1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/CodeGen/SwiftCallingConv.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>    // std::sort
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
35                                llvm::Value *Array,
36                                llvm::Value *Value,
37                                unsigned FirstIndex,
38                                unsigned LastIndex) {
39   // Alternatively, we could emit this as a loop in the source.
40   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
41     llvm::Value *Cell =
42         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
43     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
44   }
45 }
46 
47 static bool isAggregateTypeForABI(QualType T) {
48   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
49          T->isMemberFunctionPointerType();
50 }
51 
52 ABIArgInfo
53 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
54                                  llvm::Type *Padding) const {
55   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
56                                  ByRef, Realign, Padding);
57 }
58 
59 ABIArgInfo
60 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
61   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
62                                       /*ByRef*/ false, Realign);
63 }
64 
65 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
66                              QualType Ty) const {
67   return Address::invalid();
68 }
69 
70 ABIInfo::~ABIInfo() {}
71 
72 /// Does the given lowering require more than the given number of
73 /// registers when expanded?
74 ///
75 /// This is intended to be the basis of a reasonable basic implementation
76 /// of should{Pass,Return}IndirectlyForSwift.
77 ///
78 /// For most targets, a limit of four total registers is reasonable; this
79 /// limits the amount of code required in order to move around the value
80 /// in case it wasn't produced immediately prior to the call by the caller
81 /// (or wasn't produced in exactly the right registers) or isn't used
82 /// immediately within the callee.  But some targets may need to further
83 /// limit the register count due to an inability to support that many
84 /// return registers.
85 static bool occupiesMoreThan(CodeGenTypes &cgt,
86                              ArrayRef<llvm::Type*> scalarTypes,
87                              unsigned maxAllRegisters) {
88   unsigned intCount = 0, fpCount = 0;
89   for (llvm::Type *type : scalarTypes) {
90     if (type->isPointerTy()) {
91       intCount++;
92     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
93       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
94       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
95     } else {
96       assert(type->isVectorTy() || type->isFloatingPointTy());
97       fpCount++;
98     }
99   }
100 
101   return (intCount + fpCount > maxAllRegisters);
102 }
103 
104 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
105                                              llvm::Type *eltTy,
106                                              unsigned numElts) const {
107   // The default implementation of this assumes that the target guarantees
108   // 128-bit SIMD support but nothing more.
109   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
110 }
111 
112 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
113                                               CGCXXABI &CXXABI) {
114   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
115   if (!RD)
116     return CGCXXABI::RAA_Default;
117   return CXXABI.getRecordArgABI(RD);
118 }
119 
120 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
121                                               CGCXXABI &CXXABI) {
122   const RecordType *RT = T->getAs<RecordType>();
123   if (!RT)
124     return CGCXXABI::RAA_Default;
125   return getRecordArgABI(RT, CXXABI);
126 }
127 
128 /// Pass transparent unions as if they were the type of the first element. Sema
129 /// should ensure that all elements of the union have the same "machine type".
130 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
131   if (const RecordType *UT = Ty->getAsUnionType()) {
132     const RecordDecl *UD = UT->getDecl();
133     if (UD->hasAttr<TransparentUnionAttr>()) {
134       assert(!UD->field_empty() && "sema created an empty transparent union");
135       return UD->field_begin()->getType();
136     }
137   }
138   return Ty;
139 }
140 
141 CGCXXABI &ABIInfo::getCXXABI() const {
142   return CGT.getCXXABI();
143 }
144 
145 ASTContext &ABIInfo::getContext() const {
146   return CGT.getContext();
147 }
148 
149 llvm::LLVMContext &ABIInfo::getVMContext() const {
150   return CGT.getLLVMContext();
151 }
152 
153 const llvm::DataLayout &ABIInfo::getDataLayout() const {
154   return CGT.getDataLayout();
155 }
156 
157 const TargetInfo &ABIInfo::getTarget() const {
158   return CGT.getTarget();
159 }
160 
161 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); }
162 
163 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
164   return false;
165 }
166 
167 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
168                                                 uint64_t Members) const {
169   return false;
170 }
171 
172 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
173   return false;
174 }
175 
176 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
177   raw_ostream &OS = llvm::errs();
178   OS << "(ABIArgInfo Kind=";
179   switch (TheKind) {
180   case Direct:
181     OS << "Direct Type=";
182     if (llvm::Type *Ty = getCoerceToType())
183       Ty->print(OS);
184     else
185       OS << "null";
186     break;
187   case Extend:
188     OS << "Extend";
189     break;
190   case Ignore:
191     OS << "Ignore";
192     break;
193   case InAlloca:
194     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
195     break;
196   case Indirect:
197     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
198        << " ByVal=" << getIndirectByVal()
199        << " Realign=" << getIndirectRealign();
200     break;
201   case Expand:
202     OS << "Expand";
203     break;
204   case CoerceAndExpand:
205     OS << "CoerceAndExpand Type=";
206     getCoerceAndExpandType()->print(OS);
207     break;
208   }
209   OS << ")\n";
210 }
211 
212 // Dynamically round a pointer up to a multiple of the given alignment.
213 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
214                                                   llvm::Value *Ptr,
215                                                   CharUnits Align) {
216   llvm::Value *PtrAsInt = Ptr;
217   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
218   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
219   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
220         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
221   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
222            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
223   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
224                                         Ptr->getType(),
225                                         Ptr->getName() + ".aligned");
226   return PtrAsInt;
227 }
228 
229 /// Emit va_arg for a platform using the common void* representation,
230 /// where arguments are simply emitted in an array of slots on the stack.
231 ///
232 /// This version implements the core direct-value passing rules.
233 ///
234 /// \param SlotSize - The size and alignment of a stack slot.
235 ///   Each argument will be allocated to a multiple of this number of
236 ///   slots, and all the slots will be aligned to this value.
237 /// \param AllowHigherAlign - The slot alignment is not a cap;
238 ///   an argument type with an alignment greater than the slot size
239 ///   will be emitted on a higher-alignment address, potentially
240 ///   leaving one or more empty slots behind as padding.  If this
241 ///   is false, the returned address might be less-aligned than
242 ///   DirectAlign.
243 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
244                                       Address VAListAddr,
245                                       llvm::Type *DirectTy,
246                                       CharUnits DirectSize,
247                                       CharUnits DirectAlign,
248                                       CharUnits SlotSize,
249                                       bool AllowHigherAlign) {
250   // Cast the element type to i8* if necessary.  Some platforms define
251   // va_list as a struct containing an i8* instead of just an i8*.
252   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
253     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
254 
255   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
256 
257   // If the CC aligns values higher than the slot size, do so if needed.
258   Address Addr = Address::invalid();
259   if (AllowHigherAlign && DirectAlign > SlotSize) {
260     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
261                                                  DirectAlign);
262   } else {
263     Addr = Address(Ptr, SlotSize);
264   }
265 
266   // Advance the pointer past the argument, then store that back.
267   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
268   llvm::Value *NextPtr =
269     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
270                                            "argp.next");
271   CGF.Builder.CreateStore(NextPtr, VAListAddr);
272 
273   // If the argument is smaller than a slot, and this is a big-endian
274   // target, the argument will be right-adjusted in its slot.
275   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
276       !DirectTy->isStructTy()) {
277     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
278   }
279 
280   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
281   return Addr;
282 }
283 
284 /// Emit va_arg for a platform using the common void* representation,
285 /// where arguments are simply emitted in an array of slots on the stack.
286 ///
287 /// \param IsIndirect - Values of this type are passed indirectly.
288 /// \param ValueInfo - The size and alignment of this type, generally
289 ///   computed with getContext().getTypeInfoInChars(ValueTy).
290 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
291 ///   Each argument will be allocated to a multiple of this number of
292 ///   slots, and all the slots will be aligned to this value.
293 /// \param AllowHigherAlign - The slot alignment is not a cap;
294 ///   an argument type with an alignment greater than the slot size
295 ///   will be emitted on a higher-alignment address, potentially
296 ///   leaving one or more empty slots behind as padding.
297 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
298                                 QualType ValueTy, bool IsIndirect,
299                                 std::pair<CharUnits, CharUnits> ValueInfo,
300                                 CharUnits SlotSizeAndAlign,
301                                 bool AllowHigherAlign) {
302   // The size and alignment of the value that was passed directly.
303   CharUnits DirectSize, DirectAlign;
304   if (IsIndirect) {
305     DirectSize = CGF.getPointerSize();
306     DirectAlign = CGF.getPointerAlign();
307   } else {
308     DirectSize = ValueInfo.first;
309     DirectAlign = ValueInfo.second;
310   }
311 
312   // Cast the address we've calculated to the right type.
313   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
314   if (IsIndirect)
315     DirectTy = DirectTy->getPointerTo(0);
316 
317   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
318                                         DirectSize, DirectAlign,
319                                         SlotSizeAndAlign,
320                                         AllowHigherAlign);
321 
322   if (IsIndirect) {
323     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
324   }
325 
326   return Addr;
327 
328 }
329 
330 static Address emitMergePHI(CodeGenFunction &CGF,
331                             Address Addr1, llvm::BasicBlock *Block1,
332                             Address Addr2, llvm::BasicBlock *Block2,
333                             const llvm::Twine &Name = "") {
334   assert(Addr1.getType() == Addr2.getType());
335   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
336   PHI->addIncoming(Addr1.getPointer(), Block1);
337   PHI->addIncoming(Addr2.getPointer(), Block2);
338   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
339   return Address(PHI, Align);
340 }
341 
342 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
343 
344 // If someone can figure out a general rule for this, that would be great.
345 // It's probably just doomed to be platform-dependent, though.
346 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
347   // Verified for:
348   //   x86-64     FreeBSD, Linux, Darwin
349   //   x86-32     FreeBSD, Linux, Darwin
350   //   PowerPC    Linux, Darwin
351   //   ARM        Darwin (*not* EABI)
352   //   AArch64    Linux
353   return 32;
354 }
355 
356 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
357                                      const FunctionNoProtoType *fnType) const {
358   // The following conventions are known to require this to be false:
359   //   x86_stdcall
360   //   MIPS
361   // For everything else, we just prefer false unless we opt out.
362   return false;
363 }
364 
365 void
366 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
367                                              llvm::SmallString<24> &Opt) const {
368   // This assumes the user is passing a library name like "rt" instead of a
369   // filename like "librt.a/so", and that they don't care whether it's static or
370   // dynamic.
371   Opt = "-l";
372   Opt += Lib;
373 }
374 
375 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
376 
377 /// isEmptyField - Return true iff a the field is "empty", that is it
378 /// is an unnamed bit-field or an (array of) empty record(s).
379 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
380                          bool AllowArrays) {
381   if (FD->isUnnamedBitfield())
382     return true;
383 
384   QualType FT = FD->getType();
385 
386   // Constant arrays of empty records count as empty, strip them off.
387   // Constant arrays of zero length always count as empty.
388   if (AllowArrays)
389     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
390       if (AT->getSize() == 0)
391         return true;
392       FT = AT->getElementType();
393     }
394 
395   const RecordType *RT = FT->getAs<RecordType>();
396   if (!RT)
397     return false;
398 
399   // C++ record fields are never empty, at least in the Itanium ABI.
400   //
401   // FIXME: We should use a predicate for whether this behavior is true in the
402   // current ABI.
403   if (isa<CXXRecordDecl>(RT->getDecl()))
404     return false;
405 
406   return isEmptyRecord(Context, FT, AllowArrays);
407 }
408 
409 /// isEmptyRecord - Return true iff a structure contains only empty
410 /// fields. Note that a structure with a flexible array member is not
411 /// considered empty.
412 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
413   const RecordType *RT = T->getAs<RecordType>();
414   if (!RT)
415     return false;
416   const RecordDecl *RD = RT->getDecl();
417   if (RD->hasFlexibleArrayMember())
418     return false;
419 
420   // If this is a C++ record, check the bases first.
421   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
422     for (const auto &I : CXXRD->bases())
423       if (!isEmptyRecord(Context, I.getType(), true))
424         return false;
425 
426   for (const auto *I : RD->fields())
427     if (!isEmptyField(Context, I, AllowArrays))
428       return false;
429   return true;
430 }
431 
432 /// isSingleElementStruct - Determine if a structure is a "single
433 /// element struct", i.e. it has exactly one non-empty field or
434 /// exactly one field which is itself a single element
435 /// struct. Structures with flexible array members are never
436 /// considered single element structs.
437 ///
438 /// \return The field declaration for the single non-empty field, if
439 /// it exists.
440 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
441   const RecordType *RT = T->getAs<RecordType>();
442   if (!RT)
443     return nullptr;
444 
445   const RecordDecl *RD = RT->getDecl();
446   if (RD->hasFlexibleArrayMember())
447     return nullptr;
448 
449   const Type *Found = nullptr;
450 
451   // If this is a C++ record, check the bases first.
452   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
453     for (const auto &I : CXXRD->bases()) {
454       // Ignore empty records.
455       if (isEmptyRecord(Context, I.getType(), true))
456         continue;
457 
458       // If we already found an element then this isn't a single-element struct.
459       if (Found)
460         return nullptr;
461 
462       // If this is non-empty and not a single element struct, the composite
463       // cannot be a single element struct.
464       Found = isSingleElementStruct(I.getType(), Context);
465       if (!Found)
466         return nullptr;
467     }
468   }
469 
470   // Check for single element.
471   for (const auto *FD : RD->fields()) {
472     QualType FT = FD->getType();
473 
474     // Ignore empty fields.
475     if (isEmptyField(Context, FD, true))
476       continue;
477 
478     // If we already found an element then this isn't a single-element
479     // struct.
480     if (Found)
481       return nullptr;
482 
483     // Treat single element arrays as the element.
484     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
485       if (AT->getSize().getZExtValue() != 1)
486         break;
487       FT = AT->getElementType();
488     }
489 
490     if (!isAggregateTypeForABI(FT)) {
491       Found = FT.getTypePtr();
492     } else {
493       Found = isSingleElementStruct(FT, Context);
494       if (!Found)
495         return nullptr;
496     }
497   }
498 
499   // We don't consider a struct a single-element struct if it has
500   // padding beyond the element type.
501   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
502     return nullptr;
503 
504   return Found;
505 }
506 
507 namespace {
508 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
509                        const ABIArgInfo &AI) {
510   // This default implementation defers to the llvm backend's va_arg
511   // instruction. It can handle only passing arguments directly
512   // (typically only handled in the backend for primitive types), or
513   // aggregates passed indirectly by pointer (NOTE: if the "byval"
514   // flag has ABI impact in the callee, this implementation cannot
515   // work.)
516 
517   // Only a few cases are covered here at the moment -- those needed
518   // by the default abi.
519   llvm::Value *Val;
520 
521   if (AI.isIndirect()) {
522     assert(!AI.getPaddingType() &&
523            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
524     assert(
525         !AI.getIndirectRealign() &&
526         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
527 
528     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
529     CharUnits TyAlignForABI = TyInfo.second;
530 
531     llvm::Type *BaseTy =
532         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
533     llvm::Value *Addr =
534         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
535     return Address(Addr, TyAlignForABI);
536   } else {
537     assert((AI.isDirect() || AI.isExtend()) &&
538            "Unexpected ArgInfo Kind in generic VAArg emitter!");
539 
540     assert(!AI.getInReg() &&
541            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
542     assert(!AI.getPaddingType() &&
543            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
544     assert(!AI.getDirectOffset() &&
545            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
546     assert(!AI.getCoerceToType() &&
547            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
548 
549     Address Temp = CGF.CreateMemTemp(Ty, "varet");
550     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
551     CGF.Builder.CreateStore(Val, Temp);
552     return Temp;
553   }
554 }
555 
556 /// DefaultABIInfo - The default implementation for ABI specific
557 /// details. This implementation provides information which results in
558 /// self-consistent and sensible LLVM IR generation, but does not
559 /// conform to any particular ABI.
560 class DefaultABIInfo : public ABIInfo {
561 public:
562   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
563 
564   ABIArgInfo classifyReturnType(QualType RetTy) const;
565   ABIArgInfo classifyArgumentType(QualType RetTy) const;
566 
567   void computeInfo(CGFunctionInfo &FI) const override {
568     if (!getCXXABI().classifyReturnType(FI))
569       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
570     for (auto &I : FI.arguments())
571       I.info = classifyArgumentType(I.type);
572   }
573 
574   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
575                     QualType Ty) const override {
576     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
577   }
578 };
579 
580 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
581 public:
582   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
583     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
584 };
585 
586 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
587   Ty = useFirstFieldIfTransparentUnion(Ty);
588 
589   if (isAggregateTypeForABI(Ty)) {
590     // Records with non-trivial destructors/copy-constructors should not be
591     // passed by value.
592     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
593       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
594 
595     return getNaturalAlignIndirect(Ty);
596   }
597 
598   // Treat an enum type as its underlying type.
599   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
600     Ty = EnumTy->getDecl()->getIntegerType();
601 
602   return (Ty->isPromotableIntegerType() ?
603           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
604 }
605 
606 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
607   if (RetTy->isVoidType())
608     return ABIArgInfo::getIgnore();
609 
610   if (isAggregateTypeForABI(RetTy))
611     return getNaturalAlignIndirect(RetTy);
612 
613   // Treat an enum type as its underlying type.
614   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
615     RetTy = EnumTy->getDecl()->getIntegerType();
616 
617   return (RetTy->isPromotableIntegerType() ?
618           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
619 }
620 
621 //===----------------------------------------------------------------------===//
622 // WebAssembly ABI Implementation
623 //
624 // This is a very simple ABI that relies a lot on DefaultABIInfo.
625 //===----------------------------------------------------------------------===//
626 
627 class WebAssemblyABIInfo final : public DefaultABIInfo {
628 public:
629   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
630       : DefaultABIInfo(CGT) {}
631 
632 private:
633   ABIArgInfo classifyReturnType(QualType RetTy) const;
634   ABIArgInfo classifyArgumentType(QualType Ty) const;
635 
636   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
637   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
638   // overload them.
639   void computeInfo(CGFunctionInfo &FI) const override {
640     if (!getCXXABI().classifyReturnType(FI))
641       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
642     for (auto &Arg : FI.arguments())
643       Arg.info = classifyArgumentType(Arg.type);
644   }
645 
646   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
647                     QualType Ty) const override;
648 };
649 
650 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
651 public:
652   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
653       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
654 };
655 
656 /// \brief Classify argument of given type \p Ty.
657 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
658   Ty = useFirstFieldIfTransparentUnion(Ty);
659 
660   if (isAggregateTypeForABI(Ty)) {
661     // Records with non-trivial destructors/copy-constructors should not be
662     // passed by value.
663     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
664       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
665     // Ignore empty structs/unions.
666     if (isEmptyRecord(getContext(), Ty, true))
667       return ABIArgInfo::getIgnore();
668     // Lower single-element structs to just pass a regular value. TODO: We
669     // could do reasonable-size multiple-element structs too, using getExpand(),
670     // though watch out for things like bitfields.
671     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
672       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
673   }
674 
675   // Otherwise just do the default thing.
676   return DefaultABIInfo::classifyArgumentType(Ty);
677 }
678 
679 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
680   if (isAggregateTypeForABI(RetTy)) {
681     // Records with non-trivial destructors/copy-constructors should not be
682     // returned by value.
683     if (!getRecordArgABI(RetTy, getCXXABI())) {
684       // Ignore empty structs/unions.
685       if (isEmptyRecord(getContext(), RetTy, true))
686         return ABIArgInfo::getIgnore();
687       // Lower single-element structs to just return a regular value. TODO: We
688       // could do reasonable-size multiple-element structs too, using
689       // ABIArgInfo::getDirect().
690       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
691         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
692     }
693   }
694 
695   // Otherwise just do the default thing.
696   return DefaultABIInfo::classifyReturnType(RetTy);
697 }
698 
699 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
700                                       QualType Ty) const {
701   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
702                           getContext().getTypeInfoInChars(Ty),
703                           CharUnits::fromQuantity(4),
704                           /*AllowHigherAlign=*/ true);
705 }
706 
707 //===----------------------------------------------------------------------===//
708 // le32/PNaCl bitcode ABI Implementation
709 //
710 // This is a simplified version of the x86_32 ABI.  Arguments and return values
711 // are always passed on the stack.
712 //===----------------------------------------------------------------------===//
713 
714 class PNaClABIInfo : public ABIInfo {
715  public:
716   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
717 
718   ABIArgInfo classifyReturnType(QualType RetTy) const;
719   ABIArgInfo classifyArgumentType(QualType RetTy) const;
720 
721   void computeInfo(CGFunctionInfo &FI) const override;
722   Address EmitVAArg(CodeGenFunction &CGF,
723                     Address VAListAddr, QualType Ty) const override;
724 };
725 
726 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
727  public:
728   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
729     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
730 };
731 
732 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
733   if (!getCXXABI().classifyReturnType(FI))
734     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
735 
736   for (auto &I : FI.arguments())
737     I.info = classifyArgumentType(I.type);
738 }
739 
740 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
741                                 QualType Ty) const {
742   // The PNaCL ABI is a bit odd, in that varargs don't use normal
743   // function classification. Structs get passed directly for varargs
744   // functions, through a rewriting transform in
745   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
746   // this target to actually support a va_arg instructions with an
747   // aggregate type, unlike other targets.
748   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
749 }
750 
751 /// \brief Classify argument of given type \p Ty.
752 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
753   if (isAggregateTypeForABI(Ty)) {
754     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
755       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
756     return getNaturalAlignIndirect(Ty);
757   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
758     // Treat an enum type as its underlying type.
759     Ty = EnumTy->getDecl()->getIntegerType();
760   } else if (Ty->isFloatingType()) {
761     // Floating-point types don't go inreg.
762     return ABIArgInfo::getDirect();
763   }
764 
765   return (Ty->isPromotableIntegerType() ?
766           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
767 }
768 
769 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
770   if (RetTy->isVoidType())
771     return ABIArgInfo::getIgnore();
772 
773   // In the PNaCl ABI we always return records/structures on the stack.
774   if (isAggregateTypeForABI(RetTy))
775     return getNaturalAlignIndirect(RetTy);
776 
777   // Treat an enum type as its underlying type.
778   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
779     RetTy = EnumTy->getDecl()->getIntegerType();
780 
781   return (RetTy->isPromotableIntegerType() ?
782           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
783 }
784 
785 /// IsX86_MMXType - Return true if this is an MMX type.
786 bool IsX86_MMXType(llvm::Type *IRType) {
787   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
788   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
789     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
790     IRType->getScalarSizeInBits() != 64;
791 }
792 
793 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
794                                           StringRef Constraint,
795                                           llvm::Type* Ty) {
796   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
797     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
798       // Invalid MMX constraint
799       return nullptr;
800     }
801 
802     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
803   }
804 
805   // No operation needed
806   return Ty;
807 }
808 
809 /// Returns true if this type can be passed in SSE registers with the
810 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
811 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
812   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
813     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
814       return true;
815   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
816     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
817     // registers specially.
818     unsigned VecSize = Context.getTypeSize(VT);
819     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
820       return true;
821   }
822   return false;
823 }
824 
825 /// Returns true if this aggregate is small enough to be passed in SSE registers
826 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
827 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
828   return NumMembers <= 4;
829 }
830 
831 //===----------------------------------------------------------------------===//
832 // X86-32 ABI Implementation
833 //===----------------------------------------------------------------------===//
834 
835 /// \brief Similar to llvm::CCState, but for Clang.
836 struct CCState {
837   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
838 
839   unsigned CC;
840   unsigned FreeRegs;
841   unsigned FreeSSERegs;
842 };
843 
844 /// X86_32ABIInfo - The X86-32 ABI information.
845 class X86_32ABIInfo : public SwiftABIInfo {
846   enum Class {
847     Integer,
848     Float
849   };
850 
851   static const unsigned MinABIStackAlignInBytes = 4;
852 
853   bool IsDarwinVectorABI;
854   bool IsRetSmallStructInRegABI;
855   bool IsWin32StructABI;
856   bool IsSoftFloatABI;
857   bool IsMCUABI;
858   unsigned DefaultNumRegisterParameters;
859 
860   static bool isRegisterSize(unsigned Size) {
861     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
862   }
863 
864   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
865     // FIXME: Assumes vectorcall is in use.
866     return isX86VectorTypeForVectorCall(getContext(), Ty);
867   }
868 
869   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
870                                          uint64_t NumMembers) const override {
871     // FIXME: Assumes vectorcall is in use.
872     return isX86VectorCallAggregateSmallEnough(NumMembers);
873   }
874 
875   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
876 
877   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
878   /// such that the argument will be passed in memory.
879   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
880 
881   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
882 
883   /// \brief Return the alignment to use for the given type on the stack.
884   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
885 
886   Class classify(QualType Ty) const;
887   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
888   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
889   /// \brief Updates the number of available free registers, returns
890   /// true if any registers were allocated.
891   bool updateFreeRegs(QualType Ty, CCState &State) const;
892 
893   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
894                                 bool &NeedsPadding) const;
895   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
896 
897   bool canExpandIndirectArgument(QualType Ty) const;
898 
899   /// \brief Rewrite the function info so that all memory arguments use
900   /// inalloca.
901   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
902 
903   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
904                            CharUnits &StackOffset, ABIArgInfo &Info,
905                            QualType Type) const;
906 
907 public:
908 
909   void computeInfo(CGFunctionInfo &FI) const override;
910   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
911                     QualType Ty) const override;
912 
913   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
914                 bool RetSmallStructInRegABI, bool Win32StructABI,
915                 unsigned NumRegisterParameters, bool SoftFloatABI)
916     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
917       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
918       IsWin32StructABI(Win32StructABI),
919       IsSoftFloatABI(SoftFloatABI),
920       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
921       DefaultNumRegisterParameters(NumRegisterParameters) {}
922 
923   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
924                                     ArrayRef<llvm::Type*> scalars,
925                                     bool asReturnValue) const override {
926     // LLVM's x86-32 lowering currently only assigns up to three
927     // integer registers and three fp registers.  Oddly, it'll use up to
928     // four vector registers for vectors, but those can overlap with the
929     // scalar registers.
930     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
931   }
932 };
933 
934 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
935 public:
936   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
937                           bool RetSmallStructInRegABI, bool Win32StructABI,
938                           unsigned NumRegisterParameters, bool SoftFloatABI)
939       : TargetCodeGenInfo(new X86_32ABIInfo(
940             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
941             NumRegisterParameters, SoftFloatABI)) {}
942 
943   static bool isStructReturnInRegABI(
944       const llvm::Triple &Triple, const CodeGenOptions &Opts);
945 
946   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
947                            CodeGen::CodeGenModule &CGM) const override;
948 
949   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
950     // Darwin uses different dwarf register numbers for EH.
951     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
952     return 4;
953   }
954 
955   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
956                                llvm::Value *Address) const override;
957 
958   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
959                                   StringRef Constraint,
960                                   llvm::Type* Ty) const override {
961     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
962   }
963 
964   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
965                                 std::string &Constraints,
966                                 std::vector<llvm::Type *> &ResultRegTypes,
967                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
968                                 std::vector<LValue> &ResultRegDests,
969                                 std::string &AsmString,
970                                 unsigned NumOutputs) const override;
971 
972   llvm::Constant *
973   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
974     unsigned Sig = (0xeb << 0) |  // jmp rel8
975                    (0x06 << 8) |  //           .+0x08
976                    ('F' << 16) |
977                    ('T' << 24);
978     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
979   }
980 
981   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
982     return "movl\t%ebp, %ebp"
983            "\t\t## marker for objc_retainAutoreleaseReturnValue";
984   }
985 };
986 
987 }
988 
989 /// Rewrite input constraint references after adding some output constraints.
990 /// In the case where there is one output and one input and we add one output,
991 /// we need to replace all operand references greater than or equal to 1:
992 ///     mov $0, $1
993 ///     mov eax, $1
994 /// The result will be:
995 ///     mov $0, $2
996 ///     mov eax, $2
997 static void rewriteInputConstraintReferences(unsigned FirstIn,
998                                              unsigned NumNewOuts,
999                                              std::string &AsmString) {
1000   std::string Buf;
1001   llvm::raw_string_ostream OS(Buf);
1002   size_t Pos = 0;
1003   while (Pos < AsmString.size()) {
1004     size_t DollarStart = AsmString.find('$', Pos);
1005     if (DollarStart == std::string::npos)
1006       DollarStart = AsmString.size();
1007     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1008     if (DollarEnd == std::string::npos)
1009       DollarEnd = AsmString.size();
1010     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1011     Pos = DollarEnd;
1012     size_t NumDollars = DollarEnd - DollarStart;
1013     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1014       // We have an operand reference.
1015       size_t DigitStart = Pos;
1016       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1017       if (DigitEnd == std::string::npos)
1018         DigitEnd = AsmString.size();
1019       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1020       unsigned OperandIndex;
1021       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1022         if (OperandIndex >= FirstIn)
1023           OperandIndex += NumNewOuts;
1024         OS << OperandIndex;
1025       } else {
1026         OS << OperandStr;
1027       }
1028       Pos = DigitEnd;
1029     }
1030   }
1031   AsmString = std::move(OS.str());
1032 }
1033 
1034 /// Add output constraints for EAX:EDX because they are return registers.
1035 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1036     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1037     std::vector<llvm::Type *> &ResultRegTypes,
1038     std::vector<llvm::Type *> &ResultTruncRegTypes,
1039     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1040     unsigned NumOutputs) const {
1041   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1042 
1043   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1044   // larger.
1045   if (!Constraints.empty())
1046     Constraints += ',';
1047   if (RetWidth <= 32) {
1048     Constraints += "={eax}";
1049     ResultRegTypes.push_back(CGF.Int32Ty);
1050   } else {
1051     // Use the 'A' constraint for EAX:EDX.
1052     Constraints += "=A";
1053     ResultRegTypes.push_back(CGF.Int64Ty);
1054   }
1055 
1056   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1057   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1058   ResultTruncRegTypes.push_back(CoerceTy);
1059 
1060   // Coerce the integer by bitcasting the return slot pointer.
1061   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1062                                                   CoerceTy->getPointerTo()));
1063   ResultRegDests.push_back(ReturnSlot);
1064 
1065   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1066 }
1067 
1068 /// shouldReturnTypeInRegister - Determine if the given type should be
1069 /// returned in a register (for the Darwin and MCU ABI).
1070 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1071                                                ASTContext &Context) const {
1072   uint64_t Size = Context.getTypeSize(Ty);
1073 
1074   // For i386, type must be register sized.
1075   // For the MCU ABI, it only needs to be <= 8-byte
1076   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1077    return false;
1078 
1079   if (Ty->isVectorType()) {
1080     // 64- and 128- bit vectors inside structures are not returned in
1081     // registers.
1082     if (Size == 64 || Size == 128)
1083       return false;
1084 
1085     return true;
1086   }
1087 
1088   // If this is a builtin, pointer, enum, complex type, member pointer, or
1089   // member function pointer it is ok.
1090   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1091       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1092       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1093     return true;
1094 
1095   // Arrays are treated like records.
1096   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1097     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1098 
1099   // Otherwise, it must be a record type.
1100   const RecordType *RT = Ty->getAs<RecordType>();
1101   if (!RT) return false;
1102 
1103   // FIXME: Traverse bases here too.
1104 
1105   // Structure types are passed in register if all fields would be
1106   // passed in a register.
1107   for (const auto *FD : RT->getDecl()->fields()) {
1108     // Empty fields are ignored.
1109     if (isEmptyField(Context, FD, true))
1110       continue;
1111 
1112     // Check fields recursively.
1113     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1114       return false;
1115   }
1116   return true;
1117 }
1118 
1119 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1120   // Treat complex types as the element type.
1121   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1122     Ty = CTy->getElementType();
1123 
1124   // Check for a type which we know has a simple scalar argument-passing
1125   // convention without any padding.  (We're specifically looking for 32
1126   // and 64-bit integer and integer-equivalents, float, and double.)
1127   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1128       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1129     return false;
1130 
1131   uint64_t Size = Context.getTypeSize(Ty);
1132   return Size == 32 || Size == 64;
1133 }
1134 
1135 /// Test whether an argument type which is to be passed indirectly (on the
1136 /// stack) would have the equivalent layout if it was expanded into separate
1137 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1138 /// optimizations.
1139 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1140   // We can only expand structure types.
1141   const RecordType *RT = Ty->getAs<RecordType>();
1142   if (!RT)
1143     return false;
1144   const RecordDecl *RD = RT->getDecl();
1145   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1146     if (!IsWin32StructABI ) {
1147       // On non-Windows, we have to conservatively match our old bitcode
1148       // prototypes in order to be ABI-compatible at the bitcode level.
1149       if (!CXXRD->isCLike())
1150         return false;
1151     } else {
1152       // Don't do this for dynamic classes.
1153       if (CXXRD->isDynamicClass())
1154         return false;
1155       // Don't do this if there are any non-empty bases.
1156       for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
1157         if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true))
1158           return false;
1159       }
1160     }
1161   }
1162 
1163   uint64_t Size = 0;
1164 
1165   for (const auto *FD : RD->fields()) {
1166     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1167     // argument is smaller than 32-bits, expanding the struct will create
1168     // alignment padding.
1169     if (!is32Or64BitBasicType(FD->getType(), getContext()))
1170       return false;
1171 
1172     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1173     // how to expand them yet, and the predicate for telling if a bitfield still
1174     // counts as "basic" is more complicated than what we were doing previously.
1175     if (FD->isBitField())
1176       return false;
1177 
1178     Size += getContext().getTypeSize(FD->getType());
1179   }
1180 
1181   // We can do this if there was no alignment padding.
1182   return Size == getContext().getTypeSize(Ty);
1183 }
1184 
1185 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1186   // If the return value is indirect, then the hidden argument is consuming one
1187   // integer register.
1188   if (State.FreeRegs) {
1189     --State.FreeRegs;
1190     if (!IsMCUABI)
1191       return getNaturalAlignIndirectInReg(RetTy);
1192   }
1193   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1194 }
1195 
1196 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1197                                              CCState &State) const {
1198   if (RetTy->isVoidType())
1199     return ABIArgInfo::getIgnore();
1200 
1201   const Type *Base = nullptr;
1202   uint64_t NumElts = 0;
1203   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1204       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1205     // The LLVM struct type for such an aggregate should lower properly.
1206     return ABIArgInfo::getDirect();
1207   }
1208 
1209   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1210     // On Darwin, some vectors are returned in registers.
1211     if (IsDarwinVectorABI) {
1212       uint64_t Size = getContext().getTypeSize(RetTy);
1213 
1214       // 128-bit vectors are a special case; they are returned in
1215       // registers and we need to make sure to pick a type the LLVM
1216       // backend will like.
1217       if (Size == 128)
1218         return ABIArgInfo::getDirect(llvm::VectorType::get(
1219                   llvm::Type::getInt64Ty(getVMContext()), 2));
1220 
1221       // Always return in register if it fits in a general purpose
1222       // register, or if it is 64 bits and has a single element.
1223       if ((Size == 8 || Size == 16 || Size == 32) ||
1224           (Size == 64 && VT->getNumElements() == 1))
1225         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1226                                                             Size));
1227 
1228       return getIndirectReturnResult(RetTy, State);
1229     }
1230 
1231     return ABIArgInfo::getDirect();
1232   }
1233 
1234   if (isAggregateTypeForABI(RetTy)) {
1235     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1236       // Structures with flexible arrays are always indirect.
1237       if (RT->getDecl()->hasFlexibleArrayMember())
1238         return getIndirectReturnResult(RetTy, State);
1239     }
1240 
1241     // If specified, structs and unions are always indirect.
1242     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1243       return getIndirectReturnResult(RetTy, State);
1244 
1245     // Ignore empty structs/unions.
1246     if (isEmptyRecord(getContext(), RetTy, true))
1247       return ABIArgInfo::getIgnore();
1248 
1249     // Small structures which are register sized are generally returned
1250     // in a register.
1251     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1252       uint64_t Size = getContext().getTypeSize(RetTy);
1253 
1254       // As a special-case, if the struct is a "single-element" struct, and
1255       // the field is of type "float" or "double", return it in a
1256       // floating-point register. (MSVC does not apply this special case.)
1257       // We apply a similar transformation for pointer types to improve the
1258       // quality of the generated IR.
1259       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1260         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1261             || SeltTy->hasPointerRepresentation())
1262           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1263 
1264       // FIXME: We should be able to narrow this integer in cases with dead
1265       // padding.
1266       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1267     }
1268 
1269     return getIndirectReturnResult(RetTy, State);
1270   }
1271 
1272   // Treat an enum type as its underlying type.
1273   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1274     RetTy = EnumTy->getDecl()->getIntegerType();
1275 
1276   return (RetTy->isPromotableIntegerType() ?
1277           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1278 }
1279 
1280 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1281   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1282 }
1283 
1284 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1285   const RecordType *RT = Ty->getAs<RecordType>();
1286   if (!RT)
1287     return 0;
1288   const RecordDecl *RD = RT->getDecl();
1289 
1290   // If this is a C++ record, check the bases first.
1291   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1292     for (const auto &I : CXXRD->bases())
1293       if (!isRecordWithSSEVectorType(Context, I.getType()))
1294         return false;
1295 
1296   for (const auto *i : RD->fields()) {
1297     QualType FT = i->getType();
1298 
1299     if (isSSEVectorType(Context, FT))
1300       return true;
1301 
1302     if (isRecordWithSSEVectorType(Context, FT))
1303       return true;
1304   }
1305 
1306   return false;
1307 }
1308 
1309 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1310                                                  unsigned Align) const {
1311   // Otherwise, if the alignment is less than or equal to the minimum ABI
1312   // alignment, just use the default; the backend will handle this.
1313   if (Align <= MinABIStackAlignInBytes)
1314     return 0; // Use default alignment.
1315 
1316   // On non-Darwin, the stack type alignment is always 4.
1317   if (!IsDarwinVectorABI) {
1318     // Set explicit alignment, since we may need to realign the top.
1319     return MinABIStackAlignInBytes;
1320   }
1321 
1322   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1323   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1324                       isRecordWithSSEVectorType(getContext(), Ty)))
1325     return 16;
1326 
1327   return MinABIStackAlignInBytes;
1328 }
1329 
1330 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1331                                             CCState &State) const {
1332   if (!ByVal) {
1333     if (State.FreeRegs) {
1334       --State.FreeRegs; // Non-byval indirects just use one pointer.
1335       if (!IsMCUABI)
1336         return getNaturalAlignIndirectInReg(Ty);
1337     }
1338     return getNaturalAlignIndirect(Ty, false);
1339   }
1340 
1341   // Compute the byval alignment.
1342   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1343   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1344   if (StackAlign == 0)
1345     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1346 
1347   // If the stack alignment is less than the type alignment, realign the
1348   // argument.
1349   bool Realign = TypeAlign > StackAlign;
1350   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1351                                  /*ByVal=*/true, Realign);
1352 }
1353 
1354 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1355   const Type *T = isSingleElementStruct(Ty, getContext());
1356   if (!T)
1357     T = Ty.getTypePtr();
1358 
1359   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1360     BuiltinType::Kind K = BT->getKind();
1361     if (K == BuiltinType::Float || K == BuiltinType::Double)
1362       return Float;
1363   }
1364   return Integer;
1365 }
1366 
1367 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1368   if (!IsSoftFloatABI) {
1369     Class C = classify(Ty);
1370     if (C == Float)
1371       return false;
1372   }
1373 
1374   unsigned Size = getContext().getTypeSize(Ty);
1375   unsigned SizeInRegs = (Size + 31) / 32;
1376 
1377   if (SizeInRegs == 0)
1378     return false;
1379 
1380   if (!IsMCUABI) {
1381     if (SizeInRegs > State.FreeRegs) {
1382       State.FreeRegs = 0;
1383       return false;
1384     }
1385   } else {
1386     // The MCU psABI allows passing parameters in-reg even if there are
1387     // earlier parameters that are passed on the stack. Also,
1388     // it does not allow passing >8-byte structs in-register,
1389     // even if there are 3 free registers available.
1390     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1391       return false;
1392   }
1393 
1394   State.FreeRegs -= SizeInRegs;
1395   return true;
1396 }
1397 
1398 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1399                                              bool &InReg,
1400                                              bool &NeedsPadding) const {
1401   // On Windows, aggregates other than HFAs are never passed in registers, and
1402   // they do not consume register slots. Homogenous floating-point aggregates
1403   // (HFAs) have already been dealt with at this point.
1404   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1405     return false;
1406 
1407   NeedsPadding = false;
1408   InReg = !IsMCUABI;
1409 
1410   if (!updateFreeRegs(Ty, State))
1411     return false;
1412 
1413   if (IsMCUABI)
1414     return true;
1415 
1416   if (State.CC == llvm::CallingConv::X86_FastCall ||
1417       State.CC == llvm::CallingConv::X86_VectorCall) {
1418     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1419       NeedsPadding = true;
1420 
1421     return false;
1422   }
1423 
1424   return true;
1425 }
1426 
1427 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1428   if (!updateFreeRegs(Ty, State))
1429     return false;
1430 
1431   if (IsMCUABI)
1432     return false;
1433 
1434   if (State.CC == llvm::CallingConv::X86_FastCall ||
1435       State.CC == llvm::CallingConv::X86_VectorCall) {
1436     if (getContext().getTypeSize(Ty) > 32)
1437       return false;
1438 
1439     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1440         Ty->isReferenceType());
1441   }
1442 
1443   return true;
1444 }
1445 
1446 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1447                                                CCState &State) const {
1448   // FIXME: Set alignment on indirect arguments.
1449 
1450   Ty = useFirstFieldIfTransparentUnion(Ty);
1451 
1452   // Check with the C++ ABI first.
1453   const RecordType *RT = Ty->getAs<RecordType>();
1454   if (RT) {
1455     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1456     if (RAA == CGCXXABI::RAA_Indirect) {
1457       return getIndirectResult(Ty, false, State);
1458     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1459       // The field index doesn't matter, we'll fix it up later.
1460       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1461     }
1462   }
1463 
1464   // vectorcall adds the concept of a homogenous vector aggregate, similar
1465   // to other targets.
1466   const Type *Base = nullptr;
1467   uint64_t NumElts = 0;
1468   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1469       isHomogeneousAggregate(Ty, Base, NumElts)) {
1470     if (State.FreeSSERegs >= NumElts) {
1471       State.FreeSSERegs -= NumElts;
1472       if (Ty->isBuiltinType() || Ty->isVectorType())
1473         return ABIArgInfo::getDirect();
1474       return ABIArgInfo::getExpand();
1475     }
1476     return getIndirectResult(Ty, /*ByVal=*/false, State);
1477   }
1478 
1479   if (isAggregateTypeForABI(Ty)) {
1480     // Structures with flexible arrays are always indirect.
1481     // FIXME: This should not be byval!
1482     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1483       return getIndirectResult(Ty, true, State);
1484 
1485     // Ignore empty structs/unions on non-Windows.
1486     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1487       return ABIArgInfo::getIgnore();
1488 
1489     llvm::LLVMContext &LLVMContext = getVMContext();
1490     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1491     bool NeedsPadding = false;
1492     bool InReg;
1493     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1494       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1495       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1496       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1497       if (InReg)
1498         return ABIArgInfo::getDirectInReg(Result);
1499       else
1500         return ABIArgInfo::getDirect(Result);
1501     }
1502     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1503 
1504     // Expand small (<= 128-bit) record types when we know that the stack layout
1505     // of those arguments will match the struct. This is important because the
1506     // LLVM backend isn't smart enough to remove byval, which inhibits many
1507     // optimizations.
1508     // Don't do this for the MCU if there are still free integer registers
1509     // (see X86_64 ABI for full explanation).
1510     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1511         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1512       return ABIArgInfo::getExpandWithPadding(
1513           State.CC == llvm::CallingConv::X86_FastCall ||
1514               State.CC == llvm::CallingConv::X86_VectorCall,
1515           PaddingType);
1516 
1517     return getIndirectResult(Ty, true, State);
1518   }
1519 
1520   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1521     // On Darwin, some vectors are passed in memory, we handle this by passing
1522     // it as an i8/i16/i32/i64.
1523     if (IsDarwinVectorABI) {
1524       uint64_t Size = getContext().getTypeSize(Ty);
1525       if ((Size == 8 || Size == 16 || Size == 32) ||
1526           (Size == 64 && VT->getNumElements() == 1))
1527         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1528                                                             Size));
1529     }
1530 
1531     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1532       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1533 
1534     return ABIArgInfo::getDirect();
1535   }
1536 
1537 
1538   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1539     Ty = EnumTy->getDecl()->getIntegerType();
1540 
1541   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1542 
1543   if (Ty->isPromotableIntegerType()) {
1544     if (InReg)
1545       return ABIArgInfo::getExtendInReg();
1546     return ABIArgInfo::getExtend();
1547   }
1548 
1549   if (InReg)
1550     return ABIArgInfo::getDirectInReg();
1551   return ABIArgInfo::getDirect();
1552 }
1553 
1554 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1555   CCState State(FI.getCallingConvention());
1556   if (IsMCUABI)
1557     State.FreeRegs = 3;
1558   else if (State.CC == llvm::CallingConv::X86_FastCall)
1559     State.FreeRegs = 2;
1560   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1561     State.FreeRegs = 2;
1562     State.FreeSSERegs = 6;
1563   } else if (FI.getHasRegParm())
1564     State.FreeRegs = FI.getRegParm();
1565   else
1566     State.FreeRegs = DefaultNumRegisterParameters;
1567 
1568   if (!getCXXABI().classifyReturnType(FI)) {
1569     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1570   } else if (FI.getReturnInfo().isIndirect()) {
1571     // The C++ ABI is not aware of register usage, so we have to check if the
1572     // return value was sret and put it in a register ourselves if appropriate.
1573     if (State.FreeRegs) {
1574       --State.FreeRegs;  // The sret parameter consumes a register.
1575       if (!IsMCUABI)
1576         FI.getReturnInfo().setInReg(true);
1577     }
1578   }
1579 
1580   // The chain argument effectively gives us another free register.
1581   if (FI.isChainCall())
1582     ++State.FreeRegs;
1583 
1584   bool UsedInAlloca = false;
1585   for (auto &I : FI.arguments()) {
1586     I.info = classifyArgumentType(I.type, State);
1587     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1588   }
1589 
1590   // If we needed to use inalloca for any argument, do a second pass and rewrite
1591   // all the memory arguments to use inalloca.
1592   if (UsedInAlloca)
1593     rewriteWithInAlloca(FI);
1594 }
1595 
1596 void
1597 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1598                                    CharUnits &StackOffset, ABIArgInfo &Info,
1599                                    QualType Type) const {
1600   // Arguments are always 4-byte-aligned.
1601   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1602 
1603   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1604   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1605   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1606   StackOffset += getContext().getTypeSizeInChars(Type);
1607 
1608   // Insert padding bytes to respect alignment.
1609   CharUnits FieldEnd = StackOffset;
1610   StackOffset = FieldEnd.alignTo(FieldAlign);
1611   if (StackOffset != FieldEnd) {
1612     CharUnits NumBytes = StackOffset - FieldEnd;
1613     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1614     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1615     FrameFields.push_back(Ty);
1616   }
1617 }
1618 
1619 static bool isArgInAlloca(const ABIArgInfo &Info) {
1620   // Leave ignored and inreg arguments alone.
1621   switch (Info.getKind()) {
1622   case ABIArgInfo::InAlloca:
1623     return true;
1624   case ABIArgInfo::Indirect:
1625     assert(Info.getIndirectByVal());
1626     return true;
1627   case ABIArgInfo::Ignore:
1628     return false;
1629   case ABIArgInfo::Direct:
1630   case ABIArgInfo::Extend:
1631     if (Info.getInReg())
1632       return false;
1633     return true;
1634   case ABIArgInfo::Expand:
1635   case ABIArgInfo::CoerceAndExpand:
1636     // These are aggregate types which are never passed in registers when
1637     // inalloca is involved.
1638     return true;
1639   }
1640   llvm_unreachable("invalid enum");
1641 }
1642 
1643 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1644   assert(IsWin32StructABI && "inalloca only supported on win32");
1645 
1646   // Build a packed struct type for all of the arguments in memory.
1647   SmallVector<llvm::Type *, 6> FrameFields;
1648 
1649   // The stack alignment is always 4.
1650   CharUnits StackAlign = CharUnits::fromQuantity(4);
1651 
1652   CharUnits StackOffset;
1653   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1654 
1655   // Put 'this' into the struct before 'sret', if necessary.
1656   bool IsThisCall =
1657       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1658   ABIArgInfo &Ret = FI.getReturnInfo();
1659   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1660       isArgInAlloca(I->info)) {
1661     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1662     ++I;
1663   }
1664 
1665   // Put the sret parameter into the inalloca struct if it's in memory.
1666   if (Ret.isIndirect() && !Ret.getInReg()) {
1667     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1668     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1669     // On Windows, the hidden sret parameter is always returned in eax.
1670     Ret.setInAllocaSRet(IsWin32StructABI);
1671   }
1672 
1673   // Skip the 'this' parameter in ecx.
1674   if (IsThisCall)
1675     ++I;
1676 
1677   // Put arguments passed in memory into the struct.
1678   for (; I != E; ++I) {
1679     if (isArgInAlloca(I->info))
1680       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1681   }
1682 
1683   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1684                                         /*isPacked=*/true),
1685                   StackAlign);
1686 }
1687 
1688 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1689                                  Address VAListAddr, QualType Ty) const {
1690 
1691   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1692 
1693   // x86-32 changes the alignment of certain arguments on the stack.
1694   //
1695   // Just messing with TypeInfo like this works because we never pass
1696   // anything indirectly.
1697   TypeInfo.second = CharUnits::fromQuantity(
1698                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1699 
1700   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1701                           TypeInfo, CharUnits::fromQuantity(4),
1702                           /*AllowHigherAlign*/ true);
1703 }
1704 
1705 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1706     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1707   assert(Triple.getArch() == llvm::Triple::x86);
1708 
1709   switch (Opts.getStructReturnConvention()) {
1710   case CodeGenOptions::SRCK_Default:
1711     break;
1712   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1713     return false;
1714   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1715     return true;
1716   }
1717 
1718   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1719     return true;
1720 
1721   switch (Triple.getOS()) {
1722   case llvm::Triple::DragonFly:
1723   case llvm::Triple::FreeBSD:
1724   case llvm::Triple::OpenBSD:
1725   case llvm::Triple::Bitrig:
1726   case llvm::Triple::Win32:
1727     return true;
1728   default:
1729     return false;
1730   }
1731 }
1732 
1733 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1734                                                   llvm::GlobalValue *GV,
1735                                             CodeGen::CodeGenModule &CGM) const {
1736   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1737     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1738       // Get the LLVM function.
1739       llvm::Function *Fn = cast<llvm::Function>(GV);
1740 
1741       // Now add the 'alignstack' attribute with a value of 16.
1742       llvm::AttrBuilder B;
1743       B.addStackAlignmentAttr(16);
1744       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1745                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1746                                               llvm::AttributeSet::FunctionIndex,
1747                                               B));
1748     }
1749     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1750       llvm::Function *Fn = cast<llvm::Function>(GV);
1751       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1752     }
1753   }
1754 }
1755 
1756 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1757                                                CodeGen::CodeGenFunction &CGF,
1758                                                llvm::Value *Address) const {
1759   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1760 
1761   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1762 
1763   // 0-7 are the eight integer registers;  the order is different
1764   //   on Darwin (for EH), but the range is the same.
1765   // 8 is %eip.
1766   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1767 
1768   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1769     // 12-16 are st(0..4).  Not sure why we stop at 4.
1770     // These have size 16, which is sizeof(long double) on
1771     // platforms with 8-byte alignment for that type.
1772     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1773     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1774 
1775   } else {
1776     // 9 is %eflags, which doesn't get a size on Darwin for some
1777     // reason.
1778     Builder.CreateAlignedStore(
1779         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1780                                CharUnits::One());
1781 
1782     // 11-16 are st(0..5).  Not sure why we stop at 5.
1783     // These have size 12, which is sizeof(long double) on
1784     // platforms with 4-byte alignment for that type.
1785     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1786     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1787   }
1788 
1789   return false;
1790 }
1791 
1792 //===----------------------------------------------------------------------===//
1793 // X86-64 ABI Implementation
1794 //===----------------------------------------------------------------------===//
1795 
1796 
1797 namespace {
1798 /// The AVX ABI level for X86 targets.
1799 enum class X86AVXABILevel {
1800   None,
1801   AVX,
1802   AVX512
1803 };
1804 
1805 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1806 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1807   switch (AVXLevel) {
1808   case X86AVXABILevel::AVX512:
1809     return 512;
1810   case X86AVXABILevel::AVX:
1811     return 256;
1812   case X86AVXABILevel::None:
1813     return 128;
1814   }
1815   llvm_unreachable("Unknown AVXLevel");
1816 }
1817 
1818 /// X86_64ABIInfo - The X86_64 ABI information.
1819 class X86_64ABIInfo : public SwiftABIInfo {
1820   enum Class {
1821     Integer = 0,
1822     SSE,
1823     SSEUp,
1824     X87,
1825     X87Up,
1826     ComplexX87,
1827     NoClass,
1828     Memory
1829   };
1830 
1831   /// merge - Implement the X86_64 ABI merging algorithm.
1832   ///
1833   /// Merge an accumulating classification \arg Accum with a field
1834   /// classification \arg Field.
1835   ///
1836   /// \param Accum - The accumulating classification. This should
1837   /// always be either NoClass or the result of a previous merge
1838   /// call. In addition, this should never be Memory (the caller
1839   /// should just return Memory for the aggregate).
1840   static Class merge(Class Accum, Class Field);
1841 
1842   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1843   ///
1844   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1845   /// final MEMORY or SSE classes when necessary.
1846   ///
1847   /// \param AggregateSize - The size of the current aggregate in
1848   /// the classification process.
1849   ///
1850   /// \param Lo - The classification for the parts of the type
1851   /// residing in the low word of the containing object.
1852   ///
1853   /// \param Hi - The classification for the parts of the type
1854   /// residing in the higher words of the containing object.
1855   ///
1856   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1857 
1858   /// classify - Determine the x86_64 register classes in which the
1859   /// given type T should be passed.
1860   ///
1861   /// \param Lo - The classification for the parts of the type
1862   /// residing in the low word of the containing object.
1863   ///
1864   /// \param Hi - The classification for the parts of the type
1865   /// residing in the high word of the containing object.
1866   ///
1867   /// \param OffsetBase - The bit offset of this type in the
1868   /// containing object.  Some parameters are classified different
1869   /// depending on whether they straddle an eightbyte boundary.
1870   ///
1871   /// \param isNamedArg - Whether the argument in question is a "named"
1872   /// argument, as used in AMD64-ABI 3.5.7.
1873   ///
1874   /// If a word is unused its result will be NoClass; if a type should
1875   /// be passed in Memory then at least the classification of \arg Lo
1876   /// will be Memory.
1877   ///
1878   /// The \arg Lo class will be NoClass iff the argument is ignored.
1879   ///
1880   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1881   /// also be ComplexX87.
1882   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1883                 bool isNamedArg) const;
1884 
1885   llvm::Type *GetByteVectorType(QualType Ty) const;
1886   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1887                                  unsigned IROffset, QualType SourceTy,
1888                                  unsigned SourceOffset) const;
1889   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1890                                      unsigned IROffset, QualType SourceTy,
1891                                      unsigned SourceOffset) const;
1892 
1893   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1894   /// such that the argument will be returned in memory.
1895   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1896 
1897   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1898   /// such that the argument will be passed in memory.
1899   ///
1900   /// \param freeIntRegs - The number of free integer registers remaining
1901   /// available.
1902   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1903 
1904   ABIArgInfo classifyReturnType(QualType RetTy) const;
1905 
1906   ABIArgInfo classifyArgumentType(QualType Ty,
1907                                   unsigned freeIntRegs,
1908                                   unsigned &neededInt,
1909                                   unsigned &neededSSE,
1910                                   bool isNamedArg) const;
1911 
1912   bool IsIllegalVectorType(QualType Ty) const;
1913 
1914   /// The 0.98 ABI revision clarified a lot of ambiguities,
1915   /// unfortunately in ways that were not always consistent with
1916   /// certain previous compilers.  In particular, platforms which
1917   /// required strict binary compatibility with older versions of GCC
1918   /// may need to exempt themselves.
1919   bool honorsRevision0_98() const {
1920     return !getTarget().getTriple().isOSDarwin();
1921   }
1922 
1923   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
1924   // compilers require us to classify it as INTEGER.
1925   bool classifyIntegerMMXAsSSE() const {
1926     const llvm::Triple &Triple = getTarget().getTriple();
1927     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
1928       return false;
1929     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
1930       return false;
1931     return true;
1932   }
1933 
1934   X86AVXABILevel AVXLevel;
1935   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1936   // 64-bit hardware.
1937   bool Has64BitPointers;
1938 
1939 public:
1940   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1941       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
1942       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1943   }
1944 
1945   bool isPassedUsingAVXType(QualType type) const {
1946     unsigned neededInt, neededSSE;
1947     // The freeIntRegs argument doesn't matter here.
1948     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1949                                            /*isNamedArg*/true);
1950     if (info.isDirect()) {
1951       llvm::Type *ty = info.getCoerceToType();
1952       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1953         return (vectorTy->getBitWidth() > 128);
1954     }
1955     return false;
1956   }
1957 
1958   void computeInfo(CGFunctionInfo &FI) const override;
1959 
1960   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1961                     QualType Ty) const override;
1962   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1963                       QualType Ty) const override;
1964 
1965   bool has64BitPointers() const {
1966     return Has64BitPointers;
1967   }
1968 
1969   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
1970                                     ArrayRef<llvm::Type*> scalars,
1971                                     bool asReturnValue) const override {
1972     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
1973   }
1974 };
1975 
1976 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1977 class WinX86_64ABIInfo : public ABIInfo {
1978 public:
1979   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
1980       : ABIInfo(CGT),
1981         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1982 
1983   void computeInfo(CGFunctionInfo &FI) const override;
1984 
1985   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1986                     QualType Ty) const override;
1987 
1988   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1989     // FIXME: Assumes vectorcall is in use.
1990     return isX86VectorTypeForVectorCall(getContext(), Ty);
1991   }
1992 
1993   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1994                                          uint64_t NumMembers) const override {
1995     // FIXME: Assumes vectorcall is in use.
1996     return isX86VectorCallAggregateSmallEnough(NumMembers);
1997   }
1998 
1999 private:
2000   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
2001                       bool IsReturnType) const;
2002 
2003   bool IsMingw64;
2004 };
2005 
2006 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2007 public:
2008   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2009       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2010 
2011   const X86_64ABIInfo &getABIInfo() const {
2012     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2013   }
2014 
2015   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2016     return 7;
2017   }
2018 
2019   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2020                                llvm::Value *Address) const override {
2021     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2022 
2023     // 0-15 are the 16 integer registers.
2024     // 16 is %rip.
2025     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2026     return false;
2027   }
2028 
2029   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2030                                   StringRef Constraint,
2031                                   llvm::Type* Ty) const override {
2032     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2033   }
2034 
2035   bool isNoProtoCallVariadic(const CallArgList &args,
2036                              const FunctionNoProtoType *fnType) const override {
2037     // The default CC on x86-64 sets %al to the number of SSA
2038     // registers used, and GCC sets this when calling an unprototyped
2039     // function, so we override the default behavior.  However, don't do
2040     // that when AVX types are involved: the ABI explicitly states it is
2041     // undefined, and it doesn't work in practice because of how the ABI
2042     // defines varargs anyway.
2043     if (fnType->getCallConv() == CC_C) {
2044       bool HasAVXType = false;
2045       for (CallArgList::const_iterator
2046              it = args.begin(), ie = args.end(); it != ie; ++it) {
2047         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2048           HasAVXType = true;
2049           break;
2050         }
2051       }
2052 
2053       if (!HasAVXType)
2054         return true;
2055     }
2056 
2057     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2058   }
2059 
2060   llvm::Constant *
2061   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2062     unsigned Sig;
2063     if (getABIInfo().has64BitPointers())
2064       Sig = (0xeb << 0) |  // jmp rel8
2065             (0x0a << 8) |  //           .+0x0c
2066             ('F' << 16) |
2067             ('T' << 24);
2068     else
2069       Sig = (0xeb << 0) |  // jmp rel8
2070             (0x06 << 8) |  //           .+0x08
2071             ('F' << 16) |
2072             ('T' << 24);
2073     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2074   }
2075 
2076   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2077                            CodeGen::CodeGenModule &CGM) const override {
2078     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2079       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2080         llvm::Function *Fn = cast<llvm::Function>(GV);
2081         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2082       }
2083     }
2084   }
2085 };
2086 
2087 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2088 public:
2089   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2090     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2091 
2092   void getDependentLibraryOption(llvm::StringRef Lib,
2093                                  llvm::SmallString<24> &Opt) const override {
2094     Opt = "\01";
2095     // If the argument contains a space, enclose it in quotes.
2096     if (Lib.find(" ") != StringRef::npos)
2097       Opt += "\"" + Lib.str() + "\"";
2098     else
2099       Opt += Lib;
2100   }
2101 };
2102 
2103 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2104   // If the argument does not end in .lib, automatically add the suffix.
2105   // If the argument contains a space, enclose it in quotes.
2106   // This matches the behavior of MSVC.
2107   bool Quote = (Lib.find(" ") != StringRef::npos);
2108   std::string ArgStr = Quote ? "\"" : "";
2109   ArgStr += Lib;
2110   if (!Lib.endswith_lower(".lib"))
2111     ArgStr += ".lib";
2112   ArgStr += Quote ? "\"" : "";
2113   return ArgStr;
2114 }
2115 
2116 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2117 public:
2118   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2119         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2120         unsigned NumRegisterParameters)
2121     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2122         Win32StructABI, NumRegisterParameters, false) {}
2123 
2124   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2125                            CodeGen::CodeGenModule &CGM) const override;
2126 
2127   void getDependentLibraryOption(llvm::StringRef Lib,
2128                                  llvm::SmallString<24> &Opt) const override {
2129     Opt = "/DEFAULTLIB:";
2130     Opt += qualifyWindowsLibrary(Lib);
2131   }
2132 
2133   void getDetectMismatchOption(llvm::StringRef Name,
2134                                llvm::StringRef Value,
2135                                llvm::SmallString<32> &Opt) const override {
2136     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2137   }
2138 };
2139 
2140 static void addStackProbeSizeTargetAttribute(const Decl *D,
2141                                              llvm::GlobalValue *GV,
2142                                              CodeGen::CodeGenModule &CGM) {
2143   if (D && isa<FunctionDecl>(D)) {
2144     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2145       llvm::Function *Fn = cast<llvm::Function>(GV);
2146 
2147       Fn->addFnAttr("stack-probe-size",
2148                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2149     }
2150   }
2151 }
2152 
2153 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2154                                                      llvm::GlobalValue *GV,
2155                                             CodeGen::CodeGenModule &CGM) const {
2156   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2157 
2158   addStackProbeSizeTargetAttribute(D, GV, CGM);
2159 }
2160 
2161 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2162 public:
2163   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2164                              X86AVXABILevel AVXLevel)
2165       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2166 
2167   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2168                            CodeGen::CodeGenModule &CGM) const override;
2169 
2170   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2171     return 7;
2172   }
2173 
2174   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2175                                llvm::Value *Address) const override {
2176     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2177 
2178     // 0-15 are the 16 integer registers.
2179     // 16 is %rip.
2180     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2181     return false;
2182   }
2183 
2184   void getDependentLibraryOption(llvm::StringRef Lib,
2185                                  llvm::SmallString<24> &Opt) const override {
2186     Opt = "/DEFAULTLIB:";
2187     Opt += qualifyWindowsLibrary(Lib);
2188   }
2189 
2190   void getDetectMismatchOption(llvm::StringRef Name,
2191                                llvm::StringRef Value,
2192                                llvm::SmallString<32> &Opt) const override {
2193     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2194   }
2195 };
2196 
2197 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2198                                                      llvm::GlobalValue *GV,
2199                                             CodeGen::CodeGenModule &CGM) const {
2200   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2201 
2202   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2203     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2204       llvm::Function *Fn = cast<llvm::Function>(GV);
2205       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2206     }
2207   }
2208 
2209   addStackProbeSizeTargetAttribute(D, GV, CGM);
2210 }
2211 }
2212 
2213 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2214                               Class &Hi) const {
2215   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2216   //
2217   // (a) If one of the classes is Memory, the whole argument is passed in
2218   //     memory.
2219   //
2220   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2221   //     memory.
2222   //
2223   // (c) If the size of the aggregate exceeds two eightbytes and the first
2224   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2225   //     argument is passed in memory. NOTE: This is necessary to keep the
2226   //     ABI working for processors that don't support the __m256 type.
2227   //
2228   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2229   //
2230   // Some of these are enforced by the merging logic.  Others can arise
2231   // only with unions; for example:
2232   //   union { _Complex double; unsigned; }
2233   //
2234   // Note that clauses (b) and (c) were added in 0.98.
2235   //
2236   if (Hi == Memory)
2237     Lo = Memory;
2238   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2239     Lo = Memory;
2240   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2241     Lo = Memory;
2242   if (Hi == SSEUp && Lo != SSE)
2243     Hi = SSE;
2244 }
2245 
2246 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2247   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2248   // classified recursively so that always two fields are
2249   // considered. The resulting class is calculated according to
2250   // the classes of the fields in the eightbyte:
2251   //
2252   // (a) If both classes are equal, this is the resulting class.
2253   //
2254   // (b) If one of the classes is NO_CLASS, the resulting class is
2255   // the other class.
2256   //
2257   // (c) If one of the classes is MEMORY, the result is the MEMORY
2258   // class.
2259   //
2260   // (d) If one of the classes is INTEGER, the result is the
2261   // INTEGER.
2262   //
2263   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2264   // MEMORY is used as class.
2265   //
2266   // (f) Otherwise class SSE is used.
2267 
2268   // Accum should never be memory (we should have returned) or
2269   // ComplexX87 (because this cannot be passed in a structure).
2270   assert((Accum != Memory && Accum != ComplexX87) &&
2271          "Invalid accumulated classification during merge.");
2272   if (Accum == Field || Field == NoClass)
2273     return Accum;
2274   if (Field == Memory)
2275     return Memory;
2276   if (Accum == NoClass)
2277     return Field;
2278   if (Accum == Integer || Field == Integer)
2279     return Integer;
2280   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2281       Accum == X87 || Accum == X87Up)
2282     return Memory;
2283   return SSE;
2284 }
2285 
2286 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2287                              Class &Lo, Class &Hi, bool isNamedArg) const {
2288   // FIXME: This code can be simplified by introducing a simple value class for
2289   // Class pairs with appropriate constructor methods for the various
2290   // situations.
2291 
2292   // FIXME: Some of the split computations are wrong; unaligned vectors
2293   // shouldn't be passed in registers for example, so there is no chance they
2294   // can straddle an eightbyte. Verify & simplify.
2295 
2296   Lo = Hi = NoClass;
2297 
2298   Class &Current = OffsetBase < 64 ? Lo : Hi;
2299   Current = Memory;
2300 
2301   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2302     BuiltinType::Kind k = BT->getKind();
2303 
2304     if (k == BuiltinType::Void) {
2305       Current = NoClass;
2306     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2307       Lo = Integer;
2308       Hi = Integer;
2309     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2310       Current = Integer;
2311     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2312       Current = SSE;
2313     } else if (k == BuiltinType::LongDouble) {
2314       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2315       if (LDF == &llvm::APFloat::IEEEquad) {
2316         Lo = SSE;
2317         Hi = SSEUp;
2318       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2319         Lo = X87;
2320         Hi = X87Up;
2321       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2322         Current = SSE;
2323       } else
2324         llvm_unreachable("unexpected long double representation!");
2325     }
2326     // FIXME: _Decimal32 and _Decimal64 are SSE.
2327     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2328     return;
2329   }
2330 
2331   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2332     // Classify the underlying integer type.
2333     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2334     return;
2335   }
2336 
2337   if (Ty->hasPointerRepresentation()) {
2338     Current = Integer;
2339     return;
2340   }
2341 
2342   if (Ty->isMemberPointerType()) {
2343     if (Ty->isMemberFunctionPointerType()) {
2344       if (Has64BitPointers) {
2345         // If Has64BitPointers, this is an {i64, i64}, so classify both
2346         // Lo and Hi now.
2347         Lo = Hi = Integer;
2348       } else {
2349         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2350         // straddles an eightbyte boundary, Hi should be classified as well.
2351         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2352         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2353         if (EB_FuncPtr != EB_ThisAdj) {
2354           Lo = Hi = Integer;
2355         } else {
2356           Current = Integer;
2357         }
2358       }
2359     } else {
2360       Current = Integer;
2361     }
2362     return;
2363   }
2364 
2365   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2366     uint64_t Size = getContext().getTypeSize(VT);
2367     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2368       // gcc passes the following as integer:
2369       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2370       // 2 bytes - <2 x char>, <1 x short>
2371       // 1 byte  - <1 x char>
2372       Current = Integer;
2373 
2374       // If this type crosses an eightbyte boundary, it should be
2375       // split.
2376       uint64_t EB_Lo = (OffsetBase) / 64;
2377       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2378       if (EB_Lo != EB_Hi)
2379         Hi = Lo;
2380     } else if (Size == 64) {
2381       QualType ElementType = VT->getElementType();
2382 
2383       // gcc passes <1 x double> in memory. :(
2384       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2385         return;
2386 
2387       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2388       // pass them as integer.  For platforms where clang is the de facto
2389       // platform compiler, we must continue to use integer.
2390       if (!classifyIntegerMMXAsSSE() &&
2391           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2392            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2393            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2394            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2395         Current = Integer;
2396       else
2397         Current = SSE;
2398 
2399       // If this type crosses an eightbyte boundary, it should be
2400       // split.
2401       if (OffsetBase && OffsetBase != 64)
2402         Hi = Lo;
2403     } else if (Size == 128 ||
2404                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2405       // Arguments of 256-bits are split into four eightbyte chunks. The
2406       // least significant one belongs to class SSE and all the others to class
2407       // SSEUP. The original Lo and Hi design considers that types can't be
2408       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2409       // This design isn't correct for 256-bits, but since there're no cases
2410       // where the upper parts would need to be inspected, avoid adding
2411       // complexity and just consider Hi to match the 64-256 part.
2412       //
2413       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2414       // registers if they are "named", i.e. not part of the "..." of a
2415       // variadic function.
2416       //
2417       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2418       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2419       Lo = SSE;
2420       Hi = SSEUp;
2421     }
2422     return;
2423   }
2424 
2425   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2426     QualType ET = getContext().getCanonicalType(CT->getElementType());
2427 
2428     uint64_t Size = getContext().getTypeSize(Ty);
2429     if (ET->isIntegralOrEnumerationType()) {
2430       if (Size <= 64)
2431         Current = Integer;
2432       else if (Size <= 128)
2433         Lo = Hi = Integer;
2434     } else if (ET == getContext().FloatTy) {
2435       Current = SSE;
2436     } else if (ET == getContext().DoubleTy) {
2437       Lo = Hi = SSE;
2438     } else if (ET == getContext().LongDoubleTy) {
2439       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2440       if (LDF == &llvm::APFloat::IEEEquad)
2441         Current = Memory;
2442       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2443         Current = ComplexX87;
2444       else if (LDF == &llvm::APFloat::IEEEdouble)
2445         Lo = Hi = SSE;
2446       else
2447         llvm_unreachable("unexpected long double representation!");
2448     }
2449 
2450     // If this complex type crosses an eightbyte boundary then it
2451     // should be split.
2452     uint64_t EB_Real = (OffsetBase) / 64;
2453     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2454     if (Hi == NoClass && EB_Real != EB_Imag)
2455       Hi = Lo;
2456 
2457     return;
2458   }
2459 
2460   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2461     // Arrays are treated like structures.
2462 
2463     uint64_t Size = getContext().getTypeSize(Ty);
2464 
2465     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2466     // than four eightbytes, ..., it has class MEMORY.
2467     if (Size > 256)
2468       return;
2469 
2470     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2471     // fields, it has class MEMORY.
2472     //
2473     // Only need to check alignment of array base.
2474     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2475       return;
2476 
2477     // Otherwise implement simplified merge. We could be smarter about
2478     // this, but it isn't worth it and would be harder to verify.
2479     Current = NoClass;
2480     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2481     uint64_t ArraySize = AT->getSize().getZExtValue();
2482 
2483     // The only case a 256-bit wide vector could be used is when the array
2484     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2485     // to work for sizes wider than 128, early check and fallback to memory.
2486     if (Size > 128 && EltSize != 256)
2487       return;
2488 
2489     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2490       Class FieldLo, FieldHi;
2491       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2492       Lo = merge(Lo, FieldLo);
2493       Hi = merge(Hi, FieldHi);
2494       if (Lo == Memory || Hi == Memory)
2495         break;
2496     }
2497 
2498     postMerge(Size, Lo, Hi);
2499     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2500     return;
2501   }
2502 
2503   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2504     uint64_t Size = getContext().getTypeSize(Ty);
2505 
2506     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2507     // than four eightbytes, ..., it has class MEMORY.
2508     if (Size > 256)
2509       return;
2510 
2511     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2512     // copy constructor or a non-trivial destructor, it is passed by invisible
2513     // reference.
2514     if (getRecordArgABI(RT, getCXXABI()))
2515       return;
2516 
2517     const RecordDecl *RD = RT->getDecl();
2518 
2519     // Assume variable sized types are passed in memory.
2520     if (RD->hasFlexibleArrayMember())
2521       return;
2522 
2523     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2524 
2525     // Reset Lo class, this will be recomputed.
2526     Current = NoClass;
2527 
2528     // If this is a C++ record, classify the bases first.
2529     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2530       for (const auto &I : CXXRD->bases()) {
2531         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2532                "Unexpected base class!");
2533         const CXXRecordDecl *Base =
2534           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2535 
2536         // Classify this field.
2537         //
2538         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2539         // single eightbyte, each is classified separately. Each eightbyte gets
2540         // initialized to class NO_CLASS.
2541         Class FieldLo, FieldHi;
2542         uint64_t Offset =
2543           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2544         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2545         Lo = merge(Lo, FieldLo);
2546         Hi = merge(Hi, FieldHi);
2547         if (Lo == Memory || Hi == Memory) {
2548           postMerge(Size, Lo, Hi);
2549           return;
2550         }
2551       }
2552     }
2553 
2554     // Classify the fields one at a time, merging the results.
2555     unsigned idx = 0;
2556     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2557            i != e; ++i, ++idx) {
2558       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2559       bool BitField = i->isBitField();
2560 
2561       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2562       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2563       //
2564       // The only case a 256-bit wide vector could be used is when the struct
2565       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2566       // to work for sizes wider than 128, early check and fallback to memory.
2567       //
2568       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2569         Lo = Memory;
2570         postMerge(Size, Lo, Hi);
2571         return;
2572       }
2573       // Note, skip this test for bit-fields, see below.
2574       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2575         Lo = Memory;
2576         postMerge(Size, Lo, Hi);
2577         return;
2578       }
2579 
2580       // Classify this field.
2581       //
2582       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2583       // exceeds a single eightbyte, each is classified
2584       // separately. Each eightbyte gets initialized to class
2585       // NO_CLASS.
2586       Class FieldLo, FieldHi;
2587 
2588       // Bit-fields require special handling, they do not force the
2589       // structure to be passed in memory even if unaligned, and
2590       // therefore they can straddle an eightbyte.
2591       if (BitField) {
2592         // Ignore padding bit-fields.
2593         if (i->isUnnamedBitfield())
2594           continue;
2595 
2596         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2597         uint64_t Size = i->getBitWidthValue(getContext());
2598 
2599         uint64_t EB_Lo = Offset / 64;
2600         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2601 
2602         if (EB_Lo) {
2603           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2604           FieldLo = NoClass;
2605           FieldHi = Integer;
2606         } else {
2607           FieldLo = Integer;
2608           FieldHi = EB_Hi ? Integer : NoClass;
2609         }
2610       } else
2611         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2612       Lo = merge(Lo, FieldLo);
2613       Hi = merge(Hi, FieldHi);
2614       if (Lo == Memory || Hi == Memory)
2615         break;
2616     }
2617 
2618     postMerge(Size, Lo, Hi);
2619   }
2620 }
2621 
2622 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2623   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2624   // place naturally.
2625   if (!isAggregateTypeForABI(Ty)) {
2626     // Treat an enum type as its underlying type.
2627     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2628       Ty = EnumTy->getDecl()->getIntegerType();
2629 
2630     return (Ty->isPromotableIntegerType() ?
2631             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2632   }
2633 
2634   return getNaturalAlignIndirect(Ty);
2635 }
2636 
2637 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2638   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2639     uint64_t Size = getContext().getTypeSize(VecTy);
2640     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2641     if (Size <= 64 || Size > LargestVector)
2642       return true;
2643   }
2644 
2645   return false;
2646 }
2647 
2648 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2649                                             unsigned freeIntRegs) const {
2650   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2651   // place naturally.
2652   //
2653   // This assumption is optimistic, as there could be free registers available
2654   // when we need to pass this argument in memory, and LLVM could try to pass
2655   // the argument in the free register. This does not seem to happen currently,
2656   // but this code would be much safer if we could mark the argument with
2657   // 'onstack'. See PR12193.
2658   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2659     // Treat an enum type as its underlying type.
2660     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2661       Ty = EnumTy->getDecl()->getIntegerType();
2662 
2663     return (Ty->isPromotableIntegerType() ?
2664             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2665   }
2666 
2667   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2668     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2669 
2670   // Compute the byval alignment. We specify the alignment of the byval in all
2671   // cases so that the mid-level optimizer knows the alignment of the byval.
2672   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2673 
2674   // Attempt to avoid passing indirect results using byval when possible. This
2675   // is important for good codegen.
2676   //
2677   // We do this by coercing the value into a scalar type which the backend can
2678   // handle naturally (i.e., without using byval).
2679   //
2680   // For simplicity, we currently only do this when we have exhausted all of the
2681   // free integer registers. Doing this when there are free integer registers
2682   // would require more care, as we would have to ensure that the coerced value
2683   // did not claim the unused register. That would require either reording the
2684   // arguments to the function (so that any subsequent inreg values came first),
2685   // or only doing this optimization when there were no following arguments that
2686   // might be inreg.
2687   //
2688   // We currently expect it to be rare (particularly in well written code) for
2689   // arguments to be passed on the stack when there are still free integer
2690   // registers available (this would typically imply large structs being passed
2691   // by value), so this seems like a fair tradeoff for now.
2692   //
2693   // We can revisit this if the backend grows support for 'onstack' parameter
2694   // attributes. See PR12193.
2695   if (freeIntRegs == 0) {
2696     uint64_t Size = getContext().getTypeSize(Ty);
2697 
2698     // If this type fits in an eightbyte, coerce it into the matching integral
2699     // type, which will end up on the stack (with alignment 8).
2700     if (Align == 8 && Size <= 64)
2701       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2702                                                           Size));
2703   }
2704 
2705   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2706 }
2707 
2708 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2709 /// register. Pick an LLVM IR type that will be passed as a vector register.
2710 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2711   // Wrapper structs/arrays that only contain vectors are passed just like
2712   // vectors; strip them off if present.
2713   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2714     Ty = QualType(InnerTy, 0);
2715 
2716   llvm::Type *IRType = CGT.ConvertType(Ty);
2717   if (isa<llvm::VectorType>(IRType) ||
2718       IRType->getTypeID() == llvm::Type::FP128TyID)
2719     return IRType;
2720 
2721   // We couldn't find the preferred IR vector type for 'Ty'.
2722   uint64_t Size = getContext().getTypeSize(Ty);
2723   assert((Size == 128 || Size == 256) && "Invalid type found!");
2724 
2725   // Return a LLVM IR vector type based on the size of 'Ty'.
2726   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2727                                Size / 64);
2728 }
2729 
2730 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2731 /// is known to either be off the end of the specified type or being in
2732 /// alignment padding.  The user type specified is known to be at most 128 bits
2733 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2734 /// classification that put one of the two halves in the INTEGER class.
2735 ///
2736 /// It is conservatively correct to return false.
2737 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2738                                   unsigned EndBit, ASTContext &Context) {
2739   // If the bytes being queried are off the end of the type, there is no user
2740   // data hiding here.  This handles analysis of builtins, vectors and other
2741   // types that don't contain interesting padding.
2742   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2743   if (TySize <= StartBit)
2744     return true;
2745 
2746   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2747     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2748     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2749 
2750     // Check each element to see if the element overlaps with the queried range.
2751     for (unsigned i = 0; i != NumElts; ++i) {
2752       // If the element is after the span we care about, then we're done..
2753       unsigned EltOffset = i*EltSize;
2754       if (EltOffset >= EndBit) break;
2755 
2756       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2757       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2758                                  EndBit-EltOffset, Context))
2759         return false;
2760     }
2761     // If it overlaps no elements, then it is safe to process as padding.
2762     return true;
2763   }
2764 
2765   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2766     const RecordDecl *RD = RT->getDecl();
2767     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2768 
2769     // If this is a C++ record, check the bases first.
2770     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2771       for (const auto &I : CXXRD->bases()) {
2772         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2773                "Unexpected base class!");
2774         const CXXRecordDecl *Base =
2775           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2776 
2777         // If the base is after the span we care about, ignore it.
2778         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2779         if (BaseOffset >= EndBit) continue;
2780 
2781         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2782         if (!BitsContainNoUserData(I.getType(), BaseStart,
2783                                    EndBit-BaseOffset, Context))
2784           return false;
2785       }
2786     }
2787 
2788     // Verify that no field has data that overlaps the region of interest.  Yes
2789     // this could be sped up a lot by being smarter about queried fields,
2790     // however we're only looking at structs up to 16 bytes, so we don't care
2791     // much.
2792     unsigned idx = 0;
2793     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2794          i != e; ++i, ++idx) {
2795       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2796 
2797       // If we found a field after the region we care about, then we're done.
2798       if (FieldOffset >= EndBit) break;
2799 
2800       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2801       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2802                                  Context))
2803         return false;
2804     }
2805 
2806     // If nothing in this record overlapped the area of interest, then we're
2807     // clean.
2808     return true;
2809   }
2810 
2811   return false;
2812 }
2813 
2814 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2815 /// float member at the specified offset.  For example, {int,{float}} has a
2816 /// float at offset 4.  It is conservatively correct for this routine to return
2817 /// false.
2818 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2819                                   const llvm::DataLayout &TD) {
2820   // Base case if we find a float.
2821   if (IROffset == 0 && IRType->isFloatTy())
2822     return true;
2823 
2824   // If this is a struct, recurse into the field at the specified offset.
2825   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2826     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2827     unsigned Elt = SL->getElementContainingOffset(IROffset);
2828     IROffset -= SL->getElementOffset(Elt);
2829     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2830   }
2831 
2832   // If this is an array, recurse into the field at the specified offset.
2833   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2834     llvm::Type *EltTy = ATy->getElementType();
2835     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2836     IROffset -= IROffset/EltSize*EltSize;
2837     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2838   }
2839 
2840   return false;
2841 }
2842 
2843 
2844 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2845 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2846 llvm::Type *X86_64ABIInfo::
2847 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2848                    QualType SourceTy, unsigned SourceOffset) const {
2849   // The only three choices we have are either double, <2 x float>, or float. We
2850   // pass as float if the last 4 bytes is just padding.  This happens for
2851   // structs that contain 3 floats.
2852   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2853                             SourceOffset*8+64, getContext()))
2854     return llvm::Type::getFloatTy(getVMContext());
2855 
2856   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2857   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2858   // case.
2859   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2860       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2861     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2862 
2863   return llvm::Type::getDoubleTy(getVMContext());
2864 }
2865 
2866 
2867 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2868 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2869 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2870 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2871 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2872 /// etc).
2873 ///
2874 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2875 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2876 /// the 8-byte value references.  PrefType may be null.
2877 ///
2878 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2879 /// an offset into this that we're processing (which is always either 0 or 8).
2880 ///
2881 llvm::Type *X86_64ABIInfo::
2882 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2883                        QualType SourceTy, unsigned SourceOffset) const {
2884   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2885   // returning an 8-byte unit starting with it.  See if we can safely use it.
2886   if (IROffset == 0) {
2887     // Pointers and int64's always fill the 8-byte unit.
2888     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2889         IRType->isIntegerTy(64))
2890       return IRType;
2891 
2892     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2893     // goodness in the source type is just tail padding.  This is allowed to
2894     // kick in for struct {double,int} on the int, but not on
2895     // struct{double,int,int} because we wouldn't return the second int.  We
2896     // have to do this analysis on the source type because we can't depend on
2897     // unions being lowered a specific way etc.
2898     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2899         IRType->isIntegerTy(32) ||
2900         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2901       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2902           cast<llvm::IntegerType>(IRType)->getBitWidth();
2903 
2904       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2905                                 SourceOffset*8+64, getContext()))
2906         return IRType;
2907     }
2908   }
2909 
2910   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2911     // If this is a struct, recurse into the field at the specified offset.
2912     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2913     if (IROffset < SL->getSizeInBytes()) {
2914       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2915       IROffset -= SL->getElementOffset(FieldIdx);
2916 
2917       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2918                                     SourceTy, SourceOffset);
2919     }
2920   }
2921 
2922   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2923     llvm::Type *EltTy = ATy->getElementType();
2924     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2925     unsigned EltOffset = IROffset/EltSize*EltSize;
2926     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2927                                   SourceOffset);
2928   }
2929 
2930   // Okay, we don't have any better idea of what to pass, so we pass this in an
2931   // integer register that isn't too big to fit the rest of the struct.
2932   unsigned TySizeInBytes =
2933     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2934 
2935   assert(TySizeInBytes != SourceOffset && "Empty field?");
2936 
2937   // It is always safe to classify this as an integer type up to i64 that
2938   // isn't larger than the structure.
2939   return llvm::IntegerType::get(getVMContext(),
2940                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2941 }
2942 
2943 
2944 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2945 /// be used as elements of a two register pair to pass or return, return a
2946 /// first class aggregate to represent them.  For example, if the low part of
2947 /// a by-value argument should be passed as i32* and the high part as float,
2948 /// return {i32*, float}.
2949 static llvm::Type *
2950 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2951                            const llvm::DataLayout &TD) {
2952   // In order to correctly satisfy the ABI, we need to the high part to start
2953   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2954   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2955   // the second element at offset 8.  Check for this:
2956   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2957   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2958   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2959   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2960 
2961   // To handle this, we have to increase the size of the low part so that the
2962   // second element will start at an 8 byte offset.  We can't increase the size
2963   // of the second element because it might make us access off the end of the
2964   // struct.
2965   if (HiStart != 8) {
2966     // There are usually two sorts of types the ABI generation code can produce
2967     // for the low part of a pair that aren't 8 bytes in size: float or
2968     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2969     // NaCl).
2970     // Promote these to a larger type.
2971     if (Lo->isFloatTy())
2972       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2973     else {
2974       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2975              && "Invalid/unknown lo type");
2976       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2977     }
2978   }
2979 
2980   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2981 
2982 
2983   // Verify that the second element is at an 8-byte offset.
2984   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2985          "Invalid x86-64 argument pair!");
2986   return Result;
2987 }
2988 
2989 ABIArgInfo X86_64ABIInfo::
2990 classifyReturnType(QualType RetTy) const {
2991   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2992   // classification algorithm.
2993   X86_64ABIInfo::Class Lo, Hi;
2994   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2995 
2996   // Check some invariants.
2997   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2998   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2999 
3000   llvm::Type *ResType = nullptr;
3001   switch (Lo) {
3002   case NoClass:
3003     if (Hi == NoClass)
3004       return ABIArgInfo::getIgnore();
3005     // If the low part is just padding, it takes no register, leave ResType
3006     // null.
3007     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3008            "Unknown missing lo part");
3009     break;
3010 
3011   case SSEUp:
3012   case X87Up:
3013     llvm_unreachable("Invalid classification for lo word.");
3014 
3015     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3016     // hidden argument.
3017   case Memory:
3018     return getIndirectReturnResult(RetTy);
3019 
3020     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3021     // available register of the sequence %rax, %rdx is used.
3022   case Integer:
3023     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3024 
3025     // If we have a sign or zero extended integer, make sure to return Extend
3026     // so that the parameter gets the right LLVM IR attributes.
3027     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3028       // Treat an enum type as its underlying type.
3029       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3030         RetTy = EnumTy->getDecl()->getIntegerType();
3031 
3032       if (RetTy->isIntegralOrEnumerationType() &&
3033           RetTy->isPromotableIntegerType())
3034         return ABIArgInfo::getExtend();
3035     }
3036     break;
3037 
3038     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3039     // available SSE register of the sequence %xmm0, %xmm1 is used.
3040   case SSE:
3041     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3042     break;
3043 
3044     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3045     // returned on the X87 stack in %st0 as 80-bit x87 number.
3046   case X87:
3047     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3048     break;
3049 
3050     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3051     // part of the value is returned in %st0 and the imaginary part in
3052     // %st1.
3053   case ComplexX87:
3054     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3055     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3056                                     llvm::Type::getX86_FP80Ty(getVMContext()),
3057                                     nullptr);
3058     break;
3059   }
3060 
3061   llvm::Type *HighPart = nullptr;
3062   switch (Hi) {
3063     // Memory was handled previously and X87 should
3064     // never occur as a hi class.
3065   case Memory:
3066   case X87:
3067     llvm_unreachable("Invalid classification for hi word.");
3068 
3069   case ComplexX87: // Previously handled.
3070   case NoClass:
3071     break;
3072 
3073   case Integer:
3074     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3075     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3076       return ABIArgInfo::getDirect(HighPart, 8);
3077     break;
3078   case SSE:
3079     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3080     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3081       return ABIArgInfo::getDirect(HighPart, 8);
3082     break;
3083 
3084     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3085     // is passed in the next available eightbyte chunk if the last used
3086     // vector register.
3087     //
3088     // SSEUP should always be preceded by SSE, just widen.
3089   case SSEUp:
3090     assert(Lo == SSE && "Unexpected SSEUp classification.");
3091     ResType = GetByteVectorType(RetTy);
3092     break;
3093 
3094     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3095     // returned together with the previous X87 value in %st0.
3096   case X87Up:
3097     // If X87Up is preceded by X87, we don't need to do
3098     // anything. However, in some cases with unions it may not be
3099     // preceded by X87. In such situations we follow gcc and pass the
3100     // extra bits in an SSE reg.
3101     if (Lo != X87) {
3102       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3103       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3104         return ABIArgInfo::getDirect(HighPart, 8);
3105     }
3106     break;
3107   }
3108 
3109   // If a high part was specified, merge it together with the low part.  It is
3110   // known to pass in the high eightbyte of the result.  We do this by forming a
3111   // first class struct aggregate with the high and low part: {low, high}
3112   if (HighPart)
3113     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3114 
3115   return ABIArgInfo::getDirect(ResType);
3116 }
3117 
3118 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3119   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3120   bool isNamedArg)
3121   const
3122 {
3123   Ty = useFirstFieldIfTransparentUnion(Ty);
3124 
3125   X86_64ABIInfo::Class Lo, Hi;
3126   classify(Ty, 0, Lo, Hi, isNamedArg);
3127 
3128   // Check some invariants.
3129   // FIXME: Enforce these by construction.
3130   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3131   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3132 
3133   neededInt = 0;
3134   neededSSE = 0;
3135   llvm::Type *ResType = nullptr;
3136   switch (Lo) {
3137   case NoClass:
3138     if (Hi == NoClass)
3139       return ABIArgInfo::getIgnore();
3140     // If the low part is just padding, it takes no register, leave ResType
3141     // null.
3142     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3143            "Unknown missing lo part");
3144     break;
3145 
3146     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3147     // on the stack.
3148   case Memory:
3149 
3150     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3151     // COMPLEX_X87, it is passed in memory.
3152   case X87:
3153   case ComplexX87:
3154     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3155       ++neededInt;
3156     return getIndirectResult(Ty, freeIntRegs);
3157 
3158   case SSEUp:
3159   case X87Up:
3160     llvm_unreachable("Invalid classification for lo word.");
3161 
3162     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3163     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3164     // and %r9 is used.
3165   case Integer:
3166     ++neededInt;
3167 
3168     // Pick an 8-byte type based on the preferred type.
3169     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3170 
3171     // If we have a sign or zero extended integer, make sure to return Extend
3172     // so that the parameter gets the right LLVM IR attributes.
3173     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3174       // Treat an enum type as its underlying type.
3175       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3176         Ty = EnumTy->getDecl()->getIntegerType();
3177 
3178       if (Ty->isIntegralOrEnumerationType() &&
3179           Ty->isPromotableIntegerType())
3180         return ABIArgInfo::getExtend();
3181     }
3182 
3183     break;
3184 
3185     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3186     // available SSE register is used, the registers are taken in the
3187     // order from %xmm0 to %xmm7.
3188   case SSE: {
3189     llvm::Type *IRType = CGT.ConvertType(Ty);
3190     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3191     ++neededSSE;
3192     break;
3193   }
3194   }
3195 
3196   llvm::Type *HighPart = nullptr;
3197   switch (Hi) {
3198     // Memory was handled previously, ComplexX87 and X87 should
3199     // never occur as hi classes, and X87Up must be preceded by X87,
3200     // which is passed in memory.
3201   case Memory:
3202   case X87:
3203   case ComplexX87:
3204     llvm_unreachable("Invalid classification for hi word.");
3205 
3206   case NoClass: break;
3207 
3208   case Integer:
3209     ++neededInt;
3210     // Pick an 8-byte type based on the preferred type.
3211     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3212 
3213     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3214       return ABIArgInfo::getDirect(HighPart, 8);
3215     break;
3216 
3217     // X87Up generally doesn't occur here (long double is passed in
3218     // memory), except in situations involving unions.
3219   case X87Up:
3220   case SSE:
3221     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3222 
3223     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3224       return ABIArgInfo::getDirect(HighPart, 8);
3225 
3226     ++neededSSE;
3227     break;
3228 
3229     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3230     // eightbyte is passed in the upper half of the last used SSE
3231     // register.  This only happens when 128-bit vectors are passed.
3232   case SSEUp:
3233     assert(Lo == SSE && "Unexpected SSEUp classification");
3234     ResType = GetByteVectorType(Ty);
3235     break;
3236   }
3237 
3238   // If a high part was specified, merge it together with the low part.  It is
3239   // known to pass in the high eightbyte of the result.  We do this by forming a
3240   // first class struct aggregate with the high and low part: {low, high}
3241   if (HighPart)
3242     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3243 
3244   return ABIArgInfo::getDirect(ResType);
3245 }
3246 
3247 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3248 
3249   if (!getCXXABI().classifyReturnType(FI))
3250     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3251 
3252   // Keep track of the number of assigned registers.
3253   unsigned freeIntRegs = 6, freeSSERegs = 8;
3254 
3255   // If the return value is indirect, then the hidden argument is consuming one
3256   // integer register.
3257   if (FI.getReturnInfo().isIndirect())
3258     --freeIntRegs;
3259 
3260   // The chain argument effectively gives us another free register.
3261   if (FI.isChainCall())
3262     ++freeIntRegs;
3263 
3264   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3265   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3266   // get assigned (in left-to-right order) for passing as follows...
3267   unsigned ArgNo = 0;
3268   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3269        it != ie; ++it, ++ArgNo) {
3270     bool IsNamedArg = ArgNo < NumRequiredArgs;
3271 
3272     unsigned neededInt, neededSSE;
3273     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3274                                     neededSSE, IsNamedArg);
3275 
3276     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3277     // eightbyte of an argument, the whole argument is passed on the
3278     // stack. If registers have already been assigned for some
3279     // eightbytes of such an argument, the assignments get reverted.
3280     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3281       freeIntRegs -= neededInt;
3282       freeSSERegs -= neededSSE;
3283     } else {
3284       it->info = getIndirectResult(it->type, freeIntRegs);
3285     }
3286   }
3287 }
3288 
3289 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3290                                          Address VAListAddr, QualType Ty) {
3291   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3292       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3293   llvm::Value *overflow_arg_area =
3294     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3295 
3296   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3297   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3298   // It isn't stated explicitly in the standard, but in practice we use
3299   // alignment greater than 16 where necessary.
3300   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3301   if (Align > CharUnits::fromQuantity(8)) {
3302     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3303                                                       Align);
3304   }
3305 
3306   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3307   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3308   llvm::Value *Res =
3309     CGF.Builder.CreateBitCast(overflow_arg_area,
3310                               llvm::PointerType::getUnqual(LTy));
3311 
3312   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3313   // l->overflow_arg_area + sizeof(type).
3314   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3315   // an 8 byte boundary.
3316 
3317   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3318   llvm::Value *Offset =
3319       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3320   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3321                                             "overflow_arg_area.next");
3322   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3323 
3324   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3325   return Address(Res, Align);
3326 }
3327 
3328 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3329                                  QualType Ty) const {
3330   // Assume that va_list type is correct; should be pointer to LLVM type:
3331   // struct {
3332   //   i32 gp_offset;
3333   //   i32 fp_offset;
3334   //   i8* overflow_arg_area;
3335   //   i8* reg_save_area;
3336   // };
3337   unsigned neededInt, neededSSE;
3338 
3339   Ty = getContext().getCanonicalType(Ty);
3340   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3341                                        /*isNamedArg*/false);
3342 
3343   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3344   // in the registers. If not go to step 7.
3345   if (!neededInt && !neededSSE)
3346     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3347 
3348   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3349   // general purpose registers needed to pass type and num_fp to hold
3350   // the number of floating point registers needed.
3351 
3352   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3353   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3354   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3355   //
3356   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3357   // register save space).
3358 
3359   llvm::Value *InRegs = nullptr;
3360   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3361   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3362   if (neededInt) {
3363     gp_offset_p =
3364         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3365                                     "gp_offset_p");
3366     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3367     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3368     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3369   }
3370 
3371   if (neededSSE) {
3372     fp_offset_p =
3373         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3374                                     "fp_offset_p");
3375     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3376     llvm::Value *FitsInFP =
3377       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3378     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3379     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3380   }
3381 
3382   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3383   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3384   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3385   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3386 
3387   // Emit code to load the value if it was passed in registers.
3388 
3389   CGF.EmitBlock(InRegBlock);
3390 
3391   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3392   // an offset of l->gp_offset and/or l->fp_offset. This may require
3393   // copying to a temporary location in case the parameter is passed
3394   // in different register classes or requires an alignment greater
3395   // than 8 for general purpose registers and 16 for XMM registers.
3396   //
3397   // FIXME: This really results in shameful code when we end up needing to
3398   // collect arguments from different places; often what should result in a
3399   // simple assembling of a structure from scattered addresses has many more
3400   // loads than necessary. Can we clean this up?
3401   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3402   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3403       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3404                                   "reg_save_area");
3405 
3406   Address RegAddr = Address::invalid();
3407   if (neededInt && neededSSE) {
3408     // FIXME: Cleanup.
3409     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3410     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3411     Address Tmp = CGF.CreateMemTemp(Ty);
3412     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3413     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3414     llvm::Type *TyLo = ST->getElementType(0);
3415     llvm::Type *TyHi = ST->getElementType(1);
3416     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3417            "Unexpected ABI info for mixed regs");
3418     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3419     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3420     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3421     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3422     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3423     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3424 
3425     // Copy the first element.
3426     llvm::Value *V =
3427       CGF.Builder.CreateDefaultAlignedLoad(
3428                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3429     CGF.Builder.CreateStore(V,
3430                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3431 
3432     // Copy the second element.
3433     V = CGF.Builder.CreateDefaultAlignedLoad(
3434                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3435     CharUnits Offset = CharUnits::fromQuantity(
3436                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3437     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3438 
3439     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3440   } else if (neededInt) {
3441     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3442                       CharUnits::fromQuantity(8));
3443     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3444 
3445     // Copy to a temporary if necessary to ensure the appropriate alignment.
3446     std::pair<CharUnits, CharUnits> SizeAlign =
3447         getContext().getTypeInfoInChars(Ty);
3448     uint64_t TySize = SizeAlign.first.getQuantity();
3449     CharUnits TyAlign = SizeAlign.second;
3450 
3451     // Copy into a temporary if the type is more aligned than the
3452     // register save area.
3453     if (TyAlign.getQuantity() > 8) {
3454       Address Tmp = CGF.CreateMemTemp(Ty);
3455       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3456       RegAddr = Tmp;
3457     }
3458 
3459   } else if (neededSSE == 1) {
3460     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3461                       CharUnits::fromQuantity(16));
3462     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3463   } else {
3464     assert(neededSSE == 2 && "Invalid number of needed registers!");
3465     // SSE registers are spaced 16 bytes apart in the register save
3466     // area, we need to collect the two eightbytes together.
3467     // The ABI isn't explicit about this, but it seems reasonable
3468     // to assume that the slots are 16-byte aligned, since the stack is
3469     // naturally 16-byte aligned and the prologue is expected to store
3470     // all the SSE registers to the RSA.
3471     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3472                                 CharUnits::fromQuantity(16));
3473     Address RegAddrHi =
3474       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3475                                              CharUnits::fromQuantity(16));
3476     llvm::Type *DoubleTy = CGF.DoubleTy;
3477     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3478     llvm::Value *V;
3479     Address Tmp = CGF.CreateMemTemp(Ty);
3480     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3481     V = CGF.Builder.CreateLoad(
3482                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3483     CGF.Builder.CreateStore(V,
3484                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3485     V = CGF.Builder.CreateLoad(
3486                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3487     CGF.Builder.CreateStore(V,
3488           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3489 
3490     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3491   }
3492 
3493   // AMD64-ABI 3.5.7p5: Step 5. Set:
3494   // l->gp_offset = l->gp_offset + num_gp * 8
3495   // l->fp_offset = l->fp_offset + num_fp * 16.
3496   if (neededInt) {
3497     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3498     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3499                             gp_offset_p);
3500   }
3501   if (neededSSE) {
3502     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3503     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3504                             fp_offset_p);
3505   }
3506   CGF.EmitBranch(ContBlock);
3507 
3508   // Emit code to load the value if it was passed in memory.
3509 
3510   CGF.EmitBlock(InMemBlock);
3511   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3512 
3513   // Return the appropriate result.
3514 
3515   CGF.EmitBlock(ContBlock);
3516   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3517                                  "vaarg.addr");
3518   return ResAddr;
3519 }
3520 
3521 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3522                                    QualType Ty) const {
3523   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3524                           CGF.getContext().getTypeInfoInChars(Ty),
3525                           CharUnits::fromQuantity(8),
3526                           /*allowHigherAlign*/ false);
3527 }
3528 
3529 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3530                                       bool IsReturnType) const {
3531 
3532   if (Ty->isVoidType())
3533     return ABIArgInfo::getIgnore();
3534 
3535   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3536     Ty = EnumTy->getDecl()->getIntegerType();
3537 
3538   TypeInfo Info = getContext().getTypeInfo(Ty);
3539   uint64_t Width = Info.Width;
3540   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3541 
3542   const RecordType *RT = Ty->getAs<RecordType>();
3543   if (RT) {
3544     if (!IsReturnType) {
3545       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3546         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3547     }
3548 
3549     if (RT->getDecl()->hasFlexibleArrayMember())
3550       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3551 
3552   }
3553 
3554   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3555   // other targets.
3556   const Type *Base = nullptr;
3557   uint64_t NumElts = 0;
3558   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3559     if (FreeSSERegs >= NumElts) {
3560       FreeSSERegs -= NumElts;
3561       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3562         return ABIArgInfo::getDirect();
3563       return ABIArgInfo::getExpand();
3564     }
3565     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3566   }
3567 
3568 
3569   if (Ty->isMemberPointerType()) {
3570     // If the member pointer is represented by an LLVM int or ptr, pass it
3571     // directly.
3572     llvm::Type *LLTy = CGT.ConvertType(Ty);
3573     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3574       return ABIArgInfo::getDirect();
3575   }
3576 
3577   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3578     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3579     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3580     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3581       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3582 
3583     // Otherwise, coerce it to a small integer.
3584     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3585   }
3586 
3587   // Bool type is always extended to the ABI, other builtin types are not
3588   // extended.
3589   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3590   if (BT && BT->getKind() == BuiltinType::Bool)
3591     return ABIArgInfo::getExtend();
3592 
3593   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3594   // passes them indirectly through memory.
3595   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3596     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3597     if (LDF == &llvm::APFloat::x87DoubleExtended)
3598       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3599   }
3600 
3601   return ABIArgInfo::getDirect();
3602 }
3603 
3604 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3605   bool IsVectorCall =
3606       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3607 
3608   // We can use up to 4 SSE return registers with vectorcall.
3609   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3610   if (!getCXXABI().classifyReturnType(FI))
3611     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3612 
3613   // We can use up to 6 SSE register parameters with vectorcall.
3614   FreeSSERegs = IsVectorCall ? 6 : 0;
3615   for (auto &I : FI.arguments())
3616     I.info = classify(I.type, FreeSSERegs, false);
3617 }
3618 
3619 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3620                                     QualType Ty) const {
3621   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3622                           CGF.getContext().getTypeInfoInChars(Ty),
3623                           CharUnits::fromQuantity(8),
3624                           /*allowHigherAlign*/ false);
3625 }
3626 
3627 // PowerPC-32
3628 namespace {
3629 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3630 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3631 bool IsSoftFloatABI;
3632 public:
3633   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3634       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3635 
3636   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3637                     QualType Ty) const override;
3638 };
3639 
3640 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3641 public:
3642   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3643       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3644 
3645   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3646     // This is recovered from gcc output.
3647     return 1; // r1 is the dedicated stack pointer
3648   }
3649 
3650   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3651                                llvm::Value *Address) const override;
3652 };
3653 
3654 }
3655 
3656 // TODO: this implementation is now likely redundant with
3657 // DefaultABIInfo::EmitVAArg.
3658 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3659                                       QualType Ty) const {
3660   const unsigned OverflowLimit = 8;
3661   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3662     // TODO: Implement this. For now ignore.
3663     (void)CTy;
3664     return Address::invalid(); // FIXME?
3665   }
3666 
3667   // struct __va_list_tag {
3668   //   unsigned char gpr;
3669   //   unsigned char fpr;
3670   //   unsigned short reserved;
3671   //   void *overflow_arg_area;
3672   //   void *reg_save_area;
3673   // };
3674 
3675   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3676   bool isInt =
3677       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3678   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3679 
3680   // All aggregates are passed indirectly?  That doesn't seem consistent
3681   // with the argument-lowering code.
3682   bool isIndirect = Ty->isAggregateType();
3683 
3684   CGBuilderTy &Builder = CGF.Builder;
3685 
3686   // The calling convention either uses 1-2 GPRs or 1 FPR.
3687   Address NumRegsAddr = Address::invalid();
3688   if (isInt || IsSoftFloatABI) {
3689     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3690   } else {
3691     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3692   }
3693 
3694   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3695 
3696   // "Align" the register count when TY is i64.
3697   if (isI64 || (isF64 && IsSoftFloatABI)) {
3698     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3699     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3700   }
3701 
3702   llvm::Value *CC =
3703       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
3704 
3705   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3706   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3707   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3708 
3709   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3710 
3711   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3712   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3713 
3714   // Case 1: consume registers.
3715   Address RegAddr = Address::invalid();
3716   {
3717     CGF.EmitBlock(UsingRegs);
3718 
3719     Address RegSaveAreaPtr =
3720       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3721     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3722                       CharUnits::fromQuantity(8));
3723     assert(RegAddr.getElementType() == CGF.Int8Ty);
3724 
3725     // Floating-point registers start after the general-purpose registers.
3726     if (!(isInt || IsSoftFloatABI)) {
3727       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3728                                                    CharUnits::fromQuantity(32));
3729     }
3730 
3731     // Get the address of the saved value by scaling the number of
3732     // registers we've used by the number of
3733     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3734     llvm::Value *RegOffset =
3735       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3736     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3737                                             RegAddr.getPointer(), RegOffset),
3738                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3739     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3740 
3741     // Increase the used-register count.
3742     NumRegs =
3743       Builder.CreateAdd(NumRegs,
3744                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3745     Builder.CreateStore(NumRegs, NumRegsAddr);
3746 
3747     CGF.EmitBranch(Cont);
3748   }
3749 
3750   // Case 2: consume space in the overflow area.
3751   Address MemAddr = Address::invalid();
3752   {
3753     CGF.EmitBlock(UsingOverflow);
3754 
3755     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
3756 
3757     // Everything in the overflow area is rounded up to a size of at least 4.
3758     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3759 
3760     CharUnits Size;
3761     if (!isIndirect) {
3762       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3763       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
3764     } else {
3765       Size = CGF.getPointerSize();
3766     }
3767 
3768     Address OverflowAreaAddr =
3769       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3770     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3771                          OverflowAreaAlign);
3772     // Round up address of argument to alignment
3773     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3774     if (Align > OverflowAreaAlign) {
3775       llvm::Value *Ptr = OverflowArea.getPointer();
3776       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3777                                                            Align);
3778     }
3779 
3780     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3781 
3782     // Increase the overflow area.
3783     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3784     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3785     CGF.EmitBranch(Cont);
3786   }
3787 
3788   CGF.EmitBlock(Cont);
3789 
3790   // Merge the cases with a phi.
3791   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3792                                 "vaarg.addr");
3793 
3794   // Load the pointer if the argument was passed indirectly.
3795   if (isIndirect) {
3796     Result = Address(Builder.CreateLoad(Result, "aggr"),
3797                      getContext().getTypeAlignInChars(Ty));
3798   }
3799 
3800   return Result;
3801 }
3802 
3803 bool
3804 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3805                                                 llvm::Value *Address) const {
3806   // This is calculated from the LLVM and GCC tables and verified
3807   // against gcc output.  AFAIK all ABIs use the same encoding.
3808 
3809   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3810 
3811   llvm::IntegerType *i8 = CGF.Int8Ty;
3812   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3813   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3814   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3815 
3816   // 0-31: r0-31, the 4-byte general-purpose registers
3817   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3818 
3819   // 32-63: fp0-31, the 8-byte floating-point registers
3820   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3821 
3822   // 64-76 are various 4-byte special-purpose registers:
3823   // 64: mq
3824   // 65: lr
3825   // 66: ctr
3826   // 67: ap
3827   // 68-75 cr0-7
3828   // 76: xer
3829   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3830 
3831   // 77-108: v0-31, the 16-byte vector registers
3832   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3833 
3834   // 109: vrsave
3835   // 110: vscr
3836   // 111: spe_acc
3837   // 112: spefscr
3838   // 113: sfp
3839   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3840 
3841   return false;
3842 }
3843 
3844 // PowerPC-64
3845 
3846 namespace {
3847 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3848 class PPC64_SVR4_ABIInfo : public ABIInfo {
3849 public:
3850   enum ABIKind {
3851     ELFv1 = 0,
3852     ELFv2
3853   };
3854 
3855 private:
3856   static const unsigned GPRBits = 64;
3857   ABIKind Kind;
3858   bool HasQPX;
3859 
3860   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3861   // will be passed in a QPX register.
3862   bool IsQPXVectorTy(const Type *Ty) const {
3863     if (!HasQPX)
3864       return false;
3865 
3866     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3867       unsigned NumElements = VT->getNumElements();
3868       if (NumElements == 1)
3869         return false;
3870 
3871       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3872         if (getContext().getTypeSize(Ty) <= 256)
3873           return true;
3874       } else if (VT->getElementType()->
3875                    isSpecificBuiltinType(BuiltinType::Float)) {
3876         if (getContext().getTypeSize(Ty) <= 128)
3877           return true;
3878       }
3879     }
3880 
3881     return false;
3882   }
3883 
3884   bool IsQPXVectorTy(QualType Ty) const {
3885     return IsQPXVectorTy(Ty.getTypePtr());
3886   }
3887 
3888 public:
3889   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3890       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3891 
3892   bool isPromotableTypeForABI(QualType Ty) const;
3893   CharUnits getParamTypeAlignment(QualType Ty) const;
3894 
3895   ABIArgInfo classifyReturnType(QualType RetTy) const;
3896   ABIArgInfo classifyArgumentType(QualType Ty) const;
3897 
3898   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3899   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3900                                          uint64_t Members) const override;
3901 
3902   // TODO: We can add more logic to computeInfo to improve performance.
3903   // Example: For aggregate arguments that fit in a register, we could
3904   // use getDirectInReg (as is done below for structs containing a single
3905   // floating-point value) to avoid pushing them to memory on function
3906   // entry.  This would require changing the logic in PPCISelLowering
3907   // when lowering the parameters in the caller and args in the callee.
3908   void computeInfo(CGFunctionInfo &FI) const override {
3909     if (!getCXXABI().classifyReturnType(FI))
3910       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3911     for (auto &I : FI.arguments()) {
3912       // We rely on the default argument classification for the most part.
3913       // One exception:  An aggregate containing a single floating-point
3914       // or vector item must be passed in a register if one is available.
3915       const Type *T = isSingleElementStruct(I.type, getContext());
3916       if (T) {
3917         const BuiltinType *BT = T->getAs<BuiltinType>();
3918         if (IsQPXVectorTy(T) ||
3919             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3920             (BT && BT->isFloatingPoint())) {
3921           QualType QT(T, 0);
3922           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3923           continue;
3924         }
3925       }
3926       I.info = classifyArgumentType(I.type);
3927     }
3928   }
3929 
3930   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3931                     QualType Ty) const override;
3932 };
3933 
3934 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3935 
3936 public:
3937   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3938                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3939       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3940 
3941   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3942     // This is recovered from gcc output.
3943     return 1; // r1 is the dedicated stack pointer
3944   }
3945 
3946   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3947                                llvm::Value *Address) const override;
3948 };
3949 
3950 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3951 public:
3952   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3953 
3954   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3955     // This is recovered from gcc output.
3956     return 1; // r1 is the dedicated stack pointer
3957   }
3958 
3959   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3960                                llvm::Value *Address) const override;
3961 };
3962 
3963 }
3964 
3965 // Return true if the ABI requires Ty to be passed sign- or zero-
3966 // extended to 64 bits.
3967 bool
3968 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3969   // Treat an enum type as its underlying type.
3970   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3971     Ty = EnumTy->getDecl()->getIntegerType();
3972 
3973   // Promotable integer types are required to be promoted by the ABI.
3974   if (Ty->isPromotableIntegerType())
3975     return true;
3976 
3977   // In addition to the usual promotable integer types, we also need to
3978   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3979   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3980     switch (BT->getKind()) {
3981     case BuiltinType::Int:
3982     case BuiltinType::UInt:
3983       return true;
3984     default:
3985       break;
3986     }
3987 
3988   return false;
3989 }
3990 
3991 /// isAlignedParamType - Determine whether a type requires 16-byte or
3992 /// higher alignment in the parameter area.  Always returns at least 8.
3993 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3994   // Complex types are passed just like their elements.
3995   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3996     Ty = CTy->getElementType();
3997 
3998   // Only vector types of size 16 bytes need alignment (larger types are
3999   // passed via reference, smaller types are not aligned).
4000   if (IsQPXVectorTy(Ty)) {
4001     if (getContext().getTypeSize(Ty) > 128)
4002       return CharUnits::fromQuantity(32);
4003 
4004     return CharUnits::fromQuantity(16);
4005   } else if (Ty->isVectorType()) {
4006     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4007   }
4008 
4009   // For single-element float/vector structs, we consider the whole type
4010   // to have the same alignment requirements as its single element.
4011   const Type *AlignAsType = nullptr;
4012   const Type *EltType = isSingleElementStruct(Ty, getContext());
4013   if (EltType) {
4014     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4015     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4016          getContext().getTypeSize(EltType) == 128) ||
4017         (BT && BT->isFloatingPoint()))
4018       AlignAsType = EltType;
4019   }
4020 
4021   // Likewise for ELFv2 homogeneous aggregates.
4022   const Type *Base = nullptr;
4023   uint64_t Members = 0;
4024   if (!AlignAsType && Kind == ELFv2 &&
4025       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4026     AlignAsType = Base;
4027 
4028   // With special case aggregates, only vector base types need alignment.
4029   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4030     if (getContext().getTypeSize(AlignAsType) > 128)
4031       return CharUnits::fromQuantity(32);
4032 
4033     return CharUnits::fromQuantity(16);
4034   } else if (AlignAsType) {
4035     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4036   }
4037 
4038   // Otherwise, we only need alignment for any aggregate type that
4039   // has an alignment requirement of >= 16 bytes.
4040   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4041     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4042       return CharUnits::fromQuantity(32);
4043     return CharUnits::fromQuantity(16);
4044   }
4045 
4046   return CharUnits::fromQuantity(8);
4047 }
4048 
4049 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4050 /// aggregate.  Base is set to the base element type, and Members is set
4051 /// to the number of base elements.
4052 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4053                                      uint64_t &Members) const {
4054   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4055     uint64_t NElements = AT->getSize().getZExtValue();
4056     if (NElements == 0)
4057       return false;
4058     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4059       return false;
4060     Members *= NElements;
4061   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4062     const RecordDecl *RD = RT->getDecl();
4063     if (RD->hasFlexibleArrayMember())
4064       return false;
4065 
4066     Members = 0;
4067 
4068     // If this is a C++ record, check the bases first.
4069     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4070       for (const auto &I : CXXRD->bases()) {
4071         // Ignore empty records.
4072         if (isEmptyRecord(getContext(), I.getType(), true))
4073           continue;
4074 
4075         uint64_t FldMembers;
4076         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4077           return false;
4078 
4079         Members += FldMembers;
4080       }
4081     }
4082 
4083     for (const auto *FD : RD->fields()) {
4084       // Ignore (non-zero arrays of) empty records.
4085       QualType FT = FD->getType();
4086       while (const ConstantArrayType *AT =
4087              getContext().getAsConstantArrayType(FT)) {
4088         if (AT->getSize().getZExtValue() == 0)
4089           return false;
4090         FT = AT->getElementType();
4091       }
4092       if (isEmptyRecord(getContext(), FT, true))
4093         continue;
4094 
4095       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4096       if (getContext().getLangOpts().CPlusPlus &&
4097           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4098         continue;
4099 
4100       uint64_t FldMembers;
4101       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4102         return false;
4103 
4104       Members = (RD->isUnion() ?
4105                  std::max(Members, FldMembers) : Members + FldMembers);
4106     }
4107 
4108     if (!Base)
4109       return false;
4110 
4111     // Ensure there is no padding.
4112     if (getContext().getTypeSize(Base) * Members !=
4113         getContext().getTypeSize(Ty))
4114       return false;
4115   } else {
4116     Members = 1;
4117     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4118       Members = 2;
4119       Ty = CT->getElementType();
4120     }
4121 
4122     // Most ABIs only support float, double, and some vector type widths.
4123     if (!isHomogeneousAggregateBaseType(Ty))
4124       return false;
4125 
4126     // The base type must be the same for all members.  Types that
4127     // agree in both total size and mode (float vs. vector) are
4128     // treated as being equivalent here.
4129     const Type *TyPtr = Ty.getTypePtr();
4130     if (!Base) {
4131       Base = TyPtr;
4132       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4133       // so make sure to widen it explicitly.
4134       if (const VectorType *VT = Base->getAs<VectorType>()) {
4135         QualType EltTy = VT->getElementType();
4136         unsigned NumElements =
4137             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4138         Base = getContext()
4139                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4140                    .getTypePtr();
4141       }
4142     }
4143 
4144     if (Base->isVectorType() != TyPtr->isVectorType() ||
4145         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4146       return false;
4147   }
4148   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4149 }
4150 
4151 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4152   // Homogeneous aggregates for ELFv2 must have base types of float,
4153   // double, long double, or 128-bit vectors.
4154   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4155     if (BT->getKind() == BuiltinType::Float ||
4156         BT->getKind() == BuiltinType::Double ||
4157         BT->getKind() == BuiltinType::LongDouble)
4158       return true;
4159   }
4160   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4161     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4162       return true;
4163   }
4164   return false;
4165 }
4166 
4167 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4168     const Type *Base, uint64_t Members) const {
4169   // Vector types require one register, floating point types require one
4170   // or two registers depending on their size.
4171   uint32_t NumRegs =
4172       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4173 
4174   // Homogeneous Aggregates may occupy at most 8 registers.
4175   return Members * NumRegs <= 8;
4176 }
4177 
4178 ABIArgInfo
4179 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4180   Ty = useFirstFieldIfTransparentUnion(Ty);
4181 
4182   if (Ty->isAnyComplexType())
4183     return ABIArgInfo::getDirect();
4184 
4185   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4186   // or via reference (larger than 16 bytes).
4187   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4188     uint64_t Size = getContext().getTypeSize(Ty);
4189     if (Size > 128)
4190       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4191     else if (Size < 128) {
4192       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4193       return ABIArgInfo::getDirect(CoerceTy);
4194     }
4195   }
4196 
4197   if (isAggregateTypeForABI(Ty)) {
4198     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4199       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4200 
4201     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4202     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4203 
4204     // ELFv2 homogeneous aggregates are passed as array types.
4205     const Type *Base = nullptr;
4206     uint64_t Members = 0;
4207     if (Kind == ELFv2 &&
4208         isHomogeneousAggregate(Ty, Base, Members)) {
4209       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4210       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4211       return ABIArgInfo::getDirect(CoerceTy);
4212     }
4213 
4214     // If an aggregate may end up fully in registers, we do not
4215     // use the ByVal method, but pass the aggregate as array.
4216     // This is usually beneficial since we avoid forcing the
4217     // back-end to store the argument to memory.
4218     uint64_t Bits = getContext().getTypeSize(Ty);
4219     if (Bits > 0 && Bits <= 8 * GPRBits) {
4220       llvm::Type *CoerceTy;
4221 
4222       // Types up to 8 bytes are passed as integer type (which will be
4223       // properly aligned in the argument save area doubleword).
4224       if (Bits <= GPRBits)
4225         CoerceTy =
4226             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4227       // Larger types are passed as arrays, with the base type selected
4228       // according to the required alignment in the save area.
4229       else {
4230         uint64_t RegBits = ABIAlign * 8;
4231         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4232         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4233         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4234       }
4235 
4236       return ABIArgInfo::getDirect(CoerceTy);
4237     }
4238 
4239     // All other aggregates are passed ByVal.
4240     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4241                                    /*ByVal=*/true,
4242                                    /*Realign=*/TyAlign > ABIAlign);
4243   }
4244 
4245   return (isPromotableTypeForABI(Ty) ?
4246           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4247 }
4248 
4249 ABIArgInfo
4250 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4251   if (RetTy->isVoidType())
4252     return ABIArgInfo::getIgnore();
4253 
4254   if (RetTy->isAnyComplexType())
4255     return ABIArgInfo::getDirect();
4256 
4257   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4258   // or via reference (larger than 16 bytes).
4259   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4260     uint64_t Size = getContext().getTypeSize(RetTy);
4261     if (Size > 128)
4262       return getNaturalAlignIndirect(RetTy);
4263     else if (Size < 128) {
4264       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4265       return ABIArgInfo::getDirect(CoerceTy);
4266     }
4267   }
4268 
4269   if (isAggregateTypeForABI(RetTy)) {
4270     // ELFv2 homogeneous aggregates are returned as array types.
4271     const Type *Base = nullptr;
4272     uint64_t Members = 0;
4273     if (Kind == ELFv2 &&
4274         isHomogeneousAggregate(RetTy, Base, Members)) {
4275       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4276       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4277       return ABIArgInfo::getDirect(CoerceTy);
4278     }
4279 
4280     // ELFv2 small aggregates are returned in up to two registers.
4281     uint64_t Bits = getContext().getTypeSize(RetTy);
4282     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4283       if (Bits == 0)
4284         return ABIArgInfo::getIgnore();
4285 
4286       llvm::Type *CoerceTy;
4287       if (Bits > GPRBits) {
4288         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4289         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4290       } else
4291         CoerceTy =
4292             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4293       return ABIArgInfo::getDirect(CoerceTy);
4294     }
4295 
4296     // All other aggregates are returned indirectly.
4297     return getNaturalAlignIndirect(RetTy);
4298   }
4299 
4300   return (isPromotableTypeForABI(RetTy) ?
4301           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4302 }
4303 
4304 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4305 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4306                                       QualType Ty) const {
4307   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4308   TypeInfo.second = getParamTypeAlignment(Ty);
4309 
4310   CharUnits SlotSize = CharUnits::fromQuantity(8);
4311 
4312   // If we have a complex type and the base type is smaller than 8 bytes,
4313   // the ABI calls for the real and imaginary parts to be right-adjusted
4314   // in separate doublewords.  However, Clang expects us to produce a
4315   // pointer to a structure with the two parts packed tightly.  So generate
4316   // loads of the real and imaginary parts relative to the va_list pointer,
4317   // and store them to a temporary structure.
4318   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4319     CharUnits EltSize = TypeInfo.first / 2;
4320     if (EltSize < SlotSize) {
4321       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4322                                             SlotSize * 2, SlotSize,
4323                                             SlotSize, /*AllowHigher*/ true);
4324 
4325       Address RealAddr = Addr;
4326       Address ImagAddr = RealAddr;
4327       if (CGF.CGM.getDataLayout().isBigEndian()) {
4328         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4329                                                           SlotSize - EltSize);
4330         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4331                                                       2 * SlotSize - EltSize);
4332       } else {
4333         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4334       }
4335 
4336       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4337       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4338       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4339       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4340       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4341 
4342       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4343       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4344                              /*init*/ true);
4345       return Temp;
4346     }
4347   }
4348 
4349   // Otherwise, just use the general rule.
4350   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4351                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4352 }
4353 
4354 static bool
4355 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4356                               llvm::Value *Address) {
4357   // This is calculated from the LLVM and GCC tables and verified
4358   // against gcc output.  AFAIK all ABIs use the same encoding.
4359 
4360   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4361 
4362   llvm::IntegerType *i8 = CGF.Int8Ty;
4363   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4364   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4365   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4366 
4367   // 0-31: r0-31, the 8-byte general-purpose registers
4368   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4369 
4370   // 32-63: fp0-31, the 8-byte floating-point registers
4371   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4372 
4373   // 64-76 are various 4-byte special-purpose registers:
4374   // 64: mq
4375   // 65: lr
4376   // 66: ctr
4377   // 67: ap
4378   // 68-75 cr0-7
4379   // 76: xer
4380   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4381 
4382   // 77-108: v0-31, the 16-byte vector registers
4383   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4384 
4385   // 109: vrsave
4386   // 110: vscr
4387   // 111: spe_acc
4388   // 112: spefscr
4389   // 113: sfp
4390   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4391 
4392   return false;
4393 }
4394 
4395 bool
4396 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4397   CodeGen::CodeGenFunction &CGF,
4398   llvm::Value *Address) const {
4399 
4400   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4401 }
4402 
4403 bool
4404 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4405                                                 llvm::Value *Address) const {
4406 
4407   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4408 }
4409 
4410 //===----------------------------------------------------------------------===//
4411 // AArch64 ABI Implementation
4412 //===----------------------------------------------------------------------===//
4413 
4414 namespace {
4415 
4416 class AArch64ABIInfo : public SwiftABIInfo {
4417 public:
4418   enum ABIKind {
4419     AAPCS = 0,
4420     DarwinPCS
4421   };
4422 
4423 private:
4424   ABIKind Kind;
4425 
4426 public:
4427   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4428     : SwiftABIInfo(CGT), Kind(Kind) {}
4429 
4430 private:
4431   ABIKind getABIKind() const { return Kind; }
4432   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4433 
4434   ABIArgInfo classifyReturnType(QualType RetTy) const;
4435   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4436   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4437   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4438                                          uint64_t Members) const override;
4439 
4440   bool isIllegalVectorType(QualType Ty) const;
4441 
4442   void computeInfo(CGFunctionInfo &FI) const override {
4443     if (!getCXXABI().classifyReturnType(FI))
4444       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4445 
4446     for (auto &it : FI.arguments())
4447       it.info = classifyArgumentType(it.type);
4448   }
4449 
4450   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4451                           CodeGenFunction &CGF) const;
4452 
4453   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4454                          CodeGenFunction &CGF) const;
4455 
4456   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4457                     QualType Ty) const override {
4458     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4459                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4460   }
4461 
4462   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4463                                     ArrayRef<llvm::Type*> scalars,
4464                                     bool asReturnValue) const override {
4465     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4466   }
4467 };
4468 
4469 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4470 public:
4471   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4472       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4473 
4474   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4475     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4476   }
4477 
4478   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4479     return 31;
4480   }
4481 
4482   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4483 };
4484 }
4485 
4486 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4487   Ty = useFirstFieldIfTransparentUnion(Ty);
4488 
4489   // Handle illegal vector types here.
4490   if (isIllegalVectorType(Ty)) {
4491     uint64_t Size = getContext().getTypeSize(Ty);
4492     // Android promotes <2 x i8> to i16, not i32
4493     if (isAndroid() && (Size <= 16)) {
4494       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4495       return ABIArgInfo::getDirect(ResType);
4496     }
4497     if (Size <= 32) {
4498       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4499       return ABIArgInfo::getDirect(ResType);
4500     }
4501     if (Size == 64) {
4502       llvm::Type *ResType =
4503           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4504       return ABIArgInfo::getDirect(ResType);
4505     }
4506     if (Size == 128) {
4507       llvm::Type *ResType =
4508           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4509       return ABIArgInfo::getDirect(ResType);
4510     }
4511     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4512   }
4513 
4514   if (!isAggregateTypeForABI(Ty)) {
4515     // Treat an enum type as its underlying type.
4516     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4517       Ty = EnumTy->getDecl()->getIntegerType();
4518 
4519     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4520                 ? ABIArgInfo::getExtend()
4521                 : ABIArgInfo::getDirect());
4522   }
4523 
4524   // Structures with either a non-trivial destructor or a non-trivial
4525   // copy constructor are always indirect.
4526   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4527     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4528                                      CGCXXABI::RAA_DirectInMemory);
4529   }
4530 
4531   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4532   // elsewhere for GNU compatibility.
4533   if (isEmptyRecord(getContext(), Ty, true)) {
4534     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4535       return ABIArgInfo::getIgnore();
4536 
4537     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4538   }
4539 
4540   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4541   const Type *Base = nullptr;
4542   uint64_t Members = 0;
4543   if (isHomogeneousAggregate(Ty, Base, Members)) {
4544     return ABIArgInfo::getDirect(
4545         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4546   }
4547 
4548   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4549   uint64_t Size = getContext().getTypeSize(Ty);
4550   if (Size <= 128) {
4551     unsigned Alignment = getContext().getTypeAlign(Ty);
4552     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4553 
4554     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4555     // For aggregates with 16-byte alignment, we use i128.
4556     if (Alignment < 128 && Size == 128) {
4557       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4558       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4559     }
4560     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4561   }
4562 
4563   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4564 }
4565 
4566 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4567   if (RetTy->isVoidType())
4568     return ABIArgInfo::getIgnore();
4569 
4570   // Large vector types should be returned via memory.
4571   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4572     return getNaturalAlignIndirect(RetTy);
4573 
4574   if (!isAggregateTypeForABI(RetTy)) {
4575     // Treat an enum type as its underlying type.
4576     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4577       RetTy = EnumTy->getDecl()->getIntegerType();
4578 
4579     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4580                 ? ABIArgInfo::getExtend()
4581                 : ABIArgInfo::getDirect());
4582   }
4583 
4584   if (isEmptyRecord(getContext(), RetTy, true))
4585     return ABIArgInfo::getIgnore();
4586 
4587   const Type *Base = nullptr;
4588   uint64_t Members = 0;
4589   if (isHomogeneousAggregate(RetTy, Base, Members))
4590     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4591     return ABIArgInfo::getDirect();
4592 
4593   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4594   uint64_t Size = getContext().getTypeSize(RetTy);
4595   if (Size <= 128) {
4596     unsigned Alignment = getContext().getTypeAlign(RetTy);
4597     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4598 
4599     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4600     // For aggregates with 16-byte alignment, we use i128.
4601     if (Alignment < 128 && Size == 128) {
4602       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4603       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4604     }
4605     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4606   }
4607 
4608   return getNaturalAlignIndirect(RetTy);
4609 }
4610 
4611 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4612 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4613   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4614     // Check whether VT is legal.
4615     unsigned NumElements = VT->getNumElements();
4616     uint64_t Size = getContext().getTypeSize(VT);
4617     // NumElements should be power of 2.
4618     if (!llvm::isPowerOf2_32(NumElements))
4619       return true;
4620     return Size != 64 && (Size != 128 || NumElements == 1);
4621   }
4622   return false;
4623 }
4624 
4625 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4626   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4627   // point type or a short-vector type. This is the same as the 32-bit ABI,
4628   // but with the difference that any floating-point type is allowed,
4629   // including __fp16.
4630   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4631     if (BT->isFloatingPoint())
4632       return true;
4633   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4634     unsigned VecSize = getContext().getTypeSize(VT);
4635     if (VecSize == 64 || VecSize == 128)
4636       return true;
4637   }
4638   return false;
4639 }
4640 
4641 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4642                                                        uint64_t Members) const {
4643   return Members <= 4;
4644 }
4645 
4646 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4647                                             QualType Ty,
4648                                             CodeGenFunction &CGF) const {
4649   ABIArgInfo AI = classifyArgumentType(Ty);
4650   bool IsIndirect = AI.isIndirect();
4651 
4652   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4653   if (IsIndirect)
4654     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4655   else if (AI.getCoerceToType())
4656     BaseTy = AI.getCoerceToType();
4657 
4658   unsigned NumRegs = 1;
4659   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4660     BaseTy = ArrTy->getElementType();
4661     NumRegs = ArrTy->getNumElements();
4662   }
4663   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4664 
4665   // The AArch64 va_list type and handling is specified in the Procedure Call
4666   // Standard, section B.4:
4667   //
4668   // struct {
4669   //   void *__stack;
4670   //   void *__gr_top;
4671   //   void *__vr_top;
4672   //   int __gr_offs;
4673   //   int __vr_offs;
4674   // };
4675 
4676   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4677   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4678   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4679   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4680 
4681   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4682   CharUnits TyAlign = TyInfo.second;
4683 
4684   Address reg_offs_p = Address::invalid();
4685   llvm::Value *reg_offs = nullptr;
4686   int reg_top_index;
4687   CharUnits reg_top_offset;
4688   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4689   if (!IsFPR) {
4690     // 3 is the field number of __gr_offs
4691     reg_offs_p =
4692         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4693                                     "gr_offs_p");
4694     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4695     reg_top_index = 1; // field number for __gr_top
4696     reg_top_offset = CharUnits::fromQuantity(8);
4697     RegSize = llvm::alignTo(RegSize, 8);
4698   } else {
4699     // 4 is the field number of __vr_offs.
4700     reg_offs_p =
4701         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4702                                     "vr_offs_p");
4703     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4704     reg_top_index = 2; // field number for __vr_top
4705     reg_top_offset = CharUnits::fromQuantity(16);
4706     RegSize = 16 * NumRegs;
4707   }
4708 
4709   //=======================================
4710   // Find out where argument was passed
4711   //=======================================
4712 
4713   // If reg_offs >= 0 we're already using the stack for this type of
4714   // argument. We don't want to keep updating reg_offs (in case it overflows,
4715   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4716   // whatever they get).
4717   llvm::Value *UsingStack = nullptr;
4718   UsingStack = CGF.Builder.CreateICmpSGE(
4719       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4720 
4721   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4722 
4723   // Otherwise, at least some kind of argument could go in these registers, the
4724   // question is whether this particular type is too big.
4725   CGF.EmitBlock(MaybeRegBlock);
4726 
4727   // Integer arguments may need to correct register alignment (for example a
4728   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4729   // align __gr_offs to calculate the potential address.
4730   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4731     int Align = TyAlign.getQuantity();
4732 
4733     reg_offs = CGF.Builder.CreateAdd(
4734         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4735         "align_regoffs");
4736     reg_offs = CGF.Builder.CreateAnd(
4737         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4738         "aligned_regoffs");
4739   }
4740 
4741   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4742   // The fact that this is done unconditionally reflects the fact that
4743   // allocating an argument to the stack also uses up all the remaining
4744   // registers of the appropriate kind.
4745   llvm::Value *NewOffset = nullptr;
4746   NewOffset = CGF.Builder.CreateAdd(
4747       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4748   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4749 
4750   // Now we're in a position to decide whether this argument really was in
4751   // registers or not.
4752   llvm::Value *InRegs = nullptr;
4753   InRegs = CGF.Builder.CreateICmpSLE(
4754       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4755 
4756   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4757 
4758   //=======================================
4759   // Argument was in registers
4760   //=======================================
4761 
4762   // Now we emit the code for if the argument was originally passed in
4763   // registers. First start the appropriate block:
4764   CGF.EmitBlock(InRegBlock);
4765 
4766   llvm::Value *reg_top = nullptr;
4767   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4768                                                   reg_top_offset, "reg_top_p");
4769   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4770   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4771                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4772   Address RegAddr = Address::invalid();
4773   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4774 
4775   if (IsIndirect) {
4776     // If it's been passed indirectly (actually a struct), whatever we find from
4777     // stored registers or on the stack will actually be a struct **.
4778     MemTy = llvm::PointerType::getUnqual(MemTy);
4779   }
4780 
4781   const Type *Base = nullptr;
4782   uint64_t NumMembers = 0;
4783   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4784   if (IsHFA && NumMembers > 1) {
4785     // Homogeneous aggregates passed in registers will have their elements split
4786     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4787     // qN+1, ...). We reload and store into a temporary local variable
4788     // contiguously.
4789     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4790     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4791     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4792     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4793     Address Tmp = CGF.CreateTempAlloca(HFATy,
4794                                        std::max(TyAlign, BaseTyInfo.second));
4795 
4796     // On big-endian platforms, the value will be right-aligned in its slot.
4797     int Offset = 0;
4798     if (CGF.CGM.getDataLayout().isBigEndian() &&
4799         BaseTyInfo.first.getQuantity() < 16)
4800       Offset = 16 - BaseTyInfo.first.getQuantity();
4801 
4802     for (unsigned i = 0; i < NumMembers; ++i) {
4803       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4804       Address LoadAddr =
4805         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4806       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4807 
4808       Address StoreAddr =
4809         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4810 
4811       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4812       CGF.Builder.CreateStore(Elem, StoreAddr);
4813     }
4814 
4815     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4816   } else {
4817     // Otherwise the object is contiguous in memory.
4818 
4819     // It might be right-aligned in its slot.
4820     CharUnits SlotSize = BaseAddr.getAlignment();
4821     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4822         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4823         TyInfo.first < SlotSize) {
4824       CharUnits Offset = SlotSize - TyInfo.first;
4825       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4826     }
4827 
4828     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4829   }
4830 
4831   CGF.EmitBranch(ContBlock);
4832 
4833   //=======================================
4834   // Argument was on the stack
4835   //=======================================
4836   CGF.EmitBlock(OnStackBlock);
4837 
4838   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4839                                                 CharUnits::Zero(), "stack_p");
4840   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4841 
4842   // Again, stack arguments may need realignment. In this case both integer and
4843   // floating-point ones might be affected.
4844   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4845     int Align = TyAlign.getQuantity();
4846 
4847     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4848 
4849     OnStackPtr = CGF.Builder.CreateAdd(
4850         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4851         "align_stack");
4852     OnStackPtr = CGF.Builder.CreateAnd(
4853         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4854         "align_stack");
4855 
4856     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4857   }
4858   Address OnStackAddr(OnStackPtr,
4859                       std::max(CharUnits::fromQuantity(8), TyAlign));
4860 
4861   // All stack slots are multiples of 8 bytes.
4862   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4863   CharUnits StackSize;
4864   if (IsIndirect)
4865     StackSize = StackSlotSize;
4866   else
4867     StackSize = TyInfo.first.alignTo(StackSlotSize);
4868 
4869   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4870   llvm::Value *NewStack =
4871       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4872 
4873   // Write the new value of __stack for the next call to va_arg
4874   CGF.Builder.CreateStore(NewStack, stack_p);
4875 
4876   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4877       TyInfo.first < StackSlotSize) {
4878     CharUnits Offset = StackSlotSize - TyInfo.first;
4879     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4880   }
4881 
4882   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4883 
4884   CGF.EmitBranch(ContBlock);
4885 
4886   //=======================================
4887   // Tidy up
4888   //=======================================
4889   CGF.EmitBlock(ContBlock);
4890 
4891   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4892                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4893 
4894   if (IsIndirect)
4895     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4896                    TyInfo.second);
4897 
4898   return ResAddr;
4899 }
4900 
4901 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4902                                         CodeGenFunction &CGF) const {
4903   // The backend's lowering doesn't support va_arg for aggregates or
4904   // illegal vector types.  Lower VAArg here for these cases and use
4905   // the LLVM va_arg instruction for everything else.
4906   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4907     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
4908 
4909   CharUnits SlotSize = CharUnits::fromQuantity(8);
4910 
4911   // Empty records are ignored for parameter passing purposes.
4912   if (isEmptyRecord(getContext(), Ty, true)) {
4913     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4914     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4915     return Addr;
4916   }
4917 
4918   // The size of the actual thing passed, which might end up just
4919   // being a pointer for indirect types.
4920   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4921 
4922   // Arguments bigger than 16 bytes which aren't homogeneous
4923   // aggregates should be passed indirectly.
4924   bool IsIndirect = false;
4925   if (TyInfo.first.getQuantity() > 16) {
4926     const Type *Base = nullptr;
4927     uint64_t Members = 0;
4928     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4929   }
4930 
4931   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4932                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4933 }
4934 
4935 //===----------------------------------------------------------------------===//
4936 // ARM ABI Implementation
4937 //===----------------------------------------------------------------------===//
4938 
4939 namespace {
4940 
4941 class ARMABIInfo : public SwiftABIInfo {
4942 public:
4943   enum ABIKind {
4944     APCS = 0,
4945     AAPCS = 1,
4946     AAPCS_VFP = 2,
4947     AAPCS16_VFP = 3,
4948   };
4949 
4950 private:
4951   ABIKind Kind;
4952 
4953 public:
4954   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
4955       : SwiftABIInfo(CGT), Kind(_Kind) {
4956     setCCs();
4957   }
4958 
4959   bool isEABI() const {
4960     switch (getTarget().getTriple().getEnvironment()) {
4961     case llvm::Triple::Android:
4962     case llvm::Triple::EABI:
4963     case llvm::Triple::EABIHF:
4964     case llvm::Triple::GNUEABI:
4965     case llvm::Triple::GNUEABIHF:
4966     case llvm::Triple::MuslEABI:
4967     case llvm::Triple::MuslEABIHF:
4968       return true;
4969     default:
4970       return false;
4971     }
4972   }
4973 
4974   bool isEABIHF() const {
4975     switch (getTarget().getTriple().getEnvironment()) {
4976     case llvm::Triple::EABIHF:
4977     case llvm::Triple::GNUEABIHF:
4978     case llvm::Triple::MuslEABIHF:
4979       return true;
4980     default:
4981       return false;
4982     }
4983   }
4984 
4985   ABIKind getABIKind() const { return Kind; }
4986 
4987 private:
4988   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4989   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4990   bool isIllegalVectorType(QualType Ty) const;
4991 
4992   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4993   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4994                                          uint64_t Members) const override;
4995 
4996   void computeInfo(CGFunctionInfo &FI) const override;
4997 
4998   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4999                     QualType Ty) const override;
5000 
5001   llvm::CallingConv::ID getLLVMDefaultCC() const;
5002   llvm::CallingConv::ID getABIDefaultCC() const;
5003   void setCCs();
5004 
5005   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5006                                     ArrayRef<llvm::Type*> scalars,
5007                                     bool asReturnValue) const override {
5008     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5009   }
5010 };
5011 
5012 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5013 public:
5014   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5015     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5016 
5017   const ARMABIInfo &getABIInfo() const {
5018     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5019   }
5020 
5021   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5022     return 13;
5023   }
5024 
5025   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5026     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
5027   }
5028 
5029   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5030                                llvm::Value *Address) const override {
5031     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5032 
5033     // 0-15 are the 16 integer registers.
5034     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5035     return false;
5036   }
5037 
5038   unsigned getSizeOfUnwindException() const override {
5039     if (getABIInfo().isEABI()) return 88;
5040     return TargetCodeGenInfo::getSizeOfUnwindException();
5041   }
5042 
5043   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5044                            CodeGen::CodeGenModule &CGM) const override {
5045     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5046     if (!FD)
5047       return;
5048 
5049     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5050     if (!Attr)
5051       return;
5052 
5053     const char *Kind;
5054     switch (Attr->getInterrupt()) {
5055     case ARMInterruptAttr::Generic: Kind = ""; break;
5056     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5057     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5058     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5059     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5060     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5061     }
5062 
5063     llvm::Function *Fn = cast<llvm::Function>(GV);
5064 
5065     Fn->addFnAttr("interrupt", Kind);
5066 
5067     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5068     if (ABI == ARMABIInfo::APCS)
5069       return;
5070 
5071     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5072     // however this is not necessarily true on taking any interrupt. Instruct
5073     // the backend to perform a realignment as part of the function prologue.
5074     llvm::AttrBuilder B;
5075     B.addStackAlignmentAttr(8);
5076     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
5077                       llvm::AttributeSet::get(CGM.getLLVMContext(),
5078                                               llvm::AttributeSet::FunctionIndex,
5079                                               B));
5080   }
5081 };
5082 
5083 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5084 public:
5085   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5086       : ARMTargetCodeGenInfo(CGT, K) {}
5087 
5088   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5089                            CodeGen::CodeGenModule &CGM) const override;
5090 
5091   void getDependentLibraryOption(llvm::StringRef Lib,
5092                                  llvm::SmallString<24> &Opt) const override {
5093     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5094   }
5095 
5096   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5097                                llvm::SmallString<32> &Opt) const override {
5098     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5099   }
5100 };
5101 
5102 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5103     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5104   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5105   addStackProbeSizeTargetAttribute(D, GV, CGM);
5106 }
5107 }
5108 
5109 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5110   if (!getCXXABI().classifyReturnType(FI))
5111     FI.getReturnInfo() =
5112         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5113 
5114   for (auto &I : FI.arguments())
5115     I.info = classifyArgumentType(I.type, FI.isVariadic());
5116 
5117   // Always honor user-specified calling convention.
5118   if (FI.getCallingConvention() != llvm::CallingConv::C)
5119     return;
5120 
5121   llvm::CallingConv::ID cc = getRuntimeCC();
5122   if (cc != llvm::CallingConv::C)
5123     FI.setEffectiveCallingConvention(cc);
5124 }
5125 
5126 /// Return the default calling convention that LLVM will use.
5127 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5128   // The default calling convention that LLVM will infer.
5129   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5130     return llvm::CallingConv::ARM_AAPCS_VFP;
5131   else if (isEABI())
5132     return llvm::CallingConv::ARM_AAPCS;
5133   else
5134     return llvm::CallingConv::ARM_APCS;
5135 }
5136 
5137 /// Return the calling convention that our ABI would like us to use
5138 /// as the C calling convention.
5139 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5140   switch (getABIKind()) {
5141   case APCS: return llvm::CallingConv::ARM_APCS;
5142   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5143   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5144   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5145   }
5146   llvm_unreachable("bad ABI kind");
5147 }
5148 
5149 void ARMABIInfo::setCCs() {
5150   assert(getRuntimeCC() == llvm::CallingConv::C);
5151 
5152   // Don't muddy up the IR with a ton of explicit annotations if
5153   // they'd just match what LLVM will infer from the triple.
5154   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5155   if (abiCC != getLLVMDefaultCC())
5156     RuntimeCC = abiCC;
5157 
5158   // AAPCS apparently requires runtime support functions to be soft-float, but
5159   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5160   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5161   switch (getABIKind()) {
5162   case APCS:
5163   case AAPCS16_VFP:
5164     if (abiCC != getLLVMDefaultCC())
5165       BuiltinCC = abiCC;
5166     break;
5167   case AAPCS:
5168   case AAPCS_VFP:
5169     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
5170     break;
5171   }
5172 }
5173 
5174 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5175                                             bool isVariadic) const {
5176   // 6.1.2.1 The following argument types are VFP CPRCs:
5177   //   A single-precision floating-point type (including promoted
5178   //   half-precision types); A double-precision floating-point type;
5179   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5180   //   with a Base Type of a single- or double-precision floating-point type,
5181   //   64-bit containerized vectors or 128-bit containerized vectors with one
5182   //   to four Elements.
5183   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5184 
5185   Ty = useFirstFieldIfTransparentUnion(Ty);
5186 
5187   // Handle illegal vector types here.
5188   if (isIllegalVectorType(Ty)) {
5189     uint64_t Size = getContext().getTypeSize(Ty);
5190     if (Size <= 32) {
5191       llvm::Type *ResType =
5192           llvm::Type::getInt32Ty(getVMContext());
5193       return ABIArgInfo::getDirect(ResType);
5194     }
5195     if (Size == 64) {
5196       llvm::Type *ResType = llvm::VectorType::get(
5197           llvm::Type::getInt32Ty(getVMContext()), 2);
5198       return ABIArgInfo::getDirect(ResType);
5199     }
5200     if (Size == 128) {
5201       llvm::Type *ResType = llvm::VectorType::get(
5202           llvm::Type::getInt32Ty(getVMContext()), 4);
5203       return ABIArgInfo::getDirect(ResType);
5204     }
5205     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5206   }
5207 
5208   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5209   // unspecified. This is not done for OpenCL as it handles the half type
5210   // natively, and does not need to interwork with AAPCS code.
5211   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5212     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5213       llvm::Type::getFloatTy(getVMContext()) :
5214       llvm::Type::getInt32Ty(getVMContext());
5215     return ABIArgInfo::getDirect(ResType);
5216   }
5217 
5218   if (!isAggregateTypeForABI(Ty)) {
5219     // Treat an enum type as its underlying type.
5220     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5221       Ty = EnumTy->getDecl()->getIntegerType();
5222     }
5223 
5224     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5225                                           : ABIArgInfo::getDirect());
5226   }
5227 
5228   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5229     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5230   }
5231 
5232   // Ignore empty records.
5233   if (isEmptyRecord(getContext(), Ty, true))
5234     return ABIArgInfo::getIgnore();
5235 
5236   if (IsEffectivelyAAPCS_VFP) {
5237     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5238     // into VFP registers.
5239     const Type *Base = nullptr;
5240     uint64_t Members = 0;
5241     if (isHomogeneousAggregate(Ty, Base, Members)) {
5242       assert(Base && "Base class should be set for homogeneous aggregate");
5243       // Base can be a floating-point or a vector.
5244       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5245     }
5246   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5247     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5248     // this convention even for a variadic function: the backend will use GPRs
5249     // if needed.
5250     const Type *Base = nullptr;
5251     uint64_t Members = 0;
5252     if (isHomogeneousAggregate(Ty, Base, Members)) {
5253       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5254       llvm::Type *Ty =
5255         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5256       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5257     }
5258   }
5259 
5260   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5261       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5262     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5263     // bigger than 128-bits, they get placed in space allocated by the caller,
5264     // and a pointer is passed.
5265     return ABIArgInfo::getIndirect(
5266         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5267   }
5268 
5269   // Support byval for ARM.
5270   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5271   // most 8-byte. We realign the indirect argument if type alignment is bigger
5272   // than ABI alignment.
5273   uint64_t ABIAlign = 4;
5274   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5275   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5276        getABIKind() == ARMABIInfo::AAPCS)
5277     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5278 
5279   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5280     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5281     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5282                                    /*ByVal=*/true,
5283                                    /*Realign=*/TyAlign > ABIAlign);
5284   }
5285 
5286   // Otherwise, pass by coercing to a structure of the appropriate size.
5287   llvm::Type* ElemTy;
5288   unsigned SizeRegs;
5289   // FIXME: Try to match the types of the arguments more accurately where
5290   // we can.
5291   if (getContext().getTypeAlign(Ty) <= 32) {
5292     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5293     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5294   } else {
5295     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5296     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5297   }
5298 
5299   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5300 }
5301 
5302 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5303                               llvm::LLVMContext &VMContext) {
5304   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5305   // is called integer-like if its size is less than or equal to one word, and
5306   // the offset of each of its addressable sub-fields is zero.
5307 
5308   uint64_t Size = Context.getTypeSize(Ty);
5309 
5310   // Check that the type fits in a word.
5311   if (Size > 32)
5312     return false;
5313 
5314   // FIXME: Handle vector types!
5315   if (Ty->isVectorType())
5316     return false;
5317 
5318   // Float types are never treated as "integer like".
5319   if (Ty->isRealFloatingType())
5320     return false;
5321 
5322   // If this is a builtin or pointer type then it is ok.
5323   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5324     return true;
5325 
5326   // Small complex integer types are "integer like".
5327   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5328     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5329 
5330   // Single element and zero sized arrays should be allowed, by the definition
5331   // above, but they are not.
5332 
5333   // Otherwise, it must be a record type.
5334   const RecordType *RT = Ty->getAs<RecordType>();
5335   if (!RT) return false;
5336 
5337   // Ignore records with flexible arrays.
5338   const RecordDecl *RD = RT->getDecl();
5339   if (RD->hasFlexibleArrayMember())
5340     return false;
5341 
5342   // Check that all sub-fields are at offset 0, and are themselves "integer
5343   // like".
5344   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5345 
5346   bool HadField = false;
5347   unsigned idx = 0;
5348   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5349        i != e; ++i, ++idx) {
5350     const FieldDecl *FD = *i;
5351 
5352     // Bit-fields are not addressable, we only need to verify they are "integer
5353     // like". We still have to disallow a subsequent non-bitfield, for example:
5354     //   struct { int : 0; int x }
5355     // is non-integer like according to gcc.
5356     if (FD->isBitField()) {
5357       if (!RD->isUnion())
5358         HadField = true;
5359 
5360       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5361         return false;
5362 
5363       continue;
5364     }
5365 
5366     // Check if this field is at offset 0.
5367     if (Layout.getFieldOffset(idx) != 0)
5368       return false;
5369 
5370     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5371       return false;
5372 
5373     // Only allow at most one field in a structure. This doesn't match the
5374     // wording above, but follows gcc in situations with a field following an
5375     // empty structure.
5376     if (!RD->isUnion()) {
5377       if (HadField)
5378         return false;
5379 
5380       HadField = true;
5381     }
5382   }
5383 
5384   return true;
5385 }
5386 
5387 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5388                                           bool isVariadic) const {
5389   bool IsEffectivelyAAPCS_VFP =
5390       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5391 
5392   if (RetTy->isVoidType())
5393     return ABIArgInfo::getIgnore();
5394 
5395   // Large vector types should be returned via memory.
5396   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5397     return getNaturalAlignIndirect(RetTy);
5398   }
5399 
5400   // __fp16 gets returned as if it were an int or float, but with the top 16
5401   // bits unspecified. This is not done for OpenCL as it handles the half type
5402   // natively, and does not need to interwork with AAPCS code.
5403   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5404     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5405       llvm::Type::getFloatTy(getVMContext()) :
5406       llvm::Type::getInt32Ty(getVMContext());
5407     return ABIArgInfo::getDirect(ResType);
5408   }
5409 
5410   if (!isAggregateTypeForABI(RetTy)) {
5411     // Treat an enum type as its underlying type.
5412     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5413       RetTy = EnumTy->getDecl()->getIntegerType();
5414 
5415     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5416                                             : ABIArgInfo::getDirect();
5417   }
5418 
5419   // Are we following APCS?
5420   if (getABIKind() == APCS) {
5421     if (isEmptyRecord(getContext(), RetTy, false))
5422       return ABIArgInfo::getIgnore();
5423 
5424     // Complex types are all returned as packed integers.
5425     //
5426     // FIXME: Consider using 2 x vector types if the back end handles them
5427     // correctly.
5428     if (RetTy->isAnyComplexType())
5429       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5430           getVMContext(), getContext().getTypeSize(RetTy)));
5431 
5432     // Integer like structures are returned in r0.
5433     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5434       // Return in the smallest viable integer type.
5435       uint64_t Size = getContext().getTypeSize(RetTy);
5436       if (Size <= 8)
5437         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5438       if (Size <= 16)
5439         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5440       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5441     }
5442 
5443     // Otherwise return in memory.
5444     return getNaturalAlignIndirect(RetTy);
5445   }
5446 
5447   // Otherwise this is an AAPCS variant.
5448 
5449   if (isEmptyRecord(getContext(), RetTy, true))
5450     return ABIArgInfo::getIgnore();
5451 
5452   // Check for homogeneous aggregates with AAPCS-VFP.
5453   if (IsEffectivelyAAPCS_VFP) {
5454     const Type *Base = nullptr;
5455     uint64_t Members = 0;
5456     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5457       assert(Base && "Base class should be set for homogeneous aggregate");
5458       // Homogeneous Aggregates are returned directly.
5459       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5460     }
5461   }
5462 
5463   // Aggregates <= 4 bytes are returned in r0; other aggregates
5464   // are returned indirectly.
5465   uint64_t Size = getContext().getTypeSize(RetTy);
5466   if (Size <= 32) {
5467     if (getDataLayout().isBigEndian())
5468       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5469       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5470 
5471     // Return in the smallest viable integer type.
5472     if (Size <= 8)
5473       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5474     if (Size <= 16)
5475       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5476     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5477   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5478     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5479     llvm::Type *CoerceTy =
5480         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5481     return ABIArgInfo::getDirect(CoerceTy);
5482   }
5483 
5484   return getNaturalAlignIndirect(RetTy);
5485 }
5486 
5487 /// isIllegalVector - check whether Ty is an illegal vector type.
5488 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5489   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5490     if (isAndroid()) {
5491       // Android shipped using Clang 3.1, which supported a slightly different
5492       // vector ABI. The primary differences were that 3-element vector types
5493       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5494       // accepts that legacy behavior for Android only.
5495       // Check whether VT is legal.
5496       unsigned NumElements = VT->getNumElements();
5497       // NumElements should be power of 2 or equal to 3.
5498       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5499         return true;
5500     } else {
5501       // Check whether VT is legal.
5502       unsigned NumElements = VT->getNumElements();
5503       uint64_t Size = getContext().getTypeSize(VT);
5504       // NumElements should be power of 2.
5505       if (!llvm::isPowerOf2_32(NumElements))
5506         return true;
5507       // Size should be greater than 32 bits.
5508       return Size <= 32;
5509     }
5510   }
5511   return false;
5512 }
5513 
5514 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5515   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5516   // double, or 64-bit or 128-bit vectors.
5517   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5518     if (BT->getKind() == BuiltinType::Float ||
5519         BT->getKind() == BuiltinType::Double ||
5520         BT->getKind() == BuiltinType::LongDouble)
5521       return true;
5522   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5523     unsigned VecSize = getContext().getTypeSize(VT);
5524     if (VecSize == 64 || VecSize == 128)
5525       return true;
5526   }
5527   return false;
5528 }
5529 
5530 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5531                                                    uint64_t Members) const {
5532   return Members <= 4;
5533 }
5534 
5535 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5536                               QualType Ty) const {
5537   CharUnits SlotSize = CharUnits::fromQuantity(4);
5538 
5539   // Empty records are ignored for parameter passing purposes.
5540   if (isEmptyRecord(getContext(), Ty, true)) {
5541     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5542     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5543     return Addr;
5544   }
5545 
5546   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5547   CharUnits TyAlignForABI = TyInfo.second;
5548 
5549   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5550   bool IsIndirect = false;
5551   const Type *Base = nullptr;
5552   uint64_t Members = 0;
5553   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5554     IsIndirect = true;
5555 
5556   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5557   // allocated by the caller.
5558   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5559              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5560              !isHomogeneousAggregate(Ty, Base, Members)) {
5561     IsIndirect = true;
5562 
5563   // Otherwise, bound the type's ABI alignment.
5564   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5565   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5566   // Our callers should be prepared to handle an under-aligned address.
5567   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5568              getABIKind() == ARMABIInfo::AAPCS) {
5569     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5570     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5571   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5572     // ARMv7k allows type alignment up to 16 bytes.
5573     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5574     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5575   } else {
5576     TyAlignForABI = CharUnits::fromQuantity(4);
5577   }
5578   TyInfo.second = TyAlignForABI;
5579 
5580   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5581                           SlotSize, /*AllowHigherAlign*/ true);
5582 }
5583 
5584 //===----------------------------------------------------------------------===//
5585 // NVPTX ABI Implementation
5586 //===----------------------------------------------------------------------===//
5587 
5588 namespace {
5589 
5590 class NVPTXABIInfo : public ABIInfo {
5591 public:
5592   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5593 
5594   ABIArgInfo classifyReturnType(QualType RetTy) const;
5595   ABIArgInfo classifyArgumentType(QualType Ty) const;
5596 
5597   void computeInfo(CGFunctionInfo &FI) const override;
5598   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5599                     QualType Ty) const override;
5600 };
5601 
5602 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5603 public:
5604   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5605     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5606 
5607   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5608                            CodeGen::CodeGenModule &M) const override;
5609 private:
5610   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5611   // resulting MDNode to the nvvm.annotations MDNode.
5612   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5613 };
5614 
5615 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5616   if (RetTy->isVoidType())
5617     return ABIArgInfo::getIgnore();
5618 
5619   // note: this is different from default ABI
5620   if (!RetTy->isScalarType())
5621     return ABIArgInfo::getDirect();
5622 
5623   // Treat an enum type as its underlying type.
5624   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5625     RetTy = EnumTy->getDecl()->getIntegerType();
5626 
5627   return (RetTy->isPromotableIntegerType() ?
5628           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5629 }
5630 
5631 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5632   // Treat an enum type as its underlying type.
5633   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5634     Ty = EnumTy->getDecl()->getIntegerType();
5635 
5636   // Return aggregates type as indirect by value
5637   if (isAggregateTypeForABI(Ty))
5638     return getNaturalAlignIndirect(Ty, /* byval */ true);
5639 
5640   return (Ty->isPromotableIntegerType() ?
5641           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5642 }
5643 
5644 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5645   if (!getCXXABI().classifyReturnType(FI))
5646     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5647   for (auto &I : FI.arguments())
5648     I.info = classifyArgumentType(I.type);
5649 
5650   // Always honor user-specified calling convention.
5651   if (FI.getCallingConvention() != llvm::CallingConv::C)
5652     return;
5653 
5654   FI.setEffectiveCallingConvention(getRuntimeCC());
5655 }
5656 
5657 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5658                                 QualType Ty) const {
5659   llvm_unreachable("NVPTX does not support varargs");
5660 }
5661 
5662 void NVPTXTargetCodeGenInfo::
5663 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5664                     CodeGen::CodeGenModule &M) const{
5665   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5666   if (!FD) return;
5667 
5668   llvm::Function *F = cast<llvm::Function>(GV);
5669 
5670   // Perform special handling in OpenCL mode
5671   if (M.getLangOpts().OpenCL) {
5672     // Use OpenCL function attributes to check for kernel functions
5673     // By default, all functions are device functions
5674     if (FD->hasAttr<OpenCLKernelAttr>()) {
5675       // OpenCL __kernel functions get kernel metadata
5676       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5677       addNVVMMetadata(F, "kernel", 1);
5678       // And kernel functions are not subject to inlining
5679       F->addFnAttr(llvm::Attribute::NoInline);
5680     }
5681   }
5682 
5683   // Perform special handling in CUDA mode.
5684   if (M.getLangOpts().CUDA) {
5685     // CUDA __global__ functions get a kernel metadata entry.  Since
5686     // __global__ functions cannot be called from the device, we do not
5687     // need to set the noinline attribute.
5688     if (FD->hasAttr<CUDAGlobalAttr>()) {
5689       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5690       addNVVMMetadata(F, "kernel", 1);
5691     }
5692     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5693       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5694       llvm::APSInt MaxThreads(32);
5695       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5696       if (MaxThreads > 0)
5697         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5698 
5699       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5700       // not specified in __launch_bounds__ or if the user specified a 0 value,
5701       // we don't have to add a PTX directive.
5702       if (Attr->getMinBlocks()) {
5703         llvm::APSInt MinBlocks(32);
5704         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5705         if (MinBlocks > 0)
5706           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5707           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5708       }
5709     }
5710   }
5711 }
5712 
5713 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5714                                              int Operand) {
5715   llvm::Module *M = F->getParent();
5716   llvm::LLVMContext &Ctx = M->getContext();
5717 
5718   // Get "nvvm.annotations" metadata node
5719   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5720 
5721   llvm::Metadata *MDVals[] = {
5722       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5723       llvm::ConstantAsMetadata::get(
5724           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5725   // Append metadata to nvvm.annotations
5726   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5727 }
5728 }
5729 
5730 //===----------------------------------------------------------------------===//
5731 // SystemZ ABI Implementation
5732 //===----------------------------------------------------------------------===//
5733 
5734 namespace {
5735 
5736 class SystemZABIInfo : public SwiftABIInfo {
5737   bool HasVector;
5738 
5739 public:
5740   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5741     : SwiftABIInfo(CGT), HasVector(HV) {}
5742 
5743   bool isPromotableIntegerType(QualType Ty) const;
5744   bool isCompoundType(QualType Ty) const;
5745   bool isVectorArgumentType(QualType Ty) const;
5746   bool isFPArgumentType(QualType Ty) const;
5747   QualType GetSingleElementType(QualType Ty) const;
5748 
5749   ABIArgInfo classifyReturnType(QualType RetTy) const;
5750   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5751 
5752   void computeInfo(CGFunctionInfo &FI) const override {
5753     if (!getCXXABI().classifyReturnType(FI))
5754       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5755     for (auto &I : FI.arguments())
5756       I.info = classifyArgumentType(I.type);
5757   }
5758 
5759   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5760                     QualType Ty) const override;
5761 
5762   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5763                                     ArrayRef<llvm::Type*> scalars,
5764                                     bool asReturnValue) const override {
5765     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5766   }
5767 };
5768 
5769 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5770 public:
5771   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5772     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5773 };
5774 
5775 }
5776 
5777 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5778   // Treat an enum type as its underlying type.
5779   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5780     Ty = EnumTy->getDecl()->getIntegerType();
5781 
5782   // Promotable integer types are required to be promoted by the ABI.
5783   if (Ty->isPromotableIntegerType())
5784     return true;
5785 
5786   // 32-bit values must also be promoted.
5787   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5788     switch (BT->getKind()) {
5789     case BuiltinType::Int:
5790     case BuiltinType::UInt:
5791       return true;
5792     default:
5793       return false;
5794     }
5795   return false;
5796 }
5797 
5798 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5799   return (Ty->isAnyComplexType() ||
5800           Ty->isVectorType() ||
5801           isAggregateTypeForABI(Ty));
5802 }
5803 
5804 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5805   return (HasVector &&
5806           Ty->isVectorType() &&
5807           getContext().getTypeSize(Ty) <= 128);
5808 }
5809 
5810 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5811   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5812     switch (BT->getKind()) {
5813     case BuiltinType::Float:
5814     case BuiltinType::Double:
5815       return true;
5816     default:
5817       return false;
5818     }
5819 
5820   return false;
5821 }
5822 
5823 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5824   if (const RecordType *RT = Ty->getAsStructureType()) {
5825     const RecordDecl *RD = RT->getDecl();
5826     QualType Found;
5827 
5828     // If this is a C++ record, check the bases first.
5829     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5830       for (const auto &I : CXXRD->bases()) {
5831         QualType Base = I.getType();
5832 
5833         // Empty bases don't affect things either way.
5834         if (isEmptyRecord(getContext(), Base, true))
5835           continue;
5836 
5837         if (!Found.isNull())
5838           return Ty;
5839         Found = GetSingleElementType(Base);
5840       }
5841 
5842     // Check the fields.
5843     for (const auto *FD : RD->fields()) {
5844       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5845       // Unlike isSingleElementStruct(), empty structure and array fields
5846       // do count.  So do anonymous bitfields that aren't zero-sized.
5847       if (getContext().getLangOpts().CPlusPlus &&
5848           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5849         continue;
5850 
5851       // Unlike isSingleElementStruct(), arrays do not count.
5852       // Nested structures still do though.
5853       if (!Found.isNull())
5854         return Ty;
5855       Found = GetSingleElementType(FD->getType());
5856     }
5857 
5858     // Unlike isSingleElementStruct(), trailing padding is allowed.
5859     // An 8-byte aligned struct s { float f; } is passed as a double.
5860     if (!Found.isNull())
5861       return Found;
5862   }
5863 
5864   return Ty;
5865 }
5866 
5867 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5868                                   QualType Ty) const {
5869   // Assume that va_list type is correct; should be pointer to LLVM type:
5870   // struct {
5871   //   i64 __gpr;
5872   //   i64 __fpr;
5873   //   i8 *__overflow_arg_area;
5874   //   i8 *__reg_save_area;
5875   // };
5876 
5877   // Every non-vector argument occupies 8 bytes and is passed by preference
5878   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5879   // always passed on the stack.
5880   Ty = getContext().getCanonicalType(Ty);
5881   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5882   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5883   llvm::Type *DirectTy = ArgTy;
5884   ABIArgInfo AI = classifyArgumentType(Ty);
5885   bool IsIndirect = AI.isIndirect();
5886   bool InFPRs = false;
5887   bool IsVector = false;
5888   CharUnits UnpaddedSize;
5889   CharUnits DirectAlign;
5890   if (IsIndirect) {
5891     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5892     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5893   } else {
5894     if (AI.getCoerceToType())
5895       ArgTy = AI.getCoerceToType();
5896     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5897     IsVector = ArgTy->isVectorTy();
5898     UnpaddedSize = TyInfo.first;
5899     DirectAlign = TyInfo.second;
5900   }
5901   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5902   if (IsVector && UnpaddedSize > PaddedSize)
5903     PaddedSize = CharUnits::fromQuantity(16);
5904   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5905 
5906   CharUnits Padding = (PaddedSize - UnpaddedSize);
5907 
5908   llvm::Type *IndexTy = CGF.Int64Ty;
5909   llvm::Value *PaddedSizeV =
5910     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5911 
5912   if (IsVector) {
5913     // Work out the address of a vector argument on the stack.
5914     // Vector arguments are always passed in the high bits of a
5915     // single (8 byte) or double (16 byte) stack slot.
5916     Address OverflowArgAreaPtr =
5917       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5918                                   "overflow_arg_area_ptr");
5919     Address OverflowArgArea =
5920       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5921               TyInfo.second);
5922     Address MemAddr =
5923       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5924 
5925     // Update overflow_arg_area_ptr pointer
5926     llvm::Value *NewOverflowArgArea =
5927       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5928                             "overflow_arg_area");
5929     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5930 
5931     return MemAddr;
5932   }
5933 
5934   assert(PaddedSize.getQuantity() == 8);
5935 
5936   unsigned MaxRegs, RegCountField, RegSaveIndex;
5937   CharUnits RegPadding;
5938   if (InFPRs) {
5939     MaxRegs = 4; // Maximum of 4 FPR arguments
5940     RegCountField = 1; // __fpr
5941     RegSaveIndex = 16; // save offset for f0
5942     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5943   } else {
5944     MaxRegs = 5; // Maximum of 5 GPR arguments
5945     RegCountField = 0; // __gpr
5946     RegSaveIndex = 2; // save offset for r2
5947     RegPadding = Padding; // values are passed in the low bits of a GPR
5948   }
5949 
5950   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5951       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5952       "reg_count_ptr");
5953   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5954   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5955   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5956                                                  "fits_in_regs");
5957 
5958   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5959   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5960   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5961   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5962 
5963   // Emit code to load the value if it was passed in registers.
5964   CGF.EmitBlock(InRegBlock);
5965 
5966   // Work out the address of an argument register.
5967   llvm::Value *ScaledRegCount =
5968     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5969   llvm::Value *RegBase =
5970     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5971                                       + RegPadding.getQuantity());
5972   llvm::Value *RegOffset =
5973     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5974   Address RegSaveAreaPtr =
5975       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5976                                   "reg_save_area_ptr");
5977   llvm::Value *RegSaveArea =
5978     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5979   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5980                                            "raw_reg_addr"),
5981                      PaddedSize);
5982   Address RegAddr =
5983     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5984 
5985   // Update the register count
5986   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5987   llvm::Value *NewRegCount =
5988     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5989   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5990   CGF.EmitBranch(ContBlock);
5991 
5992   // Emit code to load the value if it was passed in memory.
5993   CGF.EmitBlock(InMemBlock);
5994 
5995   // Work out the address of a stack argument.
5996   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5997       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5998   Address OverflowArgArea =
5999     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6000             PaddedSize);
6001   Address RawMemAddr =
6002     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6003   Address MemAddr =
6004     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6005 
6006   // Update overflow_arg_area_ptr pointer
6007   llvm::Value *NewOverflowArgArea =
6008     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6009                           "overflow_arg_area");
6010   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6011   CGF.EmitBranch(ContBlock);
6012 
6013   // Return the appropriate result.
6014   CGF.EmitBlock(ContBlock);
6015   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6016                                  MemAddr, InMemBlock, "va_arg.addr");
6017 
6018   if (IsIndirect)
6019     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6020                       TyInfo.second);
6021 
6022   return ResAddr;
6023 }
6024 
6025 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6026   if (RetTy->isVoidType())
6027     return ABIArgInfo::getIgnore();
6028   if (isVectorArgumentType(RetTy))
6029     return ABIArgInfo::getDirect();
6030   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6031     return getNaturalAlignIndirect(RetTy);
6032   return (isPromotableIntegerType(RetTy) ?
6033           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6034 }
6035 
6036 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6037   // Handle the generic C++ ABI.
6038   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6039     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6040 
6041   // Integers and enums are extended to full register width.
6042   if (isPromotableIntegerType(Ty))
6043     return ABIArgInfo::getExtend();
6044 
6045   // Handle vector types and vector-like structure types.  Note that
6046   // as opposed to float-like structure types, we do not allow any
6047   // padding for vector-like structures, so verify the sizes match.
6048   uint64_t Size = getContext().getTypeSize(Ty);
6049   QualType SingleElementTy = GetSingleElementType(Ty);
6050   if (isVectorArgumentType(SingleElementTy) &&
6051       getContext().getTypeSize(SingleElementTy) == Size)
6052     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6053 
6054   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6055   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6056     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6057 
6058   // Handle small structures.
6059   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6060     // Structures with flexible arrays have variable length, so really
6061     // fail the size test above.
6062     const RecordDecl *RD = RT->getDecl();
6063     if (RD->hasFlexibleArrayMember())
6064       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6065 
6066     // The structure is passed as an unextended integer, a float, or a double.
6067     llvm::Type *PassTy;
6068     if (isFPArgumentType(SingleElementTy)) {
6069       assert(Size == 32 || Size == 64);
6070       if (Size == 32)
6071         PassTy = llvm::Type::getFloatTy(getVMContext());
6072       else
6073         PassTy = llvm::Type::getDoubleTy(getVMContext());
6074     } else
6075       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6076     return ABIArgInfo::getDirect(PassTy);
6077   }
6078 
6079   // Non-structure compounds are passed indirectly.
6080   if (isCompoundType(Ty))
6081     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6082 
6083   return ABIArgInfo::getDirect(nullptr);
6084 }
6085 
6086 //===----------------------------------------------------------------------===//
6087 // MSP430 ABI Implementation
6088 //===----------------------------------------------------------------------===//
6089 
6090 namespace {
6091 
6092 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6093 public:
6094   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6095     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6096   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6097                            CodeGen::CodeGenModule &M) const override;
6098 };
6099 
6100 }
6101 
6102 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
6103                                                   llvm::GlobalValue *GV,
6104                                              CodeGen::CodeGenModule &M) const {
6105   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6106     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6107       // Handle 'interrupt' attribute:
6108       llvm::Function *F = cast<llvm::Function>(GV);
6109 
6110       // Step 1: Set ISR calling convention.
6111       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6112 
6113       // Step 2: Add attributes goodness.
6114       F->addFnAttr(llvm::Attribute::NoInline);
6115 
6116       // Step 3: Emit ISR vector alias.
6117       unsigned Num = attr->getNumber() / 2;
6118       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6119                                 "__isr_" + Twine(Num), F);
6120     }
6121   }
6122 }
6123 
6124 //===----------------------------------------------------------------------===//
6125 // MIPS ABI Implementation.  This works for both little-endian and
6126 // big-endian variants.
6127 //===----------------------------------------------------------------------===//
6128 
6129 namespace {
6130 class MipsABIInfo : public ABIInfo {
6131   bool IsO32;
6132   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6133   void CoerceToIntArgs(uint64_t TySize,
6134                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6135   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6136   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6137   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6138 public:
6139   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6140     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6141     StackAlignInBytes(IsO32 ? 8 : 16) {}
6142 
6143   ABIArgInfo classifyReturnType(QualType RetTy) const;
6144   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6145   void computeInfo(CGFunctionInfo &FI) const override;
6146   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6147                     QualType Ty) const override;
6148   bool shouldSignExtUnsignedType(QualType Ty) const override;
6149 };
6150 
6151 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6152   unsigned SizeOfUnwindException;
6153 public:
6154   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6155     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6156       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6157 
6158   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6159     return 29;
6160   }
6161 
6162   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6163                            CodeGen::CodeGenModule &CGM) const override {
6164     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6165     if (!FD) return;
6166     llvm::Function *Fn = cast<llvm::Function>(GV);
6167     if (FD->hasAttr<Mips16Attr>()) {
6168       Fn->addFnAttr("mips16");
6169     }
6170     else if (FD->hasAttr<NoMips16Attr>()) {
6171       Fn->addFnAttr("nomips16");
6172     }
6173 
6174     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6175     if (!Attr)
6176       return;
6177 
6178     const char *Kind;
6179     switch (Attr->getInterrupt()) {
6180     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6181     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6182     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6183     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6184     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6185     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6186     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6187     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6188     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6189     }
6190 
6191     Fn->addFnAttr("interrupt", Kind);
6192 
6193   }
6194 
6195   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6196                                llvm::Value *Address) const override;
6197 
6198   unsigned getSizeOfUnwindException() const override {
6199     return SizeOfUnwindException;
6200   }
6201 };
6202 }
6203 
6204 void MipsABIInfo::CoerceToIntArgs(
6205     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6206   llvm::IntegerType *IntTy =
6207     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6208 
6209   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6210   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6211     ArgList.push_back(IntTy);
6212 
6213   // If necessary, add one more integer type to ArgList.
6214   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6215 
6216   if (R)
6217     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6218 }
6219 
6220 // In N32/64, an aligned double precision floating point field is passed in
6221 // a register.
6222 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6223   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6224 
6225   if (IsO32) {
6226     CoerceToIntArgs(TySize, ArgList);
6227     return llvm::StructType::get(getVMContext(), ArgList);
6228   }
6229 
6230   if (Ty->isComplexType())
6231     return CGT.ConvertType(Ty);
6232 
6233   const RecordType *RT = Ty->getAs<RecordType>();
6234 
6235   // Unions/vectors are passed in integer registers.
6236   if (!RT || !RT->isStructureOrClassType()) {
6237     CoerceToIntArgs(TySize, ArgList);
6238     return llvm::StructType::get(getVMContext(), ArgList);
6239   }
6240 
6241   const RecordDecl *RD = RT->getDecl();
6242   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6243   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6244 
6245   uint64_t LastOffset = 0;
6246   unsigned idx = 0;
6247   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6248 
6249   // Iterate over fields in the struct/class and check if there are any aligned
6250   // double fields.
6251   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6252        i != e; ++i, ++idx) {
6253     const QualType Ty = i->getType();
6254     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6255 
6256     if (!BT || BT->getKind() != BuiltinType::Double)
6257       continue;
6258 
6259     uint64_t Offset = Layout.getFieldOffset(idx);
6260     if (Offset % 64) // Ignore doubles that are not aligned.
6261       continue;
6262 
6263     // Add ((Offset - LastOffset) / 64) args of type i64.
6264     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6265       ArgList.push_back(I64);
6266 
6267     // Add double type.
6268     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6269     LastOffset = Offset + 64;
6270   }
6271 
6272   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6273   ArgList.append(IntArgList.begin(), IntArgList.end());
6274 
6275   return llvm::StructType::get(getVMContext(), ArgList);
6276 }
6277 
6278 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6279                                         uint64_t Offset) const {
6280   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6281     return nullptr;
6282 
6283   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6284 }
6285 
6286 ABIArgInfo
6287 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6288   Ty = useFirstFieldIfTransparentUnion(Ty);
6289 
6290   uint64_t OrigOffset = Offset;
6291   uint64_t TySize = getContext().getTypeSize(Ty);
6292   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6293 
6294   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6295                    (uint64_t)StackAlignInBytes);
6296   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6297   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6298 
6299   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6300     // Ignore empty aggregates.
6301     if (TySize == 0)
6302       return ABIArgInfo::getIgnore();
6303 
6304     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6305       Offset = OrigOffset + MinABIStackAlignInBytes;
6306       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6307     }
6308 
6309     // If we have reached here, aggregates are passed directly by coercing to
6310     // another structure type. Padding is inserted if the offset of the
6311     // aggregate is unaligned.
6312     ABIArgInfo ArgInfo =
6313         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6314                               getPaddingType(OrigOffset, CurrOffset));
6315     ArgInfo.setInReg(true);
6316     return ArgInfo;
6317   }
6318 
6319   // Treat an enum type as its underlying type.
6320   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6321     Ty = EnumTy->getDecl()->getIntegerType();
6322 
6323   // All integral types are promoted to the GPR width.
6324   if (Ty->isIntegralOrEnumerationType())
6325     return ABIArgInfo::getExtend();
6326 
6327   return ABIArgInfo::getDirect(
6328       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6329 }
6330 
6331 llvm::Type*
6332 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6333   const RecordType *RT = RetTy->getAs<RecordType>();
6334   SmallVector<llvm::Type*, 8> RTList;
6335 
6336   if (RT && RT->isStructureOrClassType()) {
6337     const RecordDecl *RD = RT->getDecl();
6338     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6339     unsigned FieldCnt = Layout.getFieldCount();
6340 
6341     // N32/64 returns struct/classes in floating point registers if the
6342     // following conditions are met:
6343     // 1. The size of the struct/class is no larger than 128-bit.
6344     // 2. The struct/class has one or two fields all of which are floating
6345     //    point types.
6346     // 3. The offset of the first field is zero (this follows what gcc does).
6347     //
6348     // Any other composite results are returned in integer registers.
6349     //
6350     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6351       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6352       for (; b != e; ++b) {
6353         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6354 
6355         if (!BT || !BT->isFloatingPoint())
6356           break;
6357 
6358         RTList.push_back(CGT.ConvertType(b->getType()));
6359       }
6360 
6361       if (b == e)
6362         return llvm::StructType::get(getVMContext(), RTList,
6363                                      RD->hasAttr<PackedAttr>());
6364 
6365       RTList.clear();
6366     }
6367   }
6368 
6369   CoerceToIntArgs(Size, RTList);
6370   return llvm::StructType::get(getVMContext(), RTList);
6371 }
6372 
6373 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6374   uint64_t Size = getContext().getTypeSize(RetTy);
6375 
6376   if (RetTy->isVoidType())
6377     return ABIArgInfo::getIgnore();
6378 
6379   // O32 doesn't treat zero-sized structs differently from other structs.
6380   // However, N32/N64 ignores zero sized return values.
6381   if (!IsO32 && Size == 0)
6382     return ABIArgInfo::getIgnore();
6383 
6384   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6385     if (Size <= 128) {
6386       if (RetTy->isAnyComplexType())
6387         return ABIArgInfo::getDirect();
6388 
6389       // O32 returns integer vectors in registers and N32/N64 returns all small
6390       // aggregates in registers.
6391       if (!IsO32 ||
6392           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6393         ABIArgInfo ArgInfo =
6394             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6395         ArgInfo.setInReg(true);
6396         return ArgInfo;
6397       }
6398     }
6399 
6400     return getNaturalAlignIndirect(RetTy);
6401   }
6402 
6403   // Treat an enum type as its underlying type.
6404   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6405     RetTy = EnumTy->getDecl()->getIntegerType();
6406 
6407   return (RetTy->isPromotableIntegerType() ?
6408           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6409 }
6410 
6411 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6412   ABIArgInfo &RetInfo = FI.getReturnInfo();
6413   if (!getCXXABI().classifyReturnType(FI))
6414     RetInfo = classifyReturnType(FI.getReturnType());
6415 
6416   // Check if a pointer to an aggregate is passed as a hidden argument.
6417   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6418 
6419   for (auto &I : FI.arguments())
6420     I.info = classifyArgumentType(I.type, Offset);
6421 }
6422 
6423 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6424                                QualType OrigTy) const {
6425   QualType Ty = OrigTy;
6426 
6427   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6428   // Pointers are also promoted in the same way but this only matters for N32.
6429   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6430   unsigned PtrWidth = getTarget().getPointerWidth(0);
6431   bool DidPromote = false;
6432   if ((Ty->isIntegerType() &&
6433           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6434       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6435     DidPromote = true;
6436     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6437                                             Ty->isSignedIntegerType());
6438   }
6439 
6440   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6441 
6442   // The alignment of things in the argument area is never larger than
6443   // StackAlignInBytes.
6444   TyInfo.second =
6445     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6446 
6447   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6448   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6449 
6450   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6451                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6452 
6453 
6454   // If there was a promotion, "unpromote" into a temporary.
6455   // TODO: can we just use a pointer into a subset of the original slot?
6456   if (DidPromote) {
6457     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6458     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6459 
6460     // Truncate down to the right width.
6461     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6462                                                  : CGF.IntPtrTy);
6463     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6464     if (OrigTy->isPointerType())
6465       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6466 
6467     CGF.Builder.CreateStore(V, Temp);
6468     Addr = Temp;
6469   }
6470 
6471   return Addr;
6472 }
6473 
6474 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6475   int TySize = getContext().getTypeSize(Ty);
6476 
6477   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6478   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6479     return true;
6480 
6481   return false;
6482 }
6483 
6484 bool
6485 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6486                                                llvm::Value *Address) const {
6487   // This information comes from gcc's implementation, which seems to
6488   // as canonical as it gets.
6489 
6490   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6491   // are aliased to pairs of single-precision FP registers.
6492   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6493 
6494   // 0-31 are the general purpose registers, $0 - $31.
6495   // 32-63 are the floating-point registers, $f0 - $f31.
6496   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6497   // 66 is the (notional, I think) register for signal-handler return.
6498   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6499 
6500   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6501   // They are one bit wide and ignored here.
6502 
6503   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6504   // (coprocessor 1 is the FP unit)
6505   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6506   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6507   // 176-181 are the DSP accumulator registers.
6508   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6509   return false;
6510 }
6511 
6512 //===----------------------------------------------------------------------===//
6513 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6514 // Currently subclassed only to implement custom OpenCL C function attribute
6515 // handling.
6516 //===----------------------------------------------------------------------===//
6517 
6518 namespace {
6519 
6520 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6521 public:
6522   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6523     : DefaultTargetCodeGenInfo(CGT) {}
6524 
6525   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6526                            CodeGen::CodeGenModule &M) const override;
6527 };
6528 
6529 void TCETargetCodeGenInfo::setTargetAttributes(
6530     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6531   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6532   if (!FD) return;
6533 
6534   llvm::Function *F = cast<llvm::Function>(GV);
6535 
6536   if (M.getLangOpts().OpenCL) {
6537     if (FD->hasAttr<OpenCLKernelAttr>()) {
6538       // OpenCL C Kernel functions are not subject to inlining
6539       F->addFnAttr(llvm::Attribute::NoInline);
6540       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6541       if (Attr) {
6542         // Convert the reqd_work_group_size() attributes to metadata.
6543         llvm::LLVMContext &Context = F->getContext();
6544         llvm::NamedMDNode *OpenCLMetadata =
6545             M.getModule().getOrInsertNamedMetadata(
6546                 "opencl.kernel_wg_size_info");
6547 
6548         SmallVector<llvm::Metadata *, 5> Operands;
6549         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6550 
6551         Operands.push_back(
6552             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6553                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6554         Operands.push_back(
6555             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6556                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6557         Operands.push_back(
6558             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6559                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6560 
6561         // Add a boolean constant operand for "required" (true) or "hint"
6562         // (false) for implementing the work_group_size_hint attr later.
6563         // Currently always true as the hint is not yet implemented.
6564         Operands.push_back(
6565             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6566         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6567       }
6568     }
6569   }
6570 }
6571 
6572 }
6573 
6574 //===----------------------------------------------------------------------===//
6575 // Hexagon ABI Implementation
6576 //===----------------------------------------------------------------------===//
6577 
6578 namespace {
6579 
6580 class HexagonABIInfo : public ABIInfo {
6581 
6582 
6583 public:
6584   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6585 
6586 private:
6587 
6588   ABIArgInfo classifyReturnType(QualType RetTy) const;
6589   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6590 
6591   void computeInfo(CGFunctionInfo &FI) const override;
6592 
6593   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6594                     QualType Ty) const override;
6595 };
6596 
6597 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6598 public:
6599   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6600     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6601 
6602   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6603     return 29;
6604   }
6605 };
6606 
6607 }
6608 
6609 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6610   if (!getCXXABI().classifyReturnType(FI))
6611     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6612   for (auto &I : FI.arguments())
6613     I.info = classifyArgumentType(I.type);
6614 }
6615 
6616 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6617   if (!isAggregateTypeForABI(Ty)) {
6618     // Treat an enum type as its underlying type.
6619     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6620       Ty = EnumTy->getDecl()->getIntegerType();
6621 
6622     return (Ty->isPromotableIntegerType() ?
6623             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6624   }
6625 
6626   // Ignore empty records.
6627   if (isEmptyRecord(getContext(), Ty, true))
6628     return ABIArgInfo::getIgnore();
6629 
6630   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6631     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6632 
6633   uint64_t Size = getContext().getTypeSize(Ty);
6634   if (Size > 64)
6635     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6636     // Pass in the smallest viable integer type.
6637   else if (Size > 32)
6638       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6639   else if (Size > 16)
6640       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6641   else if (Size > 8)
6642       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6643   else
6644       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6645 }
6646 
6647 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6648   if (RetTy->isVoidType())
6649     return ABIArgInfo::getIgnore();
6650 
6651   // Large vector types should be returned via memory.
6652   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6653     return getNaturalAlignIndirect(RetTy);
6654 
6655   if (!isAggregateTypeForABI(RetTy)) {
6656     // Treat an enum type as its underlying type.
6657     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6658       RetTy = EnumTy->getDecl()->getIntegerType();
6659 
6660     return (RetTy->isPromotableIntegerType() ?
6661             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6662   }
6663 
6664   if (isEmptyRecord(getContext(), RetTy, true))
6665     return ABIArgInfo::getIgnore();
6666 
6667   // Aggregates <= 8 bytes are returned in r0; other aggregates
6668   // are returned indirectly.
6669   uint64_t Size = getContext().getTypeSize(RetTy);
6670   if (Size <= 64) {
6671     // Return in the smallest viable integer type.
6672     if (Size <= 8)
6673       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6674     if (Size <= 16)
6675       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6676     if (Size <= 32)
6677       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6678     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6679   }
6680 
6681   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6682 }
6683 
6684 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6685                                   QualType Ty) const {
6686   // FIXME: Someone needs to audit that this handle alignment correctly.
6687   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6688                           getContext().getTypeInfoInChars(Ty),
6689                           CharUnits::fromQuantity(4),
6690                           /*AllowHigherAlign*/ true);
6691 }
6692 
6693 //===----------------------------------------------------------------------===//
6694 // Lanai ABI Implementation
6695 //===----------------------------------------------------------------------===//
6696 
6697 namespace {
6698 class LanaiABIInfo : public DefaultABIInfo {
6699 public:
6700   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6701 
6702   bool shouldUseInReg(QualType Ty, CCState &State) const;
6703 
6704   void computeInfo(CGFunctionInfo &FI) const override {
6705     CCState State(FI.getCallingConvention());
6706     // Lanai uses 4 registers to pass arguments unless the function has the
6707     // regparm attribute set.
6708     if (FI.getHasRegParm()) {
6709       State.FreeRegs = FI.getRegParm();
6710     } else {
6711       State.FreeRegs = 4;
6712     }
6713 
6714     if (!getCXXABI().classifyReturnType(FI))
6715       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6716     for (auto &I : FI.arguments())
6717       I.info = classifyArgumentType(I.type, State);
6718   }
6719 
6720   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
6721   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
6722 };
6723 } // end anonymous namespace
6724 
6725 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
6726   unsigned Size = getContext().getTypeSize(Ty);
6727   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
6728 
6729   if (SizeInRegs == 0)
6730     return false;
6731 
6732   if (SizeInRegs > State.FreeRegs) {
6733     State.FreeRegs = 0;
6734     return false;
6735   }
6736 
6737   State.FreeRegs -= SizeInRegs;
6738 
6739   return true;
6740 }
6741 
6742 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
6743                                            CCState &State) const {
6744   if (!ByVal) {
6745     if (State.FreeRegs) {
6746       --State.FreeRegs; // Non-byval indirects just use one pointer.
6747       return getNaturalAlignIndirectInReg(Ty);
6748     }
6749     return getNaturalAlignIndirect(Ty, false);
6750   }
6751 
6752   // Compute the byval alignment.
6753   const unsigned MinABIStackAlignInBytes = 4;
6754   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
6755   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
6756                                  /*Realign=*/TypeAlign >
6757                                      MinABIStackAlignInBytes);
6758 }
6759 
6760 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
6761                                               CCState &State) const {
6762   // Check with the C++ ABI first.
6763   const RecordType *RT = Ty->getAs<RecordType>();
6764   if (RT) {
6765     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
6766     if (RAA == CGCXXABI::RAA_Indirect) {
6767       return getIndirectResult(Ty, /*ByVal=*/false, State);
6768     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
6769       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
6770     }
6771   }
6772 
6773   if (isAggregateTypeForABI(Ty)) {
6774     // Structures with flexible arrays are always indirect.
6775     if (RT && RT->getDecl()->hasFlexibleArrayMember())
6776       return getIndirectResult(Ty, /*ByVal=*/true, State);
6777 
6778     // Ignore empty structs/unions.
6779     if (isEmptyRecord(getContext(), Ty, true))
6780       return ABIArgInfo::getIgnore();
6781 
6782     llvm::LLVMContext &LLVMContext = getVMContext();
6783     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6784     if (SizeInRegs <= State.FreeRegs) {
6785       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
6786       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
6787       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
6788       State.FreeRegs -= SizeInRegs;
6789       return ABIArgInfo::getDirectInReg(Result);
6790     } else {
6791       State.FreeRegs = 0;
6792     }
6793     return getIndirectResult(Ty, true, State);
6794   }
6795 
6796   // Treat an enum type as its underlying type.
6797   if (const auto *EnumTy = Ty->getAs<EnumType>())
6798     Ty = EnumTy->getDecl()->getIntegerType();
6799 
6800   bool InReg = shouldUseInReg(Ty, State);
6801   if (Ty->isPromotableIntegerType()) {
6802     if (InReg)
6803       return ABIArgInfo::getDirectInReg();
6804     return ABIArgInfo::getExtend();
6805   }
6806   if (InReg)
6807     return ABIArgInfo::getDirectInReg();
6808   return ABIArgInfo::getDirect();
6809 }
6810 
6811 namespace {
6812 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
6813 public:
6814   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
6815       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
6816 };
6817 }
6818 
6819 //===----------------------------------------------------------------------===//
6820 // AMDGPU ABI Implementation
6821 //===----------------------------------------------------------------------===//
6822 
6823 namespace {
6824 
6825 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6826 public:
6827   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6828     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6829   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6830                            CodeGen::CodeGenModule &M) const override;
6831 };
6832 
6833 }
6834 
6835 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6836   const Decl *D,
6837   llvm::GlobalValue *GV,
6838   CodeGen::CodeGenModule &M) const {
6839   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6840   if (!FD)
6841     return;
6842 
6843   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6844     llvm::Function *F = cast<llvm::Function>(GV);
6845     uint32_t NumVGPR = Attr->getNumVGPR();
6846     if (NumVGPR != 0)
6847       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6848   }
6849 
6850   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6851     llvm::Function *F = cast<llvm::Function>(GV);
6852     unsigned NumSGPR = Attr->getNumSGPR();
6853     if (NumSGPR != 0)
6854       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6855   }
6856 }
6857 
6858 
6859 //===----------------------------------------------------------------------===//
6860 // SPARC v8 ABI Implementation.
6861 // Based on the SPARC Compliance Definition version 2.4.1.
6862 //
6863 // Ensures that complex values are passed in registers.
6864 //
6865 namespace {
6866 class SparcV8ABIInfo : public DefaultABIInfo {
6867 public:
6868   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6869 
6870 private:
6871   ABIArgInfo classifyReturnType(QualType RetTy) const;
6872   void computeInfo(CGFunctionInfo &FI) const override;
6873 };
6874 } // end anonymous namespace
6875 
6876 
6877 ABIArgInfo
6878 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
6879   if (Ty->isAnyComplexType()) {
6880     return ABIArgInfo::getDirect();
6881   }
6882   else {
6883     return DefaultABIInfo::classifyReturnType(Ty);
6884   }
6885 }
6886 
6887 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6888 
6889   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6890   for (auto &Arg : FI.arguments())
6891     Arg.info = classifyArgumentType(Arg.type);
6892 }
6893 
6894 namespace {
6895 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
6896 public:
6897   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
6898     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
6899 };
6900 } // end anonymous namespace
6901 
6902 //===----------------------------------------------------------------------===//
6903 // SPARC v9 ABI Implementation.
6904 // Based on the SPARC Compliance Definition version 2.4.1.
6905 //
6906 // Function arguments a mapped to a nominal "parameter array" and promoted to
6907 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6908 // the array, structs larger than 16 bytes are passed indirectly.
6909 //
6910 // One case requires special care:
6911 //
6912 //   struct mixed {
6913 //     int i;
6914 //     float f;
6915 //   };
6916 //
6917 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6918 // parameter array, but the int is passed in an integer register, and the float
6919 // is passed in a floating point register. This is represented as two arguments
6920 // with the LLVM IR inreg attribute:
6921 //
6922 //   declare void f(i32 inreg %i, float inreg %f)
6923 //
6924 // The code generator will only allocate 4 bytes from the parameter array for
6925 // the inreg arguments. All other arguments are allocated a multiple of 8
6926 // bytes.
6927 //
6928 namespace {
6929 class SparcV9ABIInfo : public ABIInfo {
6930 public:
6931   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6932 
6933 private:
6934   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6935   void computeInfo(CGFunctionInfo &FI) const override;
6936   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6937                     QualType Ty) const override;
6938 
6939   // Coercion type builder for structs passed in registers. The coercion type
6940   // serves two purposes:
6941   //
6942   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6943   //    in registers.
6944   // 2. Expose aligned floating point elements as first-level elements, so the
6945   //    code generator knows to pass them in floating point registers.
6946   //
6947   // We also compute the InReg flag which indicates that the struct contains
6948   // aligned 32-bit floats.
6949   //
6950   struct CoerceBuilder {
6951     llvm::LLVMContext &Context;
6952     const llvm::DataLayout &DL;
6953     SmallVector<llvm::Type*, 8> Elems;
6954     uint64_t Size;
6955     bool InReg;
6956 
6957     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6958       : Context(c), DL(dl), Size(0), InReg(false) {}
6959 
6960     // Pad Elems with integers until Size is ToSize.
6961     void pad(uint64_t ToSize) {
6962       assert(ToSize >= Size && "Cannot remove elements");
6963       if (ToSize == Size)
6964         return;
6965 
6966       // Finish the current 64-bit word.
6967       uint64_t Aligned = llvm::alignTo(Size, 64);
6968       if (Aligned > Size && Aligned <= ToSize) {
6969         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6970         Size = Aligned;
6971       }
6972 
6973       // Add whole 64-bit words.
6974       while (Size + 64 <= ToSize) {
6975         Elems.push_back(llvm::Type::getInt64Ty(Context));
6976         Size += 64;
6977       }
6978 
6979       // Final in-word padding.
6980       if (Size < ToSize) {
6981         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6982         Size = ToSize;
6983       }
6984     }
6985 
6986     // Add a floating point element at Offset.
6987     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6988       // Unaligned floats are treated as integers.
6989       if (Offset % Bits)
6990         return;
6991       // The InReg flag is only required if there are any floats < 64 bits.
6992       if (Bits < 64)
6993         InReg = true;
6994       pad(Offset);
6995       Elems.push_back(Ty);
6996       Size = Offset + Bits;
6997     }
6998 
6999     // Add a struct type to the coercion type, starting at Offset (in bits).
7000     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7001       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7002       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7003         llvm::Type *ElemTy = StrTy->getElementType(i);
7004         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7005         switch (ElemTy->getTypeID()) {
7006         case llvm::Type::StructTyID:
7007           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7008           break;
7009         case llvm::Type::FloatTyID:
7010           addFloat(ElemOffset, ElemTy, 32);
7011           break;
7012         case llvm::Type::DoubleTyID:
7013           addFloat(ElemOffset, ElemTy, 64);
7014           break;
7015         case llvm::Type::FP128TyID:
7016           addFloat(ElemOffset, ElemTy, 128);
7017           break;
7018         case llvm::Type::PointerTyID:
7019           if (ElemOffset % 64 == 0) {
7020             pad(ElemOffset);
7021             Elems.push_back(ElemTy);
7022             Size += 64;
7023           }
7024           break;
7025         default:
7026           break;
7027         }
7028       }
7029     }
7030 
7031     // Check if Ty is a usable substitute for the coercion type.
7032     bool isUsableType(llvm::StructType *Ty) const {
7033       return llvm::makeArrayRef(Elems) == Ty->elements();
7034     }
7035 
7036     // Get the coercion type as a literal struct type.
7037     llvm::Type *getType() const {
7038       if (Elems.size() == 1)
7039         return Elems.front();
7040       else
7041         return llvm::StructType::get(Context, Elems);
7042     }
7043   };
7044 };
7045 } // end anonymous namespace
7046 
7047 ABIArgInfo
7048 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7049   if (Ty->isVoidType())
7050     return ABIArgInfo::getIgnore();
7051 
7052   uint64_t Size = getContext().getTypeSize(Ty);
7053 
7054   // Anything too big to fit in registers is passed with an explicit indirect
7055   // pointer / sret pointer.
7056   if (Size > SizeLimit)
7057     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7058 
7059   // Treat an enum type as its underlying type.
7060   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7061     Ty = EnumTy->getDecl()->getIntegerType();
7062 
7063   // Integer types smaller than a register are extended.
7064   if (Size < 64 && Ty->isIntegerType())
7065     return ABIArgInfo::getExtend();
7066 
7067   // Other non-aggregates go in registers.
7068   if (!isAggregateTypeForABI(Ty))
7069     return ABIArgInfo::getDirect();
7070 
7071   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7072   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7073   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7074     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7075 
7076   // This is a small aggregate type that should be passed in registers.
7077   // Build a coercion type from the LLVM struct type.
7078   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7079   if (!StrTy)
7080     return ABIArgInfo::getDirect();
7081 
7082   CoerceBuilder CB(getVMContext(), getDataLayout());
7083   CB.addStruct(0, StrTy);
7084   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7085 
7086   // Try to use the original type for coercion.
7087   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7088 
7089   if (CB.InReg)
7090     return ABIArgInfo::getDirectInReg(CoerceTy);
7091   else
7092     return ABIArgInfo::getDirect(CoerceTy);
7093 }
7094 
7095 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7096                                   QualType Ty) const {
7097   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7098   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7099   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7100     AI.setCoerceToType(ArgTy);
7101 
7102   CharUnits SlotSize = CharUnits::fromQuantity(8);
7103 
7104   CGBuilderTy &Builder = CGF.Builder;
7105   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7106   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7107 
7108   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
7109 
7110   Address ArgAddr = Address::invalid();
7111   CharUnits Stride;
7112   switch (AI.getKind()) {
7113   case ABIArgInfo::Expand:
7114   case ABIArgInfo::CoerceAndExpand:
7115   case ABIArgInfo::InAlloca:
7116     llvm_unreachable("Unsupported ABI kind for va_arg");
7117 
7118   case ABIArgInfo::Extend: {
7119     Stride = SlotSize;
7120     CharUnits Offset = SlotSize - TypeInfo.first;
7121     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
7122     break;
7123   }
7124 
7125   case ABIArgInfo::Direct: {
7126     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
7127     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
7128     ArgAddr = Addr;
7129     break;
7130   }
7131 
7132   case ABIArgInfo::Indirect:
7133     Stride = SlotSize;
7134     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
7135     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
7136                       TypeInfo.second);
7137     break;
7138 
7139   case ABIArgInfo::Ignore:
7140     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
7141   }
7142 
7143   // Update VAList.
7144   llvm::Value *NextPtr =
7145     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
7146   Builder.CreateStore(NextPtr, VAListAddr);
7147 
7148   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
7149 }
7150 
7151 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7152   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
7153   for (auto &I : FI.arguments())
7154     I.info = classifyType(I.type, 16 * 8);
7155 }
7156 
7157 namespace {
7158 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
7159 public:
7160   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
7161     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
7162 
7163   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7164     return 14;
7165   }
7166 
7167   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7168                                llvm::Value *Address) const override;
7169 };
7170 } // end anonymous namespace
7171 
7172 bool
7173 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7174                                                 llvm::Value *Address) const {
7175   // This is calculated from the LLVM and GCC tables and verified
7176   // against gcc output.  AFAIK all ABIs use the same encoding.
7177 
7178   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7179 
7180   llvm::IntegerType *i8 = CGF.Int8Ty;
7181   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
7182   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
7183 
7184   // 0-31: the 8-byte general-purpose registers
7185   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
7186 
7187   // 32-63: f0-31, the 4-byte floating-point registers
7188   AssignToArrayRange(Builder, Address, Four8, 32, 63);
7189 
7190   //   Y   = 64
7191   //   PSR = 65
7192   //   WIM = 66
7193   //   TBR = 67
7194   //   PC  = 68
7195   //   NPC = 69
7196   //   FSR = 70
7197   //   CSR = 71
7198   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
7199 
7200   // 72-87: d0-15, the 8-byte floating-point registers
7201   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
7202 
7203   return false;
7204 }
7205 
7206 
7207 //===----------------------------------------------------------------------===//
7208 // XCore ABI Implementation
7209 //===----------------------------------------------------------------------===//
7210 
7211 namespace {
7212 
7213 /// A SmallStringEnc instance is used to build up the TypeString by passing
7214 /// it by reference between functions that append to it.
7215 typedef llvm::SmallString<128> SmallStringEnc;
7216 
7217 /// TypeStringCache caches the meta encodings of Types.
7218 ///
7219 /// The reason for caching TypeStrings is two fold:
7220 ///   1. To cache a type's encoding for later uses;
7221 ///   2. As a means to break recursive member type inclusion.
7222 ///
7223 /// A cache Entry can have a Status of:
7224 ///   NonRecursive:   The type encoding is not recursive;
7225 ///   Recursive:      The type encoding is recursive;
7226 ///   Incomplete:     An incomplete TypeString;
7227 ///   IncompleteUsed: An incomplete TypeString that has been used in a
7228 ///                   Recursive type encoding.
7229 ///
7230 /// A NonRecursive entry will have all of its sub-members expanded as fully
7231 /// as possible. Whilst it may contain types which are recursive, the type
7232 /// itself is not recursive and thus its encoding may be safely used whenever
7233 /// the type is encountered.
7234 ///
7235 /// A Recursive entry will have all of its sub-members expanded as fully as
7236 /// possible. The type itself is recursive and it may contain other types which
7237 /// are recursive. The Recursive encoding must not be used during the expansion
7238 /// of a recursive type's recursive branch. For simplicity the code uses
7239 /// IncompleteCount to reject all usage of Recursive encodings for member types.
7240 ///
7241 /// An Incomplete entry is always a RecordType and only encodes its
7242 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
7243 /// are placed into the cache during type expansion as a means to identify and
7244 /// handle recursive inclusion of types as sub-members. If there is recursion
7245 /// the entry becomes IncompleteUsed.
7246 ///
7247 /// During the expansion of a RecordType's members:
7248 ///
7249 ///   If the cache contains a NonRecursive encoding for the member type, the
7250 ///   cached encoding is used;
7251 ///
7252 ///   If the cache contains a Recursive encoding for the member type, the
7253 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
7254 ///
7255 ///   If the member is a RecordType, an Incomplete encoding is placed into the
7256 ///   cache to break potential recursive inclusion of itself as a sub-member;
7257 ///
7258 ///   Once a member RecordType has been expanded, its temporary incomplete
7259 ///   entry is removed from the cache. If a Recursive encoding was swapped out
7260 ///   it is swapped back in;
7261 ///
7262 ///   If an incomplete entry is used to expand a sub-member, the incomplete
7263 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
7264 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
7265 ///
7266 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
7267 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
7268 ///   Else the member is part of a recursive type and thus the recursion has
7269 ///   been exited too soon for the encoding to be correct for the member.
7270 ///
7271 class TypeStringCache {
7272   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
7273   struct Entry {
7274     std::string Str;     // The encoded TypeString for the type.
7275     enum Status State;   // Information about the encoding in 'Str'.
7276     std::string Swapped; // A temporary place holder for a Recursive encoding
7277                          // during the expansion of RecordType's members.
7278   };
7279   std::map<const IdentifierInfo *, struct Entry> Map;
7280   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
7281   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
7282 public:
7283   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
7284   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
7285   bool removeIncomplete(const IdentifierInfo *ID);
7286   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
7287                      bool IsRecursive);
7288   StringRef lookupStr(const IdentifierInfo *ID);
7289 };
7290 
7291 /// TypeString encodings for enum & union fields must be order.
7292 /// FieldEncoding is a helper for this ordering process.
7293 class FieldEncoding {
7294   bool HasName;
7295   std::string Enc;
7296 public:
7297   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
7298   StringRef str() {return Enc.c_str();}
7299   bool operator<(const FieldEncoding &rhs) const {
7300     if (HasName != rhs.HasName) return HasName;
7301     return Enc < rhs.Enc;
7302   }
7303 };
7304 
7305 class XCoreABIInfo : public DefaultABIInfo {
7306 public:
7307   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7308   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7309                     QualType Ty) const override;
7310 };
7311 
7312 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
7313   mutable TypeStringCache TSC;
7314 public:
7315   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
7316     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
7317   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7318                     CodeGen::CodeGenModule &M) const override;
7319 };
7320 
7321 } // End anonymous namespace.
7322 
7323 // TODO: this implementation is likely now redundant with the default
7324 // EmitVAArg.
7325 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7326                                 QualType Ty) const {
7327   CGBuilderTy &Builder = CGF.Builder;
7328 
7329   // Get the VAList.
7330   CharUnits SlotSize = CharUnits::fromQuantity(4);
7331   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
7332 
7333   // Handle the argument.
7334   ABIArgInfo AI = classifyArgumentType(Ty);
7335   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
7336   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7337   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7338     AI.setCoerceToType(ArgTy);
7339   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7340 
7341   Address Val = Address::invalid();
7342   CharUnits ArgSize = CharUnits::Zero();
7343   switch (AI.getKind()) {
7344   case ABIArgInfo::Expand:
7345   case ABIArgInfo::CoerceAndExpand:
7346   case ABIArgInfo::InAlloca:
7347     llvm_unreachable("Unsupported ABI kind for va_arg");
7348   case ABIArgInfo::Ignore:
7349     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
7350     ArgSize = CharUnits::Zero();
7351     break;
7352   case ABIArgInfo::Extend:
7353   case ABIArgInfo::Direct:
7354     Val = Builder.CreateBitCast(AP, ArgPtrTy);
7355     ArgSize = CharUnits::fromQuantity(
7356                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
7357     ArgSize = ArgSize.alignTo(SlotSize);
7358     break;
7359   case ABIArgInfo::Indirect:
7360     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
7361     Val = Address(Builder.CreateLoad(Val), TypeAlign);
7362     ArgSize = SlotSize;
7363     break;
7364   }
7365 
7366   // Increment the VAList.
7367   if (!ArgSize.isZero()) {
7368     llvm::Value *APN =
7369       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
7370     Builder.CreateStore(APN, VAListAddr);
7371   }
7372 
7373   return Val;
7374 }
7375 
7376 /// During the expansion of a RecordType, an incomplete TypeString is placed
7377 /// into the cache as a means to identify and break recursion.
7378 /// If there is a Recursive encoding in the cache, it is swapped out and will
7379 /// be reinserted by removeIncomplete().
7380 /// All other types of encoding should have been used rather than arriving here.
7381 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7382                                     std::string StubEnc) {
7383   if (!ID)
7384     return;
7385   Entry &E = Map[ID];
7386   assert( (E.Str.empty() || E.State == Recursive) &&
7387          "Incorrectly use of addIncomplete");
7388   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7389   E.Swapped.swap(E.Str); // swap out the Recursive
7390   E.Str.swap(StubEnc);
7391   E.State = Incomplete;
7392   ++IncompleteCount;
7393 }
7394 
7395 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7396 /// must be removed from the cache.
7397 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7398 /// Returns true if the RecordType was defined recursively.
7399 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7400   if (!ID)
7401     return false;
7402   auto I = Map.find(ID);
7403   assert(I != Map.end() && "Entry not present");
7404   Entry &E = I->second;
7405   assert( (E.State == Incomplete ||
7406            E.State == IncompleteUsed) &&
7407          "Entry must be an incomplete type");
7408   bool IsRecursive = false;
7409   if (E.State == IncompleteUsed) {
7410     // We made use of our Incomplete encoding, thus we are recursive.
7411     IsRecursive = true;
7412     --IncompleteUsedCount;
7413   }
7414   if (E.Swapped.empty())
7415     Map.erase(I);
7416   else {
7417     // Swap the Recursive back.
7418     E.Swapped.swap(E.Str);
7419     E.Swapped.clear();
7420     E.State = Recursive;
7421   }
7422   --IncompleteCount;
7423   return IsRecursive;
7424 }
7425 
7426 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7427 /// Recursive (viz: all sub-members were expanded as fully as possible).
7428 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7429                                     bool IsRecursive) {
7430   if (!ID || IncompleteUsedCount)
7431     return; // No key or it is is an incomplete sub-type so don't add.
7432   Entry &E = Map[ID];
7433   if (IsRecursive && !E.Str.empty()) {
7434     assert(E.State==Recursive && E.Str.size() == Str.size() &&
7435            "This is not the same Recursive entry");
7436     // The parent container was not recursive after all, so we could have used
7437     // this Recursive sub-member entry after all, but we assumed the worse when
7438     // we started viz: IncompleteCount!=0.
7439     return;
7440   }
7441   assert(E.Str.empty() && "Entry already present");
7442   E.Str = Str.str();
7443   E.State = IsRecursive? Recursive : NonRecursive;
7444 }
7445 
7446 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7447 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7448 /// encoding is Recursive, return an empty StringRef.
7449 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7450   if (!ID)
7451     return StringRef();   // We have no key.
7452   auto I = Map.find(ID);
7453   if (I == Map.end())
7454     return StringRef();   // We have no encoding.
7455   Entry &E = I->second;
7456   if (E.State == Recursive && IncompleteCount)
7457     return StringRef();   // We don't use Recursive encodings for member types.
7458 
7459   if (E.State == Incomplete) {
7460     // The incomplete type is being used to break out of recursion.
7461     E.State = IncompleteUsed;
7462     ++IncompleteUsedCount;
7463   }
7464   return E.Str.c_str();
7465 }
7466 
7467 /// The XCore ABI includes a type information section that communicates symbol
7468 /// type information to the linker. The linker uses this information to verify
7469 /// safety/correctness of things such as array bound and pointers et al.
7470 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7471 /// This type information (TypeString) is emitted into meta data for all global
7472 /// symbols: definitions, declarations, functions & variables.
7473 ///
7474 /// The TypeString carries type, qualifier, name, size & value details.
7475 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7476 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7477 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7478 ///
7479 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7480                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7481 
7482 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
7483 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7484                                           CodeGen::CodeGenModule &CGM) const {
7485   SmallStringEnc Enc;
7486   if (getTypeString(Enc, D, CGM, TSC)) {
7487     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7488     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
7489     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
7490     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
7491     llvm::NamedMDNode *MD =
7492       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7493     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7494   }
7495 }
7496 
7497 //===----------------------------------------------------------------------===//
7498 // SPIR ABI Implementation
7499 //===----------------------------------------------------------------------===//
7500 
7501 namespace {
7502 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
7503 public:
7504   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7505     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
7506   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7507                     CodeGen::CodeGenModule &M) const override;
7508 };
7509 } // End anonymous namespace.
7510 
7511 /// Emit SPIR specific metadata: OpenCL and SPIR version.
7512 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7513                                          CodeGen::CodeGenModule &CGM) const {
7514   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7515   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7516   llvm::Module &M = CGM.getModule();
7517   // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
7518   // opencl.spir.version named metadata.
7519   llvm::Metadata *SPIRVerElts[] = {
7520       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)),
7521       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))};
7522   llvm::NamedMDNode *SPIRVerMD =
7523       M.getOrInsertNamedMetadata("opencl.spir.version");
7524   SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
7525   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
7526   // opencl.ocl.version named metadata node.
7527   llvm::Metadata *OCLVerElts[] = {
7528       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7529           Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)),
7530       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7531           Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))};
7532   llvm::NamedMDNode *OCLVerMD =
7533       M.getOrInsertNamedMetadata("opencl.ocl.version");
7534   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
7535 }
7536 
7537 static bool appendType(SmallStringEnc &Enc, QualType QType,
7538                        const CodeGen::CodeGenModule &CGM,
7539                        TypeStringCache &TSC);
7540 
7541 /// Helper function for appendRecordType().
7542 /// Builds a SmallVector containing the encoded field types in declaration
7543 /// order.
7544 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7545                              const RecordDecl *RD,
7546                              const CodeGen::CodeGenModule &CGM,
7547                              TypeStringCache &TSC) {
7548   for (const auto *Field : RD->fields()) {
7549     SmallStringEnc Enc;
7550     Enc += "m(";
7551     Enc += Field->getName();
7552     Enc += "){";
7553     if (Field->isBitField()) {
7554       Enc += "b(";
7555       llvm::raw_svector_ostream OS(Enc);
7556       OS << Field->getBitWidthValue(CGM.getContext());
7557       Enc += ':';
7558     }
7559     if (!appendType(Enc, Field->getType(), CGM, TSC))
7560       return false;
7561     if (Field->isBitField())
7562       Enc += ')';
7563     Enc += '}';
7564     FE.emplace_back(!Field->getName().empty(), Enc);
7565   }
7566   return true;
7567 }
7568 
7569 /// Appends structure and union types to Enc and adds encoding to cache.
7570 /// Recursively calls appendType (via extractFieldType) for each field.
7571 /// Union types have their fields ordered according to the ABI.
7572 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7573                              const CodeGen::CodeGenModule &CGM,
7574                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7575   // Append the cached TypeString if we have one.
7576   StringRef TypeString = TSC.lookupStr(ID);
7577   if (!TypeString.empty()) {
7578     Enc += TypeString;
7579     return true;
7580   }
7581 
7582   // Start to emit an incomplete TypeString.
7583   size_t Start = Enc.size();
7584   Enc += (RT->isUnionType()? 'u' : 's');
7585   Enc += '(';
7586   if (ID)
7587     Enc += ID->getName();
7588   Enc += "){";
7589 
7590   // We collect all encoded fields and order as necessary.
7591   bool IsRecursive = false;
7592   const RecordDecl *RD = RT->getDecl()->getDefinition();
7593   if (RD && !RD->field_empty()) {
7594     // An incomplete TypeString stub is placed in the cache for this RecordType
7595     // so that recursive calls to this RecordType will use it whilst building a
7596     // complete TypeString for this RecordType.
7597     SmallVector<FieldEncoding, 16> FE;
7598     std::string StubEnc(Enc.substr(Start).str());
7599     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7600     TSC.addIncomplete(ID, std::move(StubEnc));
7601     if (!extractFieldType(FE, RD, CGM, TSC)) {
7602       (void) TSC.removeIncomplete(ID);
7603       return false;
7604     }
7605     IsRecursive = TSC.removeIncomplete(ID);
7606     // The ABI requires unions to be sorted but not structures.
7607     // See FieldEncoding::operator< for sort algorithm.
7608     if (RT->isUnionType())
7609       std::sort(FE.begin(), FE.end());
7610     // We can now complete the TypeString.
7611     unsigned E = FE.size();
7612     for (unsigned I = 0; I != E; ++I) {
7613       if (I)
7614         Enc += ',';
7615       Enc += FE[I].str();
7616     }
7617   }
7618   Enc += '}';
7619   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7620   return true;
7621 }
7622 
7623 /// Appends enum types to Enc and adds the encoding to the cache.
7624 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7625                            TypeStringCache &TSC,
7626                            const IdentifierInfo *ID) {
7627   // Append the cached TypeString if we have one.
7628   StringRef TypeString = TSC.lookupStr(ID);
7629   if (!TypeString.empty()) {
7630     Enc += TypeString;
7631     return true;
7632   }
7633 
7634   size_t Start = Enc.size();
7635   Enc += "e(";
7636   if (ID)
7637     Enc += ID->getName();
7638   Enc += "){";
7639 
7640   // We collect all encoded enumerations and order them alphanumerically.
7641   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7642     SmallVector<FieldEncoding, 16> FE;
7643     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7644          ++I) {
7645       SmallStringEnc EnumEnc;
7646       EnumEnc += "m(";
7647       EnumEnc += I->getName();
7648       EnumEnc += "){";
7649       I->getInitVal().toString(EnumEnc);
7650       EnumEnc += '}';
7651       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7652     }
7653     std::sort(FE.begin(), FE.end());
7654     unsigned E = FE.size();
7655     for (unsigned I = 0; I != E; ++I) {
7656       if (I)
7657         Enc += ',';
7658       Enc += FE[I].str();
7659     }
7660   }
7661   Enc += '}';
7662   TSC.addIfComplete(ID, Enc.substr(Start), false);
7663   return true;
7664 }
7665 
7666 /// Appends type's qualifier to Enc.
7667 /// This is done prior to appending the type's encoding.
7668 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7669   // Qualifiers are emitted in alphabetical order.
7670   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7671   int Lookup = 0;
7672   if (QT.isConstQualified())
7673     Lookup += 1<<0;
7674   if (QT.isRestrictQualified())
7675     Lookup += 1<<1;
7676   if (QT.isVolatileQualified())
7677     Lookup += 1<<2;
7678   Enc += Table[Lookup];
7679 }
7680 
7681 /// Appends built-in types to Enc.
7682 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7683   const char *EncType;
7684   switch (BT->getKind()) {
7685     case BuiltinType::Void:
7686       EncType = "0";
7687       break;
7688     case BuiltinType::Bool:
7689       EncType = "b";
7690       break;
7691     case BuiltinType::Char_U:
7692       EncType = "uc";
7693       break;
7694     case BuiltinType::UChar:
7695       EncType = "uc";
7696       break;
7697     case BuiltinType::SChar:
7698       EncType = "sc";
7699       break;
7700     case BuiltinType::UShort:
7701       EncType = "us";
7702       break;
7703     case BuiltinType::Short:
7704       EncType = "ss";
7705       break;
7706     case BuiltinType::UInt:
7707       EncType = "ui";
7708       break;
7709     case BuiltinType::Int:
7710       EncType = "si";
7711       break;
7712     case BuiltinType::ULong:
7713       EncType = "ul";
7714       break;
7715     case BuiltinType::Long:
7716       EncType = "sl";
7717       break;
7718     case BuiltinType::ULongLong:
7719       EncType = "ull";
7720       break;
7721     case BuiltinType::LongLong:
7722       EncType = "sll";
7723       break;
7724     case BuiltinType::Float:
7725       EncType = "ft";
7726       break;
7727     case BuiltinType::Double:
7728       EncType = "d";
7729       break;
7730     case BuiltinType::LongDouble:
7731       EncType = "ld";
7732       break;
7733     default:
7734       return false;
7735   }
7736   Enc += EncType;
7737   return true;
7738 }
7739 
7740 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7741 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7742                               const CodeGen::CodeGenModule &CGM,
7743                               TypeStringCache &TSC) {
7744   Enc += "p(";
7745   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7746     return false;
7747   Enc += ')';
7748   return true;
7749 }
7750 
7751 /// Appends array encoding to Enc before calling appendType for the element.
7752 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7753                             const ArrayType *AT,
7754                             const CodeGen::CodeGenModule &CGM,
7755                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7756   if (AT->getSizeModifier() != ArrayType::Normal)
7757     return false;
7758   Enc += "a(";
7759   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7760     CAT->getSize().toStringUnsigned(Enc);
7761   else
7762     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7763   Enc += ':';
7764   // The Qualifiers should be attached to the type rather than the array.
7765   appendQualifier(Enc, QT);
7766   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7767     return false;
7768   Enc += ')';
7769   return true;
7770 }
7771 
7772 /// Appends a function encoding to Enc, calling appendType for the return type
7773 /// and the arguments.
7774 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7775                              const CodeGen::CodeGenModule &CGM,
7776                              TypeStringCache &TSC) {
7777   Enc += "f{";
7778   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7779     return false;
7780   Enc += "}(";
7781   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7782     // N.B. we are only interested in the adjusted param types.
7783     auto I = FPT->param_type_begin();
7784     auto E = FPT->param_type_end();
7785     if (I != E) {
7786       do {
7787         if (!appendType(Enc, *I, CGM, TSC))
7788           return false;
7789         ++I;
7790         if (I != E)
7791           Enc += ',';
7792       } while (I != E);
7793       if (FPT->isVariadic())
7794         Enc += ",va";
7795     } else {
7796       if (FPT->isVariadic())
7797         Enc += "va";
7798       else
7799         Enc += '0';
7800     }
7801   }
7802   Enc += ')';
7803   return true;
7804 }
7805 
7806 /// Handles the type's qualifier before dispatching a call to handle specific
7807 /// type encodings.
7808 static bool appendType(SmallStringEnc &Enc, QualType QType,
7809                        const CodeGen::CodeGenModule &CGM,
7810                        TypeStringCache &TSC) {
7811 
7812   QualType QT = QType.getCanonicalType();
7813 
7814   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7815     // The Qualifiers should be attached to the type rather than the array.
7816     // Thus we don't call appendQualifier() here.
7817     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7818 
7819   appendQualifier(Enc, QT);
7820 
7821   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7822     return appendBuiltinType(Enc, BT);
7823 
7824   if (const PointerType *PT = QT->getAs<PointerType>())
7825     return appendPointerType(Enc, PT, CGM, TSC);
7826 
7827   if (const EnumType *ET = QT->getAs<EnumType>())
7828     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7829 
7830   if (const RecordType *RT = QT->getAsStructureType())
7831     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7832 
7833   if (const RecordType *RT = QT->getAsUnionType())
7834     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7835 
7836   if (const FunctionType *FT = QT->getAs<FunctionType>())
7837     return appendFunctionType(Enc, FT, CGM, TSC);
7838 
7839   return false;
7840 }
7841 
7842 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7843                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7844   if (!D)
7845     return false;
7846 
7847   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7848     if (FD->getLanguageLinkage() != CLanguageLinkage)
7849       return false;
7850     return appendType(Enc, FD->getType(), CGM, TSC);
7851   }
7852 
7853   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7854     if (VD->getLanguageLinkage() != CLanguageLinkage)
7855       return false;
7856     QualType QT = VD->getType().getCanonicalType();
7857     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7858       // Global ArrayTypes are given a size of '*' if the size is unknown.
7859       // The Qualifiers should be attached to the type rather than the array.
7860       // Thus we don't call appendQualifier() here.
7861       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7862     }
7863     return appendType(Enc, QT, CGM, TSC);
7864   }
7865   return false;
7866 }
7867 
7868 
7869 //===----------------------------------------------------------------------===//
7870 // Driver code
7871 //===----------------------------------------------------------------------===//
7872 
7873 const llvm::Triple &CodeGenModule::getTriple() const {
7874   return getTarget().getTriple();
7875 }
7876 
7877 bool CodeGenModule::supportsCOMDAT() const {
7878   return getTriple().supportsCOMDAT();
7879 }
7880 
7881 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7882   if (TheTargetCodeGenInfo)
7883     return *TheTargetCodeGenInfo;
7884 
7885   // Helper to set the unique_ptr while still keeping the return value.
7886   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
7887     this->TheTargetCodeGenInfo.reset(P);
7888     return *P;
7889   };
7890 
7891   const llvm::Triple &Triple = getTarget().getTriple();
7892   switch (Triple.getArch()) {
7893   default:
7894     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
7895 
7896   case llvm::Triple::le32:
7897     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
7898   case llvm::Triple::mips:
7899   case llvm::Triple::mipsel:
7900     if (Triple.getOS() == llvm::Triple::NaCl)
7901       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
7902     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
7903 
7904   case llvm::Triple::mips64:
7905   case llvm::Triple::mips64el:
7906     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
7907 
7908   case llvm::Triple::aarch64:
7909   case llvm::Triple::aarch64_be: {
7910     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7911     if (getTarget().getABI() == "darwinpcs")
7912       Kind = AArch64ABIInfo::DarwinPCS;
7913 
7914     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
7915   }
7916 
7917   case llvm::Triple::wasm32:
7918   case llvm::Triple::wasm64:
7919     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
7920 
7921   case llvm::Triple::arm:
7922   case llvm::Triple::armeb:
7923   case llvm::Triple::thumb:
7924   case llvm::Triple::thumbeb: {
7925     if (Triple.getOS() == llvm::Triple::Win32) {
7926       return SetCGInfo(
7927           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
7928     }
7929 
7930     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7931     StringRef ABIStr = getTarget().getABI();
7932     if (ABIStr == "apcs-gnu")
7933       Kind = ARMABIInfo::APCS;
7934     else if (ABIStr == "aapcs16")
7935       Kind = ARMABIInfo::AAPCS16_VFP;
7936     else if (CodeGenOpts.FloatABI == "hard" ||
7937              (CodeGenOpts.FloatABI != "soft" &&
7938               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
7939                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
7940                Triple.getEnvironment() == llvm::Triple::EABIHF)))
7941       Kind = ARMABIInfo::AAPCS_VFP;
7942 
7943     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
7944   }
7945 
7946   case llvm::Triple::ppc:
7947     return SetCGInfo(
7948         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
7949   case llvm::Triple::ppc64:
7950     if (Triple.isOSBinFormatELF()) {
7951       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7952       if (getTarget().getABI() == "elfv2")
7953         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7954       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7955 
7956       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7957     } else
7958       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
7959   case llvm::Triple::ppc64le: {
7960     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7961     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7962     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7963       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7964     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7965 
7966     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7967   }
7968 
7969   case llvm::Triple::nvptx:
7970   case llvm::Triple::nvptx64:
7971     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
7972 
7973   case llvm::Triple::msp430:
7974     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
7975 
7976   case llvm::Triple::systemz: {
7977     bool HasVector = getTarget().getABI() == "vector";
7978     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
7979   }
7980 
7981   case llvm::Triple::tce:
7982     return SetCGInfo(new TCETargetCodeGenInfo(Types));
7983 
7984   case llvm::Triple::x86: {
7985     bool IsDarwinVectorABI = Triple.isOSDarwin();
7986     bool RetSmallStructInRegABI =
7987         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7988     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7989 
7990     if (Triple.getOS() == llvm::Triple::Win32) {
7991       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
7992           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7993           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7994     } else {
7995       return SetCGInfo(new X86_32TargetCodeGenInfo(
7996           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7997           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
7998           CodeGenOpts.FloatABI == "soft"));
7999     }
8000   }
8001 
8002   case llvm::Triple::x86_64: {
8003     StringRef ABI = getTarget().getABI();
8004     X86AVXABILevel AVXLevel =
8005         (ABI == "avx512"
8006              ? X86AVXABILevel::AVX512
8007              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8008 
8009     switch (Triple.getOS()) {
8010     case llvm::Triple::Win32:
8011       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8012     case llvm::Triple::PS4:
8013       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8014     default:
8015       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8016     }
8017   }
8018   case llvm::Triple::hexagon:
8019     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8020   case llvm::Triple::lanai:
8021     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8022   case llvm::Triple::r600:
8023     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8024   case llvm::Triple::amdgcn:
8025     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8026   case llvm::Triple::sparc:
8027     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8028   case llvm::Triple::sparcv9:
8029     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8030   case llvm::Triple::xcore:
8031     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8032   case llvm::Triple::spir:
8033   case llvm::Triple::spir64:
8034     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8035   }
8036 }
8037