1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #include <algorithm> // std::sort 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 33 llvm::Value *Array, 34 llvm::Value *Value, 35 unsigned FirstIndex, 36 unsigned LastIndex) { 37 // Alternatively, we could emit this as a loop in the source. 38 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 39 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 40 Builder.CreateStore(Value, Cell); 41 } 42 } 43 44 static bool isAggregateTypeForABI(QualType T) { 45 return !CodeGenFunction::hasScalarEvaluationKind(T) || 46 T->isMemberFunctionPointerType(); 47 } 48 49 ABIInfo::~ABIInfo() {} 50 51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 52 CGCXXABI &CXXABI) { 53 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 54 if (!RD) 55 return CGCXXABI::RAA_Default; 56 return CXXABI.getRecordArgABI(RD); 57 } 58 59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 60 CGCXXABI &CXXABI) { 61 const RecordType *RT = T->getAs<RecordType>(); 62 if (!RT) 63 return CGCXXABI::RAA_Default; 64 return getRecordArgABI(RT, CXXABI); 65 } 66 67 CGCXXABI &ABIInfo::getCXXABI() const { 68 return CGT.getCXXABI(); 69 } 70 71 ASTContext &ABIInfo::getContext() const { 72 return CGT.getContext(); 73 } 74 75 llvm::LLVMContext &ABIInfo::getVMContext() const { 76 return CGT.getLLVMContext(); 77 } 78 79 const llvm::DataLayout &ABIInfo::getDataLayout() const { 80 return CGT.getDataLayout(); 81 } 82 83 const TargetInfo &ABIInfo::getTarget() const { 84 return CGT.getTarget(); 85 } 86 87 void ABIArgInfo::dump() const { 88 raw_ostream &OS = llvm::errs(); 89 OS << "(ABIArgInfo Kind="; 90 switch (TheKind) { 91 case Direct: 92 OS << "Direct Type="; 93 if (llvm::Type *Ty = getCoerceToType()) 94 Ty->print(OS); 95 else 96 OS << "null"; 97 break; 98 case Extend: 99 OS << "Extend"; 100 break; 101 case Ignore: 102 OS << "Ignore"; 103 break; 104 case InAlloca: 105 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 106 break; 107 case Indirect: 108 OS << "Indirect Align=" << getIndirectAlign() 109 << " ByVal=" << getIndirectByVal() 110 << " Realign=" << getIndirectRealign(); 111 break; 112 case Expand: 113 OS << "Expand"; 114 break; 115 } 116 OS << ")\n"; 117 } 118 119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 120 121 // If someone can figure out a general rule for this, that would be great. 122 // It's probably just doomed to be platform-dependent, though. 123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 124 // Verified for: 125 // x86-64 FreeBSD, Linux, Darwin 126 // x86-32 FreeBSD, Linux, Darwin 127 // PowerPC Linux, Darwin 128 // ARM Darwin (*not* EABI) 129 // AArch64 Linux 130 return 32; 131 } 132 133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 134 const FunctionNoProtoType *fnType) const { 135 // The following conventions are known to require this to be false: 136 // x86_stdcall 137 // MIPS 138 // For everything else, we just prefer false unless we opt out. 139 return false; 140 } 141 142 void 143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 144 llvm::SmallString<24> &Opt) const { 145 // This assumes the user is passing a library name like "rt" instead of a 146 // filename like "librt.a/so", and that they don't care whether it's static or 147 // dynamic. 148 Opt = "-l"; 149 Opt += Lib; 150 } 151 152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 153 154 /// isEmptyField - Return true iff a the field is "empty", that is it 155 /// is an unnamed bit-field or an (array of) empty record(s). 156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 157 bool AllowArrays) { 158 if (FD->isUnnamedBitfield()) 159 return true; 160 161 QualType FT = FD->getType(); 162 163 // Constant arrays of empty records count as empty, strip them off. 164 // Constant arrays of zero length always count as empty. 165 if (AllowArrays) 166 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 167 if (AT->getSize() == 0) 168 return true; 169 FT = AT->getElementType(); 170 } 171 172 const RecordType *RT = FT->getAs<RecordType>(); 173 if (!RT) 174 return false; 175 176 // C++ record fields are never empty, at least in the Itanium ABI. 177 // 178 // FIXME: We should use a predicate for whether this behavior is true in the 179 // current ABI. 180 if (isa<CXXRecordDecl>(RT->getDecl())) 181 return false; 182 183 return isEmptyRecord(Context, FT, AllowArrays); 184 } 185 186 /// isEmptyRecord - Return true iff a structure contains only empty 187 /// fields. Note that a structure with a flexible array member is not 188 /// considered empty. 189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 190 const RecordType *RT = T->getAs<RecordType>(); 191 if (!RT) 192 return 0; 193 const RecordDecl *RD = RT->getDecl(); 194 if (RD->hasFlexibleArrayMember()) 195 return false; 196 197 // If this is a C++ record, check the bases first. 198 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 199 for (const auto &I : CXXRD->bases()) 200 if (!isEmptyRecord(Context, I.getType(), true)) 201 return false; 202 203 for (const auto *I : RD->fields()) 204 if (!isEmptyField(Context, I, AllowArrays)) 205 return false; 206 return true; 207 } 208 209 /// isSingleElementStruct - Determine if a structure is a "single 210 /// element struct", i.e. it has exactly one non-empty field or 211 /// exactly one field which is itself a single element 212 /// struct. Structures with flexible array members are never 213 /// considered single element structs. 214 /// 215 /// \return The field declaration for the single non-empty field, if 216 /// it exists. 217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 218 const RecordType *RT = T->getAsStructureType(); 219 if (!RT) 220 return nullptr; 221 222 const RecordDecl *RD = RT->getDecl(); 223 if (RD->hasFlexibleArrayMember()) 224 return nullptr; 225 226 const Type *Found = nullptr; 227 228 // If this is a C++ record, check the bases first. 229 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 230 for (const auto &I : CXXRD->bases()) { 231 // Ignore empty records. 232 if (isEmptyRecord(Context, I.getType(), true)) 233 continue; 234 235 // If we already found an element then this isn't a single-element struct. 236 if (Found) 237 return nullptr; 238 239 // If this is non-empty and not a single element struct, the composite 240 // cannot be a single element struct. 241 Found = isSingleElementStruct(I.getType(), Context); 242 if (!Found) 243 return nullptr; 244 } 245 } 246 247 // Check for single element. 248 for (const auto *FD : RD->fields()) { 249 QualType FT = FD->getType(); 250 251 // Ignore empty fields. 252 if (isEmptyField(Context, FD, true)) 253 continue; 254 255 // If we already found an element then this isn't a single-element 256 // struct. 257 if (Found) 258 return nullptr; 259 260 // Treat single element arrays as the element. 261 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 262 if (AT->getSize().getZExtValue() != 1) 263 break; 264 FT = AT->getElementType(); 265 } 266 267 if (!isAggregateTypeForABI(FT)) { 268 Found = FT.getTypePtr(); 269 } else { 270 Found = isSingleElementStruct(FT, Context); 271 if (!Found) 272 return nullptr; 273 } 274 } 275 276 // We don't consider a struct a single-element struct if it has 277 // padding beyond the element type. 278 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 279 return nullptr; 280 281 return Found; 282 } 283 284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 285 // Treat complex types as the element type. 286 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 287 Ty = CTy->getElementType(); 288 289 // Check for a type which we know has a simple scalar argument-passing 290 // convention without any padding. (We're specifically looking for 32 291 // and 64-bit integer and integer-equivalents, float, and double.) 292 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 293 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 294 return false; 295 296 uint64_t Size = Context.getTypeSize(Ty); 297 return Size == 32 || Size == 64; 298 } 299 300 /// canExpandIndirectArgument - Test whether an argument type which is to be 301 /// passed indirectly (on the stack) would have the equivalent layout if it was 302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 303 /// inhibiting optimizations. 304 /// 305 // FIXME: This predicate is missing many cases, currently it just follows 306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 307 // should probably make this smarter, or better yet make the LLVM backend 308 // capable of handling it. 309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 310 // We can only expand structure types. 311 const RecordType *RT = Ty->getAs<RecordType>(); 312 if (!RT) 313 return false; 314 315 // We can only expand (C) structures. 316 // 317 // FIXME: This needs to be generalized to handle classes as well. 318 const RecordDecl *RD = RT->getDecl(); 319 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 320 return false; 321 322 uint64_t Size = 0; 323 324 for (const auto *FD : RD->fields()) { 325 if (!is32Or64BitBasicType(FD->getType(), Context)) 326 return false; 327 328 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 329 // how to expand them yet, and the predicate for telling if a bitfield still 330 // counts as "basic" is more complicated than what we were doing previously. 331 if (FD->isBitField()) 332 return false; 333 334 Size += Context.getTypeSize(FD->getType()); 335 } 336 337 // Make sure there are not any holes in the struct. 338 if (Size != Context.getTypeSize(Ty)) 339 return false; 340 341 return true; 342 } 343 344 namespace { 345 /// DefaultABIInfo - The default implementation for ABI specific 346 /// details. This implementation provides information which results in 347 /// self-consistent and sensible LLVM IR generation, but does not 348 /// conform to any particular ABI. 349 class DefaultABIInfo : public ABIInfo { 350 public: 351 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 352 353 ABIArgInfo classifyReturnType(QualType RetTy) const; 354 ABIArgInfo classifyArgumentType(QualType RetTy) const; 355 356 void computeInfo(CGFunctionInfo &FI) const override { 357 if (!getCXXABI().classifyReturnType(FI)) 358 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 359 for (auto &I : FI.arguments()) 360 I.info = classifyArgumentType(I.type); 361 } 362 363 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 364 CodeGenFunction &CGF) const override; 365 }; 366 367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 368 public: 369 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 370 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 371 }; 372 373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 374 CodeGenFunction &CGF) const { 375 return nullptr; 376 } 377 378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 379 if (isAggregateTypeForABI(Ty)) 380 return ABIArgInfo::getIndirect(0); 381 382 // Treat an enum type as its underlying type. 383 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 384 Ty = EnumTy->getDecl()->getIntegerType(); 385 386 return (Ty->isPromotableIntegerType() ? 387 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 388 } 389 390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 391 if (RetTy->isVoidType()) 392 return ABIArgInfo::getIgnore(); 393 394 if (isAggregateTypeForABI(RetTy)) 395 return ABIArgInfo::getIndirect(0); 396 397 // Treat an enum type as its underlying type. 398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 399 RetTy = EnumTy->getDecl()->getIntegerType(); 400 401 return (RetTy->isPromotableIntegerType() ? 402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 403 } 404 405 //===----------------------------------------------------------------------===// 406 // le32/PNaCl bitcode ABI Implementation 407 // 408 // This is a simplified version of the x86_32 ABI. Arguments and return values 409 // are always passed on the stack. 410 //===----------------------------------------------------------------------===// 411 412 class PNaClABIInfo : public ABIInfo { 413 public: 414 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 415 416 ABIArgInfo classifyReturnType(QualType RetTy) const; 417 ABIArgInfo classifyArgumentType(QualType RetTy) const; 418 419 void computeInfo(CGFunctionInfo &FI) const override; 420 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 421 CodeGenFunction &CGF) const override; 422 }; 423 424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 425 public: 426 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 427 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 428 }; 429 430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 431 if (!getCXXABI().classifyReturnType(FI)) 432 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 433 434 for (auto &I : FI.arguments()) 435 I.info = classifyArgumentType(I.type); 436 } 437 438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 439 CodeGenFunction &CGF) const { 440 return nullptr; 441 } 442 443 /// \brief Classify argument of given type \p Ty. 444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 445 if (isAggregateTypeForABI(Ty)) { 446 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 447 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 448 return ABIArgInfo::getIndirect(0); 449 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 450 // Treat an enum type as its underlying type. 451 Ty = EnumTy->getDecl()->getIntegerType(); 452 } else if (Ty->isFloatingType()) { 453 // Floating-point types don't go inreg. 454 return ABIArgInfo::getDirect(); 455 } 456 457 return (Ty->isPromotableIntegerType() ? 458 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 459 } 460 461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 462 if (RetTy->isVoidType()) 463 return ABIArgInfo::getIgnore(); 464 465 // In the PNaCl ABI we always return records/structures on the stack. 466 if (isAggregateTypeForABI(RetTy)) 467 return ABIArgInfo::getIndirect(0); 468 469 // Treat an enum type as its underlying type. 470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 471 RetTy = EnumTy->getDecl()->getIntegerType(); 472 473 return (RetTy->isPromotableIntegerType() ? 474 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 475 } 476 477 /// IsX86_MMXType - Return true if this is an MMX type. 478 bool IsX86_MMXType(llvm::Type *IRType) { 479 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 480 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 481 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 482 IRType->getScalarSizeInBits() != 64; 483 } 484 485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 486 StringRef Constraint, 487 llvm::Type* Ty) { 488 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 489 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 490 // Invalid MMX constraint 491 return nullptr; 492 } 493 494 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 495 } 496 497 // No operation needed 498 return Ty; 499 } 500 501 //===----------------------------------------------------------------------===// 502 // X86-32 ABI Implementation 503 //===----------------------------------------------------------------------===// 504 505 /// \brief Similar to llvm::CCState, but for Clang. 506 struct CCState { 507 CCState(unsigned CC) : CC(CC), FreeRegs(0) {} 508 509 unsigned CC; 510 unsigned FreeRegs; 511 unsigned StackOffset; 512 bool UseInAlloca; 513 }; 514 515 /// X86_32ABIInfo - The X86-32 ABI information. 516 class X86_32ABIInfo : public ABIInfo { 517 enum Class { 518 Integer, 519 Float 520 }; 521 522 static const unsigned MinABIStackAlignInBytes = 4; 523 524 bool IsDarwinVectorABI; 525 bool IsSmallStructInRegABI; 526 bool IsWin32StructABI; 527 unsigned DefaultNumRegisterParameters; 528 529 static bool isRegisterSize(unsigned Size) { 530 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 531 } 532 533 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 534 535 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 536 /// such that the argument will be passed in memory. 537 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 538 539 ABIArgInfo getIndirectReturnResult(CCState &State) const; 540 541 /// \brief Return the alignment to use for the given type on the stack. 542 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 543 544 Class classify(QualType Ty) const; 545 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 546 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 547 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 548 549 /// \brief Rewrite the function info so that all memory arguments use 550 /// inalloca. 551 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 552 553 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 554 unsigned &StackOffset, ABIArgInfo &Info, 555 QualType Type) const; 556 557 public: 558 559 void computeInfo(CGFunctionInfo &FI) const override; 560 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 561 CodeGenFunction &CGF) const override; 562 563 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 564 unsigned r) 565 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 566 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 567 }; 568 569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 570 public: 571 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 572 bool d, bool p, bool w, unsigned r) 573 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 574 575 static bool isStructReturnInRegABI( 576 const llvm::Triple &Triple, const CodeGenOptions &Opts); 577 578 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 579 CodeGen::CodeGenModule &CGM) const override; 580 581 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 582 // Darwin uses different dwarf register numbers for EH. 583 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 584 return 4; 585 } 586 587 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 588 llvm::Value *Address) const override; 589 590 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 591 StringRef Constraint, 592 llvm::Type* Ty) const override { 593 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 594 } 595 596 llvm::Constant * 597 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 598 unsigned Sig = (0xeb << 0) | // jmp rel8 599 (0x06 << 8) | // .+0x08 600 ('F' << 16) | 601 ('T' << 24); 602 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 603 } 604 605 }; 606 607 } 608 609 /// shouldReturnTypeInRegister - Determine if the given type should be 610 /// passed in a register (for the Darwin ABI). 611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 612 ASTContext &Context) const { 613 uint64_t Size = Context.getTypeSize(Ty); 614 615 // Type must be register sized. 616 if (!isRegisterSize(Size)) 617 return false; 618 619 if (Ty->isVectorType()) { 620 // 64- and 128- bit vectors inside structures are not returned in 621 // registers. 622 if (Size == 64 || Size == 128) 623 return false; 624 625 return true; 626 } 627 628 // If this is a builtin, pointer, enum, complex type, member pointer, or 629 // member function pointer it is ok. 630 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 631 Ty->isAnyComplexType() || Ty->isEnumeralType() || 632 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 633 return true; 634 635 // Arrays are treated like records. 636 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 637 return shouldReturnTypeInRegister(AT->getElementType(), Context); 638 639 // Otherwise, it must be a record type. 640 const RecordType *RT = Ty->getAs<RecordType>(); 641 if (!RT) return false; 642 643 // FIXME: Traverse bases here too. 644 645 // Structure types are passed in register if all fields would be 646 // passed in a register. 647 for (const auto *FD : RT->getDecl()->fields()) { 648 // Empty fields are ignored. 649 if (isEmptyField(Context, FD, true)) 650 continue; 651 652 // Check fields recursively. 653 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 654 return false; 655 } 656 return true; 657 } 658 659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 660 // If the return value is indirect, then the hidden argument is consuming one 661 // integer register. 662 if (State.FreeRegs) { 663 --State.FreeRegs; 664 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 665 } 666 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 667 } 668 669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 670 if (RetTy->isVoidType()) 671 return ABIArgInfo::getIgnore(); 672 673 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 674 // On Darwin, some vectors are returned in registers. 675 if (IsDarwinVectorABI) { 676 uint64_t Size = getContext().getTypeSize(RetTy); 677 678 // 128-bit vectors are a special case; they are returned in 679 // registers and we need to make sure to pick a type the LLVM 680 // backend will like. 681 if (Size == 128) 682 return ABIArgInfo::getDirect(llvm::VectorType::get( 683 llvm::Type::getInt64Ty(getVMContext()), 2)); 684 685 // Always return in register if it fits in a general purpose 686 // register, or if it is 64 bits and has a single element. 687 if ((Size == 8 || Size == 16 || Size == 32) || 688 (Size == 64 && VT->getNumElements() == 1)) 689 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 690 Size)); 691 692 return getIndirectReturnResult(State); 693 } 694 695 return ABIArgInfo::getDirect(); 696 } 697 698 if (isAggregateTypeForABI(RetTy)) { 699 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 700 // Structures with flexible arrays are always indirect. 701 if (RT->getDecl()->hasFlexibleArrayMember()) 702 return getIndirectReturnResult(State); 703 } 704 705 // If specified, structs and unions are always indirect. 706 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 707 return getIndirectReturnResult(State); 708 709 // Small structures which are register sized are generally returned 710 // in a register. 711 if (shouldReturnTypeInRegister(RetTy, getContext())) { 712 uint64_t Size = getContext().getTypeSize(RetTy); 713 714 // As a special-case, if the struct is a "single-element" struct, and 715 // the field is of type "float" or "double", return it in a 716 // floating-point register. (MSVC does not apply this special case.) 717 // We apply a similar transformation for pointer types to improve the 718 // quality of the generated IR. 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 721 || SeltTy->hasPointerRepresentation()) 722 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 723 724 // FIXME: We should be able to narrow this integer in cases with dead 725 // padding. 726 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 727 } 728 729 return getIndirectReturnResult(State); 730 } 731 732 // Treat an enum type as its underlying type. 733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 734 RetTy = EnumTy->getDecl()->getIntegerType(); 735 736 return (RetTy->isPromotableIntegerType() ? 737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 738 } 739 740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 741 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 742 } 743 744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 745 const RecordType *RT = Ty->getAs<RecordType>(); 746 if (!RT) 747 return 0; 748 const RecordDecl *RD = RT->getDecl(); 749 750 // If this is a C++ record, check the bases first. 751 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 752 for (const auto &I : CXXRD->bases()) 753 if (!isRecordWithSSEVectorType(Context, I.getType())) 754 return false; 755 756 for (const auto *i : RD->fields()) { 757 QualType FT = i->getType(); 758 759 if (isSSEVectorType(Context, FT)) 760 return true; 761 762 if (isRecordWithSSEVectorType(Context, FT)) 763 return true; 764 } 765 766 return false; 767 } 768 769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 770 unsigned Align) const { 771 // Otherwise, if the alignment is less than or equal to the minimum ABI 772 // alignment, just use the default; the backend will handle this. 773 if (Align <= MinABIStackAlignInBytes) 774 return 0; // Use default alignment. 775 776 // On non-Darwin, the stack type alignment is always 4. 777 if (!IsDarwinVectorABI) { 778 // Set explicit alignment, since we may need to realign the top. 779 return MinABIStackAlignInBytes; 780 } 781 782 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 783 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 784 isRecordWithSSEVectorType(getContext(), Ty))) 785 return 16; 786 787 return MinABIStackAlignInBytes; 788 } 789 790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 791 CCState &State) const { 792 if (!ByVal) { 793 if (State.FreeRegs) { 794 --State.FreeRegs; // Non-byval indirects just use one pointer. 795 return ABIArgInfo::getIndirectInReg(0, false); 796 } 797 return ABIArgInfo::getIndirect(0, false); 798 } 799 800 // Compute the byval alignment. 801 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 802 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 803 if (StackAlign == 0) 804 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 805 806 // If the stack alignment is less than the type alignment, realign the 807 // argument. 808 bool Realign = TypeAlign > StackAlign; 809 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 810 } 811 812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 813 const Type *T = isSingleElementStruct(Ty, getContext()); 814 if (!T) 815 T = Ty.getTypePtr(); 816 817 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 818 BuiltinType::Kind K = BT->getKind(); 819 if (K == BuiltinType::Float || K == BuiltinType::Double) 820 return Float; 821 } 822 return Integer; 823 } 824 825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 826 bool &NeedsPadding) const { 827 NeedsPadding = false; 828 Class C = classify(Ty); 829 if (C == Float) 830 return false; 831 832 unsigned Size = getContext().getTypeSize(Ty); 833 unsigned SizeInRegs = (Size + 31) / 32; 834 835 if (SizeInRegs == 0) 836 return false; 837 838 if (SizeInRegs > State.FreeRegs) { 839 State.FreeRegs = 0; 840 return false; 841 } 842 843 State.FreeRegs -= SizeInRegs; 844 845 if (State.CC == llvm::CallingConv::X86_FastCall) { 846 if (Size > 32) 847 return false; 848 849 if (Ty->isIntegralOrEnumerationType()) 850 return true; 851 852 if (Ty->isPointerType()) 853 return true; 854 855 if (Ty->isReferenceType()) 856 return true; 857 858 if (State.FreeRegs) 859 NeedsPadding = true; 860 861 return false; 862 } 863 864 return true; 865 } 866 867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 868 CCState &State) const { 869 // FIXME: Set alignment on indirect arguments. 870 if (isAggregateTypeForABI(Ty)) { 871 if (const RecordType *RT = Ty->getAs<RecordType>()) { 872 // Check with the C++ ABI first. 873 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 874 if (RAA == CGCXXABI::RAA_Indirect) { 875 return getIndirectResult(Ty, false, State); 876 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 877 // The field index doesn't matter, we'll fix it up later. 878 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 879 } 880 881 // Structs are always byval on win32, regardless of what they contain. 882 if (IsWin32StructABI) 883 return getIndirectResult(Ty, true, State); 884 885 // Structures with flexible arrays are always indirect. 886 if (RT->getDecl()->hasFlexibleArrayMember()) 887 return getIndirectResult(Ty, true, State); 888 } 889 890 // Ignore empty structs/unions. 891 if (isEmptyRecord(getContext(), Ty, true)) 892 return ABIArgInfo::getIgnore(); 893 894 llvm::LLVMContext &LLVMContext = getVMContext(); 895 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 896 bool NeedsPadding; 897 if (shouldUseInReg(Ty, State, NeedsPadding)) { 898 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 899 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 900 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 901 return ABIArgInfo::getDirectInReg(Result); 902 } 903 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 904 905 // Expand small (<= 128-bit) record types when we know that the stack layout 906 // of those arguments will match the struct. This is important because the 907 // LLVM backend isn't smart enough to remove byval, which inhibits many 908 // optimizations. 909 if (getContext().getTypeSize(Ty) <= 4*32 && 910 canExpandIndirectArgument(Ty, getContext())) 911 return ABIArgInfo::getExpandWithPadding( 912 State.CC == llvm::CallingConv::X86_FastCall, PaddingType); 913 914 return getIndirectResult(Ty, true, State); 915 } 916 917 if (const VectorType *VT = Ty->getAs<VectorType>()) { 918 // On Darwin, some vectors are passed in memory, we handle this by passing 919 // it as an i8/i16/i32/i64. 920 if (IsDarwinVectorABI) { 921 uint64_t Size = getContext().getTypeSize(Ty); 922 if ((Size == 8 || Size == 16 || Size == 32) || 923 (Size == 64 && VT->getNumElements() == 1)) 924 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 925 Size)); 926 } 927 928 if (IsX86_MMXType(CGT.ConvertType(Ty))) 929 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 930 931 return ABIArgInfo::getDirect(); 932 } 933 934 935 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 936 Ty = EnumTy->getDecl()->getIntegerType(); 937 938 bool NeedsPadding; 939 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 940 941 if (Ty->isPromotableIntegerType()) { 942 if (InReg) 943 return ABIArgInfo::getExtendInReg(); 944 return ABIArgInfo::getExtend(); 945 } 946 if (InReg) 947 return ABIArgInfo::getDirectInReg(); 948 return ABIArgInfo::getDirect(); 949 } 950 951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 952 CCState State(FI.getCallingConvention()); 953 if (State.CC == llvm::CallingConv::X86_FastCall) 954 State.FreeRegs = 2; 955 else if (FI.getHasRegParm()) 956 State.FreeRegs = FI.getRegParm(); 957 else 958 State.FreeRegs = DefaultNumRegisterParameters; 959 960 if (!getCXXABI().classifyReturnType(FI)) 961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 962 963 bool UsedInAlloca = false; 964 for (auto &I : FI.arguments()) { 965 I.info = classifyArgumentType(I.type, State); 966 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 967 } 968 969 // If we needed to use inalloca for any argument, do a second pass and rewrite 970 // all the memory arguments to use inalloca. 971 if (UsedInAlloca) 972 rewriteWithInAlloca(FI); 973 } 974 975 void 976 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 977 unsigned &StackOffset, 978 ABIArgInfo &Info, QualType Type) const { 979 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 980 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 981 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 982 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 983 984 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 985 // byte aligned. 986 if (StackOffset % 4U) { 987 unsigned OldOffset = StackOffset; 988 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 989 unsigned NumBytes = StackOffset - OldOffset; 990 assert(NumBytes); 991 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 992 Ty = llvm::ArrayType::get(Ty, NumBytes); 993 FrameFields.push_back(Ty); 994 } 995 } 996 997 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 998 assert(IsWin32StructABI && "inalloca only supported on win32"); 999 1000 // Build a packed struct type for all of the arguments in memory. 1001 SmallVector<llvm::Type *, 6> FrameFields; 1002 1003 unsigned StackOffset = 0; 1004 1005 // Put the sret parameter into the inalloca struct if it's in memory. 1006 ABIArgInfo &Ret = FI.getReturnInfo(); 1007 if (Ret.isIndirect() && !Ret.getInReg()) { 1008 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1009 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1010 // On Windows, the hidden sret parameter is always returned in eax. 1011 Ret.setInAllocaSRet(IsWin32StructABI); 1012 } 1013 1014 // Skip the 'this' parameter in ecx. 1015 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1016 if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall) 1017 ++I; 1018 1019 // Put arguments passed in memory into the struct. 1020 for (; I != E; ++I) { 1021 1022 // Leave ignored and inreg arguments alone. 1023 switch (I->info.getKind()) { 1024 case ABIArgInfo::Indirect: 1025 assert(I->info.getIndirectByVal()); 1026 break; 1027 case ABIArgInfo::Ignore: 1028 continue; 1029 case ABIArgInfo::Direct: 1030 case ABIArgInfo::Extend: 1031 if (I->info.getInReg()) 1032 continue; 1033 break; 1034 default: 1035 break; 1036 } 1037 1038 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1039 } 1040 1041 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1042 /*isPacked=*/true)); 1043 } 1044 1045 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1046 CodeGenFunction &CGF) const { 1047 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1048 1049 CGBuilderTy &Builder = CGF.Builder; 1050 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1051 "ap"); 1052 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1053 1054 // Compute if the address needs to be aligned 1055 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1056 Align = getTypeStackAlignInBytes(Ty, Align); 1057 Align = std::max(Align, 4U); 1058 if (Align > 4) { 1059 // addr = (addr + align - 1) & -align; 1060 llvm::Value *Offset = 1061 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1062 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1063 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1064 CGF.Int32Ty); 1065 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1066 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1067 Addr->getType(), 1068 "ap.cur.aligned"); 1069 } 1070 1071 llvm::Type *PTy = 1072 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1073 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1074 1075 uint64_t Offset = 1076 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1077 llvm::Value *NextAddr = 1078 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1079 "ap.next"); 1080 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1081 1082 return AddrTyped; 1083 } 1084 1085 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1086 llvm::GlobalValue *GV, 1087 CodeGen::CodeGenModule &CGM) const { 1088 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1089 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1090 // Get the LLVM function. 1091 llvm::Function *Fn = cast<llvm::Function>(GV); 1092 1093 // Now add the 'alignstack' attribute with a value of 16. 1094 llvm::AttrBuilder B; 1095 B.addStackAlignmentAttr(16); 1096 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1097 llvm::AttributeSet::get(CGM.getLLVMContext(), 1098 llvm::AttributeSet::FunctionIndex, 1099 B)); 1100 } 1101 } 1102 } 1103 1104 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1105 CodeGen::CodeGenFunction &CGF, 1106 llvm::Value *Address) const { 1107 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1108 1109 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1110 1111 // 0-7 are the eight integer registers; the order is different 1112 // on Darwin (for EH), but the range is the same. 1113 // 8 is %eip. 1114 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1115 1116 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1117 // 12-16 are st(0..4). Not sure why we stop at 4. 1118 // These have size 16, which is sizeof(long double) on 1119 // platforms with 8-byte alignment for that type. 1120 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1121 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1122 1123 } else { 1124 // 9 is %eflags, which doesn't get a size on Darwin for some 1125 // reason. 1126 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1127 1128 // 11-16 are st(0..5). Not sure why we stop at 5. 1129 // These have size 12, which is sizeof(long double) on 1130 // platforms with 4-byte alignment for that type. 1131 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1132 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1133 } 1134 1135 return false; 1136 } 1137 1138 //===----------------------------------------------------------------------===// 1139 // X86-64 ABI Implementation 1140 //===----------------------------------------------------------------------===// 1141 1142 1143 namespace { 1144 /// X86_64ABIInfo - The X86_64 ABI information. 1145 class X86_64ABIInfo : public ABIInfo { 1146 enum Class { 1147 Integer = 0, 1148 SSE, 1149 SSEUp, 1150 X87, 1151 X87Up, 1152 ComplexX87, 1153 NoClass, 1154 Memory 1155 }; 1156 1157 /// merge - Implement the X86_64 ABI merging algorithm. 1158 /// 1159 /// Merge an accumulating classification \arg Accum with a field 1160 /// classification \arg Field. 1161 /// 1162 /// \param Accum - The accumulating classification. This should 1163 /// always be either NoClass or the result of a previous merge 1164 /// call. In addition, this should never be Memory (the caller 1165 /// should just return Memory for the aggregate). 1166 static Class merge(Class Accum, Class Field); 1167 1168 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1169 /// 1170 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1171 /// final MEMORY or SSE classes when necessary. 1172 /// 1173 /// \param AggregateSize - The size of the current aggregate in 1174 /// the classification process. 1175 /// 1176 /// \param Lo - The classification for the parts of the type 1177 /// residing in the low word of the containing object. 1178 /// 1179 /// \param Hi - The classification for the parts of the type 1180 /// residing in the higher words of the containing object. 1181 /// 1182 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1183 1184 /// classify - Determine the x86_64 register classes in which the 1185 /// given type T should be passed. 1186 /// 1187 /// \param Lo - The classification for the parts of the type 1188 /// residing in the low word of the containing object. 1189 /// 1190 /// \param Hi - The classification for the parts of the type 1191 /// residing in the high word of the containing object. 1192 /// 1193 /// \param OffsetBase - The bit offset of this type in the 1194 /// containing object. Some parameters are classified different 1195 /// depending on whether they straddle an eightbyte boundary. 1196 /// 1197 /// \param isNamedArg - Whether the argument in question is a "named" 1198 /// argument, as used in AMD64-ABI 3.5.7. 1199 /// 1200 /// If a word is unused its result will be NoClass; if a type should 1201 /// be passed in Memory then at least the classification of \arg Lo 1202 /// will be Memory. 1203 /// 1204 /// The \arg Lo class will be NoClass iff the argument is ignored. 1205 /// 1206 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1207 /// also be ComplexX87. 1208 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1209 bool isNamedArg) const; 1210 1211 llvm::Type *GetByteVectorType(QualType Ty) const; 1212 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1213 unsigned IROffset, QualType SourceTy, 1214 unsigned SourceOffset) const; 1215 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1216 unsigned IROffset, QualType SourceTy, 1217 unsigned SourceOffset) const; 1218 1219 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1220 /// such that the argument will be returned in memory. 1221 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1222 1223 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1224 /// such that the argument will be passed in memory. 1225 /// 1226 /// \param freeIntRegs - The number of free integer registers remaining 1227 /// available. 1228 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1229 1230 ABIArgInfo classifyReturnType(QualType RetTy) const; 1231 1232 ABIArgInfo classifyArgumentType(QualType Ty, 1233 unsigned freeIntRegs, 1234 unsigned &neededInt, 1235 unsigned &neededSSE, 1236 bool isNamedArg) const; 1237 1238 bool IsIllegalVectorType(QualType Ty) const; 1239 1240 /// The 0.98 ABI revision clarified a lot of ambiguities, 1241 /// unfortunately in ways that were not always consistent with 1242 /// certain previous compilers. In particular, platforms which 1243 /// required strict binary compatibility with older versions of GCC 1244 /// may need to exempt themselves. 1245 bool honorsRevision0_98() const { 1246 return !getTarget().getTriple().isOSDarwin(); 1247 } 1248 1249 bool HasAVX; 1250 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1251 // 64-bit hardware. 1252 bool Has64BitPointers; 1253 1254 public: 1255 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1256 ABIInfo(CGT), HasAVX(hasavx), 1257 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1258 } 1259 1260 bool isPassedUsingAVXType(QualType type) const { 1261 unsigned neededInt, neededSSE; 1262 // The freeIntRegs argument doesn't matter here. 1263 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1264 /*isNamedArg*/true); 1265 if (info.isDirect()) { 1266 llvm::Type *ty = info.getCoerceToType(); 1267 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1268 return (vectorTy->getBitWidth() > 128); 1269 } 1270 return false; 1271 } 1272 1273 void computeInfo(CGFunctionInfo &FI) const override; 1274 1275 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1276 CodeGenFunction &CGF) const override; 1277 }; 1278 1279 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1280 class WinX86_64ABIInfo : public ABIInfo { 1281 1282 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1283 1284 public: 1285 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1286 1287 void computeInfo(CGFunctionInfo &FI) const override; 1288 1289 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1290 CodeGenFunction &CGF) const override; 1291 }; 1292 1293 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1294 public: 1295 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1296 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1297 1298 const X86_64ABIInfo &getABIInfo() const { 1299 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1300 } 1301 1302 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1303 return 7; 1304 } 1305 1306 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1307 llvm::Value *Address) const override { 1308 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1309 1310 // 0-15 are the 16 integer registers. 1311 // 16 is %rip. 1312 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1313 return false; 1314 } 1315 1316 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1317 StringRef Constraint, 1318 llvm::Type* Ty) const override { 1319 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1320 } 1321 1322 bool isNoProtoCallVariadic(const CallArgList &args, 1323 const FunctionNoProtoType *fnType) const override { 1324 // The default CC on x86-64 sets %al to the number of SSA 1325 // registers used, and GCC sets this when calling an unprototyped 1326 // function, so we override the default behavior. However, don't do 1327 // that when AVX types are involved: the ABI explicitly states it is 1328 // undefined, and it doesn't work in practice because of how the ABI 1329 // defines varargs anyway. 1330 if (fnType->getCallConv() == CC_C) { 1331 bool HasAVXType = false; 1332 for (CallArgList::const_iterator 1333 it = args.begin(), ie = args.end(); it != ie; ++it) { 1334 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1335 HasAVXType = true; 1336 break; 1337 } 1338 } 1339 1340 if (!HasAVXType) 1341 return true; 1342 } 1343 1344 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1345 } 1346 1347 llvm::Constant * 1348 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1349 unsigned Sig = (0xeb << 0) | // jmp rel8 1350 (0x0a << 8) | // .+0x0c 1351 ('F' << 16) | 1352 ('T' << 24); 1353 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1354 } 1355 1356 }; 1357 1358 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1359 // If the argument does not end in .lib, automatically add the suffix. This 1360 // matches the behavior of MSVC. 1361 std::string ArgStr = Lib; 1362 if (!Lib.endswith_lower(".lib")) 1363 ArgStr += ".lib"; 1364 return ArgStr; 1365 } 1366 1367 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1368 public: 1369 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1370 bool d, bool p, bool w, unsigned RegParms) 1371 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1372 1373 void getDependentLibraryOption(llvm::StringRef Lib, 1374 llvm::SmallString<24> &Opt) const override { 1375 Opt = "/DEFAULTLIB:"; 1376 Opt += qualifyWindowsLibrary(Lib); 1377 } 1378 1379 void getDetectMismatchOption(llvm::StringRef Name, 1380 llvm::StringRef Value, 1381 llvm::SmallString<32> &Opt) const override { 1382 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1383 } 1384 }; 1385 1386 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1387 public: 1388 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1389 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1390 1391 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1392 return 7; 1393 } 1394 1395 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1396 llvm::Value *Address) const override { 1397 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1398 1399 // 0-15 are the 16 integer registers. 1400 // 16 is %rip. 1401 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1402 return false; 1403 } 1404 1405 void getDependentLibraryOption(llvm::StringRef Lib, 1406 llvm::SmallString<24> &Opt) const override { 1407 Opt = "/DEFAULTLIB:"; 1408 Opt += qualifyWindowsLibrary(Lib); 1409 } 1410 1411 void getDetectMismatchOption(llvm::StringRef Name, 1412 llvm::StringRef Value, 1413 llvm::SmallString<32> &Opt) const override { 1414 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1415 } 1416 }; 1417 1418 } 1419 1420 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1421 Class &Hi) const { 1422 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1423 // 1424 // (a) If one of the classes is Memory, the whole argument is passed in 1425 // memory. 1426 // 1427 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1428 // memory. 1429 // 1430 // (c) If the size of the aggregate exceeds two eightbytes and the first 1431 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1432 // argument is passed in memory. NOTE: This is necessary to keep the 1433 // ABI working for processors that don't support the __m256 type. 1434 // 1435 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1436 // 1437 // Some of these are enforced by the merging logic. Others can arise 1438 // only with unions; for example: 1439 // union { _Complex double; unsigned; } 1440 // 1441 // Note that clauses (b) and (c) were added in 0.98. 1442 // 1443 if (Hi == Memory) 1444 Lo = Memory; 1445 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1446 Lo = Memory; 1447 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1448 Lo = Memory; 1449 if (Hi == SSEUp && Lo != SSE) 1450 Hi = SSE; 1451 } 1452 1453 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1454 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1455 // classified recursively so that always two fields are 1456 // considered. The resulting class is calculated according to 1457 // the classes of the fields in the eightbyte: 1458 // 1459 // (a) If both classes are equal, this is the resulting class. 1460 // 1461 // (b) If one of the classes is NO_CLASS, the resulting class is 1462 // the other class. 1463 // 1464 // (c) If one of the classes is MEMORY, the result is the MEMORY 1465 // class. 1466 // 1467 // (d) If one of the classes is INTEGER, the result is the 1468 // INTEGER. 1469 // 1470 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1471 // MEMORY is used as class. 1472 // 1473 // (f) Otherwise class SSE is used. 1474 1475 // Accum should never be memory (we should have returned) or 1476 // ComplexX87 (because this cannot be passed in a structure). 1477 assert((Accum != Memory && Accum != ComplexX87) && 1478 "Invalid accumulated classification during merge."); 1479 if (Accum == Field || Field == NoClass) 1480 return Accum; 1481 if (Field == Memory) 1482 return Memory; 1483 if (Accum == NoClass) 1484 return Field; 1485 if (Accum == Integer || Field == Integer) 1486 return Integer; 1487 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1488 Accum == X87 || Accum == X87Up) 1489 return Memory; 1490 return SSE; 1491 } 1492 1493 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1494 Class &Lo, Class &Hi, bool isNamedArg) const { 1495 // FIXME: This code can be simplified by introducing a simple value class for 1496 // Class pairs with appropriate constructor methods for the various 1497 // situations. 1498 1499 // FIXME: Some of the split computations are wrong; unaligned vectors 1500 // shouldn't be passed in registers for example, so there is no chance they 1501 // can straddle an eightbyte. Verify & simplify. 1502 1503 Lo = Hi = NoClass; 1504 1505 Class &Current = OffsetBase < 64 ? Lo : Hi; 1506 Current = Memory; 1507 1508 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1509 BuiltinType::Kind k = BT->getKind(); 1510 1511 if (k == BuiltinType::Void) { 1512 Current = NoClass; 1513 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1514 Lo = Integer; 1515 Hi = Integer; 1516 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1517 Current = Integer; 1518 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1519 (k == BuiltinType::LongDouble && 1520 getTarget().getTriple().isOSNaCl())) { 1521 Current = SSE; 1522 } else if (k == BuiltinType::LongDouble) { 1523 Lo = X87; 1524 Hi = X87Up; 1525 } 1526 // FIXME: _Decimal32 and _Decimal64 are SSE. 1527 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1528 return; 1529 } 1530 1531 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1532 // Classify the underlying integer type. 1533 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1534 return; 1535 } 1536 1537 if (Ty->hasPointerRepresentation()) { 1538 Current = Integer; 1539 return; 1540 } 1541 1542 if (Ty->isMemberPointerType()) { 1543 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1544 Lo = Hi = Integer; 1545 else 1546 Current = Integer; 1547 return; 1548 } 1549 1550 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1551 uint64_t Size = getContext().getTypeSize(VT); 1552 if (Size == 32) { 1553 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1554 // float> as integer. 1555 Current = Integer; 1556 1557 // If this type crosses an eightbyte boundary, it should be 1558 // split. 1559 uint64_t EB_Real = (OffsetBase) / 64; 1560 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1561 if (EB_Real != EB_Imag) 1562 Hi = Lo; 1563 } else if (Size == 64) { 1564 // gcc passes <1 x double> in memory. :( 1565 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1566 return; 1567 1568 // gcc passes <1 x long long> as INTEGER. 1569 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1570 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1571 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1572 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1573 Current = Integer; 1574 else 1575 Current = SSE; 1576 1577 // If this type crosses an eightbyte boundary, it should be 1578 // split. 1579 if (OffsetBase && OffsetBase != 64) 1580 Hi = Lo; 1581 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1582 // Arguments of 256-bits are split into four eightbyte chunks. The 1583 // least significant one belongs to class SSE and all the others to class 1584 // SSEUP. The original Lo and Hi design considers that types can't be 1585 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1586 // This design isn't correct for 256-bits, but since there're no cases 1587 // where the upper parts would need to be inspected, avoid adding 1588 // complexity and just consider Hi to match the 64-256 part. 1589 // 1590 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1591 // registers if they are "named", i.e. not part of the "..." of a 1592 // variadic function. 1593 Lo = SSE; 1594 Hi = SSEUp; 1595 } 1596 return; 1597 } 1598 1599 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1600 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1601 1602 uint64_t Size = getContext().getTypeSize(Ty); 1603 if (ET->isIntegralOrEnumerationType()) { 1604 if (Size <= 64) 1605 Current = Integer; 1606 else if (Size <= 128) 1607 Lo = Hi = Integer; 1608 } else if (ET == getContext().FloatTy) 1609 Current = SSE; 1610 else if (ET == getContext().DoubleTy || 1611 (ET == getContext().LongDoubleTy && 1612 getTarget().getTriple().isOSNaCl())) 1613 Lo = Hi = SSE; 1614 else if (ET == getContext().LongDoubleTy) 1615 Current = ComplexX87; 1616 1617 // If this complex type crosses an eightbyte boundary then it 1618 // should be split. 1619 uint64_t EB_Real = (OffsetBase) / 64; 1620 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1621 if (Hi == NoClass && EB_Real != EB_Imag) 1622 Hi = Lo; 1623 1624 return; 1625 } 1626 1627 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1628 // Arrays are treated like structures. 1629 1630 uint64_t Size = getContext().getTypeSize(Ty); 1631 1632 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1633 // than four eightbytes, ..., it has class MEMORY. 1634 if (Size > 256) 1635 return; 1636 1637 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1638 // fields, it has class MEMORY. 1639 // 1640 // Only need to check alignment of array base. 1641 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1642 return; 1643 1644 // Otherwise implement simplified merge. We could be smarter about 1645 // this, but it isn't worth it and would be harder to verify. 1646 Current = NoClass; 1647 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1648 uint64_t ArraySize = AT->getSize().getZExtValue(); 1649 1650 // The only case a 256-bit wide vector could be used is when the array 1651 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1652 // to work for sizes wider than 128, early check and fallback to memory. 1653 if (Size > 128 && EltSize != 256) 1654 return; 1655 1656 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1657 Class FieldLo, FieldHi; 1658 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1659 Lo = merge(Lo, FieldLo); 1660 Hi = merge(Hi, FieldHi); 1661 if (Lo == Memory || Hi == Memory) 1662 break; 1663 } 1664 1665 postMerge(Size, Lo, Hi); 1666 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1667 return; 1668 } 1669 1670 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1671 uint64_t Size = getContext().getTypeSize(Ty); 1672 1673 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1674 // than four eightbytes, ..., it has class MEMORY. 1675 if (Size > 256) 1676 return; 1677 1678 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1679 // copy constructor or a non-trivial destructor, it is passed by invisible 1680 // reference. 1681 if (getRecordArgABI(RT, getCXXABI())) 1682 return; 1683 1684 const RecordDecl *RD = RT->getDecl(); 1685 1686 // Assume variable sized types are passed in memory. 1687 if (RD->hasFlexibleArrayMember()) 1688 return; 1689 1690 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1691 1692 // Reset Lo class, this will be recomputed. 1693 Current = NoClass; 1694 1695 // If this is a C++ record, classify the bases first. 1696 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1697 for (const auto &I : CXXRD->bases()) { 1698 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1699 "Unexpected base class!"); 1700 const CXXRecordDecl *Base = 1701 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1702 1703 // Classify this field. 1704 // 1705 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1706 // single eightbyte, each is classified separately. Each eightbyte gets 1707 // initialized to class NO_CLASS. 1708 Class FieldLo, FieldHi; 1709 uint64_t Offset = 1710 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1711 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 1712 Lo = merge(Lo, FieldLo); 1713 Hi = merge(Hi, FieldHi); 1714 if (Lo == Memory || Hi == Memory) 1715 break; 1716 } 1717 } 1718 1719 // Classify the fields one at a time, merging the results. 1720 unsigned idx = 0; 1721 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1722 i != e; ++i, ++idx) { 1723 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1724 bool BitField = i->isBitField(); 1725 1726 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1727 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1728 // 1729 // The only case a 256-bit wide vector could be used is when the struct 1730 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1731 // to work for sizes wider than 128, early check and fallback to memory. 1732 // 1733 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1734 Lo = Memory; 1735 return; 1736 } 1737 // Note, skip this test for bit-fields, see below. 1738 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1739 Lo = Memory; 1740 return; 1741 } 1742 1743 // Classify this field. 1744 // 1745 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1746 // exceeds a single eightbyte, each is classified 1747 // separately. Each eightbyte gets initialized to class 1748 // NO_CLASS. 1749 Class FieldLo, FieldHi; 1750 1751 // Bit-fields require special handling, they do not force the 1752 // structure to be passed in memory even if unaligned, and 1753 // therefore they can straddle an eightbyte. 1754 if (BitField) { 1755 // Ignore padding bit-fields. 1756 if (i->isUnnamedBitfield()) 1757 continue; 1758 1759 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1760 uint64_t Size = i->getBitWidthValue(getContext()); 1761 1762 uint64_t EB_Lo = Offset / 64; 1763 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1764 1765 if (EB_Lo) { 1766 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1767 FieldLo = NoClass; 1768 FieldHi = Integer; 1769 } else { 1770 FieldLo = Integer; 1771 FieldHi = EB_Hi ? Integer : NoClass; 1772 } 1773 } else 1774 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1775 Lo = merge(Lo, FieldLo); 1776 Hi = merge(Hi, FieldHi); 1777 if (Lo == Memory || Hi == Memory) 1778 break; 1779 } 1780 1781 postMerge(Size, Lo, Hi); 1782 } 1783 } 1784 1785 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1786 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1787 // place naturally. 1788 if (!isAggregateTypeForABI(Ty)) { 1789 // Treat an enum type as its underlying type. 1790 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1791 Ty = EnumTy->getDecl()->getIntegerType(); 1792 1793 return (Ty->isPromotableIntegerType() ? 1794 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1795 } 1796 1797 return ABIArgInfo::getIndirect(0); 1798 } 1799 1800 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1801 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1802 uint64_t Size = getContext().getTypeSize(VecTy); 1803 unsigned LargestVector = HasAVX ? 256 : 128; 1804 if (Size <= 64 || Size > LargestVector) 1805 return true; 1806 } 1807 1808 return false; 1809 } 1810 1811 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1812 unsigned freeIntRegs) const { 1813 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1814 // place naturally. 1815 // 1816 // This assumption is optimistic, as there could be free registers available 1817 // when we need to pass this argument in memory, and LLVM could try to pass 1818 // the argument in the free register. This does not seem to happen currently, 1819 // but this code would be much safer if we could mark the argument with 1820 // 'onstack'. See PR12193. 1821 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1822 // Treat an enum type as its underlying type. 1823 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1824 Ty = EnumTy->getDecl()->getIntegerType(); 1825 1826 return (Ty->isPromotableIntegerType() ? 1827 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1828 } 1829 1830 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1831 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1832 1833 // Compute the byval alignment. We specify the alignment of the byval in all 1834 // cases so that the mid-level optimizer knows the alignment of the byval. 1835 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1836 1837 // Attempt to avoid passing indirect results using byval when possible. This 1838 // is important for good codegen. 1839 // 1840 // We do this by coercing the value into a scalar type which the backend can 1841 // handle naturally (i.e., without using byval). 1842 // 1843 // For simplicity, we currently only do this when we have exhausted all of the 1844 // free integer registers. Doing this when there are free integer registers 1845 // would require more care, as we would have to ensure that the coerced value 1846 // did not claim the unused register. That would require either reording the 1847 // arguments to the function (so that any subsequent inreg values came first), 1848 // or only doing this optimization when there were no following arguments that 1849 // might be inreg. 1850 // 1851 // We currently expect it to be rare (particularly in well written code) for 1852 // arguments to be passed on the stack when there are still free integer 1853 // registers available (this would typically imply large structs being passed 1854 // by value), so this seems like a fair tradeoff for now. 1855 // 1856 // We can revisit this if the backend grows support for 'onstack' parameter 1857 // attributes. See PR12193. 1858 if (freeIntRegs == 0) { 1859 uint64_t Size = getContext().getTypeSize(Ty); 1860 1861 // If this type fits in an eightbyte, coerce it into the matching integral 1862 // type, which will end up on the stack (with alignment 8). 1863 if (Align == 8 && Size <= 64) 1864 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1865 Size)); 1866 } 1867 1868 return ABIArgInfo::getIndirect(Align); 1869 } 1870 1871 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1872 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1873 /// vector register. 1874 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1875 llvm::Type *IRType = CGT.ConvertType(Ty); 1876 1877 // Wrapper structs that just contain vectors are passed just like vectors, 1878 // strip them off if present. 1879 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1880 while (STy && STy->getNumElements() == 1) { 1881 IRType = STy->getElementType(0); 1882 STy = dyn_cast<llvm::StructType>(IRType); 1883 } 1884 1885 // If the preferred type is a 16-byte vector, prefer to pass it. 1886 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1887 llvm::Type *EltTy = VT->getElementType(); 1888 unsigned BitWidth = VT->getBitWidth(); 1889 if ((BitWidth >= 128 && BitWidth <= 256) && 1890 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1891 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1892 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1893 EltTy->isIntegerTy(128))) 1894 return VT; 1895 } 1896 1897 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1898 } 1899 1900 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1901 /// is known to either be off the end of the specified type or being in 1902 /// alignment padding. The user type specified is known to be at most 128 bits 1903 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1904 /// classification that put one of the two halves in the INTEGER class. 1905 /// 1906 /// It is conservatively correct to return false. 1907 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1908 unsigned EndBit, ASTContext &Context) { 1909 // If the bytes being queried are off the end of the type, there is no user 1910 // data hiding here. This handles analysis of builtins, vectors and other 1911 // types that don't contain interesting padding. 1912 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1913 if (TySize <= StartBit) 1914 return true; 1915 1916 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1917 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1918 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1919 1920 // Check each element to see if the element overlaps with the queried range. 1921 for (unsigned i = 0; i != NumElts; ++i) { 1922 // If the element is after the span we care about, then we're done.. 1923 unsigned EltOffset = i*EltSize; 1924 if (EltOffset >= EndBit) break; 1925 1926 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1927 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1928 EndBit-EltOffset, Context)) 1929 return false; 1930 } 1931 // If it overlaps no elements, then it is safe to process as padding. 1932 return true; 1933 } 1934 1935 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1936 const RecordDecl *RD = RT->getDecl(); 1937 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1938 1939 // If this is a C++ record, check the bases first. 1940 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1941 for (const auto &I : CXXRD->bases()) { 1942 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1943 "Unexpected base class!"); 1944 const CXXRecordDecl *Base = 1945 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1946 1947 // If the base is after the span we care about, ignore it. 1948 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 1949 if (BaseOffset >= EndBit) continue; 1950 1951 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1952 if (!BitsContainNoUserData(I.getType(), BaseStart, 1953 EndBit-BaseOffset, Context)) 1954 return false; 1955 } 1956 } 1957 1958 // Verify that no field has data that overlaps the region of interest. Yes 1959 // this could be sped up a lot by being smarter about queried fields, 1960 // however we're only looking at structs up to 16 bytes, so we don't care 1961 // much. 1962 unsigned idx = 0; 1963 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1964 i != e; ++i, ++idx) { 1965 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 1966 1967 // If we found a field after the region we care about, then we're done. 1968 if (FieldOffset >= EndBit) break; 1969 1970 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 1971 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 1972 Context)) 1973 return false; 1974 } 1975 1976 // If nothing in this record overlapped the area of interest, then we're 1977 // clean. 1978 return true; 1979 } 1980 1981 return false; 1982 } 1983 1984 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 1985 /// float member at the specified offset. For example, {int,{float}} has a 1986 /// float at offset 4. It is conservatively correct for this routine to return 1987 /// false. 1988 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 1989 const llvm::DataLayout &TD) { 1990 // Base case if we find a float. 1991 if (IROffset == 0 && IRType->isFloatTy()) 1992 return true; 1993 1994 // If this is a struct, recurse into the field at the specified offset. 1995 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1996 const llvm::StructLayout *SL = TD.getStructLayout(STy); 1997 unsigned Elt = SL->getElementContainingOffset(IROffset); 1998 IROffset -= SL->getElementOffset(Elt); 1999 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2000 } 2001 2002 // If this is an array, recurse into the field at the specified offset. 2003 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2004 llvm::Type *EltTy = ATy->getElementType(); 2005 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2006 IROffset -= IROffset/EltSize*EltSize; 2007 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2008 } 2009 2010 return false; 2011 } 2012 2013 2014 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2015 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2016 llvm::Type *X86_64ABIInfo:: 2017 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2018 QualType SourceTy, unsigned SourceOffset) const { 2019 // The only three choices we have are either double, <2 x float>, or float. We 2020 // pass as float if the last 4 bytes is just padding. This happens for 2021 // structs that contain 3 floats. 2022 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2023 SourceOffset*8+64, getContext())) 2024 return llvm::Type::getFloatTy(getVMContext()); 2025 2026 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2027 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2028 // case. 2029 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2030 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2031 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2032 2033 return llvm::Type::getDoubleTy(getVMContext()); 2034 } 2035 2036 2037 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2038 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2039 /// about the high or low part of an up-to-16-byte struct. This routine picks 2040 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2041 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2042 /// etc). 2043 /// 2044 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2045 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2046 /// the 8-byte value references. PrefType may be null. 2047 /// 2048 /// SourceTy is the source level type for the entire argument. SourceOffset is 2049 /// an offset into this that we're processing (which is always either 0 or 8). 2050 /// 2051 llvm::Type *X86_64ABIInfo:: 2052 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2053 QualType SourceTy, unsigned SourceOffset) const { 2054 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2055 // returning an 8-byte unit starting with it. See if we can safely use it. 2056 if (IROffset == 0) { 2057 // Pointers and int64's always fill the 8-byte unit. 2058 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2059 IRType->isIntegerTy(64)) 2060 return IRType; 2061 2062 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2063 // goodness in the source type is just tail padding. This is allowed to 2064 // kick in for struct {double,int} on the int, but not on 2065 // struct{double,int,int} because we wouldn't return the second int. We 2066 // have to do this analysis on the source type because we can't depend on 2067 // unions being lowered a specific way etc. 2068 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2069 IRType->isIntegerTy(32) || 2070 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2071 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2072 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2073 2074 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2075 SourceOffset*8+64, getContext())) 2076 return IRType; 2077 } 2078 } 2079 2080 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2081 // If this is a struct, recurse into the field at the specified offset. 2082 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2083 if (IROffset < SL->getSizeInBytes()) { 2084 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2085 IROffset -= SL->getElementOffset(FieldIdx); 2086 2087 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2088 SourceTy, SourceOffset); 2089 } 2090 } 2091 2092 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2093 llvm::Type *EltTy = ATy->getElementType(); 2094 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2095 unsigned EltOffset = IROffset/EltSize*EltSize; 2096 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2097 SourceOffset); 2098 } 2099 2100 // Okay, we don't have any better idea of what to pass, so we pass this in an 2101 // integer register that isn't too big to fit the rest of the struct. 2102 unsigned TySizeInBytes = 2103 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2104 2105 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2106 2107 // It is always safe to classify this as an integer type up to i64 that 2108 // isn't larger than the structure. 2109 return llvm::IntegerType::get(getVMContext(), 2110 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2111 } 2112 2113 2114 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2115 /// be used as elements of a two register pair to pass or return, return a 2116 /// first class aggregate to represent them. For example, if the low part of 2117 /// a by-value argument should be passed as i32* and the high part as float, 2118 /// return {i32*, float}. 2119 static llvm::Type * 2120 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2121 const llvm::DataLayout &TD) { 2122 // In order to correctly satisfy the ABI, we need to the high part to start 2123 // at offset 8. If the high and low parts we inferred are both 4-byte types 2124 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2125 // the second element at offset 8. Check for this: 2126 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2127 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2128 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2129 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2130 2131 // To handle this, we have to increase the size of the low part so that the 2132 // second element will start at an 8 byte offset. We can't increase the size 2133 // of the second element because it might make us access off the end of the 2134 // struct. 2135 if (HiStart != 8) { 2136 // There are only two sorts of types the ABI generation code can produce for 2137 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2138 // Promote these to a larger type. 2139 if (Lo->isFloatTy()) 2140 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2141 else { 2142 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2143 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2144 } 2145 } 2146 2147 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2148 2149 2150 // Verify that the second element is at an 8-byte offset. 2151 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2152 "Invalid x86-64 argument pair!"); 2153 return Result; 2154 } 2155 2156 ABIArgInfo X86_64ABIInfo:: 2157 classifyReturnType(QualType RetTy) const { 2158 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2159 // classification algorithm. 2160 X86_64ABIInfo::Class Lo, Hi; 2161 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2162 2163 // Check some invariants. 2164 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2165 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2166 2167 llvm::Type *ResType = nullptr; 2168 switch (Lo) { 2169 case NoClass: 2170 if (Hi == NoClass) 2171 return ABIArgInfo::getIgnore(); 2172 // If the low part is just padding, it takes no register, leave ResType 2173 // null. 2174 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2175 "Unknown missing lo part"); 2176 break; 2177 2178 case SSEUp: 2179 case X87Up: 2180 llvm_unreachable("Invalid classification for lo word."); 2181 2182 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2183 // hidden argument. 2184 case Memory: 2185 return getIndirectReturnResult(RetTy); 2186 2187 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2188 // available register of the sequence %rax, %rdx is used. 2189 case Integer: 2190 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2191 2192 // If we have a sign or zero extended integer, make sure to return Extend 2193 // so that the parameter gets the right LLVM IR attributes. 2194 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2195 // Treat an enum type as its underlying type. 2196 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2197 RetTy = EnumTy->getDecl()->getIntegerType(); 2198 2199 if (RetTy->isIntegralOrEnumerationType() && 2200 RetTy->isPromotableIntegerType()) 2201 return ABIArgInfo::getExtend(); 2202 } 2203 break; 2204 2205 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2206 // available SSE register of the sequence %xmm0, %xmm1 is used. 2207 case SSE: 2208 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2209 break; 2210 2211 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2212 // returned on the X87 stack in %st0 as 80-bit x87 number. 2213 case X87: 2214 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2215 break; 2216 2217 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2218 // part of the value is returned in %st0 and the imaginary part in 2219 // %st1. 2220 case ComplexX87: 2221 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2222 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2223 llvm::Type::getX86_FP80Ty(getVMContext()), 2224 NULL); 2225 break; 2226 } 2227 2228 llvm::Type *HighPart = nullptr; 2229 switch (Hi) { 2230 // Memory was handled previously and X87 should 2231 // never occur as a hi class. 2232 case Memory: 2233 case X87: 2234 llvm_unreachable("Invalid classification for hi word."); 2235 2236 case ComplexX87: // Previously handled. 2237 case NoClass: 2238 break; 2239 2240 case Integer: 2241 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2242 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2243 return ABIArgInfo::getDirect(HighPart, 8); 2244 break; 2245 case SSE: 2246 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2247 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2248 return ABIArgInfo::getDirect(HighPart, 8); 2249 break; 2250 2251 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2252 // is passed in the next available eightbyte chunk if the last used 2253 // vector register. 2254 // 2255 // SSEUP should always be preceded by SSE, just widen. 2256 case SSEUp: 2257 assert(Lo == SSE && "Unexpected SSEUp classification."); 2258 ResType = GetByteVectorType(RetTy); 2259 break; 2260 2261 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2262 // returned together with the previous X87 value in %st0. 2263 case X87Up: 2264 // If X87Up is preceded by X87, we don't need to do 2265 // anything. However, in some cases with unions it may not be 2266 // preceded by X87. In such situations we follow gcc and pass the 2267 // extra bits in an SSE reg. 2268 if (Lo != X87) { 2269 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2270 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2271 return ABIArgInfo::getDirect(HighPart, 8); 2272 } 2273 break; 2274 } 2275 2276 // If a high part was specified, merge it together with the low part. It is 2277 // known to pass in the high eightbyte of the result. We do this by forming a 2278 // first class struct aggregate with the high and low part: {low, high} 2279 if (HighPart) 2280 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2281 2282 return ABIArgInfo::getDirect(ResType); 2283 } 2284 2285 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2286 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2287 bool isNamedArg) 2288 const 2289 { 2290 X86_64ABIInfo::Class Lo, Hi; 2291 classify(Ty, 0, Lo, Hi, isNamedArg); 2292 2293 // Check some invariants. 2294 // FIXME: Enforce these by construction. 2295 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2296 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2297 2298 neededInt = 0; 2299 neededSSE = 0; 2300 llvm::Type *ResType = nullptr; 2301 switch (Lo) { 2302 case NoClass: 2303 if (Hi == NoClass) 2304 return ABIArgInfo::getIgnore(); 2305 // If the low part is just padding, it takes no register, leave ResType 2306 // null. 2307 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2308 "Unknown missing lo part"); 2309 break; 2310 2311 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2312 // on the stack. 2313 case Memory: 2314 2315 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2316 // COMPLEX_X87, it is passed in memory. 2317 case X87: 2318 case ComplexX87: 2319 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2320 ++neededInt; 2321 return getIndirectResult(Ty, freeIntRegs); 2322 2323 case SSEUp: 2324 case X87Up: 2325 llvm_unreachable("Invalid classification for lo word."); 2326 2327 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2328 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2329 // and %r9 is used. 2330 case Integer: 2331 ++neededInt; 2332 2333 // Pick an 8-byte type based on the preferred type. 2334 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2335 2336 // If we have a sign or zero extended integer, make sure to return Extend 2337 // so that the parameter gets the right LLVM IR attributes. 2338 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2339 // Treat an enum type as its underlying type. 2340 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2341 Ty = EnumTy->getDecl()->getIntegerType(); 2342 2343 if (Ty->isIntegralOrEnumerationType() && 2344 Ty->isPromotableIntegerType()) 2345 return ABIArgInfo::getExtend(); 2346 } 2347 2348 break; 2349 2350 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2351 // available SSE register is used, the registers are taken in the 2352 // order from %xmm0 to %xmm7. 2353 case SSE: { 2354 llvm::Type *IRType = CGT.ConvertType(Ty); 2355 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2356 ++neededSSE; 2357 break; 2358 } 2359 } 2360 2361 llvm::Type *HighPart = nullptr; 2362 switch (Hi) { 2363 // Memory was handled previously, ComplexX87 and X87 should 2364 // never occur as hi classes, and X87Up must be preceded by X87, 2365 // which is passed in memory. 2366 case Memory: 2367 case X87: 2368 case ComplexX87: 2369 llvm_unreachable("Invalid classification for hi word."); 2370 2371 case NoClass: break; 2372 2373 case Integer: 2374 ++neededInt; 2375 // Pick an 8-byte type based on the preferred type. 2376 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2377 2378 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2379 return ABIArgInfo::getDirect(HighPart, 8); 2380 break; 2381 2382 // X87Up generally doesn't occur here (long double is passed in 2383 // memory), except in situations involving unions. 2384 case X87Up: 2385 case SSE: 2386 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2387 2388 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2389 return ABIArgInfo::getDirect(HighPart, 8); 2390 2391 ++neededSSE; 2392 break; 2393 2394 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2395 // eightbyte is passed in the upper half of the last used SSE 2396 // register. This only happens when 128-bit vectors are passed. 2397 case SSEUp: 2398 assert(Lo == SSE && "Unexpected SSEUp classification"); 2399 ResType = GetByteVectorType(Ty); 2400 break; 2401 } 2402 2403 // If a high part was specified, merge it together with the low part. It is 2404 // known to pass in the high eightbyte of the result. We do this by forming a 2405 // first class struct aggregate with the high and low part: {low, high} 2406 if (HighPart) 2407 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2408 2409 return ABIArgInfo::getDirect(ResType); 2410 } 2411 2412 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2413 2414 if (!getCXXABI().classifyReturnType(FI)) 2415 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2416 2417 // Keep track of the number of assigned registers. 2418 unsigned freeIntRegs = 6, freeSSERegs = 8; 2419 2420 // If the return value is indirect, then the hidden argument is consuming one 2421 // integer register. 2422 if (FI.getReturnInfo().isIndirect()) 2423 --freeIntRegs; 2424 2425 bool isVariadic = FI.isVariadic(); 2426 unsigned numRequiredArgs = 0; 2427 if (isVariadic) 2428 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2429 2430 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2431 // get assigned (in left-to-right order) for passing as follows... 2432 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2433 it != ie; ++it) { 2434 bool isNamedArg = true; 2435 if (isVariadic) 2436 isNamedArg = (it - FI.arg_begin()) < 2437 static_cast<signed>(numRequiredArgs); 2438 2439 unsigned neededInt, neededSSE; 2440 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2441 neededSSE, isNamedArg); 2442 2443 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2444 // eightbyte of an argument, the whole argument is passed on the 2445 // stack. If registers have already been assigned for some 2446 // eightbytes of such an argument, the assignments get reverted. 2447 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2448 freeIntRegs -= neededInt; 2449 freeSSERegs -= neededSSE; 2450 } else { 2451 it->info = getIndirectResult(it->type, freeIntRegs); 2452 } 2453 } 2454 } 2455 2456 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2457 QualType Ty, 2458 CodeGenFunction &CGF) { 2459 llvm::Value *overflow_arg_area_p = 2460 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2461 llvm::Value *overflow_arg_area = 2462 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2463 2464 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2465 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2466 // It isn't stated explicitly in the standard, but in practice we use 2467 // alignment greater than 16 where necessary. 2468 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2469 if (Align > 8) { 2470 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2471 llvm::Value *Offset = 2472 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2473 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2474 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2475 CGF.Int64Ty); 2476 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2477 overflow_arg_area = 2478 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2479 overflow_arg_area->getType(), 2480 "overflow_arg_area.align"); 2481 } 2482 2483 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2484 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2485 llvm::Value *Res = 2486 CGF.Builder.CreateBitCast(overflow_arg_area, 2487 llvm::PointerType::getUnqual(LTy)); 2488 2489 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2490 // l->overflow_arg_area + sizeof(type). 2491 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2492 // an 8 byte boundary. 2493 2494 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2495 llvm::Value *Offset = 2496 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2497 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2498 "overflow_arg_area.next"); 2499 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2500 2501 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2502 return Res; 2503 } 2504 2505 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2506 CodeGenFunction &CGF) const { 2507 // Assume that va_list type is correct; should be pointer to LLVM type: 2508 // struct { 2509 // i32 gp_offset; 2510 // i32 fp_offset; 2511 // i8* overflow_arg_area; 2512 // i8* reg_save_area; 2513 // }; 2514 unsigned neededInt, neededSSE; 2515 2516 Ty = CGF.getContext().getCanonicalType(Ty); 2517 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2518 /*isNamedArg*/false); 2519 2520 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2521 // in the registers. If not go to step 7. 2522 if (!neededInt && !neededSSE) 2523 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2524 2525 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2526 // general purpose registers needed to pass type and num_fp to hold 2527 // the number of floating point registers needed. 2528 2529 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2530 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2531 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2532 // 2533 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2534 // register save space). 2535 2536 llvm::Value *InRegs = nullptr; 2537 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2538 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2539 if (neededInt) { 2540 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2541 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2542 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2543 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2544 } 2545 2546 if (neededSSE) { 2547 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2548 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2549 llvm::Value *FitsInFP = 2550 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2551 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2552 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2553 } 2554 2555 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2556 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2557 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2558 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2559 2560 // Emit code to load the value if it was passed in registers. 2561 2562 CGF.EmitBlock(InRegBlock); 2563 2564 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2565 // an offset of l->gp_offset and/or l->fp_offset. This may require 2566 // copying to a temporary location in case the parameter is passed 2567 // in different register classes or requires an alignment greater 2568 // than 8 for general purpose registers and 16 for XMM registers. 2569 // 2570 // FIXME: This really results in shameful code when we end up needing to 2571 // collect arguments from different places; often what should result in a 2572 // simple assembling of a structure from scattered addresses has many more 2573 // loads than necessary. Can we clean this up? 2574 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2575 llvm::Value *RegAddr = 2576 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2577 "reg_save_area"); 2578 if (neededInt && neededSSE) { 2579 // FIXME: Cleanup. 2580 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2581 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2582 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2583 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2584 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2585 llvm::Type *TyLo = ST->getElementType(0); 2586 llvm::Type *TyHi = ST->getElementType(1); 2587 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2588 "Unexpected ABI info for mixed regs"); 2589 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2590 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2591 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2592 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2593 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; 2594 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; 2595 llvm::Value *V = 2596 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2597 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2598 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2599 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2600 2601 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2602 llvm::PointerType::getUnqual(LTy)); 2603 } else if (neededInt) { 2604 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2605 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2606 llvm::PointerType::getUnqual(LTy)); 2607 2608 // Copy to a temporary if necessary to ensure the appropriate alignment. 2609 std::pair<CharUnits, CharUnits> SizeAlign = 2610 CGF.getContext().getTypeInfoInChars(Ty); 2611 uint64_t TySize = SizeAlign.first.getQuantity(); 2612 unsigned TyAlign = SizeAlign.second.getQuantity(); 2613 if (TyAlign > 8) { 2614 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2615 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2616 RegAddr = Tmp; 2617 } 2618 } else if (neededSSE == 1) { 2619 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2620 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2621 llvm::PointerType::getUnqual(LTy)); 2622 } else { 2623 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2624 // SSE registers are spaced 16 bytes apart in the register save 2625 // area, we need to collect the two eightbytes together. 2626 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2627 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2628 llvm::Type *DoubleTy = CGF.DoubleTy; 2629 llvm::Type *DblPtrTy = 2630 llvm::PointerType::getUnqual(DoubleTy); 2631 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2632 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2633 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2634 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2635 DblPtrTy)); 2636 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2637 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2638 DblPtrTy)); 2639 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2640 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2641 llvm::PointerType::getUnqual(LTy)); 2642 } 2643 2644 // AMD64-ABI 3.5.7p5: Step 5. Set: 2645 // l->gp_offset = l->gp_offset + num_gp * 8 2646 // l->fp_offset = l->fp_offset + num_fp * 16. 2647 if (neededInt) { 2648 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2649 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2650 gp_offset_p); 2651 } 2652 if (neededSSE) { 2653 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2654 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2655 fp_offset_p); 2656 } 2657 CGF.EmitBranch(ContBlock); 2658 2659 // Emit code to load the value if it was passed in memory. 2660 2661 CGF.EmitBlock(InMemBlock); 2662 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2663 2664 // Return the appropriate result. 2665 2666 CGF.EmitBlock(ContBlock); 2667 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2668 "vaarg.addr"); 2669 ResAddr->addIncoming(RegAddr, InRegBlock); 2670 ResAddr->addIncoming(MemAddr, InMemBlock); 2671 return ResAddr; 2672 } 2673 2674 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2675 2676 if (Ty->isVoidType()) 2677 return ABIArgInfo::getIgnore(); 2678 2679 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2680 Ty = EnumTy->getDecl()->getIntegerType(); 2681 2682 uint64_t Size = getContext().getTypeSize(Ty); 2683 2684 const RecordType *RT = Ty->getAs<RecordType>(); 2685 if (RT) { 2686 if (!IsReturnType) { 2687 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2688 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2689 } 2690 2691 if (RT->getDecl()->hasFlexibleArrayMember()) 2692 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2693 2694 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2695 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 2696 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2697 Size)); 2698 } 2699 2700 if (Ty->isMemberPointerType()) { 2701 // If the member pointer is represented by an LLVM int or ptr, pass it 2702 // directly. 2703 llvm::Type *LLTy = CGT.ConvertType(Ty); 2704 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 2705 return ABIArgInfo::getDirect(); 2706 } 2707 2708 if (RT || Ty->isMemberPointerType()) { 2709 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2710 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2711 if (Size > 64 || !llvm::isPowerOf2_64(Size)) 2712 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2713 2714 // Otherwise, coerce it to a small integer. 2715 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 2716 } 2717 2718 if (Ty->isPromotableIntegerType()) 2719 return ABIArgInfo::getExtend(); 2720 2721 return ABIArgInfo::getDirect(); 2722 } 2723 2724 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2725 if (!getCXXABI().classifyReturnType(FI)) 2726 FI.getReturnInfo() = classify(FI.getReturnType(), true); 2727 2728 for (auto &I : FI.arguments()) 2729 I.info = classify(I.type, false); 2730 } 2731 2732 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2733 CodeGenFunction &CGF) const { 2734 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2735 2736 CGBuilderTy &Builder = CGF.Builder; 2737 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2738 "ap"); 2739 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2740 llvm::Type *PTy = 2741 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2742 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2743 2744 uint64_t Offset = 2745 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2746 llvm::Value *NextAddr = 2747 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2748 "ap.next"); 2749 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2750 2751 return AddrTyped; 2752 } 2753 2754 namespace { 2755 2756 class NaClX86_64ABIInfo : public ABIInfo { 2757 public: 2758 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2759 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2760 void computeInfo(CGFunctionInfo &FI) const override; 2761 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2762 CodeGenFunction &CGF) const override; 2763 private: 2764 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2765 X86_64ABIInfo NInfo; // Used for everything else. 2766 }; 2767 2768 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2769 public: 2770 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2771 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2772 }; 2773 2774 } 2775 2776 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2777 if (FI.getASTCallingConvention() == CC_PnaclCall) 2778 PInfo.computeInfo(FI); 2779 else 2780 NInfo.computeInfo(FI); 2781 } 2782 2783 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2784 CodeGenFunction &CGF) const { 2785 // Always use the native convention; calling pnacl-style varargs functions 2786 // is unuspported. 2787 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2788 } 2789 2790 2791 // PowerPC-32 2792 2793 namespace { 2794 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2795 public: 2796 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2797 2798 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2799 // This is recovered from gcc output. 2800 return 1; // r1 is the dedicated stack pointer 2801 } 2802 2803 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2804 llvm::Value *Address) const override; 2805 }; 2806 2807 } 2808 2809 bool 2810 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2811 llvm::Value *Address) const { 2812 // This is calculated from the LLVM and GCC tables and verified 2813 // against gcc output. AFAIK all ABIs use the same encoding. 2814 2815 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2816 2817 llvm::IntegerType *i8 = CGF.Int8Ty; 2818 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2819 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2820 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2821 2822 // 0-31: r0-31, the 4-byte general-purpose registers 2823 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2824 2825 // 32-63: fp0-31, the 8-byte floating-point registers 2826 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2827 2828 // 64-76 are various 4-byte special-purpose registers: 2829 // 64: mq 2830 // 65: lr 2831 // 66: ctr 2832 // 67: ap 2833 // 68-75 cr0-7 2834 // 76: xer 2835 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2836 2837 // 77-108: v0-31, the 16-byte vector registers 2838 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2839 2840 // 109: vrsave 2841 // 110: vscr 2842 // 111: spe_acc 2843 // 112: spefscr 2844 // 113: sfp 2845 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2846 2847 return false; 2848 } 2849 2850 // PowerPC-64 2851 2852 namespace { 2853 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2854 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2855 2856 public: 2857 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 2858 2859 bool isPromotableTypeForABI(QualType Ty) const; 2860 2861 ABIArgInfo classifyReturnType(QualType RetTy) const; 2862 ABIArgInfo classifyArgumentType(QualType Ty) const; 2863 2864 // TODO: We can add more logic to computeInfo to improve performance. 2865 // Example: For aggregate arguments that fit in a register, we could 2866 // use getDirectInReg (as is done below for structs containing a single 2867 // floating-point value) to avoid pushing them to memory on function 2868 // entry. This would require changing the logic in PPCISelLowering 2869 // when lowering the parameters in the caller and args in the callee. 2870 void computeInfo(CGFunctionInfo &FI) const override { 2871 if (!getCXXABI().classifyReturnType(FI)) 2872 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2873 for (auto &I : FI.arguments()) { 2874 // We rely on the default argument classification for the most part. 2875 // One exception: An aggregate containing a single floating-point 2876 // or vector item must be passed in a register if one is available. 2877 const Type *T = isSingleElementStruct(I.type, getContext()); 2878 if (T) { 2879 const BuiltinType *BT = T->getAs<BuiltinType>(); 2880 if (T->isVectorType() || (BT && BT->isFloatingPoint())) { 2881 QualType QT(T, 0); 2882 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2883 continue; 2884 } 2885 } 2886 I.info = classifyArgumentType(I.type); 2887 } 2888 } 2889 2890 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2891 CodeGenFunction &CGF) const override; 2892 }; 2893 2894 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2895 public: 2896 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) 2897 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} 2898 2899 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2900 // This is recovered from gcc output. 2901 return 1; // r1 is the dedicated stack pointer 2902 } 2903 2904 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2905 llvm::Value *Address) const override; 2906 }; 2907 2908 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2909 public: 2910 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2911 2912 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2913 // This is recovered from gcc output. 2914 return 1; // r1 is the dedicated stack pointer 2915 } 2916 2917 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2918 llvm::Value *Address) const override; 2919 }; 2920 2921 } 2922 2923 // Return true if the ABI requires Ty to be passed sign- or zero- 2924 // extended to 64 bits. 2925 bool 2926 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 2927 // Treat an enum type as its underlying type. 2928 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2929 Ty = EnumTy->getDecl()->getIntegerType(); 2930 2931 // Promotable integer types are required to be promoted by the ABI. 2932 if (Ty->isPromotableIntegerType()) 2933 return true; 2934 2935 // In addition to the usual promotable integer types, we also need to 2936 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 2937 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2938 switch (BT->getKind()) { 2939 case BuiltinType::Int: 2940 case BuiltinType::UInt: 2941 return true; 2942 default: 2943 break; 2944 } 2945 2946 return false; 2947 } 2948 2949 ABIArgInfo 2950 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 2951 if (Ty->isAnyComplexType()) 2952 return ABIArgInfo::getDirect(); 2953 2954 if (isAggregateTypeForABI(Ty)) { 2955 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2956 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2957 2958 return ABIArgInfo::getIndirect(0); 2959 } 2960 2961 return (isPromotableTypeForABI(Ty) ? 2962 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2963 } 2964 2965 ABIArgInfo 2966 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 2967 if (RetTy->isVoidType()) 2968 return ABIArgInfo::getIgnore(); 2969 2970 if (RetTy->isAnyComplexType()) 2971 return ABIArgInfo::getDirect(); 2972 2973 if (isAggregateTypeForABI(RetTy)) 2974 return ABIArgInfo::getIndirect(0); 2975 2976 return (isPromotableTypeForABI(RetTy) ? 2977 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2978 } 2979 2980 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 2981 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 2982 QualType Ty, 2983 CodeGenFunction &CGF) const { 2984 llvm::Type *BP = CGF.Int8PtrTy; 2985 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2986 2987 CGBuilderTy &Builder = CGF.Builder; 2988 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 2989 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2990 2991 // Update the va_list pointer. The pointer should be bumped by the 2992 // size of the object. We can trust getTypeSize() except for a complex 2993 // type whose base type is smaller than a doubleword. For these, the 2994 // size of the object is 16 bytes; see below for further explanation. 2995 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 2996 QualType BaseTy; 2997 unsigned CplxBaseSize = 0; 2998 2999 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3000 BaseTy = CTy->getElementType(); 3001 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3002 if (CplxBaseSize < 8) 3003 SizeInBytes = 16; 3004 } 3005 3006 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3007 llvm::Value *NextAddr = 3008 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3009 "ap.next"); 3010 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3011 3012 // If we have a complex type and the base type is smaller than 8 bytes, 3013 // the ABI calls for the real and imaginary parts to be right-adjusted 3014 // in separate doublewords. However, Clang expects us to produce a 3015 // pointer to a structure with the two parts packed tightly. So generate 3016 // loads of the real and imaginary parts relative to the va_list pointer, 3017 // and store them to a temporary structure. 3018 if (CplxBaseSize && CplxBaseSize < 8) { 3019 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3020 llvm::Value *ImagAddr = RealAddr; 3021 if (CGF.CGM.getDataLayout().isBigEndian()) { 3022 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3023 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3024 } else { 3025 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3026 } 3027 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3028 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3029 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3030 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3031 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3032 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3033 "vacplx"); 3034 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3035 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3036 Builder.CreateStore(Real, RealPtr, false); 3037 Builder.CreateStore(Imag, ImagPtr, false); 3038 return Ptr; 3039 } 3040 3041 // If the argument is smaller than 8 bytes, it is right-adjusted in 3042 // its doubleword slot. Adjust the pointer to pick it up from the 3043 // correct offset. 3044 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3045 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3046 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3047 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3048 } 3049 3050 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3051 return Builder.CreateBitCast(Addr, PTy); 3052 } 3053 3054 static bool 3055 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3056 llvm::Value *Address) { 3057 // This is calculated from the LLVM and GCC tables and verified 3058 // against gcc output. AFAIK all ABIs use the same encoding. 3059 3060 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3061 3062 llvm::IntegerType *i8 = CGF.Int8Ty; 3063 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3064 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3065 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3066 3067 // 0-31: r0-31, the 8-byte general-purpose registers 3068 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3069 3070 // 32-63: fp0-31, the 8-byte floating-point registers 3071 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3072 3073 // 64-76 are various 4-byte special-purpose registers: 3074 // 64: mq 3075 // 65: lr 3076 // 66: ctr 3077 // 67: ap 3078 // 68-75 cr0-7 3079 // 76: xer 3080 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3081 3082 // 77-108: v0-31, the 16-byte vector registers 3083 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3084 3085 // 109: vrsave 3086 // 110: vscr 3087 // 111: spe_acc 3088 // 112: spefscr 3089 // 113: sfp 3090 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3091 3092 return false; 3093 } 3094 3095 bool 3096 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3097 CodeGen::CodeGenFunction &CGF, 3098 llvm::Value *Address) const { 3099 3100 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3101 } 3102 3103 bool 3104 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3105 llvm::Value *Address) const { 3106 3107 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3108 } 3109 3110 //===----------------------------------------------------------------------===// 3111 // AArch64 ABI Implementation 3112 //===----------------------------------------------------------------------===// 3113 3114 namespace { 3115 3116 class AArch64ABIInfo : public ABIInfo { 3117 public: 3118 enum ABIKind { 3119 AAPCS = 0, 3120 DarwinPCS 3121 }; 3122 3123 private: 3124 ABIKind Kind; 3125 3126 public: 3127 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3128 3129 private: 3130 ABIKind getABIKind() const { return Kind; } 3131 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3132 3133 ABIArgInfo classifyReturnType(QualType RetTy) const; 3134 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, 3135 bool &IsHA, unsigned &AllocatedGPR, 3136 bool &IsSmallAggr, bool IsNamedArg) const; 3137 bool isIllegalVectorType(QualType Ty) const; 3138 3139 virtual void computeInfo(CGFunctionInfo &FI) const { 3140 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3141 // number of SIMD and Floating-point registers allocated so far. 3142 // If the argument is an HFA or an HVA and there are sufficient unallocated 3143 // SIMD and Floating-point registers, then the argument is allocated to SIMD 3144 // and Floating-point Registers (with one register per member of the HFA or 3145 // HVA). Otherwise, the NSRN is set to 8. 3146 unsigned AllocatedVFP = 0; 3147 3148 // To correctly handle small aggregates, we need to keep track of the number 3149 // of GPRs allocated so far. If the small aggregate can't all fit into 3150 // registers, it will be on stack. We don't allow the aggregate to be 3151 // partially in registers. 3152 unsigned AllocatedGPR = 0; 3153 3154 // Find the number of named arguments. Variadic arguments get special 3155 // treatment with the Darwin ABI. 3156 unsigned NumRequiredArgs = (FI.isVariadic() ? 3157 FI.getRequiredArgs().getNumRequiredArgs() : 3158 FI.arg_size()); 3159 3160 if (!getCXXABI().classifyReturnType(FI)) 3161 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3162 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3163 it != ie; ++it) { 3164 unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; 3165 bool IsHA = false, IsSmallAggr = false; 3166 const unsigned NumVFPs = 8; 3167 const unsigned NumGPRs = 8; 3168 bool IsNamedArg = ((it - FI.arg_begin()) < 3169 static_cast<signed>(NumRequiredArgs)); 3170 it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, 3171 AllocatedGPR, IsSmallAggr, IsNamedArg); 3172 3173 // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs 3174 // as sequences of floats since they'll get "holes" inserted as 3175 // padding by the back end. 3176 if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && 3177 getContext().getTypeAlign(it->type) < 64) { 3178 uint32_t NumStackSlots = getContext().getTypeSize(it->type); 3179 NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; 3180 3181 llvm::Type *CoerceTy = llvm::ArrayType::get( 3182 llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); 3183 it->info = ABIArgInfo::getDirect(CoerceTy); 3184 } 3185 3186 // If we do not have enough VFP registers for the HA, any VFP registers 3187 // that are unallocated are marked as unavailable. To achieve this, we add 3188 // padding of (NumVFPs - PreAllocation) floats. 3189 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3190 llvm::Type *PaddingTy = llvm::ArrayType::get( 3191 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3192 it->info.setPaddingType(PaddingTy); 3193 } 3194 3195 // If we do not have enough GPRs for the small aggregate, any GPR regs 3196 // that are unallocated are marked as unavailable. 3197 if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { 3198 llvm::Type *PaddingTy = llvm::ArrayType::get( 3199 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); 3200 it->info = 3201 ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); 3202 } 3203 } 3204 } 3205 3206 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3207 CodeGenFunction &CGF) const; 3208 3209 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3210 CodeGenFunction &CGF) const; 3211 3212 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3213 CodeGenFunction &CGF) const { 3214 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3215 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3216 } 3217 }; 3218 3219 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3220 public: 3221 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3222 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3223 3224 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3225 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3226 } 3227 3228 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3229 3230 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3231 }; 3232 } 3233 3234 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3235 ASTContext &Context, 3236 uint64_t *HAMembers = nullptr); 3237 3238 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, 3239 unsigned &AllocatedVFP, 3240 bool &IsHA, 3241 unsigned &AllocatedGPR, 3242 bool &IsSmallAggr, 3243 bool IsNamedArg) const { 3244 // Handle illegal vector types here. 3245 if (isIllegalVectorType(Ty)) { 3246 uint64_t Size = getContext().getTypeSize(Ty); 3247 if (Size <= 32) { 3248 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3249 AllocatedGPR++; 3250 return ABIArgInfo::getDirect(ResType); 3251 } 3252 if (Size == 64) { 3253 llvm::Type *ResType = 3254 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3255 AllocatedVFP++; 3256 return ABIArgInfo::getDirect(ResType); 3257 } 3258 if (Size == 128) { 3259 llvm::Type *ResType = 3260 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3261 AllocatedVFP++; 3262 return ABIArgInfo::getDirect(ResType); 3263 } 3264 AllocatedGPR++; 3265 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3266 } 3267 if (Ty->isVectorType()) 3268 // Size of a legal vector should be either 64 or 128. 3269 AllocatedVFP++; 3270 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3271 if (BT->getKind() == BuiltinType::Half || 3272 BT->getKind() == BuiltinType::Float || 3273 BT->getKind() == BuiltinType::Double || 3274 BT->getKind() == BuiltinType::LongDouble) 3275 AllocatedVFP++; 3276 } 3277 3278 if (!isAggregateTypeForABI(Ty)) { 3279 // Treat an enum type as its underlying type. 3280 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3281 Ty = EnumTy->getDecl()->getIntegerType(); 3282 3283 if (!Ty->isFloatingType() && !Ty->isVectorType()) { 3284 unsigned Alignment = getContext().getTypeAlign(Ty); 3285 if (!isDarwinPCS() && Alignment > 64) 3286 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3287 3288 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3289 AllocatedGPR += RegsNeeded; 3290 } 3291 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3292 ? ABIArgInfo::getExtend() 3293 : ABIArgInfo::getDirect()); 3294 } 3295 3296 // Structures with either a non-trivial destructor or a non-trivial 3297 // copy constructor are always indirect. 3298 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3299 AllocatedGPR++; 3300 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3301 CGCXXABI::RAA_DirectInMemory); 3302 } 3303 3304 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3305 // elsewhere for GNU compatibility. 3306 if (isEmptyRecord(getContext(), Ty, true)) { 3307 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3308 return ABIArgInfo::getIgnore(); 3309 3310 ++AllocatedGPR; 3311 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3312 } 3313 3314 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3315 const Type *Base = nullptr; 3316 uint64_t Members = 0; 3317 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3318 IsHA = true; 3319 if (!IsNamedArg && isDarwinPCS()) { 3320 // With the Darwin ABI, variadic arguments are always passed on the stack 3321 // and should not be expanded. Treat variadic HFAs as arrays of doubles. 3322 uint64_t Size = getContext().getTypeSize(Ty); 3323 llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); 3324 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3325 } 3326 AllocatedVFP += Members; 3327 return ABIArgInfo::getExpand(); 3328 } 3329 3330 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3331 uint64_t Size = getContext().getTypeSize(Ty); 3332 if (Size <= 128) { 3333 unsigned Alignment = getContext().getTypeAlign(Ty); 3334 if (!isDarwinPCS() && Alignment > 64) 3335 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3336 3337 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3338 AllocatedGPR += Size / 64; 3339 IsSmallAggr = true; 3340 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3341 // For aggregates with 16-byte alignment, we use i128. 3342 if (Alignment < 128 && Size == 128) { 3343 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3344 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3345 } 3346 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3347 } 3348 3349 AllocatedGPR++; 3350 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3351 } 3352 3353 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 3354 if (RetTy->isVoidType()) 3355 return ABIArgInfo::getIgnore(); 3356 3357 // Large vector types should be returned via memory. 3358 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3359 return ABIArgInfo::getIndirect(0); 3360 3361 if (!isAggregateTypeForABI(RetTy)) { 3362 // Treat an enum type as its underlying type. 3363 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3364 RetTy = EnumTy->getDecl()->getIntegerType(); 3365 3366 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3367 ? ABIArgInfo::getExtend() 3368 : ABIArgInfo::getDirect()); 3369 } 3370 3371 if (isEmptyRecord(getContext(), RetTy, true)) 3372 return ABIArgInfo::getIgnore(); 3373 3374 const Type *Base = nullptr; 3375 if (isHomogeneousAggregate(RetTy, Base, getContext())) 3376 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3377 return ABIArgInfo::getDirect(); 3378 3379 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3380 uint64_t Size = getContext().getTypeSize(RetTy); 3381 if (Size <= 128) { 3382 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3383 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3384 } 3385 3386 return ABIArgInfo::getIndirect(0); 3387 } 3388 3389 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 3390 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 3391 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3392 // Check whether VT is legal. 3393 unsigned NumElements = VT->getNumElements(); 3394 uint64_t Size = getContext().getTypeSize(VT); 3395 // NumElements should be power of 2 between 1 and 16. 3396 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3397 return true; 3398 return Size != 64 && (Size != 128 || NumElements == 1); 3399 } 3400 return false; 3401 } 3402 3403 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, 3404 int AllocatedGPR, int AllocatedVFP, 3405 bool IsIndirect, CodeGenFunction &CGF) { 3406 // The AArch64 va_list type and handling is specified in the Procedure Call 3407 // Standard, section B.4: 3408 // 3409 // struct { 3410 // void *__stack; 3411 // void *__gr_top; 3412 // void *__vr_top; 3413 // int __gr_offs; 3414 // int __vr_offs; 3415 // }; 3416 3417 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3418 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3419 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3420 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3421 auto &Ctx = CGF.getContext(); 3422 3423 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 3424 int reg_top_index; 3425 int RegSize; 3426 if (AllocatedGPR) { 3427 assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); 3428 // 3 is the field number of __gr_offs 3429 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3430 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 3431 reg_top_index = 1; // field number for __gr_top 3432 RegSize = 8 * AllocatedGPR; 3433 } else { 3434 assert(!AllocatedGPR && "Argument must go in VFP or int regs"); 3435 // 4 is the field number of __vr_offs. 3436 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 3437 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 3438 reg_top_index = 2; // field number for __vr_top 3439 RegSize = 16 * AllocatedVFP; 3440 } 3441 3442 //======================================= 3443 // Find out where argument was passed 3444 //======================================= 3445 3446 // If reg_offs >= 0 we're already using the stack for this type of 3447 // argument. We don't want to keep updating reg_offs (in case it overflows, 3448 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 3449 // whatever they get). 3450 llvm::Value *UsingStack = nullptr; 3451 UsingStack = CGF.Builder.CreateICmpSGE( 3452 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 3453 3454 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 3455 3456 // Otherwise, at least some kind of argument could go in these registers, the 3457 // question is whether this particular type is too big. 3458 CGF.EmitBlock(MaybeRegBlock); 3459 3460 // Integer arguments may need to correct register alignment (for example a 3461 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 3462 // align __gr_offs to calculate the potential address. 3463 if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3464 int Align = Ctx.getTypeAlign(Ty) / 8; 3465 3466 reg_offs = CGF.Builder.CreateAdd( 3467 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 3468 "align_regoffs"); 3469 reg_offs = CGF.Builder.CreateAnd( 3470 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 3471 "aligned_regoffs"); 3472 } 3473 3474 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 3475 llvm::Value *NewOffset = nullptr; 3476 NewOffset = CGF.Builder.CreateAdd( 3477 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 3478 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 3479 3480 // Now we're in a position to decide whether this argument really was in 3481 // registers or not. 3482 llvm::Value *InRegs = nullptr; 3483 InRegs = CGF.Builder.CreateICmpSLE( 3484 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 3485 3486 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 3487 3488 //======================================= 3489 // Argument was in registers 3490 //======================================= 3491 3492 // Now we emit the code for if the argument was originally passed in 3493 // registers. First start the appropriate block: 3494 CGF.EmitBlock(InRegBlock); 3495 3496 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 3497 reg_top_p = 3498 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 3499 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 3500 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 3501 llvm::Value *RegAddr = nullptr; 3502 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 3503 3504 if (IsIndirect) { 3505 // If it's been passed indirectly (actually a struct), whatever we find from 3506 // stored registers or on the stack will actually be a struct **. 3507 MemTy = llvm::PointerType::getUnqual(MemTy); 3508 } 3509 3510 const Type *Base = nullptr; 3511 uint64_t NumMembers; 3512 bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers); 3513 if (IsHFA && NumMembers > 1) { 3514 // Homogeneous aggregates passed in registers will have their elements split 3515 // and stored 16-bytes apart regardless of size (they're notionally in qN, 3516 // qN+1, ...). We reload and store into a temporary local variable 3517 // contiguously. 3518 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 3519 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 3520 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 3521 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 3522 int Offset = 0; 3523 3524 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 3525 Offset = 16 - Ctx.getTypeSize(Base) / 8; 3526 for (unsigned i = 0; i < NumMembers; ++i) { 3527 llvm::Value *BaseOffset = 3528 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 3529 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 3530 LoadAddr = CGF.Builder.CreateBitCast( 3531 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 3532 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 3533 3534 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 3535 CGF.Builder.CreateStore(Elem, StoreAddr); 3536 } 3537 3538 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 3539 } else { 3540 // Otherwise the object is contiguous in memory 3541 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 3542 if (CGF.CGM.getDataLayout().isBigEndian() && 3543 (IsHFA || !isAggregateTypeForABI(Ty)) && 3544 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 3545 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 3546 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 3547 3548 BaseAddr = CGF.Builder.CreateAdd( 3549 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3550 3551 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 3552 } 3553 3554 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 3555 } 3556 3557 CGF.EmitBranch(ContBlock); 3558 3559 //======================================= 3560 // Argument was on the stack 3561 //======================================= 3562 CGF.EmitBlock(OnStackBlock); 3563 3564 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 3565 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 3566 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 3567 3568 // Again, stack arguments may need realigmnent. In this case both integer and 3569 // floating-point ones might be affected. 3570 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3571 int Align = Ctx.getTypeAlign(Ty) / 8; 3572 3573 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3574 3575 OnStackAddr = CGF.Builder.CreateAdd( 3576 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 3577 "align_stack"); 3578 OnStackAddr = CGF.Builder.CreateAnd( 3579 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 3580 "align_stack"); 3581 3582 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3583 } 3584 3585 uint64_t StackSize; 3586 if (IsIndirect) 3587 StackSize = 8; 3588 else 3589 StackSize = Ctx.getTypeSize(Ty) / 8; 3590 3591 // All stack slots are 8 bytes 3592 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 3593 3594 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 3595 llvm::Value *NewStack = 3596 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 3597 3598 // Write the new value of __stack for the next call to va_arg 3599 CGF.Builder.CreateStore(NewStack, stack_p); 3600 3601 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 3602 Ctx.getTypeSize(Ty) < 64) { 3603 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 3604 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3605 3606 OnStackAddr = CGF.Builder.CreateAdd( 3607 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3608 3609 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3610 } 3611 3612 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 3613 3614 CGF.EmitBranch(ContBlock); 3615 3616 //======================================= 3617 // Tidy up 3618 //======================================= 3619 CGF.EmitBlock(ContBlock); 3620 3621 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 3622 ResAddr->addIncoming(RegAddr, InRegBlock); 3623 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 3624 3625 if (IsIndirect) 3626 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 3627 3628 return ResAddr; 3629 } 3630 3631 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3632 CodeGenFunction &CGF) const { 3633 3634 unsigned AllocatedGPR = 0, AllocatedVFP = 0; 3635 bool IsHA = false, IsSmallAggr = false; 3636 ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, 3637 IsSmallAggr, false /*IsNamedArg*/); 3638 3639 return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, 3640 AI.isIndirect(), CGF); 3641 } 3642 3643 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3644 CodeGenFunction &CGF) const { 3645 // We do not support va_arg for aggregates or illegal vector types. 3646 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 3647 // other cases. 3648 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 3649 return nullptr; 3650 3651 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3652 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 3653 3654 const Type *Base = nullptr; 3655 bool isHA = isHomogeneousAggregate(Ty, Base, getContext()); 3656 3657 bool isIndirect = false; 3658 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 3659 // be passed indirectly. 3660 if (Size > 16 && !isHA) { 3661 isIndirect = true; 3662 Size = 8; 3663 Align = 8; 3664 } 3665 3666 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3667 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3668 3669 CGBuilderTy &Builder = CGF.Builder; 3670 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3671 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3672 3673 if (isEmptyRecord(getContext(), Ty, true)) { 3674 // These are ignored for parameter passing purposes. 3675 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3676 return Builder.CreateBitCast(Addr, PTy); 3677 } 3678 3679 const uint64_t MinABIAlign = 8; 3680 if (Align > MinABIAlign) { 3681 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 3682 Addr = Builder.CreateGEP(Addr, Offset); 3683 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3684 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 3685 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 3686 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 3687 } 3688 3689 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 3690 llvm::Value *NextAddr = Builder.CreateGEP( 3691 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 3692 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3693 3694 if (isIndirect) 3695 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 3696 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3697 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3698 3699 return AddrTyped; 3700 } 3701 3702 //===----------------------------------------------------------------------===// 3703 // ARM ABI Implementation 3704 //===----------------------------------------------------------------------===// 3705 3706 namespace { 3707 3708 class ARMABIInfo : public ABIInfo { 3709 public: 3710 enum ABIKind { 3711 APCS = 0, 3712 AAPCS = 1, 3713 AAPCS_VFP 3714 }; 3715 3716 private: 3717 ABIKind Kind; 3718 mutable int VFPRegs[16]; 3719 const unsigned NumVFPs; 3720 const unsigned NumGPRs; 3721 mutable unsigned AllocatedGPRs; 3722 mutable unsigned AllocatedVFPs; 3723 3724 public: 3725 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 3726 NumVFPs(16), NumGPRs(4) { 3727 setRuntimeCC(); 3728 resetAllocatedRegs(); 3729 } 3730 3731 bool isEABI() const { 3732 switch (getTarget().getTriple().getEnvironment()) { 3733 case llvm::Triple::Android: 3734 case llvm::Triple::EABI: 3735 case llvm::Triple::EABIHF: 3736 case llvm::Triple::GNUEABI: 3737 case llvm::Triple::GNUEABIHF: 3738 return true; 3739 default: 3740 return false; 3741 } 3742 } 3743 3744 bool isEABIHF() const { 3745 switch (getTarget().getTriple().getEnvironment()) { 3746 case llvm::Triple::EABIHF: 3747 case llvm::Triple::GNUEABIHF: 3748 return true; 3749 default: 3750 return false; 3751 } 3752 } 3753 3754 ABIKind getABIKind() const { return Kind; } 3755 3756 private: 3757 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 3758 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 3759 bool &IsCPRC) const; 3760 bool isIllegalVectorType(QualType Ty) const; 3761 3762 void computeInfo(CGFunctionInfo &FI) const override; 3763 3764 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3765 CodeGenFunction &CGF) const override; 3766 3767 llvm::CallingConv::ID getLLVMDefaultCC() const; 3768 llvm::CallingConv::ID getABIDefaultCC() const; 3769 void setRuntimeCC(); 3770 3771 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 3772 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 3773 void resetAllocatedRegs(void) const; 3774 }; 3775 3776 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 3777 public: 3778 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 3779 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 3780 3781 const ARMABIInfo &getABIInfo() const { 3782 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3783 } 3784 3785 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3786 return 13; 3787 } 3788 3789 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3790 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 3791 } 3792 3793 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3794 llvm::Value *Address) const override { 3795 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 3796 3797 // 0-15 are the 16 integer registers. 3798 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 3799 return false; 3800 } 3801 3802 unsigned getSizeOfUnwindException() const override { 3803 if (getABIInfo().isEABI()) return 88; 3804 return TargetCodeGenInfo::getSizeOfUnwindException(); 3805 } 3806 3807 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3808 CodeGen::CodeGenModule &CGM) const override { 3809 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3810 if (!FD) 3811 return; 3812 3813 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 3814 if (!Attr) 3815 return; 3816 3817 const char *Kind; 3818 switch (Attr->getInterrupt()) { 3819 case ARMInterruptAttr::Generic: Kind = ""; break; 3820 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 3821 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 3822 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 3823 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 3824 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 3825 } 3826 3827 llvm::Function *Fn = cast<llvm::Function>(GV); 3828 3829 Fn->addFnAttr("interrupt", Kind); 3830 3831 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 3832 return; 3833 3834 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 3835 // however this is not necessarily true on taking any interrupt. Instruct 3836 // the backend to perform a realignment as part of the function prologue. 3837 llvm::AttrBuilder B; 3838 B.addStackAlignmentAttr(8); 3839 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 3840 llvm::AttributeSet::get(CGM.getLLVMContext(), 3841 llvm::AttributeSet::FunctionIndex, 3842 B)); 3843 } 3844 3845 }; 3846 3847 } 3848 3849 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3850 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3851 // VFP registers allocated so far. 3852 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3853 // VFP registers of the appropriate type unallocated then the argument is 3854 // allocated to the lowest-numbered sequence of such registers. 3855 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3856 // unallocated are marked as unavailable. 3857 resetAllocatedRegs(); 3858 3859 if (getCXXABI().classifyReturnType(FI)) { 3860 if (FI.getReturnInfo().isIndirect()) 3861 markAllocatedGPRs(1, 1); 3862 } else { 3863 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 3864 } 3865 for (auto &I : FI.arguments()) { 3866 unsigned PreAllocationVFPs = AllocatedVFPs; 3867 unsigned PreAllocationGPRs = AllocatedGPRs; 3868 bool IsCPRC = false; 3869 // 6.1.2.3 There is one VFP co-processor register class using registers 3870 // s0-s15 (d0-d7) for passing arguments. 3871 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); 3872 3873 // If we have allocated some arguments onto the stack (due to running 3874 // out of VFP registers), we cannot split an argument between GPRs and 3875 // the stack. If this situation occurs, we add padding to prevent the 3876 // GPRs from being used. In this situation, the current argument could 3877 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 3878 // unusable anyway. 3879 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 3880 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) { 3881 llvm::Type *PaddingTy = llvm::ArrayType::get( 3882 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 3883 if (I.info.canHaveCoerceToType()) { 3884 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */, 3885 PaddingTy); 3886 } else { 3887 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, 3888 PaddingTy); 3889 } 3890 } 3891 } 3892 3893 // Always honor user-specified calling convention. 3894 if (FI.getCallingConvention() != llvm::CallingConv::C) 3895 return; 3896 3897 llvm::CallingConv::ID cc = getRuntimeCC(); 3898 if (cc != llvm::CallingConv::C) 3899 FI.setEffectiveCallingConvention(cc); 3900 } 3901 3902 /// Return the default calling convention that LLVM will use. 3903 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 3904 // The default calling convention that LLVM will infer. 3905 if (isEABIHF()) 3906 return llvm::CallingConv::ARM_AAPCS_VFP; 3907 else if (isEABI()) 3908 return llvm::CallingConv::ARM_AAPCS; 3909 else 3910 return llvm::CallingConv::ARM_APCS; 3911 } 3912 3913 /// Return the calling convention that our ABI would like us to use 3914 /// as the C calling convention. 3915 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 3916 switch (getABIKind()) { 3917 case APCS: return llvm::CallingConv::ARM_APCS; 3918 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 3919 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 3920 } 3921 llvm_unreachable("bad ABI kind"); 3922 } 3923 3924 void ARMABIInfo::setRuntimeCC() { 3925 assert(getRuntimeCC() == llvm::CallingConv::C); 3926 3927 // Don't muddy up the IR with a ton of explicit annotations if 3928 // they'd just match what LLVM will infer from the triple. 3929 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 3930 if (abiCC != getLLVMDefaultCC()) 3931 RuntimeCC = abiCC; 3932 } 3933 3934 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 3935 /// aggregate. If HAMembers is non-null, the number of base elements 3936 /// contained in the type is returned through it; this is used for the 3937 /// recursive calls that check aggregate component types. 3938 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3939 ASTContext &Context, uint64_t *HAMembers) { 3940 uint64_t Members = 0; 3941 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3942 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 3943 return false; 3944 Members *= AT->getSize().getZExtValue(); 3945 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3946 const RecordDecl *RD = RT->getDecl(); 3947 if (RD->hasFlexibleArrayMember()) 3948 return false; 3949 3950 Members = 0; 3951 for (const auto *FD : RD->fields()) { 3952 uint64_t FldMembers; 3953 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 3954 return false; 3955 3956 Members = (RD->isUnion() ? 3957 std::max(Members, FldMembers) : Members + FldMembers); 3958 } 3959 } else { 3960 Members = 1; 3961 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3962 Members = 2; 3963 Ty = CT->getElementType(); 3964 } 3965 3966 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 3967 // double, or 64-bit or 128-bit vectors. 3968 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3969 if (BT->getKind() != BuiltinType::Float && 3970 BT->getKind() != BuiltinType::Double && 3971 BT->getKind() != BuiltinType::LongDouble) 3972 return false; 3973 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 3974 unsigned VecSize = Context.getTypeSize(VT); 3975 if (VecSize != 64 && VecSize != 128) 3976 return false; 3977 } else { 3978 return false; 3979 } 3980 3981 // The base type must be the same for all members. Vector types of the 3982 // same total size are treated as being equivalent here. 3983 const Type *TyPtr = Ty.getTypePtr(); 3984 if (!Base) 3985 Base = TyPtr; 3986 3987 if (Base != TyPtr) { 3988 // Homogeneous aggregates are defined as containing members with the 3989 // same machine type. There are two cases in which two members have 3990 // different TypePtrs but the same machine type: 3991 3992 // 1) Vectors of the same length, regardless of the type and number 3993 // of their members. 3994 const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() 3995 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 3996 3997 // 2) In the 32-bit AAPCS, `double' and `long double' have the same 3998 // machine type. This is not the case for the 64-bit AAPCS. 3999 const bool SameSizeDoubles = 4000 ( ( Base->isSpecificBuiltinType(BuiltinType::Double) 4001 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) 4002 || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) 4003 && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) 4004 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4005 4006 if (!SameLengthVectors && !SameSizeDoubles) 4007 return false; 4008 } 4009 } 4010 4011 // Homogeneous Aggregates can have at most 4 members of the base type. 4012 if (HAMembers) 4013 *HAMembers = Members; 4014 4015 return (Members > 0 && Members <= 4); 4016 } 4017 4018 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4019 /// number of VFP registers (unit is S register) requested. 4020 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4021 unsigned NumRequired) const { 4022 // Early Exit. 4023 if (AllocatedVFPs >= 16) { 4024 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4025 // the stack. 4026 AllocatedVFPs = 17; 4027 return; 4028 } 4029 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4030 // VFP registers of the appropriate type unallocated then the argument is 4031 // allocated to the lowest-numbered sequence of such registers. 4032 for (unsigned I = 0; I < 16; I += Alignment) { 4033 bool FoundSlot = true; 4034 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4035 if (J >= 16 || VFPRegs[J]) { 4036 FoundSlot = false; 4037 break; 4038 } 4039 if (FoundSlot) { 4040 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4041 VFPRegs[J] = 1; 4042 AllocatedVFPs += NumRequired; 4043 return; 4044 } 4045 } 4046 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4047 // unallocated are marked as unavailable. 4048 for (unsigned I = 0; I < 16; I++) 4049 VFPRegs[I] = 1; 4050 AllocatedVFPs = 17; // We do not have enough VFP registers. 4051 } 4052 4053 /// Update AllocatedGPRs to record the number of general purpose registers 4054 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4055 /// this represents arguments being stored on the stack. 4056 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4057 unsigned NumRequired) const { 4058 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4059 4060 if (Alignment == 2 && AllocatedGPRs & 0x1) 4061 AllocatedGPRs += 1; 4062 4063 AllocatedGPRs += NumRequired; 4064 } 4065 4066 void ARMABIInfo::resetAllocatedRegs(void) const { 4067 AllocatedGPRs = 0; 4068 AllocatedVFPs = 0; 4069 for (unsigned i = 0; i < NumVFPs; ++i) 4070 VFPRegs[i] = 0; 4071 } 4072 4073 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 4074 bool &IsCPRC) const { 4075 // We update number of allocated VFPs according to 4076 // 6.1.2.1 The following argument types are VFP CPRCs: 4077 // A single-precision floating-point type (including promoted 4078 // half-precision types); A double-precision floating-point type; 4079 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4080 // with a Base Type of a single- or double-precision floating-point type, 4081 // 64-bit containerized vectors or 128-bit containerized vectors with one 4082 // to four Elements. 4083 4084 // Handle illegal vector types here. 4085 if (isIllegalVectorType(Ty)) { 4086 uint64_t Size = getContext().getTypeSize(Ty); 4087 if (Size <= 32) { 4088 llvm::Type *ResType = 4089 llvm::Type::getInt32Ty(getVMContext()); 4090 markAllocatedGPRs(1, 1); 4091 return ABIArgInfo::getDirect(ResType); 4092 } 4093 if (Size == 64) { 4094 llvm::Type *ResType = llvm::VectorType::get( 4095 llvm::Type::getInt32Ty(getVMContext()), 2); 4096 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4097 markAllocatedGPRs(2, 2); 4098 } else { 4099 markAllocatedVFPs(2, 2); 4100 IsCPRC = true; 4101 } 4102 return ABIArgInfo::getDirect(ResType); 4103 } 4104 if (Size == 128) { 4105 llvm::Type *ResType = llvm::VectorType::get( 4106 llvm::Type::getInt32Ty(getVMContext()), 4); 4107 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4108 markAllocatedGPRs(2, 4); 4109 } else { 4110 markAllocatedVFPs(4, 4); 4111 IsCPRC = true; 4112 } 4113 return ABIArgInfo::getDirect(ResType); 4114 } 4115 markAllocatedGPRs(1, 1); 4116 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4117 } 4118 // Update VFPRegs for legal vector types. 4119 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4120 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4121 uint64_t Size = getContext().getTypeSize(VT); 4122 // Size of a legal vector should be power of 2 and above 64. 4123 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4124 IsCPRC = true; 4125 } 4126 } 4127 // Update VFPRegs for floating point types. 4128 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4129 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4130 if (BT->getKind() == BuiltinType::Half || 4131 BT->getKind() == BuiltinType::Float) { 4132 markAllocatedVFPs(1, 1); 4133 IsCPRC = true; 4134 } 4135 if (BT->getKind() == BuiltinType::Double || 4136 BT->getKind() == BuiltinType::LongDouble) { 4137 markAllocatedVFPs(2, 2); 4138 IsCPRC = true; 4139 } 4140 } 4141 } 4142 4143 if (!isAggregateTypeForABI(Ty)) { 4144 // Treat an enum type as its underlying type. 4145 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4146 Ty = EnumTy->getDecl()->getIntegerType(); 4147 } 4148 4149 unsigned Size = getContext().getTypeSize(Ty); 4150 if (!IsCPRC) 4151 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4152 return (Ty->isPromotableIntegerType() ? 4153 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4154 } 4155 4156 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4157 markAllocatedGPRs(1, 1); 4158 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4159 } 4160 4161 // Ignore empty records. 4162 if (isEmptyRecord(getContext(), Ty, true)) 4163 return ABIArgInfo::getIgnore(); 4164 4165 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4166 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4167 // into VFP registers. 4168 const Type *Base = nullptr; 4169 uint64_t Members = 0; 4170 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 4171 assert(Base && "Base class should be set for homogeneous aggregate"); 4172 // Base can be a floating-point or a vector. 4173 if (Base->isVectorType()) { 4174 // ElementSize is in number of floats. 4175 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4176 markAllocatedVFPs(ElementSize, 4177 Members * ElementSize); 4178 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4179 markAllocatedVFPs(1, Members); 4180 else { 4181 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4182 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4183 markAllocatedVFPs(2, Members * 2); 4184 } 4185 IsCPRC = true; 4186 return ABIArgInfo::getDirect(); 4187 } 4188 } 4189 4190 // Support byval for ARM. 4191 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4192 // most 8-byte. We realign the indirect argument if type alignment is bigger 4193 // than ABI alignment. 4194 uint64_t ABIAlign = 4; 4195 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4196 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4197 getABIKind() == ARMABIInfo::AAPCS) 4198 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4199 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4200 // Update Allocated GPRs 4201 markAllocatedGPRs(1, 1); 4202 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4203 /*Realign=*/TyAlign > ABIAlign); 4204 } 4205 4206 // Otherwise, pass by coercing to a structure of the appropriate size. 4207 llvm::Type* ElemTy; 4208 unsigned SizeRegs; 4209 // FIXME: Try to match the types of the arguments more accurately where 4210 // we can. 4211 if (getContext().getTypeAlign(Ty) <= 32) { 4212 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4213 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4214 markAllocatedGPRs(1, SizeRegs); 4215 } else { 4216 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4217 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4218 markAllocatedGPRs(2, SizeRegs * 2); 4219 } 4220 4221 llvm::Type *STy = 4222 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 4223 return ABIArgInfo::getDirect(STy); 4224 } 4225 4226 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4227 llvm::LLVMContext &VMContext) { 4228 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4229 // is called integer-like if its size is less than or equal to one word, and 4230 // the offset of each of its addressable sub-fields is zero. 4231 4232 uint64_t Size = Context.getTypeSize(Ty); 4233 4234 // Check that the type fits in a word. 4235 if (Size > 32) 4236 return false; 4237 4238 // FIXME: Handle vector types! 4239 if (Ty->isVectorType()) 4240 return false; 4241 4242 // Float types are never treated as "integer like". 4243 if (Ty->isRealFloatingType()) 4244 return false; 4245 4246 // If this is a builtin or pointer type then it is ok. 4247 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4248 return true; 4249 4250 // Small complex integer types are "integer like". 4251 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4252 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4253 4254 // Single element and zero sized arrays should be allowed, by the definition 4255 // above, but they are not. 4256 4257 // Otherwise, it must be a record type. 4258 const RecordType *RT = Ty->getAs<RecordType>(); 4259 if (!RT) return false; 4260 4261 // Ignore records with flexible arrays. 4262 const RecordDecl *RD = RT->getDecl(); 4263 if (RD->hasFlexibleArrayMember()) 4264 return false; 4265 4266 // Check that all sub-fields are at offset 0, and are themselves "integer 4267 // like". 4268 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4269 4270 bool HadField = false; 4271 unsigned idx = 0; 4272 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4273 i != e; ++i, ++idx) { 4274 const FieldDecl *FD = *i; 4275 4276 // Bit-fields are not addressable, we only need to verify they are "integer 4277 // like". We still have to disallow a subsequent non-bitfield, for example: 4278 // struct { int : 0; int x } 4279 // is non-integer like according to gcc. 4280 if (FD->isBitField()) { 4281 if (!RD->isUnion()) 4282 HadField = true; 4283 4284 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4285 return false; 4286 4287 continue; 4288 } 4289 4290 // Check if this field is at offset 0. 4291 if (Layout.getFieldOffset(idx) != 0) 4292 return false; 4293 4294 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4295 return false; 4296 4297 // Only allow at most one field in a structure. This doesn't match the 4298 // wording above, but follows gcc in situations with a field following an 4299 // empty structure. 4300 if (!RD->isUnion()) { 4301 if (HadField) 4302 return false; 4303 4304 HadField = true; 4305 } 4306 } 4307 4308 return true; 4309 } 4310 4311 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4312 bool isVariadic) const { 4313 if (RetTy->isVoidType()) 4314 return ABIArgInfo::getIgnore(); 4315 4316 // Large vector types should be returned via memory. 4317 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4318 markAllocatedGPRs(1, 1); 4319 return ABIArgInfo::getIndirect(0); 4320 } 4321 4322 if (!isAggregateTypeForABI(RetTy)) { 4323 // Treat an enum type as its underlying type. 4324 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4325 RetTy = EnumTy->getDecl()->getIntegerType(); 4326 4327 return (RetTy->isPromotableIntegerType() ? 4328 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4329 } 4330 4331 // Are we following APCS? 4332 if (getABIKind() == APCS) { 4333 if (isEmptyRecord(getContext(), RetTy, false)) 4334 return ABIArgInfo::getIgnore(); 4335 4336 // Complex types are all returned as packed integers. 4337 // 4338 // FIXME: Consider using 2 x vector types if the back end handles them 4339 // correctly. 4340 if (RetTy->isAnyComplexType()) 4341 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 4342 getContext().getTypeSize(RetTy))); 4343 4344 // Integer like structures are returned in r0. 4345 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4346 // Return in the smallest viable integer type. 4347 uint64_t Size = getContext().getTypeSize(RetTy); 4348 if (Size <= 8) 4349 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4350 if (Size <= 16) 4351 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4352 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4353 } 4354 4355 // Otherwise return in memory. 4356 markAllocatedGPRs(1, 1); 4357 return ABIArgInfo::getIndirect(0); 4358 } 4359 4360 // Otherwise this is an AAPCS variant. 4361 4362 if (isEmptyRecord(getContext(), RetTy, true)) 4363 return ABIArgInfo::getIgnore(); 4364 4365 // Check for homogeneous aggregates with AAPCS-VFP. 4366 if (getABIKind() == AAPCS_VFP && !isVariadic) { 4367 const Type *Base = nullptr; 4368 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 4369 assert(Base && "Base class should be set for homogeneous aggregate"); 4370 // Homogeneous Aggregates are returned directly. 4371 return ABIArgInfo::getDirect(); 4372 } 4373 } 4374 4375 // Aggregates <= 4 bytes are returned in r0; other aggregates 4376 // are returned indirectly. 4377 uint64_t Size = getContext().getTypeSize(RetTy); 4378 if (Size <= 32) { 4379 // Return in the smallest viable integer type. 4380 if (Size <= 8) 4381 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4382 if (Size <= 16) 4383 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4384 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4385 } 4386 4387 markAllocatedGPRs(1, 1); 4388 return ABIArgInfo::getIndirect(0); 4389 } 4390 4391 /// isIllegalVector - check whether Ty is an illegal vector type. 4392 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4393 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4394 // Check whether VT is legal. 4395 unsigned NumElements = VT->getNumElements(); 4396 uint64_t Size = getContext().getTypeSize(VT); 4397 // NumElements should be power of 2. 4398 if ((NumElements & (NumElements - 1)) != 0) 4399 return true; 4400 // Size should be greater than 32 bits. 4401 return Size <= 32; 4402 } 4403 return false; 4404 } 4405 4406 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4407 CodeGenFunction &CGF) const { 4408 llvm::Type *BP = CGF.Int8PtrTy; 4409 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4410 4411 CGBuilderTy &Builder = CGF.Builder; 4412 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4413 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4414 4415 if (isEmptyRecord(getContext(), Ty, true)) { 4416 // These are ignored for parameter passing purposes. 4417 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4418 return Builder.CreateBitCast(Addr, PTy); 4419 } 4420 4421 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4422 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4423 bool IsIndirect = false; 4424 4425 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4426 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4427 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4428 getABIKind() == ARMABIInfo::AAPCS) 4429 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4430 else 4431 TyAlign = 4; 4432 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4433 if (isIllegalVectorType(Ty) && Size > 16) { 4434 IsIndirect = true; 4435 Size = 4; 4436 TyAlign = 4; 4437 } 4438 4439 // Handle address alignment for ABI alignment > 4 bytes. 4440 if (TyAlign > 4) { 4441 assert((TyAlign & (TyAlign - 1)) == 0 && 4442 "Alignment is not power of 2!"); 4443 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4444 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4445 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4446 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4447 } 4448 4449 uint64_t Offset = 4450 llvm::RoundUpToAlignment(Size, 4); 4451 llvm::Value *NextAddr = 4452 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4453 "ap.next"); 4454 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4455 4456 if (IsIndirect) 4457 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4458 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4459 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4460 // may not be correctly aligned for the vector type. We create an aligned 4461 // temporary space and copy the content over from ap.cur to the temporary 4462 // space. This is necessary if the natural alignment of the type is greater 4463 // than the ABI alignment. 4464 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4465 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4466 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4467 "var.align"); 4468 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4469 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4470 Builder.CreateMemCpy(Dst, Src, 4471 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 4472 TyAlign, false); 4473 Addr = AlignedTemp; //The content is in aligned location. 4474 } 4475 llvm::Type *PTy = 4476 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4477 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4478 4479 return AddrTyped; 4480 } 4481 4482 namespace { 4483 4484 class NaClARMABIInfo : public ABIInfo { 4485 public: 4486 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4487 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 4488 void computeInfo(CGFunctionInfo &FI) const override; 4489 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4490 CodeGenFunction &CGF) const override; 4491 private: 4492 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 4493 ARMABIInfo NInfo; // Used for everything else. 4494 }; 4495 4496 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 4497 public: 4498 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4499 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 4500 }; 4501 4502 } 4503 4504 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4505 if (FI.getASTCallingConvention() == CC_PnaclCall) 4506 PInfo.computeInfo(FI); 4507 else 4508 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 4509 } 4510 4511 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4512 CodeGenFunction &CGF) const { 4513 // Always use the native convention; calling pnacl-style varargs functions 4514 // is unsupported. 4515 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 4516 } 4517 4518 //===----------------------------------------------------------------------===// 4519 // NVPTX ABI Implementation 4520 //===----------------------------------------------------------------------===// 4521 4522 namespace { 4523 4524 class NVPTXABIInfo : public ABIInfo { 4525 public: 4526 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4527 4528 ABIArgInfo classifyReturnType(QualType RetTy) const; 4529 ABIArgInfo classifyArgumentType(QualType Ty) const; 4530 4531 void computeInfo(CGFunctionInfo &FI) const override; 4532 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4533 CodeGenFunction &CFG) const override; 4534 }; 4535 4536 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4537 public: 4538 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4539 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4540 4541 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4542 CodeGen::CodeGenModule &M) const override; 4543 private: 4544 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 4545 // resulting MDNode to the nvvm.annotations MDNode. 4546 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 4547 }; 4548 4549 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4550 if (RetTy->isVoidType()) 4551 return ABIArgInfo::getIgnore(); 4552 4553 // note: this is different from default ABI 4554 if (!RetTy->isScalarType()) 4555 return ABIArgInfo::getDirect(); 4556 4557 // Treat an enum type as its underlying type. 4558 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4559 RetTy = EnumTy->getDecl()->getIntegerType(); 4560 4561 return (RetTy->isPromotableIntegerType() ? 4562 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4563 } 4564 4565 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4566 // Treat an enum type as its underlying type. 4567 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4568 Ty = EnumTy->getDecl()->getIntegerType(); 4569 4570 return (Ty->isPromotableIntegerType() ? 4571 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4572 } 4573 4574 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4575 if (!getCXXABI().classifyReturnType(FI)) 4576 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4577 for (auto &I : FI.arguments()) 4578 I.info = classifyArgumentType(I.type); 4579 4580 // Always honor user-specified calling convention. 4581 if (FI.getCallingConvention() != llvm::CallingConv::C) 4582 return; 4583 4584 FI.setEffectiveCallingConvention(getRuntimeCC()); 4585 } 4586 4587 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4588 CodeGenFunction &CFG) const { 4589 llvm_unreachable("NVPTX does not support varargs"); 4590 } 4591 4592 void NVPTXTargetCodeGenInfo:: 4593 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4594 CodeGen::CodeGenModule &M) const{ 4595 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4596 if (!FD) return; 4597 4598 llvm::Function *F = cast<llvm::Function>(GV); 4599 4600 // Perform special handling in OpenCL mode 4601 if (M.getLangOpts().OpenCL) { 4602 // Use OpenCL function attributes to check for kernel functions 4603 // By default, all functions are device functions 4604 if (FD->hasAttr<OpenCLKernelAttr>()) { 4605 // OpenCL __kernel functions get kernel metadata 4606 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4607 addNVVMMetadata(F, "kernel", 1); 4608 // And kernel functions are not subject to inlining 4609 F->addFnAttr(llvm::Attribute::NoInline); 4610 } 4611 } 4612 4613 // Perform special handling in CUDA mode. 4614 if (M.getLangOpts().CUDA) { 4615 // CUDA __global__ functions get a kernel metadata entry. Since 4616 // __global__ functions cannot be called from the device, we do not 4617 // need to set the noinline attribute. 4618 if (FD->hasAttr<CUDAGlobalAttr>()) { 4619 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4620 addNVVMMetadata(F, "kernel", 1); 4621 } 4622 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 4623 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 4624 addNVVMMetadata(F, "maxntidx", 4625 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 4626 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 4627 // zero value from getMinBlocks either means it was not specified in 4628 // __launch_bounds__ or the user specified a 0 value. In both cases, we 4629 // don't have to add a PTX directive. 4630 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 4631 if (MinCTASM > 0) { 4632 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 4633 addNVVMMetadata(F, "minctasm", MinCTASM); 4634 } 4635 } 4636 } 4637 } 4638 4639 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 4640 int Operand) { 4641 llvm::Module *M = F->getParent(); 4642 llvm::LLVMContext &Ctx = M->getContext(); 4643 4644 // Get "nvvm.annotations" metadata node 4645 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4646 4647 llvm::Value *MDVals[] = { 4648 F, llvm::MDString::get(Ctx, Name), 4649 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; 4650 // Append metadata to nvvm.annotations 4651 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4652 } 4653 } 4654 4655 //===----------------------------------------------------------------------===// 4656 // SystemZ ABI Implementation 4657 //===----------------------------------------------------------------------===// 4658 4659 namespace { 4660 4661 class SystemZABIInfo : public ABIInfo { 4662 public: 4663 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4664 4665 bool isPromotableIntegerType(QualType Ty) const; 4666 bool isCompoundType(QualType Ty) const; 4667 bool isFPArgumentType(QualType Ty) const; 4668 4669 ABIArgInfo classifyReturnType(QualType RetTy) const; 4670 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4671 4672 void computeInfo(CGFunctionInfo &FI) const override { 4673 if (!getCXXABI().classifyReturnType(FI)) 4674 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4675 for (auto &I : FI.arguments()) 4676 I.info = classifyArgumentType(I.type); 4677 } 4678 4679 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4680 CodeGenFunction &CGF) const override; 4681 }; 4682 4683 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 4684 public: 4685 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 4686 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 4687 }; 4688 4689 } 4690 4691 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 4692 // Treat an enum type as its underlying type. 4693 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4694 Ty = EnumTy->getDecl()->getIntegerType(); 4695 4696 // Promotable integer types are required to be promoted by the ABI. 4697 if (Ty->isPromotableIntegerType()) 4698 return true; 4699 4700 // 32-bit values must also be promoted. 4701 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4702 switch (BT->getKind()) { 4703 case BuiltinType::Int: 4704 case BuiltinType::UInt: 4705 return true; 4706 default: 4707 return false; 4708 } 4709 return false; 4710 } 4711 4712 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 4713 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 4714 } 4715 4716 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 4717 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4718 switch (BT->getKind()) { 4719 case BuiltinType::Float: 4720 case BuiltinType::Double: 4721 return true; 4722 default: 4723 return false; 4724 } 4725 4726 if (const RecordType *RT = Ty->getAsStructureType()) { 4727 const RecordDecl *RD = RT->getDecl(); 4728 bool Found = false; 4729 4730 // If this is a C++ record, check the bases first. 4731 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 4732 for (const auto &I : CXXRD->bases()) { 4733 QualType Base = I.getType(); 4734 4735 // Empty bases don't affect things either way. 4736 if (isEmptyRecord(getContext(), Base, true)) 4737 continue; 4738 4739 if (Found) 4740 return false; 4741 Found = isFPArgumentType(Base); 4742 if (!Found) 4743 return false; 4744 } 4745 4746 // Check the fields. 4747 for (const auto *FD : RD->fields()) { 4748 // Empty bitfields don't affect things either way. 4749 // Unlike isSingleElementStruct(), empty structure and array fields 4750 // do count. So do anonymous bitfields that aren't zero-sized. 4751 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4752 return true; 4753 4754 // Unlike isSingleElementStruct(), arrays do not count. 4755 // Nested isFPArgumentType structures still do though. 4756 if (Found) 4757 return false; 4758 Found = isFPArgumentType(FD->getType()); 4759 if (!Found) 4760 return false; 4761 } 4762 4763 // Unlike isSingleElementStruct(), trailing padding is allowed. 4764 // An 8-byte aligned struct s { float f; } is passed as a double. 4765 return Found; 4766 } 4767 4768 return false; 4769 } 4770 4771 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4772 CodeGenFunction &CGF) const { 4773 // Assume that va_list type is correct; should be pointer to LLVM type: 4774 // struct { 4775 // i64 __gpr; 4776 // i64 __fpr; 4777 // i8 *__overflow_arg_area; 4778 // i8 *__reg_save_area; 4779 // }; 4780 4781 // Every argument occupies 8 bytes and is passed by preference in either 4782 // GPRs or FPRs. 4783 Ty = CGF.getContext().getCanonicalType(Ty); 4784 ABIArgInfo AI = classifyArgumentType(Ty); 4785 bool InFPRs = isFPArgumentType(Ty); 4786 4787 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4788 bool IsIndirect = AI.isIndirect(); 4789 unsigned UnpaddedBitSize; 4790 if (IsIndirect) { 4791 APTy = llvm::PointerType::getUnqual(APTy); 4792 UnpaddedBitSize = 64; 4793 } else 4794 UnpaddedBitSize = getContext().getTypeSize(Ty); 4795 unsigned PaddedBitSize = 64; 4796 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 4797 4798 unsigned PaddedSize = PaddedBitSize / 8; 4799 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 4800 4801 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 4802 if (InFPRs) { 4803 MaxRegs = 4; // Maximum of 4 FPR arguments 4804 RegCountField = 1; // __fpr 4805 RegSaveIndex = 16; // save offset for f0 4806 RegPadding = 0; // floats are passed in the high bits of an FPR 4807 } else { 4808 MaxRegs = 5; // Maximum of 5 GPR arguments 4809 RegCountField = 0; // __gpr 4810 RegSaveIndex = 2; // save offset for r2 4811 RegPadding = Padding; // values are passed in the low bits of a GPR 4812 } 4813 4814 llvm::Value *RegCountPtr = 4815 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 4816 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 4817 llvm::Type *IndexTy = RegCount->getType(); 4818 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 4819 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 4820 "fits_in_regs"); 4821 4822 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4823 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4824 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4825 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4826 4827 // Emit code to load the value if it was passed in registers. 4828 CGF.EmitBlock(InRegBlock); 4829 4830 // Work out the address of an argument register. 4831 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 4832 llvm::Value *ScaledRegCount = 4833 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 4834 llvm::Value *RegBase = 4835 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 4836 llvm::Value *RegOffset = 4837 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 4838 llvm::Value *RegSaveAreaPtr = 4839 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 4840 llvm::Value *RegSaveArea = 4841 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 4842 llvm::Value *RawRegAddr = 4843 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 4844 llvm::Value *RegAddr = 4845 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 4846 4847 // Update the register count 4848 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 4849 llvm::Value *NewRegCount = 4850 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 4851 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 4852 CGF.EmitBranch(ContBlock); 4853 4854 // Emit code to load the value if it was passed in memory. 4855 CGF.EmitBlock(InMemBlock); 4856 4857 // Work out the address of a stack argument. 4858 llvm::Value *OverflowArgAreaPtr = 4859 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 4860 llvm::Value *OverflowArgArea = 4861 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 4862 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 4863 llvm::Value *RawMemAddr = 4864 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 4865 llvm::Value *MemAddr = 4866 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 4867 4868 // Update overflow_arg_area_ptr pointer 4869 llvm::Value *NewOverflowArgArea = 4870 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 4871 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 4872 CGF.EmitBranch(ContBlock); 4873 4874 // Return the appropriate result. 4875 CGF.EmitBlock(ContBlock); 4876 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 4877 ResAddr->addIncoming(RegAddr, InRegBlock); 4878 ResAddr->addIncoming(MemAddr, InMemBlock); 4879 4880 if (IsIndirect) 4881 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 4882 4883 return ResAddr; 4884 } 4885 4886 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 4887 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4888 assert(Triple.getArch() == llvm::Triple::x86); 4889 4890 switch (Opts.getStructReturnConvention()) { 4891 case CodeGenOptions::SRCK_Default: 4892 break; 4893 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 4894 return false; 4895 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 4896 return true; 4897 } 4898 4899 if (Triple.isOSDarwin()) 4900 return true; 4901 4902 switch (Triple.getOS()) { 4903 case llvm::Triple::AuroraUX: 4904 case llvm::Triple::DragonFly: 4905 case llvm::Triple::FreeBSD: 4906 case llvm::Triple::OpenBSD: 4907 case llvm::Triple::Bitrig: 4908 return true; 4909 case llvm::Triple::Win32: 4910 switch (Triple.getEnvironment()) { 4911 case llvm::Triple::UnknownEnvironment: 4912 case llvm::Triple::Cygnus: 4913 case llvm::Triple::GNU: 4914 case llvm::Triple::MSVC: 4915 return true; 4916 default: 4917 return false; 4918 } 4919 default: 4920 return false; 4921 } 4922 } 4923 4924 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 4925 if (RetTy->isVoidType()) 4926 return ABIArgInfo::getIgnore(); 4927 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 4928 return ABIArgInfo::getIndirect(0); 4929 return (isPromotableIntegerType(RetTy) ? 4930 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4931 } 4932 4933 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 4934 // Handle the generic C++ ABI. 4935 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4936 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4937 4938 // Integers and enums are extended to full register width. 4939 if (isPromotableIntegerType(Ty)) 4940 return ABIArgInfo::getExtend(); 4941 4942 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 4943 uint64_t Size = getContext().getTypeSize(Ty); 4944 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 4945 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4946 4947 // Handle small structures. 4948 if (const RecordType *RT = Ty->getAs<RecordType>()) { 4949 // Structures with flexible arrays have variable length, so really 4950 // fail the size test above. 4951 const RecordDecl *RD = RT->getDecl(); 4952 if (RD->hasFlexibleArrayMember()) 4953 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4954 4955 // The structure is passed as an unextended integer, a float, or a double. 4956 llvm::Type *PassTy; 4957 if (isFPArgumentType(Ty)) { 4958 assert(Size == 32 || Size == 64); 4959 if (Size == 32) 4960 PassTy = llvm::Type::getFloatTy(getVMContext()); 4961 else 4962 PassTy = llvm::Type::getDoubleTy(getVMContext()); 4963 } else 4964 PassTy = llvm::IntegerType::get(getVMContext(), Size); 4965 return ABIArgInfo::getDirect(PassTy); 4966 } 4967 4968 // Non-structure compounds are passed indirectly. 4969 if (isCompoundType(Ty)) 4970 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4971 4972 return ABIArgInfo::getDirect(nullptr); 4973 } 4974 4975 //===----------------------------------------------------------------------===// 4976 // MSP430 ABI Implementation 4977 //===----------------------------------------------------------------------===// 4978 4979 namespace { 4980 4981 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 4982 public: 4983 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 4984 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 4985 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4986 CodeGen::CodeGenModule &M) const override; 4987 }; 4988 4989 } 4990 4991 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 4992 llvm::GlobalValue *GV, 4993 CodeGen::CodeGenModule &M) const { 4994 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4995 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 4996 // Handle 'interrupt' attribute: 4997 llvm::Function *F = cast<llvm::Function>(GV); 4998 4999 // Step 1: Set ISR calling convention. 5000 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5001 5002 // Step 2: Add attributes goodness. 5003 F->addFnAttr(llvm::Attribute::NoInline); 5004 5005 // Step 3: Emit ISR vector alias. 5006 unsigned Num = attr->getNumber() / 2; 5007 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5008 "__isr_" + Twine(Num), F); 5009 } 5010 } 5011 } 5012 5013 //===----------------------------------------------------------------------===// 5014 // MIPS ABI Implementation. This works for both little-endian and 5015 // big-endian variants. 5016 //===----------------------------------------------------------------------===// 5017 5018 namespace { 5019 class MipsABIInfo : public ABIInfo { 5020 bool IsO32; 5021 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5022 void CoerceToIntArgs(uint64_t TySize, 5023 SmallVectorImpl<llvm::Type *> &ArgList) const; 5024 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5025 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5026 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5027 public: 5028 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5029 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5030 StackAlignInBytes(IsO32 ? 8 : 16) {} 5031 5032 ABIArgInfo classifyReturnType(QualType RetTy) const; 5033 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5034 void computeInfo(CGFunctionInfo &FI) const override; 5035 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5036 CodeGenFunction &CGF) const override; 5037 }; 5038 5039 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5040 unsigned SizeOfUnwindException; 5041 public: 5042 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5043 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5044 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5045 5046 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5047 return 29; 5048 } 5049 5050 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5051 CodeGen::CodeGenModule &CGM) const override { 5052 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5053 if (!FD) return; 5054 llvm::Function *Fn = cast<llvm::Function>(GV); 5055 if (FD->hasAttr<Mips16Attr>()) { 5056 Fn->addFnAttr("mips16"); 5057 } 5058 else if (FD->hasAttr<NoMips16Attr>()) { 5059 Fn->addFnAttr("nomips16"); 5060 } 5061 } 5062 5063 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5064 llvm::Value *Address) const override; 5065 5066 unsigned getSizeOfUnwindException() const override { 5067 return SizeOfUnwindException; 5068 } 5069 }; 5070 } 5071 5072 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5073 SmallVectorImpl<llvm::Type *> &ArgList) const { 5074 llvm::IntegerType *IntTy = 5075 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5076 5077 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5078 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5079 ArgList.push_back(IntTy); 5080 5081 // If necessary, add one more integer type to ArgList. 5082 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5083 5084 if (R) 5085 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5086 } 5087 5088 // In N32/64, an aligned double precision floating point field is passed in 5089 // a register. 5090 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5091 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5092 5093 if (IsO32) { 5094 CoerceToIntArgs(TySize, ArgList); 5095 return llvm::StructType::get(getVMContext(), ArgList); 5096 } 5097 5098 if (Ty->isComplexType()) 5099 return CGT.ConvertType(Ty); 5100 5101 const RecordType *RT = Ty->getAs<RecordType>(); 5102 5103 // Unions/vectors are passed in integer registers. 5104 if (!RT || !RT->isStructureOrClassType()) { 5105 CoerceToIntArgs(TySize, ArgList); 5106 return llvm::StructType::get(getVMContext(), ArgList); 5107 } 5108 5109 const RecordDecl *RD = RT->getDecl(); 5110 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5111 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5112 5113 uint64_t LastOffset = 0; 5114 unsigned idx = 0; 5115 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5116 5117 // Iterate over fields in the struct/class and check if there are any aligned 5118 // double fields. 5119 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5120 i != e; ++i, ++idx) { 5121 const QualType Ty = i->getType(); 5122 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5123 5124 if (!BT || BT->getKind() != BuiltinType::Double) 5125 continue; 5126 5127 uint64_t Offset = Layout.getFieldOffset(idx); 5128 if (Offset % 64) // Ignore doubles that are not aligned. 5129 continue; 5130 5131 // Add ((Offset - LastOffset) / 64) args of type i64. 5132 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5133 ArgList.push_back(I64); 5134 5135 // Add double type. 5136 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5137 LastOffset = Offset + 64; 5138 } 5139 5140 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5141 ArgList.append(IntArgList.begin(), IntArgList.end()); 5142 5143 return llvm::StructType::get(getVMContext(), ArgList); 5144 } 5145 5146 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5147 uint64_t Offset) const { 5148 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5149 return nullptr; 5150 5151 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5152 } 5153 5154 ABIArgInfo 5155 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5156 uint64_t OrigOffset = Offset; 5157 uint64_t TySize = getContext().getTypeSize(Ty); 5158 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5159 5160 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5161 (uint64_t)StackAlignInBytes); 5162 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5163 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5164 5165 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5166 // Ignore empty aggregates. 5167 if (TySize == 0) 5168 return ABIArgInfo::getIgnore(); 5169 5170 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5171 Offset = OrigOffset + MinABIStackAlignInBytes; 5172 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5173 } 5174 5175 // If we have reached here, aggregates are passed directly by coercing to 5176 // another structure type. Padding is inserted if the offset of the 5177 // aggregate is unaligned. 5178 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5179 getPaddingType(OrigOffset, CurrOffset)); 5180 } 5181 5182 // Treat an enum type as its underlying type. 5183 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5184 Ty = EnumTy->getDecl()->getIntegerType(); 5185 5186 if (Ty->isPromotableIntegerType()) 5187 return ABIArgInfo::getExtend(); 5188 5189 return ABIArgInfo::getDirect( 5190 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5191 } 5192 5193 llvm::Type* 5194 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5195 const RecordType *RT = RetTy->getAs<RecordType>(); 5196 SmallVector<llvm::Type*, 8> RTList; 5197 5198 if (RT && RT->isStructureOrClassType()) { 5199 const RecordDecl *RD = RT->getDecl(); 5200 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5201 unsigned FieldCnt = Layout.getFieldCount(); 5202 5203 // N32/64 returns struct/classes in floating point registers if the 5204 // following conditions are met: 5205 // 1. The size of the struct/class is no larger than 128-bit. 5206 // 2. The struct/class has one or two fields all of which are floating 5207 // point types. 5208 // 3. The offset of the first field is zero (this follows what gcc does). 5209 // 5210 // Any other composite results are returned in integer registers. 5211 // 5212 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5213 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5214 for (; b != e; ++b) { 5215 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5216 5217 if (!BT || !BT->isFloatingPoint()) 5218 break; 5219 5220 RTList.push_back(CGT.ConvertType(b->getType())); 5221 } 5222 5223 if (b == e) 5224 return llvm::StructType::get(getVMContext(), RTList, 5225 RD->hasAttr<PackedAttr>()); 5226 5227 RTList.clear(); 5228 } 5229 } 5230 5231 CoerceToIntArgs(Size, RTList); 5232 return llvm::StructType::get(getVMContext(), RTList); 5233 } 5234 5235 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5236 uint64_t Size = getContext().getTypeSize(RetTy); 5237 5238 if (RetTy->isVoidType() || Size == 0) 5239 return ABIArgInfo::getIgnore(); 5240 5241 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5242 if (Size <= 128) { 5243 if (RetTy->isAnyComplexType()) 5244 return ABIArgInfo::getDirect(); 5245 5246 // O32 returns integer vectors in registers. 5247 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 5248 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5249 5250 if (!IsO32) 5251 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5252 } 5253 5254 return ABIArgInfo::getIndirect(0); 5255 } 5256 5257 // Treat an enum type as its underlying type. 5258 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5259 RetTy = EnumTy->getDecl()->getIntegerType(); 5260 5261 return (RetTy->isPromotableIntegerType() ? 5262 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5263 } 5264 5265 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5266 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5267 if (!getCXXABI().classifyReturnType(FI)) 5268 RetInfo = classifyReturnType(FI.getReturnType()); 5269 5270 // Check if a pointer to an aggregate is passed as a hidden argument. 5271 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5272 5273 for (auto &I : FI.arguments()) 5274 I.info = classifyArgumentType(I.type, Offset); 5275 } 5276 5277 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5278 CodeGenFunction &CGF) const { 5279 llvm::Type *BP = CGF.Int8PtrTy; 5280 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5281 5282 CGBuilderTy &Builder = CGF.Builder; 5283 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5284 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5285 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 5286 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5287 llvm::Value *AddrTyped; 5288 unsigned PtrWidth = getTarget().getPointerWidth(0); 5289 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5290 5291 if (TypeAlign > MinABIStackAlignInBytes) { 5292 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5293 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5294 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5295 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5296 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5297 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5298 } 5299 else 5300 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5301 5302 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5303 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5304 uint64_t Offset = 5305 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 5306 llvm::Value *NextAddr = 5307 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5308 "ap.next"); 5309 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5310 5311 return AddrTyped; 5312 } 5313 5314 bool 5315 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5316 llvm::Value *Address) const { 5317 // This information comes from gcc's implementation, which seems to 5318 // as canonical as it gets. 5319 5320 // Everything on MIPS is 4 bytes. Double-precision FP registers 5321 // are aliased to pairs of single-precision FP registers. 5322 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5323 5324 // 0-31 are the general purpose registers, $0 - $31. 5325 // 32-63 are the floating-point registers, $f0 - $f31. 5326 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5327 // 66 is the (notional, I think) register for signal-handler return. 5328 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5329 5330 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5331 // They are one bit wide and ignored here. 5332 5333 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5334 // (coprocessor 1 is the FP unit) 5335 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5336 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5337 // 176-181 are the DSP accumulator registers. 5338 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5339 return false; 5340 } 5341 5342 //===----------------------------------------------------------------------===// 5343 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5344 // Currently subclassed only to implement custom OpenCL C function attribute 5345 // handling. 5346 //===----------------------------------------------------------------------===// 5347 5348 namespace { 5349 5350 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5351 public: 5352 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5353 : DefaultTargetCodeGenInfo(CGT) {} 5354 5355 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5356 CodeGen::CodeGenModule &M) const override; 5357 }; 5358 5359 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5360 llvm::GlobalValue *GV, 5361 CodeGen::CodeGenModule &M) const { 5362 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5363 if (!FD) return; 5364 5365 llvm::Function *F = cast<llvm::Function>(GV); 5366 5367 if (M.getLangOpts().OpenCL) { 5368 if (FD->hasAttr<OpenCLKernelAttr>()) { 5369 // OpenCL C Kernel functions are not subject to inlining 5370 F->addFnAttr(llvm::Attribute::NoInline); 5371 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5372 if (Attr) { 5373 // Convert the reqd_work_group_size() attributes to metadata. 5374 llvm::LLVMContext &Context = F->getContext(); 5375 llvm::NamedMDNode *OpenCLMetadata = 5376 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5377 5378 SmallVector<llvm::Value*, 5> Operands; 5379 Operands.push_back(F); 5380 5381 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5382 llvm::APInt(32, Attr->getXDim()))); 5383 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5384 llvm::APInt(32, Attr->getYDim()))); 5385 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5386 llvm::APInt(32, Attr->getZDim()))); 5387 5388 // Add a boolean constant operand for "required" (true) or "hint" (false) 5389 // for implementing the work_group_size_hint attr later. Currently 5390 // always true as the hint is not yet implemented. 5391 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5392 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5393 } 5394 } 5395 } 5396 } 5397 5398 } 5399 5400 //===----------------------------------------------------------------------===// 5401 // Hexagon ABI Implementation 5402 //===----------------------------------------------------------------------===// 5403 5404 namespace { 5405 5406 class HexagonABIInfo : public ABIInfo { 5407 5408 5409 public: 5410 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5411 5412 private: 5413 5414 ABIArgInfo classifyReturnType(QualType RetTy) const; 5415 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5416 5417 void computeInfo(CGFunctionInfo &FI) const override; 5418 5419 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5420 CodeGenFunction &CGF) const override; 5421 }; 5422 5423 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5424 public: 5425 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5426 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5427 5428 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5429 return 29; 5430 } 5431 }; 5432 5433 } 5434 5435 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5436 if (!getCXXABI().classifyReturnType(FI)) 5437 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5438 for (auto &I : FI.arguments()) 5439 I.info = classifyArgumentType(I.type); 5440 } 5441 5442 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5443 if (!isAggregateTypeForABI(Ty)) { 5444 // Treat an enum type as its underlying type. 5445 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5446 Ty = EnumTy->getDecl()->getIntegerType(); 5447 5448 return (Ty->isPromotableIntegerType() ? 5449 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5450 } 5451 5452 // Ignore empty records. 5453 if (isEmptyRecord(getContext(), Ty, true)) 5454 return ABIArgInfo::getIgnore(); 5455 5456 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5457 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5458 5459 uint64_t Size = getContext().getTypeSize(Ty); 5460 if (Size > 64) 5461 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5462 // Pass in the smallest viable integer type. 5463 else if (Size > 32) 5464 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5465 else if (Size > 16) 5466 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5467 else if (Size > 8) 5468 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5469 else 5470 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5471 } 5472 5473 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5474 if (RetTy->isVoidType()) 5475 return ABIArgInfo::getIgnore(); 5476 5477 // Large vector types should be returned via memory. 5478 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5479 return ABIArgInfo::getIndirect(0); 5480 5481 if (!isAggregateTypeForABI(RetTy)) { 5482 // Treat an enum type as its underlying type. 5483 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5484 RetTy = EnumTy->getDecl()->getIntegerType(); 5485 5486 return (RetTy->isPromotableIntegerType() ? 5487 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5488 } 5489 5490 if (isEmptyRecord(getContext(), RetTy, true)) 5491 return ABIArgInfo::getIgnore(); 5492 5493 // Aggregates <= 8 bytes are returned in r0; other aggregates 5494 // are returned indirectly. 5495 uint64_t Size = getContext().getTypeSize(RetTy); 5496 if (Size <= 64) { 5497 // Return in the smallest viable integer type. 5498 if (Size <= 8) 5499 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5500 if (Size <= 16) 5501 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5502 if (Size <= 32) 5503 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5504 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5505 } 5506 5507 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5508 } 5509 5510 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5511 CodeGenFunction &CGF) const { 5512 // FIXME: Need to handle alignment 5513 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5514 5515 CGBuilderTy &Builder = CGF.Builder; 5516 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5517 "ap"); 5518 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5519 llvm::Type *PTy = 5520 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5521 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5522 5523 uint64_t Offset = 5524 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5525 llvm::Value *NextAddr = 5526 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5527 "ap.next"); 5528 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5529 5530 return AddrTyped; 5531 } 5532 5533 5534 //===----------------------------------------------------------------------===// 5535 // SPARC v9 ABI Implementation. 5536 // Based on the SPARC Compliance Definition version 2.4.1. 5537 // 5538 // Function arguments a mapped to a nominal "parameter array" and promoted to 5539 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5540 // the array, structs larger than 16 bytes are passed indirectly. 5541 // 5542 // One case requires special care: 5543 // 5544 // struct mixed { 5545 // int i; 5546 // float f; 5547 // }; 5548 // 5549 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5550 // parameter array, but the int is passed in an integer register, and the float 5551 // is passed in a floating point register. This is represented as two arguments 5552 // with the LLVM IR inreg attribute: 5553 // 5554 // declare void f(i32 inreg %i, float inreg %f) 5555 // 5556 // The code generator will only allocate 4 bytes from the parameter array for 5557 // the inreg arguments. All other arguments are allocated a multiple of 8 5558 // bytes. 5559 // 5560 namespace { 5561 class SparcV9ABIInfo : public ABIInfo { 5562 public: 5563 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5564 5565 private: 5566 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5567 void computeInfo(CGFunctionInfo &FI) const override; 5568 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5569 CodeGenFunction &CGF) const override; 5570 5571 // Coercion type builder for structs passed in registers. The coercion type 5572 // serves two purposes: 5573 // 5574 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5575 // in registers. 5576 // 2. Expose aligned floating point elements as first-level elements, so the 5577 // code generator knows to pass them in floating point registers. 5578 // 5579 // We also compute the InReg flag which indicates that the struct contains 5580 // aligned 32-bit floats. 5581 // 5582 struct CoerceBuilder { 5583 llvm::LLVMContext &Context; 5584 const llvm::DataLayout &DL; 5585 SmallVector<llvm::Type*, 8> Elems; 5586 uint64_t Size; 5587 bool InReg; 5588 5589 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5590 : Context(c), DL(dl), Size(0), InReg(false) {} 5591 5592 // Pad Elems with integers until Size is ToSize. 5593 void pad(uint64_t ToSize) { 5594 assert(ToSize >= Size && "Cannot remove elements"); 5595 if (ToSize == Size) 5596 return; 5597 5598 // Finish the current 64-bit word. 5599 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5600 if (Aligned > Size && Aligned <= ToSize) { 5601 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5602 Size = Aligned; 5603 } 5604 5605 // Add whole 64-bit words. 5606 while (Size + 64 <= ToSize) { 5607 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5608 Size += 64; 5609 } 5610 5611 // Final in-word padding. 5612 if (Size < ToSize) { 5613 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5614 Size = ToSize; 5615 } 5616 } 5617 5618 // Add a floating point element at Offset. 5619 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5620 // Unaligned floats are treated as integers. 5621 if (Offset % Bits) 5622 return; 5623 // The InReg flag is only required if there are any floats < 64 bits. 5624 if (Bits < 64) 5625 InReg = true; 5626 pad(Offset); 5627 Elems.push_back(Ty); 5628 Size = Offset + Bits; 5629 } 5630 5631 // Add a struct type to the coercion type, starting at Offset (in bits). 5632 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5633 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5634 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5635 llvm::Type *ElemTy = StrTy->getElementType(i); 5636 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5637 switch (ElemTy->getTypeID()) { 5638 case llvm::Type::StructTyID: 5639 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5640 break; 5641 case llvm::Type::FloatTyID: 5642 addFloat(ElemOffset, ElemTy, 32); 5643 break; 5644 case llvm::Type::DoubleTyID: 5645 addFloat(ElemOffset, ElemTy, 64); 5646 break; 5647 case llvm::Type::FP128TyID: 5648 addFloat(ElemOffset, ElemTy, 128); 5649 break; 5650 case llvm::Type::PointerTyID: 5651 if (ElemOffset % 64 == 0) { 5652 pad(ElemOffset); 5653 Elems.push_back(ElemTy); 5654 Size += 64; 5655 } 5656 break; 5657 default: 5658 break; 5659 } 5660 } 5661 } 5662 5663 // Check if Ty is a usable substitute for the coercion type. 5664 bool isUsableType(llvm::StructType *Ty) const { 5665 if (Ty->getNumElements() != Elems.size()) 5666 return false; 5667 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5668 if (Elems[i] != Ty->getElementType(i)) 5669 return false; 5670 return true; 5671 } 5672 5673 // Get the coercion type as a literal struct type. 5674 llvm::Type *getType() const { 5675 if (Elems.size() == 1) 5676 return Elems.front(); 5677 else 5678 return llvm::StructType::get(Context, Elems); 5679 } 5680 }; 5681 }; 5682 } // end anonymous namespace 5683 5684 ABIArgInfo 5685 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5686 if (Ty->isVoidType()) 5687 return ABIArgInfo::getIgnore(); 5688 5689 uint64_t Size = getContext().getTypeSize(Ty); 5690 5691 // Anything too big to fit in registers is passed with an explicit indirect 5692 // pointer / sret pointer. 5693 if (Size > SizeLimit) 5694 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5695 5696 // Treat an enum type as its underlying type. 5697 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5698 Ty = EnumTy->getDecl()->getIntegerType(); 5699 5700 // Integer types smaller than a register are extended. 5701 if (Size < 64 && Ty->isIntegerType()) 5702 return ABIArgInfo::getExtend(); 5703 5704 // Other non-aggregates go in registers. 5705 if (!isAggregateTypeForABI(Ty)) 5706 return ABIArgInfo::getDirect(); 5707 5708 // If a C++ object has either a non-trivial copy constructor or a non-trivial 5709 // destructor, it is passed with an explicit indirect pointer / sret pointer. 5710 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5711 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5712 5713 // This is a small aggregate type that should be passed in registers. 5714 // Build a coercion type from the LLVM struct type. 5715 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 5716 if (!StrTy) 5717 return ABIArgInfo::getDirect(); 5718 5719 CoerceBuilder CB(getVMContext(), getDataLayout()); 5720 CB.addStruct(0, StrTy); 5721 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 5722 5723 // Try to use the original type for coercion. 5724 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 5725 5726 if (CB.InReg) 5727 return ABIArgInfo::getDirectInReg(CoerceTy); 5728 else 5729 return ABIArgInfo::getDirect(CoerceTy); 5730 } 5731 5732 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5733 CodeGenFunction &CGF) const { 5734 ABIArgInfo AI = classifyType(Ty, 16 * 8); 5735 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5736 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5737 AI.setCoerceToType(ArgTy); 5738 5739 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5740 CGBuilderTy &Builder = CGF.Builder; 5741 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5742 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5743 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5744 llvm::Value *ArgAddr; 5745 unsigned Stride; 5746 5747 switch (AI.getKind()) { 5748 case ABIArgInfo::Expand: 5749 case ABIArgInfo::InAlloca: 5750 llvm_unreachable("Unsupported ABI kind for va_arg"); 5751 5752 case ABIArgInfo::Extend: 5753 Stride = 8; 5754 ArgAddr = Builder 5755 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 5756 "extend"); 5757 break; 5758 5759 case ABIArgInfo::Direct: 5760 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5761 ArgAddr = Addr; 5762 break; 5763 5764 case ABIArgInfo::Indirect: 5765 Stride = 8; 5766 ArgAddr = Builder.CreateBitCast(Addr, 5767 llvm::PointerType::getUnqual(ArgPtrTy), 5768 "indirect"); 5769 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 5770 break; 5771 5772 case ABIArgInfo::Ignore: 5773 return llvm::UndefValue::get(ArgPtrTy); 5774 } 5775 5776 // Update VAList. 5777 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 5778 Builder.CreateStore(Addr, VAListAddrAsBPP); 5779 5780 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 5781 } 5782 5783 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 5784 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 5785 for (auto &I : FI.arguments()) 5786 I.info = classifyType(I.type, 16 * 8); 5787 } 5788 5789 namespace { 5790 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 5791 public: 5792 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 5793 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 5794 5795 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5796 return 14; 5797 } 5798 5799 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5800 llvm::Value *Address) const override; 5801 }; 5802 } // end anonymous namespace 5803 5804 bool 5805 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5806 llvm::Value *Address) const { 5807 // This is calculated from the LLVM and GCC tables and verified 5808 // against gcc output. AFAIK all ABIs use the same encoding. 5809 5810 CodeGen::CGBuilderTy &Builder = CGF.Builder; 5811 5812 llvm::IntegerType *i8 = CGF.Int8Ty; 5813 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 5814 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 5815 5816 // 0-31: the 8-byte general-purpose registers 5817 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 5818 5819 // 32-63: f0-31, the 4-byte floating-point registers 5820 AssignToArrayRange(Builder, Address, Four8, 32, 63); 5821 5822 // Y = 64 5823 // PSR = 65 5824 // WIM = 66 5825 // TBR = 67 5826 // PC = 68 5827 // NPC = 69 5828 // FSR = 70 5829 // CSR = 71 5830 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 5831 5832 // 72-87: d0-15, the 8-byte floating-point registers 5833 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 5834 5835 return false; 5836 } 5837 5838 5839 //===----------------------------------------------------------------------===// 5840 // XCore ABI Implementation 5841 //===----------------------------------------------------------------------===// 5842 5843 namespace { 5844 5845 /// A SmallStringEnc instance is used to build up the TypeString by passing 5846 /// it by reference between functions that append to it. 5847 typedef llvm::SmallString<128> SmallStringEnc; 5848 5849 /// TypeStringCache caches the meta encodings of Types. 5850 /// 5851 /// The reason for caching TypeStrings is two fold: 5852 /// 1. To cache a type's encoding for later uses; 5853 /// 2. As a means to break recursive member type inclusion. 5854 /// 5855 /// A cache Entry can have a Status of: 5856 /// NonRecursive: The type encoding is not recursive; 5857 /// Recursive: The type encoding is recursive; 5858 /// Incomplete: An incomplete TypeString; 5859 /// IncompleteUsed: An incomplete TypeString that has been used in a 5860 /// Recursive type encoding. 5861 /// 5862 /// A NonRecursive entry will have all of its sub-members expanded as fully 5863 /// as possible. Whilst it may contain types which are recursive, the type 5864 /// itself is not recursive and thus its encoding may be safely used whenever 5865 /// the type is encountered. 5866 /// 5867 /// A Recursive entry will have all of its sub-members expanded as fully as 5868 /// possible. The type itself is recursive and it may contain other types which 5869 /// are recursive. The Recursive encoding must not be used during the expansion 5870 /// of a recursive type's recursive branch. For simplicity the code uses 5871 /// IncompleteCount to reject all usage of Recursive encodings for member types. 5872 /// 5873 /// An Incomplete entry is always a RecordType and only encodes its 5874 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 5875 /// are placed into the cache during type expansion as a means to identify and 5876 /// handle recursive inclusion of types as sub-members. If there is recursion 5877 /// the entry becomes IncompleteUsed. 5878 /// 5879 /// During the expansion of a RecordType's members: 5880 /// 5881 /// If the cache contains a NonRecursive encoding for the member type, the 5882 /// cached encoding is used; 5883 /// 5884 /// If the cache contains a Recursive encoding for the member type, the 5885 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 5886 /// 5887 /// If the member is a RecordType, an Incomplete encoding is placed into the 5888 /// cache to break potential recursive inclusion of itself as a sub-member; 5889 /// 5890 /// Once a member RecordType has been expanded, its temporary incomplete 5891 /// entry is removed from the cache. If a Recursive encoding was swapped out 5892 /// it is swapped back in; 5893 /// 5894 /// If an incomplete entry is used to expand a sub-member, the incomplete 5895 /// entry is marked as IncompleteUsed. The cache keeps count of how many 5896 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 5897 /// 5898 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 5899 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 5900 /// Else the member is part of a recursive type and thus the recursion has 5901 /// been exited too soon for the encoding to be correct for the member. 5902 /// 5903 class TypeStringCache { 5904 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 5905 struct Entry { 5906 std::string Str; // The encoded TypeString for the type. 5907 enum Status State; // Information about the encoding in 'Str'. 5908 std::string Swapped; // A temporary place holder for a Recursive encoding 5909 // during the expansion of RecordType's members. 5910 }; 5911 std::map<const IdentifierInfo *, struct Entry> Map; 5912 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 5913 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 5914 public: 5915 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 5916 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 5917 bool removeIncomplete(const IdentifierInfo *ID); 5918 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 5919 bool IsRecursive); 5920 StringRef lookupStr(const IdentifierInfo *ID); 5921 }; 5922 5923 /// TypeString encodings for enum & union fields must be order. 5924 /// FieldEncoding is a helper for this ordering process. 5925 class FieldEncoding { 5926 bool HasName; 5927 std::string Enc; 5928 public: 5929 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 5930 StringRef str() {return Enc.c_str();}; 5931 bool operator<(const FieldEncoding &rhs) const { 5932 if (HasName != rhs.HasName) return HasName; 5933 return Enc < rhs.Enc; 5934 } 5935 }; 5936 5937 class XCoreABIInfo : public DefaultABIInfo { 5938 public: 5939 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 5940 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5941 CodeGenFunction &CGF) const override; 5942 }; 5943 5944 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 5945 mutable TypeStringCache TSC; 5946 public: 5947 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 5948 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 5949 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 5950 CodeGen::CodeGenModule &M) const override; 5951 }; 5952 5953 } // End anonymous namespace. 5954 5955 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5956 CodeGenFunction &CGF) const { 5957 CGBuilderTy &Builder = CGF.Builder; 5958 5959 // Get the VAList. 5960 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 5961 CGF.Int8PtrPtrTy); 5962 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 5963 5964 // Handle the argument. 5965 ABIArgInfo AI = classifyArgumentType(Ty); 5966 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5967 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5968 AI.setCoerceToType(ArgTy); 5969 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5970 llvm::Value *Val; 5971 uint64_t ArgSize = 0; 5972 switch (AI.getKind()) { 5973 case ABIArgInfo::Expand: 5974 case ABIArgInfo::InAlloca: 5975 llvm_unreachable("Unsupported ABI kind for va_arg"); 5976 case ABIArgInfo::Ignore: 5977 Val = llvm::UndefValue::get(ArgPtrTy); 5978 ArgSize = 0; 5979 break; 5980 case ABIArgInfo::Extend: 5981 case ABIArgInfo::Direct: 5982 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 5983 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5984 if (ArgSize < 4) 5985 ArgSize = 4; 5986 break; 5987 case ABIArgInfo::Indirect: 5988 llvm::Value *ArgAddr; 5989 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 5990 ArgAddr = Builder.CreateLoad(ArgAddr); 5991 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 5992 ArgSize = 4; 5993 break; 5994 } 5995 5996 // Increment the VAList. 5997 if (ArgSize) { 5998 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 5999 Builder.CreateStore(APN, VAListAddrAsBPP); 6000 } 6001 return Val; 6002 } 6003 6004 /// During the expansion of a RecordType, an incomplete TypeString is placed 6005 /// into the cache as a means to identify and break recursion. 6006 /// If there is a Recursive encoding in the cache, it is swapped out and will 6007 /// be reinserted by removeIncomplete(). 6008 /// All other types of encoding should have been used rather than arriving here. 6009 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6010 std::string StubEnc) { 6011 if (!ID) 6012 return; 6013 Entry &E = Map[ID]; 6014 assert( (E.Str.empty() || E.State == Recursive) && 6015 "Incorrectly use of addIncomplete"); 6016 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6017 E.Swapped.swap(E.Str); // swap out the Recursive 6018 E.Str.swap(StubEnc); 6019 E.State = Incomplete; 6020 ++IncompleteCount; 6021 } 6022 6023 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6024 /// must be removed from the cache. 6025 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6026 /// Returns true if the RecordType was defined recursively. 6027 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6028 if (!ID) 6029 return false; 6030 auto I = Map.find(ID); 6031 assert(I != Map.end() && "Entry not present"); 6032 Entry &E = I->second; 6033 assert( (E.State == Incomplete || 6034 E.State == IncompleteUsed) && 6035 "Entry must be an incomplete type"); 6036 bool IsRecursive = false; 6037 if (E.State == IncompleteUsed) { 6038 // We made use of our Incomplete encoding, thus we are recursive. 6039 IsRecursive = true; 6040 --IncompleteUsedCount; 6041 } 6042 if (E.Swapped.empty()) 6043 Map.erase(I); 6044 else { 6045 // Swap the Recursive back. 6046 E.Swapped.swap(E.Str); 6047 E.Swapped.clear(); 6048 E.State = Recursive; 6049 } 6050 --IncompleteCount; 6051 return IsRecursive; 6052 } 6053 6054 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6055 /// Recursive (viz: all sub-members were expanded as fully as possible). 6056 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6057 bool IsRecursive) { 6058 if (!ID || IncompleteUsedCount) 6059 return; // No key or it is is an incomplete sub-type so don't add. 6060 Entry &E = Map[ID]; 6061 if (IsRecursive && !E.Str.empty()) { 6062 assert(E.State==Recursive && E.Str.size() == Str.size() && 6063 "This is not the same Recursive entry"); 6064 // The parent container was not recursive after all, so we could have used 6065 // this Recursive sub-member entry after all, but we assumed the worse when 6066 // we started viz: IncompleteCount!=0. 6067 return; 6068 } 6069 assert(E.Str.empty() && "Entry already present"); 6070 E.Str = Str.str(); 6071 E.State = IsRecursive? Recursive : NonRecursive; 6072 } 6073 6074 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6075 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6076 /// encoding is Recursive, return an empty StringRef. 6077 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6078 if (!ID) 6079 return StringRef(); // We have no key. 6080 auto I = Map.find(ID); 6081 if (I == Map.end()) 6082 return StringRef(); // We have no encoding. 6083 Entry &E = I->second; 6084 if (E.State == Recursive && IncompleteCount) 6085 return StringRef(); // We don't use Recursive encodings for member types. 6086 6087 if (E.State == Incomplete) { 6088 // The incomplete type is being used to break out of recursion. 6089 E.State = IncompleteUsed; 6090 ++IncompleteUsedCount; 6091 } 6092 return E.Str.c_str(); 6093 } 6094 6095 /// The XCore ABI includes a type information section that communicates symbol 6096 /// type information to the linker. The linker uses this information to verify 6097 /// safety/correctness of things such as array bound and pointers et al. 6098 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6099 /// This type information (TypeString) is emitted into meta data for all global 6100 /// symbols: definitions, declarations, functions & variables. 6101 /// 6102 /// The TypeString carries type, qualifier, name, size & value details. 6103 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6104 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6105 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6106 /// 6107 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6108 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6109 6110 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6111 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6112 CodeGen::CodeGenModule &CGM) const { 6113 SmallStringEnc Enc; 6114 if (getTypeString(Enc, D, CGM, TSC)) { 6115 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6116 llvm::SmallVector<llvm::Value *, 2> MDVals; 6117 MDVals.push_back(GV); 6118 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6119 llvm::NamedMDNode *MD = 6120 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6121 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6122 } 6123 } 6124 6125 static bool appendType(SmallStringEnc &Enc, QualType QType, 6126 const CodeGen::CodeGenModule &CGM, 6127 TypeStringCache &TSC); 6128 6129 /// Helper function for appendRecordType(). 6130 /// Builds a SmallVector containing the encoded field types in declaration order. 6131 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6132 const RecordDecl *RD, 6133 const CodeGen::CodeGenModule &CGM, 6134 TypeStringCache &TSC) { 6135 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 6136 I != E; ++I) { 6137 SmallStringEnc Enc; 6138 Enc += "m("; 6139 Enc += I->getName(); 6140 Enc += "){"; 6141 if (I->isBitField()) { 6142 Enc += "b("; 6143 llvm::raw_svector_ostream OS(Enc); 6144 OS.resync(); 6145 OS << I->getBitWidthValue(CGM.getContext()); 6146 OS.flush(); 6147 Enc += ':'; 6148 } 6149 if (!appendType(Enc, I->getType(), CGM, TSC)) 6150 return false; 6151 if (I->isBitField()) 6152 Enc += ')'; 6153 Enc += '}'; 6154 FE.push_back(FieldEncoding(!I->getName().empty(), Enc)); 6155 } 6156 return true; 6157 } 6158 6159 /// Appends structure and union types to Enc and adds encoding to cache. 6160 /// Recursively calls appendType (via extractFieldType) for each field. 6161 /// Union types have their fields ordered according to the ABI. 6162 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6163 const CodeGen::CodeGenModule &CGM, 6164 TypeStringCache &TSC, const IdentifierInfo *ID) { 6165 // Append the cached TypeString if we have one. 6166 StringRef TypeString = TSC.lookupStr(ID); 6167 if (!TypeString.empty()) { 6168 Enc += TypeString; 6169 return true; 6170 } 6171 6172 // Start to emit an incomplete TypeString. 6173 size_t Start = Enc.size(); 6174 Enc += (RT->isUnionType()? 'u' : 's'); 6175 Enc += '('; 6176 if (ID) 6177 Enc += ID->getName(); 6178 Enc += "){"; 6179 6180 // We collect all encoded fields and order as necessary. 6181 bool IsRecursive = false; 6182 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6183 if (RD && !RD->field_empty()) { 6184 // An incomplete TypeString stub is placed in the cache for this RecordType 6185 // so that recursive calls to this RecordType will use it whilst building a 6186 // complete TypeString for this RecordType. 6187 SmallVector<FieldEncoding, 16> FE; 6188 std::string StubEnc(Enc.substr(Start).str()); 6189 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6190 TSC.addIncomplete(ID, std::move(StubEnc)); 6191 if (!extractFieldType(FE, RD, CGM, TSC)) { 6192 (void) TSC.removeIncomplete(ID); 6193 return false; 6194 } 6195 IsRecursive = TSC.removeIncomplete(ID); 6196 // The ABI requires unions to be sorted but not structures. 6197 // See FieldEncoding::operator< for sort algorithm. 6198 if (RT->isUnionType()) 6199 std::sort(FE.begin(), FE.end()); 6200 // We can now complete the TypeString. 6201 unsigned E = FE.size(); 6202 for (unsigned I = 0; I != E; ++I) { 6203 if (I) 6204 Enc += ','; 6205 Enc += FE[I].str(); 6206 } 6207 } 6208 Enc += '}'; 6209 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6210 return true; 6211 } 6212 6213 /// Appends enum types to Enc and adds the encoding to the cache. 6214 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6215 TypeStringCache &TSC, 6216 const IdentifierInfo *ID) { 6217 // Append the cached TypeString if we have one. 6218 StringRef TypeString = TSC.lookupStr(ID); 6219 if (!TypeString.empty()) { 6220 Enc += TypeString; 6221 return true; 6222 } 6223 6224 size_t Start = Enc.size(); 6225 Enc += "e("; 6226 if (ID) 6227 Enc += ID->getName(); 6228 Enc += "){"; 6229 6230 // We collect all encoded enumerations and order them alphanumerically. 6231 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6232 SmallVector<FieldEncoding, 16> FE; 6233 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6234 ++I) { 6235 SmallStringEnc EnumEnc; 6236 EnumEnc += "m("; 6237 EnumEnc += I->getName(); 6238 EnumEnc += "){"; 6239 I->getInitVal().toString(EnumEnc); 6240 EnumEnc += '}'; 6241 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6242 } 6243 std::sort(FE.begin(), FE.end()); 6244 unsigned E = FE.size(); 6245 for (unsigned I = 0; I != E; ++I) { 6246 if (I) 6247 Enc += ','; 6248 Enc += FE[I].str(); 6249 } 6250 } 6251 Enc += '}'; 6252 TSC.addIfComplete(ID, Enc.substr(Start), false); 6253 return true; 6254 } 6255 6256 /// Appends type's qualifier to Enc. 6257 /// This is done prior to appending the type's encoding. 6258 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6259 // Qualifiers are emitted in alphabetical order. 6260 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6261 int Lookup = 0; 6262 if (QT.isConstQualified()) 6263 Lookup += 1<<0; 6264 if (QT.isRestrictQualified()) 6265 Lookup += 1<<1; 6266 if (QT.isVolatileQualified()) 6267 Lookup += 1<<2; 6268 Enc += Table[Lookup]; 6269 } 6270 6271 /// Appends built-in types to Enc. 6272 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6273 const char *EncType; 6274 switch (BT->getKind()) { 6275 case BuiltinType::Void: 6276 EncType = "0"; 6277 break; 6278 case BuiltinType::Bool: 6279 EncType = "b"; 6280 break; 6281 case BuiltinType::Char_U: 6282 EncType = "uc"; 6283 break; 6284 case BuiltinType::UChar: 6285 EncType = "uc"; 6286 break; 6287 case BuiltinType::SChar: 6288 EncType = "sc"; 6289 break; 6290 case BuiltinType::UShort: 6291 EncType = "us"; 6292 break; 6293 case BuiltinType::Short: 6294 EncType = "ss"; 6295 break; 6296 case BuiltinType::UInt: 6297 EncType = "ui"; 6298 break; 6299 case BuiltinType::Int: 6300 EncType = "si"; 6301 break; 6302 case BuiltinType::ULong: 6303 EncType = "ul"; 6304 break; 6305 case BuiltinType::Long: 6306 EncType = "sl"; 6307 break; 6308 case BuiltinType::ULongLong: 6309 EncType = "ull"; 6310 break; 6311 case BuiltinType::LongLong: 6312 EncType = "sll"; 6313 break; 6314 case BuiltinType::Float: 6315 EncType = "ft"; 6316 break; 6317 case BuiltinType::Double: 6318 EncType = "d"; 6319 break; 6320 case BuiltinType::LongDouble: 6321 EncType = "ld"; 6322 break; 6323 default: 6324 return false; 6325 } 6326 Enc += EncType; 6327 return true; 6328 } 6329 6330 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6331 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6332 const CodeGen::CodeGenModule &CGM, 6333 TypeStringCache &TSC) { 6334 Enc += "p("; 6335 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6336 return false; 6337 Enc += ')'; 6338 return true; 6339 } 6340 6341 /// Appends array encoding to Enc before calling appendType for the element. 6342 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6343 const ArrayType *AT, 6344 const CodeGen::CodeGenModule &CGM, 6345 TypeStringCache &TSC, StringRef NoSizeEnc) { 6346 if (AT->getSizeModifier() != ArrayType::Normal) 6347 return false; 6348 Enc += "a("; 6349 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6350 CAT->getSize().toStringUnsigned(Enc); 6351 else 6352 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6353 Enc += ':'; 6354 // The Qualifiers should be attached to the type rather than the array. 6355 appendQualifier(Enc, QT); 6356 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6357 return false; 6358 Enc += ')'; 6359 return true; 6360 } 6361 6362 /// Appends a function encoding to Enc, calling appendType for the return type 6363 /// and the arguments. 6364 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6365 const CodeGen::CodeGenModule &CGM, 6366 TypeStringCache &TSC) { 6367 Enc += "f{"; 6368 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6369 return false; 6370 Enc += "}("; 6371 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6372 // N.B. we are only interested in the adjusted param types. 6373 auto I = FPT->param_type_begin(); 6374 auto E = FPT->param_type_end(); 6375 if (I != E) { 6376 do { 6377 if (!appendType(Enc, *I, CGM, TSC)) 6378 return false; 6379 ++I; 6380 if (I != E) 6381 Enc += ','; 6382 } while (I != E); 6383 if (FPT->isVariadic()) 6384 Enc += ",va"; 6385 } else { 6386 if (FPT->isVariadic()) 6387 Enc += "va"; 6388 else 6389 Enc += '0'; 6390 } 6391 } 6392 Enc += ')'; 6393 return true; 6394 } 6395 6396 /// Handles the type's qualifier before dispatching a call to handle specific 6397 /// type encodings. 6398 static bool appendType(SmallStringEnc &Enc, QualType QType, 6399 const CodeGen::CodeGenModule &CGM, 6400 TypeStringCache &TSC) { 6401 6402 QualType QT = QType.getCanonicalType(); 6403 6404 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6405 // The Qualifiers should be attached to the type rather than the array. 6406 // Thus we don't call appendQualifier() here. 6407 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 6408 6409 appendQualifier(Enc, QT); 6410 6411 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 6412 return appendBuiltinType(Enc, BT); 6413 6414 if (const PointerType *PT = QT->getAs<PointerType>()) 6415 return appendPointerType(Enc, PT, CGM, TSC); 6416 6417 if (const EnumType *ET = QT->getAs<EnumType>()) 6418 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 6419 6420 if (const RecordType *RT = QT->getAsStructureType()) 6421 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6422 6423 if (const RecordType *RT = QT->getAsUnionType()) 6424 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6425 6426 if (const FunctionType *FT = QT->getAs<FunctionType>()) 6427 return appendFunctionType(Enc, FT, CGM, TSC); 6428 6429 return false; 6430 } 6431 6432 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6433 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 6434 if (!D) 6435 return false; 6436 6437 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6438 if (FD->getLanguageLinkage() != CLanguageLinkage) 6439 return false; 6440 return appendType(Enc, FD->getType(), CGM, TSC); 6441 } 6442 6443 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 6444 if (VD->getLanguageLinkage() != CLanguageLinkage) 6445 return false; 6446 QualType QT = VD->getType().getCanonicalType(); 6447 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 6448 // Global ArrayTypes are given a size of '*' if the size is unknown. 6449 // The Qualifiers should be attached to the type rather than the array. 6450 // Thus we don't call appendQualifier() here. 6451 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 6452 } 6453 return appendType(Enc, QT, CGM, TSC); 6454 } 6455 return false; 6456 } 6457 6458 6459 //===----------------------------------------------------------------------===// 6460 // Driver code 6461 //===----------------------------------------------------------------------===// 6462 6463 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 6464 if (TheTargetCodeGenInfo) 6465 return *TheTargetCodeGenInfo; 6466 6467 const llvm::Triple &Triple = getTarget().getTriple(); 6468 switch (Triple.getArch()) { 6469 default: 6470 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 6471 6472 case llvm::Triple::le32: 6473 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 6474 case llvm::Triple::mips: 6475 case llvm::Triple::mipsel: 6476 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 6477 6478 case llvm::Triple::mips64: 6479 case llvm::Triple::mips64el: 6480 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 6481 6482 case llvm::Triple::aarch64: 6483 case llvm::Triple::aarch64_be: 6484 case llvm::Triple::arm64: 6485 case llvm::Triple::arm64_be: { 6486 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 6487 if (getTarget().getABI() == "darwinpcs") 6488 Kind = AArch64ABIInfo::DarwinPCS; 6489 6490 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 6491 } 6492 6493 case llvm::Triple::arm: 6494 case llvm::Triple::armeb: 6495 case llvm::Triple::thumb: 6496 case llvm::Triple::thumbeb: 6497 { 6498 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 6499 if (getTarget().getABI() == "apcs-gnu") 6500 Kind = ARMABIInfo::APCS; 6501 else if (CodeGenOpts.FloatABI == "hard" || 6502 (CodeGenOpts.FloatABI != "soft" && 6503 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 6504 Kind = ARMABIInfo::AAPCS_VFP; 6505 6506 switch (Triple.getOS()) { 6507 case llvm::Triple::NaCl: 6508 return *(TheTargetCodeGenInfo = 6509 new NaClARMTargetCodeGenInfo(Types, Kind)); 6510 default: 6511 return *(TheTargetCodeGenInfo = 6512 new ARMTargetCodeGenInfo(Types, Kind)); 6513 } 6514 } 6515 6516 case llvm::Triple::ppc: 6517 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 6518 case llvm::Triple::ppc64: 6519 if (Triple.isOSBinFormatELF()) 6520 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 6521 else 6522 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 6523 case llvm::Triple::ppc64le: 6524 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 6525 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 6526 6527 case llvm::Triple::nvptx: 6528 case llvm::Triple::nvptx64: 6529 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 6530 6531 case llvm::Triple::msp430: 6532 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 6533 6534 case llvm::Triple::systemz: 6535 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 6536 6537 case llvm::Triple::tce: 6538 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 6539 6540 case llvm::Triple::x86: { 6541 bool IsDarwinVectorABI = Triple.isOSDarwin(); 6542 bool IsSmallStructInRegABI = 6543 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 6544 bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); 6545 6546 if (Triple.getOS() == llvm::Triple::Win32) { 6547 return *(TheTargetCodeGenInfo = 6548 new WinX86_32TargetCodeGenInfo(Types, 6549 IsDarwinVectorABI, IsSmallStructInRegABI, 6550 IsWin32FloatStructABI, 6551 CodeGenOpts.NumRegisterParameters)); 6552 } else { 6553 return *(TheTargetCodeGenInfo = 6554 new X86_32TargetCodeGenInfo(Types, 6555 IsDarwinVectorABI, IsSmallStructInRegABI, 6556 IsWin32FloatStructABI, 6557 CodeGenOpts.NumRegisterParameters)); 6558 } 6559 } 6560 6561 case llvm::Triple::x86_64: { 6562 bool HasAVX = getTarget().getABI() == "avx"; 6563 6564 switch (Triple.getOS()) { 6565 case llvm::Triple::Win32: 6566 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 6567 case llvm::Triple::NaCl: 6568 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 6569 HasAVX)); 6570 default: 6571 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 6572 HasAVX)); 6573 } 6574 } 6575 case llvm::Triple::hexagon: 6576 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 6577 case llvm::Triple::sparcv9: 6578 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 6579 case llvm::Triple::xcore: 6580 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 6581 } 6582 } 6583