999 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7000 Ty->isSignedIntegerType()); 7001 } 7002 7003 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7004 7005 // The alignment of things in the argument area is never larger than 7006 // StackAlignInBytes. 7007 TyInfo.second = 7008 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7009 7010 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7011 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7012 7013 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7014 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7015 7016 7017 // If there was a promotion, "unpromote" into a temporary. 7018 // TODO: can we just use a pointer into a subset of the original slot? 7019 if (DidPromote) { 7020 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7021 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7022 7023 // Truncate down to the right width. 7024 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7025 : CGF.IntPtrTy); 7026 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7027 if (OrigTy->isPointerType()) 7028 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7029 7030 CGF.Builder.CreateStore(V, Temp); 7031 Addr = Temp; 7032 } 7033 7034 return Addr; 7035 } 7036 7037 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7038 int TySize = getContext().getTypeSize(Ty); 7039 7040 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7041 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7042 return ABIArgInfo::getSignExtend(Ty); 7043 7044 return ABIArgInfo::getExtend(Ty); 7045 } 7046 7047 bool 7048 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7049 llvm::Value *Address) const { 7050 // This information comes from gcc's implementation, which seems to 7051 // as canonical as it gets. 7052 7053 // Everything on MIPS is 4 bytes. Double-precision FP registers 7054 // are aliased to pairs of single-precision FP registers. 7055 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7056 7057 // 0-31 are the general purpose registers, $0 - $31. 7058 // 32-63 are the floating-point registers, $f0 - $f31. 7059 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7060 // 66 is the (notional, I think) register for signal-handler return. 7061 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7062 7063 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7064 // They are one bit wide and ignored here. 7065 7066 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7067 // (coprocessor 1 is the FP unit) 7068 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7069 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7070 // 176-181 are the DSP accumulator registers. 7071 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7072 return false; 7073 } 7074 7075 //===----------------------------------------------------------------------===// 7076 // AVR ABI Implementation. 7077 //===----------------------------------------------------------------------===// 7078 7079 namespace { 7080 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7081 public: 7082 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7083 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7084 7085 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7086 CodeGen::CodeGenModule &CGM) const override { 7087 if (GV->isDeclaration()) 7088 return; 7089 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7090 if (!FD) return; 7091 auto *Fn = cast<llvm::Function>(GV); 7092 7093 if (FD->getAttr<AVRInterruptAttr>()) 7094 Fn->addFnAttr("interrupt"); 7095 7096 if (FD->getAttr<AVRSignalAttr>()) 7097 Fn->addFnAttr("signal"); 7098 } 7099 }; 7100 } 7101 7102 //===----------------------------------------------------------------------===// 7103 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7104 // Currently subclassed only to implement custom OpenCL C function attribute 7105 // handling. 7106 //===----------------------------------------------------------------------===// 7107 7108 namespace { 7109 7110 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7111 public: 7112 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7113 : DefaultTargetCodeGenInfo(CGT) {} 7114 7115 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7116 CodeGen::CodeGenModule &M) const override; 7117 }; 7118 7119 void TCETargetCodeGenInfo::setTargetAttributes( 7120 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7121 if (GV->isDeclaration()) 7122 return; 7123 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7124 if (!FD) return; 7125 7126 llvm::Function *F = cast<llvm::Function>(GV); 7127 7128 if (M.getLangOpts().OpenCL) { 7129 if (FD->hasAttr<OpenCLKernelAttr>()) { 7130 // OpenCL C Kernel functions are not subject to inlining 7131 F->addFnAttr(llvm::Attribute::NoInline); 7132 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7133 if (Attr) { 7134 // Convert the reqd_work_group_size() attributes to metadata. 7135 llvm::LLVMContext &Context = F->getContext(); 7136 llvm::NamedMDNode *OpenCLMetadata = 7137 M.getModule().getOrInsertNamedMetadata( 7138 "opencl.kernel_wg_size_info"); 7139 7140 SmallVector<llvm::Metadata *, 5> Operands; 7141 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7142 7143 Operands.push_back( 7144 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7145 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7146 Operands.push_back( 7147 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7148 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7149 Operands.push_back( 7150 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7151 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7152 7153 // Add a boolean constant operand for "required" (true) or "hint" 7154 // (false) for implementing the work_group_size_hint attr later. 7155 // Currently always true as the hint is not yet implemented. 7156 Operands.push_back( 7157 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7158 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7159 } 7160 } 7161 } 7162 } 7163 7164 } 7165 7166 //===----------------------------------------------------------------------===// 7167 // Hexagon ABI Implementation 7168 //===----------------------------------------------------------------------===// 7169 7170 namespace { 7171 7172 class HexagonABIInfo : public ABIInfo { 7173 7174 7175 public: 7176 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7177 7178 private: 7179 7180 ABIArgInfo classifyReturnType(QualType RetTy) const; 7181 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7182 7183 void computeInfo(CGFunctionInfo &FI) const override; 7184 7185 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7186 QualType Ty) const override; 7187 }; 7188 7189 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7190 public: 7191 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7192 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7193 7194 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7195 return 29; 7196 } 7197 }; 7198 7199 } 7200 7201 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7202 if (!getCXXABI().classifyReturnType(FI)) 7203 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7204 for (auto &I : FI.arguments()) 7205 I.info = classifyArgumentType(I.type); 7206 } 7207 7208 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7209 if (!isAggregateTypeForABI(Ty)) { 7210 // Treat an enum type as its underlying type. 7211 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7212 Ty = EnumTy->getDecl()->getIntegerType(); 7213 7214 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7215 : ABIArgInfo::getDirect()); 7216 } 7217 7218 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7219 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7220 7221 // Ignore empty records. 7222 if (isEmptyRecord(getContext(), Ty, true)) 7223 return ABIArgInfo::getIgnore(); 7224 7225 uint64_t Size = getContext().getTypeSize(Ty); 7226 if (Size > 64) 7227 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7228 // Pass in the smallest viable integer type. 7229 else if (Size > 32) 7230 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7231 else if (Size > 16) 7232 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7233 else if (Size > 8) 7234 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7235 else 7236 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7237 } 7238 7239 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7240 if (RetTy->isVoidType()) 7241 return ABIArgInfo::getIgnore(); 7242 7243 // Large vector types should be returned via memory. 7244 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7245 return getNaturalAlignIndirect(RetTy); 7246 7247 if (!isAggregateTypeForABI(RetTy)) { 7248 // Treat an enum type as its underlying type. 7249 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7250 RetTy = EnumTy->getDecl()->getIntegerType(); 7251 7252 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7253 : ABIArgInfo::getDirect()); 7254 } 7255 7256 if (isEmptyRecord(getContext(), RetTy, true)) 7257 return ABIArgInfo::getIgnore(); 7258 7259 // Aggregates <= 8 bytes are returned in r0; other aggregates 7260 // are returned indirectly. 7261 uint64_t Size = getContext().getTypeSize(RetTy); 7262 if (Size <= 64) { 7263 // Return in the smallest viable integer type. 7264 if (Size <= 8) 7265 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7266 if (Size <= 16) 7267 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7268 if (Size <= 32) 7269 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7270 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7271 } 7272 7273 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7274 } 7275 7276 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7277 QualType Ty) const { 7278 // FIXME: Someone needs to audit that this handle alignment correctly. 7279 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7280 getContext().getTypeInfoInChars(Ty), 7281 CharUnits::fromQuantity(4), 7282 /*AllowHigherAlign*/ true); 7283 } 7284 7285 //===----------------------------------------------------------------------===// 7286 // Lanai ABI Implementation 7287 //===----------------------------------------------------------------------===// 7288 7289 namespace { 7290 class LanaiABIInfo : public DefaultABIInfo { 7291 public: 7292 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7293 7294 bool shouldUseInReg(QualType Ty, CCState &State) const; 7295 7296 void computeInfo(CGFunctionInfo &FI) const override { 7297 CCState State(FI.getCallingConvention()); 7298 // Lanai uses 4 registers to pass arguments unless the function has the 7299 // regparm attribute set. 7300 if (FI.getHasRegParm()) { 7301 State.FreeRegs = FI.getRegParm(); 7302 } else { 7303 State.FreeRegs = 4; 7304 } 7305 7306 if (!getCXXABI().classifyReturnType(FI)) 7307 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7308 for (auto &I : FI.arguments()) 7309 I.info = classifyArgumentType(I.type, State); 7310 } 7311 7312 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7313 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7314 }; 7315 } // end anonymous namespace 7316 7317 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7318 unsigned Size = getContext().getTypeSize(Ty); 7319 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7320 7321 if (SizeInRegs == 0) 7322 return false; 7323 7324 if (SizeInRegs > State.FreeRegs) { 7325 State.FreeRegs = 0; 7326 return false; 7327 } 7328 7329 State.FreeRegs -= SizeInRegs; 7330 7331 return true; 7332 } 7333 7334 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7335 CCState &State) const { 7336 if (!ByVal) { 7337 if (State.FreeRegs) { 7338 --State.FreeRegs; // Non-byval indirects just use one pointer. 7339 return getNaturalAlignIndirectInReg(Ty); 7340 } 7341 return getNaturalAlignIndirect(Ty, false); 7342 } 7343 7344 // Compute the byval alignment. 7345 const unsigned MinABIStackAlignInBytes = 4; 7346 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7347 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7348 /*Realign=*/TypeAlign > 7349 MinABIStackAlignInBytes); 7350 } 7351 7352 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7353 CCState &State) const { 7354 // Check with the C++ ABI first. 7355 const RecordType *RT = Ty->getAs<RecordType>(); 7356 if (RT) { 7357 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7358 if (RAA == CGCXXABI::RAA_Indirect) { 7359 return getIndirectResult(Ty, /*ByVal=*/false, State); 7360 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7361 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7362 } 7363 } 7364 7365 if (isAggregateTypeForABI(Ty)) { 7366 // Structures with flexible arrays are always indirect. 7367 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7368 return getIndirectResult(Ty, /*ByVal=*/true, State); 7369 7370 // Ignore empty structs/unions. 7371 if (isEmptyRecord(getContext(), Ty, true)) 7372 return ABIArgInfo::getIgnore(); 7373 7374 llvm::LLVMContext &LLVMContext = getVMContext(); 7375 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7376 if (SizeInRegs <= State.FreeRegs) { 7377 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7378 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7379 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7380 State.FreeRegs -= SizeInRegs; 7381 return ABIArgInfo::getDirectInReg(Result); 7382 } else { 7383 State.FreeRegs = 0; 7384 } 7385 return getIndirectResult(Ty, true, State); 7386 } 7387 7388 // Treat an enum type as its underlying type. 7389 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7390 Ty = EnumTy->getDecl()->getIntegerType(); 7391 7392 bool InReg = shouldUseInReg(Ty, State); 7393 if (Ty->isPromotableIntegerType()) { 7394 if (InReg) 7395 return ABIArgInfo::getDirectInReg(); 7396 return ABIArgInfo::getExtend(Ty); 7397 } 7398 if (InReg) 7399 return ABIArgInfo::getDirectInReg(); 7400 return ABIArgInfo::getDirect(); 7401 } 7402 7403 namespace { 7404 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7405 public: 7406 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7407 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7408 }; 7409 } 7410 7411 //===----------------------------------------------------------------------===// 7412 // AMDGPU ABI Implementation 7413 //===----------------------------------------------------------------------===// 7414 7415 namespace { 7416 7417 class AMDGPUABIInfo final : public DefaultABIInfo { 7418 private: 7419 static const unsigned MaxNumRegsForArgsRet = 16; 7420 7421 unsigned numRegsForType(QualType Ty) const; 7422 7423 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7424 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7425 uint64_t Members) const override; 7426 7427 public: 7428 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7429 DefaultABIInfo(CGT) {} 7430 7431 ABIArgInfo classifyReturnType(QualType RetTy) const; 7432 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7433 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7434 7435 void computeInfo(CGFunctionInfo &FI) const override; 7436 }; 7437 7438 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7439 return true; 7440 } 7441 7442 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7443 const Type *Base, uint64_t Members) const { 7444 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7445 7446 // Homogeneous Aggregates may occupy at most 16 registers. 7447 return Members * NumRegs <= MaxNumRegsForArgsRet; 7448 } 7449 7450 /// Estimate number of registers the type will use when passed in registers. 7451 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7452 unsigned NumRegs = 0; 7453 7454 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7455 // Compute from the number of elements. The reported size is based on the 7456 // in-memory size, which includes the padding 4th element for 3-vectors. 7457 QualType EltTy = VT->getElementType(); 7458 unsigned EltSize = getContext().getTypeSize(EltTy); 7459 7460 // 16-bit element vectors should be passed as packed. 7461 if (EltSize == 16) 7462 return (VT->getNumElements() + 1) / 2; 7463 7464 unsigned EltNumRegs = (EltSize + 31) / 32; 7465 return EltNumRegs * VT->getNumElements(); 7466 } 7467 7468 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7469 const RecordDecl *RD = RT->getDecl(); 7470 assert(!RD->hasFlexibleArrayMember()); 7471 7472 for (const FieldDecl *Field : RD->fields()) { 7473 QualType FieldTy = Field->getType(); 7474 NumRegs += numRegsForType(FieldTy); 7475 } 7476 7477 return NumRegs; 7478 } 7479 7480 return (getContext().getTypeSize(Ty) + 31) / 32; 7481 } 7482 7483 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7484 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7485 7486 if (!getCXXABI().classifyReturnType(FI)) 7487 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7488 7489 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7490 for (auto &Arg : FI.arguments()) { 7491 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7492 Arg.info = classifyKernelArgumentType(Arg.type); 7493 } else { 7494 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7495 } 7496 } 7497 } 7498 7499 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7500 if (isAggregateTypeForABI(RetTy)) { 7501 // Records with non-trivial destructors/copy-constructors should not be 7502 // returned by value. 7503 if (!getRecordArgABI(RetTy, getCXXABI())) { 7504 // Ignore empty structs/unions. 7505 if (isEmptyRecord(getContext(), RetTy, true)) 7506 return ABIArgInfo::getIgnore(); 7507 7508 // Lower single-element structs to just return a regular value. 7509 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7510 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7511 7512 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7513 const RecordDecl *RD = RT->getDecl(); 7514 if (RD->hasFlexibleArrayMember()) 7515 return DefaultABIInfo::classifyReturnType(RetTy); 7516 } 7517 7518 // Pack aggregates <= 4 bytes into single VGPR or pair. 7519 uint64_t Size = getContext().getTypeSize(RetTy); 7520 if (Size <= 16) 7521 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7522 7523 if (Size <= 32) 7524 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7525 7526 if (Size <= 64) { 7527 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7528 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7529 } 7530 7531 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7532 return ABIArgInfo::getDirect(); 7533 } 7534 } 7535 7536 // Otherwise just do the default thing. 7537 return DefaultABIInfo::classifyReturnType(RetTy); 7538 } 7539 7540 /// For kernels all parameters are really passed in a special buffer. It doesn't 7541 /// make sense to pass anything byval, so everything must be direct. 7542 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7543 Ty = useFirstFieldIfTransparentUnion(Ty); 7544 7545 // TODO: Can we omit empty structs? 7546 7547 // Coerce single element structs to its element. 7548 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7549 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7550 7551 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7552 // individual elements, which confuses the Clover OpenCL backend; therefore we 7553 // have to set it to false here. Other args of getDirect() are just defaults. 7554 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7555 } 7556 7557 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7558 unsigned &NumRegsLeft) const { 7559 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7560 7561 Ty = useFirstFieldIfTransparentUnion(Ty); 7562 7563 if (isAggregateTypeForABI(Ty)) { 7564 // Records with non-trivial destructors/copy-constructors should not be 7565 // passed by value. 7566 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7567 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7568 7569 // Ignore empty structs/unions. 7570 if (isEmptyRecord(getContext(), Ty, true)) 7571 return ABIArgInfo::getIgnore(); 7572 7573 // Lower single-element structs to just pass a regular value. TODO: We 7574 // could do reasonable-size multiple-element structs too, using getExpand(), 7575 // though watch out for things like bitfields. 7576 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7577 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7578 7579 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7580 const RecordDecl *RD = RT->getDecl(); 7581 if (RD->hasFlexibleArrayMember()) 7582 return DefaultABIInfo::classifyArgumentType(Ty); 7583 } 7584 7585 // Pack aggregates <= 8 bytes into single VGPR or pair. 7586 uint64_t Size = getContext().getTypeSize(Ty); 7587 if (Size <= 64) { 7588 unsigned NumRegs = (Size + 31) / 32; 7589 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7590 7591 if (Size <= 16) 7592 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7593 7594 if (Size <= 32) 7595 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7596 7597 // XXX: Should this be i64 instead, and should the limit increase? 7598 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7599 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7600 } 7601 7602 if (NumRegsLeft > 0) { 7603 unsigned NumRegs = numRegsForType(Ty); 7604 if (NumRegsLeft >= NumRegs) { 7605 NumRegsLeft -= NumRegs; 7606 return ABIArgInfo::getDirect(); 7607 } 7608 } 7609 } 7610 7611 // Otherwise just do the default thing. 7612 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7613 if (!ArgInfo.isIndirect()) { 7614 unsigned NumRegs = numRegsForType(Ty); 7615 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7616 } 7617 7618 return ArgInfo; 7619 } 7620 7621 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7622 public: 7623 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7624 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7625 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7626 CodeGen::CodeGenModule &M) const override; 7627 unsigned getOpenCLKernelCallingConv() const override; 7628 7629 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7630 llvm::PointerType *T, QualType QT) const override; 7631 7632 LangAS getASTAllocaAddressSpace() const override { 7633 return getLangASFromTargetAS( 7634 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7635 } 7636 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7637 const VarDecl *D) const override; 7638 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7639 llvm::LLVMContext &C) const override; 7640 llvm::Function * 7641 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7642 llvm::Function *BlockInvokeFunc, 7643 llvm::Value *BlockLiteral) const override; 7644 }; 7645 } 7646 7647 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7648 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7649 if (GV->isDeclaration()) 7650 return; 7651 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7652 if (!FD) 7653 return; 7654 7655 llvm::Function *F = cast<llvm::Function>(GV); 7656 7657 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7658 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7659 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7660 if (ReqdWGS || FlatWGS) { 7661 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7662 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7663 if (ReqdWGS && Min == 0 && Max == 0) 7664 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7665 7666 if (Min != 0) { 7667 assert(Min <= Max && "Min must be less than or equal Max"); 7668 7669 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7670 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7671 } else 7672 assert(Max == 0 && "Max must be zero"); 7673 } 7674 7675 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7676 unsigned Min = Attr->getMin(); 7677 unsigned Max = Attr->getMax(); 7678 7679 if (Min != 0) { 7680 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7681 7682 std::string AttrVal = llvm::utostr(Min); 7683 if (Max != 0) 7684 AttrVal = AttrVal + "," + llvm::utostr(Max); 7685 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7686 } else 7687 assert(Max == 0 && "Max must be zero"); 7688 } 7689 7690 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7691 unsigned NumSGPR = Attr->getNumSGPR(); 7692 7693 if (NumSGPR != 0) 7694 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7695 } 7696 7697 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7698 uint32_t NumVGPR = Attr->getNumVGPR(); 7699 7700 if (NumVGPR != 0) 7701 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7702 } 7703 } 7704 7705 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7706 return llvm::CallingConv::AMDGPU_KERNEL; 7707 } 7708 7709 // Currently LLVM assumes null pointers always have value 0, 7710 // which results in incorrectly transformed IR. Therefore, instead of 7711 // emitting null pointers in private and local address spaces, a null 7712 // pointer in generic address space is emitted which is casted to a 7713 // pointer in local or private address space. 7714 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7715 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7716 QualType QT) const { 7717 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7718 return llvm::ConstantPointerNull::get(PT); 7719 7720 auto &Ctx = CGM.getContext(); 7721 auto NPT = llvm::PointerType::get(PT->getElementType(), 7722 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7723 return llvm::ConstantExpr::getAddrSpaceCast( 7724 llvm::ConstantPointerNull::get(NPT), PT); 7725 } 7726 7727 LangAS 7728 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7729 const VarDecl *D) const { 7730 assert(!CGM.getLangOpts().OpenCL && 7731 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7732 "Address space agnostic languages only"); 7733 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7734 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7735 if (!D) 7736 return DefaultGlobalAS; 7737 7738 LangAS AddrSpace = D->getType().getAddressSpace(); 7739 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7740 if (AddrSpace != LangAS::Default) 7741 return AddrSpace; 7742 7743 if (CGM.isTypeConstant(D->getType(), false)) { 7744 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7745 return ConstAS.getValue(); 7746 } 7747 return DefaultGlobalAS; 7748 } 7749 7750 llvm::SyncScope::ID 7751 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7752 llvm::LLVMContext &C) const { 7753 StringRef Name; 7754 switch (S) { 7755 case SyncScope::OpenCLWorkGroup: 7756 Name = "workgroup"; 7757 break; 7758 case SyncScope::OpenCLDevice: 7759 Name = "agent"; 7760 break; 7761 case SyncScope::OpenCLAllSVMDevices: 7762 Name = ""; 7763 break; 7764 case SyncScope::OpenCLSubGroup: 7765 Name = "subgroup"; 7766 } 7767 return C.getOrInsertSyncScopeID(Name); 7768 } 7769 7770 //===----------------------------------------------------------------------===// 7771 // SPARC v8 ABI Implementation. 7772 // Based on the SPARC Compliance Definition version 2.4.1. 7773 // 7774 // Ensures that complex values are passed in registers. 7775 // 7776 namespace { 7777 class SparcV8ABIInfo : public DefaultABIInfo { 7778 public: 7779 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7780 7781 private: 7782 ABIArgInfo classifyReturnType(QualType RetTy) const; 7783 void computeInfo(CGFunctionInfo &FI) const override; 7784 }; 7785 } // end anonymous namespace 7786 7787 7788 ABIArgInfo 7789 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7790 if (Ty->isAnyComplexType()) { 7791 return ABIArgInfo::getDirect(); 7792 } 7793 else { 7794 return DefaultABIInfo::classifyReturnType(Ty); 7795 } 7796 } 7797 7798 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7799 7800 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7801 for (auto &Arg : FI.arguments()) 7802 Arg.info = classifyArgumentType(Arg.type); 7803 } 7804 7805 namespace { 7806 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7807 public: 7808 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7809 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7810 }; 7811 } // end anonymous namespace 7812 7813 //===----------------------------------------------------------------------===// 7814 // SPARC v9 ABI Implementation. 7815 // Based on the SPARC Compliance Definition version 2.4.1. 7816 // 7817 // Function arguments a mapped to a nominal "parameter array" and promoted to 7818 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7819 // the array, structs larger than 16 bytes are passed indirectly. 7820 // 7821 // One case requires special care: 7822 // 7823 // struct mixed { 7824 // int i; 7825 // float f; 7826 // }; 7827 // 7828 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7829 // parameter array, but the int is passed in an integer register, and the float 7830 // is passed in a floating point register. This is represented as two arguments 7831 // with the LLVM IR inreg attribute: 7832 // 7833 // declare void f(i32 inreg %i, float inreg %f) 7834 // 7835 // The code generator will only allocate 4 bytes from the parameter array for 7836 // the inreg arguments. All other arguments are allocated a multiple of 8 7837 // bytes. 7838 // 7839 namespace { 7840 class SparcV9ABIInfo : public ABIInfo { 7841 public: 7842 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7843 7844 private: 7845 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7846 void computeInfo(CGFunctionInfo &FI) const override; 7847 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7848 QualType Ty) const override; 7849 7850 // Coercion type builder for structs passed in registers. The coercion type 7851 // serves two purposes: 7852 // 7853 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7854 // in registers. 7855 // 2. Expose aligned floating point elements as first-level elements, so the 7856 // code generator knows to pass them in floating point registers. 7857 // 7858 // We also compute the InReg flag which indicates that the struct contains 7859 // aligned 32-bit floats. 7860 // 7861 struct CoerceBuilder { 7862 llvm::LLVMContext &Context; 7863 const llvm::DataLayout &DL; 7864 SmallVector<llvm::Type*, 8> Elems; 7865 uint64_t Size; 7866 bool InReg; 7867 7868 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7869 : Context(c), DL(dl), Size(0), InReg(false) {} 7870 7871 // Pad Elems with integers until Size is ToSize. 7872 void pad(uint64_t ToSize) { 7873 assert(ToSize >= Size && "Cannot remove elements"); 7874 if (ToSize == Size) 7875 return; 7876 7877 // Finish the current 64-bit word. 7878 uint64_t Aligned = llvm::alignTo(Size, 64); 7879 if (Aligned > Size && Aligned <= ToSize) { 7880 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7881 Size = Aligned; 7882 } 7883 7884 // Add whole 64-bit words. 7885 while (Size + 64 <= ToSize) { 7886 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7887 Size += 64; 7888 } 7889 7890 // Final in-word padding. 7891 if (Size < ToSize) { 7892 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7893 Size = ToSize; 7894 } 7895 } 7896 7897 // Add a floating point element at Offset. 7898 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7899 // Unaligned floats are treated as integers. 7900 if (Offset % Bits) 7901 return; 7902 // The InReg flag is only required if there are any floats < 64 bits. 7903 if (Bits < 64) 7904 InReg = true; 7905 pad(Offset); 7906 Elems.push_back(Ty); 7907 Size = Offset + Bits; 7908 } 7909 7910 // Add a struct type to the coercion type, starting at Offset (in bits). 7911 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7912 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7913 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7914 llvm::Type *ElemTy = StrTy->getElementType(i); 7915 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7916 switch (ElemTy->getTypeID()) { 7917 case llvm::Type::StructTyID: 7918 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7919 break; 7920 case llvm::Type::FloatTyID: 7921 addFloat(ElemOffset, ElemTy, 32); 7922 break; 7923 case llvm::Type::DoubleTyID: 7924 addFloat(ElemOffset, ElemTy, 64); 7925 break; 7926 case llvm::Type::FP128TyID: 7927 addFloat(ElemOffset, ElemTy, 128); 7928 break; 7929 case llvm::Type::PointerTyID: 7930 if (ElemOffset % 64 == 0) { 7931 pad(ElemOffset); 7932 Elems.push_back(ElemTy); 7933 Size += 64; 7934 } 7935 break; 7936 default: 7937 break; 7938 } 7939 } 7940 } 7941 7942 // Check if Ty is a usable substitute for the coercion type. 7943 bool isUsableType(llvm::StructType *Ty) const { 7944 return llvm::makeArrayRef(Elems) == Ty->elements(); 7945 } 7946 7947 // Get the coercion type as a literal struct type. 7948 llvm::Type *getType() const { 7949 if (Elems.size() == 1) 7950 return Elems.front(); 7951 else 7952 return llvm::StructType::get(Context, Elems); 7953 } 7954 }; 7955 }; 7956 } // end anonymous namespace 7957 7958 ABIArgInfo 7959 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7960 if (Ty->isVoidType()) 7961 return ABIArgInfo::getIgnore(); 7962 7963 uint64_t Size = getContext().getTypeSize(Ty); 7964 7965 // Anything too big to fit in registers is passed with an explicit indirect 7966 // pointer / sret pointer. 7967 if (Size > SizeLimit) 7968 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7969 7970 // Treat an enum type as its underlying type. 7971 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7972 Ty = EnumTy->getDecl()->getIntegerType(); 7973 7974 // Integer types smaller than a register are extended. 7975 if (Size < 64 && Ty->isIntegerType()) 7976 return ABIArgInfo::getExtend(Ty); 7977 7978 // Other non-aggregates go in registers. 7979 if (!isAggregateTypeForABI(Ty)) 7980 return ABIArgInfo::getDirect(); 7981 7982 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7983 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7984 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7985 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7986 7987 // This is a small aggregate type that should be passed in registers. 7988 // Build a coercion type from the LLVM struct type. 7989 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7990 if (!StrTy) 7991 return ABIArgInfo::getDirect(); 7992 7993 CoerceBuilder CB(getVMContext(), getDataLayout()); 7994 CB.addStruct(0, StrTy); 7995 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7996 7997 // Try to use the original type for coercion. 7998 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7999 8000 if (CB.InReg) 8001 return ABIArgInfo::getDirectInReg(CoerceTy); 8002 else 8003 return ABIArgInfo::getDirect(CoerceTy); 8004 } 8005 8006 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8007 QualType Ty) const { 8008 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8009 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8010 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8011 AI.setCoerceToType(ArgTy); 8012 8013 CharUnits SlotSize = CharUnits::fromQuantity(8); 8014 8015 CGBuilderTy &Builder = CGF.Builder; 8016 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8017 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8018 8019 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8020 8021 Address ArgAddr = Address::invalid(); 8022 CharUnits Stride; 8023 switch (AI.getKind()) { 8024 case ABIArgInfo::Expand: 8025 case ABIArgInfo::CoerceAndExpand: 8026 case ABIArgInfo::InAlloca: 8027 llvm_unreachable("Unsupported ABI kind for va_arg"); 8028 8029 case ABIArgInfo::Extend: { 8030 Stride = SlotSize; 8031 CharUnits Offset = SlotSize - TypeInfo.first; 8032 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8033 break; 8034 } 8035 8036 case ABIArgInfo::Direct: { 8037 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8038 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8039 ArgAddr = Addr; 8040 break; 8041 } 8042 8043 case ABIArgInfo::Indirect: 8044 Stride = SlotSize; 8045 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8046 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8047 TypeInfo.second); 8048 break; 8049 8050 case ABIArgInfo::Ignore: 8051 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8052 } 8053 8054 // Update VAList. 8055 llvm::Value *NextPtr = 8056 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8057 Builder.CreateStore(NextPtr, VAListAddr); 8058 8059 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8060 } 8061 8062 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8063 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8064 for (auto &I : FI.arguments()) 8065 I.info = classifyType(I.type, 16 * 8); 8066 } 8067 8068 namespace { 8069 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8070 public: 8071 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8072 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8073 8074 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8075 return 14; 8076 } 8077 8078 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8079 llvm::Value *Address) const override; 8080 }; 8081 } // end anonymous namespace 8082 8083 bool 8084 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8085 llvm::Value *Address) const { 8086 // This is calculated from the LLVM and GCC tables and verified 8087 // against gcc output. AFAIK all ABIs use the same encoding. 8088 8089 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8090 8091 llvm::IntegerType *i8 = CGF.Int8Ty; 8092 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8093 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8094 8095 // 0-31: the 8-byte general-purpose registers 8096 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8097 8098 // 32-63: f0-31, the 4-byte floating-point registers 8099 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8100 8101 // Y = 64 8102 // PSR = 65 8103 // WIM = 66 8104 // TBR = 67 8105 // PC = 68 8106 // NPC = 69 8107 // FSR = 70 8108 // CSR = 71 8109 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8110 8111 // 72-87: d0-15, the 8-byte floating-point registers 8112 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8113 8114 return false; 8115 } 8116 8117 8118 //===----------------------------------------------------------------------===// 8119 // XCore ABI Implementation 8120 //===----------------------------------------------------------------------===// 8121 8122 namespace { 8123 8124 /// A SmallStringEnc instance is used to build up the TypeString by passing 8125 /// it by reference between functions that append to it. 8126 typedef llvm::SmallString<128> SmallStringEnc; 8127 8128 /// TypeStringCache caches the meta encodings of Types. 8129 /// 8130 /// The reason for caching TypeStrings is two fold: 8131 /// 1. To cache a type's encoding for later uses; 8132 /// 2. As a means to break recursive member type inclusion. 8133 /// 8134 /// A cache Entry can have a Status of: 8135 /// NonRecursive: The type encoding is not recursive; 8136 /// Recursive: The type encoding is recursive; 8137 /// Incomplete: An incomplete TypeString; 8138 /// IncompleteUsed: An incomplete TypeString that has been used in a 8139 /// Recursive type encoding. 8140 /// 8141 /// A NonRecursive entry will have all of its sub-members expanded as fully 8142 /// as possible. Whilst it may contain types which are recursive, the type 8143 /// itself is not recursive and thus its encoding may be safely used whenever 8144 /// the type is encountered. 8145 /// 8146 /// A Recursive entry will have all of its sub-members expanded as fully as 8147 /// possible. The type itself is recursive and it may contain other types which 8148 /// are recursive. The Recursive encoding must not be used during the expansion 8149 /// of a recursive type's recursive branch. For simplicity the code uses 8150 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8151 /// 8152 /// An Incomplete entry is always a RecordType and only encodes its 8153 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8154 /// are placed into the cache during type expansion as a means to identify and 8155 /// handle recursive inclusion of types as sub-members. If there is recursion 8156 /// the entry becomes IncompleteUsed. 8157 /// 8158 /// During the expansion of a RecordType's members: 8159 /// 8160 /// If the cache contains a NonRecursive encoding for the member type, the 8161 /// cached encoding is used; 8162 /// 8163 /// If the cache contains a Recursive encoding for the member type, the 8164 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8165 /// 8166 /// If the member is a RecordType, an Incomplete encoding is placed into the 8167 /// cache to break potential recursive inclusion of itself as a sub-member; 8168 /// 8169 /// Once a member RecordType has been expanded, its temporary incomplete 8170 /// entry is removed from the cache. If a Recursive encoding was swapped out 8171 /// it is swapped back in; 8172 /// 8173 /// If an incomplete entry is used to expand a sub-member, the incomplete 8174 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8175 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8176 /// 8177 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8178 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8179 /// Else the member is part of a recursive type and thus the recursion has 8180 /// been exited too soon for the encoding to be correct for the member. 8181 /// 8182 class TypeStringCache { 8183 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8184 struct Entry { 8185 std::string Str; // The encoded TypeString for the type. 8186 enum Status State; // Information about the encoding in 'Str'. 8187 std::string Swapped; // A temporary place holder for a Recursive encoding 8188 // during the expansion of RecordType's members. 8189 }; 8190 std::map<const IdentifierInfo *, struct Entry> Map; 8191 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8192 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8193 public: 8194 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8195 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8196 bool removeIncomplete(const IdentifierInfo *ID); 8197 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8198 bool IsRecursive); 8199 StringRef lookupStr(const IdentifierInfo *ID); 8200 }; 8201 8202 /// TypeString encodings for enum & union fields must be order. 8203 /// FieldEncoding is a helper for this ordering process. 8204 class FieldEncoding { 8205 bool HasName; 8206 std::string Enc; 8207 public: 8208 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8209 StringRef str() { return Enc; } 8210 bool operator<(const FieldEncoding &rhs) const { 8211 if (HasName != rhs.HasName) return HasName; 8212 return Enc < rhs.Enc; 8213 } 8214 }; 8215 8216 class XCoreABIInfo : public DefaultABIInfo { 8217 public: 8218 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8219 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8220 QualType Ty) const override; 8221 }; 8222 8223 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8224 mutable TypeStringCache TSC; 8225 public: 8226 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8227 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8228 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8229 CodeGen::CodeGenModule &M) const override; 8230 }; 8231 8232 } // End anonymous namespace. 8233 8234 // TODO: this implementation is likely now redundant with the default 8235 // EmitVAArg. 8236 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8237 QualType Ty) const { 8238 CGBuilderTy &Builder = CGF.Builder; 8239 8240 // Get the VAList. 8241 CharUnits SlotSize = CharUnits::fromQuantity(4); 8242 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8243 8244 // Handle the argument. 8245 ABIArgInfo AI = classifyArgumentType(Ty); 8246 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8247 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8248 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8249 AI.setCoerceToType(ArgTy); 8250 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8251 8252 Address Val = Address::invalid(); 8253 CharUnits ArgSize = CharUnits::Zero(); 8254 switch (AI.getKind()) { 8255 case ABIArgInfo::Expand: 8256 case ABIArgInfo::CoerceAndExpand: 8257 case ABIArgInfo::InAlloca: 8258 llvm_unreachable("Unsupported ABI kind for va_arg"); 8259 case ABIArgInfo::Ignore: 8260 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8261 ArgSize = CharUnits::Zero(); 8262 break; 8263 case ABIArgInfo::Extend: 8264 case ABIArgInfo::Direct: 8265 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8266 ArgSize = CharUnits::fromQuantity( 8267 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8268 ArgSize = ArgSize.alignTo(SlotSize); 8269 break; 8270 case ABIArgInfo::Indirect: 8271 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8272 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8273 ArgSize = SlotSize; 8274 break; 8275 } 8276 8277 // Increment the VAList. 8278 if (!ArgSize.isZero()) { 8279 llvm::Value *APN = 8280 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8281 Builder.CreateStore(APN, VAListAddr); 8282 } 8283 8284 return Val; 8285 } 8286 8287 /// During the expansion of a RecordType, an incomplete TypeString is placed 8288 /// into the cache as a means to identify and break recursion. 8289 /// If there is a Recursive encoding in the cache, it is swapped out and will 8290 /// be reinserted by removeIncomplete(). 8291 /// All other types of encoding should have been used rather than arriving here. 8292 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8293 std::string StubEnc) { 8294 if (!ID) 8295 return; 8296 Entry &E = Map[ID]; 8297 assert( (E.Str.empty() || E.State == Recursive) && 8298 "Incorrectly use of addIncomplete"); 8299 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8300 E.Swapped.swap(E.Str); // swap out the Recursive 8301 E.Str.swap(StubEnc); 8302 E.State = Incomplete; 8303 ++IncompleteCount; 8304 } 8305 8306 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8307 /// must be removed from the cache. 8308 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8309 /// Returns true if the RecordType was defined recursively. 8310 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8311 if (!ID) 8312 return false; 8313 auto I = Map.find(ID); 8314 assert(I != Map.end() && "Entry not present"); 8315 Entry &E = I->second; 8316 assert( (E.State == Incomplete || 8317 E.State == IncompleteUsed) && 8318 "Entry must be an incomplete type"); 8319 bool IsRecursive = false; 8320 if (E.State == IncompleteUsed) { 8321 // We made use of our Incomplete encoding, thus we are recursive. 8322 IsRecursive = true; 8323 --IncompleteUsedCount; 8324 } 8325 if (E.Swapped.empty()) 8326 Map.erase(I); 8327 else { 8328 // Swap the Recursive back. 8329 E.Swapped.swap(E.Str); 8330 E.Swapped.clear(); 8331 E.State = Recursive; 8332 } 8333 --IncompleteCount; 8334 return IsRecursive; 8335 } 8336 8337 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8338 /// Recursive (viz: all sub-members were expanded as fully as possible). 8339 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8340 bool IsRecursive) { 8341 if (!ID || IncompleteUsedCount) 8342 return; // No key or it is is an incomplete sub-type so don't add. 8343 Entry &E = Map[ID]; 8344 if (IsRecursive && !E.Str.empty()) { 8345 assert(E.State==Recursive && E.Str.size() == Str.size() && 8346 "This is not the same Recursive entry"); 8347 // The parent container was not recursive after all, so we could have used 8348 // this Recursive sub-member entry after all, but we assumed the worse when 8349 // we started viz: IncompleteCount!=0. 8350 return; 8351 } 8352 assert(E.Str.empty() && "Entry already present"); 8353 E.Str = Str.str(); 8354 E.State = IsRecursive? Recursive : NonRecursive; 8355 } 8356 8357 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8358 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8359 /// encoding is Recursive, return an empty StringRef. 8360 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8361 if (!ID) 8362 return StringRef(); // We have no key. 8363 auto I = Map.find(ID); 8364 if (I == Map.end()) 8365 return StringRef(); // We have no encoding. 8366 Entry &E = I->second; 8367 if (E.State == Recursive && IncompleteCount) 8368 return StringRef(); // We don't use Recursive encodings for member types. 8369 8370 if (E.State == Incomplete) { 8371 // The incomplete type is being used to break out of recursion. 8372 E.State = IncompleteUsed; 8373 ++IncompleteUsedCount; 8374 } 8375 return E.Str; 8376 } 8377 8378 /// The XCore ABI includes a type information section that communicates symbol 8379 /// type information to the linker. The linker uses this information to verify 8380 /// safety/correctness of things such as array bound and pointers et al. 8381 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8382 /// This type information (TypeString) is emitted into meta data for all global 8383 /// symbols: definitions, declarations, functions & variables. 8384 /// 8385 /// The TypeString carries type, qualifier, name, size & value details. 8386 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8387 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8388 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8389 /// 8390 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8391 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8392 8393 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8394 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8395 CodeGen::CodeGenModule &CGM) const { 8396 SmallStringEnc Enc; 8397 if (getTypeString(Enc, D, CGM, TSC)) { 8398 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8399 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8400 llvm::MDString::get(Ctx, Enc.str())}; 8401 llvm::NamedMDNode *MD = 8402 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8403 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8404 } 8405 } 8406 8407 //===----------------------------------------------------------------------===// 8408 // SPIR ABI Implementation 8409 //===----------------------------------------------------------------------===// 8410 8411 namespace { 8412 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8413 public: 8414 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8415 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8416 unsigned getOpenCLKernelCallingConv() const override; 8417 }; 8418 8419 } // End anonymous namespace. 8420 8421 namespace clang { 8422 namespace CodeGen { 8423 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8424 DefaultABIInfo SPIRABI(CGM.getTypes()); 8425 SPIRABI.computeInfo(FI); 8426 } 8427 } 8428 } 8429 8430 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8431 return llvm::CallingConv::SPIR_KERNEL; 8432 } 8433 8434 static bool appendType(SmallStringEnc &Enc, QualType QType, 8435 const CodeGen::CodeGenModule &CGM, 8436 TypeStringCache &TSC); 8437 8438 /// Helper function for appendRecordType(). 8439 /// Builds a SmallVector containing the encoded field types in declaration 8440 /// order. 8441 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8442 const RecordDecl *RD, 8443 const CodeGen::CodeGenModule &CGM, 8444 TypeStringCache &TSC) { 8445 for (const auto *Field : RD->fields()) { 8446 SmallStringEnc Enc; 8447 Enc += "m("; 8448 Enc += Field->getName(); 8449 Enc += "){"; 8450 if (Field->isBitField()) { 8451 Enc += "b("; 8452 llvm::raw_svector_ostream OS(Enc); 8453 OS << Field->getBitWidthValue(CGM.getContext()); 8454 Enc += ':'; 8455 } 8456 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8457 return false; 8458 if (Field->isBitField()) 8459 Enc += ')'; 8460 Enc += '}'; 8461 FE.emplace_back(!Field->getName().empty(), Enc); 8462 } 8463 return true; 8464 } 8465 8466 /// Appends structure and union types to Enc and adds encoding to cache. 8467 /// Recursively calls appendType (via extractFieldType) for each field. 8468 /// Union types have their fields ordered according to the ABI. 8469 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8470 const CodeGen::CodeGenModule &CGM, 8471 TypeStringCache &TSC, const IdentifierInfo *ID) { 8472 // Append the cached TypeString if we have one. 8473 StringRef TypeString = TSC.lookupStr(ID); 8474 if (!TypeString.empty()) { 8475 Enc += TypeString; 8476 return true; 8477 } 8478 8479 // Start to emit an incomplete TypeString. 8480 size_t Start = Enc.size(); 8481 Enc += (RT->isUnionType()? 'u' : 's'); 8482 Enc += '('; 8483 if (ID) 8484 Enc += ID->getName(); 8485 Enc += "){"; 8486 8487 // We collect all encoded fields and order as necessary. 8488 bool IsRecursive = false; 8489 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8490 if (RD && !RD->field_empty()) { 8491 // An incomplete TypeString stub is placed in the cache for this RecordType 8492 // so that recursive calls to this RecordType will use it whilst building a 8493 // complete TypeString for this RecordType. 8494 SmallVector<FieldEncoding, 16> FE; 8495 std::string StubEnc(Enc.substr(Start).str()); 8496 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8497 TSC.addIncomplete(ID, std::move(StubEnc)); 8498 if (!extractFieldType(FE, RD, CGM, TSC)) { 8499 (void) TSC.removeIncomplete(ID); 8500 return false; 8501 } 8502 IsRecursive = TSC.removeIncomplete(ID); 8503 // The ABI requires unions to be sorted but not structures. 8504 // See FieldEncoding::operator< for sort algorithm. 8505 if (RT->isUnionType()) 8506 std::sort(FE.begin(), FE.end()); 8507 // We can now complete the TypeString. 8508 unsigned E = FE.size(); 8509 for (unsigned I = 0; I != E; ++I) { 8510 if (I) 8511 Enc += ','; 8512 Enc += FE[I].str(); 8513 } 8514 } 8515 Enc += '}'; 8516 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8517 return true; 8518 } 8519 8520 /// Appends enum types to Enc and adds the encoding to the cache. 8521 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8522 TypeStringCache &TSC, 8523 const IdentifierInfo *ID) { 8524 // Append the cached TypeString if we have one. 8525 StringRef TypeString = TSC.lookupStr(ID); 8526 if (!TypeString.empty()) { 8527 Enc += TypeString; 8528 return true; 8529 } 8530 8531 size_t Start = Enc.size(); 8532 Enc += "e("; 8533 if (ID) 8534 Enc += ID->getName(); 8535 Enc += "){"; 8536 8537 // We collect all encoded enumerations and order them alphanumerically. 8538 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8539 SmallVector<FieldEncoding, 16> FE; 8540 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8541 ++I) { 8542 SmallStringEnc EnumEnc; 8543 EnumEnc += "m("; 8544 EnumEnc += I->getName(); 8545 EnumEnc += "){"; 8546 I->getInitVal().toString(EnumEnc); 8547 EnumEnc += '}'; 8548 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8549 } 8550 std::sort(FE.begin(), FE.end()); 8551 unsigned E = FE.size(); 8552 for (unsigned I = 0; I != E; ++I) { 8553 if (I) 8554 Enc += ','; 8555 Enc += FE[I].str(); 8556 } 8557 } 8558 Enc += '}'; 8559 TSC.addIfComplete(ID, Enc.substr(Start), false); 8560 return true; 8561 } 8562 8563 /// Appends type's qualifier to Enc. 8564 /// This is done prior to appending the type's encoding. 8565 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8566 // Qualifiers are emitted in alphabetical order. 8567 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8568 int Lookup = 0; 8569 if (QT.isConstQualified()) 8570 Lookup += 1<<0; 8571 if (QT.isRestrictQualified()) 8572 Lookup += 1<<1; 8573 if (QT.isVolatileQualified()) 8574 Lookup += 1<<2; 8575 Enc += Table[Lookup]; 8576 } 8577 8578 /// Appends built-in types to Enc. 8579 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8580 const char *EncType; 8581 switch (BT->getKind()) { 8582 case BuiltinType::Void: 8583 EncType = "0"; 8584 break; 8585 case BuiltinType::Bool: 8586 EncType = "b"; 8587 break; 8588 case BuiltinType::Char_U: 8589 EncType = "uc"; 8590 break; 8591 case BuiltinType::UChar: 8592 EncType = "uc"; 8593 break; 8594 case BuiltinType::SChar: 8595 EncType = "sc"; 8596 break; 8597 case BuiltinType::UShort: 8598 EncType = "us"; 8599 break; 8600 case BuiltinType::Short: 8601 EncType = "ss"; 8602 break; 8603 case BuiltinType::UInt: 8604 EncType = "ui"; 8605 break; 8606 case BuiltinType::Int: 8607 EncType = "si"; 8608 break; 8609 case BuiltinType::ULong: 8610 EncType = "ul"; 8611 break; 8612 case BuiltinType::Long: 8613 EncType = "sl"; 8614 break; 8615 case BuiltinType::ULongLong: 8616 EncType = "ull"; 8617 break; 8618 case BuiltinType::LongLong: 8619 EncType = "sll"; 8620 break; 8621 case BuiltinType::Float: 8622 EncType = "ft"; 8623 break; 8624 case BuiltinType::Double: 8625 EncType = "d"; 8626 break; 8627 case BuiltinType::LongDouble: 8628 EncType = "ld"; 8629 break; 8630 default: 8631 return false; 8632 } 8633 Enc += EncType; 8634 return true; 8635 } 8636 8637 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8638 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8639 const CodeGen::CodeGenModule &CGM, 8640 TypeStringCache &TSC) { 8641 Enc += "p("; 8642 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8643 return false; 8644 Enc += ')'; 8645 return true; 8646 } 8647 8648 /// Appends array encoding to Enc before calling appendType for the element. 8649 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8650 const ArrayType *AT, 8651 const CodeGen::CodeGenModule &CGM, 8652 TypeStringCache &TSC, StringRef NoSizeEnc) { 8653 if (AT->getSizeModifier() != ArrayType::Normal) 8654 return false; 8655 Enc += "a("; 8656 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8657 CAT->getSize().toStringUnsigned(Enc); 8658 else 8659 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8660 Enc += ':'; 8661 // The Qualifiers should be attached to the type rather than the array. 8662 appendQualifier(Enc, QT); 8663 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8664 return false; 8665 Enc += ')'; 8666 return true; 8667 } 8668 8669 /// Appends a function encoding to Enc, calling appendType for the return type 8670 /// and the arguments. 8671 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8672 const CodeGen::CodeGenModule &CGM, 8673 TypeStringCache &TSC) { 8674 Enc += "f{"; 8675 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8676 return false; 8677 Enc += "}("; 8678 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8679 // N.B. we are only interested in the adjusted param types. 8680 auto I = FPT->param_type_begin(); 8681 auto E = FPT->param_type_end(); 8682 if (I != E) { 8683 do { 8684 if (!appendType(Enc, *I, CGM, TSC)) 8685 return false; 8686 ++I; 8687 if (I != E) 8688 Enc += ','; 8689 } while (I != E); 8690 if (FPT->isVariadic()) 8691 Enc += ",va"; 8692 } else { 8693 if (FPT->isVariadic()) 8694 Enc += "va"; 8695 else 8696 Enc += '0'; 8697 } 8698 } 8699 Enc += ')'; 8700 return true; 8701 } 8702 8703 /// Handles the type's qualifier before dispatching a call to handle specific 8704 /// type encodings. 8705 static bool appendType(SmallStringEnc &Enc, QualType QType, 8706 const CodeGen::CodeGenModule &CGM, 8707 TypeStringCache &TSC) { 8708 8709 QualType QT = QType.getCanonicalType(); 8710 8711 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8712 // The Qualifiers should be attached to the type rather than the array. 8713 // Thus we don't call appendQualifier() here. 8714 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8715 8716 appendQualifier(Enc, QT); 8717 8718 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8719 return appendBuiltinType(Enc, BT); 8720 8721 if (const PointerType *PT = QT->getAs<PointerType>()) 8722 return appendPointerType(Enc, PT, CGM, TSC); 8723 8724 if (const EnumType *ET = QT->getAs<EnumType>()) 8725 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8726 8727 if (const RecordType *RT = QT->getAsStructureType()) 8728 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8729 8730 if (const RecordType *RT = QT->getAsUnionType()) 8731 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8732 8733 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8734 return appendFunctionType(Enc, FT, CGM, TSC); 8735 8736 return false; 8737 } 8738 8739 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8740 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8741 if (!D) 8742 return false; 8743 8744 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8745 if (FD->getLanguageLinkage() != CLanguageLinkage) 8746 return false; 8747 return appendType(Enc, FD->getType(), CGM, TSC); 8748 } 8749 8750 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8751 if (VD->getLanguageLinkage() != CLanguageLinkage) 8752 return false; 8753 QualType QT = VD->getType().getCanonicalType(); 8754 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8755 // Global ArrayTypes are given a size of '*' if the size is unknown. 8756 // The Qualifiers should be attached to the type rather than the array. 8757 // Thus we don't call appendQualifier() here. 8758 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8759 } 8760 return appendType(Enc, QT, CGM, TSC); 8761 } 8762 return false; 8763 } 8764 8765 //===----------------------------------------------------------------------===// 8766 // RISCV ABI Implementation 8767 //===----------------------------------------------------------------------===// 8768 8769 namespace { 8770 class RISCVABIInfo : public DefaultABIInfo { 8771 private: 8772 unsigned XLen; // Size of the integer ('x') registers in bits. 8773 static const int NumArgGPRs = 8; 8774 8775 public: 8776 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8777 : DefaultABIInfo(CGT), XLen(XLen) {} 8778 8779 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 8780 // non-virtual, but computeInfo is virtual, so we overload it. 8781 void computeInfo(CGFunctionInfo &FI) const override; 8782 8783 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 8784 int &ArgGPRsLeft) const; 8785 ABIArgInfo classifyReturnType(QualType RetTy) const; 8786 8787 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8788 QualType Ty) const override; 8789 8790 ABIArgInfo extendType(QualType Ty) const; 8791 }; 8792 } // end anonymous namespace 8793 8794 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 8795 QualType RetTy = FI.getReturnType(); 8796 if (!getCXXABI().classifyReturnType(FI)) 8797 FI.getReturnInfo() = classifyReturnType(RetTy); 8798 8799 // IsRetIndirect is true if classifyArgumentType indicated the value should 8800 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 8801 // is passed direct in LLVM IR, relying on the backend lowering code to 8802 // rewrite the argument list and pass indirectly on RV32. 8803 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 8804 getContext().getTypeSize(RetTy) > (2 * XLen); 8805 8806 // We must track the number of GPRs used in order to conform to the RISC-V 8807 // ABI, as integer scalars passed in registers should have signext/zeroext 8808 // when promoted, but are anyext if passed on the stack. As GPR usage is 8809 // different for variadic arguments, we must also track whether we are 8810 // examining a vararg or not. 8811 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 8812 int NumFixedArgs = FI.getNumRequiredArgs(); 8813 8814 int ArgNum = 0; 8815 for (auto &ArgInfo : FI.arguments()) { 8816 bool IsFixed = ArgNum < NumFixedArgs; 8817 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 8818 ArgNum++; 8819 } 8820 } 8821 8822 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 8823 int &ArgGPRsLeft) const { 8824 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 8825 Ty = useFirstFieldIfTransparentUnion(Ty); 8826 8827 // Structures with either a non-trivial destructor or a non-trivial 8828 // copy constructor are always passed indirectly. 8829 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8830 if (ArgGPRsLeft) 8831 ArgGPRsLeft -= 1; 8832 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 8833 CGCXXABI::RAA_DirectInMemory); 8834 } 8835 8836 // Ignore empty structs/unions. 8837 if (isEmptyRecord(getContext(), Ty, true)) 8838 return ABIArgInfo::getIgnore(); 8839 8840 uint64_t Size = getContext().getTypeSize(Ty); 8841 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 8842 bool MustUseStack = false; 8843 // Determine the number of GPRs needed to pass the current argument 8844 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 8845 // register pairs, so may consume 3 registers. 8846 int NeededArgGPRs = 1; 8847 if (!IsFixed && NeededAlign == 2 * XLen) 8848 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 8849 else if (Size > XLen && Size <= 2 * XLen) 8850 NeededArgGPRs = 2; 8851 8852 if (NeededArgGPRs > ArgGPRsLeft) { 8853 MustUseStack = true; 8854 NeededArgGPRs = ArgGPRsLeft; 8855 } 8856 8857 ArgGPRsLeft -= NeededArgGPRs; 8858 8859 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 8860 // Treat an enum type as its underlying type. 8861 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8862 Ty = EnumTy->getDecl()->getIntegerType(); 8863 8864 // All integral types are promoted to XLen width, unless passed on the 8865 // stack. 8866 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 8867 return extendType(Ty); 8868 } 8869 8870 return ABIArgInfo::getDirect(); 8871 } 8872 8873 // Aggregates which are <= 2*XLen will be passed in registers if possible, 8874 // so coerce to integers. 8875 if (Size <= 2 * XLen) { 8876 unsigned Alignment = getContext().getTypeAlign(Ty); 8877 8878 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 8879 // required, and a 2-element XLen array if only XLen alignment is required. 8880 if (Size <= XLen) { 8881 return ABIArgInfo::getDirect( 8882 llvm::IntegerType::get(getVMContext(), XLen)); 8883 } else if (Alignment == 2 * XLen) { 8884 return ABIArgInfo::getDirect( 8885 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 8886 } else { 8887 return ABIArgInfo::getDirect(llvm::ArrayType::get( 8888 llvm::IntegerType::get(getVMContext(), XLen), 2)); 8889 } 8890 } 8891 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8892 } 8893 8894 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 8895 if (RetTy->isVoidType()) 8896 return ABIArgInfo::getIgnore(); 8897 8898 int ArgGPRsLeft = 2; 8899 8900 // The rules for return and argument types are the same, so defer to 8901 // classifyArgumentType. 8902 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 8903 } 8904 8905 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8906 QualType Ty) const { 8907 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 8908 8909 // Empty records are ignored for parameter passing purposes. 8910 if (isEmptyRecord(getContext(), Ty, true)) { 8911 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 8912 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 8913 return Addr; 8914 } 8915 8916 std::pair<CharUnits, CharUnits> SizeAndAlign = 8917 getContext().getTypeInfoInChars(Ty); 8918 8919 // Arguments bigger than 2*Xlen bytes are passed indirectly. 8920 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 8921 8922 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 8923 SlotSize, /*AllowHigherAlign=*/true); 8924 } 8925 8926 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 8927 int TySize = getContext().getTypeSize(Ty); 8928 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 8929 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8930 return ABIArgInfo::getSignExtend(Ty); 8931 return ABIArgInfo::getExtend(Ty); 8932 } 8933 8934 namespace { 8935 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 8936 public: 8937 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8938 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 8939 }; 8940 } // namespace 8941 8942 //===----------------------------------------------------------------------===// 8943 // Driver code 8944 //===----------------------------------------------------------------------===// 8945 8946 bool CodeGenModule::supportsCOMDAT() const { 8947 return getTriple().supportsCOMDAT(); 8948 } 8949 8950 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8951 if (TheTargetCodeGenInfo) 8952 return *TheTargetCodeGenInfo; 8953 8954 // Helper to set the unique_ptr while still keeping the return value. 8955 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8956 this->TheTargetCodeGenInfo.reset(P); 8957 return *P; 8958 }; 8959 8960 const llvm::Triple &Triple = getTarget().getTriple(); 8961 switch (Triple.getArch()) { 8962 default: 8963 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8964 8965 case llvm::Triple::le32: 8966 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8967 case llvm::Triple::mips: 8968 case llvm::Triple::mipsel: 8969 if (Triple.getOS() == llvm::Triple::NaCl) 8970 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8971 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8972 8973 case llvm::Triple::mips64: 8974 case llvm::Triple::mips64el: 8975 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8976 8977 case llvm::Triple::avr: 8978 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8979 8980 case llvm::Triple::aarch64: 8981 case llvm::Triple::aarch64_be: { 8982 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8983 if (getTarget().getABI() == "darwinpcs") 8984 Kind = AArch64ABIInfo::DarwinPCS; 8985 else if (Triple.isOSWindows()) 8986 return SetCGInfo( 8987 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 8988 8989 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8990 } 8991 8992 case llvm::Triple::wasm32: 8993 case llvm::Triple::wasm64: 8994 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8995 8996 case llvm::Triple::arm: 8997 case llvm::Triple::armeb: 8998 case llvm::Triple::thumb: 8999 case llvm::Triple::thumbeb: { 9000 if (Triple.getOS() == llvm::Triple::Win32) { 9001 return SetCGInfo( 9002 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9003 } 9004 9005 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9006 StringRef ABIStr = getTarget().getABI(); 9007 if (ABIStr == "apcs-gnu") 9008 Kind = ARMABIInfo::APCS; 9009 else if (ABIStr == "aapcs16") 9010 Kind = ARMABIInfo::AAPCS16_VFP; 9011 else if (CodeGenOpts.FloatABI == "hard" || 9012 (CodeGenOpts.FloatABI != "soft" && 9013 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9014 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9015 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9016 Kind = ARMABIInfo::AAPCS_VFP; 9017 9018 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9019 } 9020 9021 case llvm::Triple::ppc: 9022 return SetCGInfo( 9023 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9024 case llvm::Triple::ppc64: 9025 if (Triple.isOSBinFormatELF()) { 9026 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9027 if (getTarget().getABI() == "elfv2") 9028 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9029 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9030 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9031 9032 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9033 IsSoftFloat)); 9034 } else 9035 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9036 case llvm::Triple::ppc64le: { 9037 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9038 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9039 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9040 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9041 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9042 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9043 9044 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9045 IsSoftFloat)); 9046 } 9047 9048 case llvm::Triple::nvptx: 9049 case llvm::Triple::nvptx64: 9050 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9051 9052 case llvm::Triple::msp430: 9053 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9054 9055 case llvm::Triple::riscv32: 9056 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9057 case llvm::Triple::riscv64: 9058 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9059 9060 case llvm::Triple::systemz: { 9061 bool HasVector = getTarget().getABI() == "vector"; 9062 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9063 } 9064 9065 case llvm::Triple::tce: 9066 case llvm::Triple::tcele: 9067 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9068 9069 case llvm::Triple::x86: { 9070 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9071 bool RetSmallStructInRegABI = 9072 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9073 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9074 9075 if (Triple.getOS() == llvm::Triple::Win32) { 9076 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9077 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9078 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9079 } else { 9080 return SetCGInfo(new X86_32TargetCodeGenInfo( 9081 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9082 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9083 CodeGenOpts.FloatABI == "soft")); 9084 } 9085 } 9086 9087 case llvm::Triple::x86_64: { 9088 StringRef ABI = getTarget().getABI(); 9089 X86AVXABILevel AVXLevel = 9090 (ABI == "avx512" 9091 ? X86AVXABILevel::AVX512 9092 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9093 9094 switch (Triple.getOS()) { 9095 case llvm::Triple::Win32: 9096 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9097 case llvm::Triple::PS4: 9098 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9099 default: 9100 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9101 } 9102 } 9103 case llvm::Triple::hexagon: 9104 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9105 case llvm::Triple::lanai: 9106 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9107 case llvm::Triple::r600: 9108 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9109 case llvm::Triple::amdgcn: 9110 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9111 case llvm::Triple::sparc: 9112 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9113 case llvm::Triple::sparcv9: 9114 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9115 case llvm::Triple::xcore: 9116 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9117 case llvm::Triple::spir: 9118 case llvm::Triple::spir64: 9119 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9120 } 9121 } 9122 9123 /// Create an OpenCL kernel for an enqueued block. 9124 /// 9125 /// The kernel has the same function type as the block invoke function. Its 9126 /// name is the name of the block invoke function postfixed with "_kernel". 9127 /// It simply calls the block invoke function then returns. 9128 llvm::Function * 9129 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9130 llvm::Function *Invoke, 9131 llvm::Value *BlockLiteral) const { 9132 auto *InvokeFT = Invoke->getFunctionType(); 9133 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9134 for (auto &P : InvokeFT->params()) 9135 ArgTys.push_back(P); 9136 auto &C = CGF.getLLVMContext(); 9137 std::string Name = Invoke->getName().str() + "_kernel"; 9138 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9139 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9140 &CGF.CGM.getModule()); 9141 auto IP = CGF.Builder.saveIP(); 9142 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9143 auto &Builder = CGF.Builder; 9144 Builder.SetInsertPoint(BB); 9145 llvm::SmallVector<llvm::Value *, 2> Args; 9146 for (auto &A : F->args()) 9147 Args.push_back(&A); 9148 Builder.CreateCall(Invoke, Args); 9149 Builder.CreateRetVoid(); 9150 Builder.restoreIP(IP); 9151 return F; 9152 } 9153 9154 /// Create an OpenCL kernel for an enqueued block. 9155 /// 9156 /// The type of the first argument (the block literal) is the struct type 9157 /// of the block literal instead of a pointer type. The first argument 9158 /// (block literal) is passed directly by value to the kernel. The kernel 9159 /// allocates the same type of struct on stack and stores the block literal 9160 /// to it and passes its pointer to the block invoke function. The kernel 9161 /// has "enqueued-block" function attribute and kernel argument metadata. 9162 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9163 CodeGenFunction &CGF, llvm::Function *Invoke, 9164 llvm::Value *BlockLiteral) const { 9165 auto &Builder = CGF.Builder; 9166 auto &C = CGF.getLLVMContext(); 9167 9168 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9169 auto *InvokeFT = Invoke->getFunctionType(); 9170 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9171 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9172 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9173 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9174 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9175 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9176 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9177 9178 ArgTys.push_back(BlockTy); 9179 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9180 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9181 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9182 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9183 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9184 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9185 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9186 ArgTys.push_back(InvokeFT->getParamType(I)); 9187 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9188 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9189 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9190 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9191 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9192 ArgNames.push_back( 9193 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9194 } 9195 std::string Name = Invoke->getName().str() + "_kernel"; 9196 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9197 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9198 &CGF.CGM.getModule()); 9199 F->addFnAttr("enqueued-block"); 9200 auto IP = CGF.Builder.saveIP(); 9201 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9202 Builder.SetInsertPoint(BB); 9203 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9204 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9205 BlockPtr->setAlignment(BlockAlign); 9206 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9207 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9208 llvm::SmallVector<llvm::Value *, 2> Args; 9209 Args.push_back(Cast); 9210 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9211 Args.push_back(I); 9212 Builder.CreateCall(Invoke, Args); 9213 Builder.CreateRetVoid(); 9214 Builder.restoreIP(IP); 9215 9216 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9217 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9218 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9219 F->setMetadata("kernel_arg_base_type", 9220 llvm::MDNode::get(C, ArgBaseTypeNames)); 9221 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9222 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9223 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9224 9225 return F; 9226 } 9227