1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Type.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 #include <algorithm>    // std::sort
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
33                                llvm::Value *Array,
34                                llvm::Value *Value,
35                                unsigned FirstIndex,
36                                unsigned LastIndex) {
37   // Alternatively, we could emit this as a loop in the source.
38   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
39     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
40     Builder.CreateStore(Value, Cell);
41   }
42 }
43 
44 static bool isAggregateTypeForABI(QualType T) {
45   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
46          T->isMemberFunctionPointerType();
47 }
48 
49 ABIInfo::~ABIInfo() {}
50 
51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
52                                               CGCXXABI &CXXABI) {
53   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
54   if (!RD)
55     return CGCXXABI::RAA_Default;
56   return CXXABI.getRecordArgABI(RD);
57 }
58 
59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
60                                               CGCXXABI &CXXABI) {
61   const RecordType *RT = T->getAs<RecordType>();
62   if (!RT)
63     return CGCXXABI::RAA_Default;
64   return getRecordArgABI(RT, CXXABI);
65 }
66 
67 CGCXXABI &ABIInfo::getCXXABI() const {
68   return CGT.getCXXABI();
69 }
70 
71 ASTContext &ABIInfo::getContext() const {
72   return CGT.getContext();
73 }
74 
75 llvm::LLVMContext &ABIInfo::getVMContext() const {
76   return CGT.getLLVMContext();
77 }
78 
79 const llvm::DataLayout &ABIInfo::getDataLayout() const {
80   return CGT.getDataLayout();
81 }
82 
83 const TargetInfo &ABIInfo::getTarget() const {
84   return CGT.getTarget();
85 }
86 
87 void ABIArgInfo::dump() const {
88   raw_ostream &OS = llvm::errs();
89   OS << "(ABIArgInfo Kind=";
90   switch (TheKind) {
91   case Direct:
92     OS << "Direct Type=";
93     if (llvm::Type *Ty = getCoerceToType())
94       Ty->print(OS);
95     else
96       OS << "null";
97     break;
98   case Extend:
99     OS << "Extend";
100     break;
101   case Ignore:
102     OS << "Ignore";
103     break;
104   case InAlloca:
105     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
106     break;
107   case Indirect:
108     OS << "Indirect Align=" << getIndirectAlign()
109        << " ByVal=" << getIndirectByVal()
110        << " Realign=" << getIndirectRealign();
111     break;
112   case Expand:
113     OS << "Expand";
114     break;
115   }
116   OS << ")\n";
117 }
118 
119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
120 
121 // If someone can figure out a general rule for this, that would be great.
122 // It's probably just doomed to be platform-dependent, though.
123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
124   // Verified for:
125   //   x86-64     FreeBSD, Linux, Darwin
126   //   x86-32     FreeBSD, Linux, Darwin
127   //   PowerPC    Linux, Darwin
128   //   ARM        Darwin (*not* EABI)
129   //   AArch64    Linux
130   return 32;
131 }
132 
133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
134                                      const FunctionNoProtoType *fnType) const {
135   // The following conventions are known to require this to be false:
136   //   x86_stdcall
137   //   MIPS
138   // For everything else, we just prefer false unless we opt out.
139   return false;
140 }
141 
142 void
143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
144                                              llvm::SmallString<24> &Opt) const {
145   // This assumes the user is passing a library name like "rt" instead of a
146   // filename like "librt.a/so", and that they don't care whether it's static or
147   // dynamic.
148   Opt = "-l";
149   Opt += Lib;
150 }
151 
152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
153 
154 /// isEmptyField - Return true iff a the field is "empty", that is it
155 /// is an unnamed bit-field or an (array of) empty record(s).
156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
157                          bool AllowArrays) {
158   if (FD->isUnnamedBitfield())
159     return true;
160 
161   QualType FT = FD->getType();
162 
163   // Constant arrays of empty records count as empty, strip them off.
164   // Constant arrays of zero length always count as empty.
165   if (AllowArrays)
166     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
167       if (AT->getSize() == 0)
168         return true;
169       FT = AT->getElementType();
170     }
171 
172   const RecordType *RT = FT->getAs<RecordType>();
173   if (!RT)
174     return false;
175 
176   // C++ record fields are never empty, at least in the Itanium ABI.
177   //
178   // FIXME: We should use a predicate for whether this behavior is true in the
179   // current ABI.
180   if (isa<CXXRecordDecl>(RT->getDecl()))
181     return false;
182 
183   return isEmptyRecord(Context, FT, AllowArrays);
184 }
185 
186 /// isEmptyRecord - Return true iff a structure contains only empty
187 /// fields. Note that a structure with a flexible array member is not
188 /// considered empty.
189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
190   const RecordType *RT = T->getAs<RecordType>();
191   if (!RT)
192     return 0;
193   const RecordDecl *RD = RT->getDecl();
194   if (RD->hasFlexibleArrayMember())
195     return false;
196 
197   // If this is a C++ record, check the bases first.
198   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
199     for (const auto &I : CXXRD->bases())
200       if (!isEmptyRecord(Context, I.getType(), true))
201         return false;
202 
203   for (const auto *I : RD->fields())
204     if (!isEmptyField(Context, I, AllowArrays))
205       return false;
206   return true;
207 }
208 
209 /// isSingleElementStruct - Determine if a structure is a "single
210 /// element struct", i.e. it has exactly one non-empty field or
211 /// exactly one field which is itself a single element
212 /// struct. Structures with flexible array members are never
213 /// considered single element structs.
214 ///
215 /// \return The field declaration for the single non-empty field, if
216 /// it exists.
217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
218   const RecordType *RT = T->getAsStructureType();
219   if (!RT)
220     return nullptr;
221 
222   const RecordDecl *RD = RT->getDecl();
223   if (RD->hasFlexibleArrayMember())
224     return nullptr;
225 
226   const Type *Found = nullptr;
227 
228   // If this is a C++ record, check the bases first.
229   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
230     for (const auto &I : CXXRD->bases()) {
231       // Ignore empty records.
232       if (isEmptyRecord(Context, I.getType(), true))
233         continue;
234 
235       // If we already found an element then this isn't a single-element struct.
236       if (Found)
237         return nullptr;
238 
239       // If this is non-empty and not a single element struct, the composite
240       // cannot be a single element struct.
241       Found = isSingleElementStruct(I.getType(), Context);
242       if (!Found)
243         return nullptr;
244     }
245   }
246 
247   // Check for single element.
248   for (const auto *FD : RD->fields()) {
249     QualType FT = FD->getType();
250 
251     // Ignore empty fields.
252     if (isEmptyField(Context, FD, true))
253       continue;
254 
255     // If we already found an element then this isn't a single-element
256     // struct.
257     if (Found)
258       return nullptr;
259 
260     // Treat single element arrays as the element.
261     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
262       if (AT->getSize().getZExtValue() != 1)
263         break;
264       FT = AT->getElementType();
265     }
266 
267     if (!isAggregateTypeForABI(FT)) {
268       Found = FT.getTypePtr();
269     } else {
270       Found = isSingleElementStruct(FT, Context);
271       if (!Found)
272         return nullptr;
273     }
274   }
275 
276   // We don't consider a struct a single-element struct if it has
277   // padding beyond the element type.
278   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
279     return nullptr;
280 
281   return Found;
282 }
283 
284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
285   // Treat complex types as the element type.
286   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
287     Ty = CTy->getElementType();
288 
289   // Check for a type which we know has a simple scalar argument-passing
290   // convention without any padding.  (We're specifically looking for 32
291   // and 64-bit integer and integer-equivalents, float, and double.)
292   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
293       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
294     return false;
295 
296   uint64_t Size = Context.getTypeSize(Ty);
297   return Size == 32 || Size == 64;
298 }
299 
300 /// canExpandIndirectArgument - Test whether an argument type which is to be
301 /// passed indirectly (on the stack) would have the equivalent layout if it was
302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
303 /// inhibiting optimizations.
304 ///
305 // FIXME: This predicate is missing many cases, currently it just follows
306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
307 // should probably make this smarter, or better yet make the LLVM backend
308 // capable of handling it.
309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
310   // We can only expand structure types.
311   const RecordType *RT = Ty->getAs<RecordType>();
312   if (!RT)
313     return false;
314 
315   // We can only expand (C) structures.
316   //
317   // FIXME: This needs to be generalized to handle classes as well.
318   const RecordDecl *RD = RT->getDecl();
319   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
320     return false;
321 
322   uint64_t Size = 0;
323 
324   for (const auto *FD : RD->fields()) {
325     if (!is32Or64BitBasicType(FD->getType(), Context))
326       return false;
327 
328     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
329     // how to expand them yet, and the predicate for telling if a bitfield still
330     // counts as "basic" is more complicated than what we were doing previously.
331     if (FD->isBitField())
332       return false;
333 
334     Size += Context.getTypeSize(FD->getType());
335   }
336 
337   // Make sure there are not any holes in the struct.
338   if (Size != Context.getTypeSize(Ty))
339     return false;
340 
341   return true;
342 }
343 
344 namespace {
345 /// DefaultABIInfo - The default implementation for ABI specific
346 /// details. This implementation provides information which results in
347 /// self-consistent and sensible LLVM IR generation, but does not
348 /// conform to any particular ABI.
349 class DefaultABIInfo : public ABIInfo {
350 public:
351   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
352 
353   ABIArgInfo classifyReturnType(QualType RetTy) const;
354   ABIArgInfo classifyArgumentType(QualType RetTy) const;
355 
356   void computeInfo(CGFunctionInfo &FI) const override {
357     if (!getCXXABI().classifyReturnType(FI))
358       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
359     for (auto &I : FI.arguments())
360       I.info = classifyArgumentType(I.type);
361   }
362 
363   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
364                          CodeGenFunction &CGF) const override;
365 };
366 
367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
368 public:
369   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
370     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
371 };
372 
373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
374                                        CodeGenFunction &CGF) const {
375   return nullptr;
376 }
377 
378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
379   if (isAggregateTypeForABI(Ty))
380     return ABIArgInfo::getIndirect(0);
381 
382   // Treat an enum type as its underlying type.
383   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
384     Ty = EnumTy->getDecl()->getIntegerType();
385 
386   return (Ty->isPromotableIntegerType() ?
387           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
388 }
389 
390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
391   if (RetTy->isVoidType())
392     return ABIArgInfo::getIgnore();
393 
394   if (isAggregateTypeForABI(RetTy))
395     return ABIArgInfo::getIndirect(0);
396 
397   // Treat an enum type as its underlying type.
398   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
399     RetTy = EnumTy->getDecl()->getIntegerType();
400 
401   return (RetTy->isPromotableIntegerType() ?
402           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
403 }
404 
405 //===----------------------------------------------------------------------===//
406 // le32/PNaCl bitcode ABI Implementation
407 //
408 // This is a simplified version of the x86_32 ABI.  Arguments and return values
409 // are always passed on the stack.
410 //===----------------------------------------------------------------------===//
411 
412 class PNaClABIInfo : public ABIInfo {
413  public:
414   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
415 
416   ABIArgInfo classifyReturnType(QualType RetTy) const;
417   ABIArgInfo classifyArgumentType(QualType RetTy) const;
418 
419   void computeInfo(CGFunctionInfo &FI) const override;
420   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
421                          CodeGenFunction &CGF) const override;
422 };
423 
424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
425  public:
426   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
427     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
428 };
429 
430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
431   if (!getCXXABI().classifyReturnType(FI))
432     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
433 
434   for (auto &I : FI.arguments())
435     I.info = classifyArgumentType(I.type);
436 }
437 
438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
439                                        CodeGenFunction &CGF) const {
440   return nullptr;
441 }
442 
443 /// \brief Classify argument of given type \p Ty.
444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
445   if (isAggregateTypeForABI(Ty)) {
446     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
447       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
448     return ABIArgInfo::getIndirect(0);
449   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
450     // Treat an enum type as its underlying type.
451     Ty = EnumTy->getDecl()->getIntegerType();
452   } else if (Ty->isFloatingType()) {
453     // Floating-point types don't go inreg.
454     return ABIArgInfo::getDirect();
455   }
456 
457   return (Ty->isPromotableIntegerType() ?
458           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
459 }
460 
461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462   if (RetTy->isVoidType())
463     return ABIArgInfo::getIgnore();
464 
465   // In the PNaCl ABI we always return records/structures on the stack.
466   if (isAggregateTypeForABI(RetTy))
467     return ABIArgInfo::getIndirect(0);
468 
469   // Treat an enum type as its underlying type.
470   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
471     RetTy = EnumTy->getDecl()->getIntegerType();
472 
473   return (RetTy->isPromotableIntegerType() ?
474           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
475 }
476 
477 /// IsX86_MMXType - Return true if this is an MMX type.
478 bool IsX86_MMXType(llvm::Type *IRType) {
479   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
480   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
481     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
482     IRType->getScalarSizeInBits() != 64;
483 }
484 
485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
486                                           StringRef Constraint,
487                                           llvm::Type* Ty) {
488   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
489     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
490       // Invalid MMX constraint
491       return nullptr;
492     }
493 
494     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
495   }
496 
497   // No operation needed
498   return Ty;
499 }
500 
501 //===----------------------------------------------------------------------===//
502 // X86-32 ABI Implementation
503 //===----------------------------------------------------------------------===//
504 
505 /// \brief Similar to llvm::CCState, but for Clang.
506 struct CCState {
507   CCState(unsigned CC) : CC(CC), FreeRegs(0) {}
508 
509   unsigned CC;
510   unsigned FreeRegs;
511   unsigned StackOffset;
512   bool UseInAlloca;
513 };
514 
515 /// X86_32ABIInfo - The X86-32 ABI information.
516 class X86_32ABIInfo : public ABIInfo {
517   enum Class {
518     Integer,
519     Float
520   };
521 
522   static const unsigned MinABIStackAlignInBytes = 4;
523 
524   bool IsDarwinVectorABI;
525   bool IsSmallStructInRegABI;
526   bool IsWin32StructABI;
527   unsigned DefaultNumRegisterParameters;
528 
529   static bool isRegisterSize(unsigned Size) {
530     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
531   }
532 
533   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
534 
535   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
536   /// such that the argument will be passed in memory.
537   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
538 
539   ABIArgInfo getIndirectReturnResult(CCState &State) const;
540 
541   /// \brief Return the alignment to use for the given type on the stack.
542   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
543 
544   Class classify(QualType Ty) const;
545   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
546   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
547   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
548 
549   /// \brief Rewrite the function info so that all memory arguments use
550   /// inalloca.
551   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
552 
553   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
554                            unsigned &StackOffset, ABIArgInfo &Info,
555                            QualType Type) const;
556 
557 public:
558 
559   void computeInfo(CGFunctionInfo &FI) const override;
560   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
561                          CodeGenFunction &CGF) const override;
562 
563   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
564                 unsigned r)
565     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
566       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
567 };
568 
569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
570 public:
571   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
572       bool d, bool p, bool w, unsigned r)
573     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
574 
575   static bool isStructReturnInRegABI(
576       const llvm::Triple &Triple, const CodeGenOptions &Opts);
577 
578   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
579                            CodeGen::CodeGenModule &CGM) const override;
580 
581   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
582     // Darwin uses different dwarf register numbers for EH.
583     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
584     return 4;
585   }
586 
587   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
588                                llvm::Value *Address) const override;
589 
590   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
591                                   StringRef Constraint,
592                                   llvm::Type* Ty) const override {
593     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
594   }
595 
596   llvm::Constant *
597   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
598     unsigned Sig = (0xeb << 0) |  // jmp rel8
599                    (0x06 << 8) |  //           .+0x08
600                    ('F' << 16) |
601                    ('T' << 24);
602     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
603   }
604 
605 };
606 
607 }
608 
609 /// shouldReturnTypeInRegister - Determine if the given type should be
610 /// passed in a register (for the Darwin ABI).
611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
612                                                ASTContext &Context) const {
613   uint64_t Size = Context.getTypeSize(Ty);
614 
615   // Type must be register sized.
616   if (!isRegisterSize(Size))
617     return false;
618 
619   if (Ty->isVectorType()) {
620     // 64- and 128- bit vectors inside structures are not returned in
621     // registers.
622     if (Size == 64 || Size == 128)
623       return false;
624 
625     return true;
626   }
627 
628   // If this is a builtin, pointer, enum, complex type, member pointer, or
629   // member function pointer it is ok.
630   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
631       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
632       Ty->isBlockPointerType() || Ty->isMemberPointerType())
633     return true;
634 
635   // Arrays are treated like records.
636   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
637     return shouldReturnTypeInRegister(AT->getElementType(), Context);
638 
639   // Otherwise, it must be a record type.
640   const RecordType *RT = Ty->getAs<RecordType>();
641   if (!RT) return false;
642 
643   // FIXME: Traverse bases here too.
644 
645   // Structure types are passed in register if all fields would be
646   // passed in a register.
647   for (const auto *FD : RT->getDecl()->fields()) {
648     // Empty fields are ignored.
649     if (isEmptyField(Context, FD, true))
650       continue;
651 
652     // Check fields recursively.
653     if (!shouldReturnTypeInRegister(FD->getType(), Context))
654       return false;
655   }
656   return true;
657 }
658 
659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
660   // If the return value is indirect, then the hidden argument is consuming one
661   // integer register.
662   if (State.FreeRegs) {
663     --State.FreeRegs;
664     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
665   }
666   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
667 }
668 
669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
670   if (RetTy->isVoidType())
671     return ABIArgInfo::getIgnore();
672 
673   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
674     // On Darwin, some vectors are returned in registers.
675     if (IsDarwinVectorABI) {
676       uint64_t Size = getContext().getTypeSize(RetTy);
677 
678       // 128-bit vectors are a special case; they are returned in
679       // registers and we need to make sure to pick a type the LLVM
680       // backend will like.
681       if (Size == 128)
682         return ABIArgInfo::getDirect(llvm::VectorType::get(
683                   llvm::Type::getInt64Ty(getVMContext()), 2));
684 
685       // Always return in register if it fits in a general purpose
686       // register, or if it is 64 bits and has a single element.
687       if ((Size == 8 || Size == 16 || Size == 32) ||
688           (Size == 64 && VT->getNumElements() == 1))
689         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
690                                                             Size));
691 
692       return getIndirectReturnResult(State);
693     }
694 
695     return ABIArgInfo::getDirect();
696   }
697 
698   if (isAggregateTypeForABI(RetTy)) {
699     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
700       // Structures with flexible arrays are always indirect.
701       if (RT->getDecl()->hasFlexibleArrayMember())
702         return getIndirectReturnResult(State);
703     }
704 
705     // If specified, structs and unions are always indirect.
706     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
707       return getIndirectReturnResult(State);
708 
709     // Small structures which are register sized are generally returned
710     // in a register.
711     if (shouldReturnTypeInRegister(RetTy, getContext())) {
712       uint64_t Size = getContext().getTypeSize(RetTy);
713 
714       // As a special-case, if the struct is a "single-element" struct, and
715       // the field is of type "float" or "double", return it in a
716       // floating-point register. (MSVC does not apply this special case.)
717       // We apply a similar transformation for pointer types to improve the
718       // quality of the generated IR.
719       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
720         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
721             || SeltTy->hasPointerRepresentation())
722           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
723 
724       // FIXME: We should be able to narrow this integer in cases with dead
725       // padding.
726       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
727     }
728 
729     return getIndirectReturnResult(State);
730   }
731 
732   // Treat an enum type as its underlying type.
733   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
734     RetTy = EnumTy->getDecl()->getIntegerType();
735 
736   return (RetTy->isPromotableIntegerType() ?
737           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
738 }
739 
740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
741   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
742 }
743 
744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
745   const RecordType *RT = Ty->getAs<RecordType>();
746   if (!RT)
747     return 0;
748   const RecordDecl *RD = RT->getDecl();
749 
750   // If this is a C++ record, check the bases first.
751   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
752     for (const auto &I : CXXRD->bases())
753       if (!isRecordWithSSEVectorType(Context, I.getType()))
754         return false;
755 
756   for (const auto *i : RD->fields()) {
757     QualType FT = i->getType();
758 
759     if (isSSEVectorType(Context, FT))
760       return true;
761 
762     if (isRecordWithSSEVectorType(Context, FT))
763       return true;
764   }
765 
766   return false;
767 }
768 
769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
770                                                  unsigned Align) const {
771   // Otherwise, if the alignment is less than or equal to the minimum ABI
772   // alignment, just use the default; the backend will handle this.
773   if (Align <= MinABIStackAlignInBytes)
774     return 0; // Use default alignment.
775 
776   // On non-Darwin, the stack type alignment is always 4.
777   if (!IsDarwinVectorABI) {
778     // Set explicit alignment, since we may need to realign the top.
779     return MinABIStackAlignInBytes;
780   }
781 
782   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
783   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
784                       isRecordWithSSEVectorType(getContext(), Ty)))
785     return 16;
786 
787   return MinABIStackAlignInBytes;
788 }
789 
790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
791                                             CCState &State) const {
792   if (!ByVal) {
793     if (State.FreeRegs) {
794       --State.FreeRegs; // Non-byval indirects just use one pointer.
795       return ABIArgInfo::getIndirectInReg(0, false);
796     }
797     return ABIArgInfo::getIndirect(0, false);
798   }
799 
800   // Compute the byval alignment.
801   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
802   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
803   if (StackAlign == 0)
804     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
805 
806   // If the stack alignment is less than the type alignment, realign the
807   // argument.
808   bool Realign = TypeAlign > StackAlign;
809   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
810 }
811 
812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
813   const Type *T = isSingleElementStruct(Ty, getContext());
814   if (!T)
815     T = Ty.getTypePtr();
816 
817   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
818     BuiltinType::Kind K = BT->getKind();
819     if (K == BuiltinType::Float || K == BuiltinType::Double)
820       return Float;
821   }
822   return Integer;
823 }
824 
825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
826                                    bool &NeedsPadding) const {
827   NeedsPadding = false;
828   Class C = classify(Ty);
829   if (C == Float)
830     return false;
831 
832   unsigned Size = getContext().getTypeSize(Ty);
833   unsigned SizeInRegs = (Size + 31) / 32;
834 
835   if (SizeInRegs == 0)
836     return false;
837 
838   if (SizeInRegs > State.FreeRegs) {
839     State.FreeRegs = 0;
840     return false;
841   }
842 
843   State.FreeRegs -= SizeInRegs;
844 
845   if (State.CC == llvm::CallingConv::X86_FastCall) {
846     if (Size > 32)
847       return false;
848 
849     if (Ty->isIntegralOrEnumerationType())
850       return true;
851 
852     if (Ty->isPointerType())
853       return true;
854 
855     if (Ty->isReferenceType())
856       return true;
857 
858     if (State.FreeRegs)
859       NeedsPadding = true;
860 
861     return false;
862   }
863 
864   return true;
865 }
866 
867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
868                                                CCState &State) const {
869   // FIXME: Set alignment on indirect arguments.
870   if (isAggregateTypeForABI(Ty)) {
871     if (const RecordType *RT = Ty->getAs<RecordType>()) {
872       // Check with the C++ ABI first.
873       CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
874       if (RAA == CGCXXABI::RAA_Indirect) {
875         return getIndirectResult(Ty, false, State);
876       } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
877         // The field index doesn't matter, we'll fix it up later.
878         return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
879       }
880 
881       // Structs are always byval on win32, regardless of what they contain.
882       if (IsWin32StructABI)
883         return getIndirectResult(Ty, true, State);
884 
885       // Structures with flexible arrays are always indirect.
886       if (RT->getDecl()->hasFlexibleArrayMember())
887         return getIndirectResult(Ty, true, State);
888     }
889 
890     // Ignore empty structs/unions.
891     if (isEmptyRecord(getContext(), Ty, true))
892       return ABIArgInfo::getIgnore();
893 
894     llvm::LLVMContext &LLVMContext = getVMContext();
895     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
896     bool NeedsPadding;
897     if (shouldUseInReg(Ty, State, NeedsPadding)) {
898       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
899       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
900       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
901       return ABIArgInfo::getDirectInReg(Result);
902     }
903     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
904 
905     // Expand small (<= 128-bit) record types when we know that the stack layout
906     // of those arguments will match the struct. This is important because the
907     // LLVM backend isn't smart enough to remove byval, which inhibits many
908     // optimizations.
909     if (getContext().getTypeSize(Ty) <= 4*32 &&
910         canExpandIndirectArgument(Ty, getContext()))
911       return ABIArgInfo::getExpandWithPadding(
912           State.CC == llvm::CallingConv::X86_FastCall, PaddingType);
913 
914     return getIndirectResult(Ty, true, State);
915   }
916 
917   if (const VectorType *VT = Ty->getAs<VectorType>()) {
918     // On Darwin, some vectors are passed in memory, we handle this by passing
919     // it as an i8/i16/i32/i64.
920     if (IsDarwinVectorABI) {
921       uint64_t Size = getContext().getTypeSize(Ty);
922       if ((Size == 8 || Size == 16 || Size == 32) ||
923           (Size == 64 && VT->getNumElements() == 1))
924         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
925                                                             Size));
926     }
927 
928     if (IsX86_MMXType(CGT.ConvertType(Ty)))
929       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
930 
931     return ABIArgInfo::getDirect();
932   }
933 
934 
935   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
936     Ty = EnumTy->getDecl()->getIntegerType();
937 
938   bool NeedsPadding;
939   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
940 
941   if (Ty->isPromotableIntegerType()) {
942     if (InReg)
943       return ABIArgInfo::getExtendInReg();
944     return ABIArgInfo::getExtend();
945   }
946   if (InReg)
947     return ABIArgInfo::getDirectInReg();
948   return ABIArgInfo::getDirect();
949 }
950 
951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
952   CCState State(FI.getCallingConvention());
953   if (State.CC == llvm::CallingConv::X86_FastCall)
954     State.FreeRegs = 2;
955   else if (FI.getHasRegParm())
956     State.FreeRegs = FI.getRegParm();
957   else
958     State.FreeRegs = DefaultNumRegisterParameters;
959 
960   if (!getCXXABI().classifyReturnType(FI))
961     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
962 
963   bool UsedInAlloca = false;
964   for (auto &I : FI.arguments()) {
965     I.info = classifyArgumentType(I.type, State);
966     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
967   }
968 
969   // If we needed to use inalloca for any argument, do a second pass and rewrite
970   // all the memory arguments to use inalloca.
971   if (UsedInAlloca)
972     rewriteWithInAlloca(FI);
973 }
974 
975 void
976 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
977                                    unsigned &StackOffset,
978                                    ABIArgInfo &Info, QualType Type) const {
979   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
980   Info = ABIArgInfo::getInAlloca(FrameFields.size());
981   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
982   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
983 
984   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
985   // byte aligned.
986   if (StackOffset % 4U) {
987     unsigned OldOffset = StackOffset;
988     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
989     unsigned NumBytes = StackOffset - OldOffset;
990     assert(NumBytes);
991     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
992     Ty = llvm::ArrayType::get(Ty, NumBytes);
993     FrameFields.push_back(Ty);
994   }
995 }
996 
997 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
998   assert(IsWin32StructABI && "inalloca only supported on win32");
999 
1000   // Build a packed struct type for all of the arguments in memory.
1001   SmallVector<llvm::Type *, 6> FrameFields;
1002 
1003   unsigned StackOffset = 0;
1004 
1005   // Put the sret parameter into the inalloca struct if it's in memory.
1006   ABIArgInfo &Ret = FI.getReturnInfo();
1007   if (Ret.isIndirect() && !Ret.getInReg()) {
1008     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1009     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1010     // On Windows, the hidden sret parameter is always returned in eax.
1011     Ret.setInAllocaSRet(IsWin32StructABI);
1012   }
1013 
1014   // Skip the 'this' parameter in ecx.
1015   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1016   if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall)
1017     ++I;
1018 
1019   // Put arguments passed in memory into the struct.
1020   for (; I != E; ++I) {
1021 
1022     // Leave ignored and inreg arguments alone.
1023     switch (I->info.getKind()) {
1024     case ABIArgInfo::Indirect:
1025       assert(I->info.getIndirectByVal());
1026       break;
1027     case ABIArgInfo::Ignore:
1028       continue;
1029     case ABIArgInfo::Direct:
1030     case ABIArgInfo::Extend:
1031       if (I->info.getInReg())
1032         continue;
1033       break;
1034     default:
1035       break;
1036     }
1037 
1038     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1039   }
1040 
1041   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1042                                         /*isPacked=*/true));
1043 }
1044 
1045 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1046                                       CodeGenFunction &CGF) const {
1047   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1048 
1049   CGBuilderTy &Builder = CGF.Builder;
1050   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1051                                                        "ap");
1052   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1053 
1054   // Compute if the address needs to be aligned
1055   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1056   Align = getTypeStackAlignInBytes(Ty, Align);
1057   Align = std::max(Align, 4U);
1058   if (Align > 4) {
1059     // addr = (addr + align - 1) & -align;
1060     llvm::Value *Offset =
1061       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1062     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1063     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1064                                                     CGF.Int32Ty);
1065     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1066     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1067                                       Addr->getType(),
1068                                       "ap.cur.aligned");
1069   }
1070 
1071   llvm::Type *PTy =
1072     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1073   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1074 
1075   uint64_t Offset =
1076     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1077   llvm::Value *NextAddr =
1078     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1079                       "ap.next");
1080   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1081 
1082   return AddrTyped;
1083 }
1084 
1085 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1086                                                   llvm::GlobalValue *GV,
1087                                             CodeGen::CodeGenModule &CGM) const {
1088   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1089     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1090       // Get the LLVM function.
1091       llvm::Function *Fn = cast<llvm::Function>(GV);
1092 
1093       // Now add the 'alignstack' attribute with a value of 16.
1094       llvm::AttrBuilder B;
1095       B.addStackAlignmentAttr(16);
1096       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1097                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1098                                               llvm::AttributeSet::FunctionIndex,
1099                                               B));
1100     }
1101   }
1102 }
1103 
1104 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1105                                                CodeGen::CodeGenFunction &CGF,
1106                                                llvm::Value *Address) const {
1107   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1108 
1109   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1110 
1111   // 0-7 are the eight integer registers;  the order is different
1112   //   on Darwin (for EH), but the range is the same.
1113   // 8 is %eip.
1114   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1115 
1116   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1117     // 12-16 are st(0..4).  Not sure why we stop at 4.
1118     // These have size 16, which is sizeof(long double) on
1119     // platforms with 8-byte alignment for that type.
1120     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1121     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1122 
1123   } else {
1124     // 9 is %eflags, which doesn't get a size on Darwin for some
1125     // reason.
1126     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1127 
1128     // 11-16 are st(0..5).  Not sure why we stop at 5.
1129     // These have size 12, which is sizeof(long double) on
1130     // platforms with 4-byte alignment for that type.
1131     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1132     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1133   }
1134 
1135   return false;
1136 }
1137 
1138 //===----------------------------------------------------------------------===//
1139 // X86-64 ABI Implementation
1140 //===----------------------------------------------------------------------===//
1141 
1142 
1143 namespace {
1144 /// X86_64ABIInfo - The X86_64 ABI information.
1145 class X86_64ABIInfo : public ABIInfo {
1146   enum Class {
1147     Integer = 0,
1148     SSE,
1149     SSEUp,
1150     X87,
1151     X87Up,
1152     ComplexX87,
1153     NoClass,
1154     Memory
1155   };
1156 
1157   /// merge - Implement the X86_64 ABI merging algorithm.
1158   ///
1159   /// Merge an accumulating classification \arg Accum with a field
1160   /// classification \arg Field.
1161   ///
1162   /// \param Accum - The accumulating classification. This should
1163   /// always be either NoClass or the result of a previous merge
1164   /// call. In addition, this should never be Memory (the caller
1165   /// should just return Memory for the aggregate).
1166   static Class merge(Class Accum, Class Field);
1167 
1168   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1169   ///
1170   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1171   /// final MEMORY or SSE classes when necessary.
1172   ///
1173   /// \param AggregateSize - The size of the current aggregate in
1174   /// the classification process.
1175   ///
1176   /// \param Lo - The classification for the parts of the type
1177   /// residing in the low word of the containing object.
1178   ///
1179   /// \param Hi - The classification for the parts of the type
1180   /// residing in the higher words of the containing object.
1181   ///
1182   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1183 
1184   /// classify - Determine the x86_64 register classes in which the
1185   /// given type T should be passed.
1186   ///
1187   /// \param Lo - The classification for the parts of the type
1188   /// residing in the low word of the containing object.
1189   ///
1190   /// \param Hi - The classification for the parts of the type
1191   /// residing in the high word of the containing object.
1192   ///
1193   /// \param OffsetBase - The bit offset of this type in the
1194   /// containing object.  Some parameters are classified different
1195   /// depending on whether they straddle an eightbyte boundary.
1196   ///
1197   /// \param isNamedArg - Whether the argument in question is a "named"
1198   /// argument, as used in AMD64-ABI 3.5.7.
1199   ///
1200   /// If a word is unused its result will be NoClass; if a type should
1201   /// be passed in Memory then at least the classification of \arg Lo
1202   /// will be Memory.
1203   ///
1204   /// The \arg Lo class will be NoClass iff the argument is ignored.
1205   ///
1206   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1207   /// also be ComplexX87.
1208   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1209                 bool isNamedArg) const;
1210 
1211   llvm::Type *GetByteVectorType(QualType Ty) const;
1212   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1213                                  unsigned IROffset, QualType SourceTy,
1214                                  unsigned SourceOffset) const;
1215   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1216                                      unsigned IROffset, QualType SourceTy,
1217                                      unsigned SourceOffset) const;
1218 
1219   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1220   /// such that the argument will be returned in memory.
1221   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1222 
1223   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1224   /// such that the argument will be passed in memory.
1225   ///
1226   /// \param freeIntRegs - The number of free integer registers remaining
1227   /// available.
1228   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1229 
1230   ABIArgInfo classifyReturnType(QualType RetTy) const;
1231 
1232   ABIArgInfo classifyArgumentType(QualType Ty,
1233                                   unsigned freeIntRegs,
1234                                   unsigned &neededInt,
1235                                   unsigned &neededSSE,
1236                                   bool isNamedArg) const;
1237 
1238   bool IsIllegalVectorType(QualType Ty) const;
1239 
1240   /// The 0.98 ABI revision clarified a lot of ambiguities,
1241   /// unfortunately in ways that were not always consistent with
1242   /// certain previous compilers.  In particular, platforms which
1243   /// required strict binary compatibility with older versions of GCC
1244   /// may need to exempt themselves.
1245   bool honorsRevision0_98() const {
1246     return !getTarget().getTriple().isOSDarwin();
1247   }
1248 
1249   bool HasAVX;
1250   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1251   // 64-bit hardware.
1252   bool Has64BitPointers;
1253 
1254 public:
1255   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1256       ABIInfo(CGT), HasAVX(hasavx),
1257       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1258   }
1259 
1260   bool isPassedUsingAVXType(QualType type) const {
1261     unsigned neededInt, neededSSE;
1262     // The freeIntRegs argument doesn't matter here.
1263     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1264                                            /*isNamedArg*/true);
1265     if (info.isDirect()) {
1266       llvm::Type *ty = info.getCoerceToType();
1267       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1268         return (vectorTy->getBitWidth() > 128);
1269     }
1270     return false;
1271   }
1272 
1273   void computeInfo(CGFunctionInfo &FI) const override;
1274 
1275   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1276                          CodeGenFunction &CGF) const override;
1277 };
1278 
1279 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1280 class WinX86_64ABIInfo : public ABIInfo {
1281 
1282   ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1283 
1284 public:
1285   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1286 
1287   void computeInfo(CGFunctionInfo &FI) const override;
1288 
1289   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1290                          CodeGenFunction &CGF) const override;
1291 };
1292 
1293 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1294 public:
1295   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1296       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1297 
1298   const X86_64ABIInfo &getABIInfo() const {
1299     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1300   }
1301 
1302   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1303     return 7;
1304   }
1305 
1306   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1307                                llvm::Value *Address) const override {
1308     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1309 
1310     // 0-15 are the 16 integer registers.
1311     // 16 is %rip.
1312     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1313     return false;
1314   }
1315 
1316   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1317                                   StringRef Constraint,
1318                                   llvm::Type* Ty) const override {
1319     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1320   }
1321 
1322   bool isNoProtoCallVariadic(const CallArgList &args,
1323                              const FunctionNoProtoType *fnType) const override {
1324     // The default CC on x86-64 sets %al to the number of SSA
1325     // registers used, and GCC sets this when calling an unprototyped
1326     // function, so we override the default behavior.  However, don't do
1327     // that when AVX types are involved: the ABI explicitly states it is
1328     // undefined, and it doesn't work in practice because of how the ABI
1329     // defines varargs anyway.
1330     if (fnType->getCallConv() == CC_C) {
1331       bool HasAVXType = false;
1332       for (CallArgList::const_iterator
1333              it = args.begin(), ie = args.end(); it != ie; ++it) {
1334         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1335           HasAVXType = true;
1336           break;
1337         }
1338       }
1339 
1340       if (!HasAVXType)
1341         return true;
1342     }
1343 
1344     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1345   }
1346 
1347   llvm::Constant *
1348   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1349     unsigned Sig = (0xeb << 0) |  // jmp rel8
1350                    (0x0a << 8) |  //           .+0x0c
1351                    ('F' << 16) |
1352                    ('T' << 24);
1353     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1354   }
1355 
1356 };
1357 
1358 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1359   // If the argument does not end in .lib, automatically add the suffix. This
1360   // matches the behavior of MSVC.
1361   std::string ArgStr = Lib;
1362   if (!Lib.endswith_lower(".lib"))
1363     ArgStr += ".lib";
1364   return ArgStr;
1365 }
1366 
1367 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1368 public:
1369   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1370         bool d, bool p, bool w, unsigned RegParms)
1371     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1372 
1373   void getDependentLibraryOption(llvm::StringRef Lib,
1374                                  llvm::SmallString<24> &Opt) const override {
1375     Opt = "/DEFAULTLIB:";
1376     Opt += qualifyWindowsLibrary(Lib);
1377   }
1378 
1379   void getDetectMismatchOption(llvm::StringRef Name,
1380                                llvm::StringRef Value,
1381                                llvm::SmallString<32> &Opt) const override {
1382     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1383   }
1384 };
1385 
1386 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1387 public:
1388   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1389     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1390 
1391   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1392     return 7;
1393   }
1394 
1395   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1396                                llvm::Value *Address) const override {
1397     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1398 
1399     // 0-15 are the 16 integer registers.
1400     // 16 is %rip.
1401     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1402     return false;
1403   }
1404 
1405   void getDependentLibraryOption(llvm::StringRef Lib,
1406                                  llvm::SmallString<24> &Opt) const override {
1407     Opt = "/DEFAULTLIB:";
1408     Opt += qualifyWindowsLibrary(Lib);
1409   }
1410 
1411   void getDetectMismatchOption(llvm::StringRef Name,
1412                                llvm::StringRef Value,
1413                                llvm::SmallString<32> &Opt) const override {
1414     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1415   }
1416 };
1417 
1418 }
1419 
1420 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1421                               Class &Hi) const {
1422   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1423   //
1424   // (a) If one of the classes is Memory, the whole argument is passed in
1425   //     memory.
1426   //
1427   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1428   //     memory.
1429   //
1430   // (c) If the size of the aggregate exceeds two eightbytes and the first
1431   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1432   //     argument is passed in memory. NOTE: This is necessary to keep the
1433   //     ABI working for processors that don't support the __m256 type.
1434   //
1435   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1436   //
1437   // Some of these are enforced by the merging logic.  Others can arise
1438   // only with unions; for example:
1439   //   union { _Complex double; unsigned; }
1440   //
1441   // Note that clauses (b) and (c) were added in 0.98.
1442   //
1443   if (Hi == Memory)
1444     Lo = Memory;
1445   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1446     Lo = Memory;
1447   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1448     Lo = Memory;
1449   if (Hi == SSEUp && Lo != SSE)
1450     Hi = SSE;
1451 }
1452 
1453 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1454   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1455   // classified recursively so that always two fields are
1456   // considered. The resulting class is calculated according to
1457   // the classes of the fields in the eightbyte:
1458   //
1459   // (a) If both classes are equal, this is the resulting class.
1460   //
1461   // (b) If one of the classes is NO_CLASS, the resulting class is
1462   // the other class.
1463   //
1464   // (c) If one of the classes is MEMORY, the result is the MEMORY
1465   // class.
1466   //
1467   // (d) If one of the classes is INTEGER, the result is the
1468   // INTEGER.
1469   //
1470   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1471   // MEMORY is used as class.
1472   //
1473   // (f) Otherwise class SSE is used.
1474 
1475   // Accum should never be memory (we should have returned) or
1476   // ComplexX87 (because this cannot be passed in a structure).
1477   assert((Accum != Memory && Accum != ComplexX87) &&
1478          "Invalid accumulated classification during merge.");
1479   if (Accum == Field || Field == NoClass)
1480     return Accum;
1481   if (Field == Memory)
1482     return Memory;
1483   if (Accum == NoClass)
1484     return Field;
1485   if (Accum == Integer || Field == Integer)
1486     return Integer;
1487   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1488       Accum == X87 || Accum == X87Up)
1489     return Memory;
1490   return SSE;
1491 }
1492 
1493 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1494                              Class &Lo, Class &Hi, bool isNamedArg) const {
1495   // FIXME: This code can be simplified by introducing a simple value class for
1496   // Class pairs with appropriate constructor methods for the various
1497   // situations.
1498 
1499   // FIXME: Some of the split computations are wrong; unaligned vectors
1500   // shouldn't be passed in registers for example, so there is no chance they
1501   // can straddle an eightbyte. Verify & simplify.
1502 
1503   Lo = Hi = NoClass;
1504 
1505   Class &Current = OffsetBase < 64 ? Lo : Hi;
1506   Current = Memory;
1507 
1508   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1509     BuiltinType::Kind k = BT->getKind();
1510 
1511     if (k == BuiltinType::Void) {
1512       Current = NoClass;
1513     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1514       Lo = Integer;
1515       Hi = Integer;
1516     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1517       Current = Integer;
1518     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1519                (k == BuiltinType::LongDouble &&
1520                 getTarget().getTriple().isOSNaCl())) {
1521       Current = SSE;
1522     } else if (k == BuiltinType::LongDouble) {
1523       Lo = X87;
1524       Hi = X87Up;
1525     }
1526     // FIXME: _Decimal32 and _Decimal64 are SSE.
1527     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1528     return;
1529   }
1530 
1531   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1532     // Classify the underlying integer type.
1533     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1534     return;
1535   }
1536 
1537   if (Ty->hasPointerRepresentation()) {
1538     Current = Integer;
1539     return;
1540   }
1541 
1542   if (Ty->isMemberPointerType()) {
1543     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1544       Lo = Hi = Integer;
1545     else
1546       Current = Integer;
1547     return;
1548   }
1549 
1550   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1551     uint64_t Size = getContext().getTypeSize(VT);
1552     if (Size == 32) {
1553       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1554       // float> as integer.
1555       Current = Integer;
1556 
1557       // If this type crosses an eightbyte boundary, it should be
1558       // split.
1559       uint64_t EB_Real = (OffsetBase) / 64;
1560       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1561       if (EB_Real != EB_Imag)
1562         Hi = Lo;
1563     } else if (Size == 64) {
1564       // gcc passes <1 x double> in memory. :(
1565       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1566         return;
1567 
1568       // gcc passes <1 x long long> as INTEGER.
1569       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1570           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1571           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1572           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1573         Current = Integer;
1574       else
1575         Current = SSE;
1576 
1577       // If this type crosses an eightbyte boundary, it should be
1578       // split.
1579       if (OffsetBase && OffsetBase != 64)
1580         Hi = Lo;
1581     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1582       // Arguments of 256-bits are split into four eightbyte chunks. The
1583       // least significant one belongs to class SSE and all the others to class
1584       // SSEUP. The original Lo and Hi design considers that types can't be
1585       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1586       // This design isn't correct for 256-bits, but since there're no cases
1587       // where the upper parts would need to be inspected, avoid adding
1588       // complexity and just consider Hi to match the 64-256 part.
1589       //
1590       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1591       // registers if they are "named", i.e. not part of the "..." of a
1592       // variadic function.
1593       Lo = SSE;
1594       Hi = SSEUp;
1595     }
1596     return;
1597   }
1598 
1599   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1600     QualType ET = getContext().getCanonicalType(CT->getElementType());
1601 
1602     uint64_t Size = getContext().getTypeSize(Ty);
1603     if (ET->isIntegralOrEnumerationType()) {
1604       if (Size <= 64)
1605         Current = Integer;
1606       else if (Size <= 128)
1607         Lo = Hi = Integer;
1608     } else if (ET == getContext().FloatTy)
1609       Current = SSE;
1610     else if (ET == getContext().DoubleTy ||
1611              (ET == getContext().LongDoubleTy &&
1612               getTarget().getTriple().isOSNaCl()))
1613       Lo = Hi = SSE;
1614     else if (ET == getContext().LongDoubleTy)
1615       Current = ComplexX87;
1616 
1617     // If this complex type crosses an eightbyte boundary then it
1618     // should be split.
1619     uint64_t EB_Real = (OffsetBase) / 64;
1620     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1621     if (Hi == NoClass && EB_Real != EB_Imag)
1622       Hi = Lo;
1623 
1624     return;
1625   }
1626 
1627   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1628     // Arrays are treated like structures.
1629 
1630     uint64_t Size = getContext().getTypeSize(Ty);
1631 
1632     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1633     // than four eightbytes, ..., it has class MEMORY.
1634     if (Size > 256)
1635       return;
1636 
1637     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1638     // fields, it has class MEMORY.
1639     //
1640     // Only need to check alignment of array base.
1641     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1642       return;
1643 
1644     // Otherwise implement simplified merge. We could be smarter about
1645     // this, but it isn't worth it and would be harder to verify.
1646     Current = NoClass;
1647     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1648     uint64_t ArraySize = AT->getSize().getZExtValue();
1649 
1650     // The only case a 256-bit wide vector could be used is when the array
1651     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1652     // to work for sizes wider than 128, early check and fallback to memory.
1653     if (Size > 128 && EltSize != 256)
1654       return;
1655 
1656     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1657       Class FieldLo, FieldHi;
1658       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1659       Lo = merge(Lo, FieldLo);
1660       Hi = merge(Hi, FieldHi);
1661       if (Lo == Memory || Hi == Memory)
1662         break;
1663     }
1664 
1665     postMerge(Size, Lo, Hi);
1666     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1667     return;
1668   }
1669 
1670   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1671     uint64_t Size = getContext().getTypeSize(Ty);
1672 
1673     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1674     // than four eightbytes, ..., it has class MEMORY.
1675     if (Size > 256)
1676       return;
1677 
1678     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1679     // copy constructor or a non-trivial destructor, it is passed by invisible
1680     // reference.
1681     if (getRecordArgABI(RT, getCXXABI()))
1682       return;
1683 
1684     const RecordDecl *RD = RT->getDecl();
1685 
1686     // Assume variable sized types are passed in memory.
1687     if (RD->hasFlexibleArrayMember())
1688       return;
1689 
1690     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1691 
1692     // Reset Lo class, this will be recomputed.
1693     Current = NoClass;
1694 
1695     // If this is a C++ record, classify the bases first.
1696     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1697       for (const auto &I : CXXRD->bases()) {
1698         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1699                "Unexpected base class!");
1700         const CXXRecordDecl *Base =
1701           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1702 
1703         // Classify this field.
1704         //
1705         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1706         // single eightbyte, each is classified separately. Each eightbyte gets
1707         // initialized to class NO_CLASS.
1708         Class FieldLo, FieldHi;
1709         uint64_t Offset =
1710           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1711         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
1712         Lo = merge(Lo, FieldLo);
1713         Hi = merge(Hi, FieldHi);
1714         if (Lo == Memory || Hi == Memory)
1715           break;
1716       }
1717     }
1718 
1719     // Classify the fields one at a time, merging the results.
1720     unsigned idx = 0;
1721     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1722            i != e; ++i, ++idx) {
1723       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1724       bool BitField = i->isBitField();
1725 
1726       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1727       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1728       //
1729       // The only case a 256-bit wide vector could be used is when the struct
1730       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1731       // to work for sizes wider than 128, early check and fallback to memory.
1732       //
1733       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1734         Lo = Memory;
1735         return;
1736       }
1737       // Note, skip this test for bit-fields, see below.
1738       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1739         Lo = Memory;
1740         return;
1741       }
1742 
1743       // Classify this field.
1744       //
1745       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1746       // exceeds a single eightbyte, each is classified
1747       // separately. Each eightbyte gets initialized to class
1748       // NO_CLASS.
1749       Class FieldLo, FieldHi;
1750 
1751       // Bit-fields require special handling, they do not force the
1752       // structure to be passed in memory even if unaligned, and
1753       // therefore they can straddle an eightbyte.
1754       if (BitField) {
1755         // Ignore padding bit-fields.
1756         if (i->isUnnamedBitfield())
1757           continue;
1758 
1759         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1760         uint64_t Size = i->getBitWidthValue(getContext());
1761 
1762         uint64_t EB_Lo = Offset / 64;
1763         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1764 
1765         if (EB_Lo) {
1766           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1767           FieldLo = NoClass;
1768           FieldHi = Integer;
1769         } else {
1770           FieldLo = Integer;
1771           FieldHi = EB_Hi ? Integer : NoClass;
1772         }
1773       } else
1774         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1775       Lo = merge(Lo, FieldLo);
1776       Hi = merge(Hi, FieldHi);
1777       if (Lo == Memory || Hi == Memory)
1778         break;
1779     }
1780 
1781     postMerge(Size, Lo, Hi);
1782   }
1783 }
1784 
1785 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1786   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1787   // place naturally.
1788   if (!isAggregateTypeForABI(Ty)) {
1789     // Treat an enum type as its underlying type.
1790     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1791       Ty = EnumTy->getDecl()->getIntegerType();
1792 
1793     return (Ty->isPromotableIntegerType() ?
1794             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1795   }
1796 
1797   return ABIArgInfo::getIndirect(0);
1798 }
1799 
1800 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1801   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1802     uint64_t Size = getContext().getTypeSize(VecTy);
1803     unsigned LargestVector = HasAVX ? 256 : 128;
1804     if (Size <= 64 || Size > LargestVector)
1805       return true;
1806   }
1807 
1808   return false;
1809 }
1810 
1811 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1812                                             unsigned freeIntRegs) const {
1813   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1814   // place naturally.
1815   //
1816   // This assumption is optimistic, as there could be free registers available
1817   // when we need to pass this argument in memory, and LLVM could try to pass
1818   // the argument in the free register. This does not seem to happen currently,
1819   // but this code would be much safer if we could mark the argument with
1820   // 'onstack'. See PR12193.
1821   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1822     // Treat an enum type as its underlying type.
1823     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1824       Ty = EnumTy->getDecl()->getIntegerType();
1825 
1826     return (Ty->isPromotableIntegerType() ?
1827             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1828   }
1829 
1830   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1831     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1832 
1833   // Compute the byval alignment. We specify the alignment of the byval in all
1834   // cases so that the mid-level optimizer knows the alignment of the byval.
1835   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1836 
1837   // Attempt to avoid passing indirect results using byval when possible. This
1838   // is important for good codegen.
1839   //
1840   // We do this by coercing the value into a scalar type which the backend can
1841   // handle naturally (i.e., without using byval).
1842   //
1843   // For simplicity, we currently only do this when we have exhausted all of the
1844   // free integer registers. Doing this when there are free integer registers
1845   // would require more care, as we would have to ensure that the coerced value
1846   // did not claim the unused register. That would require either reording the
1847   // arguments to the function (so that any subsequent inreg values came first),
1848   // or only doing this optimization when there were no following arguments that
1849   // might be inreg.
1850   //
1851   // We currently expect it to be rare (particularly in well written code) for
1852   // arguments to be passed on the stack when there are still free integer
1853   // registers available (this would typically imply large structs being passed
1854   // by value), so this seems like a fair tradeoff for now.
1855   //
1856   // We can revisit this if the backend grows support for 'onstack' parameter
1857   // attributes. See PR12193.
1858   if (freeIntRegs == 0) {
1859     uint64_t Size = getContext().getTypeSize(Ty);
1860 
1861     // If this type fits in an eightbyte, coerce it into the matching integral
1862     // type, which will end up on the stack (with alignment 8).
1863     if (Align == 8 && Size <= 64)
1864       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1865                                                           Size));
1866   }
1867 
1868   return ABIArgInfo::getIndirect(Align);
1869 }
1870 
1871 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1872 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1873 /// vector register.
1874 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1875   llvm::Type *IRType = CGT.ConvertType(Ty);
1876 
1877   // Wrapper structs that just contain vectors are passed just like vectors,
1878   // strip them off if present.
1879   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1880   while (STy && STy->getNumElements() == 1) {
1881     IRType = STy->getElementType(0);
1882     STy = dyn_cast<llvm::StructType>(IRType);
1883   }
1884 
1885   // If the preferred type is a 16-byte vector, prefer to pass it.
1886   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1887     llvm::Type *EltTy = VT->getElementType();
1888     unsigned BitWidth = VT->getBitWidth();
1889     if ((BitWidth >= 128 && BitWidth <= 256) &&
1890         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1891          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1892          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1893          EltTy->isIntegerTy(128)))
1894       return VT;
1895   }
1896 
1897   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1898 }
1899 
1900 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1901 /// is known to either be off the end of the specified type or being in
1902 /// alignment padding.  The user type specified is known to be at most 128 bits
1903 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1904 /// classification that put one of the two halves in the INTEGER class.
1905 ///
1906 /// It is conservatively correct to return false.
1907 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1908                                   unsigned EndBit, ASTContext &Context) {
1909   // If the bytes being queried are off the end of the type, there is no user
1910   // data hiding here.  This handles analysis of builtins, vectors and other
1911   // types that don't contain interesting padding.
1912   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1913   if (TySize <= StartBit)
1914     return true;
1915 
1916   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1917     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1918     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1919 
1920     // Check each element to see if the element overlaps with the queried range.
1921     for (unsigned i = 0; i != NumElts; ++i) {
1922       // If the element is after the span we care about, then we're done..
1923       unsigned EltOffset = i*EltSize;
1924       if (EltOffset >= EndBit) break;
1925 
1926       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1927       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1928                                  EndBit-EltOffset, Context))
1929         return false;
1930     }
1931     // If it overlaps no elements, then it is safe to process as padding.
1932     return true;
1933   }
1934 
1935   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1936     const RecordDecl *RD = RT->getDecl();
1937     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1938 
1939     // If this is a C++ record, check the bases first.
1940     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1941       for (const auto &I : CXXRD->bases()) {
1942         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1943                "Unexpected base class!");
1944         const CXXRecordDecl *Base =
1945           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1946 
1947         // If the base is after the span we care about, ignore it.
1948         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1949         if (BaseOffset >= EndBit) continue;
1950 
1951         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1952         if (!BitsContainNoUserData(I.getType(), BaseStart,
1953                                    EndBit-BaseOffset, Context))
1954           return false;
1955       }
1956     }
1957 
1958     // Verify that no field has data that overlaps the region of interest.  Yes
1959     // this could be sped up a lot by being smarter about queried fields,
1960     // however we're only looking at structs up to 16 bytes, so we don't care
1961     // much.
1962     unsigned idx = 0;
1963     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1964          i != e; ++i, ++idx) {
1965       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1966 
1967       // If we found a field after the region we care about, then we're done.
1968       if (FieldOffset >= EndBit) break;
1969 
1970       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1971       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1972                                  Context))
1973         return false;
1974     }
1975 
1976     // If nothing in this record overlapped the area of interest, then we're
1977     // clean.
1978     return true;
1979   }
1980 
1981   return false;
1982 }
1983 
1984 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1985 /// float member at the specified offset.  For example, {int,{float}} has a
1986 /// float at offset 4.  It is conservatively correct for this routine to return
1987 /// false.
1988 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1989                                   const llvm::DataLayout &TD) {
1990   // Base case if we find a float.
1991   if (IROffset == 0 && IRType->isFloatTy())
1992     return true;
1993 
1994   // If this is a struct, recurse into the field at the specified offset.
1995   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1996     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1997     unsigned Elt = SL->getElementContainingOffset(IROffset);
1998     IROffset -= SL->getElementOffset(Elt);
1999     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2000   }
2001 
2002   // If this is an array, recurse into the field at the specified offset.
2003   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2004     llvm::Type *EltTy = ATy->getElementType();
2005     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2006     IROffset -= IROffset/EltSize*EltSize;
2007     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2008   }
2009 
2010   return false;
2011 }
2012 
2013 
2014 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2015 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2016 llvm::Type *X86_64ABIInfo::
2017 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2018                    QualType SourceTy, unsigned SourceOffset) const {
2019   // The only three choices we have are either double, <2 x float>, or float. We
2020   // pass as float if the last 4 bytes is just padding.  This happens for
2021   // structs that contain 3 floats.
2022   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2023                             SourceOffset*8+64, getContext()))
2024     return llvm::Type::getFloatTy(getVMContext());
2025 
2026   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2027   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2028   // case.
2029   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2030       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2031     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2032 
2033   return llvm::Type::getDoubleTy(getVMContext());
2034 }
2035 
2036 
2037 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2038 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2039 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2040 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2041 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2042 /// etc).
2043 ///
2044 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2045 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2046 /// the 8-byte value references.  PrefType may be null.
2047 ///
2048 /// SourceTy is the source level type for the entire argument.  SourceOffset is
2049 /// an offset into this that we're processing (which is always either 0 or 8).
2050 ///
2051 llvm::Type *X86_64ABIInfo::
2052 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2053                        QualType SourceTy, unsigned SourceOffset) const {
2054   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2055   // returning an 8-byte unit starting with it.  See if we can safely use it.
2056   if (IROffset == 0) {
2057     // Pointers and int64's always fill the 8-byte unit.
2058     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2059         IRType->isIntegerTy(64))
2060       return IRType;
2061 
2062     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2063     // goodness in the source type is just tail padding.  This is allowed to
2064     // kick in for struct {double,int} on the int, but not on
2065     // struct{double,int,int} because we wouldn't return the second int.  We
2066     // have to do this analysis on the source type because we can't depend on
2067     // unions being lowered a specific way etc.
2068     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2069         IRType->isIntegerTy(32) ||
2070         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2071       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2072           cast<llvm::IntegerType>(IRType)->getBitWidth();
2073 
2074       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2075                                 SourceOffset*8+64, getContext()))
2076         return IRType;
2077     }
2078   }
2079 
2080   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2081     // If this is a struct, recurse into the field at the specified offset.
2082     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2083     if (IROffset < SL->getSizeInBytes()) {
2084       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2085       IROffset -= SL->getElementOffset(FieldIdx);
2086 
2087       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2088                                     SourceTy, SourceOffset);
2089     }
2090   }
2091 
2092   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2093     llvm::Type *EltTy = ATy->getElementType();
2094     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2095     unsigned EltOffset = IROffset/EltSize*EltSize;
2096     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2097                                   SourceOffset);
2098   }
2099 
2100   // Okay, we don't have any better idea of what to pass, so we pass this in an
2101   // integer register that isn't too big to fit the rest of the struct.
2102   unsigned TySizeInBytes =
2103     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2104 
2105   assert(TySizeInBytes != SourceOffset && "Empty field?");
2106 
2107   // It is always safe to classify this as an integer type up to i64 that
2108   // isn't larger than the structure.
2109   return llvm::IntegerType::get(getVMContext(),
2110                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2111 }
2112 
2113 
2114 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2115 /// be used as elements of a two register pair to pass or return, return a
2116 /// first class aggregate to represent them.  For example, if the low part of
2117 /// a by-value argument should be passed as i32* and the high part as float,
2118 /// return {i32*, float}.
2119 static llvm::Type *
2120 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2121                            const llvm::DataLayout &TD) {
2122   // In order to correctly satisfy the ABI, we need to the high part to start
2123   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2124   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2125   // the second element at offset 8.  Check for this:
2126   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2127   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2128   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2129   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2130 
2131   // To handle this, we have to increase the size of the low part so that the
2132   // second element will start at an 8 byte offset.  We can't increase the size
2133   // of the second element because it might make us access off the end of the
2134   // struct.
2135   if (HiStart != 8) {
2136     // There are only two sorts of types the ABI generation code can produce for
2137     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2138     // Promote these to a larger type.
2139     if (Lo->isFloatTy())
2140       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2141     else {
2142       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2143       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2144     }
2145   }
2146 
2147   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2148 
2149 
2150   // Verify that the second element is at an 8-byte offset.
2151   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2152          "Invalid x86-64 argument pair!");
2153   return Result;
2154 }
2155 
2156 ABIArgInfo X86_64ABIInfo::
2157 classifyReturnType(QualType RetTy) const {
2158   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2159   // classification algorithm.
2160   X86_64ABIInfo::Class Lo, Hi;
2161   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2162 
2163   // Check some invariants.
2164   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2165   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2166 
2167   llvm::Type *ResType = nullptr;
2168   switch (Lo) {
2169   case NoClass:
2170     if (Hi == NoClass)
2171       return ABIArgInfo::getIgnore();
2172     // If the low part is just padding, it takes no register, leave ResType
2173     // null.
2174     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2175            "Unknown missing lo part");
2176     break;
2177 
2178   case SSEUp:
2179   case X87Up:
2180     llvm_unreachable("Invalid classification for lo word.");
2181 
2182     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2183     // hidden argument.
2184   case Memory:
2185     return getIndirectReturnResult(RetTy);
2186 
2187     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2188     // available register of the sequence %rax, %rdx is used.
2189   case Integer:
2190     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2191 
2192     // If we have a sign or zero extended integer, make sure to return Extend
2193     // so that the parameter gets the right LLVM IR attributes.
2194     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2195       // Treat an enum type as its underlying type.
2196       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2197         RetTy = EnumTy->getDecl()->getIntegerType();
2198 
2199       if (RetTy->isIntegralOrEnumerationType() &&
2200           RetTy->isPromotableIntegerType())
2201         return ABIArgInfo::getExtend();
2202     }
2203     break;
2204 
2205     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2206     // available SSE register of the sequence %xmm0, %xmm1 is used.
2207   case SSE:
2208     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2209     break;
2210 
2211     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2212     // returned on the X87 stack in %st0 as 80-bit x87 number.
2213   case X87:
2214     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2215     break;
2216 
2217     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2218     // part of the value is returned in %st0 and the imaginary part in
2219     // %st1.
2220   case ComplexX87:
2221     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2222     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2223                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2224                                     NULL);
2225     break;
2226   }
2227 
2228   llvm::Type *HighPart = nullptr;
2229   switch (Hi) {
2230     // Memory was handled previously and X87 should
2231     // never occur as a hi class.
2232   case Memory:
2233   case X87:
2234     llvm_unreachable("Invalid classification for hi word.");
2235 
2236   case ComplexX87: // Previously handled.
2237   case NoClass:
2238     break;
2239 
2240   case Integer:
2241     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2242     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2243       return ABIArgInfo::getDirect(HighPart, 8);
2244     break;
2245   case SSE:
2246     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2247     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2248       return ABIArgInfo::getDirect(HighPart, 8);
2249     break;
2250 
2251     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2252     // is passed in the next available eightbyte chunk if the last used
2253     // vector register.
2254     //
2255     // SSEUP should always be preceded by SSE, just widen.
2256   case SSEUp:
2257     assert(Lo == SSE && "Unexpected SSEUp classification.");
2258     ResType = GetByteVectorType(RetTy);
2259     break;
2260 
2261     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2262     // returned together with the previous X87 value in %st0.
2263   case X87Up:
2264     // If X87Up is preceded by X87, we don't need to do
2265     // anything. However, in some cases with unions it may not be
2266     // preceded by X87. In such situations we follow gcc and pass the
2267     // extra bits in an SSE reg.
2268     if (Lo != X87) {
2269       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2270       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2271         return ABIArgInfo::getDirect(HighPart, 8);
2272     }
2273     break;
2274   }
2275 
2276   // If a high part was specified, merge it together with the low part.  It is
2277   // known to pass in the high eightbyte of the result.  We do this by forming a
2278   // first class struct aggregate with the high and low part: {low, high}
2279   if (HighPart)
2280     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2281 
2282   return ABIArgInfo::getDirect(ResType);
2283 }
2284 
2285 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2286   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2287   bool isNamedArg)
2288   const
2289 {
2290   X86_64ABIInfo::Class Lo, Hi;
2291   classify(Ty, 0, Lo, Hi, isNamedArg);
2292 
2293   // Check some invariants.
2294   // FIXME: Enforce these by construction.
2295   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2296   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2297 
2298   neededInt = 0;
2299   neededSSE = 0;
2300   llvm::Type *ResType = nullptr;
2301   switch (Lo) {
2302   case NoClass:
2303     if (Hi == NoClass)
2304       return ABIArgInfo::getIgnore();
2305     // If the low part is just padding, it takes no register, leave ResType
2306     // null.
2307     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2308            "Unknown missing lo part");
2309     break;
2310 
2311     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2312     // on the stack.
2313   case Memory:
2314 
2315     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2316     // COMPLEX_X87, it is passed in memory.
2317   case X87:
2318   case ComplexX87:
2319     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2320       ++neededInt;
2321     return getIndirectResult(Ty, freeIntRegs);
2322 
2323   case SSEUp:
2324   case X87Up:
2325     llvm_unreachable("Invalid classification for lo word.");
2326 
2327     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2328     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2329     // and %r9 is used.
2330   case Integer:
2331     ++neededInt;
2332 
2333     // Pick an 8-byte type based on the preferred type.
2334     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2335 
2336     // If we have a sign or zero extended integer, make sure to return Extend
2337     // so that the parameter gets the right LLVM IR attributes.
2338     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2339       // Treat an enum type as its underlying type.
2340       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2341         Ty = EnumTy->getDecl()->getIntegerType();
2342 
2343       if (Ty->isIntegralOrEnumerationType() &&
2344           Ty->isPromotableIntegerType())
2345         return ABIArgInfo::getExtend();
2346     }
2347 
2348     break;
2349 
2350     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2351     // available SSE register is used, the registers are taken in the
2352     // order from %xmm0 to %xmm7.
2353   case SSE: {
2354     llvm::Type *IRType = CGT.ConvertType(Ty);
2355     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2356     ++neededSSE;
2357     break;
2358   }
2359   }
2360 
2361   llvm::Type *HighPart = nullptr;
2362   switch (Hi) {
2363     // Memory was handled previously, ComplexX87 and X87 should
2364     // never occur as hi classes, and X87Up must be preceded by X87,
2365     // which is passed in memory.
2366   case Memory:
2367   case X87:
2368   case ComplexX87:
2369     llvm_unreachable("Invalid classification for hi word.");
2370 
2371   case NoClass: break;
2372 
2373   case Integer:
2374     ++neededInt;
2375     // Pick an 8-byte type based on the preferred type.
2376     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2377 
2378     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2379       return ABIArgInfo::getDirect(HighPart, 8);
2380     break;
2381 
2382     // X87Up generally doesn't occur here (long double is passed in
2383     // memory), except in situations involving unions.
2384   case X87Up:
2385   case SSE:
2386     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2387 
2388     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2389       return ABIArgInfo::getDirect(HighPart, 8);
2390 
2391     ++neededSSE;
2392     break;
2393 
2394     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2395     // eightbyte is passed in the upper half of the last used SSE
2396     // register.  This only happens when 128-bit vectors are passed.
2397   case SSEUp:
2398     assert(Lo == SSE && "Unexpected SSEUp classification");
2399     ResType = GetByteVectorType(Ty);
2400     break;
2401   }
2402 
2403   // If a high part was specified, merge it together with the low part.  It is
2404   // known to pass in the high eightbyte of the result.  We do this by forming a
2405   // first class struct aggregate with the high and low part: {low, high}
2406   if (HighPart)
2407     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2408 
2409   return ABIArgInfo::getDirect(ResType);
2410 }
2411 
2412 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2413 
2414   if (!getCXXABI().classifyReturnType(FI))
2415     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2416 
2417   // Keep track of the number of assigned registers.
2418   unsigned freeIntRegs = 6, freeSSERegs = 8;
2419 
2420   // If the return value is indirect, then the hidden argument is consuming one
2421   // integer register.
2422   if (FI.getReturnInfo().isIndirect())
2423     --freeIntRegs;
2424 
2425   bool isVariadic = FI.isVariadic();
2426   unsigned numRequiredArgs = 0;
2427   if (isVariadic)
2428     numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2429 
2430   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2431   // get assigned (in left-to-right order) for passing as follows...
2432   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2433        it != ie; ++it) {
2434     bool isNamedArg = true;
2435     if (isVariadic)
2436       isNamedArg = (it - FI.arg_begin()) <
2437                     static_cast<signed>(numRequiredArgs);
2438 
2439     unsigned neededInt, neededSSE;
2440     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2441                                     neededSSE, isNamedArg);
2442 
2443     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2444     // eightbyte of an argument, the whole argument is passed on the
2445     // stack. If registers have already been assigned for some
2446     // eightbytes of such an argument, the assignments get reverted.
2447     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2448       freeIntRegs -= neededInt;
2449       freeSSERegs -= neededSSE;
2450     } else {
2451       it->info = getIndirectResult(it->type, freeIntRegs);
2452     }
2453   }
2454 }
2455 
2456 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2457                                         QualType Ty,
2458                                         CodeGenFunction &CGF) {
2459   llvm::Value *overflow_arg_area_p =
2460     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2461   llvm::Value *overflow_arg_area =
2462     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2463 
2464   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2465   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2466   // It isn't stated explicitly in the standard, but in practice we use
2467   // alignment greater than 16 where necessary.
2468   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2469   if (Align > 8) {
2470     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2471     llvm::Value *Offset =
2472       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2473     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2474     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2475                                                     CGF.Int64Ty);
2476     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2477     overflow_arg_area =
2478       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2479                                  overflow_arg_area->getType(),
2480                                  "overflow_arg_area.align");
2481   }
2482 
2483   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2484   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2485   llvm::Value *Res =
2486     CGF.Builder.CreateBitCast(overflow_arg_area,
2487                               llvm::PointerType::getUnqual(LTy));
2488 
2489   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2490   // l->overflow_arg_area + sizeof(type).
2491   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2492   // an 8 byte boundary.
2493 
2494   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2495   llvm::Value *Offset =
2496       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2497   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2498                                             "overflow_arg_area.next");
2499   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2500 
2501   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2502   return Res;
2503 }
2504 
2505 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2506                                       CodeGenFunction &CGF) const {
2507   // Assume that va_list type is correct; should be pointer to LLVM type:
2508   // struct {
2509   //   i32 gp_offset;
2510   //   i32 fp_offset;
2511   //   i8* overflow_arg_area;
2512   //   i8* reg_save_area;
2513   // };
2514   unsigned neededInt, neededSSE;
2515 
2516   Ty = CGF.getContext().getCanonicalType(Ty);
2517   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2518                                        /*isNamedArg*/false);
2519 
2520   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2521   // in the registers. If not go to step 7.
2522   if (!neededInt && !neededSSE)
2523     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2524 
2525   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2526   // general purpose registers needed to pass type and num_fp to hold
2527   // the number of floating point registers needed.
2528 
2529   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2530   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2531   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2532   //
2533   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2534   // register save space).
2535 
2536   llvm::Value *InRegs = nullptr;
2537   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2538   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2539   if (neededInt) {
2540     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2541     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2542     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2543     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2544   }
2545 
2546   if (neededSSE) {
2547     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2548     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2549     llvm::Value *FitsInFP =
2550       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2551     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2552     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2553   }
2554 
2555   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2556   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2557   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2558   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2559 
2560   // Emit code to load the value if it was passed in registers.
2561 
2562   CGF.EmitBlock(InRegBlock);
2563 
2564   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2565   // an offset of l->gp_offset and/or l->fp_offset. This may require
2566   // copying to a temporary location in case the parameter is passed
2567   // in different register classes or requires an alignment greater
2568   // than 8 for general purpose registers and 16 for XMM registers.
2569   //
2570   // FIXME: This really results in shameful code when we end up needing to
2571   // collect arguments from different places; often what should result in a
2572   // simple assembling of a structure from scattered addresses has many more
2573   // loads than necessary. Can we clean this up?
2574   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2575   llvm::Value *RegAddr =
2576     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2577                            "reg_save_area");
2578   if (neededInt && neededSSE) {
2579     // FIXME: Cleanup.
2580     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2581     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2582     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2583     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2584     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2585     llvm::Type *TyLo = ST->getElementType(0);
2586     llvm::Type *TyHi = ST->getElementType(1);
2587     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2588            "Unexpected ABI info for mixed regs");
2589     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2590     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2591     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2592     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2593     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2594     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2595     llvm::Value *V =
2596       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2597     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2598     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2599     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2600 
2601     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2602                                         llvm::PointerType::getUnqual(LTy));
2603   } else if (neededInt) {
2604     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2605     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2606                                         llvm::PointerType::getUnqual(LTy));
2607 
2608     // Copy to a temporary if necessary to ensure the appropriate alignment.
2609     std::pair<CharUnits, CharUnits> SizeAlign =
2610         CGF.getContext().getTypeInfoInChars(Ty);
2611     uint64_t TySize = SizeAlign.first.getQuantity();
2612     unsigned TyAlign = SizeAlign.second.getQuantity();
2613     if (TyAlign > 8) {
2614       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2615       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2616       RegAddr = Tmp;
2617     }
2618   } else if (neededSSE == 1) {
2619     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2620     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2621                                         llvm::PointerType::getUnqual(LTy));
2622   } else {
2623     assert(neededSSE == 2 && "Invalid number of needed registers!");
2624     // SSE registers are spaced 16 bytes apart in the register save
2625     // area, we need to collect the two eightbytes together.
2626     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2627     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2628     llvm::Type *DoubleTy = CGF.DoubleTy;
2629     llvm::Type *DblPtrTy =
2630       llvm::PointerType::getUnqual(DoubleTy);
2631     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2632     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2633     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2634     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2635                                                          DblPtrTy));
2636     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2637     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2638                                                          DblPtrTy));
2639     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2640     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2641                                         llvm::PointerType::getUnqual(LTy));
2642   }
2643 
2644   // AMD64-ABI 3.5.7p5: Step 5. Set:
2645   // l->gp_offset = l->gp_offset + num_gp * 8
2646   // l->fp_offset = l->fp_offset + num_fp * 16.
2647   if (neededInt) {
2648     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2649     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2650                             gp_offset_p);
2651   }
2652   if (neededSSE) {
2653     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2654     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2655                             fp_offset_p);
2656   }
2657   CGF.EmitBranch(ContBlock);
2658 
2659   // Emit code to load the value if it was passed in memory.
2660 
2661   CGF.EmitBlock(InMemBlock);
2662   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2663 
2664   // Return the appropriate result.
2665 
2666   CGF.EmitBlock(ContBlock);
2667   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2668                                                  "vaarg.addr");
2669   ResAddr->addIncoming(RegAddr, InRegBlock);
2670   ResAddr->addIncoming(MemAddr, InMemBlock);
2671   return ResAddr;
2672 }
2673 
2674 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2675 
2676   if (Ty->isVoidType())
2677     return ABIArgInfo::getIgnore();
2678 
2679   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2680     Ty = EnumTy->getDecl()->getIntegerType();
2681 
2682   uint64_t Size = getContext().getTypeSize(Ty);
2683 
2684   const RecordType *RT = Ty->getAs<RecordType>();
2685   if (RT) {
2686     if (!IsReturnType) {
2687       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2688         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2689     }
2690 
2691     if (RT->getDecl()->hasFlexibleArrayMember())
2692       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2693 
2694     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2695     if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
2696       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2697                                                           Size));
2698   }
2699 
2700   if (Ty->isMemberPointerType()) {
2701     // If the member pointer is represented by an LLVM int or ptr, pass it
2702     // directly.
2703     llvm::Type *LLTy = CGT.ConvertType(Ty);
2704     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
2705       return ABIArgInfo::getDirect();
2706   }
2707 
2708   if (RT || Ty->isMemberPointerType()) {
2709     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2710     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2711     if (Size > 64 || !llvm::isPowerOf2_64(Size))
2712       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2713 
2714     // Otherwise, coerce it to a small integer.
2715     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
2716   }
2717 
2718   if (Ty->isPromotableIntegerType())
2719     return ABIArgInfo::getExtend();
2720 
2721   return ABIArgInfo::getDirect();
2722 }
2723 
2724 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2725   if (!getCXXABI().classifyReturnType(FI))
2726     FI.getReturnInfo() = classify(FI.getReturnType(), true);
2727 
2728   for (auto &I : FI.arguments())
2729     I.info = classify(I.type, false);
2730 }
2731 
2732 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2733                                       CodeGenFunction &CGF) const {
2734   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2735 
2736   CGBuilderTy &Builder = CGF.Builder;
2737   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2738                                                        "ap");
2739   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2740   llvm::Type *PTy =
2741     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2742   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2743 
2744   uint64_t Offset =
2745     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2746   llvm::Value *NextAddr =
2747     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2748                       "ap.next");
2749   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2750 
2751   return AddrTyped;
2752 }
2753 
2754 namespace {
2755 
2756 class NaClX86_64ABIInfo : public ABIInfo {
2757  public:
2758   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2759       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2760   void computeInfo(CGFunctionInfo &FI) const override;
2761   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2762                          CodeGenFunction &CGF) const override;
2763  private:
2764   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2765   X86_64ABIInfo NInfo; // Used for everything else.
2766 };
2767 
2768 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2769  public:
2770   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2771       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2772 };
2773 
2774 }
2775 
2776 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2777   if (FI.getASTCallingConvention() == CC_PnaclCall)
2778     PInfo.computeInfo(FI);
2779   else
2780     NInfo.computeInfo(FI);
2781 }
2782 
2783 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2784                                           CodeGenFunction &CGF) const {
2785   // Always use the native convention; calling pnacl-style varargs functions
2786   // is unuspported.
2787   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2788 }
2789 
2790 
2791 // PowerPC-32
2792 
2793 namespace {
2794 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2795 public:
2796   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2797 
2798   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2799     // This is recovered from gcc output.
2800     return 1; // r1 is the dedicated stack pointer
2801   }
2802 
2803   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2804                                llvm::Value *Address) const override;
2805 };
2806 
2807 }
2808 
2809 bool
2810 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2811                                                 llvm::Value *Address) const {
2812   // This is calculated from the LLVM and GCC tables and verified
2813   // against gcc output.  AFAIK all ABIs use the same encoding.
2814 
2815   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2816 
2817   llvm::IntegerType *i8 = CGF.Int8Ty;
2818   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2819   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2820   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2821 
2822   // 0-31: r0-31, the 4-byte general-purpose registers
2823   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2824 
2825   // 32-63: fp0-31, the 8-byte floating-point registers
2826   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2827 
2828   // 64-76 are various 4-byte special-purpose registers:
2829   // 64: mq
2830   // 65: lr
2831   // 66: ctr
2832   // 67: ap
2833   // 68-75 cr0-7
2834   // 76: xer
2835   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2836 
2837   // 77-108: v0-31, the 16-byte vector registers
2838   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2839 
2840   // 109: vrsave
2841   // 110: vscr
2842   // 111: spe_acc
2843   // 112: spefscr
2844   // 113: sfp
2845   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2846 
2847   return false;
2848 }
2849 
2850 // PowerPC-64
2851 
2852 namespace {
2853 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2854 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2855 
2856 public:
2857   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2858 
2859   bool isPromotableTypeForABI(QualType Ty) const;
2860 
2861   ABIArgInfo classifyReturnType(QualType RetTy) const;
2862   ABIArgInfo classifyArgumentType(QualType Ty) const;
2863 
2864   // TODO: We can add more logic to computeInfo to improve performance.
2865   // Example: For aggregate arguments that fit in a register, we could
2866   // use getDirectInReg (as is done below for structs containing a single
2867   // floating-point value) to avoid pushing them to memory on function
2868   // entry.  This would require changing the logic in PPCISelLowering
2869   // when lowering the parameters in the caller and args in the callee.
2870   void computeInfo(CGFunctionInfo &FI) const override {
2871     if (!getCXXABI().classifyReturnType(FI))
2872       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2873     for (auto &I : FI.arguments()) {
2874       // We rely on the default argument classification for the most part.
2875       // One exception:  An aggregate containing a single floating-point
2876       // or vector item must be passed in a register if one is available.
2877       const Type *T = isSingleElementStruct(I.type, getContext());
2878       if (T) {
2879         const BuiltinType *BT = T->getAs<BuiltinType>();
2880         if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2881           QualType QT(T, 0);
2882           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2883           continue;
2884         }
2885       }
2886       I.info = classifyArgumentType(I.type);
2887     }
2888   }
2889 
2890   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2891                          CodeGenFunction &CGF) const override;
2892 };
2893 
2894 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2895 public:
2896   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2897     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2898 
2899   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2900     // This is recovered from gcc output.
2901     return 1; // r1 is the dedicated stack pointer
2902   }
2903 
2904   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2905                                llvm::Value *Address) const override;
2906 };
2907 
2908 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2909 public:
2910   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2911 
2912   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2913     // This is recovered from gcc output.
2914     return 1; // r1 is the dedicated stack pointer
2915   }
2916 
2917   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2918                                llvm::Value *Address) const override;
2919 };
2920 
2921 }
2922 
2923 // Return true if the ABI requires Ty to be passed sign- or zero-
2924 // extended to 64 bits.
2925 bool
2926 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2927   // Treat an enum type as its underlying type.
2928   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2929     Ty = EnumTy->getDecl()->getIntegerType();
2930 
2931   // Promotable integer types are required to be promoted by the ABI.
2932   if (Ty->isPromotableIntegerType())
2933     return true;
2934 
2935   // In addition to the usual promotable integer types, we also need to
2936   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2937   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2938     switch (BT->getKind()) {
2939     case BuiltinType::Int:
2940     case BuiltinType::UInt:
2941       return true;
2942     default:
2943       break;
2944     }
2945 
2946   return false;
2947 }
2948 
2949 ABIArgInfo
2950 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2951   if (Ty->isAnyComplexType())
2952     return ABIArgInfo::getDirect();
2953 
2954   if (isAggregateTypeForABI(Ty)) {
2955     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2956       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2957 
2958     return ABIArgInfo::getIndirect(0);
2959   }
2960 
2961   return (isPromotableTypeForABI(Ty) ?
2962           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2963 }
2964 
2965 ABIArgInfo
2966 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2967   if (RetTy->isVoidType())
2968     return ABIArgInfo::getIgnore();
2969 
2970   if (RetTy->isAnyComplexType())
2971     return ABIArgInfo::getDirect();
2972 
2973   if (isAggregateTypeForABI(RetTy))
2974     return ABIArgInfo::getIndirect(0);
2975 
2976   return (isPromotableTypeForABI(RetTy) ?
2977           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2978 }
2979 
2980 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2981 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2982                                            QualType Ty,
2983                                            CodeGenFunction &CGF) const {
2984   llvm::Type *BP = CGF.Int8PtrTy;
2985   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2986 
2987   CGBuilderTy &Builder = CGF.Builder;
2988   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2989   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2990 
2991   // Update the va_list pointer.  The pointer should be bumped by the
2992   // size of the object.  We can trust getTypeSize() except for a complex
2993   // type whose base type is smaller than a doubleword.  For these, the
2994   // size of the object is 16 bytes; see below for further explanation.
2995   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2996   QualType BaseTy;
2997   unsigned CplxBaseSize = 0;
2998 
2999   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3000     BaseTy = CTy->getElementType();
3001     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3002     if (CplxBaseSize < 8)
3003       SizeInBytes = 16;
3004   }
3005 
3006   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3007   llvm::Value *NextAddr =
3008     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3009                       "ap.next");
3010   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3011 
3012   // If we have a complex type and the base type is smaller than 8 bytes,
3013   // the ABI calls for the real and imaginary parts to be right-adjusted
3014   // in separate doublewords.  However, Clang expects us to produce a
3015   // pointer to a structure with the two parts packed tightly.  So generate
3016   // loads of the real and imaginary parts relative to the va_list pointer,
3017   // and store them to a temporary structure.
3018   if (CplxBaseSize && CplxBaseSize < 8) {
3019     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3020     llvm::Value *ImagAddr = RealAddr;
3021     if (CGF.CGM.getDataLayout().isBigEndian()) {
3022       RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3023       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3024     } else {
3025       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3026     }
3027     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3028     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3029     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3030     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3031     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3032     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3033                                             "vacplx");
3034     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3035     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3036     Builder.CreateStore(Real, RealPtr, false);
3037     Builder.CreateStore(Imag, ImagPtr, false);
3038     return Ptr;
3039   }
3040 
3041   // If the argument is smaller than 8 bytes, it is right-adjusted in
3042   // its doubleword slot.  Adjust the pointer to pick it up from the
3043   // correct offset.
3044   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3045     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3046     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3047     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3048   }
3049 
3050   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3051   return Builder.CreateBitCast(Addr, PTy);
3052 }
3053 
3054 static bool
3055 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3056                               llvm::Value *Address) {
3057   // This is calculated from the LLVM and GCC tables and verified
3058   // against gcc output.  AFAIK all ABIs use the same encoding.
3059 
3060   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3061 
3062   llvm::IntegerType *i8 = CGF.Int8Ty;
3063   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3064   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3065   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3066 
3067   // 0-31: r0-31, the 8-byte general-purpose registers
3068   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3069 
3070   // 32-63: fp0-31, the 8-byte floating-point registers
3071   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3072 
3073   // 64-76 are various 4-byte special-purpose registers:
3074   // 64: mq
3075   // 65: lr
3076   // 66: ctr
3077   // 67: ap
3078   // 68-75 cr0-7
3079   // 76: xer
3080   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3081 
3082   // 77-108: v0-31, the 16-byte vector registers
3083   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3084 
3085   // 109: vrsave
3086   // 110: vscr
3087   // 111: spe_acc
3088   // 112: spefscr
3089   // 113: sfp
3090   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3091 
3092   return false;
3093 }
3094 
3095 bool
3096 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3097   CodeGen::CodeGenFunction &CGF,
3098   llvm::Value *Address) const {
3099 
3100   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3101 }
3102 
3103 bool
3104 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3105                                                 llvm::Value *Address) const {
3106 
3107   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3108 }
3109 
3110 //===----------------------------------------------------------------------===//
3111 // AArch64 ABI Implementation
3112 //===----------------------------------------------------------------------===//
3113 
3114 namespace {
3115 
3116 class AArch64ABIInfo : public ABIInfo {
3117 public:
3118   enum ABIKind {
3119     AAPCS = 0,
3120     DarwinPCS
3121   };
3122 
3123 private:
3124   ABIKind Kind;
3125 
3126 public:
3127   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3128 
3129 private:
3130   ABIKind getABIKind() const { return Kind; }
3131   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3132 
3133   ABIArgInfo classifyReturnType(QualType RetTy) const;
3134   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP,
3135                                   bool &IsHA, unsigned &AllocatedGPR,
3136                                   bool &IsSmallAggr, bool IsNamedArg) const;
3137   bool isIllegalVectorType(QualType Ty) const;
3138 
3139   virtual void computeInfo(CGFunctionInfo &FI) const {
3140     // To correctly handle Homogeneous Aggregate, we need to keep track of the
3141     // number of SIMD and Floating-point registers allocated so far.
3142     // If the argument is an HFA or an HVA and there are sufficient unallocated
3143     // SIMD and Floating-point registers, then the argument is allocated to SIMD
3144     // and Floating-point Registers (with one register per member of the HFA or
3145     // HVA). Otherwise, the NSRN is set to 8.
3146     unsigned AllocatedVFP = 0;
3147 
3148     // To correctly handle small aggregates, we need to keep track of the number
3149     // of GPRs allocated so far. If the small aggregate can't all fit into
3150     // registers, it will be on stack. We don't allow the aggregate to be
3151     // partially in registers.
3152     unsigned AllocatedGPR = 0;
3153 
3154     // Find the number of named arguments. Variadic arguments get special
3155     // treatment with the Darwin ABI.
3156     unsigned NumRequiredArgs = (FI.isVariadic() ?
3157                                 FI.getRequiredArgs().getNumRequiredArgs() :
3158                                 FI.arg_size());
3159 
3160     if (!getCXXABI().classifyReturnType(FI))
3161       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3162     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3163          it != ie; ++it) {
3164       unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR;
3165       bool IsHA = false, IsSmallAggr = false;
3166       const unsigned NumVFPs = 8;
3167       const unsigned NumGPRs = 8;
3168       bool IsNamedArg = ((it - FI.arg_begin()) <
3169                          static_cast<signed>(NumRequiredArgs));
3170       it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA,
3171                                       AllocatedGPR, IsSmallAggr, IsNamedArg);
3172 
3173       // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs
3174       // as sequences of floats since they'll get "holes" inserted as
3175       // padding by the back end.
3176       if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() &&
3177           getContext().getTypeAlign(it->type) < 64) {
3178         uint32_t NumStackSlots = getContext().getTypeSize(it->type);
3179         NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64;
3180 
3181         llvm::Type *CoerceTy = llvm::ArrayType::get(
3182             llvm::Type::getDoubleTy(getVMContext()), NumStackSlots);
3183         it->info = ABIArgInfo::getDirect(CoerceTy);
3184       }
3185 
3186       // If we do not have enough VFP registers for the HA, any VFP registers
3187       // that are unallocated are marked as unavailable. To achieve this, we add
3188       // padding of (NumVFPs - PreAllocation) floats.
3189       if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3190         llvm::Type *PaddingTy = llvm::ArrayType::get(
3191             llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3192         it->info.setPaddingType(PaddingTy);
3193       }
3194 
3195       // If we do not have enough GPRs for the small aggregate, any GPR regs
3196       // that are unallocated are marked as unavailable.
3197       if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) {
3198         llvm::Type *PaddingTy = llvm::ArrayType::get(
3199             llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR);
3200         it->info =
3201             ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy);
3202       }
3203     }
3204   }
3205 
3206   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3207                                CodeGenFunction &CGF) const;
3208 
3209   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3210                               CodeGenFunction &CGF) const;
3211 
3212   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3213                                  CodeGenFunction &CGF) const {
3214     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3215                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3216   }
3217 };
3218 
3219 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3220 public:
3221   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3222       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3223 
3224   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3225     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3226   }
3227 
3228   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3229 
3230   virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3231 };
3232 }
3233 
3234 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3235                                    ASTContext &Context,
3236                                    uint64_t *HAMembers = nullptr);
3237 
3238 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty,
3239                                                 unsigned &AllocatedVFP,
3240                                                 bool &IsHA,
3241                                                 unsigned &AllocatedGPR,
3242                                                 bool &IsSmallAggr,
3243                                                 bool IsNamedArg) const {
3244   // Handle illegal vector types here.
3245   if (isIllegalVectorType(Ty)) {
3246     uint64_t Size = getContext().getTypeSize(Ty);
3247     if (Size <= 32) {
3248       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3249       AllocatedGPR++;
3250       return ABIArgInfo::getDirect(ResType);
3251     }
3252     if (Size == 64) {
3253       llvm::Type *ResType =
3254           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3255       AllocatedVFP++;
3256       return ABIArgInfo::getDirect(ResType);
3257     }
3258     if (Size == 128) {
3259       llvm::Type *ResType =
3260           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3261       AllocatedVFP++;
3262       return ABIArgInfo::getDirect(ResType);
3263     }
3264     AllocatedGPR++;
3265     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3266   }
3267   if (Ty->isVectorType())
3268     // Size of a legal vector should be either 64 or 128.
3269     AllocatedVFP++;
3270   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3271     if (BT->getKind() == BuiltinType::Half ||
3272         BT->getKind() == BuiltinType::Float ||
3273         BT->getKind() == BuiltinType::Double ||
3274         BT->getKind() == BuiltinType::LongDouble)
3275       AllocatedVFP++;
3276   }
3277 
3278   if (!isAggregateTypeForABI(Ty)) {
3279     // Treat an enum type as its underlying type.
3280     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3281       Ty = EnumTy->getDecl()->getIntegerType();
3282 
3283     if (!Ty->isFloatingType() && !Ty->isVectorType()) {
3284       unsigned Alignment = getContext().getTypeAlign(Ty);
3285       if (!isDarwinPCS() && Alignment > 64)
3286         AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
3287 
3288       int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3289       AllocatedGPR += RegsNeeded;
3290     }
3291     return (Ty->isPromotableIntegerType() && isDarwinPCS()
3292                 ? ABIArgInfo::getExtend()
3293                 : ABIArgInfo::getDirect());
3294   }
3295 
3296   // Structures with either a non-trivial destructor or a non-trivial
3297   // copy constructor are always indirect.
3298   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3299     AllocatedGPR++;
3300     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3301                                           CGCXXABI::RAA_DirectInMemory);
3302   }
3303 
3304   // Empty records are always ignored on Darwin, but actually passed in C++ mode
3305   // elsewhere for GNU compatibility.
3306   if (isEmptyRecord(getContext(), Ty, true)) {
3307     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3308       return ABIArgInfo::getIgnore();
3309 
3310     ++AllocatedGPR;
3311     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3312   }
3313 
3314   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3315   const Type *Base = nullptr;
3316   uint64_t Members = 0;
3317   if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3318     IsHA = true;
3319     if (!IsNamedArg && isDarwinPCS()) {
3320       // With the Darwin ABI, variadic arguments are always passed on the stack
3321       // and should not be expanded. Treat variadic HFAs as arrays of doubles.
3322       uint64_t Size = getContext().getTypeSize(Ty);
3323       llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext());
3324       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3325     }
3326     AllocatedVFP += Members;
3327     return ABIArgInfo::getExpand();
3328   }
3329 
3330   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3331   uint64_t Size = getContext().getTypeSize(Ty);
3332   if (Size <= 128) {
3333     unsigned Alignment = getContext().getTypeAlign(Ty);
3334     if (!isDarwinPCS() && Alignment > 64)
3335       AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
3336 
3337     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3338     AllocatedGPR += Size / 64;
3339     IsSmallAggr = true;
3340     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3341     // For aggregates with 16-byte alignment, we use i128.
3342     if (Alignment < 128 && Size == 128) {
3343       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3344       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3345     }
3346     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3347   }
3348 
3349   AllocatedGPR++;
3350   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3351 }
3352 
3353 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3354   if (RetTy->isVoidType())
3355     return ABIArgInfo::getIgnore();
3356 
3357   // Large vector types should be returned via memory.
3358   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3359     return ABIArgInfo::getIndirect(0);
3360 
3361   if (!isAggregateTypeForABI(RetTy)) {
3362     // Treat an enum type as its underlying type.
3363     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3364       RetTy = EnumTy->getDecl()->getIntegerType();
3365 
3366     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3367                 ? ABIArgInfo::getExtend()
3368                 : ABIArgInfo::getDirect());
3369   }
3370 
3371   if (isEmptyRecord(getContext(), RetTy, true))
3372     return ABIArgInfo::getIgnore();
3373 
3374   const Type *Base = nullptr;
3375   if (isHomogeneousAggregate(RetTy, Base, getContext()))
3376     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3377     return ABIArgInfo::getDirect();
3378 
3379   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3380   uint64_t Size = getContext().getTypeSize(RetTy);
3381   if (Size <= 128) {
3382     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3383     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3384   }
3385 
3386   return ABIArgInfo::getIndirect(0);
3387 }
3388 
3389 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
3390 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
3391   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3392     // Check whether VT is legal.
3393     unsigned NumElements = VT->getNumElements();
3394     uint64_t Size = getContext().getTypeSize(VT);
3395     // NumElements should be power of 2 between 1 and 16.
3396     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
3397       return true;
3398     return Size != 64 && (Size != 128 || NumElements == 1);
3399   }
3400   return false;
3401 }
3402 
3403 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty,
3404                                      int AllocatedGPR, int AllocatedVFP,
3405                                      bool IsIndirect, CodeGenFunction &CGF) {
3406   // The AArch64 va_list type and handling is specified in the Procedure Call
3407   // Standard, section B.4:
3408   //
3409   // struct {
3410   //   void *__stack;
3411   //   void *__gr_top;
3412   //   void *__vr_top;
3413   //   int __gr_offs;
3414   //   int __vr_offs;
3415   // };
3416 
3417   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3418   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3419   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3420   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3421   auto &Ctx = CGF.getContext();
3422 
3423   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
3424   int reg_top_index;
3425   int RegSize;
3426   if (AllocatedGPR) {
3427     assert(!AllocatedVFP && "Arguments never split between int & VFP regs");
3428     // 3 is the field number of __gr_offs
3429     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3430     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3431     reg_top_index = 1; // field number for __gr_top
3432     RegSize = 8 * AllocatedGPR;
3433   } else {
3434     assert(!AllocatedGPR && "Argument must go in VFP or int regs");
3435     // 4 is the field number of __vr_offs.
3436     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
3437     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
3438     reg_top_index = 2; // field number for __vr_top
3439     RegSize = 16 * AllocatedVFP;
3440   }
3441 
3442   //=======================================
3443   // Find out where argument was passed
3444   //=======================================
3445 
3446   // If reg_offs >= 0 we're already using the stack for this type of
3447   // argument. We don't want to keep updating reg_offs (in case it overflows,
3448   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
3449   // whatever they get).
3450   llvm::Value *UsingStack = nullptr;
3451   UsingStack = CGF.Builder.CreateICmpSGE(
3452       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
3453 
3454   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
3455 
3456   // Otherwise, at least some kind of argument could go in these registers, the
3457   // question is whether this particular type is too big.
3458   CGF.EmitBlock(MaybeRegBlock);
3459 
3460   // Integer arguments may need to correct register alignment (for example a
3461   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
3462   // align __gr_offs to calculate the potential address.
3463   if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
3464     int Align = Ctx.getTypeAlign(Ty) / 8;
3465 
3466     reg_offs = CGF.Builder.CreateAdd(
3467         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
3468         "align_regoffs");
3469     reg_offs = CGF.Builder.CreateAnd(
3470         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
3471         "aligned_regoffs");
3472   }
3473 
3474   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
3475   llvm::Value *NewOffset = nullptr;
3476   NewOffset = CGF.Builder.CreateAdd(
3477       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
3478   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
3479 
3480   // Now we're in a position to decide whether this argument really was in
3481   // registers or not.
3482   llvm::Value *InRegs = nullptr;
3483   InRegs = CGF.Builder.CreateICmpSLE(
3484       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
3485 
3486   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
3487 
3488   //=======================================
3489   // Argument was in registers
3490   //=======================================
3491 
3492   // Now we emit the code for if the argument was originally passed in
3493   // registers. First start the appropriate block:
3494   CGF.EmitBlock(InRegBlock);
3495 
3496   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
3497   reg_top_p =
3498       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
3499   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
3500   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
3501   llvm::Value *RegAddr = nullptr;
3502   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
3503 
3504   if (IsIndirect) {
3505     // If it's been passed indirectly (actually a struct), whatever we find from
3506     // stored registers or on the stack will actually be a struct **.
3507     MemTy = llvm::PointerType::getUnqual(MemTy);
3508   }
3509 
3510   const Type *Base = nullptr;
3511   uint64_t NumMembers;
3512   bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers);
3513   if (IsHFA && NumMembers > 1) {
3514     // Homogeneous aggregates passed in registers will have their elements split
3515     // and stored 16-bytes apart regardless of size (they're notionally in qN,
3516     // qN+1, ...). We reload and store into a temporary local variable
3517     // contiguously.
3518     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
3519     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
3520     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
3521     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
3522     int Offset = 0;
3523 
3524     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
3525       Offset = 16 - Ctx.getTypeSize(Base) / 8;
3526     for (unsigned i = 0; i < NumMembers; ++i) {
3527       llvm::Value *BaseOffset =
3528           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
3529       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
3530       LoadAddr = CGF.Builder.CreateBitCast(
3531           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
3532       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
3533 
3534       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
3535       CGF.Builder.CreateStore(Elem, StoreAddr);
3536     }
3537 
3538     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
3539   } else {
3540     // Otherwise the object is contiguous in memory
3541     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
3542     if (CGF.CGM.getDataLayout().isBigEndian() &&
3543         (IsHFA || !isAggregateTypeForABI(Ty)) &&
3544         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
3545       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
3546       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
3547 
3548       BaseAddr = CGF.Builder.CreateAdd(
3549           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
3550 
3551       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
3552     }
3553 
3554     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
3555   }
3556 
3557   CGF.EmitBranch(ContBlock);
3558 
3559   //=======================================
3560   // Argument was on the stack
3561   //=======================================
3562   CGF.EmitBlock(OnStackBlock);
3563 
3564   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
3565   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
3566   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
3567 
3568   // Again, stack arguments may need realigmnent. In this case both integer and
3569   // floating-point ones might be affected.
3570   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
3571     int Align = Ctx.getTypeAlign(Ty) / 8;
3572 
3573     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
3574 
3575     OnStackAddr = CGF.Builder.CreateAdd(
3576         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
3577         "align_stack");
3578     OnStackAddr = CGF.Builder.CreateAnd(
3579         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
3580         "align_stack");
3581 
3582     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
3583   }
3584 
3585   uint64_t StackSize;
3586   if (IsIndirect)
3587     StackSize = 8;
3588   else
3589     StackSize = Ctx.getTypeSize(Ty) / 8;
3590 
3591   // All stack slots are 8 bytes
3592   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
3593 
3594   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
3595   llvm::Value *NewStack =
3596       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
3597 
3598   // Write the new value of __stack for the next call to va_arg
3599   CGF.Builder.CreateStore(NewStack, stack_p);
3600 
3601   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
3602       Ctx.getTypeSize(Ty) < 64) {
3603     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
3604     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
3605 
3606     OnStackAddr = CGF.Builder.CreateAdd(
3607         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
3608 
3609     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
3610   }
3611 
3612   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
3613 
3614   CGF.EmitBranch(ContBlock);
3615 
3616   //=======================================
3617   // Tidy up
3618   //=======================================
3619   CGF.EmitBlock(ContBlock);
3620 
3621   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
3622   ResAddr->addIncoming(RegAddr, InRegBlock);
3623   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
3624 
3625   if (IsIndirect)
3626     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
3627 
3628   return ResAddr;
3629 }
3630 
3631 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3632                                           CodeGenFunction &CGF) const {
3633 
3634   unsigned AllocatedGPR = 0, AllocatedVFP = 0;
3635   bool IsHA = false, IsSmallAggr = false;
3636   ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR,
3637                                        IsSmallAggr, false /*IsNamedArg*/);
3638 
3639   return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP,
3640                           AI.isIndirect(), CGF);
3641 }
3642 
3643 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3644                                            CodeGenFunction &CGF) const {
3645   // We do not support va_arg for aggregates or illegal vector types.
3646   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
3647   // other cases.
3648   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
3649     return nullptr;
3650 
3651   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3652   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
3653 
3654   const Type *Base = nullptr;
3655   bool isHA = isHomogeneousAggregate(Ty, Base, getContext());
3656 
3657   bool isIndirect = false;
3658   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
3659   // be passed indirectly.
3660   if (Size > 16 && !isHA) {
3661     isIndirect = true;
3662     Size = 8;
3663     Align = 8;
3664   }
3665 
3666   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3667   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3668 
3669   CGBuilderTy &Builder = CGF.Builder;
3670   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3671   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3672 
3673   if (isEmptyRecord(getContext(), Ty, true)) {
3674     // These are ignored for parameter passing purposes.
3675     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3676     return Builder.CreateBitCast(Addr, PTy);
3677   }
3678 
3679   const uint64_t MinABIAlign = 8;
3680   if (Align > MinABIAlign) {
3681     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
3682     Addr = Builder.CreateGEP(Addr, Offset);
3683     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3684     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
3685     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
3686     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
3687   }
3688 
3689   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
3690   llvm::Value *NextAddr = Builder.CreateGEP(
3691       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
3692   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3693 
3694   if (isIndirect)
3695     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3696   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3697   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3698 
3699   return AddrTyped;
3700 }
3701 
3702 //===----------------------------------------------------------------------===//
3703 // ARM ABI Implementation
3704 //===----------------------------------------------------------------------===//
3705 
3706 namespace {
3707 
3708 class ARMABIInfo : public ABIInfo {
3709 public:
3710   enum ABIKind {
3711     APCS = 0,
3712     AAPCS = 1,
3713     AAPCS_VFP
3714   };
3715 
3716 private:
3717   ABIKind Kind;
3718   mutable int VFPRegs[16];
3719   const unsigned NumVFPs;
3720   const unsigned NumGPRs;
3721   mutable unsigned AllocatedGPRs;
3722   mutable unsigned AllocatedVFPs;
3723 
3724 public:
3725   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
3726     NumVFPs(16), NumGPRs(4) {
3727     setRuntimeCC();
3728     resetAllocatedRegs();
3729   }
3730 
3731   bool isEABI() const {
3732     switch (getTarget().getTriple().getEnvironment()) {
3733     case llvm::Triple::Android:
3734     case llvm::Triple::EABI:
3735     case llvm::Triple::EABIHF:
3736     case llvm::Triple::GNUEABI:
3737     case llvm::Triple::GNUEABIHF:
3738       return true;
3739     default:
3740       return false;
3741     }
3742   }
3743 
3744   bool isEABIHF() const {
3745     switch (getTarget().getTriple().getEnvironment()) {
3746     case llvm::Triple::EABIHF:
3747     case llvm::Triple::GNUEABIHF:
3748       return true;
3749     default:
3750       return false;
3751     }
3752   }
3753 
3754   ABIKind getABIKind() const { return Kind; }
3755 
3756 private:
3757   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
3758   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
3759                                   bool &IsCPRC) const;
3760   bool isIllegalVectorType(QualType Ty) const;
3761 
3762   void computeInfo(CGFunctionInfo &FI) const override;
3763 
3764   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3765                          CodeGenFunction &CGF) const override;
3766 
3767   llvm::CallingConv::ID getLLVMDefaultCC() const;
3768   llvm::CallingConv::ID getABIDefaultCC() const;
3769   void setRuntimeCC();
3770 
3771   void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
3772   void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
3773   void resetAllocatedRegs(void) const;
3774 };
3775 
3776 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3777 public:
3778   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3779     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3780 
3781   const ARMABIInfo &getABIInfo() const {
3782     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3783   }
3784 
3785   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3786     return 13;
3787   }
3788 
3789   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3790     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3791   }
3792 
3793   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3794                                llvm::Value *Address) const override {
3795     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3796 
3797     // 0-15 are the 16 integer registers.
3798     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3799     return false;
3800   }
3801 
3802   unsigned getSizeOfUnwindException() const override {
3803     if (getABIInfo().isEABI()) return 88;
3804     return TargetCodeGenInfo::getSizeOfUnwindException();
3805   }
3806 
3807   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3808                            CodeGen::CodeGenModule &CGM) const override {
3809     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3810     if (!FD)
3811       return;
3812 
3813     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3814     if (!Attr)
3815       return;
3816 
3817     const char *Kind;
3818     switch (Attr->getInterrupt()) {
3819     case ARMInterruptAttr::Generic: Kind = ""; break;
3820     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3821     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3822     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3823     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3824     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3825     }
3826 
3827     llvm::Function *Fn = cast<llvm::Function>(GV);
3828 
3829     Fn->addFnAttr("interrupt", Kind);
3830 
3831     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3832       return;
3833 
3834     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3835     // however this is not necessarily true on taking any interrupt. Instruct
3836     // the backend to perform a realignment as part of the function prologue.
3837     llvm::AttrBuilder B;
3838     B.addStackAlignmentAttr(8);
3839     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3840                       llvm::AttributeSet::get(CGM.getLLVMContext(),
3841                                               llvm::AttributeSet::FunctionIndex,
3842                                               B));
3843   }
3844 
3845 };
3846 
3847 }
3848 
3849 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3850   // To correctly handle Homogeneous Aggregate, we need to keep track of the
3851   // VFP registers allocated so far.
3852   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3853   // VFP registers of the appropriate type unallocated then the argument is
3854   // allocated to the lowest-numbered sequence of such registers.
3855   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3856   // unallocated are marked as unavailable.
3857   resetAllocatedRegs();
3858 
3859   if (getCXXABI().classifyReturnType(FI)) {
3860     if (FI.getReturnInfo().isIndirect())
3861       markAllocatedGPRs(1, 1);
3862   } else {
3863     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
3864   }
3865   for (auto &I : FI.arguments()) {
3866     unsigned PreAllocationVFPs = AllocatedVFPs;
3867     unsigned PreAllocationGPRs = AllocatedGPRs;
3868     bool IsCPRC = false;
3869     // 6.1.2.3 There is one VFP co-processor register class using registers
3870     // s0-s15 (d0-d7) for passing arguments.
3871     I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
3872 
3873     // If we have allocated some arguments onto the stack (due to running
3874     // out of VFP registers), we cannot split an argument between GPRs and
3875     // the stack. If this situation occurs, we add padding to prevent the
3876     // GPRs from being used. In this situation, the current argument could
3877     // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
3878     // unusable anyway.
3879     const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
3880     if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) {
3881       llvm::Type *PaddingTy = llvm::ArrayType::get(
3882           llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
3883       if (I.info.canHaveCoerceToType()) {
3884         I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */,
3885                                        PaddingTy);
3886       } else {
3887         I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
3888                                        PaddingTy);
3889       }
3890     }
3891   }
3892 
3893   // Always honor user-specified calling convention.
3894   if (FI.getCallingConvention() != llvm::CallingConv::C)
3895     return;
3896 
3897   llvm::CallingConv::ID cc = getRuntimeCC();
3898   if (cc != llvm::CallingConv::C)
3899     FI.setEffectiveCallingConvention(cc);
3900 }
3901 
3902 /// Return the default calling convention that LLVM will use.
3903 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3904   // The default calling convention that LLVM will infer.
3905   if (isEABIHF())
3906     return llvm::CallingConv::ARM_AAPCS_VFP;
3907   else if (isEABI())
3908     return llvm::CallingConv::ARM_AAPCS;
3909   else
3910     return llvm::CallingConv::ARM_APCS;
3911 }
3912 
3913 /// Return the calling convention that our ABI would like us to use
3914 /// as the C calling convention.
3915 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3916   switch (getABIKind()) {
3917   case APCS: return llvm::CallingConv::ARM_APCS;
3918   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3919   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3920   }
3921   llvm_unreachable("bad ABI kind");
3922 }
3923 
3924 void ARMABIInfo::setRuntimeCC() {
3925   assert(getRuntimeCC() == llvm::CallingConv::C);
3926 
3927   // Don't muddy up the IR with a ton of explicit annotations if
3928   // they'd just match what LLVM will infer from the triple.
3929   llvm::CallingConv::ID abiCC = getABIDefaultCC();
3930   if (abiCC != getLLVMDefaultCC())
3931     RuntimeCC = abiCC;
3932 }
3933 
3934 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3935 /// aggregate.  If HAMembers is non-null, the number of base elements
3936 /// contained in the type is returned through it; this is used for the
3937 /// recursive calls that check aggregate component types.
3938 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3939                                    ASTContext &Context, uint64_t *HAMembers) {
3940   uint64_t Members = 0;
3941   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3942     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3943       return false;
3944     Members *= AT->getSize().getZExtValue();
3945   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3946     const RecordDecl *RD = RT->getDecl();
3947     if (RD->hasFlexibleArrayMember())
3948       return false;
3949 
3950     Members = 0;
3951     for (const auto *FD : RD->fields()) {
3952       uint64_t FldMembers;
3953       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3954         return false;
3955 
3956       Members = (RD->isUnion() ?
3957                  std::max(Members, FldMembers) : Members + FldMembers);
3958     }
3959   } else {
3960     Members = 1;
3961     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3962       Members = 2;
3963       Ty = CT->getElementType();
3964     }
3965 
3966     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3967     // double, or 64-bit or 128-bit vectors.
3968     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3969       if (BT->getKind() != BuiltinType::Float &&
3970           BT->getKind() != BuiltinType::Double &&
3971           BT->getKind() != BuiltinType::LongDouble)
3972         return false;
3973     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3974       unsigned VecSize = Context.getTypeSize(VT);
3975       if (VecSize != 64 && VecSize != 128)
3976         return false;
3977     } else {
3978       return false;
3979     }
3980 
3981     // The base type must be the same for all members.  Vector types of the
3982     // same total size are treated as being equivalent here.
3983     const Type *TyPtr = Ty.getTypePtr();
3984     if (!Base)
3985       Base = TyPtr;
3986 
3987     if (Base != TyPtr) {
3988       // Homogeneous aggregates are defined as containing members with the
3989       // same machine type. There are two cases in which two members have
3990       // different TypePtrs but the same machine type:
3991 
3992       // 1) Vectors of the same length, regardless of the type and number
3993       //    of their members.
3994       const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType()
3995         && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
3996 
3997       // 2) In the 32-bit AAPCS, `double' and `long double' have the same
3998       //    machine type. This is not the case for the 64-bit AAPCS.
3999       const bool SameSizeDoubles =
4000            (   (   Base->isSpecificBuiltinType(BuiltinType::Double)
4001                 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble))
4002             || (   Base->isSpecificBuiltinType(BuiltinType::LongDouble)
4003                 && TyPtr->isSpecificBuiltinType(BuiltinType::Double)))
4004         && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
4005 
4006       if (!SameLengthVectors && !SameSizeDoubles)
4007         return false;
4008     }
4009   }
4010 
4011   // Homogeneous Aggregates can have at most 4 members of the base type.
4012   if (HAMembers)
4013     *HAMembers = Members;
4014 
4015   return (Members > 0 && Members <= 4);
4016 }
4017 
4018 /// markAllocatedVFPs - update VFPRegs according to the alignment and
4019 /// number of VFP registers (unit is S register) requested.
4020 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
4021                                    unsigned NumRequired) const {
4022   // Early Exit.
4023   if (AllocatedVFPs >= 16) {
4024     // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
4025     // the stack.
4026     AllocatedVFPs = 17;
4027     return;
4028   }
4029   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4030   // VFP registers of the appropriate type unallocated then the argument is
4031   // allocated to the lowest-numbered sequence of such registers.
4032   for (unsigned I = 0; I < 16; I += Alignment) {
4033     bool FoundSlot = true;
4034     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4035       if (J >= 16 || VFPRegs[J]) {
4036          FoundSlot = false;
4037          break;
4038       }
4039     if (FoundSlot) {
4040       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4041         VFPRegs[J] = 1;
4042       AllocatedVFPs += NumRequired;
4043       return;
4044     }
4045   }
4046   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4047   // unallocated are marked as unavailable.
4048   for (unsigned I = 0; I < 16; I++)
4049     VFPRegs[I] = 1;
4050   AllocatedVFPs = 17; // We do not have enough VFP registers.
4051 }
4052 
4053 /// Update AllocatedGPRs to record the number of general purpose registers
4054 /// which have been allocated. It is valid for AllocatedGPRs to go above 4,
4055 /// this represents arguments being stored on the stack.
4056 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
4057                                           unsigned NumRequired) const {
4058   assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
4059 
4060   if (Alignment == 2 && AllocatedGPRs & 0x1)
4061     AllocatedGPRs += 1;
4062 
4063   AllocatedGPRs += NumRequired;
4064 }
4065 
4066 void ARMABIInfo::resetAllocatedRegs(void) const {
4067   AllocatedGPRs = 0;
4068   AllocatedVFPs = 0;
4069   for (unsigned i = 0; i < NumVFPs; ++i)
4070     VFPRegs[i] = 0;
4071 }
4072 
4073 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
4074                                             bool &IsCPRC) const {
4075   // We update number of allocated VFPs according to
4076   // 6.1.2.1 The following argument types are VFP CPRCs:
4077   //   A single-precision floating-point type (including promoted
4078   //   half-precision types); A double-precision floating-point type;
4079   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4080   //   with a Base Type of a single- or double-precision floating-point type,
4081   //   64-bit containerized vectors or 128-bit containerized vectors with one
4082   //   to four Elements.
4083 
4084   // Handle illegal vector types here.
4085   if (isIllegalVectorType(Ty)) {
4086     uint64_t Size = getContext().getTypeSize(Ty);
4087     if (Size <= 32) {
4088       llvm::Type *ResType =
4089           llvm::Type::getInt32Ty(getVMContext());
4090       markAllocatedGPRs(1, 1);
4091       return ABIArgInfo::getDirect(ResType);
4092     }
4093     if (Size == 64) {
4094       llvm::Type *ResType = llvm::VectorType::get(
4095           llvm::Type::getInt32Ty(getVMContext()), 2);
4096       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
4097         markAllocatedGPRs(2, 2);
4098       } else {
4099         markAllocatedVFPs(2, 2);
4100         IsCPRC = true;
4101       }
4102       return ABIArgInfo::getDirect(ResType);
4103     }
4104     if (Size == 128) {
4105       llvm::Type *ResType = llvm::VectorType::get(
4106           llvm::Type::getInt32Ty(getVMContext()), 4);
4107       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
4108         markAllocatedGPRs(2, 4);
4109       } else {
4110         markAllocatedVFPs(4, 4);
4111         IsCPRC = true;
4112       }
4113       return ABIArgInfo::getDirect(ResType);
4114     }
4115     markAllocatedGPRs(1, 1);
4116     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4117   }
4118   // Update VFPRegs for legal vector types.
4119   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4120     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4121       uint64_t Size = getContext().getTypeSize(VT);
4122       // Size of a legal vector should be power of 2 and above 64.
4123       markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
4124       IsCPRC = true;
4125     }
4126   }
4127   // Update VFPRegs for floating point types.
4128   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4129     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4130       if (BT->getKind() == BuiltinType::Half ||
4131           BT->getKind() == BuiltinType::Float) {
4132         markAllocatedVFPs(1, 1);
4133         IsCPRC = true;
4134       }
4135       if (BT->getKind() == BuiltinType::Double ||
4136           BT->getKind() == BuiltinType::LongDouble) {
4137         markAllocatedVFPs(2, 2);
4138         IsCPRC = true;
4139       }
4140     }
4141   }
4142 
4143   if (!isAggregateTypeForABI(Ty)) {
4144     // Treat an enum type as its underlying type.
4145     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4146       Ty = EnumTy->getDecl()->getIntegerType();
4147     }
4148 
4149     unsigned Size = getContext().getTypeSize(Ty);
4150     if (!IsCPRC)
4151       markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
4152     return (Ty->isPromotableIntegerType() ?
4153             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4154   }
4155 
4156   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4157     markAllocatedGPRs(1, 1);
4158     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4159   }
4160 
4161   // Ignore empty records.
4162   if (isEmptyRecord(getContext(), Ty, true))
4163     return ABIArgInfo::getIgnore();
4164 
4165   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4166     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4167     // into VFP registers.
4168     const Type *Base = nullptr;
4169     uint64_t Members = 0;
4170     if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
4171       assert(Base && "Base class should be set for homogeneous aggregate");
4172       // Base can be a floating-point or a vector.
4173       if (Base->isVectorType()) {
4174         // ElementSize is in number of floats.
4175         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
4176         markAllocatedVFPs(ElementSize,
4177                           Members * ElementSize);
4178       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
4179         markAllocatedVFPs(1, Members);
4180       else {
4181         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
4182                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
4183         markAllocatedVFPs(2, Members * 2);
4184       }
4185       IsCPRC = true;
4186       return ABIArgInfo::getDirect();
4187     }
4188   }
4189 
4190   // Support byval for ARM.
4191   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4192   // most 8-byte. We realign the indirect argument if type alignment is bigger
4193   // than ABI alignment.
4194   uint64_t ABIAlign = 4;
4195   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4196   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4197       getABIKind() == ARMABIInfo::AAPCS)
4198     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4199   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4200     // Update Allocated GPRs
4201     markAllocatedGPRs(1, 1);
4202     return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4203            /*Realign=*/TyAlign > ABIAlign);
4204   }
4205 
4206   // Otherwise, pass by coercing to a structure of the appropriate size.
4207   llvm::Type* ElemTy;
4208   unsigned SizeRegs;
4209   // FIXME: Try to match the types of the arguments more accurately where
4210   // we can.
4211   if (getContext().getTypeAlign(Ty) <= 32) {
4212     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4213     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4214     markAllocatedGPRs(1, SizeRegs);
4215   } else {
4216     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4217     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4218     markAllocatedGPRs(2, SizeRegs * 2);
4219   }
4220 
4221   llvm::Type *STy =
4222     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
4223   return ABIArgInfo::getDirect(STy);
4224 }
4225 
4226 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4227                               llvm::LLVMContext &VMContext) {
4228   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4229   // is called integer-like if its size is less than or equal to one word, and
4230   // the offset of each of its addressable sub-fields is zero.
4231 
4232   uint64_t Size = Context.getTypeSize(Ty);
4233 
4234   // Check that the type fits in a word.
4235   if (Size > 32)
4236     return false;
4237 
4238   // FIXME: Handle vector types!
4239   if (Ty->isVectorType())
4240     return false;
4241 
4242   // Float types are never treated as "integer like".
4243   if (Ty->isRealFloatingType())
4244     return false;
4245 
4246   // If this is a builtin or pointer type then it is ok.
4247   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4248     return true;
4249 
4250   // Small complex integer types are "integer like".
4251   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4252     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4253 
4254   // Single element and zero sized arrays should be allowed, by the definition
4255   // above, but they are not.
4256 
4257   // Otherwise, it must be a record type.
4258   const RecordType *RT = Ty->getAs<RecordType>();
4259   if (!RT) return false;
4260 
4261   // Ignore records with flexible arrays.
4262   const RecordDecl *RD = RT->getDecl();
4263   if (RD->hasFlexibleArrayMember())
4264     return false;
4265 
4266   // Check that all sub-fields are at offset 0, and are themselves "integer
4267   // like".
4268   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4269 
4270   bool HadField = false;
4271   unsigned idx = 0;
4272   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4273        i != e; ++i, ++idx) {
4274     const FieldDecl *FD = *i;
4275 
4276     // Bit-fields are not addressable, we only need to verify they are "integer
4277     // like". We still have to disallow a subsequent non-bitfield, for example:
4278     //   struct { int : 0; int x }
4279     // is non-integer like according to gcc.
4280     if (FD->isBitField()) {
4281       if (!RD->isUnion())
4282         HadField = true;
4283 
4284       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4285         return false;
4286 
4287       continue;
4288     }
4289 
4290     // Check if this field is at offset 0.
4291     if (Layout.getFieldOffset(idx) != 0)
4292       return false;
4293 
4294     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4295       return false;
4296 
4297     // Only allow at most one field in a structure. This doesn't match the
4298     // wording above, but follows gcc in situations with a field following an
4299     // empty structure.
4300     if (!RD->isUnion()) {
4301       if (HadField)
4302         return false;
4303 
4304       HadField = true;
4305     }
4306   }
4307 
4308   return true;
4309 }
4310 
4311 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4312                                           bool isVariadic) const {
4313   if (RetTy->isVoidType())
4314     return ABIArgInfo::getIgnore();
4315 
4316   // Large vector types should be returned via memory.
4317   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4318     markAllocatedGPRs(1, 1);
4319     return ABIArgInfo::getIndirect(0);
4320   }
4321 
4322   if (!isAggregateTypeForABI(RetTy)) {
4323     // Treat an enum type as its underlying type.
4324     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4325       RetTy = EnumTy->getDecl()->getIntegerType();
4326 
4327     return (RetTy->isPromotableIntegerType() ?
4328             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4329   }
4330 
4331   // Are we following APCS?
4332   if (getABIKind() == APCS) {
4333     if (isEmptyRecord(getContext(), RetTy, false))
4334       return ABIArgInfo::getIgnore();
4335 
4336     // Complex types are all returned as packed integers.
4337     //
4338     // FIXME: Consider using 2 x vector types if the back end handles them
4339     // correctly.
4340     if (RetTy->isAnyComplexType())
4341       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
4342                                               getContext().getTypeSize(RetTy)));
4343 
4344     // Integer like structures are returned in r0.
4345     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4346       // Return in the smallest viable integer type.
4347       uint64_t Size = getContext().getTypeSize(RetTy);
4348       if (Size <= 8)
4349         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4350       if (Size <= 16)
4351         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4352       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4353     }
4354 
4355     // Otherwise return in memory.
4356     markAllocatedGPRs(1, 1);
4357     return ABIArgInfo::getIndirect(0);
4358   }
4359 
4360   // Otherwise this is an AAPCS variant.
4361 
4362   if (isEmptyRecord(getContext(), RetTy, true))
4363     return ABIArgInfo::getIgnore();
4364 
4365   // Check for homogeneous aggregates with AAPCS-VFP.
4366   if (getABIKind() == AAPCS_VFP && !isVariadic) {
4367     const Type *Base = nullptr;
4368     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
4369       assert(Base && "Base class should be set for homogeneous aggregate");
4370       // Homogeneous Aggregates are returned directly.
4371       return ABIArgInfo::getDirect();
4372     }
4373   }
4374 
4375   // Aggregates <= 4 bytes are returned in r0; other aggregates
4376   // are returned indirectly.
4377   uint64_t Size = getContext().getTypeSize(RetTy);
4378   if (Size <= 32) {
4379     // Return in the smallest viable integer type.
4380     if (Size <= 8)
4381       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4382     if (Size <= 16)
4383       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4384     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4385   }
4386 
4387   markAllocatedGPRs(1, 1);
4388   return ABIArgInfo::getIndirect(0);
4389 }
4390 
4391 /// isIllegalVector - check whether Ty is an illegal vector type.
4392 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4393   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4394     // Check whether VT is legal.
4395     unsigned NumElements = VT->getNumElements();
4396     uint64_t Size = getContext().getTypeSize(VT);
4397     // NumElements should be power of 2.
4398     if ((NumElements & (NumElements - 1)) != 0)
4399       return true;
4400     // Size should be greater than 32 bits.
4401     return Size <= 32;
4402   }
4403   return false;
4404 }
4405 
4406 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4407                                    CodeGenFunction &CGF) const {
4408   llvm::Type *BP = CGF.Int8PtrTy;
4409   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4410 
4411   CGBuilderTy &Builder = CGF.Builder;
4412   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4413   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4414 
4415   if (isEmptyRecord(getContext(), Ty, true)) {
4416     // These are ignored for parameter passing purposes.
4417     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4418     return Builder.CreateBitCast(Addr, PTy);
4419   }
4420 
4421   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4422   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4423   bool IsIndirect = false;
4424 
4425   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4426   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4427   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4428       getABIKind() == ARMABIInfo::AAPCS)
4429     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4430   else
4431     TyAlign = 4;
4432   // Use indirect if size of the illegal vector is bigger than 16 bytes.
4433   if (isIllegalVectorType(Ty) && Size > 16) {
4434     IsIndirect = true;
4435     Size = 4;
4436     TyAlign = 4;
4437   }
4438 
4439   // Handle address alignment for ABI alignment > 4 bytes.
4440   if (TyAlign > 4) {
4441     assert((TyAlign & (TyAlign - 1)) == 0 &&
4442            "Alignment is not power of 2!");
4443     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4444     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4445     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4446     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4447   }
4448 
4449   uint64_t Offset =
4450     llvm::RoundUpToAlignment(Size, 4);
4451   llvm::Value *NextAddr =
4452     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4453                       "ap.next");
4454   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4455 
4456   if (IsIndirect)
4457     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4458   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4459     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4460     // may not be correctly aligned for the vector type. We create an aligned
4461     // temporary space and copy the content over from ap.cur to the temporary
4462     // space. This is necessary if the natural alignment of the type is greater
4463     // than the ABI alignment.
4464     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4465     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4466     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4467                                                     "var.align");
4468     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4469     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4470     Builder.CreateMemCpy(Dst, Src,
4471         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4472         TyAlign, false);
4473     Addr = AlignedTemp; //The content is in aligned location.
4474   }
4475   llvm::Type *PTy =
4476     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4477   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4478 
4479   return AddrTyped;
4480 }
4481 
4482 namespace {
4483 
4484 class NaClARMABIInfo : public ABIInfo {
4485  public:
4486   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
4487       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
4488   void computeInfo(CGFunctionInfo &FI) const override;
4489   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4490                          CodeGenFunction &CGF) const override;
4491  private:
4492   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
4493   ARMABIInfo NInfo; // Used for everything else.
4494 };
4495 
4496 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
4497  public:
4498   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
4499       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
4500 };
4501 
4502 }
4503 
4504 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4505   if (FI.getASTCallingConvention() == CC_PnaclCall)
4506     PInfo.computeInfo(FI);
4507   else
4508     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
4509 }
4510 
4511 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4512                                        CodeGenFunction &CGF) const {
4513   // Always use the native convention; calling pnacl-style varargs functions
4514   // is unsupported.
4515   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
4516 }
4517 
4518 //===----------------------------------------------------------------------===//
4519 // NVPTX ABI Implementation
4520 //===----------------------------------------------------------------------===//
4521 
4522 namespace {
4523 
4524 class NVPTXABIInfo : public ABIInfo {
4525 public:
4526   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4527 
4528   ABIArgInfo classifyReturnType(QualType RetTy) const;
4529   ABIArgInfo classifyArgumentType(QualType Ty) const;
4530 
4531   void computeInfo(CGFunctionInfo &FI) const override;
4532   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4533                          CodeGenFunction &CFG) const override;
4534 };
4535 
4536 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4537 public:
4538   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4539     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4540 
4541   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4542                            CodeGen::CodeGenModule &M) const override;
4543 private:
4544   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
4545   // resulting MDNode to the nvvm.annotations MDNode.
4546   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
4547 };
4548 
4549 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4550   if (RetTy->isVoidType())
4551     return ABIArgInfo::getIgnore();
4552 
4553   // note: this is different from default ABI
4554   if (!RetTy->isScalarType())
4555     return ABIArgInfo::getDirect();
4556 
4557   // Treat an enum type as its underlying type.
4558   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4559     RetTy = EnumTy->getDecl()->getIntegerType();
4560 
4561   return (RetTy->isPromotableIntegerType() ?
4562           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4563 }
4564 
4565 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4566   // Treat an enum type as its underlying type.
4567   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4568     Ty = EnumTy->getDecl()->getIntegerType();
4569 
4570   return (Ty->isPromotableIntegerType() ?
4571           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4572 }
4573 
4574 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4575   if (!getCXXABI().classifyReturnType(FI))
4576     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4577   for (auto &I : FI.arguments())
4578     I.info = classifyArgumentType(I.type);
4579 
4580   // Always honor user-specified calling convention.
4581   if (FI.getCallingConvention() != llvm::CallingConv::C)
4582     return;
4583 
4584   FI.setEffectiveCallingConvention(getRuntimeCC());
4585 }
4586 
4587 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4588                                      CodeGenFunction &CFG) const {
4589   llvm_unreachable("NVPTX does not support varargs");
4590 }
4591 
4592 void NVPTXTargetCodeGenInfo::
4593 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4594                     CodeGen::CodeGenModule &M) const{
4595   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4596   if (!FD) return;
4597 
4598   llvm::Function *F = cast<llvm::Function>(GV);
4599 
4600   // Perform special handling in OpenCL mode
4601   if (M.getLangOpts().OpenCL) {
4602     // Use OpenCL function attributes to check for kernel functions
4603     // By default, all functions are device functions
4604     if (FD->hasAttr<OpenCLKernelAttr>()) {
4605       // OpenCL __kernel functions get kernel metadata
4606       // Create !{<func-ref>, metadata !"kernel", i32 1} node
4607       addNVVMMetadata(F, "kernel", 1);
4608       // And kernel functions are not subject to inlining
4609       F->addFnAttr(llvm::Attribute::NoInline);
4610     }
4611   }
4612 
4613   // Perform special handling in CUDA mode.
4614   if (M.getLangOpts().CUDA) {
4615     // CUDA __global__ functions get a kernel metadata entry.  Since
4616     // __global__ functions cannot be called from the device, we do not
4617     // need to set the noinline attribute.
4618     if (FD->hasAttr<CUDAGlobalAttr>()) {
4619       // Create !{<func-ref>, metadata !"kernel", i32 1} node
4620       addNVVMMetadata(F, "kernel", 1);
4621     }
4622     if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
4623       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
4624       addNVVMMetadata(F, "maxntidx",
4625                       FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
4626       // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
4627       // zero value from getMinBlocks either means it was not specified in
4628       // __launch_bounds__ or the user specified a 0 value. In both cases, we
4629       // don't have to add a PTX directive.
4630       int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
4631       if (MinCTASM > 0) {
4632         // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
4633         addNVVMMetadata(F, "minctasm", MinCTASM);
4634       }
4635     }
4636   }
4637 }
4638 
4639 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
4640                                              int Operand) {
4641   llvm::Module *M = F->getParent();
4642   llvm::LLVMContext &Ctx = M->getContext();
4643 
4644   // Get "nvvm.annotations" metadata node
4645   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4646 
4647   llvm::Value *MDVals[] = {
4648       F, llvm::MDString::get(Ctx, Name),
4649       llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)};
4650   // Append metadata to nvvm.annotations
4651   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4652 }
4653 }
4654 
4655 //===----------------------------------------------------------------------===//
4656 // SystemZ ABI Implementation
4657 //===----------------------------------------------------------------------===//
4658 
4659 namespace {
4660 
4661 class SystemZABIInfo : public ABIInfo {
4662 public:
4663   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4664 
4665   bool isPromotableIntegerType(QualType Ty) const;
4666   bool isCompoundType(QualType Ty) const;
4667   bool isFPArgumentType(QualType Ty) const;
4668 
4669   ABIArgInfo classifyReturnType(QualType RetTy) const;
4670   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4671 
4672   void computeInfo(CGFunctionInfo &FI) const override {
4673     if (!getCXXABI().classifyReturnType(FI))
4674       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4675     for (auto &I : FI.arguments())
4676       I.info = classifyArgumentType(I.type);
4677   }
4678 
4679   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4680                          CodeGenFunction &CGF) const override;
4681 };
4682 
4683 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4684 public:
4685   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4686     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4687 };
4688 
4689 }
4690 
4691 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4692   // Treat an enum type as its underlying type.
4693   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4694     Ty = EnumTy->getDecl()->getIntegerType();
4695 
4696   // Promotable integer types are required to be promoted by the ABI.
4697   if (Ty->isPromotableIntegerType())
4698     return true;
4699 
4700   // 32-bit values must also be promoted.
4701   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4702     switch (BT->getKind()) {
4703     case BuiltinType::Int:
4704     case BuiltinType::UInt:
4705       return true;
4706     default:
4707       return false;
4708     }
4709   return false;
4710 }
4711 
4712 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4713   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4714 }
4715 
4716 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4717   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4718     switch (BT->getKind()) {
4719     case BuiltinType::Float:
4720     case BuiltinType::Double:
4721       return true;
4722     default:
4723       return false;
4724     }
4725 
4726   if (const RecordType *RT = Ty->getAsStructureType()) {
4727     const RecordDecl *RD = RT->getDecl();
4728     bool Found = false;
4729 
4730     // If this is a C++ record, check the bases first.
4731     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4732       for (const auto &I : CXXRD->bases()) {
4733         QualType Base = I.getType();
4734 
4735         // Empty bases don't affect things either way.
4736         if (isEmptyRecord(getContext(), Base, true))
4737           continue;
4738 
4739         if (Found)
4740           return false;
4741         Found = isFPArgumentType(Base);
4742         if (!Found)
4743           return false;
4744       }
4745 
4746     // Check the fields.
4747     for (const auto *FD : RD->fields()) {
4748       // Empty bitfields don't affect things either way.
4749       // Unlike isSingleElementStruct(), empty structure and array fields
4750       // do count.  So do anonymous bitfields that aren't zero-sized.
4751       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4752         return true;
4753 
4754       // Unlike isSingleElementStruct(), arrays do not count.
4755       // Nested isFPArgumentType structures still do though.
4756       if (Found)
4757         return false;
4758       Found = isFPArgumentType(FD->getType());
4759       if (!Found)
4760         return false;
4761     }
4762 
4763     // Unlike isSingleElementStruct(), trailing padding is allowed.
4764     // An 8-byte aligned struct s { float f; } is passed as a double.
4765     return Found;
4766   }
4767 
4768   return false;
4769 }
4770 
4771 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4772                                        CodeGenFunction &CGF) const {
4773   // Assume that va_list type is correct; should be pointer to LLVM type:
4774   // struct {
4775   //   i64 __gpr;
4776   //   i64 __fpr;
4777   //   i8 *__overflow_arg_area;
4778   //   i8 *__reg_save_area;
4779   // };
4780 
4781   // Every argument occupies 8 bytes and is passed by preference in either
4782   // GPRs or FPRs.
4783   Ty = CGF.getContext().getCanonicalType(Ty);
4784   ABIArgInfo AI = classifyArgumentType(Ty);
4785   bool InFPRs = isFPArgumentType(Ty);
4786 
4787   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4788   bool IsIndirect = AI.isIndirect();
4789   unsigned UnpaddedBitSize;
4790   if (IsIndirect) {
4791     APTy = llvm::PointerType::getUnqual(APTy);
4792     UnpaddedBitSize = 64;
4793   } else
4794     UnpaddedBitSize = getContext().getTypeSize(Ty);
4795   unsigned PaddedBitSize = 64;
4796   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4797 
4798   unsigned PaddedSize = PaddedBitSize / 8;
4799   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4800 
4801   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4802   if (InFPRs) {
4803     MaxRegs = 4; // Maximum of 4 FPR arguments
4804     RegCountField = 1; // __fpr
4805     RegSaveIndex = 16; // save offset for f0
4806     RegPadding = 0; // floats are passed in the high bits of an FPR
4807   } else {
4808     MaxRegs = 5; // Maximum of 5 GPR arguments
4809     RegCountField = 0; // __gpr
4810     RegSaveIndex = 2; // save offset for r2
4811     RegPadding = Padding; // values are passed in the low bits of a GPR
4812   }
4813 
4814   llvm::Value *RegCountPtr =
4815     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4816   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4817   llvm::Type *IndexTy = RegCount->getType();
4818   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4819   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4820                                                  "fits_in_regs");
4821 
4822   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4823   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4824   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4825   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4826 
4827   // Emit code to load the value if it was passed in registers.
4828   CGF.EmitBlock(InRegBlock);
4829 
4830   // Work out the address of an argument register.
4831   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4832   llvm::Value *ScaledRegCount =
4833     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4834   llvm::Value *RegBase =
4835     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4836   llvm::Value *RegOffset =
4837     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4838   llvm::Value *RegSaveAreaPtr =
4839     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4840   llvm::Value *RegSaveArea =
4841     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4842   llvm::Value *RawRegAddr =
4843     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4844   llvm::Value *RegAddr =
4845     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4846 
4847   // Update the register count
4848   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4849   llvm::Value *NewRegCount =
4850     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4851   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4852   CGF.EmitBranch(ContBlock);
4853 
4854   // Emit code to load the value if it was passed in memory.
4855   CGF.EmitBlock(InMemBlock);
4856 
4857   // Work out the address of a stack argument.
4858   llvm::Value *OverflowArgAreaPtr =
4859     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4860   llvm::Value *OverflowArgArea =
4861     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4862   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4863   llvm::Value *RawMemAddr =
4864     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4865   llvm::Value *MemAddr =
4866     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4867 
4868   // Update overflow_arg_area_ptr pointer
4869   llvm::Value *NewOverflowArgArea =
4870     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4871   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4872   CGF.EmitBranch(ContBlock);
4873 
4874   // Return the appropriate result.
4875   CGF.EmitBlock(ContBlock);
4876   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4877   ResAddr->addIncoming(RegAddr, InRegBlock);
4878   ResAddr->addIncoming(MemAddr, InMemBlock);
4879 
4880   if (IsIndirect)
4881     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4882 
4883   return ResAddr;
4884 }
4885 
4886 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4887     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4888   assert(Triple.getArch() == llvm::Triple::x86);
4889 
4890   switch (Opts.getStructReturnConvention()) {
4891   case CodeGenOptions::SRCK_Default:
4892     break;
4893   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4894     return false;
4895   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4896     return true;
4897   }
4898 
4899   if (Triple.isOSDarwin())
4900     return true;
4901 
4902   switch (Triple.getOS()) {
4903   case llvm::Triple::AuroraUX:
4904   case llvm::Triple::DragonFly:
4905   case llvm::Triple::FreeBSD:
4906   case llvm::Triple::OpenBSD:
4907   case llvm::Triple::Bitrig:
4908     return true;
4909   case llvm::Triple::Win32:
4910     switch (Triple.getEnvironment()) {
4911     case llvm::Triple::UnknownEnvironment:
4912     case llvm::Triple::Cygnus:
4913     case llvm::Triple::GNU:
4914     case llvm::Triple::MSVC:
4915       return true;
4916     default:
4917       return false;
4918     }
4919   default:
4920     return false;
4921   }
4922 }
4923 
4924 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4925   if (RetTy->isVoidType())
4926     return ABIArgInfo::getIgnore();
4927   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4928     return ABIArgInfo::getIndirect(0);
4929   return (isPromotableIntegerType(RetTy) ?
4930           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4931 }
4932 
4933 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4934   // Handle the generic C++ ABI.
4935   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4936     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4937 
4938   // Integers and enums are extended to full register width.
4939   if (isPromotableIntegerType(Ty))
4940     return ABIArgInfo::getExtend();
4941 
4942   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4943   uint64_t Size = getContext().getTypeSize(Ty);
4944   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4945     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4946 
4947   // Handle small structures.
4948   if (const RecordType *RT = Ty->getAs<RecordType>()) {
4949     // Structures with flexible arrays have variable length, so really
4950     // fail the size test above.
4951     const RecordDecl *RD = RT->getDecl();
4952     if (RD->hasFlexibleArrayMember())
4953       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4954 
4955     // The structure is passed as an unextended integer, a float, or a double.
4956     llvm::Type *PassTy;
4957     if (isFPArgumentType(Ty)) {
4958       assert(Size == 32 || Size == 64);
4959       if (Size == 32)
4960         PassTy = llvm::Type::getFloatTy(getVMContext());
4961       else
4962         PassTy = llvm::Type::getDoubleTy(getVMContext());
4963     } else
4964       PassTy = llvm::IntegerType::get(getVMContext(), Size);
4965     return ABIArgInfo::getDirect(PassTy);
4966   }
4967 
4968   // Non-structure compounds are passed indirectly.
4969   if (isCompoundType(Ty))
4970     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4971 
4972   return ABIArgInfo::getDirect(nullptr);
4973 }
4974 
4975 //===----------------------------------------------------------------------===//
4976 // MSP430 ABI Implementation
4977 //===----------------------------------------------------------------------===//
4978 
4979 namespace {
4980 
4981 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4982 public:
4983   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4984     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4985   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4986                            CodeGen::CodeGenModule &M) const override;
4987 };
4988 
4989 }
4990 
4991 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4992                                                   llvm::GlobalValue *GV,
4993                                              CodeGen::CodeGenModule &M) const {
4994   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4995     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4996       // Handle 'interrupt' attribute:
4997       llvm::Function *F = cast<llvm::Function>(GV);
4998 
4999       // Step 1: Set ISR calling convention.
5000       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5001 
5002       // Step 2: Add attributes goodness.
5003       F->addFnAttr(llvm::Attribute::NoInline);
5004 
5005       // Step 3: Emit ISR vector alias.
5006       unsigned Num = attr->getNumber() / 2;
5007       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5008                                 "__isr_" + Twine(Num), F);
5009     }
5010   }
5011 }
5012 
5013 //===----------------------------------------------------------------------===//
5014 // MIPS ABI Implementation.  This works for both little-endian and
5015 // big-endian variants.
5016 //===----------------------------------------------------------------------===//
5017 
5018 namespace {
5019 class MipsABIInfo : public ABIInfo {
5020   bool IsO32;
5021   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5022   void CoerceToIntArgs(uint64_t TySize,
5023                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5024   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5025   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5026   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5027 public:
5028   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5029     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5030     StackAlignInBytes(IsO32 ? 8 : 16) {}
5031 
5032   ABIArgInfo classifyReturnType(QualType RetTy) const;
5033   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5034   void computeInfo(CGFunctionInfo &FI) const override;
5035   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5036                          CodeGenFunction &CGF) const override;
5037 };
5038 
5039 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5040   unsigned SizeOfUnwindException;
5041 public:
5042   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5043     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5044       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5045 
5046   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5047     return 29;
5048   }
5049 
5050   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5051                            CodeGen::CodeGenModule &CGM) const override {
5052     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5053     if (!FD) return;
5054     llvm::Function *Fn = cast<llvm::Function>(GV);
5055     if (FD->hasAttr<Mips16Attr>()) {
5056       Fn->addFnAttr("mips16");
5057     }
5058     else if (FD->hasAttr<NoMips16Attr>()) {
5059       Fn->addFnAttr("nomips16");
5060     }
5061   }
5062 
5063   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5064                                llvm::Value *Address) const override;
5065 
5066   unsigned getSizeOfUnwindException() const override {
5067     return SizeOfUnwindException;
5068   }
5069 };
5070 }
5071 
5072 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5073                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
5074   llvm::IntegerType *IntTy =
5075     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5076 
5077   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5078   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5079     ArgList.push_back(IntTy);
5080 
5081   // If necessary, add one more integer type to ArgList.
5082   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5083 
5084   if (R)
5085     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5086 }
5087 
5088 // In N32/64, an aligned double precision floating point field is passed in
5089 // a register.
5090 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5091   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5092 
5093   if (IsO32) {
5094     CoerceToIntArgs(TySize, ArgList);
5095     return llvm::StructType::get(getVMContext(), ArgList);
5096   }
5097 
5098   if (Ty->isComplexType())
5099     return CGT.ConvertType(Ty);
5100 
5101   const RecordType *RT = Ty->getAs<RecordType>();
5102 
5103   // Unions/vectors are passed in integer registers.
5104   if (!RT || !RT->isStructureOrClassType()) {
5105     CoerceToIntArgs(TySize, ArgList);
5106     return llvm::StructType::get(getVMContext(), ArgList);
5107   }
5108 
5109   const RecordDecl *RD = RT->getDecl();
5110   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5111   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5112 
5113   uint64_t LastOffset = 0;
5114   unsigned idx = 0;
5115   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5116 
5117   // Iterate over fields in the struct/class and check if there are any aligned
5118   // double fields.
5119   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5120        i != e; ++i, ++idx) {
5121     const QualType Ty = i->getType();
5122     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5123 
5124     if (!BT || BT->getKind() != BuiltinType::Double)
5125       continue;
5126 
5127     uint64_t Offset = Layout.getFieldOffset(idx);
5128     if (Offset % 64) // Ignore doubles that are not aligned.
5129       continue;
5130 
5131     // Add ((Offset - LastOffset) / 64) args of type i64.
5132     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5133       ArgList.push_back(I64);
5134 
5135     // Add double type.
5136     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5137     LastOffset = Offset + 64;
5138   }
5139 
5140   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5141   ArgList.append(IntArgList.begin(), IntArgList.end());
5142 
5143   return llvm::StructType::get(getVMContext(), ArgList);
5144 }
5145 
5146 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5147                                         uint64_t Offset) const {
5148   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5149     return nullptr;
5150 
5151   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5152 }
5153 
5154 ABIArgInfo
5155 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5156   uint64_t OrigOffset = Offset;
5157   uint64_t TySize = getContext().getTypeSize(Ty);
5158   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5159 
5160   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5161                    (uint64_t)StackAlignInBytes);
5162   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5163   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5164 
5165   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5166     // Ignore empty aggregates.
5167     if (TySize == 0)
5168       return ABIArgInfo::getIgnore();
5169 
5170     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5171       Offset = OrigOffset + MinABIStackAlignInBytes;
5172       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5173     }
5174 
5175     // If we have reached here, aggregates are passed directly by coercing to
5176     // another structure type. Padding is inserted if the offset of the
5177     // aggregate is unaligned.
5178     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5179                                  getPaddingType(OrigOffset, CurrOffset));
5180   }
5181 
5182   // Treat an enum type as its underlying type.
5183   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5184     Ty = EnumTy->getDecl()->getIntegerType();
5185 
5186   if (Ty->isPromotableIntegerType())
5187     return ABIArgInfo::getExtend();
5188 
5189   return ABIArgInfo::getDirect(
5190       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5191 }
5192 
5193 llvm::Type*
5194 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5195   const RecordType *RT = RetTy->getAs<RecordType>();
5196   SmallVector<llvm::Type*, 8> RTList;
5197 
5198   if (RT && RT->isStructureOrClassType()) {
5199     const RecordDecl *RD = RT->getDecl();
5200     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5201     unsigned FieldCnt = Layout.getFieldCount();
5202 
5203     // N32/64 returns struct/classes in floating point registers if the
5204     // following conditions are met:
5205     // 1. The size of the struct/class is no larger than 128-bit.
5206     // 2. The struct/class has one or two fields all of which are floating
5207     //    point types.
5208     // 3. The offset of the first field is zero (this follows what gcc does).
5209     //
5210     // Any other composite results are returned in integer registers.
5211     //
5212     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5213       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5214       for (; b != e; ++b) {
5215         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5216 
5217         if (!BT || !BT->isFloatingPoint())
5218           break;
5219 
5220         RTList.push_back(CGT.ConvertType(b->getType()));
5221       }
5222 
5223       if (b == e)
5224         return llvm::StructType::get(getVMContext(), RTList,
5225                                      RD->hasAttr<PackedAttr>());
5226 
5227       RTList.clear();
5228     }
5229   }
5230 
5231   CoerceToIntArgs(Size, RTList);
5232   return llvm::StructType::get(getVMContext(), RTList);
5233 }
5234 
5235 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5236   uint64_t Size = getContext().getTypeSize(RetTy);
5237 
5238   if (RetTy->isVoidType() || Size == 0)
5239     return ABIArgInfo::getIgnore();
5240 
5241   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5242     if (Size <= 128) {
5243       if (RetTy->isAnyComplexType())
5244         return ABIArgInfo::getDirect();
5245 
5246       // O32 returns integer vectors in registers.
5247       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
5248         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5249 
5250       if (!IsO32)
5251         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5252     }
5253 
5254     return ABIArgInfo::getIndirect(0);
5255   }
5256 
5257   // Treat an enum type as its underlying type.
5258   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5259     RetTy = EnumTy->getDecl()->getIntegerType();
5260 
5261   return (RetTy->isPromotableIntegerType() ?
5262           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5263 }
5264 
5265 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5266   ABIArgInfo &RetInfo = FI.getReturnInfo();
5267   if (!getCXXABI().classifyReturnType(FI))
5268     RetInfo = classifyReturnType(FI.getReturnType());
5269 
5270   // Check if a pointer to an aggregate is passed as a hidden argument.
5271   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5272 
5273   for (auto &I : FI.arguments())
5274     I.info = classifyArgumentType(I.type, Offset);
5275 }
5276 
5277 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5278                                     CodeGenFunction &CGF) const {
5279   llvm::Type *BP = CGF.Int8PtrTy;
5280   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5281 
5282   CGBuilderTy &Builder = CGF.Builder;
5283   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5284   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5285   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
5286   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5287   llvm::Value *AddrTyped;
5288   unsigned PtrWidth = getTarget().getPointerWidth(0);
5289   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5290 
5291   if (TypeAlign > MinABIStackAlignInBytes) {
5292     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5293     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5294     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5295     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5296     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5297     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5298   }
5299   else
5300     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5301 
5302   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5303   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5304   uint64_t Offset =
5305     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
5306   llvm::Value *NextAddr =
5307     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5308                       "ap.next");
5309   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5310 
5311   return AddrTyped;
5312 }
5313 
5314 bool
5315 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5316                                                llvm::Value *Address) const {
5317   // This information comes from gcc's implementation, which seems to
5318   // as canonical as it gets.
5319 
5320   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5321   // are aliased to pairs of single-precision FP registers.
5322   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5323 
5324   // 0-31 are the general purpose registers, $0 - $31.
5325   // 32-63 are the floating-point registers, $f0 - $f31.
5326   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5327   // 66 is the (notional, I think) register for signal-handler return.
5328   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5329 
5330   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5331   // They are one bit wide and ignored here.
5332 
5333   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5334   // (coprocessor 1 is the FP unit)
5335   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5336   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5337   // 176-181 are the DSP accumulator registers.
5338   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5339   return false;
5340 }
5341 
5342 //===----------------------------------------------------------------------===//
5343 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5344 // Currently subclassed only to implement custom OpenCL C function attribute
5345 // handling.
5346 //===----------------------------------------------------------------------===//
5347 
5348 namespace {
5349 
5350 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5351 public:
5352   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5353     : DefaultTargetCodeGenInfo(CGT) {}
5354 
5355   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5356                            CodeGen::CodeGenModule &M) const override;
5357 };
5358 
5359 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5360                                                llvm::GlobalValue *GV,
5361                                                CodeGen::CodeGenModule &M) const {
5362   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5363   if (!FD) return;
5364 
5365   llvm::Function *F = cast<llvm::Function>(GV);
5366 
5367   if (M.getLangOpts().OpenCL) {
5368     if (FD->hasAttr<OpenCLKernelAttr>()) {
5369       // OpenCL C Kernel functions are not subject to inlining
5370       F->addFnAttr(llvm::Attribute::NoInline);
5371       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5372       if (Attr) {
5373         // Convert the reqd_work_group_size() attributes to metadata.
5374         llvm::LLVMContext &Context = F->getContext();
5375         llvm::NamedMDNode *OpenCLMetadata =
5376             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5377 
5378         SmallVector<llvm::Value*, 5> Operands;
5379         Operands.push_back(F);
5380 
5381         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5382                              llvm::APInt(32, Attr->getXDim())));
5383         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5384                              llvm::APInt(32, Attr->getYDim())));
5385         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5386                              llvm::APInt(32, Attr->getZDim())));
5387 
5388         // Add a boolean constant operand for "required" (true) or "hint" (false)
5389         // for implementing the work_group_size_hint attr later. Currently
5390         // always true as the hint is not yet implemented.
5391         Operands.push_back(llvm::ConstantInt::getTrue(Context));
5392         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5393       }
5394     }
5395   }
5396 }
5397 
5398 }
5399 
5400 //===----------------------------------------------------------------------===//
5401 // Hexagon ABI Implementation
5402 //===----------------------------------------------------------------------===//
5403 
5404 namespace {
5405 
5406 class HexagonABIInfo : public ABIInfo {
5407 
5408 
5409 public:
5410   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5411 
5412 private:
5413 
5414   ABIArgInfo classifyReturnType(QualType RetTy) const;
5415   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5416 
5417   void computeInfo(CGFunctionInfo &FI) const override;
5418 
5419   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5420                          CodeGenFunction &CGF) const override;
5421 };
5422 
5423 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5424 public:
5425   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5426     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5427 
5428   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5429     return 29;
5430   }
5431 };
5432 
5433 }
5434 
5435 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5436   if (!getCXXABI().classifyReturnType(FI))
5437     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5438   for (auto &I : FI.arguments())
5439     I.info = classifyArgumentType(I.type);
5440 }
5441 
5442 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5443   if (!isAggregateTypeForABI(Ty)) {
5444     // Treat an enum type as its underlying type.
5445     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5446       Ty = EnumTy->getDecl()->getIntegerType();
5447 
5448     return (Ty->isPromotableIntegerType() ?
5449             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5450   }
5451 
5452   // Ignore empty records.
5453   if (isEmptyRecord(getContext(), Ty, true))
5454     return ABIArgInfo::getIgnore();
5455 
5456   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5457     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5458 
5459   uint64_t Size = getContext().getTypeSize(Ty);
5460   if (Size > 64)
5461     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5462     // Pass in the smallest viable integer type.
5463   else if (Size > 32)
5464       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5465   else if (Size > 16)
5466       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5467   else if (Size > 8)
5468       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5469   else
5470       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5471 }
5472 
5473 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5474   if (RetTy->isVoidType())
5475     return ABIArgInfo::getIgnore();
5476 
5477   // Large vector types should be returned via memory.
5478   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5479     return ABIArgInfo::getIndirect(0);
5480 
5481   if (!isAggregateTypeForABI(RetTy)) {
5482     // Treat an enum type as its underlying type.
5483     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5484       RetTy = EnumTy->getDecl()->getIntegerType();
5485 
5486     return (RetTy->isPromotableIntegerType() ?
5487             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5488   }
5489 
5490   if (isEmptyRecord(getContext(), RetTy, true))
5491     return ABIArgInfo::getIgnore();
5492 
5493   // Aggregates <= 8 bytes are returned in r0; other aggregates
5494   // are returned indirectly.
5495   uint64_t Size = getContext().getTypeSize(RetTy);
5496   if (Size <= 64) {
5497     // Return in the smallest viable integer type.
5498     if (Size <= 8)
5499       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5500     if (Size <= 16)
5501       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5502     if (Size <= 32)
5503       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5504     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5505   }
5506 
5507   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5508 }
5509 
5510 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5511                                        CodeGenFunction &CGF) const {
5512   // FIXME: Need to handle alignment
5513   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5514 
5515   CGBuilderTy &Builder = CGF.Builder;
5516   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5517                                                        "ap");
5518   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5519   llvm::Type *PTy =
5520     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5521   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5522 
5523   uint64_t Offset =
5524     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5525   llvm::Value *NextAddr =
5526     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5527                       "ap.next");
5528   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5529 
5530   return AddrTyped;
5531 }
5532 
5533 
5534 //===----------------------------------------------------------------------===//
5535 // SPARC v9 ABI Implementation.
5536 // Based on the SPARC Compliance Definition version 2.4.1.
5537 //
5538 // Function arguments a mapped to a nominal "parameter array" and promoted to
5539 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5540 // the array, structs larger than 16 bytes are passed indirectly.
5541 //
5542 // One case requires special care:
5543 //
5544 //   struct mixed {
5545 //     int i;
5546 //     float f;
5547 //   };
5548 //
5549 // When a struct mixed is passed by value, it only occupies 8 bytes in the
5550 // parameter array, but the int is passed in an integer register, and the float
5551 // is passed in a floating point register. This is represented as two arguments
5552 // with the LLVM IR inreg attribute:
5553 //
5554 //   declare void f(i32 inreg %i, float inreg %f)
5555 //
5556 // The code generator will only allocate 4 bytes from the parameter array for
5557 // the inreg arguments. All other arguments are allocated a multiple of 8
5558 // bytes.
5559 //
5560 namespace {
5561 class SparcV9ABIInfo : public ABIInfo {
5562 public:
5563   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5564 
5565 private:
5566   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5567   void computeInfo(CGFunctionInfo &FI) const override;
5568   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5569                          CodeGenFunction &CGF) const override;
5570 
5571   // Coercion type builder for structs passed in registers. The coercion type
5572   // serves two purposes:
5573   //
5574   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5575   //    in registers.
5576   // 2. Expose aligned floating point elements as first-level elements, so the
5577   //    code generator knows to pass them in floating point registers.
5578   //
5579   // We also compute the InReg flag which indicates that the struct contains
5580   // aligned 32-bit floats.
5581   //
5582   struct CoerceBuilder {
5583     llvm::LLVMContext &Context;
5584     const llvm::DataLayout &DL;
5585     SmallVector<llvm::Type*, 8> Elems;
5586     uint64_t Size;
5587     bool InReg;
5588 
5589     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5590       : Context(c), DL(dl), Size(0), InReg(false) {}
5591 
5592     // Pad Elems with integers until Size is ToSize.
5593     void pad(uint64_t ToSize) {
5594       assert(ToSize >= Size && "Cannot remove elements");
5595       if (ToSize == Size)
5596         return;
5597 
5598       // Finish the current 64-bit word.
5599       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5600       if (Aligned > Size && Aligned <= ToSize) {
5601         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5602         Size = Aligned;
5603       }
5604 
5605       // Add whole 64-bit words.
5606       while (Size + 64 <= ToSize) {
5607         Elems.push_back(llvm::Type::getInt64Ty(Context));
5608         Size += 64;
5609       }
5610 
5611       // Final in-word padding.
5612       if (Size < ToSize) {
5613         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5614         Size = ToSize;
5615       }
5616     }
5617 
5618     // Add a floating point element at Offset.
5619     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5620       // Unaligned floats are treated as integers.
5621       if (Offset % Bits)
5622         return;
5623       // The InReg flag is only required if there are any floats < 64 bits.
5624       if (Bits < 64)
5625         InReg = true;
5626       pad(Offset);
5627       Elems.push_back(Ty);
5628       Size = Offset + Bits;
5629     }
5630 
5631     // Add a struct type to the coercion type, starting at Offset (in bits).
5632     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5633       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5634       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5635         llvm::Type *ElemTy = StrTy->getElementType(i);
5636         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5637         switch (ElemTy->getTypeID()) {
5638         case llvm::Type::StructTyID:
5639           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5640           break;
5641         case llvm::Type::FloatTyID:
5642           addFloat(ElemOffset, ElemTy, 32);
5643           break;
5644         case llvm::Type::DoubleTyID:
5645           addFloat(ElemOffset, ElemTy, 64);
5646           break;
5647         case llvm::Type::FP128TyID:
5648           addFloat(ElemOffset, ElemTy, 128);
5649           break;
5650         case llvm::Type::PointerTyID:
5651           if (ElemOffset % 64 == 0) {
5652             pad(ElemOffset);
5653             Elems.push_back(ElemTy);
5654             Size += 64;
5655           }
5656           break;
5657         default:
5658           break;
5659         }
5660       }
5661     }
5662 
5663     // Check if Ty is a usable substitute for the coercion type.
5664     bool isUsableType(llvm::StructType *Ty) const {
5665       if (Ty->getNumElements() != Elems.size())
5666         return false;
5667       for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5668         if (Elems[i] != Ty->getElementType(i))
5669           return false;
5670       return true;
5671     }
5672 
5673     // Get the coercion type as a literal struct type.
5674     llvm::Type *getType() const {
5675       if (Elems.size() == 1)
5676         return Elems.front();
5677       else
5678         return llvm::StructType::get(Context, Elems);
5679     }
5680   };
5681 };
5682 } // end anonymous namespace
5683 
5684 ABIArgInfo
5685 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5686   if (Ty->isVoidType())
5687     return ABIArgInfo::getIgnore();
5688 
5689   uint64_t Size = getContext().getTypeSize(Ty);
5690 
5691   // Anything too big to fit in registers is passed with an explicit indirect
5692   // pointer / sret pointer.
5693   if (Size > SizeLimit)
5694     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5695 
5696   // Treat an enum type as its underlying type.
5697   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5698     Ty = EnumTy->getDecl()->getIntegerType();
5699 
5700   // Integer types smaller than a register are extended.
5701   if (Size < 64 && Ty->isIntegerType())
5702     return ABIArgInfo::getExtend();
5703 
5704   // Other non-aggregates go in registers.
5705   if (!isAggregateTypeForABI(Ty))
5706     return ABIArgInfo::getDirect();
5707 
5708   // If a C++ object has either a non-trivial copy constructor or a non-trivial
5709   // destructor, it is passed with an explicit indirect pointer / sret pointer.
5710   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5711     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5712 
5713   // This is a small aggregate type that should be passed in registers.
5714   // Build a coercion type from the LLVM struct type.
5715   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5716   if (!StrTy)
5717     return ABIArgInfo::getDirect();
5718 
5719   CoerceBuilder CB(getVMContext(), getDataLayout());
5720   CB.addStruct(0, StrTy);
5721   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5722 
5723   // Try to use the original type for coercion.
5724   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5725 
5726   if (CB.InReg)
5727     return ABIArgInfo::getDirectInReg(CoerceTy);
5728   else
5729     return ABIArgInfo::getDirect(CoerceTy);
5730 }
5731 
5732 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5733                                        CodeGenFunction &CGF) const {
5734   ABIArgInfo AI = classifyType(Ty, 16 * 8);
5735   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5736   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5737     AI.setCoerceToType(ArgTy);
5738 
5739   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5740   CGBuilderTy &Builder = CGF.Builder;
5741   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5742   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5743   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5744   llvm::Value *ArgAddr;
5745   unsigned Stride;
5746 
5747   switch (AI.getKind()) {
5748   case ABIArgInfo::Expand:
5749   case ABIArgInfo::InAlloca:
5750     llvm_unreachable("Unsupported ABI kind for va_arg");
5751 
5752   case ABIArgInfo::Extend:
5753     Stride = 8;
5754     ArgAddr = Builder
5755       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5756                           "extend");
5757     break;
5758 
5759   case ABIArgInfo::Direct:
5760     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5761     ArgAddr = Addr;
5762     break;
5763 
5764   case ABIArgInfo::Indirect:
5765     Stride = 8;
5766     ArgAddr = Builder.CreateBitCast(Addr,
5767                                     llvm::PointerType::getUnqual(ArgPtrTy),
5768                                     "indirect");
5769     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5770     break;
5771 
5772   case ABIArgInfo::Ignore:
5773     return llvm::UndefValue::get(ArgPtrTy);
5774   }
5775 
5776   // Update VAList.
5777   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5778   Builder.CreateStore(Addr, VAListAddrAsBPP);
5779 
5780   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5781 }
5782 
5783 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5784   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5785   for (auto &I : FI.arguments())
5786     I.info = classifyType(I.type, 16 * 8);
5787 }
5788 
5789 namespace {
5790 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5791 public:
5792   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5793     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5794 
5795   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5796     return 14;
5797   }
5798 
5799   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5800                                llvm::Value *Address) const override;
5801 };
5802 } // end anonymous namespace
5803 
5804 bool
5805 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5806                                                 llvm::Value *Address) const {
5807   // This is calculated from the LLVM and GCC tables and verified
5808   // against gcc output.  AFAIK all ABIs use the same encoding.
5809 
5810   CodeGen::CGBuilderTy &Builder = CGF.Builder;
5811 
5812   llvm::IntegerType *i8 = CGF.Int8Ty;
5813   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
5814   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
5815 
5816   // 0-31: the 8-byte general-purpose registers
5817   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
5818 
5819   // 32-63: f0-31, the 4-byte floating-point registers
5820   AssignToArrayRange(Builder, Address, Four8, 32, 63);
5821 
5822   //   Y   = 64
5823   //   PSR = 65
5824   //   WIM = 66
5825   //   TBR = 67
5826   //   PC  = 68
5827   //   NPC = 69
5828   //   FSR = 70
5829   //   CSR = 71
5830   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
5831 
5832   // 72-87: d0-15, the 8-byte floating-point registers
5833   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
5834 
5835   return false;
5836 }
5837 
5838 
5839 //===----------------------------------------------------------------------===//
5840 // XCore ABI Implementation
5841 //===----------------------------------------------------------------------===//
5842 
5843 namespace {
5844 
5845 /// A SmallStringEnc instance is used to build up the TypeString by passing
5846 /// it by reference between functions that append to it.
5847 typedef llvm::SmallString<128> SmallStringEnc;
5848 
5849 /// TypeStringCache caches the meta encodings of Types.
5850 ///
5851 /// The reason for caching TypeStrings is two fold:
5852 ///   1. To cache a type's encoding for later uses;
5853 ///   2. As a means to break recursive member type inclusion.
5854 ///
5855 /// A cache Entry can have a Status of:
5856 ///   NonRecursive:   The type encoding is not recursive;
5857 ///   Recursive:      The type encoding is recursive;
5858 ///   Incomplete:     An incomplete TypeString;
5859 ///   IncompleteUsed: An incomplete TypeString that has been used in a
5860 ///                   Recursive type encoding.
5861 ///
5862 /// A NonRecursive entry will have all of its sub-members expanded as fully
5863 /// as possible. Whilst it may contain types which are recursive, the type
5864 /// itself is not recursive and thus its encoding may be safely used whenever
5865 /// the type is encountered.
5866 ///
5867 /// A Recursive entry will have all of its sub-members expanded as fully as
5868 /// possible. The type itself is recursive and it may contain other types which
5869 /// are recursive. The Recursive encoding must not be used during the expansion
5870 /// of a recursive type's recursive branch. For simplicity the code uses
5871 /// IncompleteCount to reject all usage of Recursive encodings for member types.
5872 ///
5873 /// An Incomplete entry is always a RecordType and only encodes its
5874 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
5875 /// are placed into the cache during type expansion as a means to identify and
5876 /// handle recursive inclusion of types as sub-members. If there is recursion
5877 /// the entry becomes IncompleteUsed.
5878 ///
5879 /// During the expansion of a RecordType's members:
5880 ///
5881 ///   If the cache contains a NonRecursive encoding for the member type, the
5882 ///   cached encoding is used;
5883 ///
5884 ///   If the cache contains a Recursive encoding for the member type, the
5885 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
5886 ///
5887 ///   If the member is a RecordType, an Incomplete encoding is placed into the
5888 ///   cache to break potential recursive inclusion of itself as a sub-member;
5889 ///
5890 ///   Once a member RecordType has been expanded, its temporary incomplete
5891 ///   entry is removed from the cache. If a Recursive encoding was swapped out
5892 ///   it is swapped back in;
5893 ///
5894 ///   If an incomplete entry is used to expand a sub-member, the incomplete
5895 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
5896 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
5897 ///
5898 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
5899 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
5900 ///   Else the member is part of a recursive type and thus the recursion has
5901 ///   been exited too soon for the encoding to be correct for the member.
5902 ///
5903 class TypeStringCache {
5904   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
5905   struct Entry {
5906     std::string Str;     // The encoded TypeString for the type.
5907     enum Status State;   // Information about the encoding in 'Str'.
5908     std::string Swapped; // A temporary place holder for a Recursive encoding
5909                          // during the expansion of RecordType's members.
5910   };
5911   std::map<const IdentifierInfo *, struct Entry> Map;
5912   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
5913   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
5914 public:
5915   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
5916   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
5917   bool removeIncomplete(const IdentifierInfo *ID);
5918   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
5919                      bool IsRecursive);
5920   StringRef lookupStr(const IdentifierInfo *ID);
5921 };
5922 
5923 /// TypeString encodings for enum & union fields must be order.
5924 /// FieldEncoding is a helper for this ordering process.
5925 class FieldEncoding {
5926   bool HasName;
5927   std::string Enc;
5928 public:
5929   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
5930   StringRef str() {return Enc.c_str();};
5931   bool operator<(const FieldEncoding &rhs) const {
5932     if (HasName != rhs.HasName) return HasName;
5933     return Enc < rhs.Enc;
5934   }
5935 };
5936 
5937 class XCoreABIInfo : public DefaultABIInfo {
5938 public:
5939   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5940   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5941                          CodeGenFunction &CGF) const override;
5942 };
5943 
5944 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
5945   mutable TypeStringCache TSC;
5946 public:
5947   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
5948     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5949   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
5950                     CodeGen::CodeGenModule &M) const override;
5951 };
5952 
5953 } // End anonymous namespace.
5954 
5955 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5956                                      CodeGenFunction &CGF) const {
5957   CGBuilderTy &Builder = CGF.Builder;
5958 
5959   // Get the VAList.
5960   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5961                                                        CGF.Int8PtrPtrTy);
5962   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5963 
5964   // Handle the argument.
5965   ABIArgInfo AI = classifyArgumentType(Ty);
5966   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5967   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5968     AI.setCoerceToType(ArgTy);
5969   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5970   llvm::Value *Val;
5971   uint64_t ArgSize = 0;
5972   switch (AI.getKind()) {
5973   case ABIArgInfo::Expand:
5974   case ABIArgInfo::InAlloca:
5975     llvm_unreachable("Unsupported ABI kind for va_arg");
5976   case ABIArgInfo::Ignore:
5977     Val = llvm::UndefValue::get(ArgPtrTy);
5978     ArgSize = 0;
5979     break;
5980   case ABIArgInfo::Extend:
5981   case ABIArgInfo::Direct:
5982     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5983     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5984     if (ArgSize < 4)
5985       ArgSize = 4;
5986     break;
5987   case ABIArgInfo::Indirect:
5988     llvm::Value *ArgAddr;
5989     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5990     ArgAddr = Builder.CreateLoad(ArgAddr);
5991     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5992     ArgSize = 4;
5993     break;
5994   }
5995 
5996   // Increment the VAList.
5997   if (ArgSize) {
5998     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5999     Builder.CreateStore(APN, VAListAddrAsBPP);
6000   }
6001   return Val;
6002 }
6003 
6004 /// During the expansion of a RecordType, an incomplete TypeString is placed
6005 /// into the cache as a means to identify and break recursion.
6006 /// If there is a Recursive encoding in the cache, it is swapped out and will
6007 /// be reinserted by removeIncomplete().
6008 /// All other types of encoding should have been used rather than arriving here.
6009 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6010                                     std::string StubEnc) {
6011   if (!ID)
6012     return;
6013   Entry &E = Map[ID];
6014   assert( (E.Str.empty() || E.State == Recursive) &&
6015          "Incorrectly use of addIncomplete");
6016   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6017   E.Swapped.swap(E.Str); // swap out the Recursive
6018   E.Str.swap(StubEnc);
6019   E.State = Incomplete;
6020   ++IncompleteCount;
6021 }
6022 
6023 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6024 /// must be removed from the cache.
6025 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6026 /// Returns true if the RecordType was defined recursively.
6027 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6028   if (!ID)
6029     return false;
6030   auto I = Map.find(ID);
6031   assert(I != Map.end() && "Entry not present");
6032   Entry &E = I->second;
6033   assert( (E.State == Incomplete ||
6034            E.State == IncompleteUsed) &&
6035          "Entry must be an incomplete type");
6036   bool IsRecursive = false;
6037   if (E.State == IncompleteUsed) {
6038     // We made use of our Incomplete encoding, thus we are recursive.
6039     IsRecursive = true;
6040     --IncompleteUsedCount;
6041   }
6042   if (E.Swapped.empty())
6043     Map.erase(I);
6044   else {
6045     // Swap the Recursive back.
6046     E.Swapped.swap(E.Str);
6047     E.Swapped.clear();
6048     E.State = Recursive;
6049   }
6050   --IncompleteCount;
6051   return IsRecursive;
6052 }
6053 
6054 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6055 /// Recursive (viz: all sub-members were expanded as fully as possible).
6056 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6057                                     bool IsRecursive) {
6058   if (!ID || IncompleteUsedCount)
6059     return; // No key or it is is an incomplete sub-type so don't add.
6060   Entry &E = Map[ID];
6061   if (IsRecursive && !E.Str.empty()) {
6062     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6063            "This is not the same Recursive entry");
6064     // The parent container was not recursive after all, so we could have used
6065     // this Recursive sub-member entry after all, but we assumed the worse when
6066     // we started viz: IncompleteCount!=0.
6067     return;
6068   }
6069   assert(E.Str.empty() && "Entry already present");
6070   E.Str = Str.str();
6071   E.State = IsRecursive? Recursive : NonRecursive;
6072 }
6073 
6074 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6075 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6076 /// encoding is Recursive, return an empty StringRef.
6077 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6078   if (!ID)
6079     return StringRef();   // We have no key.
6080   auto I = Map.find(ID);
6081   if (I == Map.end())
6082     return StringRef();   // We have no encoding.
6083   Entry &E = I->second;
6084   if (E.State == Recursive && IncompleteCount)
6085     return StringRef();   // We don't use Recursive encodings for member types.
6086 
6087   if (E.State == Incomplete) {
6088     // The incomplete type is being used to break out of recursion.
6089     E.State = IncompleteUsed;
6090     ++IncompleteUsedCount;
6091   }
6092   return E.Str.c_str();
6093 }
6094 
6095 /// The XCore ABI includes a type information section that communicates symbol
6096 /// type information to the linker. The linker uses this information to verify
6097 /// safety/correctness of things such as array bound and pointers et al.
6098 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6099 /// This type information (TypeString) is emitted into meta data for all global
6100 /// symbols: definitions, declarations, functions & variables.
6101 ///
6102 /// The TypeString carries type, qualifier, name, size & value details.
6103 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6104 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6105 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6106 ///
6107 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6108                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6109 
6110 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6111 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6112                                           CodeGen::CodeGenModule &CGM) const {
6113   SmallStringEnc Enc;
6114   if (getTypeString(Enc, D, CGM, TSC)) {
6115     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6116     llvm::SmallVector<llvm::Value *, 2> MDVals;
6117     MDVals.push_back(GV);
6118     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6119     llvm::NamedMDNode *MD =
6120       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6121     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6122   }
6123 }
6124 
6125 static bool appendType(SmallStringEnc &Enc, QualType QType,
6126                        const CodeGen::CodeGenModule &CGM,
6127                        TypeStringCache &TSC);
6128 
6129 /// Helper function for appendRecordType().
6130 /// Builds a SmallVector containing the encoded field types in declaration order.
6131 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6132                              const RecordDecl *RD,
6133                              const CodeGen::CodeGenModule &CGM,
6134                              TypeStringCache &TSC) {
6135   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
6136        I != E; ++I) {
6137     SmallStringEnc Enc;
6138     Enc += "m(";
6139     Enc += I->getName();
6140     Enc += "){";
6141     if (I->isBitField()) {
6142       Enc += "b(";
6143       llvm::raw_svector_ostream OS(Enc);
6144       OS.resync();
6145       OS << I->getBitWidthValue(CGM.getContext());
6146       OS.flush();
6147       Enc += ':';
6148     }
6149     if (!appendType(Enc, I->getType(), CGM, TSC))
6150       return false;
6151     if (I->isBitField())
6152       Enc += ')';
6153     Enc += '}';
6154     FE.push_back(FieldEncoding(!I->getName().empty(), Enc));
6155   }
6156   return true;
6157 }
6158 
6159 /// Appends structure and union types to Enc and adds encoding to cache.
6160 /// Recursively calls appendType (via extractFieldType) for each field.
6161 /// Union types have their fields ordered according to the ABI.
6162 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6163                              const CodeGen::CodeGenModule &CGM,
6164                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6165   // Append the cached TypeString if we have one.
6166   StringRef TypeString = TSC.lookupStr(ID);
6167   if (!TypeString.empty()) {
6168     Enc += TypeString;
6169     return true;
6170   }
6171 
6172   // Start to emit an incomplete TypeString.
6173   size_t Start = Enc.size();
6174   Enc += (RT->isUnionType()? 'u' : 's');
6175   Enc += '(';
6176   if (ID)
6177     Enc += ID->getName();
6178   Enc += "){";
6179 
6180   // We collect all encoded fields and order as necessary.
6181   bool IsRecursive = false;
6182   const RecordDecl *RD = RT->getDecl()->getDefinition();
6183   if (RD && !RD->field_empty()) {
6184     // An incomplete TypeString stub is placed in the cache for this RecordType
6185     // so that recursive calls to this RecordType will use it whilst building a
6186     // complete TypeString for this RecordType.
6187     SmallVector<FieldEncoding, 16> FE;
6188     std::string StubEnc(Enc.substr(Start).str());
6189     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6190     TSC.addIncomplete(ID, std::move(StubEnc));
6191     if (!extractFieldType(FE, RD, CGM, TSC)) {
6192       (void) TSC.removeIncomplete(ID);
6193       return false;
6194     }
6195     IsRecursive = TSC.removeIncomplete(ID);
6196     // The ABI requires unions to be sorted but not structures.
6197     // See FieldEncoding::operator< for sort algorithm.
6198     if (RT->isUnionType())
6199       std::sort(FE.begin(), FE.end());
6200     // We can now complete the TypeString.
6201     unsigned E = FE.size();
6202     for (unsigned I = 0; I != E; ++I) {
6203       if (I)
6204         Enc += ',';
6205       Enc += FE[I].str();
6206     }
6207   }
6208   Enc += '}';
6209   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6210   return true;
6211 }
6212 
6213 /// Appends enum types to Enc and adds the encoding to the cache.
6214 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6215                            TypeStringCache &TSC,
6216                            const IdentifierInfo *ID) {
6217   // Append the cached TypeString if we have one.
6218   StringRef TypeString = TSC.lookupStr(ID);
6219   if (!TypeString.empty()) {
6220     Enc += TypeString;
6221     return true;
6222   }
6223 
6224   size_t Start = Enc.size();
6225   Enc += "e(";
6226   if (ID)
6227     Enc += ID->getName();
6228   Enc += "){";
6229 
6230   // We collect all encoded enumerations and order them alphanumerically.
6231   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6232     SmallVector<FieldEncoding, 16> FE;
6233     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6234          ++I) {
6235       SmallStringEnc EnumEnc;
6236       EnumEnc += "m(";
6237       EnumEnc += I->getName();
6238       EnumEnc += "){";
6239       I->getInitVal().toString(EnumEnc);
6240       EnumEnc += '}';
6241       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6242     }
6243     std::sort(FE.begin(), FE.end());
6244     unsigned E = FE.size();
6245     for (unsigned I = 0; I != E; ++I) {
6246       if (I)
6247         Enc += ',';
6248       Enc += FE[I].str();
6249     }
6250   }
6251   Enc += '}';
6252   TSC.addIfComplete(ID, Enc.substr(Start), false);
6253   return true;
6254 }
6255 
6256 /// Appends type's qualifier to Enc.
6257 /// This is done prior to appending the type's encoding.
6258 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6259   // Qualifiers are emitted in alphabetical order.
6260   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6261   int Lookup = 0;
6262   if (QT.isConstQualified())
6263     Lookup += 1<<0;
6264   if (QT.isRestrictQualified())
6265     Lookup += 1<<1;
6266   if (QT.isVolatileQualified())
6267     Lookup += 1<<2;
6268   Enc += Table[Lookup];
6269 }
6270 
6271 /// Appends built-in types to Enc.
6272 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6273   const char *EncType;
6274   switch (BT->getKind()) {
6275     case BuiltinType::Void:
6276       EncType = "0";
6277       break;
6278     case BuiltinType::Bool:
6279       EncType = "b";
6280       break;
6281     case BuiltinType::Char_U:
6282       EncType = "uc";
6283       break;
6284     case BuiltinType::UChar:
6285       EncType = "uc";
6286       break;
6287     case BuiltinType::SChar:
6288       EncType = "sc";
6289       break;
6290     case BuiltinType::UShort:
6291       EncType = "us";
6292       break;
6293     case BuiltinType::Short:
6294       EncType = "ss";
6295       break;
6296     case BuiltinType::UInt:
6297       EncType = "ui";
6298       break;
6299     case BuiltinType::Int:
6300       EncType = "si";
6301       break;
6302     case BuiltinType::ULong:
6303       EncType = "ul";
6304       break;
6305     case BuiltinType::Long:
6306       EncType = "sl";
6307       break;
6308     case BuiltinType::ULongLong:
6309       EncType = "ull";
6310       break;
6311     case BuiltinType::LongLong:
6312       EncType = "sll";
6313       break;
6314     case BuiltinType::Float:
6315       EncType = "ft";
6316       break;
6317     case BuiltinType::Double:
6318       EncType = "d";
6319       break;
6320     case BuiltinType::LongDouble:
6321       EncType = "ld";
6322       break;
6323     default:
6324       return false;
6325   }
6326   Enc += EncType;
6327   return true;
6328 }
6329 
6330 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
6331 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6332                               const CodeGen::CodeGenModule &CGM,
6333                               TypeStringCache &TSC) {
6334   Enc += "p(";
6335   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6336     return false;
6337   Enc += ')';
6338   return true;
6339 }
6340 
6341 /// Appends array encoding to Enc before calling appendType for the element.
6342 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6343                             const ArrayType *AT,
6344                             const CodeGen::CodeGenModule &CGM,
6345                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6346   if (AT->getSizeModifier() != ArrayType::Normal)
6347     return false;
6348   Enc += "a(";
6349   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6350     CAT->getSize().toStringUnsigned(Enc);
6351   else
6352     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6353   Enc += ':';
6354   // The Qualifiers should be attached to the type rather than the array.
6355   appendQualifier(Enc, QT);
6356   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6357     return false;
6358   Enc += ')';
6359   return true;
6360 }
6361 
6362 /// Appends a function encoding to Enc, calling appendType for the return type
6363 /// and the arguments.
6364 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6365                              const CodeGen::CodeGenModule &CGM,
6366                              TypeStringCache &TSC) {
6367   Enc += "f{";
6368   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6369     return false;
6370   Enc += "}(";
6371   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6372     // N.B. we are only interested in the adjusted param types.
6373     auto I = FPT->param_type_begin();
6374     auto E = FPT->param_type_end();
6375     if (I != E) {
6376       do {
6377         if (!appendType(Enc, *I, CGM, TSC))
6378           return false;
6379         ++I;
6380         if (I != E)
6381           Enc += ',';
6382       } while (I != E);
6383       if (FPT->isVariadic())
6384         Enc += ",va";
6385     } else {
6386       if (FPT->isVariadic())
6387         Enc += "va";
6388       else
6389         Enc += '0';
6390     }
6391   }
6392   Enc += ')';
6393   return true;
6394 }
6395 
6396 /// Handles the type's qualifier before dispatching a call to handle specific
6397 /// type encodings.
6398 static bool appendType(SmallStringEnc &Enc, QualType QType,
6399                        const CodeGen::CodeGenModule &CGM,
6400                        TypeStringCache &TSC) {
6401 
6402   QualType QT = QType.getCanonicalType();
6403 
6404   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6405     // The Qualifiers should be attached to the type rather than the array.
6406     // Thus we don't call appendQualifier() here.
6407     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6408 
6409   appendQualifier(Enc, QT);
6410 
6411   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6412     return appendBuiltinType(Enc, BT);
6413 
6414   if (const PointerType *PT = QT->getAs<PointerType>())
6415     return appendPointerType(Enc, PT, CGM, TSC);
6416 
6417   if (const EnumType *ET = QT->getAs<EnumType>())
6418     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6419 
6420   if (const RecordType *RT = QT->getAsStructureType())
6421     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6422 
6423   if (const RecordType *RT = QT->getAsUnionType())
6424     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6425 
6426   if (const FunctionType *FT = QT->getAs<FunctionType>())
6427     return appendFunctionType(Enc, FT, CGM, TSC);
6428 
6429   return false;
6430 }
6431 
6432 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6433                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6434   if (!D)
6435     return false;
6436 
6437   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6438     if (FD->getLanguageLinkage() != CLanguageLinkage)
6439       return false;
6440     return appendType(Enc, FD->getType(), CGM, TSC);
6441   }
6442 
6443   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6444     if (VD->getLanguageLinkage() != CLanguageLinkage)
6445       return false;
6446     QualType QT = VD->getType().getCanonicalType();
6447     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
6448       // Global ArrayTypes are given a size of '*' if the size is unknown.
6449       // The Qualifiers should be attached to the type rather than the array.
6450       // Thus we don't call appendQualifier() here.
6451       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
6452     }
6453     return appendType(Enc, QT, CGM, TSC);
6454   }
6455   return false;
6456 }
6457 
6458 
6459 //===----------------------------------------------------------------------===//
6460 // Driver code
6461 //===----------------------------------------------------------------------===//
6462 
6463 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
6464   if (TheTargetCodeGenInfo)
6465     return *TheTargetCodeGenInfo;
6466 
6467   const llvm::Triple &Triple = getTarget().getTriple();
6468   switch (Triple.getArch()) {
6469   default:
6470     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
6471 
6472   case llvm::Triple::le32:
6473     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
6474   case llvm::Triple::mips:
6475   case llvm::Triple::mipsel:
6476     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
6477 
6478   case llvm::Triple::mips64:
6479   case llvm::Triple::mips64el:
6480     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
6481 
6482   case llvm::Triple::aarch64:
6483   case llvm::Triple::aarch64_be:
6484   case llvm::Triple::arm64:
6485   case llvm::Triple::arm64_be: {
6486     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
6487     if (getTarget().getABI() == "darwinpcs")
6488       Kind = AArch64ABIInfo::DarwinPCS;
6489 
6490     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
6491   }
6492 
6493   case llvm::Triple::arm:
6494   case llvm::Triple::armeb:
6495   case llvm::Triple::thumb:
6496   case llvm::Triple::thumbeb:
6497     {
6498       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
6499       if (getTarget().getABI() == "apcs-gnu")
6500         Kind = ARMABIInfo::APCS;
6501       else if (CodeGenOpts.FloatABI == "hard" ||
6502                (CodeGenOpts.FloatABI != "soft" &&
6503                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
6504         Kind = ARMABIInfo::AAPCS_VFP;
6505 
6506       switch (Triple.getOS()) {
6507         case llvm::Triple::NaCl:
6508           return *(TheTargetCodeGenInfo =
6509                    new NaClARMTargetCodeGenInfo(Types, Kind));
6510         default:
6511           return *(TheTargetCodeGenInfo =
6512                    new ARMTargetCodeGenInfo(Types, Kind));
6513       }
6514     }
6515 
6516   case llvm::Triple::ppc:
6517     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
6518   case llvm::Triple::ppc64:
6519     if (Triple.isOSBinFormatELF())
6520       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
6521     else
6522       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
6523   case llvm::Triple::ppc64le:
6524     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
6525     return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
6526 
6527   case llvm::Triple::nvptx:
6528   case llvm::Triple::nvptx64:
6529     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
6530 
6531   case llvm::Triple::msp430:
6532     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
6533 
6534   case llvm::Triple::systemz:
6535     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
6536 
6537   case llvm::Triple::tce:
6538     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
6539 
6540   case llvm::Triple::x86: {
6541     bool IsDarwinVectorABI = Triple.isOSDarwin();
6542     bool IsSmallStructInRegABI =
6543         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
6544     bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment();
6545 
6546     if (Triple.getOS() == llvm::Triple::Win32) {
6547       return *(TheTargetCodeGenInfo =
6548                new WinX86_32TargetCodeGenInfo(Types,
6549                                               IsDarwinVectorABI, IsSmallStructInRegABI,
6550                                               IsWin32FloatStructABI,
6551                                               CodeGenOpts.NumRegisterParameters));
6552     } else {
6553       return *(TheTargetCodeGenInfo =
6554                new X86_32TargetCodeGenInfo(Types,
6555                                            IsDarwinVectorABI, IsSmallStructInRegABI,
6556                                            IsWin32FloatStructABI,
6557                                            CodeGenOpts.NumRegisterParameters));
6558     }
6559   }
6560 
6561   case llvm::Triple::x86_64: {
6562     bool HasAVX = getTarget().getABI() == "avx";
6563 
6564     switch (Triple.getOS()) {
6565     case llvm::Triple::Win32:
6566       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
6567     case llvm::Triple::NaCl:
6568       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
6569                                                                       HasAVX));
6570     default:
6571       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
6572                                                                   HasAVX));
6573     }
6574   }
6575   case llvm::Triple::hexagon:
6576     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
6577   case llvm::Triple::sparcv9:
6578     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
6579   case llvm::Triple::xcore:
6580     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
6581   }
6582 }
6583