1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 41 Builder.CreateStore(Value, Cell); 42 } 43 } 44 45 static bool isAggregateTypeForABI(QualType T) { 46 return !CodeGenFunction::hasScalarEvaluationKind(T) || 47 T->isMemberFunctionPointerType(); 48 } 49 50 ABIInfo::~ABIInfo() {} 51 52 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 53 CGCXXABI &CXXABI) { 54 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 55 if (!RD) 56 return CGCXXABI::RAA_Default; 57 return CXXABI.getRecordArgABI(RD); 58 } 59 60 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 61 CGCXXABI &CXXABI) { 62 const RecordType *RT = T->getAs<RecordType>(); 63 if (!RT) 64 return CGCXXABI::RAA_Default; 65 return getRecordArgABI(RT, CXXABI); 66 } 67 68 /// Pass transparent unions as if they were the type of the first element. Sema 69 /// should ensure that all elements of the union have the same "machine type". 70 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 71 if (const RecordType *UT = Ty->getAsUnionType()) { 72 const RecordDecl *UD = UT->getDecl(); 73 if (UD->hasAttr<TransparentUnionAttr>()) { 74 assert(!UD->field_empty() && "sema created an empty transparent union"); 75 return UD->field_begin()->getType(); 76 } 77 } 78 return Ty; 79 } 80 81 CGCXXABI &ABIInfo::getCXXABI() const { 82 return CGT.getCXXABI(); 83 } 84 85 ASTContext &ABIInfo::getContext() const { 86 return CGT.getContext(); 87 } 88 89 llvm::LLVMContext &ABIInfo::getVMContext() const { 90 return CGT.getLLVMContext(); 91 } 92 93 const llvm::DataLayout &ABIInfo::getDataLayout() const { 94 return CGT.getDataLayout(); 95 } 96 97 const TargetInfo &ABIInfo::getTarget() const { 98 return CGT.getTarget(); 99 } 100 101 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 102 return false; 103 } 104 105 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 106 uint64_t Members) const { 107 return false; 108 } 109 110 void ABIArgInfo::dump() const { 111 raw_ostream &OS = llvm::errs(); 112 OS << "(ABIArgInfo Kind="; 113 switch (TheKind) { 114 case Direct: 115 OS << "Direct Type="; 116 if (llvm::Type *Ty = getCoerceToType()) 117 Ty->print(OS); 118 else 119 OS << "null"; 120 break; 121 case Extend: 122 OS << "Extend"; 123 break; 124 case Ignore: 125 OS << "Ignore"; 126 break; 127 case InAlloca: 128 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 129 break; 130 case Indirect: 131 OS << "Indirect Align=" << getIndirectAlign() 132 << " ByVal=" << getIndirectByVal() 133 << " Realign=" << getIndirectRealign(); 134 break; 135 case Expand: 136 OS << "Expand"; 137 break; 138 } 139 OS << ")\n"; 140 } 141 142 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 143 144 // If someone can figure out a general rule for this, that would be great. 145 // It's probably just doomed to be platform-dependent, though. 146 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 147 // Verified for: 148 // x86-64 FreeBSD, Linux, Darwin 149 // x86-32 FreeBSD, Linux, Darwin 150 // PowerPC Linux, Darwin 151 // ARM Darwin (*not* EABI) 152 // AArch64 Linux 153 return 32; 154 } 155 156 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 157 const FunctionNoProtoType *fnType) const { 158 // The following conventions are known to require this to be false: 159 // x86_stdcall 160 // MIPS 161 // For everything else, we just prefer false unless we opt out. 162 return false; 163 } 164 165 void 166 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 167 llvm::SmallString<24> &Opt) const { 168 // This assumes the user is passing a library name like "rt" instead of a 169 // filename like "librt.a/so", and that they don't care whether it's static or 170 // dynamic. 171 Opt = "-l"; 172 Opt += Lib; 173 } 174 175 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 176 177 /// isEmptyField - Return true iff a the field is "empty", that is it 178 /// is an unnamed bit-field or an (array of) empty record(s). 179 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 180 bool AllowArrays) { 181 if (FD->isUnnamedBitfield()) 182 return true; 183 184 QualType FT = FD->getType(); 185 186 // Constant arrays of empty records count as empty, strip them off. 187 // Constant arrays of zero length always count as empty. 188 if (AllowArrays) 189 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 190 if (AT->getSize() == 0) 191 return true; 192 FT = AT->getElementType(); 193 } 194 195 const RecordType *RT = FT->getAs<RecordType>(); 196 if (!RT) 197 return false; 198 199 // C++ record fields are never empty, at least in the Itanium ABI. 200 // 201 // FIXME: We should use a predicate for whether this behavior is true in the 202 // current ABI. 203 if (isa<CXXRecordDecl>(RT->getDecl())) 204 return false; 205 206 return isEmptyRecord(Context, FT, AllowArrays); 207 } 208 209 /// isEmptyRecord - Return true iff a structure contains only empty 210 /// fields. Note that a structure with a flexible array member is not 211 /// considered empty. 212 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 213 const RecordType *RT = T->getAs<RecordType>(); 214 if (!RT) 215 return 0; 216 const RecordDecl *RD = RT->getDecl(); 217 if (RD->hasFlexibleArrayMember()) 218 return false; 219 220 // If this is a C++ record, check the bases first. 221 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 222 for (const auto &I : CXXRD->bases()) 223 if (!isEmptyRecord(Context, I.getType(), true)) 224 return false; 225 226 for (const auto *I : RD->fields()) 227 if (!isEmptyField(Context, I, AllowArrays)) 228 return false; 229 return true; 230 } 231 232 /// isSingleElementStruct - Determine if a structure is a "single 233 /// element struct", i.e. it has exactly one non-empty field or 234 /// exactly one field which is itself a single element 235 /// struct. Structures with flexible array members are never 236 /// considered single element structs. 237 /// 238 /// \return The field declaration for the single non-empty field, if 239 /// it exists. 240 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 241 const RecordType *RT = T->getAsStructureType(); 242 if (!RT) 243 return nullptr; 244 245 const RecordDecl *RD = RT->getDecl(); 246 if (RD->hasFlexibleArrayMember()) 247 return nullptr; 248 249 const Type *Found = nullptr; 250 251 // If this is a C++ record, check the bases first. 252 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 253 for (const auto &I : CXXRD->bases()) { 254 // Ignore empty records. 255 if (isEmptyRecord(Context, I.getType(), true)) 256 continue; 257 258 // If we already found an element then this isn't a single-element struct. 259 if (Found) 260 return nullptr; 261 262 // If this is non-empty and not a single element struct, the composite 263 // cannot be a single element struct. 264 Found = isSingleElementStruct(I.getType(), Context); 265 if (!Found) 266 return nullptr; 267 } 268 } 269 270 // Check for single element. 271 for (const auto *FD : RD->fields()) { 272 QualType FT = FD->getType(); 273 274 // Ignore empty fields. 275 if (isEmptyField(Context, FD, true)) 276 continue; 277 278 // If we already found an element then this isn't a single-element 279 // struct. 280 if (Found) 281 return nullptr; 282 283 // Treat single element arrays as the element. 284 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 285 if (AT->getSize().getZExtValue() != 1) 286 break; 287 FT = AT->getElementType(); 288 } 289 290 if (!isAggregateTypeForABI(FT)) { 291 Found = FT.getTypePtr(); 292 } else { 293 Found = isSingleElementStruct(FT, Context); 294 if (!Found) 295 return nullptr; 296 } 297 } 298 299 // We don't consider a struct a single-element struct if it has 300 // padding beyond the element type. 301 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 302 return nullptr; 303 304 return Found; 305 } 306 307 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 308 // Treat complex types as the element type. 309 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 310 Ty = CTy->getElementType(); 311 312 // Check for a type which we know has a simple scalar argument-passing 313 // convention without any padding. (We're specifically looking for 32 314 // and 64-bit integer and integer-equivalents, float, and double.) 315 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 316 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 317 return false; 318 319 uint64_t Size = Context.getTypeSize(Ty); 320 return Size == 32 || Size == 64; 321 } 322 323 /// canExpandIndirectArgument - Test whether an argument type which is to be 324 /// passed indirectly (on the stack) would have the equivalent layout if it was 325 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 326 /// inhibiting optimizations. 327 /// 328 // FIXME: This predicate is missing many cases, currently it just follows 329 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 330 // should probably make this smarter, or better yet make the LLVM backend 331 // capable of handling it. 332 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 333 // We can only expand structure types. 334 const RecordType *RT = Ty->getAs<RecordType>(); 335 if (!RT) 336 return false; 337 338 // We can only expand (C) structures. 339 // 340 // FIXME: This needs to be generalized to handle classes as well. 341 const RecordDecl *RD = RT->getDecl(); 342 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 343 return false; 344 345 uint64_t Size = 0; 346 347 for (const auto *FD : RD->fields()) { 348 if (!is32Or64BitBasicType(FD->getType(), Context)) 349 return false; 350 351 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 352 // how to expand them yet, and the predicate for telling if a bitfield still 353 // counts as "basic" is more complicated than what we were doing previously. 354 if (FD->isBitField()) 355 return false; 356 357 Size += Context.getTypeSize(FD->getType()); 358 } 359 360 // Make sure there are not any holes in the struct. 361 if (Size != Context.getTypeSize(Ty)) 362 return false; 363 364 return true; 365 } 366 367 namespace { 368 /// DefaultABIInfo - The default implementation for ABI specific 369 /// details. This implementation provides information which results in 370 /// self-consistent and sensible LLVM IR generation, but does not 371 /// conform to any particular ABI. 372 class DefaultABIInfo : public ABIInfo { 373 public: 374 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 375 376 ABIArgInfo classifyReturnType(QualType RetTy) const; 377 ABIArgInfo classifyArgumentType(QualType RetTy) const; 378 379 void computeInfo(CGFunctionInfo &FI) const override { 380 if (!getCXXABI().classifyReturnType(FI)) 381 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 382 for (auto &I : FI.arguments()) 383 I.info = classifyArgumentType(I.type); 384 } 385 386 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 387 CodeGenFunction &CGF) const override; 388 }; 389 390 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 391 public: 392 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 393 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 394 }; 395 396 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 397 CodeGenFunction &CGF) const { 398 return nullptr; 399 } 400 401 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 402 if (isAggregateTypeForABI(Ty)) 403 return ABIArgInfo::getIndirect(0); 404 405 // Treat an enum type as its underlying type. 406 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 407 Ty = EnumTy->getDecl()->getIntegerType(); 408 409 return (Ty->isPromotableIntegerType() ? 410 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 411 } 412 413 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 414 if (RetTy->isVoidType()) 415 return ABIArgInfo::getIgnore(); 416 417 if (isAggregateTypeForABI(RetTy)) 418 return ABIArgInfo::getIndirect(0); 419 420 // Treat an enum type as its underlying type. 421 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 422 RetTy = EnumTy->getDecl()->getIntegerType(); 423 424 return (RetTy->isPromotableIntegerType() ? 425 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 426 } 427 428 //===----------------------------------------------------------------------===// 429 // le32/PNaCl bitcode ABI Implementation 430 // 431 // This is a simplified version of the x86_32 ABI. Arguments and return values 432 // are always passed on the stack. 433 //===----------------------------------------------------------------------===// 434 435 class PNaClABIInfo : public ABIInfo { 436 public: 437 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 438 439 ABIArgInfo classifyReturnType(QualType RetTy) const; 440 ABIArgInfo classifyArgumentType(QualType RetTy) const; 441 442 void computeInfo(CGFunctionInfo &FI) const override; 443 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 444 CodeGenFunction &CGF) const override; 445 }; 446 447 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 448 public: 449 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 450 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 451 }; 452 453 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 454 if (!getCXXABI().classifyReturnType(FI)) 455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 456 457 for (auto &I : FI.arguments()) 458 I.info = classifyArgumentType(I.type); 459 } 460 461 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 462 CodeGenFunction &CGF) const { 463 return nullptr; 464 } 465 466 /// \brief Classify argument of given type \p Ty. 467 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 468 if (isAggregateTypeForABI(Ty)) { 469 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 470 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 471 return ABIArgInfo::getIndirect(0); 472 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 473 // Treat an enum type as its underlying type. 474 Ty = EnumTy->getDecl()->getIntegerType(); 475 } else if (Ty->isFloatingType()) { 476 // Floating-point types don't go inreg. 477 return ABIArgInfo::getDirect(); 478 } 479 480 return (Ty->isPromotableIntegerType() ? 481 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 482 } 483 484 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 485 if (RetTy->isVoidType()) 486 return ABIArgInfo::getIgnore(); 487 488 // In the PNaCl ABI we always return records/structures on the stack. 489 if (isAggregateTypeForABI(RetTy)) 490 return ABIArgInfo::getIndirect(0); 491 492 // Treat an enum type as its underlying type. 493 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 494 RetTy = EnumTy->getDecl()->getIntegerType(); 495 496 return (RetTy->isPromotableIntegerType() ? 497 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 498 } 499 500 /// IsX86_MMXType - Return true if this is an MMX type. 501 bool IsX86_MMXType(llvm::Type *IRType) { 502 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 503 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 504 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 505 IRType->getScalarSizeInBits() != 64; 506 } 507 508 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 509 StringRef Constraint, 510 llvm::Type* Ty) { 511 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 512 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 513 // Invalid MMX constraint 514 return nullptr; 515 } 516 517 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 518 } 519 520 // No operation needed 521 return Ty; 522 } 523 524 /// Returns true if this type can be passed in SSE registers with the 525 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 526 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 527 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 528 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 529 return true; 530 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 531 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 532 // registers specially. 533 unsigned VecSize = Context.getTypeSize(VT); 534 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 535 return true; 536 } 537 return false; 538 } 539 540 /// Returns true if this aggregate is small enough to be passed in SSE registers 541 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 542 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 543 return NumMembers <= 4; 544 } 545 546 //===----------------------------------------------------------------------===// 547 // X86-32 ABI Implementation 548 //===----------------------------------------------------------------------===// 549 550 /// \brief Similar to llvm::CCState, but for Clang. 551 struct CCState { 552 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 553 554 unsigned CC; 555 unsigned FreeRegs; 556 unsigned FreeSSERegs; 557 }; 558 559 /// X86_32ABIInfo - The X86-32 ABI information. 560 class X86_32ABIInfo : public ABIInfo { 561 enum Class { 562 Integer, 563 Float 564 }; 565 566 static const unsigned MinABIStackAlignInBytes = 4; 567 568 bool IsDarwinVectorABI; 569 bool IsSmallStructInRegABI; 570 bool IsWin32StructABI; 571 unsigned DefaultNumRegisterParameters; 572 573 static bool isRegisterSize(unsigned Size) { 574 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 575 } 576 577 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 578 // FIXME: Assumes vectorcall is in use. 579 return isX86VectorTypeForVectorCall(getContext(), Ty); 580 } 581 582 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 583 uint64_t NumMembers) const override { 584 // FIXME: Assumes vectorcall is in use. 585 return isX86VectorCallAggregateSmallEnough(NumMembers); 586 } 587 588 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 589 590 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 591 /// such that the argument will be passed in memory. 592 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 593 594 ABIArgInfo getIndirectReturnResult(CCState &State) const; 595 596 /// \brief Return the alignment to use for the given type on the stack. 597 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 598 599 Class classify(QualType Ty) const; 600 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 601 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 602 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 603 604 /// \brief Rewrite the function info so that all memory arguments use 605 /// inalloca. 606 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 607 608 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 609 unsigned &StackOffset, ABIArgInfo &Info, 610 QualType Type) const; 611 612 public: 613 614 void computeInfo(CGFunctionInfo &FI) const override; 615 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 616 CodeGenFunction &CGF) const override; 617 618 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 619 unsigned r) 620 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 621 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 622 }; 623 624 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 625 public: 626 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 627 bool d, bool p, bool w, unsigned r) 628 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 629 630 static bool isStructReturnInRegABI( 631 const llvm::Triple &Triple, const CodeGenOptions &Opts); 632 633 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 634 CodeGen::CodeGenModule &CGM) const override; 635 636 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 637 // Darwin uses different dwarf register numbers for EH. 638 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 639 return 4; 640 } 641 642 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 643 llvm::Value *Address) const override; 644 645 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 646 StringRef Constraint, 647 llvm::Type* Ty) const override { 648 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 649 } 650 651 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 652 std::string &Constraints, 653 std::vector<llvm::Type *> &ResultRegTypes, 654 std::vector<llvm::Type *> &ResultTruncRegTypes, 655 std::vector<LValue> &ResultRegDests, 656 std::string &AsmString, 657 unsigned NumOutputs) const override; 658 659 llvm::Constant * 660 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 661 unsigned Sig = (0xeb << 0) | // jmp rel8 662 (0x06 << 8) | // .+0x08 663 ('F' << 16) | 664 ('T' << 24); 665 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 666 } 667 668 }; 669 670 } 671 672 /// Rewrite input constraint references after adding some output constraints. 673 /// In the case where there is one output and one input and we add one output, 674 /// we need to replace all operand references greater than or equal to 1: 675 /// mov $0, $1 676 /// mov eax, $1 677 /// The result will be: 678 /// mov $0, $2 679 /// mov eax, $2 680 static void rewriteInputConstraintReferences(unsigned FirstIn, 681 unsigned NumNewOuts, 682 std::string &AsmString) { 683 std::string Buf; 684 llvm::raw_string_ostream OS(Buf); 685 size_t Pos = 0; 686 while (Pos < AsmString.size()) { 687 size_t DollarStart = AsmString.find('$', Pos); 688 if (DollarStart == std::string::npos) 689 DollarStart = AsmString.size(); 690 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 691 if (DollarEnd == std::string::npos) 692 DollarEnd = AsmString.size(); 693 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 694 Pos = DollarEnd; 695 size_t NumDollars = DollarEnd - DollarStart; 696 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 697 // We have an operand reference. 698 size_t DigitStart = Pos; 699 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 700 if (DigitEnd == std::string::npos) 701 DigitEnd = AsmString.size(); 702 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 703 unsigned OperandIndex; 704 if (!OperandStr.getAsInteger(10, OperandIndex)) { 705 if (OperandIndex >= FirstIn) 706 OperandIndex += NumNewOuts; 707 OS << OperandIndex; 708 } else { 709 OS << OperandStr; 710 } 711 Pos = DigitEnd; 712 } 713 } 714 AsmString = std::move(OS.str()); 715 } 716 717 /// Add output constraints for EAX:EDX because they are return registers. 718 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 719 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 720 std::vector<llvm::Type *> &ResultRegTypes, 721 std::vector<llvm::Type *> &ResultTruncRegTypes, 722 std::vector<LValue> &ResultRegDests, std::string &AsmString, 723 unsigned NumOutputs) const { 724 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 725 726 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 727 // larger. 728 if (!Constraints.empty()) 729 Constraints += ','; 730 if (RetWidth <= 32) { 731 Constraints += "={eax}"; 732 ResultRegTypes.push_back(CGF.Int32Ty); 733 } else { 734 // Use the 'A' constraint for EAX:EDX. 735 Constraints += "=A"; 736 ResultRegTypes.push_back(CGF.Int64Ty); 737 } 738 739 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 740 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 741 ResultTruncRegTypes.push_back(CoerceTy); 742 743 // Coerce the integer by bitcasting the return slot pointer. 744 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 745 CoerceTy->getPointerTo())); 746 ResultRegDests.push_back(ReturnSlot); 747 748 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 749 } 750 751 /// shouldReturnTypeInRegister - Determine if the given type should be 752 /// passed in a register (for the Darwin ABI). 753 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 754 ASTContext &Context) const { 755 uint64_t Size = Context.getTypeSize(Ty); 756 757 // Type must be register sized. 758 if (!isRegisterSize(Size)) 759 return false; 760 761 if (Ty->isVectorType()) { 762 // 64- and 128- bit vectors inside structures are not returned in 763 // registers. 764 if (Size == 64 || Size == 128) 765 return false; 766 767 return true; 768 } 769 770 // If this is a builtin, pointer, enum, complex type, member pointer, or 771 // member function pointer it is ok. 772 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 773 Ty->isAnyComplexType() || Ty->isEnumeralType() || 774 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 775 return true; 776 777 // Arrays are treated like records. 778 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 779 return shouldReturnTypeInRegister(AT->getElementType(), Context); 780 781 // Otherwise, it must be a record type. 782 const RecordType *RT = Ty->getAs<RecordType>(); 783 if (!RT) return false; 784 785 // FIXME: Traverse bases here too. 786 787 // Structure types are passed in register if all fields would be 788 // passed in a register. 789 for (const auto *FD : RT->getDecl()->fields()) { 790 // Empty fields are ignored. 791 if (isEmptyField(Context, FD, true)) 792 continue; 793 794 // Check fields recursively. 795 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 796 return false; 797 } 798 return true; 799 } 800 801 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 802 // If the return value is indirect, then the hidden argument is consuming one 803 // integer register. 804 if (State.FreeRegs) { 805 --State.FreeRegs; 806 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 807 } 808 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 809 } 810 811 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 812 if (RetTy->isVoidType()) 813 return ABIArgInfo::getIgnore(); 814 815 const Type *Base = nullptr; 816 uint64_t NumElts = 0; 817 if (State.CC == llvm::CallingConv::X86_VectorCall && 818 isHomogeneousAggregate(RetTy, Base, NumElts)) { 819 // The LLVM struct type for such an aggregate should lower properly. 820 return ABIArgInfo::getDirect(); 821 } 822 823 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 824 // On Darwin, some vectors are returned in registers. 825 if (IsDarwinVectorABI) { 826 uint64_t Size = getContext().getTypeSize(RetTy); 827 828 // 128-bit vectors are a special case; they are returned in 829 // registers and we need to make sure to pick a type the LLVM 830 // backend will like. 831 if (Size == 128) 832 return ABIArgInfo::getDirect(llvm::VectorType::get( 833 llvm::Type::getInt64Ty(getVMContext()), 2)); 834 835 // Always return in register if it fits in a general purpose 836 // register, or if it is 64 bits and has a single element. 837 if ((Size == 8 || Size == 16 || Size == 32) || 838 (Size == 64 && VT->getNumElements() == 1)) 839 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 840 Size)); 841 842 return getIndirectReturnResult(State); 843 } 844 845 return ABIArgInfo::getDirect(); 846 } 847 848 if (isAggregateTypeForABI(RetTy)) { 849 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 850 // Structures with flexible arrays are always indirect. 851 if (RT->getDecl()->hasFlexibleArrayMember()) 852 return getIndirectReturnResult(State); 853 } 854 855 // If specified, structs and unions are always indirect. 856 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 857 return getIndirectReturnResult(State); 858 859 // Small structures which are register sized are generally returned 860 // in a register. 861 if (shouldReturnTypeInRegister(RetTy, getContext())) { 862 uint64_t Size = getContext().getTypeSize(RetTy); 863 864 // As a special-case, if the struct is a "single-element" struct, and 865 // the field is of type "float" or "double", return it in a 866 // floating-point register. (MSVC does not apply this special case.) 867 // We apply a similar transformation for pointer types to improve the 868 // quality of the generated IR. 869 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 870 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 871 || SeltTy->hasPointerRepresentation()) 872 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 873 874 // FIXME: We should be able to narrow this integer in cases with dead 875 // padding. 876 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 877 } 878 879 return getIndirectReturnResult(State); 880 } 881 882 // Treat an enum type as its underlying type. 883 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 884 RetTy = EnumTy->getDecl()->getIntegerType(); 885 886 return (RetTy->isPromotableIntegerType() ? 887 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 888 } 889 890 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 891 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 892 } 893 894 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 895 const RecordType *RT = Ty->getAs<RecordType>(); 896 if (!RT) 897 return 0; 898 const RecordDecl *RD = RT->getDecl(); 899 900 // If this is a C++ record, check the bases first. 901 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 902 for (const auto &I : CXXRD->bases()) 903 if (!isRecordWithSSEVectorType(Context, I.getType())) 904 return false; 905 906 for (const auto *i : RD->fields()) { 907 QualType FT = i->getType(); 908 909 if (isSSEVectorType(Context, FT)) 910 return true; 911 912 if (isRecordWithSSEVectorType(Context, FT)) 913 return true; 914 } 915 916 return false; 917 } 918 919 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 920 unsigned Align) const { 921 // Otherwise, if the alignment is less than or equal to the minimum ABI 922 // alignment, just use the default; the backend will handle this. 923 if (Align <= MinABIStackAlignInBytes) 924 return 0; // Use default alignment. 925 926 // On non-Darwin, the stack type alignment is always 4. 927 if (!IsDarwinVectorABI) { 928 // Set explicit alignment, since we may need to realign the top. 929 return MinABIStackAlignInBytes; 930 } 931 932 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 933 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 934 isRecordWithSSEVectorType(getContext(), Ty))) 935 return 16; 936 937 return MinABIStackAlignInBytes; 938 } 939 940 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 941 CCState &State) const { 942 if (!ByVal) { 943 if (State.FreeRegs) { 944 --State.FreeRegs; // Non-byval indirects just use one pointer. 945 return ABIArgInfo::getIndirectInReg(0, false); 946 } 947 return ABIArgInfo::getIndirect(0, false); 948 } 949 950 // Compute the byval alignment. 951 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 952 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 953 if (StackAlign == 0) 954 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 955 956 // If the stack alignment is less than the type alignment, realign the 957 // argument. 958 bool Realign = TypeAlign > StackAlign; 959 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 960 } 961 962 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 963 const Type *T = isSingleElementStruct(Ty, getContext()); 964 if (!T) 965 T = Ty.getTypePtr(); 966 967 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 968 BuiltinType::Kind K = BT->getKind(); 969 if (K == BuiltinType::Float || K == BuiltinType::Double) 970 return Float; 971 } 972 return Integer; 973 } 974 975 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 976 bool &NeedsPadding) const { 977 NeedsPadding = false; 978 Class C = classify(Ty); 979 if (C == Float) 980 return false; 981 982 unsigned Size = getContext().getTypeSize(Ty); 983 unsigned SizeInRegs = (Size + 31) / 32; 984 985 if (SizeInRegs == 0) 986 return false; 987 988 if (SizeInRegs > State.FreeRegs) { 989 State.FreeRegs = 0; 990 return false; 991 } 992 993 State.FreeRegs -= SizeInRegs; 994 995 if (State.CC == llvm::CallingConv::X86_FastCall || 996 State.CC == llvm::CallingConv::X86_VectorCall) { 997 if (Size > 32) 998 return false; 999 1000 if (Ty->isIntegralOrEnumerationType()) 1001 return true; 1002 1003 if (Ty->isPointerType()) 1004 return true; 1005 1006 if (Ty->isReferenceType()) 1007 return true; 1008 1009 if (State.FreeRegs) 1010 NeedsPadding = true; 1011 1012 return false; 1013 } 1014 1015 return true; 1016 } 1017 1018 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1019 CCState &State) const { 1020 // FIXME: Set alignment on indirect arguments. 1021 1022 Ty = useFirstFieldIfTransparentUnion(Ty); 1023 1024 // Check with the C++ ABI first. 1025 const RecordType *RT = Ty->getAs<RecordType>(); 1026 if (RT) { 1027 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1028 if (RAA == CGCXXABI::RAA_Indirect) { 1029 return getIndirectResult(Ty, false, State); 1030 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1031 // The field index doesn't matter, we'll fix it up later. 1032 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1033 } 1034 } 1035 1036 // vectorcall adds the concept of a homogenous vector aggregate, similar 1037 // to other targets. 1038 const Type *Base = nullptr; 1039 uint64_t NumElts = 0; 1040 if (State.CC == llvm::CallingConv::X86_VectorCall && 1041 isHomogeneousAggregate(Ty, Base, NumElts)) { 1042 if (State.FreeSSERegs >= NumElts) { 1043 State.FreeSSERegs -= NumElts; 1044 if (Ty->isBuiltinType() || Ty->isVectorType()) 1045 return ABIArgInfo::getDirect(); 1046 return ABIArgInfo::getExpand(); 1047 } 1048 return getIndirectResult(Ty, /*ByVal=*/false, State); 1049 } 1050 1051 if (isAggregateTypeForABI(Ty)) { 1052 if (RT) { 1053 // Structs are always byval on win32, regardless of what they contain. 1054 if (IsWin32StructABI) 1055 return getIndirectResult(Ty, true, State); 1056 1057 // Structures with flexible arrays are always indirect. 1058 if (RT->getDecl()->hasFlexibleArrayMember()) 1059 return getIndirectResult(Ty, true, State); 1060 } 1061 1062 // Ignore empty structs/unions. 1063 if (isEmptyRecord(getContext(), Ty, true)) 1064 return ABIArgInfo::getIgnore(); 1065 1066 llvm::LLVMContext &LLVMContext = getVMContext(); 1067 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1068 bool NeedsPadding; 1069 if (shouldUseInReg(Ty, State, NeedsPadding)) { 1070 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1071 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1072 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1073 return ABIArgInfo::getDirectInReg(Result); 1074 } 1075 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1076 1077 // Expand small (<= 128-bit) record types when we know that the stack layout 1078 // of those arguments will match the struct. This is important because the 1079 // LLVM backend isn't smart enough to remove byval, which inhibits many 1080 // optimizations. 1081 if (getContext().getTypeSize(Ty) <= 4*32 && 1082 canExpandIndirectArgument(Ty, getContext())) 1083 return ABIArgInfo::getExpandWithPadding( 1084 State.CC == llvm::CallingConv::X86_FastCall || 1085 State.CC == llvm::CallingConv::X86_VectorCall, 1086 PaddingType); 1087 1088 return getIndirectResult(Ty, true, State); 1089 } 1090 1091 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1092 // On Darwin, some vectors are passed in memory, we handle this by passing 1093 // it as an i8/i16/i32/i64. 1094 if (IsDarwinVectorABI) { 1095 uint64_t Size = getContext().getTypeSize(Ty); 1096 if ((Size == 8 || Size == 16 || Size == 32) || 1097 (Size == 64 && VT->getNumElements() == 1)) 1098 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1099 Size)); 1100 } 1101 1102 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1103 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1104 1105 return ABIArgInfo::getDirect(); 1106 } 1107 1108 1109 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1110 Ty = EnumTy->getDecl()->getIntegerType(); 1111 1112 bool NeedsPadding; 1113 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 1114 1115 if (Ty->isPromotableIntegerType()) { 1116 if (InReg) 1117 return ABIArgInfo::getExtendInReg(); 1118 return ABIArgInfo::getExtend(); 1119 } 1120 if (InReg) 1121 return ABIArgInfo::getDirectInReg(); 1122 return ABIArgInfo::getDirect(); 1123 } 1124 1125 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1126 CCState State(FI.getCallingConvention()); 1127 if (State.CC == llvm::CallingConv::X86_FastCall) 1128 State.FreeRegs = 2; 1129 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1130 State.FreeRegs = 2; 1131 State.FreeSSERegs = 6; 1132 } else if (FI.getHasRegParm()) 1133 State.FreeRegs = FI.getRegParm(); 1134 else 1135 State.FreeRegs = DefaultNumRegisterParameters; 1136 1137 if (!getCXXABI().classifyReturnType(FI)) { 1138 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1139 } else if (FI.getReturnInfo().isIndirect()) { 1140 // The C++ ABI is not aware of register usage, so we have to check if the 1141 // return value was sret and put it in a register ourselves if appropriate. 1142 if (State.FreeRegs) { 1143 --State.FreeRegs; // The sret parameter consumes a register. 1144 FI.getReturnInfo().setInReg(true); 1145 } 1146 } 1147 1148 // The chain argument effectively gives us another free register. 1149 if (FI.isChainCall()) 1150 ++State.FreeRegs; 1151 1152 bool UsedInAlloca = false; 1153 for (auto &I : FI.arguments()) { 1154 I.info = classifyArgumentType(I.type, State); 1155 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1156 } 1157 1158 // If we needed to use inalloca for any argument, do a second pass and rewrite 1159 // all the memory arguments to use inalloca. 1160 if (UsedInAlloca) 1161 rewriteWithInAlloca(FI); 1162 } 1163 1164 void 1165 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1166 unsigned &StackOffset, 1167 ABIArgInfo &Info, QualType Type) const { 1168 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1169 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1170 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1171 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1172 1173 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1174 // byte aligned. 1175 if (StackOffset % 4U) { 1176 unsigned OldOffset = StackOffset; 1177 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1178 unsigned NumBytes = StackOffset - OldOffset; 1179 assert(NumBytes); 1180 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1181 Ty = llvm::ArrayType::get(Ty, NumBytes); 1182 FrameFields.push_back(Ty); 1183 } 1184 } 1185 1186 static bool isArgInAlloca(const ABIArgInfo &Info) { 1187 // Leave ignored and inreg arguments alone. 1188 switch (Info.getKind()) { 1189 case ABIArgInfo::InAlloca: 1190 return true; 1191 case ABIArgInfo::Indirect: 1192 assert(Info.getIndirectByVal()); 1193 return true; 1194 case ABIArgInfo::Ignore: 1195 return false; 1196 case ABIArgInfo::Direct: 1197 case ABIArgInfo::Extend: 1198 case ABIArgInfo::Expand: 1199 if (Info.getInReg()) 1200 return false; 1201 return true; 1202 } 1203 llvm_unreachable("invalid enum"); 1204 } 1205 1206 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1207 assert(IsWin32StructABI && "inalloca only supported on win32"); 1208 1209 // Build a packed struct type for all of the arguments in memory. 1210 SmallVector<llvm::Type *, 6> FrameFields; 1211 1212 unsigned StackOffset = 0; 1213 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1214 1215 // Put 'this' into the struct before 'sret', if necessary. 1216 bool IsThisCall = 1217 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1218 ABIArgInfo &Ret = FI.getReturnInfo(); 1219 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1220 isArgInAlloca(I->info)) { 1221 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1222 ++I; 1223 } 1224 1225 // Put the sret parameter into the inalloca struct if it's in memory. 1226 if (Ret.isIndirect() && !Ret.getInReg()) { 1227 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1228 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1229 // On Windows, the hidden sret parameter is always returned in eax. 1230 Ret.setInAllocaSRet(IsWin32StructABI); 1231 } 1232 1233 // Skip the 'this' parameter in ecx. 1234 if (IsThisCall) 1235 ++I; 1236 1237 // Put arguments passed in memory into the struct. 1238 for (; I != E; ++I) { 1239 if (isArgInAlloca(I->info)) 1240 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1241 } 1242 1243 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1244 /*isPacked=*/true)); 1245 } 1246 1247 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1248 CodeGenFunction &CGF) const { 1249 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1250 1251 CGBuilderTy &Builder = CGF.Builder; 1252 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1253 "ap"); 1254 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1255 1256 // Compute if the address needs to be aligned 1257 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1258 Align = getTypeStackAlignInBytes(Ty, Align); 1259 Align = std::max(Align, 4U); 1260 if (Align > 4) { 1261 // addr = (addr + align - 1) & -align; 1262 llvm::Value *Offset = 1263 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1264 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1265 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1266 CGF.Int32Ty); 1267 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1268 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1269 Addr->getType(), 1270 "ap.cur.aligned"); 1271 } 1272 1273 llvm::Type *PTy = 1274 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1275 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1276 1277 uint64_t Offset = 1278 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1279 llvm::Value *NextAddr = 1280 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1281 "ap.next"); 1282 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1283 1284 return AddrTyped; 1285 } 1286 1287 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1288 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1289 assert(Triple.getArch() == llvm::Triple::x86); 1290 1291 switch (Opts.getStructReturnConvention()) { 1292 case CodeGenOptions::SRCK_Default: 1293 break; 1294 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1295 return false; 1296 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1297 return true; 1298 } 1299 1300 if (Triple.isOSDarwin()) 1301 return true; 1302 1303 switch (Triple.getOS()) { 1304 case llvm::Triple::DragonFly: 1305 case llvm::Triple::FreeBSD: 1306 case llvm::Triple::OpenBSD: 1307 case llvm::Triple::Bitrig: 1308 case llvm::Triple::Win32: 1309 return true; 1310 default: 1311 return false; 1312 } 1313 } 1314 1315 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1316 llvm::GlobalValue *GV, 1317 CodeGen::CodeGenModule &CGM) const { 1318 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1319 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1320 // Get the LLVM function. 1321 llvm::Function *Fn = cast<llvm::Function>(GV); 1322 1323 // Now add the 'alignstack' attribute with a value of 16. 1324 llvm::AttrBuilder B; 1325 B.addStackAlignmentAttr(16); 1326 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1327 llvm::AttributeSet::get(CGM.getLLVMContext(), 1328 llvm::AttributeSet::FunctionIndex, 1329 B)); 1330 } 1331 } 1332 } 1333 1334 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1335 CodeGen::CodeGenFunction &CGF, 1336 llvm::Value *Address) const { 1337 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1338 1339 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1340 1341 // 0-7 are the eight integer registers; the order is different 1342 // on Darwin (for EH), but the range is the same. 1343 // 8 is %eip. 1344 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1345 1346 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1347 // 12-16 are st(0..4). Not sure why we stop at 4. 1348 // These have size 16, which is sizeof(long double) on 1349 // platforms with 8-byte alignment for that type. 1350 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1351 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1352 1353 } else { 1354 // 9 is %eflags, which doesn't get a size on Darwin for some 1355 // reason. 1356 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1357 1358 // 11-16 are st(0..5). Not sure why we stop at 5. 1359 // These have size 12, which is sizeof(long double) on 1360 // platforms with 4-byte alignment for that type. 1361 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1362 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1363 } 1364 1365 return false; 1366 } 1367 1368 //===----------------------------------------------------------------------===// 1369 // X86-64 ABI Implementation 1370 //===----------------------------------------------------------------------===// 1371 1372 1373 namespace { 1374 /// X86_64ABIInfo - The X86_64 ABI information. 1375 class X86_64ABIInfo : public ABIInfo { 1376 enum Class { 1377 Integer = 0, 1378 SSE, 1379 SSEUp, 1380 X87, 1381 X87Up, 1382 ComplexX87, 1383 NoClass, 1384 Memory 1385 }; 1386 1387 /// merge - Implement the X86_64 ABI merging algorithm. 1388 /// 1389 /// Merge an accumulating classification \arg Accum with a field 1390 /// classification \arg Field. 1391 /// 1392 /// \param Accum - The accumulating classification. This should 1393 /// always be either NoClass or the result of a previous merge 1394 /// call. In addition, this should never be Memory (the caller 1395 /// should just return Memory for the aggregate). 1396 static Class merge(Class Accum, Class Field); 1397 1398 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1399 /// 1400 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1401 /// final MEMORY or SSE classes when necessary. 1402 /// 1403 /// \param AggregateSize - The size of the current aggregate in 1404 /// the classification process. 1405 /// 1406 /// \param Lo - The classification for the parts of the type 1407 /// residing in the low word of the containing object. 1408 /// 1409 /// \param Hi - The classification for the parts of the type 1410 /// residing in the higher words of the containing object. 1411 /// 1412 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1413 1414 /// classify - Determine the x86_64 register classes in which the 1415 /// given type T should be passed. 1416 /// 1417 /// \param Lo - The classification for the parts of the type 1418 /// residing in the low word of the containing object. 1419 /// 1420 /// \param Hi - The classification for the parts of the type 1421 /// residing in the high word of the containing object. 1422 /// 1423 /// \param OffsetBase - The bit offset of this type in the 1424 /// containing object. Some parameters are classified different 1425 /// depending on whether they straddle an eightbyte boundary. 1426 /// 1427 /// \param isNamedArg - Whether the argument in question is a "named" 1428 /// argument, as used in AMD64-ABI 3.5.7. 1429 /// 1430 /// If a word is unused its result will be NoClass; if a type should 1431 /// be passed in Memory then at least the classification of \arg Lo 1432 /// will be Memory. 1433 /// 1434 /// The \arg Lo class will be NoClass iff the argument is ignored. 1435 /// 1436 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1437 /// also be ComplexX87. 1438 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1439 bool isNamedArg) const; 1440 1441 llvm::Type *GetByteVectorType(QualType Ty) const; 1442 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1443 unsigned IROffset, QualType SourceTy, 1444 unsigned SourceOffset) const; 1445 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1446 unsigned IROffset, QualType SourceTy, 1447 unsigned SourceOffset) const; 1448 1449 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1450 /// such that the argument will be returned in memory. 1451 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1452 1453 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1454 /// such that the argument will be passed in memory. 1455 /// 1456 /// \param freeIntRegs - The number of free integer registers remaining 1457 /// available. 1458 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1459 1460 ABIArgInfo classifyReturnType(QualType RetTy) const; 1461 1462 ABIArgInfo classifyArgumentType(QualType Ty, 1463 unsigned freeIntRegs, 1464 unsigned &neededInt, 1465 unsigned &neededSSE, 1466 bool isNamedArg) const; 1467 1468 bool IsIllegalVectorType(QualType Ty) const; 1469 1470 /// The 0.98 ABI revision clarified a lot of ambiguities, 1471 /// unfortunately in ways that were not always consistent with 1472 /// certain previous compilers. In particular, platforms which 1473 /// required strict binary compatibility with older versions of GCC 1474 /// may need to exempt themselves. 1475 bool honorsRevision0_98() const { 1476 return !getTarget().getTriple().isOSDarwin(); 1477 } 1478 1479 bool HasAVX; 1480 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1481 // 64-bit hardware. 1482 bool Has64BitPointers; 1483 1484 public: 1485 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1486 ABIInfo(CGT), HasAVX(hasavx), 1487 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1488 } 1489 1490 bool isPassedUsingAVXType(QualType type) const { 1491 unsigned neededInt, neededSSE; 1492 // The freeIntRegs argument doesn't matter here. 1493 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1494 /*isNamedArg*/true); 1495 if (info.isDirect()) { 1496 llvm::Type *ty = info.getCoerceToType(); 1497 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1498 return (vectorTy->getBitWidth() > 128); 1499 } 1500 return false; 1501 } 1502 1503 void computeInfo(CGFunctionInfo &FI) const override; 1504 1505 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1506 CodeGenFunction &CGF) const override; 1507 }; 1508 1509 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1510 class WinX86_64ABIInfo : public ABIInfo { 1511 1512 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1513 bool IsReturnType) const; 1514 1515 public: 1516 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1517 1518 void computeInfo(CGFunctionInfo &FI) const override; 1519 1520 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1521 CodeGenFunction &CGF) const override; 1522 1523 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1524 // FIXME: Assumes vectorcall is in use. 1525 return isX86VectorTypeForVectorCall(getContext(), Ty); 1526 } 1527 1528 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1529 uint64_t NumMembers) const override { 1530 // FIXME: Assumes vectorcall is in use. 1531 return isX86VectorCallAggregateSmallEnough(NumMembers); 1532 } 1533 }; 1534 1535 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1536 bool HasAVX; 1537 public: 1538 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1539 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {} 1540 1541 const X86_64ABIInfo &getABIInfo() const { 1542 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1543 } 1544 1545 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1546 return 7; 1547 } 1548 1549 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1550 llvm::Value *Address) const override { 1551 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1552 1553 // 0-15 are the 16 integer registers. 1554 // 16 is %rip. 1555 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1556 return false; 1557 } 1558 1559 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1560 StringRef Constraint, 1561 llvm::Type* Ty) const override { 1562 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1563 } 1564 1565 bool isNoProtoCallVariadic(const CallArgList &args, 1566 const FunctionNoProtoType *fnType) const override { 1567 // The default CC on x86-64 sets %al to the number of SSA 1568 // registers used, and GCC sets this when calling an unprototyped 1569 // function, so we override the default behavior. However, don't do 1570 // that when AVX types are involved: the ABI explicitly states it is 1571 // undefined, and it doesn't work in practice because of how the ABI 1572 // defines varargs anyway. 1573 if (fnType->getCallConv() == CC_C) { 1574 bool HasAVXType = false; 1575 for (CallArgList::const_iterator 1576 it = args.begin(), ie = args.end(); it != ie; ++it) { 1577 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1578 HasAVXType = true; 1579 break; 1580 } 1581 } 1582 1583 if (!HasAVXType) 1584 return true; 1585 } 1586 1587 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1588 } 1589 1590 llvm::Constant * 1591 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1592 unsigned Sig = (0xeb << 0) | // jmp rel8 1593 (0x0a << 8) | // .+0x0c 1594 ('F' << 16) | 1595 ('T' << 24); 1596 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1597 } 1598 1599 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 1600 return HasAVX ? 32 : 16; 1601 } 1602 }; 1603 1604 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1605 public: 1606 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1607 : X86_64TargetCodeGenInfo(CGT, HasAVX) {} 1608 1609 void getDependentLibraryOption(llvm::StringRef Lib, 1610 llvm::SmallString<24> &Opt) const { 1611 Opt = "\01"; 1612 Opt += Lib; 1613 } 1614 }; 1615 1616 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1617 // If the argument does not end in .lib, automatically add the suffix. This 1618 // matches the behavior of MSVC. 1619 std::string ArgStr = Lib; 1620 if (!Lib.endswith_lower(".lib")) 1621 ArgStr += ".lib"; 1622 return ArgStr; 1623 } 1624 1625 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1626 public: 1627 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1628 bool d, bool p, bool w, unsigned RegParms) 1629 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1630 1631 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1632 CodeGen::CodeGenModule &CGM) const override; 1633 1634 void getDependentLibraryOption(llvm::StringRef Lib, 1635 llvm::SmallString<24> &Opt) const override { 1636 Opt = "/DEFAULTLIB:"; 1637 Opt += qualifyWindowsLibrary(Lib); 1638 } 1639 1640 void getDetectMismatchOption(llvm::StringRef Name, 1641 llvm::StringRef Value, 1642 llvm::SmallString<32> &Opt) const override { 1643 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1644 } 1645 }; 1646 1647 static void addStackProbeSizeTargetAttribute(const Decl *D, 1648 llvm::GlobalValue *GV, 1649 CodeGen::CodeGenModule &CGM) { 1650 if (isa<FunctionDecl>(D)) { 1651 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 1652 llvm::Function *Fn = cast<llvm::Function>(GV); 1653 1654 Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 1655 } 1656 } 1657 } 1658 1659 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1660 llvm::GlobalValue *GV, 1661 CodeGen::CodeGenModule &CGM) const { 1662 X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 1663 1664 addStackProbeSizeTargetAttribute(D, GV, CGM); 1665 } 1666 1667 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1668 bool HasAVX; 1669 public: 1670 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1671 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {} 1672 1673 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1674 CodeGen::CodeGenModule &CGM) const override; 1675 1676 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1677 return 7; 1678 } 1679 1680 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1681 llvm::Value *Address) const override { 1682 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1683 1684 // 0-15 are the 16 integer registers. 1685 // 16 is %rip. 1686 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1687 return false; 1688 } 1689 1690 void getDependentLibraryOption(llvm::StringRef Lib, 1691 llvm::SmallString<24> &Opt) const override { 1692 Opt = "/DEFAULTLIB:"; 1693 Opt += qualifyWindowsLibrary(Lib); 1694 } 1695 1696 void getDetectMismatchOption(llvm::StringRef Name, 1697 llvm::StringRef Value, 1698 llvm::SmallString<32> &Opt) const override { 1699 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1700 } 1701 1702 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 1703 return HasAVX ? 32 : 16; 1704 } 1705 }; 1706 1707 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1708 llvm::GlobalValue *GV, 1709 CodeGen::CodeGenModule &CGM) const { 1710 TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 1711 1712 addStackProbeSizeTargetAttribute(D, GV, CGM); 1713 } 1714 } 1715 1716 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1717 Class &Hi) const { 1718 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1719 // 1720 // (a) If one of the classes is Memory, the whole argument is passed in 1721 // memory. 1722 // 1723 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1724 // memory. 1725 // 1726 // (c) If the size of the aggregate exceeds two eightbytes and the first 1727 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1728 // argument is passed in memory. NOTE: This is necessary to keep the 1729 // ABI working for processors that don't support the __m256 type. 1730 // 1731 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1732 // 1733 // Some of these are enforced by the merging logic. Others can arise 1734 // only with unions; for example: 1735 // union { _Complex double; unsigned; } 1736 // 1737 // Note that clauses (b) and (c) were added in 0.98. 1738 // 1739 if (Hi == Memory) 1740 Lo = Memory; 1741 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1742 Lo = Memory; 1743 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1744 Lo = Memory; 1745 if (Hi == SSEUp && Lo != SSE) 1746 Hi = SSE; 1747 } 1748 1749 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1750 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1751 // classified recursively so that always two fields are 1752 // considered. The resulting class is calculated according to 1753 // the classes of the fields in the eightbyte: 1754 // 1755 // (a) If both classes are equal, this is the resulting class. 1756 // 1757 // (b) If one of the classes is NO_CLASS, the resulting class is 1758 // the other class. 1759 // 1760 // (c) If one of the classes is MEMORY, the result is the MEMORY 1761 // class. 1762 // 1763 // (d) If one of the classes is INTEGER, the result is the 1764 // INTEGER. 1765 // 1766 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1767 // MEMORY is used as class. 1768 // 1769 // (f) Otherwise class SSE is used. 1770 1771 // Accum should never be memory (we should have returned) or 1772 // ComplexX87 (because this cannot be passed in a structure). 1773 assert((Accum != Memory && Accum != ComplexX87) && 1774 "Invalid accumulated classification during merge."); 1775 if (Accum == Field || Field == NoClass) 1776 return Accum; 1777 if (Field == Memory) 1778 return Memory; 1779 if (Accum == NoClass) 1780 return Field; 1781 if (Accum == Integer || Field == Integer) 1782 return Integer; 1783 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1784 Accum == X87 || Accum == X87Up) 1785 return Memory; 1786 return SSE; 1787 } 1788 1789 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1790 Class &Lo, Class &Hi, bool isNamedArg) const { 1791 // FIXME: This code can be simplified by introducing a simple value class for 1792 // Class pairs with appropriate constructor methods for the various 1793 // situations. 1794 1795 // FIXME: Some of the split computations are wrong; unaligned vectors 1796 // shouldn't be passed in registers for example, so there is no chance they 1797 // can straddle an eightbyte. Verify & simplify. 1798 1799 Lo = Hi = NoClass; 1800 1801 Class &Current = OffsetBase < 64 ? Lo : Hi; 1802 Current = Memory; 1803 1804 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1805 BuiltinType::Kind k = BT->getKind(); 1806 1807 if (k == BuiltinType::Void) { 1808 Current = NoClass; 1809 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1810 Lo = Integer; 1811 Hi = Integer; 1812 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1813 Current = Integer; 1814 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1815 (k == BuiltinType::LongDouble && 1816 getTarget().getTriple().isOSNaCl())) { 1817 Current = SSE; 1818 } else if (k == BuiltinType::LongDouble) { 1819 Lo = X87; 1820 Hi = X87Up; 1821 } 1822 // FIXME: _Decimal32 and _Decimal64 are SSE. 1823 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1824 return; 1825 } 1826 1827 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1828 // Classify the underlying integer type. 1829 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1830 return; 1831 } 1832 1833 if (Ty->hasPointerRepresentation()) { 1834 Current = Integer; 1835 return; 1836 } 1837 1838 if (Ty->isMemberPointerType()) { 1839 if (Ty->isMemberFunctionPointerType()) { 1840 if (Has64BitPointers) { 1841 // If Has64BitPointers, this is an {i64, i64}, so classify both 1842 // Lo and Hi now. 1843 Lo = Hi = Integer; 1844 } else { 1845 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1846 // straddles an eightbyte boundary, Hi should be classified as well. 1847 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1848 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1849 if (EB_FuncPtr != EB_ThisAdj) { 1850 Lo = Hi = Integer; 1851 } else { 1852 Current = Integer; 1853 } 1854 } 1855 } else { 1856 Current = Integer; 1857 } 1858 return; 1859 } 1860 1861 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1862 uint64_t Size = getContext().getTypeSize(VT); 1863 if (Size == 32) { 1864 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1865 // float> as integer. 1866 Current = Integer; 1867 1868 // If this type crosses an eightbyte boundary, it should be 1869 // split. 1870 uint64_t EB_Real = (OffsetBase) / 64; 1871 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1872 if (EB_Real != EB_Imag) 1873 Hi = Lo; 1874 } else if (Size == 64) { 1875 // gcc passes <1 x double> in memory. :( 1876 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1877 return; 1878 1879 // gcc passes <1 x long long> as INTEGER. 1880 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1881 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1882 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1883 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1884 Current = Integer; 1885 else 1886 Current = SSE; 1887 1888 // If this type crosses an eightbyte boundary, it should be 1889 // split. 1890 if (OffsetBase && OffsetBase != 64) 1891 Hi = Lo; 1892 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1893 // Arguments of 256-bits are split into four eightbyte chunks. The 1894 // least significant one belongs to class SSE and all the others to class 1895 // SSEUP. The original Lo and Hi design considers that types can't be 1896 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1897 // This design isn't correct for 256-bits, but since there're no cases 1898 // where the upper parts would need to be inspected, avoid adding 1899 // complexity and just consider Hi to match the 64-256 part. 1900 // 1901 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1902 // registers if they are "named", i.e. not part of the "..." of a 1903 // variadic function. 1904 Lo = SSE; 1905 Hi = SSEUp; 1906 } 1907 return; 1908 } 1909 1910 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1911 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1912 1913 uint64_t Size = getContext().getTypeSize(Ty); 1914 if (ET->isIntegralOrEnumerationType()) { 1915 if (Size <= 64) 1916 Current = Integer; 1917 else if (Size <= 128) 1918 Lo = Hi = Integer; 1919 } else if (ET == getContext().FloatTy) 1920 Current = SSE; 1921 else if (ET == getContext().DoubleTy || 1922 (ET == getContext().LongDoubleTy && 1923 getTarget().getTriple().isOSNaCl())) 1924 Lo = Hi = SSE; 1925 else if (ET == getContext().LongDoubleTy) 1926 Current = ComplexX87; 1927 1928 // If this complex type crosses an eightbyte boundary then it 1929 // should be split. 1930 uint64_t EB_Real = (OffsetBase) / 64; 1931 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1932 if (Hi == NoClass && EB_Real != EB_Imag) 1933 Hi = Lo; 1934 1935 return; 1936 } 1937 1938 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1939 // Arrays are treated like structures. 1940 1941 uint64_t Size = getContext().getTypeSize(Ty); 1942 1943 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1944 // than four eightbytes, ..., it has class MEMORY. 1945 if (Size > 256) 1946 return; 1947 1948 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1949 // fields, it has class MEMORY. 1950 // 1951 // Only need to check alignment of array base. 1952 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1953 return; 1954 1955 // Otherwise implement simplified merge. We could be smarter about 1956 // this, but it isn't worth it and would be harder to verify. 1957 Current = NoClass; 1958 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1959 uint64_t ArraySize = AT->getSize().getZExtValue(); 1960 1961 // The only case a 256-bit wide vector could be used is when the array 1962 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1963 // to work for sizes wider than 128, early check and fallback to memory. 1964 if (Size > 128 && EltSize != 256) 1965 return; 1966 1967 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1968 Class FieldLo, FieldHi; 1969 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1970 Lo = merge(Lo, FieldLo); 1971 Hi = merge(Hi, FieldHi); 1972 if (Lo == Memory || Hi == Memory) 1973 break; 1974 } 1975 1976 postMerge(Size, Lo, Hi); 1977 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1978 return; 1979 } 1980 1981 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1982 uint64_t Size = getContext().getTypeSize(Ty); 1983 1984 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1985 // than four eightbytes, ..., it has class MEMORY. 1986 if (Size > 256) 1987 return; 1988 1989 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1990 // copy constructor or a non-trivial destructor, it is passed by invisible 1991 // reference. 1992 if (getRecordArgABI(RT, getCXXABI())) 1993 return; 1994 1995 const RecordDecl *RD = RT->getDecl(); 1996 1997 // Assume variable sized types are passed in memory. 1998 if (RD->hasFlexibleArrayMember()) 1999 return; 2000 2001 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2002 2003 // Reset Lo class, this will be recomputed. 2004 Current = NoClass; 2005 2006 // If this is a C++ record, classify the bases first. 2007 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2008 for (const auto &I : CXXRD->bases()) { 2009 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2010 "Unexpected base class!"); 2011 const CXXRecordDecl *Base = 2012 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2013 2014 // Classify this field. 2015 // 2016 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2017 // single eightbyte, each is classified separately. Each eightbyte gets 2018 // initialized to class NO_CLASS. 2019 Class FieldLo, FieldHi; 2020 uint64_t Offset = 2021 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2022 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2023 Lo = merge(Lo, FieldLo); 2024 Hi = merge(Hi, FieldHi); 2025 if (Lo == Memory || Hi == Memory) 2026 break; 2027 } 2028 } 2029 2030 // Classify the fields one at a time, merging the results. 2031 unsigned idx = 0; 2032 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2033 i != e; ++i, ++idx) { 2034 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2035 bool BitField = i->isBitField(); 2036 2037 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2038 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2039 // 2040 // The only case a 256-bit wide vector could be used is when the struct 2041 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2042 // to work for sizes wider than 128, early check and fallback to memory. 2043 // 2044 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2045 Lo = Memory; 2046 return; 2047 } 2048 // Note, skip this test for bit-fields, see below. 2049 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2050 Lo = Memory; 2051 return; 2052 } 2053 2054 // Classify this field. 2055 // 2056 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2057 // exceeds a single eightbyte, each is classified 2058 // separately. Each eightbyte gets initialized to class 2059 // NO_CLASS. 2060 Class FieldLo, FieldHi; 2061 2062 // Bit-fields require special handling, they do not force the 2063 // structure to be passed in memory even if unaligned, and 2064 // therefore they can straddle an eightbyte. 2065 if (BitField) { 2066 // Ignore padding bit-fields. 2067 if (i->isUnnamedBitfield()) 2068 continue; 2069 2070 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2071 uint64_t Size = i->getBitWidthValue(getContext()); 2072 2073 uint64_t EB_Lo = Offset / 64; 2074 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2075 2076 if (EB_Lo) { 2077 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2078 FieldLo = NoClass; 2079 FieldHi = Integer; 2080 } else { 2081 FieldLo = Integer; 2082 FieldHi = EB_Hi ? Integer : NoClass; 2083 } 2084 } else 2085 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2086 Lo = merge(Lo, FieldLo); 2087 Hi = merge(Hi, FieldHi); 2088 if (Lo == Memory || Hi == Memory) 2089 break; 2090 } 2091 2092 postMerge(Size, Lo, Hi); 2093 } 2094 } 2095 2096 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2097 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2098 // place naturally. 2099 if (!isAggregateTypeForABI(Ty)) { 2100 // Treat an enum type as its underlying type. 2101 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2102 Ty = EnumTy->getDecl()->getIntegerType(); 2103 2104 return (Ty->isPromotableIntegerType() ? 2105 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2106 } 2107 2108 return ABIArgInfo::getIndirect(0); 2109 } 2110 2111 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2112 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2113 uint64_t Size = getContext().getTypeSize(VecTy); 2114 unsigned LargestVector = HasAVX ? 256 : 128; 2115 if (Size <= 64 || Size > LargestVector) 2116 return true; 2117 } 2118 2119 return false; 2120 } 2121 2122 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2123 unsigned freeIntRegs) const { 2124 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2125 // place naturally. 2126 // 2127 // This assumption is optimistic, as there could be free registers available 2128 // when we need to pass this argument in memory, and LLVM could try to pass 2129 // the argument in the free register. This does not seem to happen currently, 2130 // but this code would be much safer if we could mark the argument with 2131 // 'onstack'. See PR12193. 2132 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2133 // Treat an enum type as its underlying type. 2134 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2135 Ty = EnumTy->getDecl()->getIntegerType(); 2136 2137 return (Ty->isPromotableIntegerType() ? 2138 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2139 } 2140 2141 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2142 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2143 2144 // Compute the byval alignment. We specify the alignment of the byval in all 2145 // cases so that the mid-level optimizer knows the alignment of the byval. 2146 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2147 2148 // Attempt to avoid passing indirect results using byval when possible. This 2149 // is important for good codegen. 2150 // 2151 // We do this by coercing the value into a scalar type which the backend can 2152 // handle naturally (i.e., without using byval). 2153 // 2154 // For simplicity, we currently only do this when we have exhausted all of the 2155 // free integer registers. Doing this when there are free integer registers 2156 // would require more care, as we would have to ensure that the coerced value 2157 // did not claim the unused register. That would require either reording the 2158 // arguments to the function (so that any subsequent inreg values came first), 2159 // or only doing this optimization when there were no following arguments that 2160 // might be inreg. 2161 // 2162 // We currently expect it to be rare (particularly in well written code) for 2163 // arguments to be passed on the stack when there are still free integer 2164 // registers available (this would typically imply large structs being passed 2165 // by value), so this seems like a fair tradeoff for now. 2166 // 2167 // We can revisit this if the backend grows support for 'onstack' parameter 2168 // attributes. See PR12193. 2169 if (freeIntRegs == 0) { 2170 uint64_t Size = getContext().getTypeSize(Ty); 2171 2172 // If this type fits in an eightbyte, coerce it into the matching integral 2173 // type, which will end up on the stack (with alignment 8). 2174 if (Align == 8 && Size <= 64) 2175 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2176 Size)); 2177 } 2178 2179 return ABIArgInfo::getIndirect(Align); 2180 } 2181 2182 /// GetByteVectorType - The ABI specifies that a value should be passed in an 2183 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 2184 /// vector register. 2185 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2186 llvm::Type *IRType = CGT.ConvertType(Ty); 2187 2188 // Wrapper structs that just contain vectors are passed just like vectors, 2189 // strip them off if present. 2190 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 2191 while (STy && STy->getNumElements() == 1) { 2192 IRType = STy->getElementType(0); 2193 STy = dyn_cast<llvm::StructType>(IRType); 2194 } 2195 2196 // If the preferred type is a 16-byte vector, prefer to pass it. 2197 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 2198 llvm::Type *EltTy = VT->getElementType(); 2199 unsigned BitWidth = VT->getBitWidth(); 2200 if ((BitWidth >= 128 && BitWidth <= 256) && 2201 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 2202 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 2203 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 2204 EltTy->isIntegerTy(128))) 2205 return VT; 2206 } 2207 2208 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 2209 } 2210 2211 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2212 /// is known to either be off the end of the specified type or being in 2213 /// alignment padding. The user type specified is known to be at most 128 bits 2214 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2215 /// classification that put one of the two halves in the INTEGER class. 2216 /// 2217 /// It is conservatively correct to return false. 2218 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2219 unsigned EndBit, ASTContext &Context) { 2220 // If the bytes being queried are off the end of the type, there is no user 2221 // data hiding here. This handles analysis of builtins, vectors and other 2222 // types that don't contain interesting padding. 2223 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2224 if (TySize <= StartBit) 2225 return true; 2226 2227 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2228 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2229 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2230 2231 // Check each element to see if the element overlaps with the queried range. 2232 for (unsigned i = 0; i != NumElts; ++i) { 2233 // If the element is after the span we care about, then we're done.. 2234 unsigned EltOffset = i*EltSize; 2235 if (EltOffset >= EndBit) break; 2236 2237 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2238 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2239 EndBit-EltOffset, Context)) 2240 return false; 2241 } 2242 // If it overlaps no elements, then it is safe to process as padding. 2243 return true; 2244 } 2245 2246 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2247 const RecordDecl *RD = RT->getDecl(); 2248 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2249 2250 // If this is a C++ record, check the bases first. 2251 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2252 for (const auto &I : CXXRD->bases()) { 2253 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2254 "Unexpected base class!"); 2255 const CXXRecordDecl *Base = 2256 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2257 2258 // If the base is after the span we care about, ignore it. 2259 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2260 if (BaseOffset >= EndBit) continue; 2261 2262 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2263 if (!BitsContainNoUserData(I.getType(), BaseStart, 2264 EndBit-BaseOffset, Context)) 2265 return false; 2266 } 2267 } 2268 2269 // Verify that no field has data that overlaps the region of interest. Yes 2270 // this could be sped up a lot by being smarter about queried fields, 2271 // however we're only looking at structs up to 16 bytes, so we don't care 2272 // much. 2273 unsigned idx = 0; 2274 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2275 i != e; ++i, ++idx) { 2276 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2277 2278 // If we found a field after the region we care about, then we're done. 2279 if (FieldOffset >= EndBit) break; 2280 2281 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2282 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2283 Context)) 2284 return false; 2285 } 2286 2287 // If nothing in this record overlapped the area of interest, then we're 2288 // clean. 2289 return true; 2290 } 2291 2292 return false; 2293 } 2294 2295 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2296 /// float member at the specified offset. For example, {int,{float}} has a 2297 /// float at offset 4. It is conservatively correct for this routine to return 2298 /// false. 2299 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2300 const llvm::DataLayout &TD) { 2301 // Base case if we find a float. 2302 if (IROffset == 0 && IRType->isFloatTy()) 2303 return true; 2304 2305 // If this is a struct, recurse into the field at the specified offset. 2306 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2307 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2308 unsigned Elt = SL->getElementContainingOffset(IROffset); 2309 IROffset -= SL->getElementOffset(Elt); 2310 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2311 } 2312 2313 // If this is an array, recurse into the field at the specified offset. 2314 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2315 llvm::Type *EltTy = ATy->getElementType(); 2316 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2317 IROffset -= IROffset/EltSize*EltSize; 2318 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2319 } 2320 2321 return false; 2322 } 2323 2324 2325 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2326 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2327 llvm::Type *X86_64ABIInfo:: 2328 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2329 QualType SourceTy, unsigned SourceOffset) const { 2330 // The only three choices we have are either double, <2 x float>, or float. We 2331 // pass as float if the last 4 bytes is just padding. This happens for 2332 // structs that contain 3 floats. 2333 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2334 SourceOffset*8+64, getContext())) 2335 return llvm::Type::getFloatTy(getVMContext()); 2336 2337 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2338 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2339 // case. 2340 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2341 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2342 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2343 2344 return llvm::Type::getDoubleTy(getVMContext()); 2345 } 2346 2347 2348 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2349 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2350 /// about the high or low part of an up-to-16-byte struct. This routine picks 2351 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2352 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2353 /// etc). 2354 /// 2355 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2356 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2357 /// the 8-byte value references. PrefType may be null. 2358 /// 2359 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2360 /// an offset into this that we're processing (which is always either 0 or 8). 2361 /// 2362 llvm::Type *X86_64ABIInfo:: 2363 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2364 QualType SourceTy, unsigned SourceOffset) const { 2365 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2366 // returning an 8-byte unit starting with it. See if we can safely use it. 2367 if (IROffset == 0) { 2368 // Pointers and int64's always fill the 8-byte unit. 2369 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2370 IRType->isIntegerTy(64)) 2371 return IRType; 2372 2373 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2374 // goodness in the source type is just tail padding. This is allowed to 2375 // kick in for struct {double,int} on the int, but not on 2376 // struct{double,int,int} because we wouldn't return the second int. We 2377 // have to do this analysis on the source type because we can't depend on 2378 // unions being lowered a specific way etc. 2379 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2380 IRType->isIntegerTy(32) || 2381 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2382 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2383 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2384 2385 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2386 SourceOffset*8+64, getContext())) 2387 return IRType; 2388 } 2389 } 2390 2391 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2392 // If this is a struct, recurse into the field at the specified offset. 2393 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2394 if (IROffset < SL->getSizeInBytes()) { 2395 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2396 IROffset -= SL->getElementOffset(FieldIdx); 2397 2398 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2399 SourceTy, SourceOffset); 2400 } 2401 } 2402 2403 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2404 llvm::Type *EltTy = ATy->getElementType(); 2405 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2406 unsigned EltOffset = IROffset/EltSize*EltSize; 2407 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2408 SourceOffset); 2409 } 2410 2411 // Okay, we don't have any better idea of what to pass, so we pass this in an 2412 // integer register that isn't too big to fit the rest of the struct. 2413 unsigned TySizeInBytes = 2414 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2415 2416 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2417 2418 // It is always safe to classify this as an integer type up to i64 that 2419 // isn't larger than the structure. 2420 return llvm::IntegerType::get(getVMContext(), 2421 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2422 } 2423 2424 2425 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2426 /// be used as elements of a two register pair to pass or return, return a 2427 /// first class aggregate to represent them. For example, if the low part of 2428 /// a by-value argument should be passed as i32* and the high part as float, 2429 /// return {i32*, float}. 2430 static llvm::Type * 2431 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2432 const llvm::DataLayout &TD) { 2433 // In order to correctly satisfy the ABI, we need to the high part to start 2434 // at offset 8. If the high and low parts we inferred are both 4-byte types 2435 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2436 // the second element at offset 8. Check for this: 2437 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2438 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2439 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign); 2440 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2441 2442 // To handle this, we have to increase the size of the low part so that the 2443 // second element will start at an 8 byte offset. We can't increase the size 2444 // of the second element because it might make us access off the end of the 2445 // struct. 2446 if (HiStart != 8) { 2447 // There are only two sorts of types the ABI generation code can produce for 2448 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2449 // Promote these to a larger type. 2450 if (Lo->isFloatTy()) 2451 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2452 else { 2453 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2454 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2455 } 2456 } 2457 2458 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2459 2460 2461 // Verify that the second element is at an 8-byte offset. 2462 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2463 "Invalid x86-64 argument pair!"); 2464 return Result; 2465 } 2466 2467 ABIArgInfo X86_64ABIInfo:: 2468 classifyReturnType(QualType RetTy) const { 2469 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2470 // classification algorithm. 2471 X86_64ABIInfo::Class Lo, Hi; 2472 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2473 2474 // Check some invariants. 2475 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2476 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2477 2478 llvm::Type *ResType = nullptr; 2479 switch (Lo) { 2480 case NoClass: 2481 if (Hi == NoClass) 2482 return ABIArgInfo::getIgnore(); 2483 // If the low part is just padding, it takes no register, leave ResType 2484 // null. 2485 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2486 "Unknown missing lo part"); 2487 break; 2488 2489 case SSEUp: 2490 case X87Up: 2491 llvm_unreachable("Invalid classification for lo word."); 2492 2493 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2494 // hidden argument. 2495 case Memory: 2496 return getIndirectReturnResult(RetTy); 2497 2498 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2499 // available register of the sequence %rax, %rdx is used. 2500 case Integer: 2501 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2502 2503 // If we have a sign or zero extended integer, make sure to return Extend 2504 // so that the parameter gets the right LLVM IR attributes. 2505 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2506 // Treat an enum type as its underlying type. 2507 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2508 RetTy = EnumTy->getDecl()->getIntegerType(); 2509 2510 if (RetTy->isIntegralOrEnumerationType() && 2511 RetTy->isPromotableIntegerType()) 2512 return ABIArgInfo::getExtend(); 2513 } 2514 break; 2515 2516 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2517 // available SSE register of the sequence %xmm0, %xmm1 is used. 2518 case SSE: 2519 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2520 break; 2521 2522 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2523 // returned on the X87 stack in %st0 as 80-bit x87 number. 2524 case X87: 2525 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2526 break; 2527 2528 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2529 // part of the value is returned in %st0 and the imaginary part in 2530 // %st1. 2531 case ComplexX87: 2532 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2533 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2534 llvm::Type::getX86_FP80Ty(getVMContext()), 2535 nullptr); 2536 break; 2537 } 2538 2539 llvm::Type *HighPart = nullptr; 2540 switch (Hi) { 2541 // Memory was handled previously and X87 should 2542 // never occur as a hi class. 2543 case Memory: 2544 case X87: 2545 llvm_unreachable("Invalid classification for hi word."); 2546 2547 case ComplexX87: // Previously handled. 2548 case NoClass: 2549 break; 2550 2551 case Integer: 2552 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2553 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2554 return ABIArgInfo::getDirect(HighPart, 8); 2555 break; 2556 case SSE: 2557 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2558 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2559 return ABIArgInfo::getDirect(HighPart, 8); 2560 break; 2561 2562 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2563 // is passed in the next available eightbyte chunk if the last used 2564 // vector register. 2565 // 2566 // SSEUP should always be preceded by SSE, just widen. 2567 case SSEUp: 2568 assert(Lo == SSE && "Unexpected SSEUp classification."); 2569 ResType = GetByteVectorType(RetTy); 2570 break; 2571 2572 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2573 // returned together with the previous X87 value in %st0. 2574 case X87Up: 2575 // If X87Up is preceded by X87, we don't need to do 2576 // anything. However, in some cases with unions it may not be 2577 // preceded by X87. In such situations we follow gcc and pass the 2578 // extra bits in an SSE reg. 2579 if (Lo != X87) { 2580 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2581 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2582 return ABIArgInfo::getDirect(HighPart, 8); 2583 } 2584 break; 2585 } 2586 2587 // If a high part was specified, merge it together with the low part. It is 2588 // known to pass in the high eightbyte of the result. We do this by forming a 2589 // first class struct aggregate with the high and low part: {low, high} 2590 if (HighPart) 2591 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2592 2593 return ABIArgInfo::getDirect(ResType); 2594 } 2595 2596 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2597 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2598 bool isNamedArg) 2599 const 2600 { 2601 Ty = useFirstFieldIfTransparentUnion(Ty); 2602 2603 X86_64ABIInfo::Class Lo, Hi; 2604 classify(Ty, 0, Lo, Hi, isNamedArg); 2605 2606 // Check some invariants. 2607 // FIXME: Enforce these by construction. 2608 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2609 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2610 2611 neededInt = 0; 2612 neededSSE = 0; 2613 llvm::Type *ResType = nullptr; 2614 switch (Lo) { 2615 case NoClass: 2616 if (Hi == NoClass) 2617 return ABIArgInfo::getIgnore(); 2618 // If the low part is just padding, it takes no register, leave ResType 2619 // null. 2620 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2621 "Unknown missing lo part"); 2622 break; 2623 2624 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2625 // on the stack. 2626 case Memory: 2627 2628 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2629 // COMPLEX_X87, it is passed in memory. 2630 case X87: 2631 case ComplexX87: 2632 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2633 ++neededInt; 2634 return getIndirectResult(Ty, freeIntRegs); 2635 2636 case SSEUp: 2637 case X87Up: 2638 llvm_unreachable("Invalid classification for lo word."); 2639 2640 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2641 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2642 // and %r9 is used. 2643 case Integer: 2644 ++neededInt; 2645 2646 // Pick an 8-byte type based on the preferred type. 2647 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2648 2649 // If we have a sign or zero extended integer, make sure to return Extend 2650 // so that the parameter gets the right LLVM IR attributes. 2651 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2652 // Treat an enum type as its underlying type. 2653 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2654 Ty = EnumTy->getDecl()->getIntegerType(); 2655 2656 if (Ty->isIntegralOrEnumerationType() && 2657 Ty->isPromotableIntegerType()) 2658 return ABIArgInfo::getExtend(); 2659 } 2660 2661 break; 2662 2663 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2664 // available SSE register is used, the registers are taken in the 2665 // order from %xmm0 to %xmm7. 2666 case SSE: { 2667 llvm::Type *IRType = CGT.ConvertType(Ty); 2668 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2669 ++neededSSE; 2670 break; 2671 } 2672 } 2673 2674 llvm::Type *HighPart = nullptr; 2675 switch (Hi) { 2676 // Memory was handled previously, ComplexX87 and X87 should 2677 // never occur as hi classes, and X87Up must be preceded by X87, 2678 // which is passed in memory. 2679 case Memory: 2680 case X87: 2681 case ComplexX87: 2682 llvm_unreachable("Invalid classification for hi word."); 2683 2684 case NoClass: break; 2685 2686 case Integer: 2687 ++neededInt; 2688 // Pick an 8-byte type based on the preferred type. 2689 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2690 2691 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2692 return ABIArgInfo::getDirect(HighPart, 8); 2693 break; 2694 2695 // X87Up generally doesn't occur here (long double is passed in 2696 // memory), except in situations involving unions. 2697 case X87Up: 2698 case SSE: 2699 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2700 2701 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2702 return ABIArgInfo::getDirect(HighPart, 8); 2703 2704 ++neededSSE; 2705 break; 2706 2707 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2708 // eightbyte is passed in the upper half of the last used SSE 2709 // register. This only happens when 128-bit vectors are passed. 2710 case SSEUp: 2711 assert(Lo == SSE && "Unexpected SSEUp classification"); 2712 ResType = GetByteVectorType(Ty); 2713 break; 2714 } 2715 2716 // If a high part was specified, merge it together with the low part. It is 2717 // known to pass in the high eightbyte of the result. We do this by forming a 2718 // first class struct aggregate with the high and low part: {low, high} 2719 if (HighPart) 2720 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2721 2722 return ABIArgInfo::getDirect(ResType); 2723 } 2724 2725 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2726 2727 if (!getCXXABI().classifyReturnType(FI)) 2728 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2729 2730 // Keep track of the number of assigned registers. 2731 unsigned freeIntRegs = 6, freeSSERegs = 8; 2732 2733 // If the return value is indirect, then the hidden argument is consuming one 2734 // integer register. 2735 if (FI.getReturnInfo().isIndirect()) 2736 --freeIntRegs; 2737 2738 // The chain argument effectively gives us another free register. 2739 if (FI.isChainCall()) 2740 ++freeIntRegs; 2741 2742 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2743 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2744 // get assigned (in left-to-right order) for passing as follows... 2745 unsigned ArgNo = 0; 2746 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2747 it != ie; ++it, ++ArgNo) { 2748 bool IsNamedArg = ArgNo < NumRequiredArgs; 2749 2750 unsigned neededInt, neededSSE; 2751 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2752 neededSSE, IsNamedArg); 2753 2754 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2755 // eightbyte of an argument, the whole argument is passed on the 2756 // stack. If registers have already been assigned for some 2757 // eightbytes of such an argument, the assignments get reverted. 2758 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2759 freeIntRegs -= neededInt; 2760 freeSSERegs -= neededSSE; 2761 } else { 2762 it->info = getIndirectResult(it->type, freeIntRegs); 2763 } 2764 } 2765 } 2766 2767 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2768 QualType Ty, 2769 CodeGenFunction &CGF) { 2770 llvm::Value *overflow_arg_area_p = 2771 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2772 llvm::Value *overflow_arg_area = 2773 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2774 2775 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2776 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2777 // It isn't stated explicitly in the standard, but in practice we use 2778 // alignment greater than 16 where necessary. 2779 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2780 if (Align > 8) { 2781 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2782 llvm::Value *Offset = 2783 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2784 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2785 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2786 CGF.Int64Ty); 2787 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2788 overflow_arg_area = 2789 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2790 overflow_arg_area->getType(), 2791 "overflow_arg_area.align"); 2792 } 2793 2794 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2795 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2796 llvm::Value *Res = 2797 CGF.Builder.CreateBitCast(overflow_arg_area, 2798 llvm::PointerType::getUnqual(LTy)); 2799 2800 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2801 // l->overflow_arg_area + sizeof(type). 2802 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2803 // an 8 byte boundary. 2804 2805 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2806 llvm::Value *Offset = 2807 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2808 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2809 "overflow_arg_area.next"); 2810 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2811 2812 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2813 return Res; 2814 } 2815 2816 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2817 CodeGenFunction &CGF) const { 2818 // Assume that va_list type is correct; should be pointer to LLVM type: 2819 // struct { 2820 // i32 gp_offset; 2821 // i32 fp_offset; 2822 // i8* overflow_arg_area; 2823 // i8* reg_save_area; 2824 // }; 2825 unsigned neededInt, neededSSE; 2826 2827 Ty = CGF.getContext().getCanonicalType(Ty); 2828 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2829 /*isNamedArg*/false); 2830 2831 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2832 // in the registers. If not go to step 7. 2833 if (!neededInt && !neededSSE) 2834 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2835 2836 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2837 // general purpose registers needed to pass type and num_fp to hold 2838 // the number of floating point registers needed. 2839 2840 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2841 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2842 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2843 // 2844 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2845 // register save space). 2846 2847 llvm::Value *InRegs = nullptr; 2848 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2849 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2850 if (neededInt) { 2851 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2852 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2853 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2854 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2855 } 2856 2857 if (neededSSE) { 2858 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2859 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2860 llvm::Value *FitsInFP = 2861 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2862 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2863 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2864 } 2865 2866 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2867 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2868 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2869 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2870 2871 // Emit code to load the value if it was passed in registers. 2872 2873 CGF.EmitBlock(InRegBlock); 2874 2875 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2876 // an offset of l->gp_offset and/or l->fp_offset. This may require 2877 // copying to a temporary location in case the parameter is passed 2878 // in different register classes or requires an alignment greater 2879 // than 8 for general purpose registers and 16 for XMM registers. 2880 // 2881 // FIXME: This really results in shameful code when we end up needing to 2882 // collect arguments from different places; often what should result in a 2883 // simple assembling of a structure from scattered addresses has many more 2884 // loads than necessary. Can we clean this up? 2885 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2886 llvm::Value *RegAddr = 2887 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2888 "reg_save_area"); 2889 if (neededInt && neededSSE) { 2890 // FIXME: Cleanup. 2891 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2892 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2893 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2894 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2895 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2896 llvm::Type *TyLo = ST->getElementType(0); 2897 llvm::Type *TyHi = ST->getElementType(1); 2898 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2899 "Unexpected ABI info for mixed regs"); 2900 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2901 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2902 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2903 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2904 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2905 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2906 llvm::Value *V = 2907 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2908 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2909 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2910 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2911 2912 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2913 llvm::PointerType::getUnqual(LTy)); 2914 } else if (neededInt) { 2915 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2916 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2917 llvm::PointerType::getUnqual(LTy)); 2918 2919 // Copy to a temporary if necessary to ensure the appropriate alignment. 2920 std::pair<CharUnits, CharUnits> SizeAlign = 2921 CGF.getContext().getTypeInfoInChars(Ty); 2922 uint64_t TySize = SizeAlign.first.getQuantity(); 2923 unsigned TyAlign = SizeAlign.second.getQuantity(); 2924 if (TyAlign > 8) { 2925 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2926 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2927 RegAddr = Tmp; 2928 } 2929 } else if (neededSSE == 1) { 2930 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2931 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2932 llvm::PointerType::getUnqual(LTy)); 2933 } else { 2934 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2935 // SSE registers are spaced 16 bytes apart in the register save 2936 // area, we need to collect the two eightbytes together. 2937 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2938 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2939 llvm::Type *DoubleTy = CGF.DoubleTy; 2940 llvm::Type *DblPtrTy = 2941 llvm::PointerType::getUnqual(DoubleTy); 2942 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 2943 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2944 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2945 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2946 DblPtrTy)); 2947 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2948 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2949 DblPtrTy)); 2950 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2951 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2952 llvm::PointerType::getUnqual(LTy)); 2953 } 2954 2955 // AMD64-ABI 3.5.7p5: Step 5. Set: 2956 // l->gp_offset = l->gp_offset + num_gp * 8 2957 // l->fp_offset = l->fp_offset + num_fp * 16. 2958 if (neededInt) { 2959 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2960 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2961 gp_offset_p); 2962 } 2963 if (neededSSE) { 2964 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2965 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2966 fp_offset_p); 2967 } 2968 CGF.EmitBranch(ContBlock); 2969 2970 // Emit code to load the value if it was passed in memory. 2971 2972 CGF.EmitBlock(InMemBlock); 2973 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2974 2975 // Return the appropriate result. 2976 2977 CGF.EmitBlock(ContBlock); 2978 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2979 "vaarg.addr"); 2980 ResAddr->addIncoming(RegAddr, InRegBlock); 2981 ResAddr->addIncoming(MemAddr, InMemBlock); 2982 return ResAddr; 2983 } 2984 2985 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 2986 bool IsReturnType) const { 2987 2988 if (Ty->isVoidType()) 2989 return ABIArgInfo::getIgnore(); 2990 2991 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2992 Ty = EnumTy->getDecl()->getIntegerType(); 2993 2994 TypeInfo Info = getContext().getTypeInfo(Ty); 2995 uint64_t Width = Info.Width; 2996 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity(); 2997 2998 const RecordType *RT = Ty->getAs<RecordType>(); 2999 if (RT) { 3000 if (!IsReturnType) { 3001 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3002 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3003 } 3004 3005 if (RT->getDecl()->hasFlexibleArrayMember()) 3006 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3007 3008 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 3009 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 3010 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3011 Width)); 3012 } 3013 3014 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3015 // other targets. 3016 const Type *Base = nullptr; 3017 uint64_t NumElts = 0; 3018 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3019 if (FreeSSERegs >= NumElts) { 3020 FreeSSERegs -= NumElts; 3021 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3022 return ABIArgInfo::getDirect(); 3023 return ABIArgInfo::getExpand(); 3024 } 3025 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3026 } 3027 3028 3029 if (Ty->isMemberPointerType()) { 3030 // If the member pointer is represented by an LLVM int or ptr, pass it 3031 // directly. 3032 llvm::Type *LLTy = CGT.ConvertType(Ty); 3033 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3034 return ABIArgInfo::getDirect(); 3035 } 3036 3037 if (RT || Ty->isMemberPointerType()) { 3038 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3039 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3040 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3041 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3042 3043 // Otherwise, coerce it to a small integer. 3044 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3045 } 3046 3047 // Bool type is always extended to the ABI, other builtin types are not 3048 // extended. 3049 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3050 if (BT && BT->getKind() == BuiltinType::Bool) 3051 return ABIArgInfo::getExtend(); 3052 3053 return ABIArgInfo::getDirect(); 3054 } 3055 3056 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3057 bool IsVectorCall = 3058 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3059 3060 // We can use up to 4 SSE return registers with vectorcall. 3061 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3062 if (!getCXXABI().classifyReturnType(FI)) 3063 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3064 3065 // We can use up to 6 SSE register parameters with vectorcall. 3066 FreeSSERegs = IsVectorCall ? 6 : 0; 3067 for (auto &I : FI.arguments()) 3068 I.info = classify(I.type, FreeSSERegs, false); 3069 } 3070 3071 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3072 CodeGenFunction &CGF) const { 3073 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3074 3075 CGBuilderTy &Builder = CGF.Builder; 3076 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3077 "ap"); 3078 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3079 llvm::Type *PTy = 3080 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3081 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3082 3083 uint64_t Offset = 3084 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 3085 llvm::Value *NextAddr = 3086 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3087 "ap.next"); 3088 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3089 3090 return AddrTyped; 3091 } 3092 3093 // PowerPC-32 3094 namespace { 3095 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3096 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3097 public: 3098 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 3099 3100 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3101 CodeGenFunction &CGF) const override; 3102 }; 3103 3104 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3105 public: 3106 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {} 3107 3108 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3109 // This is recovered from gcc output. 3110 return 1; // r1 is the dedicated stack pointer 3111 } 3112 3113 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3114 llvm::Value *Address) const override; 3115 3116 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3117 return 16; // Natural alignment for Altivec vectors. 3118 } 3119 }; 3120 3121 } 3122 3123 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3124 QualType Ty, 3125 CodeGenFunction &CGF) const { 3126 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3127 // TODO: Implement this. For now ignore. 3128 (void)CTy; 3129 return nullptr; 3130 } 3131 3132 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3133 bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3134 llvm::Type *CharPtr = CGF.Int8PtrTy; 3135 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy; 3136 3137 CGBuilderTy &Builder = CGF.Builder; 3138 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr"); 3139 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty); 3140 llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1)); 3141 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr); 3142 llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3)); 3143 llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr); 3144 llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4)); 3145 llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr); 3146 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr"); 3147 // Align GPR when TY is i64. 3148 if (isI64) { 3149 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1)); 3150 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1)); 3151 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1)); 3152 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR); 3153 } 3154 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr"); 3155 llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area"); 3156 llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty); 3157 llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area"); 3158 llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty); 3159 3160 llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR, 3161 Builder.getInt8(8), "cond"); 3162 3163 llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR, 3164 Builder.getInt8(isInt ? 4 : 8)); 3165 3166 llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty)); 3167 3168 if (Ty->isFloatingType()) 3169 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32)); 3170 3171 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3172 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3173 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3174 3175 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3176 3177 CGF.EmitBlock(UsingRegs); 3178 3179 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3180 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy); 3181 // Increase the GPR/FPR indexes. 3182 if (isInt) { 3183 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1)); 3184 Builder.CreateStore(GPR, GPRPtr); 3185 } else { 3186 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1)); 3187 Builder.CreateStore(FPR, FPRPtr); 3188 } 3189 CGF.EmitBranch(Cont); 3190 3191 CGF.EmitBlock(UsingOverflow); 3192 3193 // Increase the overflow area. 3194 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy); 3195 OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8)); 3196 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr); 3197 CGF.EmitBranch(Cont); 3198 3199 CGF.EmitBlock(Cont); 3200 3201 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr"); 3202 Result->addIncoming(Result1, UsingRegs); 3203 Result->addIncoming(Result2, UsingOverflow); 3204 3205 if (Ty->isAggregateType()) { 3206 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr") ; 3207 return Builder.CreateLoad(AGGPtr, false, "aggr"); 3208 } 3209 3210 return Result; 3211 } 3212 3213 bool 3214 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3215 llvm::Value *Address) const { 3216 // This is calculated from the LLVM and GCC tables and verified 3217 // against gcc output. AFAIK all ABIs use the same encoding. 3218 3219 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3220 3221 llvm::IntegerType *i8 = CGF.Int8Ty; 3222 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3223 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3224 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3225 3226 // 0-31: r0-31, the 4-byte general-purpose registers 3227 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3228 3229 // 32-63: fp0-31, the 8-byte floating-point registers 3230 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3231 3232 // 64-76 are various 4-byte special-purpose registers: 3233 // 64: mq 3234 // 65: lr 3235 // 66: ctr 3236 // 67: ap 3237 // 68-75 cr0-7 3238 // 76: xer 3239 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3240 3241 // 77-108: v0-31, the 16-byte vector registers 3242 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3243 3244 // 109: vrsave 3245 // 110: vscr 3246 // 111: spe_acc 3247 // 112: spefscr 3248 // 113: sfp 3249 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3250 3251 return false; 3252 } 3253 3254 // PowerPC-64 3255 3256 namespace { 3257 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3258 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3259 public: 3260 enum ABIKind { 3261 ELFv1 = 0, 3262 ELFv2 3263 }; 3264 3265 private: 3266 static const unsigned GPRBits = 64; 3267 ABIKind Kind; 3268 3269 public: 3270 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 3271 : DefaultABIInfo(CGT), Kind(Kind) {} 3272 3273 bool isPromotableTypeForABI(QualType Ty) const; 3274 bool isAlignedParamType(QualType Ty) const; 3275 3276 ABIArgInfo classifyReturnType(QualType RetTy) const; 3277 ABIArgInfo classifyArgumentType(QualType Ty) const; 3278 3279 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3280 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3281 uint64_t Members) const override; 3282 3283 // TODO: We can add more logic to computeInfo to improve performance. 3284 // Example: For aggregate arguments that fit in a register, we could 3285 // use getDirectInReg (as is done below for structs containing a single 3286 // floating-point value) to avoid pushing them to memory on function 3287 // entry. This would require changing the logic in PPCISelLowering 3288 // when lowering the parameters in the caller and args in the callee. 3289 void computeInfo(CGFunctionInfo &FI) const override { 3290 if (!getCXXABI().classifyReturnType(FI)) 3291 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3292 for (auto &I : FI.arguments()) { 3293 // We rely on the default argument classification for the most part. 3294 // One exception: An aggregate containing a single floating-point 3295 // or vector item must be passed in a register if one is available. 3296 const Type *T = isSingleElementStruct(I.type, getContext()); 3297 if (T) { 3298 const BuiltinType *BT = T->getAs<BuiltinType>(); 3299 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 3300 (BT && BT->isFloatingPoint())) { 3301 QualType QT(T, 0); 3302 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3303 continue; 3304 } 3305 } 3306 I.info = classifyArgumentType(I.type); 3307 } 3308 } 3309 3310 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3311 CodeGenFunction &CGF) const override; 3312 }; 3313 3314 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3315 public: 3316 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3317 PPC64_SVR4_ABIInfo::ABIKind Kind) 3318 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {} 3319 3320 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3321 // This is recovered from gcc output. 3322 return 1; // r1 is the dedicated stack pointer 3323 } 3324 3325 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3326 llvm::Value *Address) const override; 3327 3328 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3329 return 16; // Natural alignment for Altivec and VSX vectors. 3330 } 3331 }; 3332 3333 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3334 public: 3335 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3336 3337 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3338 // This is recovered from gcc output. 3339 return 1; // r1 is the dedicated stack pointer 3340 } 3341 3342 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3343 llvm::Value *Address) const override; 3344 3345 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3346 return 16; // Natural alignment for Altivec vectors. 3347 } 3348 }; 3349 3350 } 3351 3352 // Return true if the ABI requires Ty to be passed sign- or zero- 3353 // extended to 64 bits. 3354 bool 3355 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3356 // Treat an enum type as its underlying type. 3357 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3358 Ty = EnumTy->getDecl()->getIntegerType(); 3359 3360 // Promotable integer types are required to be promoted by the ABI. 3361 if (Ty->isPromotableIntegerType()) 3362 return true; 3363 3364 // In addition to the usual promotable integer types, we also need to 3365 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3366 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3367 switch (BT->getKind()) { 3368 case BuiltinType::Int: 3369 case BuiltinType::UInt: 3370 return true; 3371 default: 3372 break; 3373 } 3374 3375 return false; 3376 } 3377 3378 /// isAlignedParamType - Determine whether a type requires 16-byte 3379 /// alignment in the parameter area. 3380 bool 3381 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const { 3382 // Complex types are passed just like their elements. 3383 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3384 Ty = CTy->getElementType(); 3385 3386 // Only vector types of size 16 bytes need alignment (larger types are 3387 // passed via reference, smaller types are not aligned). 3388 if (Ty->isVectorType()) 3389 return getContext().getTypeSize(Ty) == 128; 3390 3391 // For single-element float/vector structs, we consider the whole type 3392 // to have the same alignment requirements as its single element. 3393 const Type *AlignAsType = nullptr; 3394 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3395 if (EltType) { 3396 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3397 if ((EltType->isVectorType() && 3398 getContext().getTypeSize(EltType) == 128) || 3399 (BT && BT->isFloatingPoint())) 3400 AlignAsType = EltType; 3401 } 3402 3403 // Likewise for ELFv2 homogeneous aggregates. 3404 const Type *Base = nullptr; 3405 uint64_t Members = 0; 3406 if (!AlignAsType && Kind == ELFv2 && 3407 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3408 AlignAsType = Base; 3409 3410 // With special case aggregates, only vector base types need alignment. 3411 if (AlignAsType) 3412 return AlignAsType->isVectorType(); 3413 3414 // Otherwise, we only need alignment for any aggregate type that 3415 // has an alignment requirement of >= 16 bytes. 3416 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) 3417 return true; 3418 3419 return false; 3420 } 3421 3422 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3423 /// aggregate. Base is set to the base element type, and Members is set 3424 /// to the number of base elements. 3425 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3426 uint64_t &Members) const { 3427 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3428 uint64_t NElements = AT->getSize().getZExtValue(); 3429 if (NElements == 0) 3430 return false; 3431 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3432 return false; 3433 Members *= NElements; 3434 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3435 const RecordDecl *RD = RT->getDecl(); 3436 if (RD->hasFlexibleArrayMember()) 3437 return false; 3438 3439 Members = 0; 3440 3441 // If this is a C++ record, check the bases first. 3442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3443 for (const auto &I : CXXRD->bases()) { 3444 // Ignore empty records. 3445 if (isEmptyRecord(getContext(), I.getType(), true)) 3446 continue; 3447 3448 uint64_t FldMembers; 3449 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3450 return false; 3451 3452 Members += FldMembers; 3453 } 3454 } 3455 3456 for (const auto *FD : RD->fields()) { 3457 // Ignore (non-zero arrays of) empty records. 3458 QualType FT = FD->getType(); 3459 while (const ConstantArrayType *AT = 3460 getContext().getAsConstantArrayType(FT)) { 3461 if (AT->getSize().getZExtValue() == 0) 3462 return false; 3463 FT = AT->getElementType(); 3464 } 3465 if (isEmptyRecord(getContext(), FT, true)) 3466 continue; 3467 3468 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3469 if (getContext().getLangOpts().CPlusPlus && 3470 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3471 continue; 3472 3473 uint64_t FldMembers; 3474 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3475 return false; 3476 3477 Members = (RD->isUnion() ? 3478 std::max(Members, FldMembers) : Members + FldMembers); 3479 } 3480 3481 if (!Base) 3482 return false; 3483 3484 // Ensure there is no padding. 3485 if (getContext().getTypeSize(Base) * Members != 3486 getContext().getTypeSize(Ty)) 3487 return false; 3488 } else { 3489 Members = 1; 3490 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3491 Members = 2; 3492 Ty = CT->getElementType(); 3493 } 3494 3495 // Most ABIs only support float, double, and some vector type widths. 3496 if (!isHomogeneousAggregateBaseType(Ty)) 3497 return false; 3498 3499 // The base type must be the same for all members. Types that 3500 // agree in both total size and mode (float vs. vector) are 3501 // treated as being equivalent here. 3502 const Type *TyPtr = Ty.getTypePtr(); 3503 if (!Base) 3504 Base = TyPtr; 3505 3506 if (Base->isVectorType() != TyPtr->isVectorType() || 3507 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3508 return false; 3509 } 3510 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3511 } 3512 3513 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3514 // Homogeneous aggregates for ELFv2 must have base types of float, 3515 // double, long double, or 128-bit vectors. 3516 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3517 if (BT->getKind() == BuiltinType::Float || 3518 BT->getKind() == BuiltinType::Double || 3519 BT->getKind() == BuiltinType::LongDouble) 3520 return true; 3521 } 3522 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3523 if (getContext().getTypeSize(VT) == 128) 3524 return true; 3525 } 3526 return false; 3527 } 3528 3529 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3530 const Type *Base, uint64_t Members) const { 3531 // Vector types require one register, floating point types require one 3532 // or two registers depending on their size. 3533 uint32_t NumRegs = 3534 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3535 3536 // Homogeneous Aggregates may occupy at most 8 registers. 3537 return Members * NumRegs <= 8; 3538 } 3539 3540 ABIArgInfo 3541 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3542 Ty = useFirstFieldIfTransparentUnion(Ty); 3543 3544 if (Ty->isAnyComplexType()) 3545 return ABIArgInfo::getDirect(); 3546 3547 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3548 // or via reference (larger than 16 bytes). 3549 if (Ty->isVectorType()) { 3550 uint64_t Size = getContext().getTypeSize(Ty); 3551 if (Size > 128) 3552 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3553 else if (Size < 128) { 3554 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3555 return ABIArgInfo::getDirect(CoerceTy); 3556 } 3557 } 3558 3559 if (isAggregateTypeForABI(Ty)) { 3560 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3561 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3562 3563 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8; 3564 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3565 3566 // ELFv2 homogeneous aggregates are passed as array types. 3567 const Type *Base = nullptr; 3568 uint64_t Members = 0; 3569 if (Kind == ELFv2 && 3570 isHomogeneousAggregate(Ty, Base, Members)) { 3571 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3572 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3573 return ABIArgInfo::getDirect(CoerceTy); 3574 } 3575 3576 // If an aggregate may end up fully in registers, we do not 3577 // use the ByVal method, but pass the aggregate as array. 3578 // This is usually beneficial since we avoid forcing the 3579 // back-end to store the argument to memory. 3580 uint64_t Bits = getContext().getTypeSize(Ty); 3581 if (Bits > 0 && Bits <= 8 * GPRBits) { 3582 llvm::Type *CoerceTy; 3583 3584 // Types up to 8 bytes are passed as integer type (which will be 3585 // properly aligned in the argument save area doubleword). 3586 if (Bits <= GPRBits) 3587 CoerceTy = llvm::IntegerType::get(getVMContext(), 3588 llvm::RoundUpToAlignment(Bits, 8)); 3589 // Larger types are passed as arrays, with the base type selected 3590 // according to the required alignment in the save area. 3591 else { 3592 uint64_t RegBits = ABIAlign * 8; 3593 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3594 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3595 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3596 } 3597 3598 return ABIArgInfo::getDirect(CoerceTy); 3599 } 3600 3601 // All other aggregates are passed ByVal. 3602 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3603 /*Realign=*/TyAlign > ABIAlign); 3604 } 3605 3606 return (isPromotableTypeForABI(Ty) ? 3607 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3608 } 3609 3610 ABIArgInfo 3611 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3612 if (RetTy->isVoidType()) 3613 return ABIArgInfo::getIgnore(); 3614 3615 if (RetTy->isAnyComplexType()) 3616 return ABIArgInfo::getDirect(); 3617 3618 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3619 // or via reference (larger than 16 bytes). 3620 if (RetTy->isVectorType()) { 3621 uint64_t Size = getContext().getTypeSize(RetTy); 3622 if (Size > 128) 3623 return ABIArgInfo::getIndirect(0); 3624 else if (Size < 128) { 3625 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3626 return ABIArgInfo::getDirect(CoerceTy); 3627 } 3628 } 3629 3630 if (isAggregateTypeForABI(RetTy)) { 3631 // ELFv2 homogeneous aggregates are returned as array types. 3632 const Type *Base = nullptr; 3633 uint64_t Members = 0; 3634 if (Kind == ELFv2 && 3635 isHomogeneousAggregate(RetTy, Base, Members)) { 3636 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3637 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3638 return ABIArgInfo::getDirect(CoerceTy); 3639 } 3640 3641 // ELFv2 small aggregates are returned in up to two registers. 3642 uint64_t Bits = getContext().getTypeSize(RetTy); 3643 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3644 if (Bits == 0) 3645 return ABIArgInfo::getIgnore(); 3646 3647 llvm::Type *CoerceTy; 3648 if (Bits > GPRBits) { 3649 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3650 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 3651 } else 3652 CoerceTy = llvm::IntegerType::get(getVMContext(), 3653 llvm::RoundUpToAlignment(Bits, 8)); 3654 return ABIArgInfo::getDirect(CoerceTy); 3655 } 3656 3657 // All other aggregates are returned indirectly. 3658 return ABIArgInfo::getIndirect(0); 3659 } 3660 3661 return (isPromotableTypeForABI(RetTy) ? 3662 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3663 } 3664 3665 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3666 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3667 QualType Ty, 3668 CodeGenFunction &CGF) const { 3669 llvm::Type *BP = CGF.Int8PtrTy; 3670 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3671 3672 CGBuilderTy &Builder = CGF.Builder; 3673 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3674 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3675 3676 // Handle types that require 16-byte alignment in the parameter save area. 3677 if (isAlignedParamType(Ty)) { 3678 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3679 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15)); 3680 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16)); 3681 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3682 } 3683 3684 // Update the va_list pointer. The pointer should be bumped by the 3685 // size of the object. We can trust getTypeSize() except for a complex 3686 // type whose base type is smaller than a doubleword. For these, the 3687 // size of the object is 16 bytes; see below for further explanation. 3688 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3689 QualType BaseTy; 3690 unsigned CplxBaseSize = 0; 3691 3692 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3693 BaseTy = CTy->getElementType(); 3694 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3695 if (CplxBaseSize < 8) 3696 SizeInBytes = 16; 3697 } 3698 3699 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3700 llvm::Value *NextAddr = 3701 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3702 "ap.next"); 3703 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3704 3705 // If we have a complex type and the base type is smaller than 8 bytes, 3706 // the ABI calls for the real and imaginary parts to be right-adjusted 3707 // in separate doublewords. However, Clang expects us to produce a 3708 // pointer to a structure with the two parts packed tightly. So generate 3709 // loads of the real and imaginary parts relative to the va_list pointer, 3710 // and store them to a temporary structure. 3711 if (CplxBaseSize && CplxBaseSize < 8) { 3712 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3713 llvm::Value *ImagAddr = RealAddr; 3714 if (CGF.CGM.getDataLayout().isBigEndian()) { 3715 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3716 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3717 } else { 3718 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3719 } 3720 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3721 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3722 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3723 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3724 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3725 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3726 "vacplx"); 3727 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3728 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3729 Builder.CreateStore(Real, RealPtr, false); 3730 Builder.CreateStore(Imag, ImagPtr, false); 3731 return Ptr; 3732 } 3733 3734 // If the argument is smaller than 8 bytes, it is right-adjusted in 3735 // its doubleword slot. Adjust the pointer to pick it up from the 3736 // correct offset. 3737 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3738 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3739 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3740 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3741 } 3742 3743 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3744 return Builder.CreateBitCast(Addr, PTy); 3745 } 3746 3747 static bool 3748 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3749 llvm::Value *Address) { 3750 // This is calculated from the LLVM and GCC tables and verified 3751 // against gcc output. AFAIK all ABIs use the same encoding. 3752 3753 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3754 3755 llvm::IntegerType *i8 = CGF.Int8Ty; 3756 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3757 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3758 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3759 3760 // 0-31: r0-31, the 8-byte general-purpose registers 3761 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3762 3763 // 32-63: fp0-31, the 8-byte floating-point registers 3764 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3765 3766 // 64-76 are various 4-byte special-purpose registers: 3767 // 64: mq 3768 // 65: lr 3769 // 66: ctr 3770 // 67: ap 3771 // 68-75 cr0-7 3772 // 76: xer 3773 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3774 3775 // 77-108: v0-31, the 16-byte vector registers 3776 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3777 3778 // 109: vrsave 3779 // 110: vscr 3780 // 111: spe_acc 3781 // 112: spefscr 3782 // 113: sfp 3783 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3784 3785 return false; 3786 } 3787 3788 bool 3789 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3790 CodeGen::CodeGenFunction &CGF, 3791 llvm::Value *Address) const { 3792 3793 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3794 } 3795 3796 bool 3797 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3798 llvm::Value *Address) const { 3799 3800 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3801 } 3802 3803 //===----------------------------------------------------------------------===// 3804 // AArch64 ABI Implementation 3805 //===----------------------------------------------------------------------===// 3806 3807 namespace { 3808 3809 class AArch64ABIInfo : public ABIInfo { 3810 public: 3811 enum ABIKind { 3812 AAPCS = 0, 3813 DarwinPCS 3814 }; 3815 3816 private: 3817 ABIKind Kind; 3818 3819 public: 3820 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3821 3822 private: 3823 ABIKind getABIKind() const { return Kind; } 3824 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3825 3826 ABIArgInfo classifyReturnType(QualType RetTy) const; 3827 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3828 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3829 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3830 uint64_t Members) const override; 3831 3832 bool isIllegalVectorType(QualType Ty) const; 3833 3834 void computeInfo(CGFunctionInfo &FI) const override { 3835 if (!getCXXABI().classifyReturnType(FI)) 3836 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3837 3838 for (auto &it : FI.arguments()) 3839 it.info = classifyArgumentType(it.type); 3840 } 3841 3842 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3843 CodeGenFunction &CGF) const; 3844 3845 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3846 CodeGenFunction &CGF) const; 3847 3848 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3849 CodeGenFunction &CGF) const override { 3850 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3851 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3852 } 3853 }; 3854 3855 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3856 public: 3857 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3858 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3859 3860 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3861 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3862 } 3863 3864 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3865 3866 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3867 }; 3868 } 3869 3870 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 3871 Ty = useFirstFieldIfTransparentUnion(Ty); 3872 3873 // Handle illegal vector types here. 3874 if (isIllegalVectorType(Ty)) { 3875 uint64_t Size = getContext().getTypeSize(Ty); 3876 if (Size <= 32) { 3877 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3878 return ABIArgInfo::getDirect(ResType); 3879 } 3880 if (Size == 64) { 3881 llvm::Type *ResType = 3882 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3883 return ABIArgInfo::getDirect(ResType); 3884 } 3885 if (Size == 128) { 3886 llvm::Type *ResType = 3887 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3888 return ABIArgInfo::getDirect(ResType); 3889 } 3890 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3891 } 3892 3893 if (!isAggregateTypeForABI(Ty)) { 3894 // Treat an enum type as its underlying type. 3895 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3896 Ty = EnumTy->getDecl()->getIntegerType(); 3897 3898 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3899 ? ABIArgInfo::getExtend() 3900 : ABIArgInfo::getDirect()); 3901 } 3902 3903 // Structures with either a non-trivial destructor or a non-trivial 3904 // copy constructor are always indirect. 3905 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3906 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3907 CGCXXABI::RAA_DirectInMemory); 3908 } 3909 3910 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3911 // elsewhere for GNU compatibility. 3912 if (isEmptyRecord(getContext(), Ty, true)) { 3913 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3914 return ABIArgInfo::getIgnore(); 3915 3916 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3917 } 3918 3919 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3920 const Type *Base = nullptr; 3921 uint64_t Members = 0; 3922 if (isHomogeneousAggregate(Ty, Base, Members)) { 3923 return ABIArgInfo::getDirect( 3924 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 3925 } 3926 3927 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3928 uint64_t Size = getContext().getTypeSize(Ty); 3929 if (Size <= 128) { 3930 unsigned Alignment = getContext().getTypeAlign(Ty); 3931 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3932 3933 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3934 // For aggregates with 16-byte alignment, we use i128. 3935 if (Alignment < 128 && Size == 128) { 3936 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3937 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3938 } 3939 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3940 } 3941 3942 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3943 } 3944 3945 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 3946 if (RetTy->isVoidType()) 3947 return ABIArgInfo::getIgnore(); 3948 3949 // Large vector types should be returned via memory. 3950 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3951 return ABIArgInfo::getIndirect(0); 3952 3953 if (!isAggregateTypeForABI(RetTy)) { 3954 // Treat an enum type as its underlying type. 3955 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3956 RetTy = EnumTy->getDecl()->getIntegerType(); 3957 3958 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3959 ? ABIArgInfo::getExtend() 3960 : ABIArgInfo::getDirect()); 3961 } 3962 3963 if (isEmptyRecord(getContext(), RetTy, true)) 3964 return ABIArgInfo::getIgnore(); 3965 3966 const Type *Base = nullptr; 3967 uint64_t Members = 0; 3968 if (isHomogeneousAggregate(RetTy, Base, Members)) 3969 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3970 return ABIArgInfo::getDirect(); 3971 3972 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3973 uint64_t Size = getContext().getTypeSize(RetTy); 3974 if (Size <= 128) { 3975 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3976 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3977 } 3978 3979 return ABIArgInfo::getIndirect(0); 3980 } 3981 3982 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 3983 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 3984 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3985 // Check whether VT is legal. 3986 unsigned NumElements = VT->getNumElements(); 3987 uint64_t Size = getContext().getTypeSize(VT); 3988 // NumElements should be power of 2 between 1 and 16. 3989 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3990 return true; 3991 return Size != 64 && (Size != 128 || NumElements == 1); 3992 } 3993 return false; 3994 } 3995 3996 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3997 // Homogeneous aggregates for AAPCS64 must have base types of a floating 3998 // point type or a short-vector type. This is the same as the 32-bit ABI, 3999 // but with the difference that any floating-point type is allowed, 4000 // including __fp16. 4001 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4002 if (BT->isFloatingPoint()) 4003 return true; 4004 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4005 unsigned VecSize = getContext().getTypeSize(VT); 4006 if (VecSize == 64 || VecSize == 128) 4007 return true; 4008 } 4009 return false; 4010 } 4011 4012 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4013 uint64_t Members) const { 4014 return Members <= 4; 4015 } 4016 4017 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, 4018 QualType Ty, 4019 CodeGenFunction &CGF) const { 4020 ABIArgInfo AI = classifyArgumentType(Ty); 4021 bool IsIndirect = AI.isIndirect(); 4022 4023 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4024 if (IsIndirect) 4025 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4026 else if (AI.getCoerceToType()) 4027 BaseTy = AI.getCoerceToType(); 4028 4029 unsigned NumRegs = 1; 4030 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4031 BaseTy = ArrTy->getElementType(); 4032 NumRegs = ArrTy->getNumElements(); 4033 } 4034 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4035 4036 // The AArch64 va_list type and handling is specified in the Procedure Call 4037 // Standard, section B.4: 4038 // 4039 // struct { 4040 // void *__stack; 4041 // void *__gr_top; 4042 // void *__vr_top; 4043 // int __gr_offs; 4044 // int __vr_offs; 4045 // }; 4046 4047 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4048 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4049 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4050 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4051 auto &Ctx = CGF.getContext(); 4052 4053 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 4054 int reg_top_index; 4055 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8; 4056 if (!IsFPR) { 4057 // 3 is the field number of __gr_offs 4058 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 4059 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4060 reg_top_index = 1; // field number for __gr_top 4061 RegSize = llvm::RoundUpToAlignment(RegSize, 8); 4062 } else { 4063 // 4 is the field number of __vr_offs. 4064 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 4065 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4066 reg_top_index = 2; // field number for __vr_top 4067 RegSize = 16 * NumRegs; 4068 } 4069 4070 //======================================= 4071 // Find out where argument was passed 4072 //======================================= 4073 4074 // If reg_offs >= 0 we're already using the stack for this type of 4075 // argument. We don't want to keep updating reg_offs (in case it overflows, 4076 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4077 // whatever they get). 4078 llvm::Value *UsingStack = nullptr; 4079 UsingStack = CGF.Builder.CreateICmpSGE( 4080 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4081 4082 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4083 4084 // Otherwise, at least some kind of argument could go in these registers, the 4085 // question is whether this particular type is too big. 4086 CGF.EmitBlock(MaybeRegBlock); 4087 4088 // Integer arguments may need to correct register alignment (for example a 4089 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4090 // align __gr_offs to calculate the potential address. 4091 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4092 int Align = Ctx.getTypeAlign(Ty) / 8; 4093 4094 reg_offs = CGF.Builder.CreateAdd( 4095 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4096 "align_regoffs"); 4097 reg_offs = CGF.Builder.CreateAnd( 4098 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4099 "aligned_regoffs"); 4100 } 4101 4102 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4103 llvm::Value *NewOffset = nullptr; 4104 NewOffset = CGF.Builder.CreateAdd( 4105 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4106 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4107 4108 // Now we're in a position to decide whether this argument really was in 4109 // registers or not. 4110 llvm::Value *InRegs = nullptr; 4111 InRegs = CGF.Builder.CreateICmpSLE( 4112 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4113 4114 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4115 4116 //======================================= 4117 // Argument was in registers 4118 //======================================= 4119 4120 // Now we emit the code for if the argument was originally passed in 4121 // registers. First start the appropriate block: 4122 CGF.EmitBlock(InRegBlock); 4123 4124 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 4125 reg_top_p = 4126 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 4127 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4128 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4129 llvm::Value *RegAddr = nullptr; 4130 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4131 4132 if (IsIndirect) { 4133 // If it's been passed indirectly (actually a struct), whatever we find from 4134 // stored registers or on the stack will actually be a struct **. 4135 MemTy = llvm::PointerType::getUnqual(MemTy); 4136 } 4137 4138 const Type *Base = nullptr; 4139 uint64_t NumMembers = 0; 4140 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4141 if (IsHFA && NumMembers > 1) { 4142 // Homogeneous aggregates passed in registers will have their elements split 4143 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4144 // qN+1, ...). We reload and store into a temporary local variable 4145 // contiguously. 4146 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4147 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4148 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4149 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 4150 int Offset = 0; 4151 4152 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 4153 Offset = 16 - Ctx.getTypeSize(Base) / 8; 4154 for (unsigned i = 0; i < NumMembers; ++i) { 4155 llvm::Value *BaseOffset = 4156 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 4157 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4158 LoadAddr = CGF.Builder.CreateBitCast( 4159 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 4160 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 4161 4162 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4163 CGF.Builder.CreateStore(Elem, StoreAddr); 4164 } 4165 4166 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4167 } else { 4168 // Otherwise the object is contiguous in memory 4169 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 4170 if (CGF.CGM.getDataLayout().isBigEndian() && 4171 (IsHFA || !isAggregateTypeForABI(Ty)) && 4172 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 4173 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 4174 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 4175 4176 BaseAddr = CGF.Builder.CreateAdd( 4177 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4178 4179 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 4180 } 4181 4182 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4183 } 4184 4185 CGF.EmitBranch(ContBlock); 4186 4187 //======================================= 4188 // Argument was on the stack 4189 //======================================= 4190 CGF.EmitBlock(OnStackBlock); 4191 4192 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 4193 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 4194 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4195 4196 // Again, stack arguments may need realigmnent. In this case both integer and 4197 // floating-point ones might be affected. 4198 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4199 int Align = Ctx.getTypeAlign(Ty) / 8; 4200 4201 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4202 4203 OnStackAddr = CGF.Builder.CreateAdd( 4204 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4205 "align_stack"); 4206 OnStackAddr = CGF.Builder.CreateAnd( 4207 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4208 "align_stack"); 4209 4210 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4211 } 4212 4213 uint64_t StackSize; 4214 if (IsIndirect) 4215 StackSize = 8; 4216 else 4217 StackSize = Ctx.getTypeSize(Ty) / 8; 4218 4219 // All stack slots are 8 bytes 4220 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4221 4222 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4223 llvm::Value *NewStack = 4224 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 4225 4226 // Write the new value of __stack for the next call to va_arg 4227 CGF.Builder.CreateStore(NewStack, stack_p); 4228 4229 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4230 Ctx.getTypeSize(Ty) < 64) { 4231 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 4232 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4233 4234 OnStackAddr = CGF.Builder.CreateAdd( 4235 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4236 4237 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4238 } 4239 4240 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4241 4242 CGF.EmitBranch(ContBlock); 4243 4244 //======================================= 4245 // Tidy up 4246 //======================================= 4247 CGF.EmitBlock(ContBlock); 4248 4249 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4250 ResAddr->addIncoming(RegAddr, InRegBlock); 4251 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4252 4253 if (IsIndirect) 4254 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4255 4256 return ResAddr; 4257 } 4258 4259 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 4260 CodeGenFunction &CGF) const { 4261 // We do not support va_arg for aggregates or illegal vector types. 4262 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 4263 // other cases. 4264 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4265 return nullptr; 4266 4267 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4268 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 4269 4270 const Type *Base = nullptr; 4271 uint64_t Members = 0; 4272 bool isHA = isHomogeneousAggregate(Ty, Base, Members); 4273 4274 bool isIndirect = false; 4275 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 4276 // be passed indirectly. 4277 if (Size > 16 && !isHA) { 4278 isIndirect = true; 4279 Size = 8; 4280 Align = 8; 4281 } 4282 4283 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 4284 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 4285 4286 CGBuilderTy &Builder = CGF.Builder; 4287 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4288 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4289 4290 if (isEmptyRecord(getContext(), Ty, true)) { 4291 // These are ignored for parameter passing purposes. 4292 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4293 return Builder.CreateBitCast(Addr, PTy); 4294 } 4295 4296 const uint64_t MinABIAlign = 8; 4297 if (Align > MinABIAlign) { 4298 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 4299 Addr = Builder.CreateGEP(Addr, Offset); 4300 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 4301 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 4302 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4303 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4304 } 4305 4306 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4307 llvm::Value *NextAddr = Builder.CreateGEP( 4308 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4309 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4310 4311 if (isIndirect) 4312 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4313 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4314 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4315 4316 return AddrTyped; 4317 } 4318 4319 //===----------------------------------------------------------------------===// 4320 // ARM ABI Implementation 4321 //===----------------------------------------------------------------------===// 4322 4323 namespace { 4324 4325 class ARMABIInfo : public ABIInfo { 4326 public: 4327 enum ABIKind { 4328 APCS = 0, 4329 AAPCS = 1, 4330 AAPCS_VFP 4331 }; 4332 4333 private: 4334 ABIKind Kind; 4335 mutable int VFPRegs[16]; 4336 const unsigned NumVFPs; 4337 const unsigned NumGPRs; 4338 mutable unsigned AllocatedGPRs; 4339 mutable unsigned AllocatedVFPs; 4340 4341 public: 4342 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 4343 NumVFPs(16), NumGPRs(4) { 4344 setCCs(); 4345 resetAllocatedRegs(); 4346 } 4347 4348 bool isEABI() const { 4349 switch (getTarget().getTriple().getEnvironment()) { 4350 case llvm::Triple::Android: 4351 case llvm::Triple::EABI: 4352 case llvm::Triple::EABIHF: 4353 case llvm::Triple::GNUEABI: 4354 case llvm::Triple::GNUEABIHF: 4355 return true; 4356 default: 4357 return false; 4358 } 4359 } 4360 4361 bool isEABIHF() const { 4362 switch (getTarget().getTriple().getEnvironment()) { 4363 case llvm::Triple::EABIHF: 4364 case llvm::Triple::GNUEABIHF: 4365 return true; 4366 default: 4367 return false; 4368 } 4369 } 4370 4371 ABIKind getABIKind() const { return Kind; } 4372 4373 private: 4374 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4375 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 4376 bool &IsCPRC) const; 4377 bool isIllegalVectorType(QualType Ty) const; 4378 4379 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4380 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4381 uint64_t Members) const override; 4382 4383 void computeInfo(CGFunctionInfo &FI) const override; 4384 4385 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4386 CodeGenFunction &CGF) const override; 4387 4388 llvm::CallingConv::ID getLLVMDefaultCC() const; 4389 llvm::CallingConv::ID getABIDefaultCC() const; 4390 void setCCs(); 4391 4392 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 4393 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 4394 void resetAllocatedRegs(void) const; 4395 }; 4396 4397 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4398 public: 4399 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4400 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4401 4402 const ARMABIInfo &getABIInfo() const { 4403 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4404 } 4405 4406 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4407 return 13; 4408 } 4409 4410 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4411 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4412 } 4413 4414 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4415 llvm::Value *Address) const override { 4416 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4417 4418 // 0-15 are the 16 integer registers. 4419 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4420 return false; 4421 } 4422 4423 unsigned getSizeOfUnwindException() const override { 4424 if (getABIInfo().isEABI()) return 88; 4425 return TargetCodeGenInfo::getSizeOfUnwindException(); 4426 } 4427 4428 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4429 CodeGen::CodeGenModule &CGM) const override { 4430 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4431 if (!FD) 4432 return; 4433 4434 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4435 if (!Attr) 4436 return; 4437 4438 const char *Kind; 4439 switch (Attr->getInterrupt()) { 4440 case ARMInterruptAttr::Generic: Kind = ""; break; 4441 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4442 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4443 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4444 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4445 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4446 } 4447 4448 llvm::Function *Fn = cast<llvm::Function>(GV); 4449 4450 Fn->addFnAttr("interrupt", Kind); 4451 4452 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4453 return; 4454 4455 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4456 // however this is not necessarily true on taking any interrupt. Instruct 4457 // the backend to perform a realignment as part of the function prologue. 4458 llvm::AttrBuilder B; 4459 B.addStackAlignmentAttr(8); 4460 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4461 llvm::AttributeSet::get(CGM.getLLVMContext(), 4462 llvm::AttributeSet::FunctionIndex, 4463 B)); 4464 } 4465 }; 4466 4467 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4468 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV, 4469 CodeGen::CodeGenModule &CGM) const; 4470 4471 public: 4472 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4473 : ARMTargetCodeGenInfo(CGT, K) {} 4474 4475 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4476 CodeGen::CodeGenModule &CGM) const override; 4477 }; 4478 4479 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute( 4480 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4481 if (!isa<FunctionDecl>(D)) 4482 return; 4483 if (CGM.getCodeGenOpts().StackProbeSize == 4096) 4484 return; 4485 4486 llvm::Function *F = cast<llvm::Function>(GV); 4487 F->addFnAttr("stack-probe-size", 4488 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 4489 } 4490 4491 void WindowsARMTargetCodeGenInfo::SetTargetAttributes( 4492 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4493 ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 4494 addStackProbeSizeTargetAttribute(D, GV, CGM); 4495 } 4496 } 4497 4498 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4499 // To correctly handle Homogeneous Aggregate, we need to keep track of the 4500 // VFP registers allocated so far. 4501 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4502 // VFP registers of the appropriate type unallocated then the argument is 4503 // allocated to the lowest-numbered sequence of such registers. 4504 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4505 // unallocated are marked as unavailable. 4506 resetAllocatedRegs(); 4507 4508 if (getCXXABI().classifyReturnType(FI)) { 4509 if (FI.getReturnInfo().isIndirect()) 4510 markAllocatedGPRs(1, 1); 4511 } else { 4512 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4513 } 4514 for (auto &I : FI.arguments()) { 4515 unsigned PreAllocationVFPs = AllocatedVFPs; 4516 unsigned PreAllocationGPRs = AllocatedGPRs; 4517 bool IsCPRC = false; 4518 // 6.1.2.3 There is one VFP co-processor register class using registers 4519 // s0-s15 (d0-d7) for passing arguments. 4520 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); 4521 4522 // If we have allocated some arguments onto the stack (due to running 4523 // out of VFP registers), we cannot split an argument between GPRs and 4524 // the stack. If this situation occurs, we add padding to prevent the 4525 // GPRs from being used. In this situation, the current argument could 4526 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 4527 // unusable anyway. 4528 // We do not have to do this if the argument is being passed ByVal, as the 4529 // backend can handle that situation correctly. 4530 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 4531 const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal(); 4532 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && 4533 StackUsed && !IsByVal) { 4534 llvm::Type *PaddingTy = llvm::ArrayType::get( 4535 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 4536 if (I.info.canHaveCoerceToType()) { 4537 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 4538 0 /* offset */, PaddingTy, true); 4539 } else { 4540 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, 4541 PaddingTy, true); 4542 } 4543 } 4544 } 4545 4546 // Always honor user-specified calling convention. 4547 if (FI.getCallingConvention() != llvm::CallingConv::C) 4548 return; 4549 4550 llvm::CallingConv::ID cc = getRuntimeCC(); 4551 if (cc != llvm::CallingConv::C) 4552 FI.setEffectiveCallingConvention(cc); 4553 } 4554 4555 /// Return the default calling convention that LLVM will use. 4556 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4557 // The default calling convention that LLVM will infer. 4558 if (isEABIHF()) 4559 return llvm::CallingConv::ARM_AAPCS_VFP; 4560 else if (isEABI()) 4561 return llvm::CallingConv::ARM_AAPCS; 4562 else 4563 return llvm::CallingConv::ARM_APCS; 4564 } 4565 4566 /// Return the calling convention that our ABI would like us to use 4567 /// as the C calling convention. 4568 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4569 switch (getABIKind()) { 4570 case APCS: return llvm::CallingConv::ARM_APCS; 4571 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4572 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4573 } 4574 llvm_unreachable("bad ABI kind"); 4575 } 4576 4577 void ARMABIInfo::setCCs() { 4578 assert(getRuntimeCC() == llvm::CallingConv::C); 4579 4580 // Don't muddy up the IR with a ton of explicit annotations if 4581 // they'd just match what LLVM will infer from the triple. 4582 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4583 if (abiCC != getLLVMDefaultCC()) 4584 RuntimeCC = abiCC; 4585 4586 BuiltinCC = (getABIKind() == APCS ? 4587 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS); 4588 } 4589 4590 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4591 /// number of VFP registers (unit is S register) requested. 4592 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4593 unsigned NumRequired) const { 4594 // Early Exit. 4595 if (AllocatedVFPs >= 16) { 4596 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4597 // the stack. 4598 AllocatedVFPs = 17; 4599 return; 4600 } 4601 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4602 // VFP registers of the appropriate type unallocated then the argument is 4603 // allocated to the lowest-numbered sequence of such registers. 4604 for (unsigned I = 0; I < 16; I += Alignment) { 4605 bool FoundSlot = true; 4606 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4607 if (J >= 16 || VFPRegs[J]) { 4608 FoundSlot = false; 4609 break; 4610 } 4611 if (FoundSlot) { 4612 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4613 VFPRegs[J] = 1; 4614 AllocatedVFPs += NumRequired; 4615 return; 4616 } 4617 } 4618 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4619 // unallocated are marked as unavailable. 4620 for (unsigned I = 0; I < 16; I++) 4621 VFPRegs[I] = 1; 4622 AllocatedVFPs = 17; // We do not have enough VFP registers. 4623 } 4624 4625 /// Update AllocatedGPRs to record the number of general purpose registers 4626 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4627 /// this represents arguments being stored on the stack. 4628 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4629 unsigned NumRequired) const { 4630 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4631 4632 if (Alignment == 2 && AllocatedGPRs & 0x1) 4633 AllocatedGPRs += 1; 4634 4635 AllocatedGPRs += NumRequired; 4636 } 4637 4638 void ARMABIInfo::resetAllocatedRegs(void) const { 4639 AllocatedGPRs = 0; 4640 AllocatedVFPs = 0; 4641 for (unsigned i = 0; i < NumVFPs; ++i) 4642 VFPRegs[i] = 0; 4643 } 4644 4645 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 4646 bool &IsCPRC) const { 4647 // We update number of allocated VFPs according to 4648 // 6.1.2.1 The following argument types are VFP CPRCs: 4649 // A single-precision floating-point type (including promoted 4650 // half-precision types); A double-precision floating-point type; 4651 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4652 // with a Base Type of a single- or double-precision floating-point type, 4653 // 64-bit containerized vectors or 128-bit containerized vectors with one 4654 // to four Elements. 4655 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4656 4657 Ty = useFirstFieldIfTransparentUnion(Ty); 4658 4659 // Handle illegal vector types here. 4660 if (isIllegalVectorType(Ty)) { 4661 uint64_t Size = getContext().getTypeSize(Ty); 4662 if (Size <= 32) { 4663 llvm::Type *ResType = 4664 llvm::Type::getInt32Ty(getVMContext()); 4665 markAllocatedGPRs(1, 1); 4666 return ABIArgInfo::getDirect(ResType); 4667 } 4668 if (Size == 64) { 4669 llvm::Type *ResType = llvm::VectorType::get( 4670 llvm::Type::getInt32Ty(getVMContext()), 2); 4671 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4672 markAllocatedGPRs(2, 2); 4673 } else { 4674 markAllocatedVFPs(2, 2); 4675 IsCPRC = true; 4676 } 4677 return ABIArgInfo::getDirect(ResType); 4678 } 4679 if (Size == 128) { 4680 llvm::Type *ResType = llvm::VectorType::get( 4681 llvm::Type::getInt32Ty(getVMContext()), 4); 4682 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4683 markAllocatedGPRs(2, 4); 4684 } else { 4685 markAllocatedVFPs(4, 4); 4686 IsCPRC = true; 4687 } 4688 return ABIArgInfo::getDirect(ResType); 4689 } 4690 markAllocatedGPRs(1, 1); 4691 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4692 } 4693 // Update VFPRegs for legal vector types. 4694 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4695 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4696 uint64_t Size = getContext().getTypeSize(VT); 4697 // Size of a legal vector should be power of 2 and above 64. 4698 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4699 IsCPRC = true; 4700 } 4701 } 4702 // Update VFPRegs for floating point types. 4703 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4704 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4705 if (BT->getKind() == BuiltinType::Half || 4706 BT->getKind() == BuiltinType::Float) { 4707 markAllocatedVFPs(1, 1); 4708 IsCPRC = true; 4709 } 4710 if (BT->getKind() == BuiltinType::Double || 4711 BT->getKind() == BuiltinType::LongDouble) { 4712 markAllocatedVFPs(2, 2); 4713 IsCPRC = true; 4714 } 4715 } 4716 } 4717 4718 if (!isAggregateTypeForABI(Ty)) { 4719 // Treat an enum type as its underlying type. 4720 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4721 Ty = EnumTy->getDecl()->getIntegerType(); 4722 } 4723 4724 unsigned Size = getContext().getTypeSize(Ty); 4725 if (!IsCPRC) 4726 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4727 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4728 : ABIArgInfo::getDirect()); 4729 } 4730 4731 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4732 markAllocatedGPRs(1, 1); 4733 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4734 } 4735 4736 // Ignore empty records. 4737 if (isEmptyRecord(getContext(), Ty, true)) 4738 return ABIArgInfo::getIgnore(); 4739 4740 if (IsEffectivelyAAPCS_VFP) { 4741 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4742 // into VFP registers. 4743 const Type *Base = nullptr; 4744 uint64_t Members = 0; 4745 if (isHomogeneousAggregate(Ty, Base, Members)) { 4746 assert(Base && "Base class should be set for homogeneous aggregate"); 4747 // Base can be a floating-point or a vector. 4748 if (Base->isVectorType()) { 4749 // ElementSize is in number of floats. 4750 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4751 markAllocatedVFPs(ElementSize, 4752 Members * ElementSize); 4753 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4754 markAllocatedVFPs(1, Members); 4755 else { 4756 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4757 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4758 markAllocatedVFPs(2, Members * 2); 4759 } 4760 IsCPRC = true; 4761 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4762 } 4763 } 4764 4765 // Support byval for ARM. 4766 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4767 // most 8-byte. We realign the indirect argument if type alignment is bigger 4768 // than ABI alignment. 4769 uint64_t ABIAlign = 4; 4770 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4771 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4772 getABIKind() == ARMABIInfo::AAPCS) 4773 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4774 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4775 // Update Allocated GPRs. Since this is only used when the size of the 4776 // argument is greater than 64 bytes, this will always use up any available 4777 // registers (of which there are 4). We also don't care about getting the 4778 // alignment right, because general-purpose registers cannot be back-filled. 4779 markAllocatedGPRs(1, 4); 4780 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4781 /*Realign=*/TyAlign > ABIAlign); 4782 } 4783 4784 // Otherwise, pass by coercing to a structure of the appropriate size. 4785 llvm::Type* ElemTy; 4786 unsigned SizeRegs; 4787 // FIXME: Try to match the types of the arguments more accurately where 4788 // we can. 4789 if (getContext().getTypeAlign(Ty) <= 32) { 4790 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4791 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4792 markAllocatedGPRs(1, SizeRegs); 4793 } else { 4794 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4795 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4796 markAllocatedGPRs(2, SizeRegs * 2); 4797 } 4798 4799 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 4800 } 4801 4802 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4803 llvm::LLVMContext &VMContext) { 4804 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4805 // is called integer-like if its size is less than or equal to one word, and 4806 // the offset of each of its addressable sub-fields is zero. 4807 4808 uint64_t Size = Context.getTypeSize(Ty); 4809 4810 // Check that the type fits in a word. 4811 if (Size > 32) 4812 return false; 4813 4814 // FIXME: Handle vector types! 4815 if (Ty->isVectorType()) 4816 return false; 4817 4818 // Float types are never treated as "integer like". 4819 if (Ty->isRealFloatingType()) 4820 return false; 4821 4822 // If this is a builtin or pointer type then it is ok. 4823 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4824 return true; 4825 4826 // Small complex integer types are "integer like". 4827 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4828 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4829 4830 // Single element and zero sized arrays should be allowed, by the definition 4831 // above, but they are not. 4832 4833 // Otherwise, it must be a record type. 4834 const RecordType *RT = Ty->getAs<RecordType>(); 4835 if (!RT) return false; 4836 4837 // Ignore records with flexible arrays. 4838 const RecordDecl *RD = RT->getDecl(); 4839 if (RD->hasFlexibleArrayMember()) 4840 return false; 4841 4842 // Check that all sub-fields are at offset 0, and are themselves "integer 4843 // like". 4844 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4845 4846 bool HadField = false; 4847 unsigned idx = 0; 4848 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4849 i != e; ++i, ++idx) { 4850 const FieldDecl *FD = *i; 4851 4852 // Bit-fields are not addressable, we only need to verify they are "integer 4853 // like". We still have to disallow a subsequent non-bitfield, for example: 4854 // struct { int : 0; int x } 4855 // is non-integer like according to gcc. 4856 if (FD->isBitField()) { 4857 if (!RD->isUnion()) 4858 HadField = true; 4859 4860 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4861 return false; 4862 4863 continue; 4864 } 4865 4866 // Check if this field is at offset 0. 4867 if (Layout.getFieldOffset(idx) != 0) 4868 return false; 4869 4870 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4871 return false; 4872 4873 // Only allow at most one field in a structure. This doesn't match the 4874 // wording above, but follows gcc in situations with a field following an 4875 // empty structure. 4876 if (!RD->isUnion()) { 4877 if (HadField) 4878 return false; 4879 4880 HadField = true; 4881 } 4882 } 4883 4884 return true; 4885 } 4886 4887 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4888 bool isVariadic) const { 4889 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4890 4891 if (RetTy->isVoidType()) 4892 return ABIArgInfo::getIgnore(); 4893 4894 // Large vector types should be returned via memory. 4895 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4896 markAllocatedGPRs(1, 1); 4897 return ABIArgInfo::getIndirect(0); 4898 } 4899 4900 if (!isAggregateTypeForABI(RetTy)) { 4901 // Treat an enum type as its underlying type. 4902 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4903 RetTy = EnumTy->getDecl()->getIntegerType(); 4904 4905 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4906 : ABIArgInfo::getDirect(); 4907 } 4908 4909 // Are we following APCS? 4910 if (getABIKind() == APCS) { 4911 if (isEmptyRecord(getContext(), RetTy, false)) 4912 return ABIArgInfo::getIgnore(); 4913 4914 // Complex types are all returned as packed integers. 4915 // 4916 // FIXME: Consider using 2 x vector types if the back end handles them 4917 // correctly. 4918 if (RetTy->isAnyComplexType()) 4919 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4920 getVMContext(), getContext().getTypeSize(RetTy))); 4921 4922 // Integer like structures are returned in r0. 4923 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4924 // Return in the smallest viable integer type. 4925 uint64_t Size = getContext().getTypeSize(RetTy); 4926 if (Size <= 8) 4927 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4928 if (Size <= 16) 4929 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4930 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4931 } 4932 4933 // Otherwise return in memory. 4934 markAllocatedGPRs(1, 1); 4935 return ABIArgInfo::getIndirect(0); 4936 } 4937 4938 // Otherwise this is an AAPCS variant. 4939 4940 if (isEmptyRecord(getContext(), RetTy, true)) 4941 return ABIArgInfo::getIgnore(); 4942 4943 // Check for homogeneous aggregates with AAPCS-VFP. 4944 if (IsEffectivelyAAPCS_VFP) { 4945 const Type *Base = nullptr; 4946 uint64_t Members; 4947 if (isHomogeneousAggregate(RetTy, Base, Members)) { 4948 assert(Base && "Base class should be set for homogeneous aggregate"); 4949 // Homogeneous Aggregates are returned directly. 4950 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4951 } 4952 } 4953 4954 // Aggregates <= 4 bytes are returned in r0; other aggregates 4955 // are returned indirectly. 4956 uint64_t Size = getContext().getTypeSize(RetTy); 4957 if (Size <= 32) { 4958 if (getDataLayout().isBigEndian()) 4959 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4960 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4961 4962 // Return in the smallest viable integer type. 4963 if (Size <= 8) 4964 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4965 if (Size <= 16) 4966 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4967 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4968 } 4969 4970 markAllocatedGPRs(1, 1); 4971 return ABIArgInfo::getIndirect(0); 4972 } 4973 4974 /// isIllegalVector - check whether Ty is an illegal vector type. 4975 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4976 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4977 // Check whether VT is legal. 4978 unsigned NumElements = VT->getNumElements(); 4979 uint64_t Size = getContext().getTypeSize(VT); 4980 // NumElements should be power of 2. 4981 if ((NumElements & (NumElements - 1)) != 0) 4982 return true; 4983 // Size should be greater than 32 bits. 4984 return Size <= 32; 4985 } 4986 return false; 4987 } 4988 4989 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4990 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4991 // double, or 64-bit or 128-bit vectors. 4992 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4993 if (BT->getKind() == BuiltinType::Float || 4994 BT->getKind() == BuiltinType::Double || 4995 BT->getKind() == BuiltinType::LongDouble) 4996 return true; 4997 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4998 unsigned VecSize = getContext().getTypeSize(VT); 4999 if (VecSize == 64 || VecSize == 128) 5000 return true; 5001 } 5002 return false; 5003 } 5004 5005 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5006 uint64_t Members) const { 5007 return Members <= 4; 5008 } 5009 5010 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5011 CodeGenFunction &CGF) const { 5012 llvm::Type *BP = CGF.Int8PtrTy; 5013 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5014 5015 CGBuilderTy &Builder = CGF.Builder; 5016 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5017 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5018 5019 if (isEmptyRecord(getContext(), Ty, true)) { 5020 // These are ignored for parameter passing purposes. 5021 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5022 return Builder.CreateBitCast(Addr, PTy); 5023 } 5024 5025 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 5026 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 5027 bool IsIndirect = false; 5028 5029 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5030 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5031 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5032 getABIKind() == ARMABIInfo::AAPCS) 5033 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5034 else 5035 TyAlign = 4; 5036 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5037 if (isIllegalVectorType(Ty) && Size > 16) { 5038 IsIndirect = true; 5039 Size = 4; 5040 TyAlign = 4; 5041 } 5042 5043 // Handle address alignment for ABI alignment > 4 bytes. 5044 if (TyAlign > 4) { 5045 assert((TyAlign & (TyAlign - 1)) == 0 && 5046 "Alignment is not power of 2!"); 5047 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 5048 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 5049 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 5050 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 5051 } 5052 5053 uint64_t Offset = 5054 llvm::RoundUpToAlignment(Size, 4); 5055 llvm::Value *NextAddr = 5056 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5057 "ap.next"); 5058 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5059 5060 if (IsIndirect) 5061 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 5062 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 5063 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 5064 // may not be correctly aligned for the vector type. We create an aligned 5065 // temporary space and copy the content over from ap.cur to the temporary 5066 // space. This is necessary if the natural alignment of the type is greater 5067 // than the ABI alignment. 5068 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 5069 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 5070 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 5071 "var.align"); 5072 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 5073 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 5074 Builder.CreateMemCpy(Dst, Src, 5075 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 5076 TyAlign, false); 5077 Addr = AlignedTemp; //The content is in aligned location. 5078 } 5079 llvm::Type *PTy = 5080 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5081 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5082 5083 return AddrTyped; 5084 } 5085 5086 //===----------------------------------------------------------------------===// 5087 // NVPTX ABI Implementation 5088 //===----------------------------------------------------------------------===// 5089 5090 namespace { 5091 5092 class NVPTXABIInfo : public ABIInfo { 5093 public: 5094 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5095 5096 ABIArgInfo classifyReturnType(QualType RetTy) const; 5097 ABIArgInfo classifyArgumentType(QualType Ty) const; 5098 5099 void computeInfo(CGFunctionInfo &FI) const override; 5100 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5101 CodeGenFunction &CFG) const override; 5102 }; 5103 5104 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5105 public: 5106 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5107 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5108 5109 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5110 CodeGen::CodeGenModule &M) const override; 5111 private: 5112 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5113 // resulting MDNode to the nvvm.annotations MDNode. 5114 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5115 }; 5116 5117 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5118 if (RetTy->isVoidType()) 5119 return ABIArgInfo::getIgnore(); 5120 5121 // note: this is different from default ABI 5122 if (!RetTy->isScalarType()) 5123 return ABIArgInfo::getDirect(); 5124 5125 // Treat an enum type as its underlying type. 5126 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5127 RetTy = EnumTy->getDecl()->getIntegerType(); 5128 5129 return (RetTy->isPromotableIntegerType() ? 5130 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5131 } 5132 5133 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5134 // Treat an enum type as its underlying type. 5135 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5136 Ty = EnumTy->getDecl()->getIntegerType(); 5137 5138 // Return aggregates type as indirect by value 5139 if (isAggregateTypeForABI(Ty)) 5140 return ABIArgInfo::getIndirect(0, /* byval */ true); 5141 5142 return (Ty->isPromotableIntegerType() ? 5143 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5144 } 5145 5146 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5147 if (!getCXXABI().classifyReturnType(FI)) 5148 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5149 for (auto &I : FI.arguments()) 5150 I.info = classifyArgumentType(I.type); 5151 5152 // Always honor user-specified calling convention. 5153 if (FI.getCallingConvention() != llvm::CallingConv::C) 5154 return; 5155 5156 FI.setEffectiveCallingConvention(getRuntimeCC()); 5157 } 5158 5159 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5160 CodeGenFunction &CFG) const { 5161 llvm_unreachable("NVPTX does not support varargs"); 5162 } 5163 5164 void NVPTXTargetCodeGenInfo:: 5165 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5166 CodeGen::CodeGenModule &M) const{ 5167 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5168 if (!FD) return; 5169 5170 llvm::Function *F = cast<llvm::Function>(GV); 5171 5172 // Perform special handling in OpenCL mode 5173 if (M.getLangOpts().OpenCL) { 5174 // Use OpenCL function attributes to check for kernel functions 5175 // By default, all functions are device functions 5176 if (FD->hasAttr<OpenCLKernelAttr>()) { 5177 // OpenCL __kernel functions get kernel metadata 5178 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5179 addNVVMMetadata(F, "kernel", 1); 5180 // And kernel functions are not subject to inlining 5181 F->addFnAttr(llvm::Attribute::NoInline); 5182 } 5183 } 5184 5185 // Perform special handling in CUDA mode. 5186 if (M.getLangOpts().CUDA) { 5187 // CUDA __global__ functions get a kernel metadata entry. Since 5188 // __global__ functions cannot be called from the device, we do not 5189 // need to set the noinline attribute. 5190 if (FD->hasAttr<CUDAGlobalAttr>()) { 5191 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5192 addNVVMMetadata(F, "kernel", 1); 5193 } 5194 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 5195 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5196 addNVVMMetadata(F, "maxntidx", 5197 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 5198 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 5199 // zero value from getMinBlocks either means it was not specified in 5200 // __launch_bounds__ or the user specified a 0 value. In both cases, we 5201 // don't have to add a PTX directive. 5202 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 5203 if (MinCTASM > 0) { 5204 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5205 addNVVMMetadata(F, "minctasm", MinCTASM); 5206 } 5207 } 5208 } 5209 } 5210 5211 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5212 int Operand) { 5213 llvm::Module *M = F->getParent(); 5214 llvm::LLVMContext &Ctx = M->getContext(); 5215 5216 // Get "nvvm.annotations" metadata node 5217 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5218 5219 llvm::Metadata *MDVals[] = { 5220 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5221 llvm::ConstantAsMetadata::get( 5222 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5223 // Append metadata to nvvm.annotations 5224 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5225 } 5226 } 5227 5228 //===----------------------------------------------------------------------===// 5229 // SystemZ ABI Implementation 5230 //===----------------------------------------------------------------------===// 5231 5232 namespace { 5233 5234 class SystemZABIInfo : public ABIInfo { 5235 public: 5236 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5237 5238 bool isPromotableIntegerType(QualType Ty) const; 5239 bool isCompoundType(QualType Ty) const; 5240 bool isFPArgumentType(QualType Ty) const; 5241 5242 ABIArgInfo classifyReturnType(QualType RetTy) const; 5243 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5244 5245 void computeInfo(CGFunctionInfo &FI) const override { 5246 if (!getCXXABI().classifyReturnType(FI)) 5247 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5248 for (auto &I : FI.arguments()) 5249 I.info = classifyArgumentType(I.type); 5250 } 5251 5252 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5253 CodeGenFunction &CGF) const override; 5254 }; 5255 5256 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5257 public: 5258 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 5259 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 5260 }; 5261 5262 } 5263 5264 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5265 // Treat an enum type as its underlying type. 5266 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5267 Ty = EnumTy->getDecl()->getIntegerType(); 5268 5269 // Promotable integer types are required to be promoted by the ABI. 5270 if (Ty->isPromotableIntegerType()) 5271 return true; 5272 5273 // 32-bit values must also be promoted. 5274 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5275 switch (BT->getKind()) { 5276 case BuiltinType::Int: 5277 case BuiltinType::UInt: 5278 return true; 5279 default: 5280 return false; 5281 } 5282 return false; 5283 } 5284 5285 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5286 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 5287 } 5288 5289 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5290 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5291 switch (BT->getKind()) { 5292 case BuiltinType::Float: 5293 case BuiltinType::Double: 5294 return true; 5295 default: 5296 return false; 5297 } 5298 5299 if (const RecordType *RT = Ty->getAsStructureType()) { 5300 const RecordDecl *RD = RT->getDecl(); 5301 bool Found = false; 5302 5303 // If this is a C++ record, check the bases first. 5304 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5305 for (const auto &I : CXXRD->bases()) { 5306 QualType Base = I.getType(); 5307 5308 // Empty bases don't affect things either way. 5309 if (isEmptyRecord(getContext(), Base, true)) 5310 continue; 5311 5312 if (Found) 5313 return false; 5314 Found = isFPArgumentType(Base); 5315 if (!Found) 5316 return false; 5317 } 5318 5319 // Check the fields. 5320 for (const auto *FD : RD->fields()) { 5321 // Empty bitfields don't affect things either way. 5322 // Unlike isSingleElementStruct(), empty structure and array fields 5323 // do count. So do anonymous bitfields that aren't zero-sized. 5324 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5325 return true; 5326 5327 // Unlike isSingleElementStruct(), arrays do not count. 5328 // Nested isFPArgumentType structures still do though. 5329 if (Found) 5330 return false; 5331 Found = isFPArgumentType(FD->getType()); 5332 if (!Found) 5333 return false; 5334 } 5335 5336 // Unlike isSingleElementStruct(), trailing padding is allowed. 5337 // An 8-byte aligned struct s { float f; } is passed as a double. 5338 return Found; 5339 } 5340 5341 return false; 5342 } 5343 5344 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5345 CodeGenFunction &CGF) const { 5346 // Assume that va_list type is correct; should be pointer to LLVM type: 5347 // struct { 5348 // i64 __gpr; 5349 // i64 __fpr; 5350 // i8 *__overflow_arg_area; 5351 // i8 *__reg_save_area; 5352 // }; 5353 5354 // Every argument occupies 8 bytes and is passed by preference in either 5355 // GPRs or FPRs. 5356 Ty = CGF.getContext().getCanonicalType(Ty); 5357 ABIArgInfo AI = classifyArgumentType(Ty); 5358 bool InFPRs = isFPArgumentType(Ty); 5359 5360 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 5361 bool IsIndirect = AI.isIndirect(); 5362 unsigned UnpaddedBitSize; 5363 if (IsIndirect) { 5364 APTy = llvm::PointerType::getUnqual(APTy); 5365 UnpaddedBitSize = 64; 5366 } else 5367 UnpaddedBitSize = getContext().getTypeSize(Ty); 5368 unsigned PaddedBitSize = 64; 5369 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5370 5371 unsigned PaddedSize = PaddedBitSize / 8; 5372 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5373 5374 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5375 if (InFPRs) { 5376 MaxRegs = 4; // Maximum of 4 FPR arguments 5377 RegCountField = 1; // __fpr 5378 RegSaveIndex = 16; // save offset for f0 5379 RegPadding = 0; // floats are passed in the high bits of an FPR 5380 } else { 5381 MaxRegs = 5; // Maximum of 5 GPR arguments 5382 RegCountField = 0; // __gpr 5383 RegSaveIndex = 2; // save offset for r2 5384 RegPadding = Padding; // values are passed in the low bits of a GPR 5385 } 5386 5387 llvm::Value *RegCountPtr = 5388 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 5389 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5390 llvm::Type *IndexTy = RegCount->getType(); 5391 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5392 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5393 "fits_in_regs"); 5394 5395 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5396 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5397 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5398 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5399 5400 // Emit code to load the value if it was passed in registers. 5401 CGF.EmitBlock(InRegBlock); 5402 5403 // Work out the address of an argument register. 5404 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5405 llvm::Value *ScaledRegCount = 5406 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5407 llvm::Value *RegBase = 5408 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5409 llvm::Value *RegOffset = 5410 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5411 llvm::Value *RegSaveAreaPtr = 5412 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 5413 llvm::Value *RegSaveArea = 5414 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5415 llvm::Value *RawRegAddr = 5416 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5417 llvm::Value *RegAddr = 5418 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5419 5420 // Update the register count 5421 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5422 llvm::Value *NewRegCount = 5423 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5424 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5425 CGF.EmitBranch(ContBlock); 5426 5427 // Emit code to load the value if it was passed in memory. 5428 CGF.EmitBlock(InMemBlock); 5429 5430 // Work out the address of a stack argument. 5431 llvm::Value *OverflowArgAreaPtr = 5432 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 5433 llvm::Value *OverflowArgArea = 5434 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5435 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5436 llvm::Value *RawMemAddr = 5437 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5438 llvm::Value *MemAddr = 5439 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5440 5441 // Update overflow_arg_area_ptr pointer 5442 llvm::Value *NewOverflowArgArea = 5443 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5444 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5445 CGF.EmitBranch(ContBlock); 5446 5447 // Return the appropriate result. 5448 CGF.EmitBlock(ContBlock); 5449 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5450 ResAddr->addIncoming(RegAddr, InRegBlock); 5451 ResAddr->addIncoming(MemAddr, InMemBlock); 5452 5453 if (IsIndirect) 5454 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5455 5456 return ResAddr; 5457 } 5458 5459 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5460 if (RetTy->isVoidType()) 5461 return ABIArgInfo::getIgnore(); 5462 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5463 return ABIArgInfo::getIndirect(0); 5464 return (isPromotableIntegerType(RetTy) ? 5465 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5466 } 5467 5468 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5469 // Handle the generic C++ ABI. 5470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5471 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5472 5473 // Integers and enums are extended to full register width. 5474 if (isPromotableIntegerType(Ty)) 5475 return ABIArgInfo::getExtend(); 5476 5477 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5478 uint64_t Size = getContext().getTypeSize(Ty); 5479 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5480 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5481 5482 // Handle small structures. 5483 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5484 // Structures with flexible arrays have variable length, so really 5485 // fail the size test above. 5486 const RecordDecl *RD = RT->getDecl(); 5487 if (RD->hasFlexibleArrayMember()) 5488 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5489 5490 // The structure is passed as an unextended integer, a float, or a double. 5491 llvm::Type *PassTy; 5492 if (isFPArgumentType(Ty)) { 5493 assert(Size == 32 || Size == 64); 5494 if (Size == 32) 5495 PassTy = llvm::Type::getFloatTy(getVMContext()); 5496 else 5497 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5498 } else 5499 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5500 return ABIArgInfo::getDirect(PassTy); 5501 } 5502 5503 // Non-structure compounds are passed indirectly. 5504 if (isCompoundType(Ty)) 5505 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5506 5507 return ABIArgInfo::getDirect(nullptr); 5508 } 5509 5510 //===----------------------------------------------------------------------===// 5511 // MSP430 ABI Implementation 5512 //===----------------------------------------------------------------------===// 5513 5514 namespace { 5515 5516 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5517 public: 5518 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5519 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5520 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5521 CodeGen::CodeGenModule &M) const override; 5522 }; 5523 5524 } 5525 5526 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5527 llvm::GlobalValue *GV, 5528 CodeGen::CodeGenModule &M) const { 5529 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5530 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5531 // Handle 'interrupt' attribute: 5532 llvm::Function *F = cast<llvm::Function>(GV); 5533 5534 // Step 1: Set ISR calling convention. 5535 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5536 5537 // Step 2: Add attributes goodness. 5538 F->addFnAttr(llvm::Attribute::NoInline); 5539 5540 // Step 3: Emit ISR vector alias. 5541 unsigned Num = attr->getNumber() / 2; 5542 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5543 "__isr_" + Twine(Num), F); 5544 } 5545 } 5546 } 5547 5548 //===----------------------------------------------------------------------===// 5549 // MIPS ABI Implementation. This works for both little-endian and 5550 // big-endian variants. 5551 //===----------------------------------------------------------------------===// 5552 5553 namespace { 5554 class MipsABIInfo : public ABIInfo { 5555 bool IsO32; 5556 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5557 void CoerceToIntArgs(uint64_t TySize, 5558 SmallVectorImpl<llvm::Type *> &ArgList) const; 5559 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5560 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5561 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5562 public: 5563 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5564 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5565 StackAlignInBytes(IsO32 ? 8 : 16) {} 5566 5567 ABIArgInfo classifyReturnType(QualType RetTy) const; 5568 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5569 void computeInfo(CGFunctionInfo &FI) const override; 5570 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5571 CodeGenFunction &CGF) const override; 5572 }; 5573 5574 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5575 unsigned SizeOfUnwindException; 5576 public: 5577 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5578 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5579 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5580 5581 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5582 return 29; 5583 } 5584 5585 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5586 CodeGen::CodeGenModule &CGM) const override { 5587 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5588 if (!FD) return; 5589 llvm::Function *Fn = cast<llvm::Function>(GV); 5590 if (FD->hasAttr<Mips16Attr>()) { 5591 Fn->addFnAttr("mips16"); 5592 } 5593 else if (FD->hasAttr<NoMips16Attr>()) { 5594 Fn->addFnAttr("nomips16"); 5595 } 5596 } 5597 5598 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5599 llvm::Value *Address) const override; 5600 5601 unsigned getSizeOfUnwindException() const override { 5602 return SizeOfUnwindException; 5603 } 5604 }; 5605 } 5606 5607 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5608 SmallVectorImpl<llvm::Type *> &ArgList) const { 5609 llvm::IntegerType *IntTy = 5610 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5611 5612 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5613 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5614 ArgList.push_back(IntTy); 5615 5616 // If necessary, add one more integer type to ArgList. 5617 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5618 5619 if (R) 5620 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5621 } 5622 5623 // In N32/64, an aligned double precision floating point field is passed in 5624 // a register. 5625 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5626 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5627 5628 if (IsO32) { 5629 CoerceToIntArgs(TySize, ArgList); 5630 return llvm::StructType::get(getVMContext(), ArgList); 5631 } 5632 5633 if (Ty->isComplexType()) 5634 return CGT.ConvertType(Ty); 5635 5636 const RecordType *RT = Ty->getAs<RecordType>(); 5637 5638 // Unions/vectors are passed in integer registers. 5639 if (!RT || !RT->isStructureOrClassType()) { 5640 CoerceToIntArgs(TySize, ArgList); 5641 return llvm::StructType::get(getVMContext(), ArgList); 5642 } 5643 5644 const RecordDecl *RD = RT->getDecl(); 5645 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5646 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5647 5648 uint64_t LastOffset = 0; 5649 unsigned idx = 0; 5650 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5651 5652 // Iterate over fields in the struct/class and check if there are any aligned 5653 // double fields. 5654 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5655 i != e; ++i, ++idx) { 5656 const QualType Ty = i->getType(); 5657 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5658 5659 if (!BT || BT->getKind() != BuiltinType::Double) 5660 continue; 5661 5662 uint64_t Offset = Layout.getFieldOffset(idx); 5663 if (Offset % 64) // Ignore doubles that are not aligned. 5664 continue; 5665 5666 // Add ((Offset - LastOffset) / 64) args of type i64. 5667 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5668 ArgList.push_back(I64); 5669 5670 // Add double type. 5671 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5672 LastOffset = Offset + 64; 5673 } 5674 5675 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5676 ArgList.append(IntArgList.begin(), IntArgList.end()); 5677 5678 return llvm::StructType::get(getVMContext(), ArgList); 5679 } 5680 5681 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5682 uint64_t Offset) const { 5683 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5684 return nullptr; 5685 5686 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5687 } 5688 5689 ABIArgInfo 5690 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5691 Ty = useFirstFieldIfTransparentUnion(Ty); 5692 5693 uint64_t OrigOffset = Offset; 5694 uint64_t TySize = getContext().getTypeSize(Ty); 5695 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5696 5697 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5698 (uint64_t)StackAlignInBytes); 5699 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5700 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5701 5702 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5703 // Ignore empty aggregates. 5704 if (TySize == 0) 5705 return ABIArgInfo::getIgnore(); 5706 5707 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5708 Offset = OrigOffset + MinABIStackAlignInBytes; 5709 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5710 } 5711 5712 // If we have reached here, aggregates are passed directly by coercing to 5713 // another structure type. Padding is inserted if the offset of the 5714 // aggregate is unaligned. 5715 ABIArgInfo ArgInfo = 5716 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5717 getPaddingType(OrigOffset, CurrOffset)); 5718 ArgInfo.setInReg(true); 5719 return ArgInfo; 5720 } 5721 5722 // Treat an enum type as its underlying type. 5723 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5724 Ty = EnumTy->getDecl()->getIntegerType(); 5725 5726 // All integral types are promoted to the GPR width. 5727 if (Ty->isIntegralOrEnumerationType()) 5728 return ABIArgInfo::getExtend(); 5729 5730 return ABIArgInfo::getDirect( 5731 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5732 } 5733 5734 llvm::Type* 5735 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5736 const RecordType *RT = RetTy->getAs<RecordType>(); 5737 SmallVector<llvm::Type*, 8> RTList; 5738 5739 if (RT && RT->isStructureOrClassType()) { 5740 const RecordDecl *RD = RT->getDecl(); 5741 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5742 unsigned FieldCnt = Layout.getFieldCount(); 5743 5744 // N32/64 returns struct/classes in floating point registers if the 5745 // following conditions are met: 5746 // 1. The size of the struct/class is no larger than 128-bit. 5747 // 2. The struct/class has one or two fields all of which are floating 5748 // point types. 5749 // 3. The offset of the first field is zero (this follows what gcc does). 5750 // 5751 // Any other composite results are returned in integer registers. 5752 // 5753 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5754 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5755 for (; b != e; ++b) { 5756 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5757 5758 if (!BT || !BT->isFloatingPoint()) 5759 break; 5760 5761 RTList.push_back(CGT.ConvertType(b->getType())); 5762 } 5763 5764 if (b == e) 5765 return llvm::StructType::get(getVMContext(), RTList, 5766 RD->hasAttr<PackedAttr>()); 5767 5768 RTList.clear(); 5769 } 5770 } 5771 5772 CoerceToIntArgs(Size, RTList); 5773 return llvm::StructType::get(getVMContext(), RTList); 5774 } 5775 5776 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5777 uint64_t Size = getContext().getTypeSize(RetTy); 5778 5779 if (RetTy->isVoidType()) 5780 return ABIArgInfo::getIgnore(); 5781 5782 // O32 doesn't treat zero-sized structs differently from other structs. 5783 // However, N32/N64 ignores zero sized return values. 5784 if (!IsO32 && Size == 0) 5785 return ABIArgInfo::getIgnore(); 5786 5787 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5788 if (Size <= 128) { 5789 if (RetTy->isAnyComplexType()) 5790 return ABIArgInfo::getDirect(); 5791 5792 // O32 returns integer vectors in registers and N32/N64 returns all small 5793 // aggregates in registers. 5794 if (!IsO32 || 5795 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 5796 ABIArgInfo ArgInfo = 5797 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5798 ArgInfo.setInReg(true); 5799 return ArgInfo; 5800 } 5801 } 5802 5803 return ABIArgInfo::getIndirect(0); 5804 } 5805 5806 // Treat an enum type as its underlying type. 5807 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5808 RetTy = EnumTy->getDecl()->getIntegerType(); 5809 5810 return (RetTy->isPromotableIntegerType() ? 5811 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5812 } 5813 5814 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5815 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5816 if (!getCXXABI().classifyReturnType(FI)) 5817 RetInfo = classifyReturnType(FI.getReturnType()); 5818 5819 // Check if a pointer to an aggregate is passed as a hidden argument. 5820 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5821 5822 for (auto &I : FI.arguments()) 5823 I.info = classifyArgumentType(I.type, Offset); 5824 } 5825 5826 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5827 CodeGenFunction &CGF) const { 5828 llvm::Type *BP = CGF.Int8PtrTy; 5829 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5830 5831 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 5832 // Pointers are also promoted in the same way but this only matters for N32. 5833 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 5834 unsigned PtrWidth = getTarget().getPointerWidth(0); 5835 if ((Ty->isIntegerType() && 5836 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) || 5837 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 5838 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits, 5839 Ty->isSignedIntegerType()); 5840 } 5841 5842 CGBuilderTy &Builder = CGF.Builder; 5843 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5844 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5845 int64_t TypeAlign = 5846 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes); 5847 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5848 llvm::Value *AddrTyped; 5849 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5850 5851 if (TypeAlign > MinABIStackAlignInBytes) { 5852 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5853 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5854 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5855 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5856 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5857 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5858 } 5859 else 5860 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5861 5862 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5863 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5864 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty); 5865 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign); 5866 llvm::Value *NextAddr = 5867 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5868 "ap.next"); 5869 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5870 5871 return AddrTyped; 5872 } 5873 5874 bool 5875 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5876 llvm::Value *Address) const { 5877 // This information comes from gcc's implementation, which seems to 5878 // as canonical as it gets. 5879 5880 // Everything on MIPS is 4 bytes. Double-precision FP registers 5881 // are aliased to pairs of single-precision FP registers. 5882 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5883 5884 // 0-31 are the general purpose registers, $0 - $31. 5885 // 32-63 are the floating-point registers, $f0 - $f31. 5886 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5887 // 66 is the (notional, I think) register for signal-handler return. 5888 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5889 5890 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5891 // They are one bit wide and ignored here. 5892 5893 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5894 // (coprocessor 1 is the FP unit) 5895 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5896 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5897 // 176-181 are the DSP accumulator registers. 5898 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5899 return false; 5900 } 5901 5902 //===----------------------------------------------------------------------===// 5903 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5904 // Currently subclassed only to implement custom OpenCL C function attribute 5905 // handling. 5906 //===----------------------------------------------------------------------===// 5907 5908 namespace { 5909 5910 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5911 public: 5912 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5913 : DefaultTargetCodeGenInfo(CGT) {} 5914 5915 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5916 CodeGen::CodeGenModule &M) const override; 5917 }; 5918 5919 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5920 llvm::GlobalValue *GV, 5921 CodeGen::CodeGenModule &M) const { 5922 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5923 if (!FD) return; 5924 5925 llvm::Function *F = cast<llvm::Function>(GV); 5926 5927 if (M.getLangOpts().OpenCL) { 5928 if (FD->hasAttr<OpenCLKernelAttr>()) { 5929 // OpenCL C Kernel functions are not subject to inlining 5930 F->addFnAttr(llvm::Attribute::NoInline); 5931 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5932 if (Attr) { 5933 // Convert the reqd_work_group_size() attributes to metadata. 5934 llvm::LLVMContext &Context = F->getContext(); 5935 llvm::NamedMDNode *OpenCLMetadata = 5936 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5937 5938 SmallVector<llvm::Metadata *, 5> Operands; 5939 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 5940 5941 Operands.push_back( 5942 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5943 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 5944 Operands.push_back( 5945 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5946 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 5947 Operands.push_back( 5948 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5949 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 5950 5951 // Add a boolean constant operand for "required" (true) or "hint" (false) 5952 // for implementing the work_group_size_hint attr later. Currently 5953 // always true as the hint is not yet implemented. 5954 Operands.push_back( 5955 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 5956 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5957 } 5958 } 5959 } 5960 } 5961 5962 } 5963 5964 //===----------------------------------------------------------------------===// 5965 // Hexagon ABI Implementation 5966 //===----------------------------------------------------------------------===// 5967 5968 namespace { 5969 5970 class HexagonABIInfo : public ABIInfo { 5971 5972 5973 public: 5974 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5975 5976 private: 5977 5978 ABIArgInfo classifyReturnType(QualType RetTy) const; 5979 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5980 5981 void computeInfo(CGFunctionInfo &FI) const override; 5982 5983 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5984 CodeGenFunction &CGF) const override; 5985 }; 5986 5987 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5988 public: 5989 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5990 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5991 5992 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5993 return 29; 5994 } 5995 }; 5996 5997 } 5998 5999 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6000 if (!getCXXABI().classifyReturnType(FI)) 6001 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6002 for (auto &I : FI.arguments()) 6003 I.info = classifyArgumentType(I.type); 6004 } 6005 6006 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6007 if (!isAggregateTypeForABI(Ty)) { 6008 // Treat an enum type as its underlying type. 6009 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6010 Ty = EnumTy->getDecl()->getIntegerType(); 6011 6012 return (Ty->isPromotableIntegerType() ? 6013 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6014 } 6015 6016 // Ignore empty records. 6017 if (isEmptyRecord(getContext(), Ty, true)) 6018 return ABIArgInfo::getIgnore(); 6019 6020 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6021 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6022 6023 uint64_t Size = getContext().getTypeSize(Ty); 6024 if (Size > 64) 6025 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6026 // Pass in the smallest viable integer type. 6027 else if (Size > 32) 6028 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6029 else if (Size > 16) 6030 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6031 else if (Size > 8) 6032 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6033 else 6034 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6035 } 6036 6037 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6038 if (RetTy->isVoidType()) 6039 return ABIArgInfo::getIgnore(); 6040 6041 // Large vector types should be returned via memory. 6042 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6043 return ABIArgInfo::getIndirect(0); 6044 6045 if (!isAggregateTypeForABI(RetTy)) { 6046 // Treat an enum type as its underlying type. 6047 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6048 RetTy = EnumTy->getDecl()->getIntegerType(); 6049 6050 return (RetTy->isPromotableIntegerType() ? 6051 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6052 } 6053 6054 if (isEmptyRecord(getContext(), RetTy, true)) 6055 return ABIArgInfo::getIgnore(); 6056 6057 // Aggregates <= 8 bytes are returned in r0; other aggregates 6058 // are returned indirectly. 6059 uint64_t Size = getContext().getTypeSize(RetTy); 6060 if (Size <= 64) { 6061 // Return in the smallest viable integer type. 6062 if (Size <= 8) 6063 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6064 if (Size <= 16) 6065 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6066 if (Size <= 32) 6067 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6068 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6069 } 6070 6071 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6072 } 6073 6074 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6075 CodeGenFunction &CGF) const { 6076 // FIXME: Need to handle alignment 6077 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6078 6079 CGBuilderTy &Builder = CGF.Builder; 6080 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 6081 "ap"); 6082 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6083 llvm::Type *PTy = 6084 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 6085 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 6086 6087 uint64_t Offset = 6088 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 6089 llvm::Value *NextAddr = 6090 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 6091 "ap.next"); 6092 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 6093 6094 return AddrTyped; 6095 } 6096 6097 //===----------------------------------------------------------------------===// 6098 // AMDGPU ABI Implementation 6099 //===----------------------------------------------------------------------===// 6100 6101 namespace { 6102 6103 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6104 public: 6105 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6106 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6107 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6108 CodeGen::CodeGenModule &M) const override; 6109 }; 6110 6111 } 6112 6113 void AMDGPUTargetCodeGenInfo::SetTargetAttributes( 6114 const Decl *D, 6115 llvm::GlobalValue *GV, 6116 CodeGen::CodeGenModule &M) const { 6117 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 6118 if (!FD) 6119 return; 6120 6121 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6122 llvm::Function *F = cast<llvm::Function>(GV); 6123 uint32_t NumVGPR = Attr->getNumVGPR(); 6124 if (NumVGPR != 0) 6125 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6126 } 6127 6128 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6129 llvm::Function *F = cast<llvm::Function>(GV); 6130 unsigned NumSGPR = Attr->getNumSGPR(); 6131 if (NumSGPR != 0) 6132 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6133 } 6134 } 6135 6136 6137 //===----------------------------------------------------------------------===// 6138 // SPARC v9 ABI Implementation. 6139 // Based on the SPARC Compliance Definition version 2.4.1. 6140 // 6141 // Function arguments a mapped to a nominal "parameter array" and promoted to 6142 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6143 // the array, structs larger than 16 bytes are passed indirectly. 6144 // 6145 // One case requires special care: 6146 // 6147 // struct mixed { 6148 // int i; 6149 // float f; 6150 // }; 6151 // 6152 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6153 // parameter array, but the int is passed in an integer register, and the float 6154 // is passed in a floating point register. This is represented as two arguments 6155 // with the LLVM IR inreg attribute: 6156 // 6157 // declare void f(i32 inreg %i, float inreg %f) 6158 // 6159 // The code generator will only allocate 4 bytes from the parameter array for 6160 // the inreg arguments. All other arguments are allocated a multiple of 8 6161 // bytes. 6162 // 6163 namespace { 6164 class SparcV9ABIInfo : public ABIInfo { 6165 public: 6166 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6167 6168 private: 6169 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6170 void computeInfo(CGFunctionInfo &FI) const override; 6171 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6172 CodeGenFunction &CGF) const override; 6173 6174 // Coercion type builder for structs passed in registers. The coercion type 6175 // serves two purposes: 6176 // 6177 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6178 // in registers. 6179 // 2. Expose aligned floating point elements as first-level elements, so the 6180 // code generator knows to pass them in floating point registers. 6181 // 6182 // We also compute the InReg flag which indicates that the struct contains 6183 // aligned 32-bit floats. 6184 // 6185 struct CoerceBuilder { 6186 llvm::LLVMContext &Context; 6187 const llvm::DataLayout &DL; 6188 SmallVector<llvm::Type*, 8> Elems; 6189 uint64_t Size; 6190 bool InReg; 6191 6192 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6193 : Context(c), DL(dl), Size(0), InReg(false) {} 6194 6195 // Pad Elems with integers until Size is ToSize. 6196 void pad(uint64_t ToSize) { 6197 assert(ToSize >= Size && "Cannot remove elements"); 6198 if (ToSize == Size) 6199 return; 6200 6201 // Finish the current 64-bit word. 6202 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 6203 if (Aligned > Size && Aligned <= ToSize) { 6204 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6205 Size = Aligned; 6206 } 6207 6208 // Add whole 64-bit words. 6209 while (Size + 64 <= ToSize) { 6210 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6211 Size += 64; 6212 } 6213 6214 // Final in-word padding. 6215 if (Size < ToSize) { 6216 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6217 Size = ToSize; 6218 } 6219 } 6220 6221 // Add a floating point element at Offset. 6222 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6223 // Unaligned floats are treated as integers. 6224 if (Offset % Bits) 6225 return; 6226 // The InReg flag is only required if there are any floats < 64 bits. 6227 if (Bits < 64) 6228 InReg = true; 6229 pad(Offset); 6230 Elems.push_back(Ty); 6231 Size = Offset + Bits; 6232 } 6233 6234 // Add a struct type to the coercion type, starting at Offset (in bits). 6235 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6236 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6237 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6238 llvm::Type *ElemTy = StrTy->getElementType(i); 6239 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6240 switch (ElemTy->getTypeID()) { 6241 case llvm::Type::StructTyID: 6242 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6243 break; 6244 case llvm::Type::FloatTyID: 6245 addFloat(ElemOffset, ElemTy, 32); 6246 break; 6247 case llvm::Type::DoubleTyID: 6248 addFloat(ElemOffset, ElemTy, 64); 6249 break; 6250 case llvm::Type::FP128TyID: 6251 addFloat(ElemOffset, ElemTy, 128); 6252 break; 6253 case llvm::Type::PointerTyID: 6254 if (ElemOffset % 64 == 0) { 6255 pad(ElemOffset); 6256 Elems.push_back(ElemTy); 6257 Size += 64; 6258 } 6259 break; 6260 default: 6261 break; 6262 } 6263 } 6264 } 6265 6266 // Check if Ty is a usable substitute for the coercion type. 6267 bool isUsableType(llvm::StructType *Ty) const { 6268 if (Ty->getNumElements() != Elems.size()) 6269 return false; 6270 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 6271 if (Elems[i] != Ty->getElementType(i)) 6272 return false; 6273 return true; 6274 } 6275 6276 // Get the coercion type as a literal struct type. 6277 llvm::Type *getType() const { 6278 if (Elems.size() == 1) 6279 return Elems.front(); 6280 else 6281 return llvm::StructType::get(Context, Elems); 6282 } 6283 }; 6284 }; 6285 } // end anonymous namespace 6286 6287 ABIArgInfo 6288 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6289 if (Ty->isVoidType()) 6290 return ABIArgInfo::getIgnore(); 6291 6292 uint64_t Size = getContext().getTypeSize(Ty); 6293 6294 // Anything too big to fit in registers is passed with an explicit indirect 6295 // pointer / sret pointer. 6296 if (Size > SizeLimit) 6297 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6298 6299 // Treat an enum type as its underlying type. 6300 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6301 Ty = EnumTy->getDecl()->getIntegerType(); 6302 6303 // Integer types smaller than a register are extended. 6304 if (Size < 64 && Ty->isIntegerType()) 6305 return ABIArgInfo::getExtend(); 6306 6307 // Other non-aggregates go in registers. 6308 if (!isAggregateTypeForABI(Ty)) 6309 return ABIArgInfo::getDirect(); 6310 6311 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6312 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6313 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6314 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6315 6316 // This is a small aggregate type that should be passed in registers. 6317 // Build a coercion type from the LLVM struct type. 6318 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6319 if (!StrTy) 6320 return ABIArgInfo::getDirect(); 6321 6322 CoerceBuilder CB(getVMContext(), getDataLayout()); 6323 CB.addStruct(0, StrTy); 6324 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6325 6326 // Try to use the original type for coercion. 6327 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6328 6329 if (CB.InReg) 6330 return ABIArgInfo::getDirectInReg(CoerceTy); 6331 else 6332 return ABIArgInfo::getDirect(CoerceTy); 6333 } 6334 6335 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6336 CodeGenFunction &CGF) const { 6337 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6338 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6339 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6340 AI.setCoerceToType(ArgTy); 6341 6342 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6343 CGBuilderTy &Builder = CGF.Builder; 6344 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6345 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6346 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6347 llvm::Value *ArgAddr; 6348 unsigned Stride; 6349 6350 switch (AI.getKind()) { 6351 case ABIArgInfo::Expand: 6352 case ABIArgInfo::InAlloca: 6353 llvm_unreachable("Unsupported ABI kind for va_arg"); 6354 6355 case ABIArgInfo::Extend: 6356 Stride = 8; 6357 ArgAddr = Builder 6358 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6359 "extend"); 6360 break; 6361 6362 case ABIArgInfo::Direct: 6363 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6364 ArgAddr = Addr; 6365 break; 6366 6367 case ABIArgInfo::Indirect: 6368 Stride = 8; 6369 ArgAddr = Builder.CreateBitCast(Addr, 6370 llvm::PointerType::getUnqual(ArgPtrTy), 6371 "indirect"); 6372 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6373 break; 6374 6375 case ABIArgInfo::Ignore: 6376 return llvm::UndefValue::get(ArgPtrTy); 6377 } 6378 6379 // Update VAList. 6380 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6381 Builder.CreateStore(Addr, VAListAddrAsBPP); 6382 6383 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6384 } 6385 6386 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6387 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6388 for (auto &I : FI.arguments()) 6389 I.info = classifyType(I.type, 16 * 8); 6390 } 6391 6392 namespace { 6393 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6394 public: 6395 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6396 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6397 6398 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6399 return 14; 6400 } 6401 6402 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6403 llvm::Value *Address) const override; 6404 }; 6405 } // end anonymous namespace 6406 6407 bool 6408 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6409 llvm::Value *Address) const { 6410 // This is calculated from the LLVM and GCC tables and verified 6411 // against gcc output. AFAIK all ABIs use the same encoding. 6412 6413 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6414 6415 llvm::IntegerType *i8 = CGF.Int8Ty; 6416 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6417 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6418 6419 // 0-31: the 8-byte general-purpose registers 6420 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6421 6422 // 32-63: f0-31, the 4-byte floating-point registers 6423 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6424 6425 // Y = 64 6426 // PSR = 65 6427 // WIM = 66 6428 // TBR = 67 6429 // PC = 68 6430 // NPC = 69 6431 // FSR = 70 6432 // CSR = 71 6433 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6434 6435 // 72-87: d0-15, the 8-byte floating-point registers 6436 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6437 6438 return false; 6439 } 6440 6441 6442 //===----------------------------------------------------------------------===// 6443 // XCore ABI Implementation 6444 //===----------------------------------------------------------------------===// 6445 6446 namespace { 6447 6448 /// A SmallStringEnc instance is used to build up the TypeString by passing 6449 /// it by reference between functions that append to it. 6450 typedef llvm::SmallString<128> SmallStringEnc; 6451 6452 /// TypeStringCache caches the meta encodings of Types. 6453 /// 6454 /// The reason for caching TypeStrings is two fold: 6455 /// 1. To cache a type's encoding for later uses; 6456 /// 2. As a means to break recursive member type inclusion. 6457 /// 6458 /// A cache Entry can have a Status of: 6459 /// NonRecursive: The type encoding is not recursive; 6460 /// Recursive: The type encoding is recursive; 6461 /// Incomplete: An incomplete TypeString; 6462 /// IncompleteUsed: An incomplete TypeString that has been used in a 6463 /// Recursive type encoding. 6464 /// 6465 /// A NonRecursive entry will have all of its sub-members expanded as fully 6466 /// as possible. Whilst it may contain types which are recursive, the type 6467 /// itself is not recursive and thus its encoding may be safely used whenever 6468 /// the type is encountered. 6469 /// 6470 /// A Recursive entry will have all of its sub-members expanded as fully as 6471 /// possible. The type itself is recursive and it may contain other types which 6472 /// are recursive. The Recursive encoding must not be used during the expansion 6473 /// of a recursive type's recursive branch. For simplicity the code uses 6474 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6475 /// 6476 /// An Incomplete entry is always a RecordType and only encodes its 6477 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6478 /// are placed into the cache during type expansion as a means to identify and 6479 /// handle recursive inclusion of types as sub-members. If there is recursion 6480 /// the entry becomes IncompleteUsed. 6481 /// 6482 /// During the expansion of a RecordType's members: 6483 /// 6484 /// If the cache contains a NonRecursive encoding for the member type, the 6485 /// cached encoding is used; 6486 /// 6487 /// If the cache contains a Recursive encoding for the member type, the 6488 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6489 /// 6490 /// If the member is a RecordType, an Incomplete encoding is placed into the 6491 /// cache to break potential recursive inclusion of itself as a sub-member; 6492 /// 6493 /// Once a member RecordType has been expanded, its temporary incomplete 6494 /// entry is removed from the cache. If a Recursive encoding was swapped out 6495 /// it is swapped back in; 6496 /// 6497 /// If an incomplete entry is used to expand a sub-member, the incomplete 6498 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6499 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6500 /// 6501 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6502 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6503 /// Else the member is part of a recursive type and thus the recursion has 6504 /// been exited too soon for the encoding to be correct for the member. 6505 /// 6506 class TypeStringCache { 6507 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6508 struct Entry { 6509 std::string Str; // The encoded TypeString for the type. 6510 enum Status State; // Information about the encoding in 'Str'. 6511 std::string Swapped; // A temporary place holder for a Recursive encoding 6512 // during the expansion of RecordType's members. 6513 }; 6514 std::map<const IdentifierInfo *, struct Entry> Map; 6515 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6516 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6517 public: 6518 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6519 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6520 bool removeIncomplete(const IdentifierInfo *ID); 6521 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6522 bool IsRecursive); 6523 StringRef lookupStr(const IdentifierInfo *ID); 6524 }; 6525 6526 /// TypeString encodings for enum & union fields must be order. 6527 /// FieldEncoding is a helper for this ordering process. 6528 class FieldEncoding { 6529 bool HasName; 6530 std::string Enc; 6531 public: 6532 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6533 StringRef str() {return Enc.c_str();}; 6534 bool operator<(const FieldEncoding &rhs) const { 6535 if (HasName != rhs.HasName) return HasName; 6536 return Enc < rhs.Enc; 6537 } 6538 }; 6539 6540 class XCoreABIInfo : public DefaultABIInfo { 6541 public: 6542 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6543 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6544 CodeGenFunction &CGF) const override; 6545 }; 6546 6547 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6548 mutable TypeStringCache TSC; 6549 public: 6550 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6551 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6552 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6553 CodeGen::CodeGenModule &M) const override; 6554 }; 6555 6556 } // End anonymous namespace. 6557 6558 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6559 CodeGenFunction &CGF) const { 6560 CGBuilderTy &Builder = CGF.Builder; 6561 6562 // Get the VAList. 6563 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6564 CGF.Int8PtrPtrTy); 6565 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6566 6567 // Handle the argument. 6568 ABIArgInfo AI = classifyArgumentType(Ty); 6569 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6570 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6571 AI.setCoerceToType(ArgTy); 6572 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6573 llvm::Value *Val; 6574 uint64_t ArgSize = 0; 6575 switch (AI.getKind()) { 6576 case ABIArgInfo::Expand: 6577 case ABIArgInfo::InAlloca: 6578 llvm_unreachable("Unsupported ABI kind for va_arg"); 6579 case ABIArgInfo::Ignore: 6580 Val = llvm::UndefValue::get(ArgPtrTy); 6581 ArgSize = 0; 6582 break; 6583 case ABIArgInfo::Extend: 6584 case ABIArgInfo::Direct: 6585 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6586 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6587 if (ArgSize < 4) 6588 ArgSize = 4; 6589 break; 6590 case ABIArgInfo::Indirect: 6591 llvm::Value *ArgAddr; 6592 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6593 ArgAddr = Builder.CreateLoad(ArgAddr); 6594 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6595 ArgSize = 4; 6596 break; 6597 } 6598 6599 // Increment the VAList. 6600 if (ArgSize) { 6601 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6602 Builder.CreateStore(APN, VAListAddrAsBPP); 6603 } 6604 return Val; 6605 } 6606 6607 /// During the expansion of a RecordType, an incomplete TypeString is placed 6608 /// into the cache as a means to identify and break recursion. 6609 /// If there is a Recursive encoding in the cache, it is swapped out and will 6610 /// be reinserted by removeIncomplete(). 6611 /// All other types of encoding should have been used rather than arriving here. 6612 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6613 std::string StubEnc) { 6614 if (!ID) 6615 return; 6616 Entry &E = Map[ID]; 6617 assert( (E.Str.empty() || E.State == Recursive) && 6618 "Incorrectly use of addIncomplete"); 6619 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6620 E.Swapped.swap(E.Str); // swap out the Recursive 6621 E.Str.swap(StubEnc); 6622 E.State = Incomplete; 6623 ++IncompleteCount; 6624 } 6625 6626 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6627 /// must be removed from the cache. 6628 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6629 /// Returns true if the RecordType was defined recursively. 6630 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6631 if (!ID) 6632 return false; 6633 auto I = Map.find(ID); 6634 assert(I != Map.end() && "Entry not present"); 6635 Entry &E = I->second; 6636 assert( (E.State == Incomplete || 6637 E.State == IncompleteUsed) && 6638 "Entry must be an incomplete type"); 6639 bool IsRecursive = false; 6640 if (E.State == IncompleteUsed) { 6641 // We made use of our Incomplete encoding, thus we are recursive. 6642 IsRecursive = true; 6643 --IncompleteUsedCount; 6644 } 6645 if (E.Swapped.empty()) 6646 Map.erase(I); 6647 else { 6648 // Swap the Recursive back. 6649 E.Swapped.swap(E.Str); 6650 E.Swapped.clear(); 6651 E.State = Recursive; 6652 } 6653 --IncompleteCount; 6654 return IsRecursive; 6655 } 6656 6657 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6658 /// Recursive (viz: all sub-members were expanded as fully as possible). 6659 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6660 bool IsRecursive) { 6661 if (!ID || IncompleteUsedCount) 6662 return; // No key or it is is an incomplete sub-type so don't add. 6663 Entry &E = Map[ID]; 6664 if (IsRecursive && !E.Str.empty()) { 6665 assert(E.State==Recursive && E.Str.size() == Str.size() && 6666 "This is not the same Recursive entry"); 6667 // The parent container was not recursive after all, so we could have used 6668 // this Recursive sub-member entry after all, but we assumed the worse when 6669 // we started viz: IncompleteCount!=0. 6670 return; 6671 } 6672 assert(E.Str.empty() && "Entry already present"); 6673 E.Str = Str.str(); 6674 E.State = IsRecursive? Recursive : NonRecursive; 6675 } 6676 6677 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6678 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6679 /// encoding is Recursive, return an empty StringRef. 6680 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6681 if (!ID) 6682 return StringRef(); // We have no key. 6683 auto I = Map.find(ID); 6684 if (I == Map.end()) 6685 return StringRef(); // We have no encoding. 6686 Entry &E = I->second; 6687 if (E.State == Recursive && IncompleteCount) 6688 return StringRef(); // We don't use Recursive encodings for member types. 6689 6690 if (E.State == Incomplete) { 6691 // The incomplete type is being used to break out of recursion. 6692 E.State = IncompleteUsed; 6693 ++IncompleteUsedCount; 6694 } 6695 return E.Str.c_str(); 6696 } 6697 6698 /// The XCore ABI includes a type information section that communicates symbol 6699 /// type information to the linker. The linker uses this information to verify 6700 /// safety/correctness of things such as array bound and pointers et al. 6701 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6702 /// This type information (TypeString) is emitted into meta data for all global 6703 /// symbols: definitions, declarations, functions & variables. 6704 /// 6705 /// The TypeString carries type, qualifier, name, size & value details. 6706 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6707 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6708 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6709 /// 6710 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6711 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6712 6713 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6714 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6715 CodeGen::CodeGenModule &CGM) const { 6716 SmallStringEnc Enc; 6717 if (getTypeString(Enc, D, CGM, TSC)) { 6718 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6719 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 6720 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 6721 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6722 llvm::NamedMDNode *MD = 6723 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6724 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6725 } 6726 } 6727 6728 static bool appendType(SmallStringEnc &Enc, QualType QType, 6729 const CodeGen::CodeGenModule &CGM, 6730 TypeStringCache &TSC); 6731 6732 /// Helper function for appendRecordType(). 6733 /// Builds a SmallVector containing the encoded field types in declaration order. 6734 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6735 const RecordDecl *RD, 6736 const CodeGen::CodeGenModule &CGM, 6737 TypeStringCache &TSC) { 6738 for (const auto *Field : RD->fields()) { 6739 SmallStringEnc Enc; 6740 Enc += "m("; 6741 Enc += Field->getName(); 6742 Enc += "){"; 6743 if (Field->isBitField()) { 6744 Enc += "b("; 6745 llvm::raw_svector_ostream OS(Enc); 6746 OS.resync(); 6747 OS << Field->getBitWidthValue(CGM.getContext()); 6748 OS.flush(); 6749 Enc += ':'; 6750 } 6751 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6752 return false; 6753 if (Field->isBitField()) 6754 Enc += ')'; 6755 Enc += '}'; 6756 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc)); 6757 } 6758 return true; 6759 } 6760 6761 /// Appends structure and union types to Enc and adds encoding to cache. 6762 /// Recursively calls appendType (via extractFieldType) for each field. 6763 /// Union types have their fields ordered according to the ABI. 6764 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6765 const CodeGen::CodeGenModule &CGM, 6766 TypeStringCache &TSC, const IdentifierInfo *ID) { 6767 // Append the cached TypeString if we have one. 6768 StringRef TypeString = TSC.lookupStr(ID); 6769 if (!TypeString.empty()) { 6770 Enc += TypeString; 6771 return true; 6772 } 6773 6774 // Start to emit an incomplete TypeString. 6775 size_t Start = Enc.size(); 6776 Enc += (RT->isUnionType()? 'u' : 's'); 6777 Enc += '('; 6778 if (ID) 6779 Enc += ID->getName(); 6780 Enc += "){"; 6781 6782 // We collect all encoded fields and order as necessary. 6783 bool IsRecursive = false; 6784 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6785 if (RD && !RD->field_empty()) { 6786 // An incomplete TypeString stub is placed in the cache for this RecordType 6787 // so that recursive calls to this RecordType will use it whilst building a 6788 // complete TypeString for this RecordType. 6789 SmallVector<FieldEncoding, 16> FE; 6790 std::string StubEnc(Enc.substr(Start).str()); 6791 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6792 TSC.addIncomplete(ID, std::move(StubEnc)); 6793 if (!extractFieldType(FE, RD, CGM, TSC)) { 6794 (void) TSC.removeIncomplete(ID); 6795 return false; 6796 } 6797 IsRecursive = TSC.removeIncomplete(ID); 6798 // The ABI requires unions to be sorted but not structures. 6799 // See FieldEncoding::operator< for sort algorithm. 6800 if (RT->isUnionType()) 6801 std::sort(FE.begin(), FE.end()); 6802 // We can now complete the TypeString. 6803 unsigned E = FE.size(); 6804 for (unsigned I = 0; I != E; ++I) { 6805 if (I) 6806 Enc += ','; 6807 Enc += FE[I].str(); 6808 } 6809 } 6810 Enc += '}'; 6811 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6812 return true; 6813 } 6814 6815 /// Appends enum types to Enc and adds the encoding to the cache. 6816 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6817 TypeStringCache &TSC, 6818 const IdentifierInfo *ID) { 6819 // Append the cached TypeString if we have one. 6820 StringRef TypeString = TSC.lookupStr(ID); 6821 if (!TypeString.empty()) { 6822 Enc += TypeString; 6823 return true; 6824 } 6825 6826 size_t Start = Enc.size(); 6827 Enc += "e("; 6828 if (ID) 6829 Enc += ID->getName(); 6830 Enc += "){"; 6831 6832 // We collect all encoded enumerations and order them alphanumerically. 6833 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6834 SmallVector<FieldEncoding, 16> FE; 6835 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6836 ++I) { 6837 SmallStringEnc EnumEnc; 6838 EnumEnc += "m("; 6839 EnumEnc += I->getName(); 6840 EnumEnc += "){"; 6841 I->getInitVal().toString(EnumEnc); 6842 EnumEnc += '}'; 6843 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6844 } 6845 std::sort(FE.begin(), FE.end()); 6846 unsigned E = FE.size(); 6847 for (unsigned I = 0; I != E; ++I) { 6848 if (I) 6849 Enc += ','; 6850 Enc += FE[I].str(); 6851 } 6852 } 6853 Enc += '}'; 6854 TSC.addIfComplete(ID, Enc.substr(Start), false); 6855 return true; 6856 } 6857 6858 /// Appends type's qualifier to Enc. 6859 /// This is done prior to appending the type's encoding. 6860 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6861 // Qualifiers are emitted in alphabetical order. 6862 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6863 int Lookup = 0; 6864 if (QT.isConstQualified()) 6865 Lookup += 1<<0; 6866 if (QT.isRestrictQualified()) 6867 Lookup += 1<<1; 6868 if (QT.isVolatileQualified()) 6869 Lookup += 1<<2; 6870 Enc += Table[Lookup]; 6871 } 6872 6873 /// Appends built-in types to Enc. 6874 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6875 const char *EncType; 6876 switch (BT->getKind()) { 6877 case BuiltinType::Void: 6878 EncType = "0"; 6879 break; 6880 case BuiltinType::Bool: 6881 EncType = "b"; 6882 break; 6883 case BuiltinType::Char_U: 6884 EncType = "uc"; 6885 break; 6886 case BuiltinType::UChar: 6887 EncType = "uc"; 6888 break; 6889 case BuiltinType::SChar: 6890 EncType = "sc"; 6891 break; 6892 case BuiltinType::UShort: 6893 EncType = "us"; 6894 break; 6895 case BuiltinType::Short: 6896 EncType = "ss"; 6897 break; 6898 case BuiltinType::UInt: 6899 EncType = "ui"; 6900 break; 6901 case BuiltinType::Int: 6902 EncType = "si"; 6903 break; 6904 case BuiltinType::ULong: 6905 EncType = "ul"; 6906 break; 6907 case BuiltinType::Long: 6908 EncType = "sl"; 6909 break; 6910 case BuiltinType::ULongLong: 6911 EncType = "ull"; 6912 break; 6913 case BuiltinType::LongLong: 6914 EncType = "sll"; 6915 break; 6916 case BuiltinType::Float: 6917 EncType = "ft"; 6918 break; 6919 case BuiltinType::Double: 6920 EncType = "d"; 6921 break; 6922 case BuiltinType::LongDouble: 6923 EncType = "ld"; 6924 break; 6925 default: 6926 return false; 6927 } 6928 Enc += EncType; 6929 return true; 6930 } 6931 6932 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6933 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6934 const CodeGen::CodeGenModule &CGM, 6935 TypeStringCache &TSC) { 6936 Enc += "p("; 6937 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6938 return false; 6939 Enc += ')'; 6940 return true; 6941 } 6942 6943 /// Appends array encoding to Enc before calling appendType for the element. 6944 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6945 const ArrayType *AT, 6946 const CodeGen::CodeGenModule &CGM, 6947 TypeStringCache &TSC, StringRef NoSizeEnc) { 6948 if (AT->getSizeModifier() != ArrayType::Normal) 6949 return false; 6950 Enc += "a("; 6951 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6952 CAT->getSize().toStringUnsigned(Enc); 6953 else 6954 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6955 Enc += ':'; 6956 // The Qualifiers should be attached to the type rather than the array. 6957 appendQualifier(Enc, QT); 6958 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6959 return false; 6960 Enc += ')'; 6961 return true; 6962 } 6963 6964 /// Appends a function encoding to Enc, calling appendType for the return type 6965 /// and the arguments. 6966 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6967 const CodeGen::CodeGenModule &CGM, 6968 TypeStringCache &TSC) { 6969 Enc += "f{"; 6970 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6971 return false; 6972 Enc += "}("; 6973 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6974 // N.B. we are only interested in the adjusted param types. 6975 auto I = FPT->param_type_begin(); 6976 auto E = FPT->param_type_end(); 6977 if (I != E) { 6978 do { 6979 if (!appendType(Enc, *I, CGM, TSC)) 6980 return false; 6981 ++I; 6982 if (I != E) 6983 Enc += ','; 6984 } while (I != E); 6985 if (FPT->isVariadic()) 6986 Enc += ",va"; 6987 } else { 6988 if (FPT->isVariadic()) 6989 Enc += "va"; 6990 else 6991 Enc += '0'; 6992 } 6993 } 6994 Enc += ')'; 6995 return true; 6996 } 6997 6998 /// Handles the type's qualifier before dispatching a call to handle specific 6999 /// type encodings. 7000 static bool appendType(SmallStringEnc &Enc, QualType QType, 7001 const CodeGen::CodeGenModule &CGM, 7002 TypeStringCache &TSC) { 7003 7004 QualType QT = QType.getCanonicalType(); 7005 7006 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7007 // The Qualifiers should be attached to the type rather than the array. 7008 // Thus we don't call appendQualifier() here. 7009 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7010 7011 appendQualifier(Enc, QT); 7012 7013 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7014 return appendBuiltinType(Enc, BT); 7015 7016 if (const PointerType *PT = QT->getAs<PointerType>()) 7017 return appendPointerType(Enc, PT, CGM, TSC); 7018 7019 if (const EnumType *ET = QT->getAs<EnumType>()) 7020 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7021 7022 if (const RecordType *RT = QT->getAsStructureType()) 7023 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7024 7025 if (const RecordType *RT = QT->getAsUnionType()) 7026 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7027 7028 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7029 return appendFunctionType(Enc, FT, CGM, TSC); 7030 7031 return false; 7032 } 7033 7034 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7035 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7036 if (!D) 7037 return false; 7038 7039 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7040 if (FD->getLanguageLinkage() != CLanguageLinkage) 7041 return false; 7042 return appendType(Enc, FD->getType(), CGM, TSC); 7043 } 7044 7045 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7046 if (VD->getLanguageLinkage() != CLanguageLinkage) 7047 return false; 7048 QualType QT = VD->getType().getCanonicalType(); 7049 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7050 // Global ArrayTypes are given a size of '*' if the size is unknown. 7051 // The Qualifiers should be attached to the type rather than the array. 7052 // Thus we don't call appendQualifier() here. 7053 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7054 } 7055 return appendType(Enc, QT, CGM, TSC); 7056 } 7057 return false; 7058 } 7059 7060 7061 //===----------------------------------------------------------------------===// 7062 // Driver code 7063 //===----------------------------------------------------------------------===// 7064 7065 const llvm::Triple &CodeGenModule::getTriple() const { 7066 return getTarget().getTriple(); 7067 } 7068 7069 bool CodeGenModule::supportsCOMDAT() const { 7070 return !getTriple().isOSBinFormatMachO(); 7071 } 7072 7073 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7074 if (TheTargetCodeGenInfo) 7075 return *TheTargetCodeGenInfo; 7076 7077 const llvm::Triple &Triple = getTarget().getTriple(); 7078 switch (Triple.getArch()) { 7079 default: 7080 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7081 7082 case llvm::Triple::le32: 7083 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7084 case llvm::Triple::mips: 7085 case llvm::Triple::mipsel: 7086 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7087 7088 case llvm::Triple::mips64: 7089 case llvm::Triple::mips64el: 7090 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7091 7092 case llvm::Triple::aarch64: 7093 case llvm::Triple::aarch64_be: { 7094 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7095 if (getTarget().getABI() == "darwinpcs") 7096 Kind = AArch64ABIInfo::DarwinPCS; 7097 7098 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7099 } 7100 7101 case llvm::Triple::arm: 7102 case llvm::Triple::armeb: 7103 case llvm::Triple::thumb: 7104 case llvm::Triple::thumbeb: 7105 { 7106 if (Triple.getOS() == llvm::Triple::Win32) { 7107 TheTargetCodeGenInfo = 7108 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7109 return *TheTargetCodeGenInfo; 7110 } 7111 7112 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7113 if (getTarget().getABI() == "apcs-gnu") 7114 Kind = ARMABIInfo::APCS; 7115 else if (CodeGenOpts.FloatABI == "hard" || 7116 (CodeGenOpts.FloatABI != "soft" && 7117 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7118 Kind = ARMABIInfo::AAPCS_VFP; 7119 7120 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7121 } 7122 7123 case llvm::Triple::ppc: 7124 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 7125 case llvm::Triple::ppc64: 7126 if (Triple.isOSBinFormatELF()) { 7127 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7128 if (getTarget().getABI() == "elfv2") 7129 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7130 7131 return *(TheTargetCodeGenInfo = 7132 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 7133 } else 7134 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7135 case llvm::Triple::ppc64le: { 7136 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7137 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7138 if (getTarget().getABI() == "elfv1") 7139 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7140 7141 return *(TheTargetCodeGenInfo = 7142 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 7143 } 7144 7145 case llvm::Triple::nvptx: 7146 case llvm::Triple::nvptx64: 7147 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7148 7149 case llvm::Triple::msp430: 7150 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7151 7152 case llvm::Triple::systemz: 7153 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 7154 7155 case llvm::Triple::tce: 7156 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7157 7158 case llvm::Triple::x86: { 7159 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7160 bool IsSmallStructInRegABI = 7161 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7162 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7163 7164 if (Triple.getOS() == llvm::Triple::Win32) { 7165 return *(TheTargetCodeGenInfo = 7166 new WinX86_32TargetCodeGenInfo(Types, 7167 IsDarwinVectorABI, IsSmallStructInRegABI, 7168 IsWin32FloatStructABI, 7169 CodeGenOpts.NumRegisterParameters)); 7170 } else { 7171 return *(TheTargetCodeGenInfo = 7172 new X86_32TargetCodeGenInfo(Types, 7173 IsDarwinVectorABI, IsSmallStructInRegABI, 7174 IsWin32FloatStructABI, 7175 CodeGenOpts.NumRegisterParameters)); 7176 } 7177 } 7178 7179 case llvm::Triple::x86_64: { 7180 bool HasAVX = getTarget().getABI() == "avx"; 7181 7182 switch (Triple.getOS()) { 7183 case llvm::Triple::Win32: 7184 return *(TheTargetCodeGenInfo = 7185 new WinX86_64TargetCodeGenInfo(Types, HasAVX)); 7186 case llvm::Triple::PS4: 7187 return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types, HasAVX)); 7188 default: 7189 return *(TheTargetCodeGenInfo = 7190 new X86_64TargetCodeGenInfo(Types, HasAVX)); 7191 } 7192 } 7193 case llvm::Triple::hexagon: 7194 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7195 case llvm::Triple::r600: 7196 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7197 case llvm::Triple::amdgcn: 7198 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7199 case llvm::Triple::sparcv9: 7200 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7201 case llvm::Triple::xcore: 7202 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7203 } 7204 } 7205