1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/CodeGenOptions.h" 24 #include "clang/Basic/DiagnosticFrontend.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> // std::sort 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 // Helper for coercing an aggregate argument or return value into an integer 44 // array of the same size (including padding) and alignment. This alternate 45 // coercion happens only for the RenderScript ABI and can be removed after 46 // runtimes that rely on it are no longer supported. 47 // 48 // RenderScript assumes that the size of the argument / return value in the IR 49 // is the same as the size of the corresponding qualified type. This helper 50 // coerces the aggregate type into an array of the same size (including 51 // padding). This coercion is used in lieu of expansion of struct members or 52 // other canonical coercions that return a coerced-type of larger size. 53 // 54 // Ty - The argument / return value type 55 // Context - The associated ASTContext 56 // LLVMContext - The associated LLVMContext 57 static ABIArgInfo coerceToIntArray(QualType Ty, 58 ASTContext &Context, 59 llvm::LLVMContext &LLVMContext) { 60 // Alignment and Size are measured in bits. 61 const uint64_t Size = Context.getTypeSize(Ty); 62 const uint64_t Alignment = Context.getTypeAlign(Ty); 63 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 64 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 65 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 66 } 67 68 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 69 llvm::Value *Array, 70 llvm::Value *Value, 71 unsigned FirstIndex, 72 unsigned LastIndex) { 73 // Alternatively, we could emit this as a loop in the source. 74 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 75 llvm::Value *Cell = 76 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 77 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 78 } 79 } 80 81 static bool isAggregateTypeForABI(QualType T) { 82 return !CodeGenFunction::hasScalarEvaluationKind(T) || 83 T->isMemberFunctionPointerType(); 84 } 85 86 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 87 bool Realign, 88 llvm::Type *Padding) const { 89 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 90 Realign, Padding); 91 } 92 93 ABIArgInfo 94 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 95 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 96 /*ByVal*/ false, Realign); 97 } 98 99 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 100 QualType Ty) const { 101 return Address::invalid(); 102 } 103 104 static llvm::Type *getVAListElementType(CodeGenFunction &CGF) { 105 return CGF.ConvertTypeForMem( 106 CGF.getContext().getBuiltinVaListType()->getPointeeType()); 107 } 108 109 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 110 if (Ty->isPromotableIntegerType()) 111 return true; 112 113 if (const auto *EIT = Ty->getAs<BitIntType>()) 114 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 115 return true; 116 117 return false; 118 } 119 120 ABIInfo::~ABIInfo() {} 121 122 /// Does the given lowering require more than the given number of 123 /// registers when expanded? 124 /// 125 /// This is intended to be the basis of a reasonable basic implementation 126 /// of should{Pass,Return}IndirectlyForSwift. 127 /// 128 /// For most targets, a limit of four total registers is reasonable; this 129 /// limits the amount of code required in order to move around the value 130 /// in case it wasn't produced immediately prior to the call by the caller 131 /// (or wasn't produced in exactly the right registers) or isn't used 132 /// immediately within the callee. But some targets may need to further 133 /// limit the register count due to an inability to support that many 134 /// return registers. 135 static bool occupiesMoreThan(CodeGenTypes &cgt, 136 ArrayRef<llvm::Type*> scalarTypes, 137 unsigned maxAllRegisters) { 138 unsigned intCount = 0, fpCount = 0; 139 for (llvm::Type *type : scalarTypes) { 140 if (type->isPointerTy()) { 141 intCount++; 142 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 143 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 144 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 145 } else { 146 assert(type->isVectorTy() || type->isFloatingPointTy()); 147 fpCount++; 148 } 149 } 150 151 return (intCount + fpCount > maxAllRegisters); 152 } 153 154 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 155 llvm::Type *eltTy, 156 unsigned numElts) const { 157 // The default implementation of this assumes that the target guarantees 158 // 128-bit SIMD support but nothing more. 159 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 160 } 161 162 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 163 CGCXXABI &CXXABI) { 164 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 165 if (!RD) { 166 if (!RT->getDecl()->canPassInRegisters()) 167 return CGCXXABI::RAA_Indirect; 168 return CGCXXABI::RAA_Default; 169 } 170 return CXXABI.getRecordArgABI(RD); 171 } 172 173 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 174 CGCXXABI &CXXABI) { 175 const RecordType *RT = T->getAs<RecordType>(); 176 if (!RT) 177 return CGCXXABI::RAA_Default; 178 return getRecordArgABI(RT, CXXABI); 179 } 180 181 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 182 const ABIInfo &Info) { 183 QualType Ty = FI.getReturnType(); 184 185 if (const auto *RT = Ty->getAs<RecordType>()) 186 if (!isa<CXXRecordDecl>(RT->getDecl()) && 187 !RT->getDecl()->canPassInRegisters()) { 188 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 189 return true; 190 } 191 192 return CXXABI.classifyReturnType(FI); 193 } 194 195 /// Pass transparent unions as if they were the type of the first element. Sema 196 /// should ensure that all elements of the union have the same "machine type". 197 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 198 if (const RecordType *UT = Ty->getAsUnionType()) { 199 const RecordDecl *UD = UT->getDecl(); 200 if (UD->hasAttr<TransparentUnionAttr>()) { 201 assert(!UD->field_empty() && "sema created an empty transparent union"); 202 return UD->field_begin()->getType(); 203 } 204 } 205 return Ty; 206 } 207 208 CGCXXABI &ABIInfo::getCXXABI() const { 209 return CGT.getCXXABI(); 210 } 211 212 ASTContext &ABIInfo::getContext() const { 213 return CGT.getContext(); 214 } 215 216 llvm::LLVMContext &ABIInfo::getVMContext() const { 217 return CGT.getLLVMContext(); 218 } 219 220 const llvm::DataLayout &ABIInfo::getDataLayout() const { 221 return CGT.getDataLayout(); 222 } 223 224 const TargetInfo &ABIInfo::getTarget() const { 225 return CGT.getTarget(); 226 } 227 228 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 229 return CGT.getCodeGenOpts(); 230 } 231 232 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 233 234 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 235 return false; 236 } 237 238 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 239 uint64_t Members) const { 240 return false; 241 } 242 243 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 244 raw_ostream &OS = llvm::errs(); 245 OS << "(ABIArgInfo Kind="; 246 switch (TheKind) { 247 case Direct: 248 OS << "Direct Type="; 249 if (llvm::Type *Ty = getCoerceToType()) 250 Ty->print(OS); 251 else 252 OS << "null"; 253 break; 254 case Extend: 255 OS << "Extend"; 256 break; 257 case Ignore: 258 OS << "Ignore"; 259 break; 260 case InAlloca: 261 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 262 break; 263 case Indirect: 264 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 265 << " ByVal=" << getIndirectByVal() 266 << " Realign=" << getIndirectRealign(); 267 break; 268 case IndirectAliased: 269 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 270 << " AadrSpace=" << getIndirectAddrSpace() 271 << " Realign=" << getIndirectRealign(); 272 break; 273 case Expand: 274 OS << "Expand"; 275 break; 276 case CoerceAndExpand: 277 OS << "CoerceAndExpand Type="; 278 getCoerceAndExpandType()->print(OS); 279 break; 280 } 281 OS << ")\n"; 282 } 283 284 // Dynamically round a pointer up to a multiple of the given alignment. 285 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 286 llvm::Value *Ptr, 287 CharUnits Align) { 288 llvm::Value *PtrAsInt = Ptr; 289 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 290 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 291 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 292 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 293 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 294 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 295 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 296 Ptr->getType(), 297 Ptr->getName() + ".aligned"); 298 return PtrAsInt; 299 } 300 301 /// Emit va_arg for a platform using the common void* representation, 302 /// where arguments are simply emitted in an array of slots on the stack. 303 /// 304 /// This version implements the core direct-value passing rules. 305 /// 306 /// \param SlotSize - The size and alignment of a stack slot. 307 /// Each argument will be allocated to a multiple of this number of 308 /// slots, and all the slots will be aligned to this value. 309 /// \param AllowHigherAlign - The slot alignment is not a cap; 310 /// an argument type with an alignment greater than the slot size 311 /// will be emitted on a higher-alignment address, potentially 312 /// leaving one or more empty slots behind as padding. If this 313 /// is false, the returned address might be less-aligned than 314 /// DirectAlign. 315 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 316 Address VAListAddr, 317 llvm::Type *DirectTy, 318 CharUnits DirectSize, 319 CharUnits DirectAlign, 320 CharUnits SlotSize, 321 bool AllowHigherAlign) { 322 // Cast the element type to i8* if necessary. Some platforms define 323 // va_list as a struct containing an i8* instead of just an i8*. 324 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 325 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 326 327 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 328 329 // If the CC aligns values higher than the slot size, do so if needed. 330 Address Addr = Address::invalid(); 331 if (AllowHigherAlign && DirectAlign > SlotSize) { 332 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 333 CGF.Int8Ty, DirectAlign); 334 } else { 335 Addr = Address(Ptr, CGF.Int8Ty, SlotSize); 336 } 337 338 // Advance the pointer past the argument, then store that back. 339 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 340 Address NextPtr = 341 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 342 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 343 344 // If the argument is smaller than a slot, and this is a big-endian 345 // target, the argument will be right-adjusted in its slot. 346 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 347 !DirectTy->isStructTy()) { 348 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 349 } 350 351 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 352 return Addr; 353 } 354 355 /// Emit va_arg for a platform using the common void* representation, 356 /// where arguments are simply emitted in an array of slots on the stack. 357 /// 358 /// \param IsIndirect - Values of this type are passed indirectly. 359 /// \param ValueInfo - The size and alignment of this type, generally 360 /// computed with getContext().getTypeInfoInChars(ValueTy). 361 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 362 /// Each argument will be allocated to a multiple of this number of 363 /// slots, and all the slots will be aligned to this value. 364 /// \param AllowHigherAlign - The slot alignment is not a cap; 365 /// an argument type with an alignment greater than the slot size 366 /// will be emitted on a higher-alignment address, potentially 367 /// leaving one or more empty slots behind as padding. 368 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 369 QualType ValueTy, bool IsIndirect, 370 TypeInfoChars ValueInfo, 371 CharUnits SlotSizeAndAlign, 372 bool AllowHigherAlign) { 373 // The size and alignment of the value that was passed directly. 374 CharUnits DirectSize, DirectAlign; 375 if (IsIndirect) { 376 DirectSize = CGF.getPointerSize(); 377 DirectAlign = CGF.getPointerAlign(); 378 } else { 379 DirectSize = ValueInfo.Width; 380 DirectAlign = ValueInfo.Align; 381 } 382 383 // Cast the address we've calculated to the right type. 384 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy; 385 if (IsIndirect) 386 DirectTy = DirectTy->getPointerTo(0); 387 388 Address Addr = 389 emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, DirectAlign, 390 SlotSizeAndAlign, AllowHigherAlign); 391 392 if (IsIndirect) { 393 Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align); 394 } 395 396 return Addr; 397 } 398 399 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 400 QualType Ty, CharUnits SlotSize, 401 CharUnits EltSize, const ComplexType *CTy) { 402 Address Addr = 403 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 404 SlotSize, SlotSize, /*AllowHigher*/ true); 405 406 Address RealAddr = Addr; 407 Address ImagAddr = RealAddr; 408 if (CGF.CGM.getDataLayout().isBigEndian()) { 409 RealAddr = 410 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 411 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 412 2 * SlotSize - EltSize); 413 } else { 414 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 415 } 416 417 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 418 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 419 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 420 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 421 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 422 423 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 424 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 425 /*init*/ true); 426 return Temp; 427 } 428 429 static Address emitMergePHI(CodeGenFunction &CGF, 430 Address Addr1, llvm::BasicBlock *Block1, 431 Address Addr2, llvm::BasicBlock *Block2, 432 const llvm::Twine &Name = "") { 433 assert(Addr1.getType() == Addr2.getType()); 434 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 435 PHI->addIncoming(Addr1.getPointer(), Block1); 436 PHI->addIncoming(Addr2.getPointer(), Block2); 437 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 438 return Address(PHI, Addr1.getElementType(), Align); 439 } 440 441 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 442 443 // If someone can figure out a general rule for this, that would be great. 444 // It's probably just doomed to be platform-dependent, though. 445 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 446 // Verified for: 447 // x86-64 FreeBSD, Linux, Darwin 448 // x86-32 FreeBSD, Linux, Darwin 449 // PowerPC Linux, Darwin 450 // ARM Darwin (*not* EABI) 451 // AArch64 Linux 452 return 32; 453 } 454 455 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 456 const FunctionNoProtoType *fnType) const { 457 // The following conventions are known to require this to be false: 458 // x86_stdcall 459 // MIPS 460 // For everything else, we just prefer false unless we opt out. 461 return false; 462 } 463 464 void 465 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 466 llvm::SmallString<24> &Opt) const { 467 // This assumes the user is passing a library name like "rt" instead of a 468 // filename like "librt.a/so", and that they don't care whether it's static or 469 // dynamic. 470 Opt = "-l"; 471 Opt += Lib; 472 } 473 474 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 475 // OpenCL kernels are called via an explicit runtime API with arguments 476 // set with clSetKernelArg(), not as normal sub-functions. 477 // Return SPIR_KERNEL by default as the kernel calling convention to 478 // ensure the fingerprint is fixed such way that each OpenCL argument 479 // gets one matching argument in the produced kernel function argument 480 // list to enable feasible implementation of clSetKernelArg() with 481 // aggregates etc. In case we would use the default C calling conv here, 482 // clSetKernelArg() might break depending on the target-specific 483 // conventions; different targets might split structs passed as values 484 // to multiple function arguments etc. 485 return llvm::CallingConv::SPIR_KERNEL; 486 } 487 488 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 489 llvm::PointerType *T, QualType QT) const { 490 return llvm::ConstantPointerNull::get(T); 491 } 492 493 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 494 const VarDecl *D) const { 495 assert(!CGM.getLangOpts().OpenCL && 496 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 497 "Address space agnostic languages only"); 498 return D ? D->getType().getAddressSpace() : LangAS::Default; 499 } 500 501 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 502 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 503 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 504 // Since target may map different address spaces in AST to the same address 505 // space, an address space conversion may end up as a bitcast. 506 if (auto *C = dyn_cast<llvm::Constant>(Src)) 507 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 508 // Try to preserve the source's name to make IR more readable. 509 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 510 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 511 } 512 513 llvm::Constant * 514 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 515 LangAS SrcAddr, LangAS DestAddr, 516 llvm::Type *DestTy) const { 517 // Since target may map different address spaces in AST to the same address 518 // space, an address space conversion may end up as a bitcast. 519 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 520 } 521 522 llvm::SyncScope::ID 523 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 524 SyncScope Scope, 525 llvm::AtomicOrdering Ordering, 526 llvm::LLVMContext &Ctx) const { 527 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 528 } 529 530 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 531 532 /// isEmptyField - Return true iff a the field is "empty", that is it 533 /// is an unnamed bit-field or an (array of) empty record(s). 534 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 535 bool AllowArrays) { 536 if (FD->isUnnamedBitfield()) 537 return true; 538 539 QualType FT = FD->getType(); 540 541 // Constant arrays of empty records count as empty, strip them off. 542 // Constant arrays of zero length always count as empty. 543 bool WasArray = false; 544 if (AllowArrays) 545 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 546 if (AT->getSize() == 0) 547 return true; 548 FT = AT->getElementType(); 549 // The [[no_unique_address]] special case below does not apply to 550 // arrays of C++ empty records, so we need to remember this fact. 551 WasArray = true; 552 } 553 554 const RecordType *RT = FT->getAs<RecordType>(); 555 if (!RT) 556 return false; 557 558 // C++ record fields are never empty, at least in the Itanium ABI. 559 // 560 // FIXME: We should use a predicate for whether this behavior is true in the 561 // current ABI. 562 // 563 // The exception to the above rule are fields marked with the 564 // [[no_unique_address]] attribute (since C++20). Those do count as empty 565 // according to the Itanium ABI. The exception applies only to records, 566 // not arrays of records, so we must also check whether we stripped off an 567 // array type above. 568 if (isa<CXXRecordDecl>(RT->getDecl()) && 569 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 570 return false; 571 572 return isEmptyRecord(Context, FT, AllowArrays); 573 } 574 575 /// isEmptyRecord - Return true iff a structure contains only empty 576 /// fields. Note that a structure with a flexible array member is not 577 /// considered empty. 578 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 579 const RecordType *RT = T->getAs<RecordType>(); 580 if (!RT) 581 return false; 582 const RecordDecl *RD = RT->getDecl(); 583 if (RD->hasFlexibleArrayMember()) 584 return false; 585 586 // If this is a C++ record, check the bases first. 587 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 588 for (const auto &I : CXXRD->bases()) 589 if (!isEmptyRecord(Context, I.getType(), true)) 590 return false; 591 592 for (const auto *I : RD->fields()) 593 if (!isEmptyField(Context, I, AllowArrays)) 594 return false; 595 return true; 596 } 597 598 /// isSingleElementStruct - Determine if a structure is a "single 599 /// element struct", i.e. it has exactly one non-empty field or 600 /// exactly one field which is itself a single element 601 /// struct. Structures with flexible array members are never 602 /// considered single element structs. 603 /// 604 /// \return The field declaration for the single non-empty field, if 605 /// it exists. 606 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 607 const RecordType *RT = T->getAs<RecordType>(); 608 if (!RT) 609 return nullptr; 610 611 const RecordDecl *RD = RT->getDecl(); 612 if (RD->hasFlexibleArrayMember()) 613 return nullptr; 614 615 const Type *Found = nullptr; 616 617 // If this is a C++ record, check the bases first. 618 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 619 for (const auto &I : CXXRD->bases()) { 620 // Ignore empty records. 621 if (isEmptyRecord(Context, I.getType(), true)) 622 continue; 623 624 // If we already found an element then this isn't a single-element struct. 625 if (Found) 626 return nullptr; 627 628 // If this is non-empty and not a single element struct, the composite 629 // cannot be a single element struct. 630 Found = isSingleElementStruct(I.getType(), Context); 631 if (!Found) 632 return nullptr; 633 } 634 } 635 636 // Check for single element. 637 for (const auto *FD : RD->fields()) { 638 QualType FT = FD->getType(); 639 640 // Ignore empty fields. 641 if (isEmptyField(Context, FD, true)) 642 continue; 643 644 // If we already found an element then this isn't a single-element 645 // struct. 646 if (Found) 647 return nullptr; 648 649 // Treat single element arrays as the element. 650 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 651 if (AT->getSize().getZExtValue() != 1) 652 break; 653 FT = AT->getElementType(); 654 } 655 656 if (!isAggregateTypeForABI(FT)) { 657 Found = FT.getTypePtr(); 658 } else { 659 Found = isSingleElementStruct(FT, Context); 660 if (!Found) 661 return nullptr; 662 } 663 } 664 665 // We don't consider a struct a single-element struct if it has 666 // padding beyond the element type. 667 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 668 return nullptr; 669 670 return Found; 671 } 672 673 namespace { 674 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 675 const ABIArgInfo &AI) { 676 // This default implementation defers to the llvm backend's va_arg 677 // instruction. It can handle only passing arguments directly 678 // (typically only handled in the backend for primitive types), or 679 // aggregates passed indirectly by pointer (NOTE: if the "byval" 680 // flag has ABI impact in the callee, this implementation cannot 681 // work.) 682 683 // Only a few cases are covered here at the moment -- those needed 684 // by the default abi. 685 llvm::Value *Val; 686 687 if (AI.isIndirect()) { 688 assert(!AI.getPaddingType() && 689 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 690 assert( 691 !AI.getIndirectRealign() && 692 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 693 694 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 695 CharUnits TyAlignForABI = TyInfo.Align; 696 697 llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty); 698 llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy); 699 llvm::Value *Addr = 700 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 701 return Address(Addr, ElementTy, TyAlignForABI); 702 } else { 703 assert((AI.isDirect() || AI.isExtend()) && 704 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 705 706 assert(!AI.getInReg() && 707 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 708 assert(!AI.getPaddingType() && 709 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 710 assert(!AI.getDirectOffset() && 711 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 712 assert(!AI.getCoerceToType() && 713 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 714 715 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 716 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), 717 CGF.ConvertTypeForMem(Ty)); 718 CGF.Builder.CreateStore(Val, Temp); 719 return Temp; 720 } 721 } 722 723 /// DefaultABIInfo - The default implementation for ABI specific 724 /// details. This implementation provides information which results in 725 /// self-consistent and sensible LLVM IR generation, but does not 726 /// conform to any particular ABI. 727 class DefaultABIInfo : public ABIInfo { 728 public: 729 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 730 731 ABIArgInfo classifyReturnType(QualType RetTy) const; 732 ABIArgInfo classifyArgumentType(QualType RetTy) const; 733 734 void computeInfo(CGFunctionInfo &FI) const override { 735 if (!getCXXABI().classifyReturnType(FI)) 736 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 737 for (auto &I : FI.arguments()) 738 I.info = classifyArgumentType(I.type); 739 } 740 741 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 742 QualType Ty) const override { 743 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 744 } 745 }; 746 747 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 748 public: 749 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 750 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 751 }; 752 753 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 754 Ty = useFirstFieldIfTransparentUnion(Ty); 755 756 if (isAggregateTypeForABI(Ty)) { 757 // Records with non-trivial destructors/copy-constructors should not be 758 // passed by value. 759 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 760 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 761 762 return getNaturalAlignIndirect(Ty); 763 } 764 765 // Treat an enum type as its underlying type. 766 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 767 Ty = EnumTy->getDecl()->getIntegerType(); 768 769 ASTContext &Context = getContext(); 770 if (const auto *EIT = Ty->getAs<BitIntType>()) 771 if (EIT->getNumBits() > 772 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 773 ? Context.Int128Ty 774 : Context.LongLongTy)) 775 return getNaturalAlignIndirect(Ty); 776 777 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 778 : ABIArgInfo::getDirect()); 779 } 780 781 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 782 if (RetTy->isVoidType()) 783 return ABIArgInfo::getIgnore(); 784 785 if (isAggregateTypeForABI(RetTy)) 786 return getNaturalAlignIndirect(RetTy); 787 788 // Treat an enum type as its underlying type. 789 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 790 RetTy = EnumTy->getDecl()->getIntegerType(); 791 792 if (const auto *EIT = RetTy->getAs<BitIntType>()) 793 if (EIT->getNumBits() > 794 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 795 ? getContext().Int128Ty 796 : getContext().LongLongTy)) 797 return getNaturalAlignIndirect(RetTy); 798 799 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 800 : ABIArgInfo::getDirect()); 801 } 802 803 //===----------------------------------------------------------------------===// 804 // WebAssembly ABI Implementation 805 // 806 // This is a very simple ABI that relies a lot on DefaultABIInfo. 807 //===----------------------------------------------------------------------===// 808 809 class WebAssemblyABIInfo final : public SwiftABIInfo { 810 public: 811 enum ABIKind { 812 MVP = 0, 813 ExperimentalMV = 1, 814 }; 815 816 private: 817 DefaultABIInfo defaultInfo; 818 ABIKind Kind; 819 820 public: 821 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 822 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 823 824 private: 825 ABIArgInfo classifyReturnType(QualType RetTy) const; 826 ABIArgInfo classifyArgumentType(QualType Ty) const; 827 828 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 829 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 830 // overload them. 831 void computeInfo(CGFunctionInfo &FI) const override { 832 if (!getCXXABI().classifyReturnType(FI)) 833 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 834 for (auto &Arg : FI.arguments()) 835 Arg.info = classifyArgumentType(Arg.type); 836 } 837 838 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 839 QualType Ty) const override; 840 841 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 842 bool asReturnValue) const override { 843 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 844 } 845 846 bool isSwiftErrorInRegister() const override { 847 return false; 848 } 849 }; 850 851 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 852 public: 853 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 854 WebAssemblyABIInfo::ABIKind K) 855 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 856 857 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 858 CodeGen::CodeGenModule &CGM) const override { 859 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 860 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 861 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 862 llvm::Function *Fn = cast<llvm::Function>(GV); 863 llvm::AttrBuilder B(GV->getContext()); 864 B.addAttribute("wasm-import-module", Attr->getImportModule()); 865 Fn->addFnAttrs(B); 866 } 867 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 868 llvm::Function *Fn = cast<llvm::Function>(GV); 869 llvm::AttrBuilder B(GV->getContext()); 870 B.addAttribute("wasm-import-name", Attr->getImportName()); 871 Fn->addFnAttrs(B); 872 } 873 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 874 llvm::Function *Fn = cast<llvm::Function>(GV); 875 llvm::AttrBuilder B(GV->getContext()); 876 B.addAttribute("wasm-export-name", Attr->getExportName()); 877 Fn->addFnAttrs(B); 878 } 879 } 880 881 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 882 llvm::Function *Fn = cast<llvm::Function>(GV); 883 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 884 Fn->addFnAttr("no-prototype"); 885 } 886 } 887 }; 888 889 /// Classify argument of given type \p Ty. 890 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 891 Ty = useFirstFieldIfTransparentUnion(Ty); 892 893 if (isAggregateTypeForABI(Ty)) { 894 // Records with non-trivial destructors/copy-constructors should not be 895 // passed by value. 896 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 897 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 898 // Ignore empty structs/unions. 899 if (isEmptyRecord(getContext(), Ty, true)) 900 return ABIArgInfo::getIgnore(); 901 // Lower single-element structs to just pass a regular value. TODO: We 902 // could do reasonable-size multiple-element structs too, using getExpand(), 903 // though watch out for things like bitfields. 904 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 905 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 906 // For the experimental multivalue ABI, fully expand all other aggregates 907 if (Kind == ABIKind::ExperimentalMV) { 908 const RecordType *RT = Ty->getAs<RecordType>(); 909 assert(RT); 910 bool HasBitField = false; 911 for (auto *Field : RT->getDecl()->fields()) { 912 if (Field->isBitField()) { 913 HasBitField = true; 914 break; 915 } 916 } 917 if (!HasBitField) 918 return ABIArgInfo::getExpand(); 919 } 920 } 921 922 // Otherwise just do the default thing. 923 return defaultInfo.classifyArgumentType(Ty); 924 } 925 926 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 927 if (isAggregateTypeForABI(RetTy)) { 928 // Records with non-trivial destructors/copy-constructors should not be 929 // returned by value. 930 if (!getRecordArgABI(RetTy, getCXXABI())) { 931 // Ignore empty structs/unions. 932 if (isEmptyRecord(getContext(), RetTy, true)) 933 return ABIArgInfo::getIgnore(); 934 // Lower single-element structs to just return a regular value. TODO: We 935 // could do reasonable-size multiple-element structs too, using 936 // ABIArgInfo::getDirect(). 937 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 938 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 939 // For the experimental multivalue ABI, return all other aggregates 940 if (Kind == ABIKind::ExperimentalMV) 941 return ABIArgInfo::getDirect(); 942 } 943 } 944 945 // Otherwise just do the default thing. 946 return defaultInfo.classifyReturnType(RetTy); 947 } 948 949 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 950 QualType Ty) const { 951 bool IsIndirect = isAggregateTypeForABI(Ty) && 952 !isEmptyRecord(getContext(), Ty, true) && 953 !isSingleElementStruct(Ty, getContext()); 954 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 955 getContext().getTypeInfoInChars(Ty), 956 CharUnits::fromQuantity(4), 957 /*AllowHigherAlign=*/true); 958 } 959 960 //===----------------------------------------------------------------------===// 961 // le32/PNaCl bitcode ABI Implementation 962 // 963 // This is a simplified version of the x86_32 ABI. Arguments and return values 964 // are always passed on the stack. 965 //===----------------------------------------------------------------------===// 966 967 class PNaClABIInfo : public ABIInfo { 968 public: 969 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 970 971 ABIArgInfo classifyReturnType(QualType RetTy) const; 972 ABIArgInfo classifyArgumentType(QualType RetTy) const; 973 974 void computeInfo(CGFunctionInfo &FI) const override; 975 Address EmitVAArg(CodeGenFunction &CGF, 976 Address VAListAddr, QualType Ty) const override; 977 }; 978 979 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 980 public: 981 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 982 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 983 }; 984 985 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 986 if (!getCXXABI().classifyReturnType(FI)) 987 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 988 989 for (auto &I : FI.arguments()) 990 I.info = classifyArgumentType(I.type); 991 } 992 993 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 994 QualType Ty) const { 995 // The PNaCL ABI is a bit odd, in that varargs don't use normal 996 // function classification. Structs get passed directly for varargs 997 // functions, through a rewriting transform in 998 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 999 // this target to actually support a va_arg instructions with an 1000 // aggregate type, unlike other targets. 1001 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 1002 } 1003 1004 /// Classify argument of given type \p Ty. 1005 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1006 if (isAggregateTypeForABI(Ty)) { 1007 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1008 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1009 return getNaturalAlignIndirect(Ty); 1010 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1011 // Treat an enum type as its underlying type. 1012 Ty = EnumTy->getDecl()->getIntegerType(); 1013 } else if (Ty->isFloatingType()) { 1014 // Floating-point types don't go inreg. 1015 return ABIArgInfo::getDirect(); 1016 } else if (const auto *EIT = Ty->getAs<BitIntType>()) { 1017 // Treat bit-precise integers as integers if <= 64, otherwise pass 1018 // indirectly. 1019 if (EIT->getNumBits() > 64) 1020 return getNaturalAlignIndirect(Ty); 1021 return ABIArgInfo::getDirect(); 1022 } 1023 1024 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1025 : ABIArgInfo::getDirect()); 1026 } 1027 1028 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1029 if (RetTy->isVoidType()) 1030 return ABIArgInfo::getIgnore(); 1031 1032 // In the PNaCl ABI we always return records/structures on the stack. 1033 if (isAggregateTypeForABI(RetTy)) 1034 return getNaturalAlignIndirect(RetTy); 1035 1036 // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly. 1037 if (const auto *EIT = RetTy->getAs<BitIntType>()) { 1038 if (EIT->getNumBits() > 64) 1039 return getNaturalAlignIndirect(RetTy); 1040 return ABIArgInfo::getDirect(); 1041 } 1042 1043 // Treat an enum type as its underlying type. 1044 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1045 RetTy = EnumTy->getDecl()->getIntegerType(); 1046 1047 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1048 : ABIArgInfo::getDirect()); 1049 } 1050 1051 /// IsX86_MMXType - Return true if this is an MMX type. 1052 bool IsX86_MMXType(llvm::Type *IRType) { 1053 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1054 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1055 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1056 IRType->getScalarSizeInBits() != 64; 1057 } 1058 1059 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1060 StringRef Constraint, 1061 llvm::Type* Ty) { 1062 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1063 .Cases("y", "&y", "^Ym", true) 1064 .Default(false); 1065 if (IsMMXCons && Ty->isVectorTy()) { 1066 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1067 64) { 1068 // Invalid MMX constraint 1069 return nullptr; 1070 } 1071 1072 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1073 } 1074 1075 // No operation needed 1076 return Ty; 1077 } 1078 1079 /// Returns true if this type can be passed in SSE registers with the 1080 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1081 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1082 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1083 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1084 if (BT->getKind() == BuiltinType::LongDouble) { 1085 if (&Context.getTargetInfo().getLongDoubleFormat() == 1086 &llvm::APFloat::x87DoubleExtended()) 1087 return false; 1088 } 1089 return true; 1090 } 1091 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1092 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1093 // registers specially. 1094 unsigned VecSize = Context.getTypeSize(VT); 1095 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1096 return true; 1097 } 1098 return false; 1099 } 1100 1101 /// Returns true if this aggregate is small enough to be passed in SSE registers 1102 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1103 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1104 return NumMembers <= 4; 1105 } 1106 1107 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1108 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1109 auto AI = ABIArgInfo::getDirect(T); 1110 AI.setInReg(true); 1111 AI.setCanBeFlattened(false); 1112 return AI; 1113 } 1114 1115 //===----------------------------------------------------------------------===// 1116 // X86-32 ABI Implementation 1117 //===----------------------------------------------------------------------===// 1118 1119 /// Similar to llvm::CCState, but for Clang. 1120 struct CCState { 1121 CCState(CGFunctionInfo &FI) 1122 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1123 1124 llvm::SmallBitVector IsPreassigned; 1125 unsigned CC = CallingConv::CC_C; 1126 unsigned FreeRegs = 0; 1127 unsigned FreeSSERegs = 0; 1128 }; 1129 1130 /// X86_32ABIInfo - The X86-32 ABI information. 1131 class X86_32ABIInfo : public SwiftABIInfo { 1132 enum Class { 1133 Integer, 1134 Float 1135 }; 1136 1137 static const unsigned MinABIStackAlignInBytes = 4; 1138 1139 bool IsDarwinVectorABI; 1140 bool IsRetSmallStructInRegABI; 1141 bool IsWin32StructABI; 1142 bool IsSoftFloatABI; 1143 bool IsMCUABI; 1144 bool IsLinuxABI; 1145 unsigned DefaultNumRegisterParameters; 1146 1147 static bool isRegisterSize(unsigned Size) { 1148 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1149 } 1150 1151 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1152 // FIXME: Assumes vectorcall is in use. 1153 return isX86VectorTypeForVectorCall(getContext(), Ty); 1154 } 1155 1156 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1157 uint64_t NumMembers) const override { 1158 // FIXME: Assumes vectorcall is in use. 1159 return isX86VectorCallAggregateSmallEnough(NumMembers); 1160 } 1161 1162 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1163 1164 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1165 /// such that the argument will be passed in memory. 1166 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1167 1168 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1169 1170 /// Return the alignment to use for the given type on the stack. 1171 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1172 1173 Class classify(QualType Ty) const; 1174 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1175 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1176 1177 /// Updates the number of available free registers, returns 1178 /// true if any registers were allocated. 1179 bool updateFreeRegs(QualType Ty, CCState &State) const; 1180 1181 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1182 bool &NeedsPadding) const; 1183 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1184 1185 bool canExpandIndirectArgument(QualType Ty) const; 1186 1187 /// Rewrite the function info so that all memory arguments use 1188 /// inalloca. 1189 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1190 1191 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1192 CharUnits &StackOffset, ABIArgInfo &Info, 1193 QualType Type) const; 1194 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1195 1196 public: 1197 1198 void computeInfo(CGFunctionInfo &FI) const override; 1199 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1200 QualType Ty) const override; 1201 1202 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1203 bool RetSmallStructInRegABI, bool Win32StructABI, 1204 unsigned NumRegisterParameters, bool SoftFloatABI) 1205 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1206 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1207 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1208 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1209 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1210 CGT.getTarget().getTriple().isOSCygMing()), 1211 DefaultNumRegisterParameters(NumRegisterParameters) {} 1212 1213 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1214 bool asReturnValue) const override { 1215 // LLVM's x86-32 lowering currently only assigns up to three 1216 // integer registers and three fp registers. Oddly, it'll use up to 1217 // four vector registers for vectors, but those can overlap with the 1218 // scalar registers. 1219 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1220 } 1221 1222 bool isSwiftErrorInRegister() const override { 1223 // x86-32 lowering does not support passing swifterror in a register. 1224 return false; 1225 } 1226 }; 1227 1228 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1229 public: 1230 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1231 bool RetSmallStructInRegABI, bool Win32StructABI, 1232 unsigned NumRegisterParameters, bool SoftFloatABI) 1233 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1234 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1235 NumRegisterParameters, SoftFloatABI)) {} 1236 1237 static bool isStructReturnInRegABI( 1238 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1239 1240 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1241 CodeGen::CodeGenModule &CGM) const override; 1242 1243 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1244 // Darwin uses different dwarf register numbers for EH. 1245 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1246 return 4; 1247 } 1248 1249 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1250 llvm::Value *Address) const override; 1251 1252 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1253 StringRef Constraint, 1254 llvm::Type* Ty) const override { 1255 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1256 } 1257 1258 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1259 std::string &Constraints, 1260 std::vector<llvm::Type *> &ResultRegTypes, 1261 std::vector<llvm::Type *> &ResultTruncRegTypes, 1262 std::vector<LValue> &ResultRegDests, 1263 std::string &AsmString, 1264 unsigned NumOutputs) const override; 1265 1266 llvm::Constant * 1267 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1268 unsigned Sig = (0xeb << 0) | // jmp rel8 1269 (0x06 << 8) | // .+0x08 1270 ('v' << 16) | 1271 ('2' << 24); 1272 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1273 } 1274 1275 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1276 return "movl\t%ebp, %ebp" 1277 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1278 } 1279 }; 1280 1281 } 1282 1283 /// Rewrite input constraint references after adding some output constraints. 1284 /// In the case where there is one output and one input and we add one output, 1285 /// we need to replace all operand references greater than or equal to 1: 1286 /// mov $0, $1 1287 /// mov eax, $1 1288 /// The result will be: 1289 /// mov $0, $2 1290 /// mov eax, $2 1291 static void rewriteInputConstraintReferences(unsigned FirstIn, 1292 unsigned NumNewOuts, 1293 std::string &AsmString) { 1294 std::string Buf; 1295 llvm::raw_string_ostream OS(Buf); 1296 size_t Pos = 0; 1297 while (Pos < AsmString.size()) { 1298 size_t DollarStart = AsmString.find('$', Pos); 1299 if (DollarStart == std::string::npos) 1300 DollarStart = AsmString.size(); 1301 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1302 if (DollarEnd == std::string::npos) 1303 DollarEnd = AsmString.size(); 1304 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1305 Pos = DollarEnd; 1306 size_t NumDollars = DollarEnd - DollarStart; 1307 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1308 // We have an operand reference. 1309 size_t DigitStart = Pos; 1310 if (AsmString[DigitStart] == '{') { 1311 OS << '{'; 1312 ++DigitStart; 1313 } 1314 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1315 if (DigitEnd == std::string::npos) 1316 DigitEnd = AsmString.size(); 1317 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1318 unsigned OperandIndex; 1319 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1320 if (OperandIndex >= FirstIn) 1321 OperandIndex += NumNewOuts; 1322 OS << OperandIndex; 1323 } else { 1324 OS << OperandStr; 1325 } 1326 Pos = DigitEnd; 1327 } 1328 } 1329 AsmString = std::move(OS.str()); 1330 } 1331 1332 /// Add output constraints for EAX:EDX because they are return registers. 1333 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1334 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1335 std::vector<llvm::Type *> &ResultRegTypes, 1336 std::vector<llvm::Type *> &ResultTruncRegTypes, 1337 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1338 unsigned NumOutputs) const { 1339 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1340 1341 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1342 // larger. 1343 if (!Constraints.empty()) 1344 Constraints += ','; 1345 if (RetWidth <= 32) { 1346 Constraints += "={eax}"; 1347 ResultRegTypes.push_back(CGF.Int32Ty); 1348 } else { 1349 // Use the 'A' constraint for EAX:EDX. 1350 Constraints += "=A"; 1351 ResultRegTypes.push_back(CGF.Int64Ty); 1352 } 1353 1354 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1355 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1356 ResultTruncRegTypes.push_back(CoerceTy); 1357 1358 // Coerce the integer by bitcasting the return slot pointer. 1359 ReturnSlot.setAddress( 1360 CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy)); 1361 ResultRegDests.push_back(ReturnSlot); 1362 1363 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1364 } 1365 1366 /// shouldReturnTypeInRegister - Determine if the given type should be 1367 /// returned in a register (for the Darwin and MCU ABI). 1368 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1369 ASTContext &Context) const { 1370 uint64_t Size = Context.getTypeSize(Ty); 1371 1372 // For i386, type must be register sized. 1373 // For the MCU ABI, it only needs to be <= 8-byte 1374 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1375 return false; 1376 1377 if (Ty->isVectorType()) { 1378 // 64- and 128- bit vectors inside structures are not returned in 1379 // registers. 1380 if (Size == 64 || Size == 128) 1381 return false; 1382 1383 return true; 1384 } 1385 1386 // If this is a builtin, pointer, enum, complex type, member pointer, or 1387 // member function pointer it is ok. 1388 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1389 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1390 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1391 return true; 1392 1393 // Arrays are treated like records. 1394 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1395 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1396 1397 // Otherwise, it must be a record type. 1398 const RecordType *RT = Ty->getAs<RecordType>(); 1399 if (!RT) return false; 1400 1401 // FIXME: Traverse bases here too. 1402 1403 // Structure types are passed in register if all fields would be 1404 // passed in a register. 1405 for (const auto *FD : RT->getDecl()->fields()) { 1406 // Empty fields are ignored. 1407 if (isEmptyField(Context, FD, true)) 1408 continue; 1409 1410 // Check fields recursively. 1411 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1412 return false; 1413 } 1414 return true; 1415 } 1416 1417 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1418 // Treat complex types as the element type. 1419 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1420 Ty = CTy->getElementType(); 1421 1422 // Check for a type which we know has a simple scalar argument-passing 1423 // convention without any padding. (We're specifically looking for 32 1424 // and 64-bit integer and integer-equivalents, float, and double.) 1425 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1426 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1427 return false; 1428 1429 uint64_t Size = Context.getTypeSize(Ty); 1430 return Size == 32 || Size == 64; 1431 } 1432 1433 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1434 uint64_t &Size) { 1435 for (const auto *FD : RD->fields()) { 1436 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1437 // argument is smaller than 32-bits, expanding the struct will create 1438 // alignment padding. 1439 if (!is32Or64BitBasicType(FD->getType(), Context)) 1440 return false; 1441 1442 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1443 // how to expand them yet, and the predicate for telling if a bitfield still 1444 // counts as "basic" is more complicated than what we were doing previously. 1445 if (FD->isBitField()) 1446 return false; 1447 1448 Size += Context.getTypeSize(FD->getType()); 1449 } 1450 return true; 1451 } 1452 1453 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1454 uint64_t &Size) { 1455 // Don't do this if there are any non-empty bases. 1456 for (const CXXBaseSpecifier &Base : RD->bases()) { 1457 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1458 Size)) 1459 return false; 1460 } 1461 if (!addFieldSizes(Context, RD, Size)) 1462 return false; 1463 return true; 1464 } 1465 1466 /// Test whether an argument type which is to be passed indirectly (on the 1467 /// stack) would have the equivalent layout if it was expanded into separate 1468 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1469 /// optimizations. 1470 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1471 // We can only expand structure types. 1472 const RecordType *RT = Ty->getAs<RecordType>(); 1473 if (!RT) 1474 return false; 1475 const RecordDecl *RD = RT->getDecl(); 1476 uint64_t Size = 0; 1477 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1478 if (!IsWin32StructABI) { 1479 // On non-Windows, we have to conservatively match our old bitcode 1480 // prototypes in order to be ABI-compatible at the bitcode level. 1481 if (!CXXRD->isCLike()) 1482 return false; 1483 } else { 1484 // Don't do this for dynamic classes. 1485 if (CXXRD->isDynamicClass()) 1486 return false; 1487 } 1488 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1489 return false; 1490 } else { 1491 if (!addFieldSizes(getContext(), RD, Size)) 1492 return false; 1493 } 1494 1495 // We can do this if there was no alignment padding. 1496 return Size == getContext().getTypeSize(Ty); 1497 } 1498 1499 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1500 // If the return value is indirect, then the hidden argument is consuming one 1501 // integer register. 1502 if (State.FreeRegs) { 1503 --State.FreeRegs; 1504 if (!IsMCUABI) 1505 return getNaturalAlignIndirectInReg(RetTy); 1506 } 1507 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1508 } 1509 1510 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1511 CCState &State) const { 1512 if (RetTy->isVoidType()) 1513 return ABIArgInfo::getIgnore(); 1514 1515 const Type *Base = nullptr; 1516 uint64_t NumElts = 0; 1517 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1518 State.CC == llvm::CallingConv::X86_RegCall) && 1519 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1520 // The LLVM struct type for such an aggregate should lower properly. 1521 return ABIArgInfo::getDirect(); 1522 } 1523 1524 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1525 // On Darwin, some vectors are returned in registers. 1526 if (IsDarwinVectorABI) { 1527 uint64_t Size = getContext().getTypeSize(RetTy); 1528 1529 // 128-bit vectors are a special case; they are returned in 1530 // registers and we need to make sure to pick a type the LLVM 1531 // backend will like. 1532 if (Size == 128) 1533 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1534 llvm::Type::getInt64Ty(getVMContext()), 2)); 1535 1536 // Always return in register if it fits in a general purpose 1537 // register, or if it is 64 bits and has a single element. 1538 if ((Size == 8 || Size == 16 || Size == 32) || 1539 (Size == 64 && VT->getNumElements() == 1)) 1540 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1541 Size)); 1542 1543 return getIndirectReturnResult(RetTy, State); 1544 } 1545 1546 return ABIArgInfo::getDirect(); 1547 } 1548 1549 if (isAggregateTypeForABI(RetTy)) { 1550 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1551 // Structures with flexible arrays are always indirect. 1552 if (RT->getDecl()->hasFlexibleArrayMember()) 1553 return getIndirectReturnResult(RetTy, State); 1554 } 1555 1556 // If specified, structs and unions are always indirect. 1557 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1558 return getIndirectReturnResult(RetTy, State); 1559 1560 // Ignore empty structs/unions. 1561 if (isEmptyRecord(getContext(), RetTy, true)) 1562 return ABIArgInfo::getIgnore(); 1563 1564 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1565 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1566 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1567 if (ET->isFloat16Type()) 1568 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1569 llvm::Type::getHalfTy(getVMContext()), 2)); 1570 } 1571 1572 // Small structures which are register sized are generally returned 1573 // in a register. 1574 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1575 uint64_t Size = getContext().getTypeSize(RetTy); 1576 1577 // As a special-case, if the struct is a "single-element" struct, and 1578 // the field is of type "float" or "double", return it in a 1579 // floating-point register. (MSVC does not apply this special case.) 1580 // We apply a similar transformation for pointer types to improve the 1581 // quality of the generated IR. 1582 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1583 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1584 || SeltTy->hasPointerRepresentation()) 1585 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1586 1587 // FIXME: We should be able to narrow this integer in cases with dead 1588 // padding. 1589 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1590 } 1591 1592 return getIndirectReturnResult(RetTy, State); 1593 } 1594 1595 // Treat an enum type as its underlying type. 1596 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1597 RetTy = EnumTy->getDecl()->getIntegerType(); 1598 1599 if (const auto *EIT = RetTy->getAs<BitIntType>()) 1600 if (EIT->getNumBits() > 64) 1601 return getIndirectReturnResult(RetTy, State); 1602 1603 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1604 : ABIArgInfo::getDirect()); 1605 } 1606 1607 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1608 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1609 } 1610 1611 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1612 const RecordType *RT = Ty->getAs<RecordType>(); 1613 if (!RT) 1614 return false; 1615 const RecordDecl *RD = RT->getDecl(); 1616 1617 // If this is a C++ record, check the bases first. 1618 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1619 for (const auto &I : CXXRD->bases()) 1620 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1621 return false; 1622 1623 for (const auto *i : RD->fields()) { 1624 QualType FT = i->getType(); 1625 1626 if (isSIMDVectorType(Context, FT)) 1627 return true; 1628 1629 if (isRecordWithSIMDVectorType(Context, FT)) 1630 return true; 1631 } 1632 1633 return false; 1634 } 1635 1636 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1637 unsigned Align) const { 1638 // Otherwise, if the alignment is less than or equal to the minimum ABI 1639 // alignment, just use the default; the backend will handle this. 1640 if (Align <= MinABIStackAlignInBytes) 1641 return 0; // Use default alignment. 1642 1643 if (IsLinuxABI) { 1644 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1645 // want to spend any effort dealing with the ramifications of ABI breaks. 1646 // 1647 // If the vector type is __m128/__m256/__m512, return the default alignment. 1648 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1649 return Align; 1650 } 1651 // On non-Darwin, the stack type alignment is always 4. 1652 if (!IsDarwinVectorABI) { 1653 // Set explicit alignment, since we may need to realign the top. 1654 return MinABIStackAlignInBytes; 1655 } 1656 1657 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1658 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1659 isRecordWithSIMDVectorType(getContext(), Ty))) 1660 return 16; 1661 1662 return MinABIStackAlignInBytes; 1663 } 1664 1665 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1666 CCState &State) const { 1667 if (!ByVal) { 1668 if (State.FreeRegs) { 1669 --State.FreeRegs; // Non-byval indirects just use one pointer. 1670 if (!IsMCUABI) 1671 return getNaturalAlignIndirectInReg(Ty); 1672 } 1673 return getNaturalAlignIndirect(Ty, false); 1674 } 1675 1676 // Compute the byval alignment. 1677 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1678 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1679 if (StackAlign == 0) 1680 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1681 1682 // If the stack alignment is less than the type alignment, realign the 1683 // argument. 1684 bool Realign = TypeAlign > StackAlign; 1685 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1686 /*ByVal=*/true, Realign); 1687 } 1688 1689 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1690 const Type *T = isSingleElementStruct(Ty, getContext()); 1691 if (!T) 1692 T = Ty.getTypePtr(); 1693 1694 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1695 BuiltinType::Kind K = BT->getKind(); 1696 if (K == BuiltinType::Float || K == BuiltinType::Double) 1697 return Float; 1698 } 1699 return Integer; 1700 } 1701 1702 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1703 if (!IsSoftFloatABI) { 1704 Class C = classify(Ty); 1705 if (C == Float) 1706 return false; 1707 } 1708 1709 unsigned Size = getContext().getTypeSize(Ty); 1710 unsigned SizeInRegs = (Size + 31) / 32; 1711 1712 if (SizeInRegs == 0) 1713 return false; 1714 1715 if (!IsMCUABI) { 1716 if (SizeInRegs > State.FreeRegs) { 1717 State.FreeRegs = 0; 1718 return false; 1719 } 1720 } else { 1721 // The MCU psABI allows passing parameters in-reg even if there are 1722 // earlier parameters that are passed on the stack. Also, 1723 // it does not allow passing >8-byte structs in-register, 1724 // even if there are 3 free registers available. 1725 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1726 return false; 1727 } 1728 1729 State.FreeRegs -= SizeInRegs; 1730 return true; 1731 } 1732 1733 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1734 bool &InReg, 1735 bool &NeedsPadding) const { 1736 // On Windows, aggregates other than HFAs are never passed in registers, and 1737 // they do not consume register slots. Homogenous floating-point aggregates 1738 // (HFAs) have already been dealt with at this point. 1739 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1740 return false; 1741 1742 NeedsPadding = false; 1743 InReg = !IsMCUABI; 1744 1745 if (!updateFreeRegs(Ty, State)) 1746 return false; 1747 1748 if (IsMCUABI) 1749 return true; 1750 1751 if (State.CC == llvm::CallingConv::X86_FastCall || 1752 State.CC == llvm::CallingConv::X86_VectorCall || 1753 State.CC == llvm::CallingConv::X86_RegCall) { 1754 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1755 NeedsPadding = true; 1756 1757 return false; 1758 } 1759 1760 return true; 1761 } 1762 1763 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1764 if (!updateFreeRegs(Ty, State)) 1765 return false; 1766 1767 if (IsMCUABI) 1768 return false; 1769 1770 if (State.CC == llvm::CallingConv::X86_FastCall || 1771 State.CC == llvm::CallingConv::X86_VectorCall || 1772 State.CC == llvm::CallingConv::X86_RegCall) { 1773 if (getContext().getTypeSize(Ty) > 32) 1774 return false; 1775 1776 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1777 Ty->isReferenceType()); 1778 } 1779 1780 return true; 1781 } 1782 1783 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1784 // Vectorcall x86 works subtly different than in x64, so the format is 1785 // a bit different than the x64 version. First, all vector types (not HVAs) 1786 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1787 // This differs from the x64 implementation, where the first 6 by INDEX get 1788 // registers. 1789 // In the second pass over the arguments, HVAs are passed in the remaining 1790 // vector registers if possible, or indirectly by address. The address will be 1791 // passed in ECX/EDX if available. Any other arguments are passed according to 1792 // the usual fastcall rules. 1793 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1794 for (int I = 0, E = Args.size(); I < E; ++I) { 1795 const Type *Base = nullptr; 1796 uint64_t NumElts = 0; 1797 const QualType &Ty = Args[I].type; 1798 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1799 isHomogeneousAggregate(Ty, Base, NumElts)) { 1800 if (State.FreeSSERegs >= NumElts) { 1801 State.FreeSSERegs -= NumElts; 1802 Args[I].info = ABIArgInfo::getDirectInReg(); 1803 State.IsPreassigned.set(I); 1804 } 1805 } 1806 } 1807 } 1808 1809 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1810 CCState &State) const { 1811 // FIXME: Set alignment on indirect arguments. 1812 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1813 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1814 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1815 1816 Ty = useFirstFieldIfTransparentUnion(Ty); 1817 TypeInfo TI = getContext().getTypeInfo(Ty); 1818 1819 // Check with the C++ ABI first. 1820 const RecordType *RT = Ty->getAs<RecordType>(); 1821 if (RT) { 1822 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1823 if (RAA == CGCXXABI::RAA_Indirect) { 1824 return getIndirectResult(Ty, false, State); 1825 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1826 // The field index doesn't matter, we'll fix it up later. 1827 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1828 } 1829 } 1830 1831 // Regcall uses the concept of a homogenous vector aggregate, similar 1832 // to other targets. 1833 const Type *Base = nullptr; 1834 uint64_t NumElts = 0; 1835 if ((IsRegCall || IsVectorCall) && 1836 isHomogeneousAggregate(Ty, Base, NumElts)) { 1837 if (State.FreeSSERegs >= NumElts) { 1838 State.FreeSSERegs -= NumElts; 1839 1840 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1841 // does. 1842 if (IsVectorCall) 1843 return getDirectX86Hva(); 1844 1845 if (Ty->isBuiltinType() || Ty->isVectorType()) 1846 return ABIArgInfo::getDirect(); 1847 return ABIArgInfo::getExpand(); 1848 } 1849 return getIndirectResult(Ty, /*ByVal=*/false, State); 1850 } 1851 1852 if (isAggregateTypeForABI(Ty)) { 1853 // Structures with flexible arrays are always indirect. 1854 // FIXME: This should not be byval! 1855 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1856 return getIndirectResult(Ty, true, State); 1857 1858 // Ignore empty structs/unions on non-Windows. 1859 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1860 return ABIArgInfo::getIgnore(); 1861 1862 llvm::LLVMContext &LLVMContext = getVMContext(); 1863 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1864 bool NeedsPadding = false; 1865 bool InReg; 1866 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1867 unsigned SizeInRegs = (TI.Width + 31) / 32; 1868 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1869 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1870 if (InReg) 1871 return ABIArgInfo::getDirectInReg(Result); 1872 else 1873 return ABIArgInfo::getDirect(Result); 1874 } 1875 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1876 1877 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1878 // added in MSVC 2015. 1879 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1880 return getIndirectResult(Ty, /*ByVal=*/false, State); 1881 1882 // Expand small (<= 128-bit) record types when we know that the stack layout 1883 // of those arguments will match the struct. This is important because the 1884 // LLVM backend isn't smart enough to remove byval, which inhibits many 1885 // optimizations. 1886 // Don't do this for the MCU if there are still free integer registers 1887 // (see X86_64 ABI for full explanation). 1888 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1889 canExpandIndirectArgument(Ty)) 1890 return ABIArgInfo::getExpandWithPadding( 1891 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1892 1893 return getIndirectResult(Ty, true, State); 1894 } 1895 1896 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1897 // On Windows, vectors are passed directly if registers are available, or 1898 // indirectly if not. This avoids the need to align argument memory. Pass 1899 // user-defined vector types larger than 512 bits indirectly for simplicity. 1900 if (IsWin32StructABI) { 1901 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1902 --State.FreeSSERegs; 1903 return ABIArgInfo::getDirectInReg(); 1904 } 1905 return getIndirectResult(Ty, /*ByVal=*/false, State); 1906 } 1907 1908 // On Darwin, some vectors are passed in memory, we handle this by passing 1909 // it as an i8/i16/i32/i64. 1910 if (IsDarwinVectorABI) { 1911 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1912 (TI.Width == 64 && VT->getNumElements() == 1)) 1913 return ABIArgInfo::getDirect( 1914 llvm::IntegerType::get(getVMContext(), TI.Width)); 1915 } 1916 1917 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1918 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1919 1920 return ABIArgInfo::getDirect(); 1921 } 1922 1923 1924 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1925 Ty = EnumTy->getDecl()->getIntegerType(); 1926 1927 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1928 1929 if (isPromotableIntegerTypeForABI(Ty)) { 1930 if (InReg) 1931 return ABIArgInfo::getExtendInReg(Ty); 1932 return ABIArgInfo::getExtend(Ty); 1933 } 1934 1935 if (const auto *EIT = Ty->getAs<BitIntType>()) { 1936 if (EIT->getNumBits() <= 64) { 1937 if (InReg) 1938 return ABIArgInfo::getDirectInReg(); 1939 return ABIArgInfo::getDirect(); 1940 } 1941 return getIndirectResult(Ty, /*ByVal=*/false, State); 1942 } 1943 1944 if (InReg) 1945 return ABIArgInfo::getDirectInReg(); 1946 return ABIArgInfo::getDirect(); 1947 } 1948 1949 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1950 CCState State(FI); 1951 if (IsMCUABI) 1952 State.FreeRegs = 3; 1953 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1954 State.FreeRegs = 2; 1955 State.FreeSSERegs = 3; 1956 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1957 State.FreeRegs = 2; 1958 State.FreeSSERegs = 6; 1959 } else if (FI.getHasRegParm()) 1960 State.FreeRegs = FI.getRegParm(); 1961 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1962 State.FreeRegs = 5; 1963 State.FreeSSERegs = 8; 1964 } else if (IsWin32StructABI) { 1965 // Since MSVC 2015, the first three SSE vectors have been passed in 1966 // registers. The rest are passed indirectly. 1967 State.FreeRegs = DefaultNumRegisterParameters; 1968 State.FreeSSERegs = 3; 1969 } else 1970 State.FreeRegs = DefaultNumRegisterParameters; 1971 1972 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1973 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1974 } else if (FI.getReturnInfo().isIndirect()) { 1975 // The C++ ABI is not aware of register usage, so we have to check if the 1976 // return value was sret and put it in a register ourselves if appropriate. 1977 if (State.FreeRegs) { 1978 --State.FreeRegs; // The sret parameter consumes a register. 1979 if (!IsMCUABI) 1980 FI.getReturnInfo().setInReg(true); 1981 } 1982 } 1983 1984 // The chain argument effectively gives us another free register. 1985 if (FI.isChainCall()) 1986 ++State.FreeRegs; 1987 1988 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1989 // arguments to XMM registers as available. 1990 if (State.CC == llvm::CallingConv::X86_VectorCall) 1991 runVectorCallFirstPass(FI, State); 1992 1993 bool UsedInAlloca = false; 1994 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1995 for (int I = 0, E = Args.size(); I < E; ++I) { 1996 // Skip arguments that have already been assigned. 1997 if (State.IsPreassigned.test(I)) 1998 continue; 1999 2000 Args[I].info = classifyArgumentType(Args[I].type, State); 2001 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 2002 } 2003 2004 // If we needed to use inalloca for any argument, do a second pass and rewrite 2005 // all the memory arguments to use inalloca. 2006 if (UsedInAlloca) 2007 rewriteWithInAlloca(FI); 2008 } 2009 2010 void 2011 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2012 CharUnits &StackOffset, ABIArgInfo &Info, 2013 QualType Type) const { 2014 // Arguments are always 4-byte-aligned. 2015 CharUnits WordSize = CharUnits::fromQuantity(4); 2016 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2017 2018 // sret pointers and indirect things will require an extra pointer 2019 // indirection, unless they are byval. Most things are byval, and will not 2020 // require this indirection. 2021 bool IsIndirect = false; 2022 if (Info.isIndirect() && !Info.getIndirectByVal()) 2023 IsIndirect = true; 2024 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2025 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2026 if (IsIndirect) 2027 LLTy = LLTy->getPointerTo(0); 2028 FrameFields.push_back(LLTy); 2029 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2030 2031 // Insert padding bytes to respect alignment. 2032 CharUnits FieldEnd = StackOffset; 2033 StackOffset = FieldEnd.alignTo(WordSize); 2034 if (StackOffset != FieldEnd) { 2035 CharUnits NumBytes = StackOffset - FieldEnd; 2036 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2037 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2038 FrameFields.push_back(Ty); 2039 } 2040 } 2041 2042 static bool isArgInAlloca(const ABIArgInfo &Info) { 2043 // Leave ignored and inreg arguments alone. 2044 switch (Info.getKind()) { 2045 case ABIArgInfo::InAlloca: 2046 return true; 2047 case ABIArgInfo::Ignore: 2048 case ABIArgInfo::IndirectAliased: 2049 return false; 2050 case ABIArgInfo::Indirect: 2051 case ABIArgInfo::Direct: 2052 case ABIArgInfo::Extend: 2053 return !Info.getInReg(); 2054 case ABIArgInfo::Expand: 2055 case ABIArgInfo::CoerceAndExpand: 2056 // These are aggregate types which are never passed in registers when 2057 // inalloca is involved. 2058 return true; 2059 } 2060 llvm_unreachable("invalid enum"); 2061 } 2062 2063 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2064 assert(IsWin32StructABI && "inalloca only supported on win32"); 2065 2066 // Build a packed struct type for all of the arguments in memory. 2067 SmallVector<llvm::Type *, 6> FrameFields; 2068 2069 // The stack alignment is always 4. 2070 CharUnits StackAlign = CharUnits::fromQuantity(4); 2071 2072 CharUnits StackOffset; 2073 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2074 2075 // Put 'this' into the struct before 'sret', if necessary. 2076 bool IsThisCall = 2077 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2078 ABIArgInfo &Ret = FI.getReturnInfo(); 2079 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2080 isArgInAlloca(I->info)) { 2081 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2082 ++I; 2083 } 2084 2085 // Put the sret parameter into the inalloca struct if it's in memory. 2086 if (Ret.isIndirect() && !Ret.getInReg()) { 2087 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2088 // On Windows, the hidden sret parameter is always returned in eax. 2089 Ret.setInAllocaSRet(IsWin32StructABI); 2090 } 2091 2092 // Skip the 'this' parameter in ecx. 2093 if (IsThisCall) 2094 ++I; 2095 2096 // Put arguments passed in memory into the struct. 2097 for (; I != E; ++I) { 2098 if (isArgInAlloca(I->info)) 2099 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2100 } 2101 2102 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2103 /*isPacked=*/true), 2104 StackAlign); 2105 } 2106 2107 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2108 Address VAListAddr, QualType Ty) const { 2109 2110 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2111 2112 // x86-32 changes the alignment of certain arguments on the stack. 2113 // 2114 // Just messing with TypeInfo like this works because we never pass 2115 // anything indirectly. 2116 TypeInfo.Align = CharUnits::fromQuantity( 2117 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2118 2119 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2120 TypeInfo, CharUnits::fromQuantity(4), 2121 /*AllowHigherAlign*/ true); 2122 } 2123 2124 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2125 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2126 assert(Triple.getArch() == llvm::Triple::x86); 2127 2128 switch (Opts.getStructReturnConvention()) { 2129 case CodeGenOptions::SRCK_Default: 2130 break; 2131 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2132 return false; 2133 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2134 return true; 2135 } 2136 2137 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2138 return true; 2139 2140 switch (Triple.getOS()) { 2141 case llvm::Triple::DragonFly: 2142 case llvm::Triple::FreeBSD: 2143 case llvm::Triple::OpenBSD: 2144 case llvm::Triple::Win32: 2145 return true; 2146 default: 2147 return false; 2148 } 2149 } 2150 2151 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2152 CodeGen::CodeGenModule &CGM) { 2153 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2154 return; 2155 2156 llvm::Function *Fn = cast<llvm::Function>(GV); 2157 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2158 if (FD->getNumParams() == 0) 2159 return; 2160 2161 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2162 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2163 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2164 Fn->getContext(), ByValTy); 2165 Fn->addParamAttr(0, NewAttr); 2166 } 2167 2168 void X86_32TargetCodeGenInfo::setTargetAttributes( 2169 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2170 if (GV->isDeclaration()) 2171 return; 2172 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2173 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2174 llvm::Function *Fn = cast<llvm::Function>(GV); 2175 Fn->addFnAttr("stackrealign"); 2176 } 2177 2178 addX86InterruptAttrs(FD, GV, CGM); 2179 } 2180 } 2181 2182 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2183 CodeGen::CodeGenFunction &CGF, 2184 llvm::Value *Address) const { 2185 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2186 2187 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2188 2189 // 0-7 are the eight integer registers; the order is different 2190 // on Darwin (for EH), but the range is the same. 2191 // 8 is %eip. 2192 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2193 2194 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2195 // 12-16 are st(0..4). Not sure why we stop at 4. 2196 // These have size 16, which is sizeof(long double) on 2197 // platforms with 8-byte alignment for that type. 2198 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2199 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2200 2201 } else { 2202 // 9 is %eflags, which doesn't get a size on Darwin for some 2203 // reason. 2204 Builder.CreateAlignedStore( 2205 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2206 CharUnits::One()); 2207 2208 // 11-16 are st(0..5). Not sure why we stop at 5. 2209 // These have size 12, which is sizeof(long double) on 2210 // platforms with 4-byte alignment for that type. 2211 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2212 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2213 } 2214 2215 return false; 2216 } 2217 2218 //===----------------------------------------------------------------------===// 2219 // X86-64 ABI Implementation 2220 //===----------------------------------------------------------------------===// 2221 2222 2223 namespace { 2224 /// The AVX ABI level for X86 targets. 2225 enum class X86AVXABILevel { 2226 None, 2227 AVX, 2228 AVX512 2229 }; 2230 2231 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2232 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2233 switch (AVXLevel) { 2234 case X86AVXABILevel::AVX512: 2235 return 512; 2236 case X86AVXABILevel::AVX: 2237 return 256; 2238 case X86AVXABILevel::None: 2239 return 128; 2240 } 2241 llvm_unreachable("Unknown AVXLevel"); 2242 } 2243 2244 /// X86_64ABIInfo - The X86_64 ABI information. 2245 class X86_64ABIInfo : public SwiftABIInfo { 2246 enum Class { 2247 Integer = 0, 2248 SSE, 2249 SSEUp, 2250 X87, 2251 X87Up, 2252 ComplexX87, 2253 NoClass, 2254 Memory 2255 }; 2256 2257 /// merge - Implement the X86_64 ABI merging algorithm. 2258 /// 2259 /// Merge an accumulating classification \arg Accum with a field 2260 /// classification \arg Field. 2261 /// 2262 /// \param Accum - The accumulating classification. This should 2263 /// always be either NoClass or the result of a previous merge 2264 /// call. In addition, this should never be Memory (the caller 2265 /// should just return Memory for the aggregate). 2266 static Class merge(Class Accum, Class Field); 2267 2268 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2269 /// 2270 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2271 /// final MEMORY or SSE classes when necessary. 2272 /// 2273 /// \param AggregateSize - The size of the current aggregate in 2274 /// the classification process. 2275 /// 2276 /// \param Lo - The classification for the parts of the type 2277 /// residing in the low word of the containing object. 2278 /// 2279 /// \param Hi - The classification for the parts of the type 2280 /// residing in the higher words of the containing object. 2281 /// 2282 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2283 2284 /// classify - Determine the x86_64 register classes in which the 2285 /// given type T should be passed. 2286 /// 2287 /// \param Lo - The classification for the parts of the type 2288 /// residing in the low word of the containing object. 2289 /// 2290 /// \param Hi - The classification for the parts of the type 2291 /// residing in the high word of the containing object. 2292 /// 2293 /// \param OffsetBase - The bit offset of this type in the 2294 /// containing object. Some parameters are classified different 2295 /// depending on whether they straddle an eightbyte boundary. 2296 /// 2297 /// \param isNamedArg - Whether the argument in question is a "named" 2298 /// argument, as used in AMD64-ABI 3.5.7. 2299 /// 2300 /// If a word is unused its result will be NoClass; if a type should 2301 /// be passed in Memory then at least the classification of \arg Lo 2302 /// will be Memory. 2303 /// 2304 /// The \arg Lo class will be NoClass iff the argument is ignored. 2305 /// 2306 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2307 /// also be ComplexX87. 2308 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2309 bool isNamedArg) const; 2310 2311 llvm::Type *GetByteVectorType(QualType Ty) const; 2312 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2313 unsigned IROffset, QualType SourceTy, 2314 unsigned SourceOffset) const; 2315 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2316 unsigned IROffset, QualType SourceTy, 2317 unsigned SourceOffset) const; 2318 2319 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2320 /// such that the argument will be returned in memory. 2321 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2322 2323 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2324 /// such that the argument will be passed in memory. 2325 /// 2326 /// \param freeIntRegs - The number of free integer registers remaining 2327 /// available. 2328 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2329 2330 ABIArgInfo classifyReturnType(QualType RetTy) const; 2331 2332 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2333 unsigned &neededInt, unsigned &neededSSE, 2334 bool isNamedArg) const; 2335 2336 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2337 unsigned &NeededSSE) const; 2338 2339 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2340 unsigned &NeededSSE) const; 2341 2342 bool IsIllegalVectorType(QualType Ty) const; 2343 2344 /// The 0.98 ABI revision clarified a lot of ambiguities, 2345 /// unfortunately in ways that were not always consistent with 2346 /// certain previous compilers. In particular, platforms which 2347 /// required strict binary compatibility with older versions of GCC 2348 /// may need to exempt themselves. 2349 bool honorsRevision0_98() const { 2350 return !getTarget().getTriple().isOSDarwin(); 2351 } 2352 2353 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2354 /// classify it as INTEGER (for compatibility with older clang compilers). 2355 bool classifyIntegerMMXAsSSE() const { 2356 // Clang <= 3.8 did not do this. 2357 if (getContext().getLangOpts().getClangABICompat() <= 2358 LangOptions::ClangABI::Ver3_8) 2359 return false; 2360 2361 const llvm::Triple &Triple = getTarget().getTriple(); 2362 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2363 return false; 2364 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2365 return false; 2366 return true; 2367 } 2368 2369 // GCC classifies vectors of __int128 as memory. 2370 bool passInt128VectorsInMem() const { 2371 // Clang <= 9.0 did not do this. 2372 if (getContext().getLangOpts().getClangABICompat() <= 2373 LangOptions::ClangABI::Ver9) 2374 return false; 2375 2376 const llvm::Triple &T = getTarget().getTriple(); 2377 return T.isOSLinux() || T.isOSNetBSD(); 2378 } 2379 2380 X86AVXABILevel AVXLevel; 2381 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2382 // 64-bit hardware. 2383 bool Has64BitPointers; 2384 2385 public: 2386 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2387 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2388 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2389 } 2390 2391 bool isPassedUsingAVXType(QualType type) const { 2392 unsigned neededInt, neededSSE; 2393 // The freeIntRegs argument doesn't matter here. 2394 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2395 /*isNamedArg*/true); 2396 if (info.isDirect()) { 2397 llvm::Type *ty = info.getCoerceToType(); 2398 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2399 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2400 } 2401 return false; 2402 } 2403 2404 void computeInfo(CGFunctionInfo &FI) const override; 2405 2406 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2407 QualType Ty) const override; 2408 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2409 QualType Ty) const override; 2410 2411 bool has64BitPointers() const { 2412 return Has64BitPointers; 2413 } 2414 2415 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2416 bool asReturnValue) const override { 2417 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2418 } 2419 bool isSwiftErrorInRegister() const override { 2420 return true; 2421 } 2422 }; 2423 2424 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2425 class WinX86_64ABIInfo : public SwiftABIInfo { 2426 public: 2427 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2428 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2429 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2430 2431 void computeInfo(CGFunctionInfo &FI) const override; 2432 2433 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2434 QualType Ty) const override; 2435 2436 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2437 // FIXME: Assumes vectorcall is in use. 2438 return isX86VectorTypeForVectorCall(getContext(), Ty); 2439 } 2440 2441 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2442 uint64_t NumMembers) const override { 2443 // FIXME: Assumes vectorcall is in use. 2444 return isX86VectorCallAggregateSmallEnough(NumMembers); 2445 } 2446 2447 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2448 bool asReturnValue) const override { 2449 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2450 } 2451 2452 bool isSwiftErrorInRegister() const override { 2453 return true; 2454 } 2455 2456 private: 2457 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2458 bool IsVectorCall, bool IsRegCall) const; 2459 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2460 const ABIArgInfo ¤t) const; 2461 2462 X86AVXABILevel AVXLevel; 2463 2464 bool IsMingw64; 2465 }; 2466 2467 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2468 public: 2469 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2470 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2471 2472 const X86_64ABIInfo &getABIInfo() const { 2473 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2474 } 2475 2476 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2477 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2478 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2479 2480 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2481 return 7; 2482 } 2483 2484 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2485 llvm::Value *Address) const override { 2486 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2487 2488 // 0-15 are the 16 integer registers. 2489 // 16 is %rip. 2490 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2491 return false; 2492 } 2493 2494 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2495 StringRef Constraint, 2496 llvm::Type* Ty) const override { 2497 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2498 } 2499 2500 bool isNoProtoCallVariadic(const CallArgList &args, 2501 const FunctionNoProtoType *fnType) const override { 2502 // The default CC on x86-64 sets %al to the number of SSA 2503 // registers used, and GCC sets this when calling an unprototyped 2504 // function, so we override the default behavior. However, don't do 2505 // that when AVX types are involved: the ABI explicitly states it is 2506 // undefined, and it doesn't work in practice because of how the ABI 2507 // defines varargs anyway. 2508 if (fnType->getCallConv() == CC_C) { 2509 bool HasAVXType = false; 2510 for (CallArgList::const_iterator 2511 it = args.begin(), ie = args.end(); it != ie; ++it) { 2512 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2513 HasAVXType = true; 2514 break; 2515 } 2516 } 2517 2518 if (!HasAVXType) 2519 return true; 2520 } 2521 2522 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2523 } 2524 2525 llvm::Constant * 2526 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2527 unsigned Sig = (0xeb << 0) | // jmp rel8 2528 (0x06 << 8) | // .+0x08 2529 ('v' << 16) | 2530 ('2' << 24); 2531 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2532 } 2533 2534 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2535 CodeGen::CodeGenModule &CGM) const override { 2536 if (GV->isDeclaration()) 2537 return; 2538 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2539 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2540 llvm::Function *Fn = cast<llvm::Function>(GV); 2541 Fn->addFnAttr("stackrealign"); 2542 } 2543 2544 addX86InterruptAttrs(FD, GV, CGM); 2545 } 2546 } 2547 2548 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2549 const FunctionDecl *Caller, 2550 const FunctionDecl *Callee, 2551 const CallArgList &Args) const override; 2552 }; 2553 2554 static void initFeatureMaps(const ASTContext &Ctx, 2555 llvm::StringMap<bool> &CallerMap, 2556 const FunctionDecl *Caller, 2557 llvm::StringMap<bool> &CalleeMap, 2558 const FunctionDecl *Callee) { 2559 if (CalleeMap.empty() && CallerMap.empty()) { 2560 // The caller is potentially nullptr in the case where the call isn't in a 2561 // function. In this case, the getFunctionFeatureMap ensures we just get 2562 // the TU level setting (since it cannot be modified by 'target'.. 2563 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2564 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2565 } 2566 } 2567 2568 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2569 SourceLocation CallLoc, 2570 const llvm::StringMap<bool> &CallerMap, 2571 const llvm::StringMap<bool> &CalleeMap, 2572 QualType Ty, StringRef Feature, 2573 bool IsArgument) { 2574 bool CallerHasFeat = CallerMap.lookup(Feature); 2575 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2576 if (!CallerHasFeat && !CalleeHasFeat) 2577 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2578 << IsArgument << Ty << Feature; 2579 2580 // Mixing calling conventions here is very clearly an error. 2581 if (!CallerHasFeat || !CalleeHasFeat) 2582 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2583 << IsArgument << Ty << Feature; 2584 2585 // Else, both caller and callee have the required feature, so there is no need 2586 // to diagnose. 2587 return false; 2588 } 2589 2590 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2591 SourceLocation CallLoc, 2592 const llvm::StringMap<bool> &CallerMap, 2593 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2594 bool IsArgument) { 2595 uint64_t Size = Ctx.getTypeSize(Ty); 2596 if (Size > 256) 2597 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2598 "avx512f", IsArgument); 2599 2600 if (Size > 128) 2601 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2602 IsArgument); 2603 2604 return false; 2605 } 2606 2607 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2608 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2609 const FunctionDecl *Callee, const CallArgList &Args) const { 2610 llvm::StringMap<bool> CallerMap; 2611 llvm::StringMap<bool> CalleeMap; 2612 unsigned ArgIndex = 0; 2613 2614 // We need to loop through the actual call arguments rather than the the 2615 // function's parameters, in case this variadic. 2616 for (const CallArg &Arg : Args) { 2617 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2618 // additionally changes how vectors >256 in size are passed. Like GCC, we 2619 // warn when a function is called with an argument where this will change. 2620 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2621 // the caller and callee features are mismatched. 2622 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2623 // change its ABI with attribute-target after this call. 2624 if (Arg.getType()->isVectorType() && 2625 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2626 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2627 QualType Ty = Arg.getType(); 2628 // The CallArg seems to have desugared the type already, so for clearer 2629 // diagnostics, replace it with the type in the FunctionDecl if possible. 2630 if (ArgIndex < Callee->getNumParams()) 2631 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2632 2633 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2634 CalleeMap, Ty, /*IsArgument*/ true)) 2635 return; 2636 } 2637 ++ArgIndex; 2638 } 2639 2640 // Check return always, as we don't have a good way of knowing in codegen 2641 // whether this value is used, tail-called, etc. 2642 if (Callee->getReturnType()->isVectorType() && 2643 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2644 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2645 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2646 CalleeMap, Callee->getReturnType(), 2647 /*IsArgument*/ false); 2648 } 2649 } 2650 2651 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2652 // If the argument does not end in .lib, automatically add the suffix. 2653 // If the argument contains a space, enclose it in quotes. 2654 // This matches the behavior of MSVC. 2655 bool Quote = Lib.contains(' '); 2656 std::string ArgStr = Quote ? "\"" : ""; 2657 ArgStr += Lib; 2658 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2659 ArgStr += ".lib"; 2660 ArgStr += Quote ? "\"" : ""; 2661 return ArgStr; 2662 } 2663 2664 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2665 public: 2666 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2667 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2668 unsigned NumRegisterParameters) 2669 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2670 Win32StructABI, NumRegisterParameters, false) {} 2671 2672 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2673 CodeGen::CodeGenModule &CGM) const override; 2674 2675 void getDependentLibraryOption(llvm::StringRef Lib, 2676 llvm::SmallString<24> &Opt) const override { 2677 Opt = "/DEFAULTLIB:"; 2678 Opt += qualifyWindowsLibrary(Lib); 2679 } 2680 2681 void getDetectMismatchOption(llvm::StringRef Name, 2682 llvm::StringRef Value, 2683 llvm::SmallString<32> &Opt) const override { 2684 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2685 } 2686 }; 2687 2688 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2689 CodeGen::CodeGenModule &CGM) { 2690 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2691 2692 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2693 Fn->addFnAttr("stack-probe-size", 2694 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2695 if (CGM.getCodeGenOpts().NoStackArgProbe) 2696 Fn->addFnAttr("no-stack-arg-probe"); 2697 } 2698 } 2699 2700 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2701 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2702 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2703 if (GV->isDeclaration()) 2704 return; 2705 addStackProbeTargetAttributes(D, GV, CGM); 2706 } 2707 2708 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2709 public: 2710 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2711 X86AVXABILevel AVXLevel) 2712 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2713 2714 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2715 CodeGen::CodeGenModule &CGM) const override; 2716 2717 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2718 return 7; 2719 } 2720 2721 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2722 llvm::Value *Address) const override { 2723 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2724 2725 // 0-15 are the 16 integer registers. 2726 // 16 is %rip. 2727 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2728 return false; 2729 } 2730 2731 void getDependentLibraryOption(llvm::StringRef Lib, 2732 llvm::SmallString<24> &Opt) const override { 2733 Opt = "/DEFAULTLIB:"; 2734 Opt += qualifyWindowsLibrary(Lib); 2735 } 2736 2737 void getDetectMismatchOption(llvm::StringRef Name, 2738 llvm::StringRef Value, 2739 llvm::SmallString<32> &Opt) const override { 2740 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2741 } 2742 }; 2743 2744 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2745 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2746 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2747 if (GV->isDeclaration()) 2748 return; 2749 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2750 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2751 llvm::Function *Fn = cast<llvm::Function>(GV); 2752 Fn->addFnAttr("stackrealign"); 2753 } 2754 2755 addX86InterruptAttrs(FD, GV, CGM); 2756 } 2757 2758 addStackProbeTargetAttributes(D, GV, CGM); 2759 } 2760 } 2761 2762 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2763 Class &Hi) const { 2764 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2765 // 2766 // (a) If one of the classes is Memory, the whole argument is passed in 2767 // memory. 2768 // 2769 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2770 // memory. 2771 // 2772 // (c) If the size of the aggregate exceeds two eightbytes and the first 2773 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2774 // argument is passed in memory. NOTE: This is necessary to keep the 2775 // ABI working for processors that don't support the __m256 type. 2776 // 2777 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2778 // 2779 // Some of these are enforced by the merging logic. Others can arise 2780 // only with unions; for example: 2781 // union { _Complex double; unsigned; } 2782 // 2783 // Note that clauses (b) and (c) were added in 0.98. 2784 // 2785 if (Hi == Memory) 2786 Lo = Memory; 2787 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2788 Lo = Memory; 2789 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2790 Lo = Memory; 2791 if (Hi == SSEUp && Lo != SSE) 2792 Hi = SSE; 2793 } 2794 2795 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2796 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2797 // classified recursively so that always two fields are 2798 // considered. The resulting class is calculated according to 2799 // the classes of the fields in the eightbyte: 2800 // 2801 // (a) If both classes are equal, this is the resulting class. 2802 // 2803 // (b) If one of the classes is NO_CLASS, the resulting class is 2804 // the other class. 2805 // 2806 // (c) If one of the classes is MEMORY, the result is the MEMORY 2807 // class. 2808 // 2809 // (d) If one of the classes is INTEGER, the result is the 2810 // INTEGER. 2811 // 2812 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2813 // MEMORY is used as class. 2814 // 2815 // (f) Otherwise class SSE is used. 2816 2817 // Accum should never be memory (we should have returned) or 2818 // ComplexX87 (because this cannot be passed in a structure). 2819 assert((Accum != Memory && Accum != ComplexX87) && 2820 "Invalid accumulated classification during merge."); 2821 if (Accum == Field || Field == NoClass) 2822 return Accum; 2823 if (Field == Memory) 2824 return Memory; 2825 if (Accum == NoClass) 2826 return Field; 2827 if (Accum == Integer || Field == Integer) 2828 return Integer; 2829 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2830 Accum == X87 || Accum == X87Up) 2831 return Memory; 2832 return SSE; 2833 } 2834 2835 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2836 Class &Lo, Class &Hi, bool isNamedArg) const { 2837 // FIXME: This code can be simplified by introducing a simple value class for 2838 // Class pairs with appropriate constructor methods for the various 2839 // situations. 2840 2841 // FIXME: Some of the split computations are wrong; unaligned vectors 2842 // shouldn't be passed in registers for example, so there is no chance they 2843 // can straddle an eightbyte. Verify & simplify. 2844 2845 Lo = Hi = NoClass; 2846 2847 Class &Current = OffsetBase < 64 ? Lo : Hi; 2848 Current = Memory; 2849 2850 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2851 BuiltinType::Kind k = BT->getKind(); 2852 2853 if (k == BuiltinType::Void) { 2854 Current = NoClass; 2855 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2856 Lo = Integer; 2857 Hi = Integer; 2858 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2859 Current = Integer; 2860 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2861 k == BuiltinType::Float16) { 2862 Current = SSE; 2863 } else if (k == BuiltinType::LongDouble) { 2864 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2865 if (LDF == &llvm::APFloat::IEEEquad()) { 2866 Lo = SSE; 2867 Hi = SSEUp; 2868 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2869 Lo = X87; 2870 Hi = X87Up; 2871 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2872 Current = SSE; 2873 } else 2874 llvm_unreachable("unexpected long double representation!"); 2875 } 2876 // FIXME: _Decimal32 and _Decimal64 are SSE. 2877 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2878 return; 2879 } 2880 2881 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2882 // Classify the underlying integer type. 2883 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2884 return; 2885 } 2886 2887 if (Ty->hasPointerRepresentation()) { 2888 Current = Integer; 2889 return; 2890 } 2891 2892 if (Ty->isMemberPointerType()) { 2893 if (Ty->isMemberFunctionPointerType()) { 2894 if (Has64BitPointers) { 2895 // If Has64BitPointers, this is an {i64, i64}, so classify both 2896 // Lo and Hi now. 2897 Lo = Hi = Integer; 2898 } else { 2899 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2900 // straddles an eightbyte boundary, Hi should be classified as well. 2901 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2902 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2903 if (EB_FuncPtr != EB_ThisAdj) { 2904 Lo = Hi = Integer; 2905 } else { 2906 Current = Integer; 2907 } 2908 } 2909 } else { 2910 Current = Integer; 2911 } 2912 return; 2913 } 2914 2915 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2916 uint64_t Size = getContext().getTypeSize(VT); 2917 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2918 // gcc passes the following as integer: 2919 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2920 // 2 bytes - <2 x char>, <1 x short> 2921 // 1 byte - <1 x char> 2922 Current = Integer; 2923 2924 // If this type crosses an eightbyte boundary, it should be 2925 // split. 2926 uint64_t EB_Lo = (OffsetBase) / 64; 2927 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2928 if (EB_Lo != EB_Hi) 2929 Hi = Lo; 2930 } else if (Size == 64) { 2931 QualType ElementType = VT->getElementType(); 2932 2933 // gcc passes <1 x double> in memory. :( 2934 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2935 return; 2936 2937 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2938 // pass them as integer. For platforms where clang is the de facto 2939 // platform compiler, we must continue to use integer. 2940 if (!classifyIntegerMMXAsSSE() && 2941 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2942 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2943 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2944 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2945 Current = Integer; 2946 else 2947 Current = SSE; 2948 2949 // If this type crosses an eightbyte boundary, it should be 2950 // split. 2951 if (OffsetBase && OffsetBase != 64) 2952 Hi = Lo; 2953 } else if (Size == 128 || 2954 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2955 QualType ElementType = VT->getElementType(); 2956 2957 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2958 if (passInt128VectorsInMem() && Size != 128 && 2959 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2960 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2961 return; 2962 2963 // Arguments of 256-bits are split into four eightbyte chunks. The 2964 // least significant one belongs to class SSE and all the others to class 2965 // SSEUP. The original Lo and Hi design considers that types can't be 2966 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2967 // This design isn't correct for 256-bits, but since there're no cases 2968 // where the upper parts would need to be inspected, avoid adding 2969 // complexity and just consider Hi to match the 64-256 part. 2970 // 2971 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2972 // registers if they are "named", i.e. not part of the "..." of a 2973 // variadic function. 2974 // 2975 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2976 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2977 Lo = SSE; 2978 Hi = SSEUp; 2979 } 2980 return; 2981 } 2982 2983 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2984 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2985 2986 uint64_t Size = getContext().getTypeSize(Ty); 2987 if (ET->isIntegralOrEnumerationType()) { 2988 if (Size <= 64) 2989 Current = Integer; 2990 else if (Size <= 128) 2991 Lo = Hi = Integer; 2992 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 2993 Current = SSE; 2994 } else if (ET == getContext().DoubleTy) { 2995 Lo = Hi = SSE; 2996 } else if (ET == getContext().LongDoubleTy) { 2997 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2998 if (LDF == &llvm::APFloat::IEEEquad()) 2999 Current = Memory; 3000 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 3001 Current = ComplexX87; 3002 else if (LDF == &llvm::APFloat::IEEEdouble()) 3003 Lo = Hi = SSE; 3004 else 3005 llvm_unreachable("unexpected long double representation!"); 3006 } 3007 3008 // If this complex type crosses an eightbyte boundary then it 3009 // should be split. 3010 uint64_t EB_Real = (OffsetBase) / 64; 3011 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3012 if (Hi == NoClass && EB_Real != EB_Imag) 3013 Hi = Lo; 3014 3015 return; 3016 } 3017 3018 if (const auto *EITy = Ty->getAs<BitIntType>()) { 3019 if (EITy->getNumBits() <= 64) 3020 Current = Integer; 3021 else if (EITy->getNumBits() <= 128) 3022 Lo = Hi = Integer; 3023 // Larger values need to get passed in memory. 3024 return; 3025 } 3026 3027 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3028 // Arrays are treated like structures. 3029 3030 uint64_t Size = getContext().getTypeSize(Ty); 3031 3032 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3033 // than eight eightbytes, ..., it has class MEMORY. 3034 if (Size > 512) 3035 return; 3036 3037 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3038 // fields, it has class MEMORY. 3039 // 3040 // Only need to check alignment of array base. 3041 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3042 return; 3043 3044 // Otherwise implement simplified merge. We could be smarter about 3045 // this, but it isn't worth it and would be harder to verify. 3046 Current = NoClass; 3047 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3048 uint64_t ArraySize = AT->getSize().getZExtValue(); 3049 3050 // The only case a 256-bit wide vector could be used is when the array 3051 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3052 // to work for sizes wider than 128, early check and fallback to memory. 3053 // 3054 if (Size > 128 && 3055 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3056 return; 3057 3058 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3059 Class FieldLo, FieldHi; 3060 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3061 Lo = merge(Lo, FieldLo); 3062 Hi = merge(Hi, FieldHi); 3063 if (Lo == Memory || Hi == Memory) 3064 break; 3065 } 3066 3067 postMerge(Size, Lo, Hi); 3068 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3069 return; 3070 } 3071 3072 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3073 uint64_t Size = getContext().getTypeSize(Ty); 3074 3075 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3076 // than eight eightbytes, ..., it has class MEMORY. 3077 if (Size > 512) 3078 return; 3079 3080 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3081 // copy constructor or a non-trivial destructor, it is passed by invisible 3082 // reference. 3083 if (getRecordArgABI(RT, getCXXABI())) 3084 return; 3085 3086 const RecordDecl *RD = RT->getDecl(); 3087 3088 // Assume variable sized types are passed in memory. 3089 if (RD->hasFlexibleArrayMember()) 3090 return; 3091 3092 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3093 3094 // Reset Lo class, this will be recomputed. 3095 Current = NoClass; 3096 3097 // If this is a C++ record, classify the bases first. 3098 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3099 for (const auto &I : CXXRD->bases()) { 3100 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3101 "Unexpected base class!"); 3102 const auto *Base = 3103 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3104 3105 // Classify this field. 3106 // 3107 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3108 // single eightbyte, each is classified separately. Each eightbyte gets 3109 // initialized to class NO_CLASS. 3110 Class FieldLo, FieldHi; 3111 uint64_t Offset = 3112 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3113 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3114 Lo = merge(Lo, FieldLo); 3115 Hi = merge(Hi, FieldHi); 3116 if (Lo == Memory || Hi == Memory) { 3117 postMerge(Size, Lo, Hi); 3118 return; 3119 } 3120 } 3121 } 3122 3123 // Classify the fields one at a time, merging the results. 3124 unsigned idx = 0; 3125 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3126 LangOptions::ClangABI::Ver11 || 3127 getContext().getTargetInfo().getTriple().isPS4(); 3128 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3129 3130 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3131 i != e; ++i, ++idx) { 3132 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3133 bool BitField = i->isBitField(); 3134 3135 // Ignore padding bit-fields. 3136 if (BitField && i->isUnnamedBitfield()) 3137 continue; 3138 3139 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3140 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3141 // 3142 // The only case a 256-bit or a 512-bit wide vector could be used is when 3143 // the struct contains a single 256-bit or 512-bit element. Early check 3144 // and fallback to memory. 3145 // 3146 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3147 // than 128. 3148 if (Size > 128 && 3149 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3150 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3151 Lo = Memory; 3152 postMerge(Size, Lo, Hi); 3153 return; 3154 } 3155 // Note, skip this test for bit-fields, see below. 3156 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3157 Lo = Memory; 3158 postMerge(Size, Lo, Hi); 3159 return; 3160 } 3161 3162 // Classify this field. 3163 // 3164 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3165 // exceeds a single eightbyte, each is classified 3166 // separately. Each eightbyte gets initialized to class 3167 // NO_CLASS. 3168 Class FieldLo, FieldHi; 3169 3170 // Bit-fields require special handling, they do not force the 3171 // structure to be passed in memory even if unaligned, and 3172 // therefore they can straddle an eightbyte. 3173 if (BitField) { 3174 assert(!i->isUnnamedBitfield()); 3175 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3176 uint64_t Size = i->getBitWidthValue(getContext()); 3177 3178 uint64_t EB_Lo = Offset / 64; 3179 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3180 3181 if (EB_Lo) { 3182 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3183 FieldLo = NoClass; 3184 FieldHi = Integer; 3185 } else { 3186 FieldLo = Integer; 3187 FieldHi = EB_Hi ? Integer : NoClass; 3188 } 3189 } else 3190 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3191 Lo = merge(Lo, FieldLo); 3192 Hi = merge(Hi, FieldHi); 3193 if (Lo == Memory || Hi == Memory) 3194 break; 3195 } 3196 3197 postMerge(Size, Lo, Hi); 3198 } 3199 } 3200 3201 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3202 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3203 // place naturally. 3204 if (!isAggregateTypeForABI(Ty)) { 3205 // Treat an enum type as its underlying type. 3206 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3207 Ty = EnumTy->getDecl()->getIntegerType(); 3208 3209 if (Ty->isBitIntType()) 3210 return getNaturalAlignIndirect(Ty); 3211 3212 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3213 : ABIArgInfo::getDirect()); 3214 } 3215 3216 return getNaturalAlignIndirect(Ty); 3217 } 3218 3219 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3220 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3221 uint64_t Size = getContext().getTypeSize(VecTy); 3222 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3223 if (Size <= 64 || Size > LargestVector) 3224 return true; 3225 QualType EltTy = VecTy->getElementType(); 3226 if (passInt128VectorsInMem() && 3227 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3228 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3229 return true; 3230 } 3231 3232 return false; 3233 } 3234 3235 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3236 unsigned freeIntRegs) const { 3237 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3238 // place naturally. 3239 // 3240 // This assumption is optimistic, as there could be free registers available 3241 // when we need to pass this argument in memory, and LLVM could try to pass 3242 // the argument in the free register. This does not seem to happen currently, 3243 // but this code would be much safer if we could mark the argument with 3244 // 'onstack'. See PR12193. 3245 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3246 !Ty->isBitIntType()) { 3247 // Treat an enum type as its underlying type. 3248 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3249 Ty = EnumTy->getDecl()->getIntegerType(); 3250 3251 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3252 : ABIArgInfo::getDirect()); 3253 } 3254 3255 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3256 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3257 3258 // Compute the byval alignment. We specify the alignment of the byval in all 3259 // cases so that the mid-level optimizer knows the alignment of the byval. 3260 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3261 3262 // Attempt to avoid passing indirect results using byval when possible. This 3263 // is important for good codegen. 3264 // 3265 // We do this by coercing the value into a scalar type which the backend can 3266 // handle naturally (i.e., without using byval). 3267 // 3268 // For simplicity, we currently only do this when we have exhausted all of the 3269 // free integer registers. Doing this when there are free integer registers 3270 // would require more care, as we would have to ensure that the coerced value 3271 // did not claim the unused register. That would require either reording the 3272 // arguments to the function (so that any subsequent inreg values came first), 3273 // or only doing this optimization when there were no following arguments that 3274 // might be inreg. 3275 // 3276 // We currently expect it to be rare (particularly in well written code) for 3277 // arguments to be passed on the stack when there are still free integer 3278 // registers available (this would typically imply large structs being passed 3279 // by value), so this seems like a fair tradeoff for now. 3280 // 3281 // We can revisit this if the backend grows support for 'onstack' parameter 3282 // attributes. See PR12193. 3283 if (freeIntRegs == 0) { 3284 uint64_t Size = getContext().getTypeSize(Ty); 3285 3286 // If this type fits in an eightbyte, coerce it into the matching integral 3287 // type, which will end up on the stack (with alignment 8). 3288 if (Align == 8 && Size <= 64) 3289 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3290 Size)); 3291 } 3292 3293 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3294 } 3295 3296 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3297 /// register. Pick an LLVM IR type that will be passed as a vector register. 3298 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3299 // Wrapper structs/arrays that only contain vectors are passed just like 3300 // vectors; strip them off if present. 3301 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3302 Ty = QualType(InnerTy, 0); 3303 3304 llvm::Type *IRType = CGT.ConvertType(Ty); 3305 if (isa<llvm::VectorType>(IRType)) { 3306 // Don't pass vXi128 vectors in their native type, the backend can't 3307 // legalize them. 3308 if (passInt128VectorsInMem() && 3309 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3310 // Use a vXi64 vector. 3311 uint64_t Size = getContext().getTypeSize(Ty); 3312 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3313 Size / 64); 3314 } 3315 3316 return IRType; 3317 } 3318 3319 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3320 return IRType; 3321 3322 // We couldn't find the preferred IR vector type for 'Ty'. 3323 uint64_t Size = getContext().getTypeSize(Ty); 3324 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3325 3326 3327 // Return a LLVM IR vector type based on the size of 'Ty'. 3328 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3329 Size / 64); 3330 } 3331 3332 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3333 /// is known to either be off the end of the specified type or being in 3334 /// alignment padding. The user type specified is known to be at most 128 bits 3335 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3336 /// classification that put one of the two halves in the INTEGER class. 3337 /// 3338 /// It is conservatively correct to return false. 3339 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3340 unsigned EndBit, ASTContext &Context) { 3341 // If the bytes being queried are off the end of the type, there is no user 3342 // data hiding here. This handles analysis of builtins, vectors and other 3343 // types that don't contain interesting padding. 3344 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3345 if (TySize <= StartBit) 3346 return true; 3347 3348 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3349 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3350 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3351 3352 // Check each element to see if the element overlaps with the queried range. 3353 for (unsigned i = 0; i != NumElts; ++i) { 3354 // If the element is after the span we care about, then we're done.. 3355 unsigned EltOffset = i*EltSize; 3356 if (EltOffset >= EndBit) break; 3357 3358 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3359 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3360 EndBit-EltOffset, Context)) 3361 return false; 3362 } 3363 // If it overlaps no elements, then it is safe to process as padding. 3364 return true; 3365 } 3366 3367 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3368 const RecordDecl *RD = RT->getDecl(); 3369 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3370 3371 // If this is a C++ record, check the bases first. 3372 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3373 for (const auto &I : CXXRD->bases()) { 3374 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3375 "Unexpected base class!"); 3376 const auto *Base = 3377 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3378 3379 // If the base is after the span we care about, ignore it. 3380 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3381 if (BaseOffset >= EndBit) continue; 3382 3383 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3384 if (!BitsContainNoUserData(I.getType(), BaseStart, 3385 EndBit-BaseOffset, Context)) 3386 return false; 3387 } 3388 } 3389 3390 // Verify that no field has data that overlaps the region of interest. Yes 3391 // this could be sped up a lot by being smarter about queried fields, 3392 // however we're only looking at structs up to 16 bytes, so we don't care 3393 // much. 3394 unsigned idx = 0; 3395 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3396 i != e; ++i, ++idx) { 3397 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3398 3399 // If we found a field after the region we care about, then we're done. 3400 if (FieldOffset >= EndBit) break; 3401 3402 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3403 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3404 Context)) 3405 return false; 3406 } 3407 3408 // If nothing in this record overlapped the area of interest, then we're 3409 // clean. 3410 return true; 3411 } 3412 3413 return false; 3414 } 3415 3416 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3417 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3418 const llvm::DataLayout &TD) { 3419 if (IROffset == 0 && IRType->isFloatingPointTy()) 3420 return IRType; 3421 3422 // If this is a struct, recurse into the field at the specified offset. 3423 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3424 if (!STy->getNumContainedTypes()) 3425 return nullptr; 3426 3427 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3428 unsigned Elt = SL->getElementContainingOffset(IROffset); 3429 IROffset -= SL->getElementOffset(Elt); 3430 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3431 } 3432 3433 // If this is an array, recurse into the field at the specified offset. 3434 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3435 llvm::Type *EltTy = ATy->getElementType(); 3436 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3437 IROffset -= IROffset / EltSize * EltSize; 3438 return getFPTypeAtOffset(EltTy, IROffset, TD); 3439 } 3440 3441 return nullptr; 3442 } 3443 3444 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3445 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3446 llvm::Type *X86_64ABIInfo:: 3447 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3448 QualType SourceTy, unsigned SourceOffset) const { 3449 const llvm::DataLayout &TD = getDataLayout(); 3450 unsigned SourceSize = 3451 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3452 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3453 if (!T0 || T0->isDoubleTy()) 3454 return llvm::Type::getDoubleTy(getVMContext()); 3455 3456 // Get the adjacent FP type. 3457 llvm::Type *T1 = nullptr; 3458 unsigned T0Size = TD.getTypeAllocSize(T0); 3459 if (SourceSize > T0Size) 3460 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3461 if (T1 == nullptr) { 3462 // Check if IRType is a half + float. float type will be in IROffset+4 due 3463 // to its alignment. 3464 if (T0->isHalfTy() && SourceSize > 4) 3465 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3466 // If we can't get a second FP type, return a simple half or float. 3467 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3468 // {float, i8} too. 3469 if (T1 == nullptr) 3470 return T0; 3471 } 3472 3473 if (T0->isFloatTy() && T1->isFloatTy()) 3474 return llvm::FixedVectorType::get(T0, 2); 3475 3476 if (T0->isHalfTy() && T1->isHalfTy()) { 3477 llvm::Type *T2 = nullptr; 3478 if (SourceSize > 4) 3479 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3480 if (T2 == nullptr) 3481 return llvm::FixedVectorType::get(T0, 2); 3482 return llvm::FixedVectorType::get(T0, 4); 3483 } 3484 3485 if (T0->isHalfTy() || T1->isHalfTy()) 3486 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3487 3488 return llvm::Type::getDoubleTy(getVMContext()); 3489 } 3490 3491 3492 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3493 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3494 /// about the high or low part of an up-to-16-byte struct. This routine picks 3495 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3496 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3497 /// etc). 3498 /// 3499 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3500 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3501 /// the 8-byte value references. PrefType may be null. 3502 /// 3503 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3504 /// an offset into this that we're processing (which is always either 0 or 8). 3505 /// 3506 llvm::Type *X86_64ABIInfo:: 3507 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3508 QualType SourceTy, unsigned SourceOffset) const { 3509 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3510 // returning an 8-byte unit starting with it. See if we can safely use it. 3511 if (IROffset == 0) { 3512 // Pointers and int64's always fill the 8-byte unit. 3513 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3514 IRType->isIntegerTy(64)) 3515 return IRType; 3516 3517 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3518 // goodness in the source type is just tail padding. This is allowed to 3519 // kick in for struct {double,int} on the int, but not on 3520 // struct{double,int,int} because we wouldn't return the second int. We 3521 // have to do this analysis on the source type because we can't depend on 3522 // unions being lowered a specific way etc. 3523 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3524 IRType->isIntegerTy(32) || 3525 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3526 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3527 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3528 3529 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3530 SourceOffset*8+64, getContext())) 3531 return IRType; 3532 } 3533 } 3534 3535 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3536 // If this is a struct, recurse into the field at the specified offset. 3537 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3538 if (IROffset < SL->getSizeInBytes()) { 3539 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3540 IROffset -= SL->getElementOffset(FieldIdx); 3541 3542 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3543 SourceTy, SourceOffset); 3544 } 3545 } 3546 3547 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3548 llvm::Type *EltTy = ATy->getElementType(); 3549 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3550 unsigned EltOffset = IROffset/EltSize*EltSize; 3551 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3552 SourceOffset); 3553 } 3554 3555 // Okay, we don't have any better idea of what to pass, so we pass this in an 3556 // integer register that isn't too big to fit the rest of the struct. 3557 unsigned TySizeInBytes = 3558 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3559 3560 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3561 3562 // It is always safe to classify this as an integer type up to i64 that 3563 // isn't larger than the structure. 3564 return llvm::IntegerType::get(getVMContext(), 3565 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3566 } 3567 3568 3569 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3570 /// be used as elements of a two register pair to pass or return, return a 3571 /// first class aggregate to represent them. For example, if the low part of 3572 /// a by-value argument should be passed as i32* and the high part as float, 3573 /// return {i32*, float}. 3574 static llvm::Type * 3575 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3576 const llvm::DataLayout &TD) { 3577 // In order to correctly satisfy the ABI, we need to the high part to start 3578 // at offset 8. If the high and low parts we inferred are both 4-byte types 3579 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3580 // the second element at offset 8. Check for this: 3581 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3582 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3583 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3584 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3585 3586 // To handle this, we have to increase the size of the low part so that the 3587 // second element will start at an 8 byte offset. We can't increase the size 3588 // of the second element because it might make us access off the end of the 3589 // struct. 3590 if (HiStart != 8) { 3591 // There are usually two sorts of types the ABI generation code can produce 3592 // for the low part of a pair that aren't 8 bytes in size: half, float or 3593 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3594 // NaCl). 3595 // Promote these to a larger type. 3596 if (Lo->isHalfTy() || Lo->isFloatTy()) 3597 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3598 else { 3599 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3600 && "Invalid/unknown lo type"); 3601 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3602 } 3603 } 3604 3605 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3606 3607 // Verify that the second element is at an 8-byte offset. 3608 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3609 "Invalid x86-64 argument pair!"); 3610 return Result; 3611 } 3612 3613 ABIArgInfo X86_64ABIInfo:: 3614 classifyReturnType(QualType RetTy) const { 3615 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3616 // classification algorithm. 3617 X86_64ABIInfo::Class Lo, Hi; 3618 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3619 3620 // Check some invariants. 3621 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3622 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3623 3624 llvm::Type *ResType = nullptr; 3625 switch (Lo) { 3626 case NoClass: 3627 if (Hi == NoClass) 3628 return ABIArgInfo::getIgnore(); 3629 // If the low part is just padding, it takes no register, leave ResType 3630 // null. 3631 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3632 "Unknown missing lo part"); 3633 break; 3634 3635 case SSEUp: 3636 case X87Up: 3637 llvm_unreachable("Invalid classification for lo word."); 3638 3639 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3640 // hidden argument. 3641 case Memory: 3642 return getIndirectReturnResult(RetTy); 3643 3644 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3645 // available register of the sequence %rax, %rdx is used. 3646 case Integer: 3647 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3648 3649 // If we have a sign or zero extended integer, make sure to return Extend 3650 // so that the parameter gets the right LLVM IR attributes. 3651 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3652 // Treat an enum type as its underlying type. 3653 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3654 RetTy = EnumTy->getDecl()->getIntegerType(); 3655 3656 if (RetTy->isIntegralOrEnumerationType() && 3657 isPromotableIntegerTypeForABI(RetTy)) 3658 return ABIArgInfo::getExtend(RetTy); 3659 } 3660 break; 3661 3662 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3663 // available SSE register of the sequence %xmm0, %xmm1 is used. 3664 case SSE: 3665 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3666 break; 3667 3668 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3669 // returned on the X87 stack in %st0 as 80-bit x87 number. 3670 case X87: 3671 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3672 break; 3673 3674 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3675 // part of the value is returned in %st0 and the imaginary part in 3676 // %st1. 3677 case ComplexX87: 3678 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3679 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3680 llvm::Type::getX86_FP80Ty(getVMContext())); 3681 break; 3682 } 3683 3684 llvm::Type *HighPart = nullptr; 3685 switch (Hi) { 3686 // Memory was handled previously and X87 should 3687 // never occur as a hi class. 3688 case Memory: 3689 case X87: 3690 llvm_unreachable("Invalid classification for hi word."); 3691 3692 case ComplexX87: // Previously handled. 3693 case NoClass: 3694 break; 3695 3696 case Integer: 3697 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3698 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3699 return ABIArgInfo::getDirect(HighPart, 8); 3700 break; 3701 case SSE: 3702 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3703 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3704 return ABIArgInfo::getDirect(HighPart, 8); 3705 break; 3706 3707 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3708 // is passed in the next available eightbyte chunk if the last used 3709 // vector register. 3710 // 3711 // SSEUP should always be preceded by SSE, just widen. 3712 case SSEUp: 3713 assert(Lo == SSE && "Unexpected SSEUp classification."); 3714 ResType = GetByteVectorType(RetTy); 3715 break; 3716 3717 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3718 // returned together with the previous X87 value in %st0. 3719 case X87Up: 3720 // If X87Up is preceded by X87, we don't need to do 3721 // anything. However, in some cases with unions it may not be 3722 // preceded by X87. In such situations we follow gcc and pass the 3723 // extra bits in an SSE reg. 3724 if (Lo != X87) { 3725 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3726 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3727 return ABIArgInfo::getDirect(HighPart, 8); 3728 } 3729 break; 3730 } 3731 3732 // If a high part was specified, merge it together with the low part. It is 3733 // known to pass in the high eightbyte of the result. We do this by forming a 3734 // first class struct aggregate with the high and low part: {low, high} 3735 if (HighPart) 3736 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3737 3738 return ABIArgInfo::getDirect(ResType); 3739 } 3740 3741 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3742 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3743 bool isNamedArg) 3744 const 3745 { 3746 Ty = useFirstFieldIfTransparentUnion(Ty); 3747 3748 X86_64ABIInfo::Class Lo, Hi; 3749 classify(Ty, 0, Lo, Hi, isNamedArg); 3750 3751 // Check some invariants. 3752 // FIXME: Enforce these by construction. 3753 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3754 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3755 3756 neededInt = 0; 3757 neededSSE = 0; 3758 llvm::Type *ResType = nullptr; 3759 switch (Lo) { 3760 case NoClass: 3761 if (Hi == NoClass) 3762 return ABIArgInfo::getIgnore(); 3763 // If the low part is just padding, it takes no register, leave ResType 3764 // null. 3765 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3766 "Unknown missing lo part"); 3767 break; 3768 3769 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3770 // on the stack. 3771 case Memory: 3772 3773 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3774 // COMPLEX_X87, it is passed in memory. 3775 case X87: 3776 case ComplexX87: 3777 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3778 ++neededInt; 3779 return getIndirectResult(Ty, freeIntRegs); 3780 3781 case SSEUp: 3782 case X87Up: 3783 llvm_unreachable("Invalid classification for lo word."); 3784 3785 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3786 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3787 // and %r9 is used. 3788 case Integer: 3789 ++neededInt; 3790 3791 // Pick an 8-byte type based on the preferred type. 3792 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3793 3794 // If we have a sign or zero extended integer, make sure to return Extend 3795 // so that the parameter gets the right LLVM IR attributes. 3796 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3797 // Treat an enum type as its underlying type. 3798 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3799 Ty = EnumTy->getDecl()->getIntegerType(); 3800 3801 if (Ty->isIntegralOrEnumerationType() && 3802 isPromotableIntegerTypeForABI(Ty)) 3803 return ABIArgInfo::getExtend(Ty); 3804 } 3805 3806 break; 3807 3808 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3809 // available SSE register is used, the registers are taken in the 3810 // order from %xmm0 to %xmm7. 3811 case SSE: { 3812 llvm::Type *IRType = CGT.ConvertType(Ty); 3813 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3814 ++neededSSE; 3815 break; 3816 } 3817 } 3818 3819 llvm::Type *HighPart = nullptr; 3820 switch (Hi) { 3821 // Memory was handled previously, ComplexX87 and X87 should 3822 // never occur as hi classes, and X87Up must be preceded by X87, 3823 // which is passed in memory. 3824 case Memory: 3825 case X87: 3826 case ComplexX87: 3827 llvm_unreachable("Invalid classification for hi word."); 3828 3829 case NoClass: break; 3830 3831 case Integer: 3832 ++neededInt; 3833 // Pick an 8-byte type based on the preferred type. 3834 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3835 3836 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3837 return ABIArgInfo::getDirect(HighPart, 8); 3838 break; 3839 3840 // X87Up generally doesn't occur here (long double is passed in 3841 // memory), except in situations involving unions. 3842 case X87Up: 3843 case SSE: 3844 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3845 3846 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3847 return ABIArgInfo::getDirect(HighPart, 8); 3848 3849 ++neededSSE; 3850 break; 3851 3852 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3853 // eightbyte is passed in the upper half of the last used SSE 3854 // register. This only happens when 128-bit vectors are passed. 3855 case SSEUp: 3856 assert(Lo == SSE && "Unexpected SSEUp classification"); 3857 ResType = GetByteVectorType(Ty); 3858 break; 3859 } 3860 3861 // If a high part was specified, merge it together with the low part. It is 3862 // known to pass in the high eightbyte of the result. We do this by forming a 3863 // first class struct aggregate with the high and low part: {low, high} 3864 if (HighPart) 3865 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3866 3867 return ABIArgInfo::getDirect(ResType); 3868 } 3869 3870 ABIArgInfo 3871 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3872 unsigned &NeededSSE) const { 3873 auto RT = Ty->getAs<RecordType>(); 3874 assert(RT && "classifyRegCallStructType only valid with struct types"); 3875 3876 if (RT->getDecl()->hasFlexibleArrayMember()) 3877 return getIndirectReturnResult(Ty); 3878 3879 // Sum up bases 3880 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3881 if (CXXRD->isDynamicClass()) { 3882 NeededInt = NeededSSE = 0; 3883 return getIndirectReturnResult(Ty); 3884 } 3885 3886 for (const auto &I : CXXRD->bases()) 3887 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3888 .isIndirect()) { 3889 NeededInt = NeededSSE = 0; 3890 return getIndirectReturnResult(Ty); 3891 } 3892 } 3893 3894 // Sum up members 3895 for (const auto *FD : RT->getDecl()->fields()) { 3896 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3897 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3898 .isIndirect()) { 3899 NeededInt = NeededSSE = 0; 3900 return getIndirectReturnResult(Ty); 3901 } 3902 } else { 3903 unsigned LocalNeededInt, LocalNeededSSE; 3904 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3905 LocalNeededSSE, true) 3906 .isIndirect()) { 3907 NeededInt = NeededSSE = 0; 3908 return getIndirectReturnResult(Ty); 3909 } 3910 NeededInt += LocalNeededInt; 3911 NeededSSE += LocalNeededSSE; 3912 } 3913 } 3914 3915 return ABIArgInfo::getDirect(); 3916 } 3917 3918 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3919 unsigned &NeededInt, 3920 unsigned &NeededSSE) const { 3921 3922 NeededInt = 0; 3923 NeededSSE = 0; 3924 3925 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3926 } 3927 3928 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3929 3930 const unsigned CallingConv = FI.getCallingConvention(); 3931 // It is possible to force Win64 calling convention on any x86_64 target by 3932 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3933 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3934 if (CallingConv == llvm::CallingConv::Win64) { 3935 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3936 Win64ABIInfo.computeInfo(FI); 3937 return; 3938 } 3939 3940 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3941 3942 // Keep track of the number of assigned registers. 3943 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3944 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3945 unsigned NeededInt, NeededSSE; 3946 3947 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3948 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3949 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3950 FI.getReturnInfo() = 3951 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3952 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3953 FreeIntRegs -= NeededInt; 3954 FreeSSERegs -= NeededSSE; 3955 } else { 3956 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3957 } 3958 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3959 getContext().getCanonicalType(FI.getReturnType() 3960 ->getAs<ComplexType>() 3961 ->getElementType()) == 3962 getContext().LongDoubleTy) 3963 // Complex Long Double Type is passed in Memory when Regcall 3964 // calling convention is used. 3965 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3966 else 3967 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3968 } 3969 3970 // If the return value is indirect, then the hidden argument is consuming one 3971 // integer register. 3972 if (FI.getReturnInfo().isIndirect()) 3973 --FreeIntRegs; 3974 3975 // The chain argument effectively gives us another free register. 3976 if (FI.isChainCall()) 3977 ++FreeIntRegs; 3978 3979 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3980 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3981 // get assigned (in left-to-right order) for passing as follows... 3982 unsigned ArgNo = 0; 3983 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3984 it != ie; ++it, ++ArgNo) { 3985 bool IsNamedArg = ArgNo < NumRequiredArgs; 3986 3987 if (IsRegCall && it->type->isStructureOrClassType()) 3988 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3989 else 3990 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3991 NeededSSE, IsNamedArg); 3992 3993 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3994 // eightbyte of an argument, the whole argument is passed on the 3995 // stack. If registers have already been assigned for some 3996 // eightbytes of such an argument, the assignments get reverted. 3997 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3998 FreeIntRegs -= NeededInt; 3999 FreeSSERegs -= NeededSSE; 4000 } else { 4001 it->info = getIndirectResult(it->type, FreeIntRegs); 4002 } 4003 } 4004 } 4005 4006 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4007 Address VAListAddr, QualType Ty) { 4008 Address overflow_arg_area_p = 4009 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4010 llvm::Value *overflow_arg_area = 4011 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4012 4013 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4014 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4015 // It isn't stated explicitly in the standard, but in practice we use 4016 // alignment greater than 16 where necessary. 4017 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4018 if (Align > CharUnits::fromQuantity(8)) { 4019 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4020 Align); 4021 } 4022 4023 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4024 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4025 llvm::Value *Res = 4026 CGF.Builder.CreateBitCast(overflow_arg_area, 4027 llvm::PointerType::getUnqual(LTy)); 4028 4029 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4030 // l->overflow_arg_area + sizeof(type). 4031 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4032 // an 8 byte boundary. 4033 4034 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4035 llvm::Value *Offset = 4036 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4037 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4038 Offset, "overflow_arg_area.next"); 4039 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4040 4041 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4042 return Address(Res, LTy, Align); 4043 } 4044 4045 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4046 QualType Ty) const { 4047 // Assume that va_list type is correct; should be pointer to LLVM type: 4048 // struct { 4049 // i32 gp_offset; 4050 // i32 fp_offset; 4051 // i8* overflow_arg_area; 4052 // i8* reg_save_area; 4053 // }; 4054 unsigned neededInt, neededSSE; 4055 4056 Ty = getContext().getCanonicalType(Ty); 4057 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4058 /*isNamedArg*/false); 4059 4060 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4061 // in the registers. If not go to step 7. 4062 if (!neededInt && !neededSSE) 4063 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4064 4065 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4066 // general purpose registers needed to pass type and num_fp to hold 4067 // the number of floating point registers needed. 4068 4069 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4070 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4071 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4072 // 4073 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4074 // register save space). 4075 4076 llvm::Value *InRegs = nullptr; 4077 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4078 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4079 if (neededInt) { 4080 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4081 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4082 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4083 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4084 } 4085 4086 if (neededSSE) { 4087 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4088 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4089 llvm::Value *FitsInFP = 4090 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4091 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4092 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4093 } 4094 4095 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4096 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4097 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4098 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4099 4100 // Emit code to load the value if it was passed in registers. 4101 4102 CGF.EmitBlock(InRegBlock); 4103 4104 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4105 // an offset of l->gp_offset and/or l->fp_offset. This may require 4106 // copying to a temporary location in case the parameter is passed 4107 // in different register classes or requires an alignment greater 4108 // than 8 for general purpose registers and 16 for XMM registers. 4109 // 4110 // FIXME: This really results in shameful code when we end up needing to 4111 // collect arguments from different places; often what should result in a 4112 // simple assembling of a structure from scattered addresses has many more 4113 // loads than necessary. Can we clean this up? 4114 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4115 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4116 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4117 4118 Address RegAddr = Address::invalid(); 4119 if (neededInt && neededSSE) { 4120 // FIXME: Cleanup. 4121 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4122 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4123 Address Tmp = CGF.CreateMemTemp(Ty); 4124 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4125 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4126 llvm::Type *TyLo = ST->getElementType(0); 4127 llvm::Type *TyHi = ST->getElementType(1); 4128 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4129 "Unexpected ABI info for mixed regs"); 4130 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4131 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4132 llvm::Value *GPAddr = 4133 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4134 llvm::Value *FPAddr = 4135 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4136 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4137 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4138 4139 // Copy the first element. 4140 // FIXME: Our choice of alignment here and below is probably pessimistic. 4141 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4142 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4143 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4144 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4145 4146 // Copy the second element. 4147 V = CGF.Builder.CreateAlignedLoad( 4148 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4149 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4150 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4151 4152 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4153 } else if (neededInt) { 4154 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4155 CGF.Int8Ty, CharUnits::fromQuantity(8)); 4156 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4157 4158 // Copy to a temporary if necessary to ensure the appropriate alignment. 4159 auto TInfo = getContext().getTypeInfoInChars(Ty); 4160 uint64_t TySize = TInfo.Width.getQuantity(); 4161 CharUnits TyAlign = TInfo.Align; 4162 4163 // Copy into a temporary if the type is more aligned than the 4164 // register save area. 4165 if (TyAlign.getQuantity() > 8) { 4166 Address Tmp = CGF.CreateMemTemp(Ty); 4167 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4168 RegAddr = Tmp; 4169 } 4170 4171 } else if (neededSSE == 1) { 4172 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4173 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4174 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4175 } else { 4176 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4177 // SSE registers are spaced 16 bytes apart in the register save 4178 // area, we need to collect the two eightbytes together. 4179 // The ABI isn't explicit about this, but it seems reasonable 4180 // to assume that the slots are 16-byte aligned, since the stack is 4181 // naturally 16-byte aligned and the prologue is expected to store 4182 // all the SSE registers to the RSA. 4183 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4184 fp_offset), 4185 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4186 Address RegAddrHi = 4187 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4188 CharUnits::fromQuantity(16)); 4189 llvm::Type *ST = AI.canHaveCoerceToType() 4190 ? AI.getCoerceToType() 4191 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4192 llvm::Value *V; 4193 Address Tmp = CGF.CreateMemTemp(Ty); 4194 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4195 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4196 RegAddrLo, ST->getStructElementType(0))); 4197 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4198 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4199 RegAddrHi, ST->getStructElementType(1))); 4200 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4201 4202 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4203 } 4204 4205 // AMD64-ABI 3.5.7p5: Step 5. Set: 4206 // l->gp_offset = l->gp_offset + num_gp * 8 4207 // l->fp_offset = l->fp_offset + num_fp * 16. 4208 if (neededInt) { 4209 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4210 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4211 gp_offset_p); 4212 } 4213 if (neededSSE) { 4214 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4215 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4216 fp_offset_p); 4217 } 4218 CGF.EmitBranch(ContBlock); 4219 4220 // Emit code to load the value if it was passed in memory. 4221 4222 CGF.EmitBlock(InMemBlock); 4223 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4224 4225 // Return the appropriate result. 4226 4227 CGF.EmitBlock(ContBlock); 4228 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4229 "vaarg.addr"); 4230 return ResAddr; 4231 } 4232 4233 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4234 QualType Ty) const { 4235 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4236 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4237 uint64_t Width = getContext().getTypeSize(Ty); 4238 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4239 4240 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4241 CGF.getContext().getTypeInfoInChars(Ty), 4242 CharUnits::fromQuantity(8), 4243 /*allowHigherAlign*/ false); 4244 } 4245 4246 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4247 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4248 const Type *Base = nullptr; 4249 uint64_t NumElts = 0; 4250 4251 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4252 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4253 FreeSSERegs -= NumElts; 4254 return getDirectX86Hva(); 4255 } 4256 return current; 4257 } 4258 4259 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4260 bool IsReturnType, bool IsVectorCall, 4261 bool IsRegCall) const { 4262 4263 if (Ty->isVoidType()) 4264 return ABIArgInfo::getIgnore(); 4265 4266 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4267 Ty = EnumTy->getDecl()->getIntegerType(); 4268 4269 TypeInfo Info = getContext().getTypeInfo(Ty); 4270 uint64_t Width = Info.Width; 4271 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4272 4273 const RecordType *RT = Ty->getAs<RecordType>(); 4274 if (RT) { 4275 if (!IsReturnType) { 4276 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4277 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4278 } 4279 4280 if (RT->getDecl()->hasFlexibleArrayMember()) 4281 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4282 4283 } 4284 4285 const Type *Base = nullptr; 4286 uint64_t NumElts = 0; 4287 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4288 // other targets. 4289 if ((IsVectorCall || IsRegCall) && 4290 isHomogeneousAggregate(Ty, Base, NumElts)) { 4291 if (IsRegCall) { 4292 if (FreeSSERegs >= NumElts) { 4293 FreeSSERegs -= NumElts; 4294 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4295 return ABIArgInfo::getDirect(); 4296 return ABIArgInfo::getExpand(); 4297 } 4298 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4299 } else if (IsVectorCall) { 4300 if (FreeSSERegs >= NumElts && 4301 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4302 FreeSSERegs -= NumElts; 4303 return ABIArgInfo::getDirect(); 4304 } else if (IsReturnType) { 4305 return ABIArgInfo::getExpand(); 4306 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4307 // HVAs are delayed and reclassified in the 2nd step. 4308 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4309 } 4310 } 4311 } 4312 4313 if (Ty->isMemberPointerType()) { 4314 // If the member pointer is represented by an LLVM int or ptr, pass it 4315 // directly. 4316 llvm::Type *LLTy = CGT.ConvertType(Ty); 4317 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4318 return ABIArgInfo::getDirect(); 4319 } 4320 4321 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4322 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4323 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4324 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4325 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4326 4327 // Otherwise, coerce it to a small integer. 4328 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4329 } 4330 4331 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4332 switch (BT->getKind()) { 4333 case BuiltinType::Bool: 4334 // Bool type is always extended to the ABI, other builtin types are not 4335 // extended. 4336 return ABIArgInfo::getExtend(Ty); 4337 4338 case BuiltinType::LongDouble: 4339 // Mingw64 GCC uses the old 80 bit extended precision floating point 4340 // unit. It passes them indirectly through memory. 4341 if (IsMingw64) { 4342 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4343 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4344 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4345 } 4346 break; 4347 4348 case BuiltinType::Int128: 4349 case BuiltinType::UInt128: 4350 // If it's a parameter type, the normal ABI rule is that arguments larger 4351 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4352 // even though it isn't particularly efficient. 4353 if (!IsReturnType) 4354 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4355 4356 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4357 // Clang matches them for compatibility. 4358 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4359 llvm::Type::getInt64Ty(getVMContext()), 2)); 4360 4361 default: 4362 break; 4363 } 4364 } 4365 4366 if (Ty->isBitIntType()) { 4367 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4368 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4369 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 4370 // or 8 bytes anyway as long is it fits in them, so we don't have to check 4371 // the power of 2. 4372 if (Width <= 64) 4373 return ABIArgInfo::getDirect(); 4374 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4375 } 4376 4377 return ABIArgInfo::getDirect(); 4378 } 4379 4380 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4381 const unsigned CC = FI.getCallingConvention(); 4382 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4383 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4384 4385 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4386 // classification rules. 4387 if (CC == llvm::CallingConv::X86_64_SysV) { 4388 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4389 SysVABIInfo.computeInfo(FI); 4390 return; 4391 } 4392 4393 unsigned FreeSSERegs = 0; 4394 if (IsVectorCall) { 4395 // We can use up to 4 SSE return registers with vectorcall. 4396 FreeSSERegs = 4; 4397 } else if (IsRegCall) { 4398 // RegCall gives us 16 SSE registers. 4399 FreeSSERegs = 16; 4400 } 4401 4402 if (!getCXXABI().classifyReturnType(FI)) 4403 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4404 IsVectorCall, IsRegCall); 4405 4406 if (IsVectorCall) { 4407 // We can use up to 6 SSE register parameters with vectorcall. 4408 FreeSSERegs = 6; 4409 } else if (IsRegCall) { 4410 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4411 FreeSSERegs = 16; 4412 } 4413 4414 unsigned ArgNum = 0; 4415 unsigned ZeroSSERegs = 0; 4416 for (auto &I : FI.arguments()) { 4417 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4418 // XMM/YMM registers. After the sixth argument, pretend no vector 4419 // registers are left. 4420 unsigned *MaybeFreeSSERegs = 4421 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4422 I.info = 4423 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4424 ++ArgNum; 4425 } 4426 4427 if (IsVectorCall) { 4428 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4429 // second pass. 4430 for (auto &I : FI.arguments()) 4431 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4432 } 4433 } 4434 4435 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4436 QualType Ty) const { 4437 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4438 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4439 uint64_t Width = getContext().getTypeSize(Ty); 4440 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4441 4442 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4443 CGF.getContext().getTypeInfoInChars(Ty), 4444 CharUnits::fromQuantity(8), 4445 /*allowHigherAlign*/ false); 4446 } 4447 4448 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4449 llvm::Value *Address, bool Is64Bit, 4450 bool IsAIX) { 4451 // This is calculated from the LLVM and GCC tables and verified 4452 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4453 4454 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4455 4456 llvm::IntegerType *i8 = CGF.Int8Ty; 4457 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4458 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4459 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4460 4461 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4462 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4463 4464 // 32-63: fp0-31, the 8-byte floating-point registers 4465 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4466 4467 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4468 // 64: mq 4469 // 65: lr 4470 // 66: ctr 4471 // 67: ap 4472 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4473 4474 // 68-76 are various 4-byte special-purpose registers: 4475 // 68-75 cr0-7 4476 // 76: xer 4477 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4478 4479 // 77-108: v0-31, the 16-byte vector registers 4480 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4481 4482 // 109: vrsave 4483 // 110: vscr 4484 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4485 4486 // AIX does not utilize the rest of the registers. 4487 if (IsAIX) 4488 return false; 4489 4490 // 111: spe_acc 4491 // 112: spefscr 4492 // 113: sfp 4493 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4494 4495 if (!Is64Bit) 4496 return false; 4497 4498 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4499 // or above CPU. 4500 // 64-bit only registers: 4501 // 114: tfhar 4502 // 115: tfiar 4503 // 116: texasr 4504 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4505 4506 return false; 4507 } 4508 4509 // AIX 4510 namespace { 4511 /// AIXABIInfo - The AIX XCOFF ABI information. 4512 class AIXABIInfo : public ABIInfo { 4513 const bool Is64Bit; 4514 const unsigned PtrByteSize; 4515 CharUnits getParamTypeAlignment(QualType Ty) const; 4516 4517 public: 4518 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4519 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4520 4521 bool isPromotableTypeForABI(QualType Ty) const; 4522 4523 ABIArgInfo classifyReturnType(QualType RetTy) const; 4524 ABIArgInfo classifyArgumentType(QualType Ty) const; 4525 4526 void computeInfo(CGFunctionInfo &FI) const override { 4527 if (!getCXXABI().classifyReturnType(FI)) 4528 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4529 4530 for (auto &I : FI.arguments()) 4531 I.info = classifyArgumentType(I.type); 4532 } 4533 4534 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4535 QualType Ty) const override; 4536 }; 4537 4538 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4539 const bool Is64Bit; 4540 4541 public: 4542 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4543 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4544 Is64Bit(Is64Bit) {} 4545 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4546 return 1; // r1 is the dedicated stack pointer 4547 } 4548 4549 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4550 llvm::Value *Address) const override; 4551 }; 4552 } // namespace 4553 4554 // Return true if the ABI requires Ty to be passed sign- or zero- 4555 // extended to 32/64 bits. 4556 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4557 // Treat an enum type as its underlying type. 4558 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4559 Ty = EnumTy->getDecl()->getIntegerType(); 4560 4561 // Promotable integer types are required to be promoted by the ABI. 4562 if (Ty->isPromotableIntegerType()) 4563 return true; 4564 4565 if (!Is64Bit) 4566 return false; 4567 4568 // For 64 bit mode, in addition to the usual promotable integer types, we also 4569 // need to extend all 32-bit types, since the ABI requires promotion to 64 4570 // bits. 4571 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4572 switch (BT->getKind()) { 4573 case BuiltinType::Int: 4574 case BuiltinType::UInt: 4575 return true; 4576 default: 4577 break; 4578 } 4579 4580 return false; 4581 } 4582 4583 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4584 if (RetTy->isAnyComplexType()) 4585 return ABIArgInfo::getDirect(); 4586 4587 if (RetTy->isVectorType()) 4588 return ABIArgInfo::getDirect(); 4589 4590 if (RetTy->isVoidType()) 4591 return ABIArgInfo::getIgnore(); 4592 4593 if (isAggregateTypeForABI(RetTy)) 4594 return getNaturalAlignIndirect(RetTy); 4595 4596 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4597 : ABIArgInfo::getDirect()); 4598 } 4599 4600 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4601 Ty = useFirstFieldIfTransparentUnion(Ty); 4602 4603 if (Ty->isAnyComplexType()) 4604 return ABIArgInfo::getDirect(); 4605 4606 if (Ty->isVectorType()) 4607 return ABIArgInfo::getDirect(); 4608 4609 if (isAggregateTypeForABI(Ty)) { 4610 // Records with non-trivial destructors/copy-constructors should not be 4611 // passed by value. 4612 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4613 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4614 4615 CharUnits CCAlign = getParamTypeAlignment(Ty); 4616 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4617 4618 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4619 /*Realign*/ TyAlign > CCAlign); 4620 } 4621 4622 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4623 : ABIArgInfo::getDirect()); 4624 } 4625 4626 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4627 // Complex types are passed just like their elements. 4628 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4629 Ty = CTy->getElementType(); 4630 4631 if (Ty->isVectorType()) 4632 return CharUnits::fromQuantity(16); 4633 4634 // If the structure contains a vector type, the alignment is 16. 4635 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4636 return CharUnits::fromQuantity(16); 4637 4638 return CharUnits::fromQuantity(PtrByteSize); 4639 } 4640 4641 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4642 QualType Ty) const { 4643 4644 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4645 TypeInfo.Align = getParamTypeAlignment(Ty); 4646 4647 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4648 4649 // If we have a complex type and the base type is smaller than the register 4650 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4651 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4652 // Clang expects us to produce a pointer to a structure with the two parts 4653 // packed tightly. So generate loads of the real and imaginary parts relative 4654 // to the va_list pointer, and store them to a temporary structure. We do the 4655 // same as the PPC64ABI here. 4656 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4657 CharUnits EltSize = TypeInfo.Width / 2; 4658 if (EltSize < SlotSize) 4659 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4660 } 4661 4662 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4663 SlotSize, /*AllowHigher*/ true); 4664 } 4665 4666 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4667 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4668 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4669 } 4670 4671 // PowerPC-32 4672 namespace { 4673 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4674 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4675 bool IsSoftFloatABI; 4676 bool IsRetSmallStructInRegABI; 4677 4678 CharUnits getParamTypeAlignment(QualType Ty) const; 4679 4680 public: 4681 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4682 bool RetSmallStructInRegABI) 4683 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4684 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4685 4686 ABIArgInfo classifyReturnType(QualType RetTy) const; 4687 4688 void computeInfo(CGFunctionInfo &FI) const override { 4689 if (!getCXXABI().classifyReturnType(FI)) 4690 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4691 for (auto &I : FI.arguments()) 4692 I.info = classifyArgumentType(I.type); 4693 } 4694 4695 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4696 QualType Ty) const override; 4697 }; 4698 4699 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4700 public: 4701 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4702 bool RetSmallStructInRegABI) 4703 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4704 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4705 4706 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4707 const CodeGenOptions &Opts); 4708 4709 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4710 // This is recovered from gcc output. 4711 return 1; // r1 is the dedicated stack pointer 4712 } 4713 4714 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4715 llvm::Value *Address) const override; 4716 }; 4717 } 4718 4719 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4720 // Complex types are passed just like their elements. 4721 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4722 Ty = CTy->getElementType(); 4723 4724 if (Ty->isVectorType()) 4725 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4726 : 4); 4727 4728 // For single-element float/vector structs, we consider the whole type 4729 // to have the same alignment requirements as its single element. 4730 const Type *AlignTy = nullptr; 4731 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4732 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4733 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4734 (BT && BT->isFloatingPoint())) 4735 AlignTy = EltType; 4736 } 4737 4738 if (AlignTy) 4739 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4740 return CharUnits::fromQuantity(4); 4741 } 4742 4743 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4744 uint64_t Size; 4745 4746 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4747 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4748 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4749 // System V ABI (1995), page 3-22, specified: 4750 // > A structure or union whose size is less than or equal to 8 bytes 4751 // > shall be returned in r3 and r4, as if it were first stored in the 4752 // > 8-byte aligned memory area and then the low addressed word were 4753 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4754 // > the last member of the structure or union are not defined. 4755 // 4756 // GCC for big-endian PPC32 inserts the pad before the first member, 4757 // not "beyond the last member" of the struct. To stay compatible 4758 // with GCC, we coerce the struct to an integer of the same size. 4759 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4760 if (Size == 0) 4761 return ABIArgInfo::getIgnore(); 4762 else { 4763 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4764 return ABIArgInfo::getDirect(CoerceTy); 4765 } 4766 } 4767 4768 return DefaultABIInfo::classifyReturnType(RetTy); 4769 } 4770 4771 // TODO: this implementation is now likely redundant with 4772 // DefaultABIInfo::EmitVAArg. 4773 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4774 QualType Ty) const { 4775 if (getTarget().getTriple().isOSDarwin()) { 4776 auto TI = getContext().getTypeInfoInChars(Ty); 4777 TI.Align = getParamTypeAlignment(Ty); 4778 4779 CharUnits SlotSize = CharUnits::fromQuantity(4); 4780 return emitVoidPtrVAArg(CGF, VAList, Ty, 4781 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4782 /*AllowHigherAlign=*/true); 4783 } 4784 4785 const unsigned OverflowLimit = 8; 4786 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4787 // TODO: Implement this. For now ignore. 4788 (void)CTy; 4789 return Address::invalid(); // FIXME? 4790 } 4791 4792 // struct __va_list_tag { 4793 // unsigned char gpr; 4794 // unsigned char fpr; 4795 // unsigned short reserved; 4796 // void *overflow_arg_area; 4797 // void *reg_save_area; 4798 // }; 4799 4800 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4801 bool isInt = !Ty->isFloatingType(); 4802 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4803 4804 // All aggregates are passed indirectly? That doesn't seem consistent 4805 // with the argument-lowering code. 4806 bool isIndirect = isAggregateTypeForABI(Ty); 4807 4808 CGBuilderTy &Builder = CGF.Builder; 4809 4810 // The calling convention either uses 1-2 GPRs or 1 FPR. 4811 Address NumRegsAddr = Address::invalid(); 4812 if (isInt || IsSoftFloatABI) { 4813 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4814 } else { 4815 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4816 } 4817 4818 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4819 4820 // "Align" the register count when TY is i64. 4821 if (isI64 || (isF64 && IsSoftFloatABI)) { 4822 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4823 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4824 } 4825 4826 llvm::Value *CC = 4827 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4828 4829 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4830 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4831 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4832 4833 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4834 4835 llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy; 4836 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4837 4838 // Case 1: consume registers. 4839 Address RegAddr = Address::invalid(); 4840 { 4841 CGF.EmitBlock(UsingRegs); 4842 4843 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4844 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty, 4845 CharUnits::fromQuantity(8)); 4846 assert(RegAddr.getElementType() == CGF.Int8Ty); 4847 4848 // Floating-point registers start after the general-purpose registers. 4849 if (!(isInt || IsSoftFloatABI)) { 4850 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4851 CharUnits::fromQuantity(32)); 4852 } 4853 4854 // Get the address of the saved value by scaling the number of 4855 // registers we've used by the number of 4856 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4857 llvm::Value *RegOffset = 4858 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4859 RegAddr = Address( 4860 Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset), 4861 CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4862 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4863 4864 // Increase the used-register count. 4865 NumRegs = 4866 Builder.CreateAdd(NumRegs, 4867 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4868 Builder.CreateStore(NumRegs, NumRegsAddr); 4869 4870 CGF.EmitBranch(Cont); 4871 } 4872 4873 // Case 2: consume space in the overflow area. 4874 Address MemAddr = Address::invalid(); 4875 { 4876 CGF.EmitBlock(UsingOverflow); 4877 4878 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4879 4880 // Everything in the overflow area is rounded up to a size of at least 4. 4881 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4882 4883 CharUnits Size; 4884 if (!isIndirect) { 4885 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4886 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4887 } else { 4888 Size = CGF.getPointerSize(); 4889 } 4890 4891 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4892 Address OverflowArea = 4893 Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty, 4894 OverflowAreaAlign); 4895 // Round up address of argument to alignment 4896 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4897 if (Align > OverflowAreaAlign) { 4898 llvm::Value *Ptr = OverflowArea.getPointer(); 4899 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4900 OverflowArea.getElementType(), Align); 4901 } 4902 4903 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4904 4905 // Increase the overflow area. 4906 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4907 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4908 CGF.EmitBranch(Cont); 4909 } 4910 4911 CGF.EmitBlock(Cont); 4912 4913 // Merge the cases with a phi. 4914 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4915 "vaarg.addr"); 4916 4917 // Load the pointer if the argument was passed indirectly. 4918 if (isIndirect) { 4919 Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy, 4920 getContext().getTypeAlignInChars(Ty)); 4921 } 4922 4923 return Result; 4924 } 4925 4926 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4927 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4928 assert(Triple.isPPC32()); 4929 4930 switch (Opts.getStructReturnConvention()) { 4931 case CodeGenOptions::SRCK_Default: 4932 break; 4933 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4934 return false; 4935 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4936 return true; 4937 } 4938 4939 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4940 return true; 4941 4942 return false; 4943 } 4944 4945 bool 4946 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4947 llvm::Value *Address) const { 4948 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4949 /*IsAIX*/ false); 4950 } 4951 4952 // PowerPC-64 4953 4954 namespace { 4955 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4956 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4957 public: 4958 enum ABIKind { 4959 ELFv1 = 0, 4960 ELFv2 4961 }; 4962 4963 private: 4964 static const unsigned GPRBits = 64; 4965 ABIKind Kind; 4966 bool IsSoftFloatABI; 4967 4968 public: 4969 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4970 bool SoftFloatABI) 4971 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4972 4973 bool isPromotableTypeForABI(QualType Ty) const; 4974 CharUnits getParamTypeAlignment(QualType Ty) const; 4975 4976 ABIArgInfo classifyReturnType(QualType RetTy) const; 4977 ABIArgInfo classifyArgumentType(QualType Ty) const; 4978 4979 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4980 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4981 uint64_t Members) const override; 4982 4983 // TODO: We can add more logic to computeInfo to improve performance. 4984 // Example: For aggregate arguments that fit in a register, we could 4985 // use getDirectInReg (as is done below for structs containing a single 4986 // floating-point value) to avoid pushing them to memory on function 4987 // entry. This would require changing the logic in PPCISelLowering 4988 // when lowering the parameters in the caller and args in the callee. 4989 void computeInfo(CGFunctionInfo &FI) const override { 4990 if (!getCXXABI().classifyReturnType(FI)) 4991 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4992 for (auto &I : FI.arguments()) { 4993 // We rely on the default argument classification for the most part. 4994 // One exception: An aggregate containing a single floating-point 4995 // or vector item must be passed in a register if one is available. 4996 const Type *T = isSingleElementStruct(I.type, getContext()); 4997 if (T) { 4998 const BuiltinType *BT = T->getAs<BuiltinType>(); 4999 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 5000 (BT && BT->isFloatingPoint())) { 5001 QualType QT(T, 0); 5002 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 5003 continue; 5004 } 5005 } 5006 I.info = classifyArgumentType(I.type); 5007 } 5008 } 5009 5010 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5011 QualType Ty) const override; 5012 5013 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5014 bool asReturnValue) const override { 5015 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5016 } 5017 5018 bool isSwiftErrorInRegister() const override { 5019 return false; 5020 } 5021 }; 5022 5023 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5024 5025 public: 5026 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5027 PPC64_SVR4_ABIInfo::ABIKind Kind, 5028 bool SoftFloatABI) 5029 : TargetCodeGenInfo( 5030 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5031 5032 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5033 // This is recovered from gcc output. 5034 return 1; // r1 is the dedicated stack pointer 5035 } 5036 5037 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5038 llvm::Value *Address) const override; 5039 }; 5040 5041 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5042 public: 5043 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5044 5045 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5046 // This is recovered from gcc output. 5047 return 1; // r1 is the dedicated stack pointer 5048 } 5049 5050 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5051 llvm::Value *Address) const override; 5052 }; 5053 5054 } 5055 5056 // Return true if the ABI requires Ty to be passed sign- or zero- 5057 // extended to 64 bits. 5058 bool 5059 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5060 // Treat an enum type as its underlying type. 5061 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5062 Ty = EnumTy->getDecl()->getIntegerType(); 5063 5064 // Promotable integer types are required to be promoted by the ABI. 5065 if (isPromotableIntegerTypeForABI(Ty)) 5066 return true; 5067 5068 // In addition to the usual promotable integer types, we also need to 5069 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5070 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5071 switch (BT->getKind()) { 5072 case BuiltinType::Int: 5073 case BuiltinType::UInt: 5074 return true; 5075 default: 5076 break; 5077 } 5078 5079 if (const auto *EIT = Ty->getAs<BitIntType>()) 5080 if (EIT->getNumBits() < 64) 5081 return true; 5082 5083 return false; 5084 } 5085 5086 /// isAlignedParamType - Determine whether a type requires 16-byte or 5087 /// higher alignment in the parameter area. Always returns at least 8. 5088 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5089 // Complex types are passed just like their elements. 5090 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5091 Ty = CTy->getElementType(); 5092 5093 auto FloatUsesVector = [this](QualType Ty){ 5094 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( 5095 Ty) == &llvm::APFloat::IEEEquad(); 5096 }; 5097 5098 // Only vector types of size 16 bytes need alignment (larger types are 5099 // passed via reference, smaller types are not aligned). 5100 if (Ty->isVectorType()) { 5101 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5102 } else if (FloatUsesVector(Ty)) { 5103 // According to ABI document section 'Optional Save Areas': If extended 5104 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5105 // format are supported, map them to a single quadword, quadword aligned. 5106 return CharUnits::fromQuantity(16); 5107 } 5108 5109 // For single-element float/vector structs, we consider the whole type 5110 // to have the same alignment requirements as its single element. 5111 const Type *AlignAsType = nullptr; 5112 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5113 if (EltType) { 5114 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5115 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5116 (BT && BT->isFloatingPoint())) 5117 AlignAsType = EltType; 5118 } 5119 5120 // Likewise for ELFv2 homogeneous aggregates. 5121 const Type *Base = nullptr; 5122 uint64_t Members = 0; 5123 if (!AlignAsType && Kind == ELFv2 && 5124 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5125 AlignAsType = Base; 5126 5127 // With special case aggregates, only vector base types need alignment. 5128 if (AlignAsType) { 5129 bool UsesVector = AlignAsType->isVectorType() || 5130 FloatUsesVector(QualType(AlignAsType, 0)); 5131 return CharUnits::fromQuantity(UsesVector ? 16 : 8); 5132 } 5133 5134 // Otherwise, we only need alignment for any aggregate type that 5135 // has an alignment requirement of >= 16 bytes. 5136 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5137 return CharUnits::fromQuantity(16); 5138 } 5139 5140 return CharUnits::fromQuantity(8); 5141 } 5142 5143 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5144 /// aggregate. Base is set to the base element type, and Members is set 5145 /// to the number of base elements. 5146 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5147 uint64_t &Members) const { 5148 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5149 uint64_t NElements = AT->getSize().getZExtValue(); 5150 if (NElements == 0) 5151 return false; 5152 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5153 return false; 5154 Members *= NElements; 5155 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5156 const RecordDecl *RD = RT->getDecl(); 5157 if (RD->hasFlexibleArrayMember()) 5158 return false; 5159 5160 Members = 0; 5161 5162 // If this is a C++ record, check the properties of the record such as 5163 // bases and ABI specific restrictions 5164 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5165 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5166 return false; 5167 5168 for (const auto &I : CXXRD->bases()) { 5169 // Ignore empty records. 5170 if (isEmptyRecord(getContext(), I.getType(), true)) 5171 continue; 5172 5173 uint64_t FldMembers; 5174 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5175 return false; 5176 5177 Members += FldMembers; 5178 } 5179 } 5180 5181 for (const auto *FD : RD->fields()) { 5182 // Ignore (non-zero arrays of) empty records. 5183 QualType FT = FD->getType(); 5184 while (const ConstantArrayType *AT = 5185 getContext().getAsConstantArrayType(FT)) { 5186 if (AT->getSize().getZExtValue() == 0) 5187 return false; 5188 FT = AT->getElementType(); 5189 } 5190 if (isEmptyRecord(getContext(), FT, true)) 5191 continue; 5192 5193 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5194 if (getContext().getLangOpts().CPlusPlus && 5195 FD->isZeroLengthBitField(getContext())) 5196 continue; 5197 5198 uint64_t FldMembers; 5199 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5200 return false; 5201 5202 Members = (RD->isUnion() ? 5203 std::max(Members, FldMembers) : Members + FldMembers); 5204 } 5205 5206 if (!Base) 5207 return false; 5208 5209 // Ensure there is no padding. 5210 if (getContext().getTypeSize(Base) * Members != 5211 getContext().getTypeSize(Ty)) 5212 return false; 5213 } else { 5214 Members = 1; 5215 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5216 Members = 2; 5217 Ty = CT->getElementType(); 5218 } 5219 5220 // Most ABIs only support float, double, and some vector type widths. 5221 if (!isHomogeneousAggregateBaseType(Ty)) 5222 return false; 5223 5224 // The base type must be the same for all members. Types that 5225 // agree in both total size and mode (float vs. vector) are 5226 // treated as being equivalent here. 5227 const Type *TyPtr = Ty.getTypePtr(); 5228 if (!Base) { 5229 Base = TyPtr; 5230 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5231 // so make sure to widen it explicitly. 5232 if (const VectorType *VT = Base->getAs<VectorType>()) { 5233 QualType EltTy = VT->getElementType(); 5234 unsigned NumElements = 5235 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5236 Base = getContext() 5237 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5238 .getTypePtr(); 5239 } 5240 } 5241 5242 if (Base->isVectorType() != TyPtr->isVectorType() || 5243 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5244 return false; 5245 } 5246 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5247 } 5248 5249 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5250 // Homogeneous aggregates for ELFv2 must have base types of float, 5251 // double, long double, or 128-bit vectors. 5252 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5253 if (BT->getKind() == BuiltinType::Float || 5254 BT->getKind() == BuiltinType::Double || 5255 BT->getKind() == BuiltinType::LongDouble || 5256 BT->getKind() == BuiltinType::Ibm128 || 5257 (getContext().getTargetInfo().hasFloat128Type() && 5258 (BT->getKind() == BuiltinType::Float128))) { 5259 if (IsSoftFloatABI) 5260 return false; 5261 return true; 5262 } 5263 } 5264 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5265 if (getContext().getTypeSize(VT) == 128) 5266 return true; 5267 } 5268 return false; 5269 } 5270 5271 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5272 const Type *Base, uint64_t Members) const { 5273 // Vector and fp128 types require one register, other floating point types 5274 // require one or two registers depending on their size. 5275 uint32_t NumRegs = 5276 ((getContext().getTargetInfo().hasFloat128Type() && 5277 Base->isFloat128Type()) || 5278 Base->isVectorType()) ? 1 5279 : (getContext().getTypeSize(Base) + 63) / 64; 5280 5281 // Homogeneous Aggregates may occupy at most 8 registers. 5282 return Members * NumRegs <= 8; 5283 } 5284 5285 ABIArgInfo 5286 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5287 Ty = useFirstFieldIfTransparentUnion(Ty); 5288 5289 if (Ty->isAnyComplexType()) 5290 return ABIArgInfo::getDirect(); 5291 5292 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5293 // or via reference (larger than 16 bytes). 5294 if (Ty->isVectorType()) { 5295 uint64_t Size = getContext().getTypeSize(Ty); 5296 if (Size > 128) 5297 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5298 else if (Size < 128) { 5299 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5300 return ABIArgInfo::getDirect(CoerceTy); 5301 } 5302 } 5303 5304 if (const auto *EIT = Ty->getAs<BitIntType>()) 5305 if (EIT->getNumBits() > 128) 5306 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5307 5308 if (isAggregateTypeForABI(Ty)) { 5309 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5310 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5311 5312 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5313 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5314 5315 // ELFv2 homogeneous aggregates are passed as array types. 5316 const Type *Base = nullptr; 5317 uint64_t Members = 0; 5318 if (Kind == ELFv2 && 5319 isHomogeneousAggregate(Ty, Base, Members)) { 5320 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5321 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5322 return ABIArgInfo::getDirect(CoerceTy); 5323 } 5324 5325 // If an aggregate may end up fully in registers, we do not 5326 // use the ByVal method, but pass the aggregate as array. 5327 // This is usually beneficial since we avoid forcing the 5328 // back-end to store the argument to memory. 5329 uint64_t Bits = getContext().getTypeSize(Ty); 5330 if (Bits > 0 && Bits <= 8 * GPRBits) { 5331 llvm::Type *CoerceTy; 5332 5333 // Types up to 8 bytes are passed as integer type (which will be 5334 // properly aligned in the argument save area doubleword). 5335 if (Bits <= GPRBits) 5336 CoerceTy = 5337 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5338 // Larger types are passed as arrays, with the base type selected 5339 // according to the required alignment in the save area. 5340 else { 5341 uint64_t RegBits = ABIAlign * 8; 5342 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5343 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5344 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5345 } 5346 5347 return ABIArgInfo::getDirect(CoerceTy); 5348 } 5349 5350 // All other aggregates are passed ByVal. 5351 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5352 /*ByVal=*/true, 5353 /*Realign=*/TyAlign > ABIAlign); 5354 } 5355 5356 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5357 : ABIArgInfo::getDirect()); 5358 } 5359 5360 ABIArgInfo 5361 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5362 if (RetTy->isVoidType()) 5363 return ABIArgInfo::getIgnore(); 5364 5365 if (RetTy->isAnyComplexType()) 5366 return ABIArgInfo::getDirect(); 5367 5368 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5369 // or via reference (larger than 16 bytes). 5370 if (RetTy->isVectorType()) { 5371 uint64_t Size = getContext().getTypeSize(RetTy); 5372 if (Size > 128) 5373 return getNaturalAlignIndirect(RetTy); 5374 else if (Size < 128) { 5375 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5376 return ABIArgInfo::getDirect(CoerceTy); 5377 } 5378 } 5379 5380 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5381 if (EIT->getNumBits() > 128) 5382 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5383 5384 if (isAggregateTypeForABI(RetTy)) { 5385 // ELFv2 homogeneous aggregates are returned as array types. 5386 const Type *Base = nullptr; 5387 uint64_t Members = 0; 5388 if (Kind == ELFv2 && 5389 isHomogeneousAggregate(RetTy, Base, Members)) { 5390 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5391 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5392 return ABIArgInfo::getDirect(CoerceTy); 5393 } 5394 5395 // ELFv2 small aggregates are returned in up to two registers. 5396 uint64_t Bits = getContext().getTypeSize(RetTy); 5397 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5398 if (Bits == 0) 5399 return ABIArgInfo::getIgnore(); 5400 5401 llvm::Type *CoerceTy; 5402 if (Bits > GPRBits) { 5403 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5404 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5405 } else 5406 CoerceTy = 5407 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5408 return ABIArgInfo::getDirect(CoerceTy); 5409 } 5410 5411 // All other aggregates are returned indirectly. 5412 return getNaturalAlignIndirect(RetTy); 5413 } 5414 5415 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5416 : ABIArgInfo::getDirect()); 5417 } 5418 5419 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5420 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5421 QualType Ty) const { 5422 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5423 TypeInfo.Align = getParamTypeAlignment(Ty); 5424 5425 CharUnits SlotSize = CharUnits::fromQuantity(8); 5426 5427 // If we have a complex type and the base type is smaller than 8 bytes, 5428 // the ABI calls for the real and imaginary parts to be right-adjusted 5429 // in separate doublewords. However, Clang expects us to produce a 5430 // pointer to a structure with the two parts packed tightly. So generate 5431 // loads of the real and imaginary parts relative to the va_list pointer, 5432 // and store them to a temporary structure. 5433 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5434 CharUnits EltSize = TypeInfo.Width / 2; 5435 if (EltSize < SlotSize) 5436 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5437 } 5438 5439 // Otherwise, just use the general rule. 5440 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5441 TypeInfo, SlotSize, /*AllowHigher*/ true); 5442 } 5443 5444 bool 5445 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5446 CodeGen::CodeGenFunction &CGF, 5447 llvm::Value *Address) const { 5448 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5449 /*IsAIX*/ false); 5450 } 5451 5452 bool 5453 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5454 llvm::Value *Address) const { 5455 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5456 /*IsAIX*/ false); 5457 } 5458 5459 //===----------------------------------------------------------------------===// 5460 // AArch64 ABI Implementation 5461 //===----------------------------------------------------------------------===// 5462 5463 namespace { 5464 5465 class AArch64ABIInfo : public SwiftABIInfo { 5466 public: 5467 enum ABIKind { 5468 AAPCS = 0, 5469 DarwinPCS, 5470 Win64 5471 }; 5472 5473 private: 5474 ABIKind Kind; 5475 5476 public: 5477 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5478 : SwiftABIInfo(CGT), Kind(Kind) {} 5479 5480 private: 5481 ABIKind getABIKind() const { return Kind; } 5482 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5483 5484 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5485 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5486 unsigned CallingConvention) const; 5487 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5488 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5489 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5490 uint64_t Members) const override; 5491 5492 bool isIllegalVectorType(QualType Ty) const; 5493 5494 void computeInfo(CGFunctionInfo &FI) const override { 5495 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5496 FI.getReturnInfo() = 5497 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5498 5499 for (auto &it : FI.arguments()) 5500 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5501 FI.getCallingConvention()); 5502 } 5503 5504 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5505 CodeGenFunction &CGF) const; 5506 5507 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5508 CodeGenFunction &CGF) const; 5509 5510 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5511 QualType Ty) const override { 5512 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5513 if (isa<llvm::ScalableVectorType>(BaseTy)) 5514 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5515 "currently not supported"); 5516 5517 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5518 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5519 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5520 } 5521 5522 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5523 QualType Ty) const override; 5524 5525 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5526 bool asReturnValue) const override { 5527 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5528 } 5529 bool isSwiftErrorInRegister() const override { 5530 return true; 5531 } 5532 5533 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5534 unsigned elts) const override; 5535 5536 bool allowBFloatArgsAndRet() const override { 5537 return getTarget().hasBFloat16Type(); 5538 } 5539 }; 5540 5541 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5542 public: 5543 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5544 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5545 5546 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5547 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5548 } 5549 5550 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5551 return 31; 5552 } 5553 5554 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5555 5556 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5557 CodeGen::CodeGenModule &CGM) const override { 5558 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5559 if (!FD) 5560 return; 5561 5562 const auto *TA = FD->getAttr<TargetAttr>(); 5563 if (TA == nullptr) 5564 return; 5565 5566 ParsedTargetAttr Attr = TA->parse(); 5567 if (Attr.BranchProtection.empty()) 5568 return; 5569 5570 TargetInfo::BranchProtectionInfo BPI; 5571 StringRef Error; 5572 (void)CGM.getTarget().validateBranchProtection( 5573 Attr.BranchProtection, Attr.Architecture, BPI, Error); 5574 assert(Error.empty()); 5575 5576 auto *Fn = cast<llvm::Function>(GV); 5577 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5578 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5579 5580 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5581 Fn->addFnAttr("sign-return-address-key", 5582 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5583 ? "a_key" 5584 : "b_key"); 5585 } 5586 5587 Fn->addFnAttr("branch-target-enforcement", 5588 BPI.BranchTargetEnforcement ? "true" : "false"); 5589 } 5590 5591 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5592 llvm::Type *Ty) const override { 5593 if (CGF.getTarget().hasFeature("ls64")) { 5594 auto *ST = dyn_cast<llvm::StructType>(Ty); 5595 if (ST && ST->getNumElements() == 1) { 5596 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5597 if (AT && AT->getNumElements() == 8 && 5598 AT->getElementType()->isIntegerTy(64)) 5599 return true; 5600 } 5601 } 5602 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5603 } 5604 }; 5605 5606 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5607 public: 5608 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5609 : AArch64TargetCodeGenInfo(CGT, K) {} 5610 5611 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5612 CodeGen::CodeGenModule &CGM) const override; 5613 5614 void getDependentLibraryOption(llvm::StringRef Lib, 5615 llvm::SmallString<24> &Opt) const override { 5616 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5617 } 5618 5619 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5620 llvm::SmallString<32> &Opt) const override { 5621 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5622 } 5623 }; 5624 5625 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5626 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5627 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5628 if (GV->isDeclaration()) 5629 return; 5630 addStackProbeTargetAttributes(D, GV, CGM); 5631 } 5632 } 5633 5634 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5635 assert(Ty->isVectorType() && "expected vector type!"); 5636 5637 const auto *VT = Ty->castAs<VectorType>(); 5638 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5639 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5640 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5641 BuiltinType::UChar && 5642 "unexpected builtin type for SVE predicate!"); 5643 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5644 llvm::Type::getInt1Ty(getVMContext()), 16)); 5645 } 5646 5647 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5648 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5649 5650 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5651 llvm::ScalableVectorType *ResType = nullptr; 5652 switch (BT->getKind()) { 5653 default: 5654 llvm_unreachable("unexpected builtin type for SVE vector!"); 5655 case BuiltinType::SChar: 5656 case BuiltinType::UChar: 5657 ResType = llvm::ScalableVectorType::get( 5658 llvm::Type::getInt8Ty(getVMContext()), 16); 5659 break; 5660 case BuiltinType::Short: 5661 case BuiltinType::UShort: 5662 ResType = llvm::ScalableVectorType::get( 5663 llvm::Type::getInt16Ty(getVMContext()), 8); 5664 break; 5665 case BuiltinType::Int: 5666 case BuiltinType::UInt: 5667 ResType = llvm::ScalableVectorType::get( 5668 llvm::Type::getInt32Ty(getVMContext()), 4); 5669 break; 5670 case BuiltinType::Long: 5671 case BuiltinType::ULong: 5672 ResType = llvm::ScalableVectorType::get( 5673 llvm::Type::getInt64Ty(getVMContext()), 2); 5674 break; 5675 case BuiltinType::Half: 5676 ResType = llvm::ScalableVectorType::get( 5677 llvm::Type::getHalfTy(getVMContext()), 8); 5678 break; 5679 case BuiltinType::Float: 5680 ResType = llvm::ScalableVectorType::get( 5681 llvm::Type::getFloatTy(getVMContext()), 4); 5682 break; 5683 case BuiltinType::Double: 5684 ResType = llvm::ScalableVectorType::get( 5685 llvm::Type::getDoubleTy(getVMContext()), 2); 5686 break; 5687 case BuiltinType::BFloat16: 5688 ResType = llvm::ScalableVectorType::get( 5689 llvm::Type::getBFloatTy(getVMContext()), 8); 5690 break; 5691 } 5692 return ABIArgInfo::getDirect(ResType); 5693 } 5694 5695 uint64_t Size = getContext().getTypeSize(Ty); 5696 // Android promotes <2 x i8> to i16, not i32 5697 if (isAndroid() && (Size <= 16)) { 5698 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5699 return ABIArgInfo::getDirect(ResType); 5700 } 5701 if (Size <= 32) { 5702 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5703 return ABIArgInfo::getDirect(ResType); 5704 } 5705 if (Size == 64) { 5706 auto *ResType = 5707 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5708 return ABIArgInfo::getDirect(ResType); 5709 } 5710 if (Size == 128) { 5711 auto *ResType = 5712 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5713 return ABIArgInfo::getDirect(ResType); 5714 } 5715 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5716 } 5717 5718 ABIArgInfo 5719 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5720 unsigned CallingConvention) const { 5721 Ty = useFirstFieldIfTransparentUnion(Ty); 5722 5723 // Handle illegal vector types here. 5724 if (isIllegalVectorType(Ty)) 5725 return coerceIllegalVector(Ty); 5726 5727 if (!isAggregateTypeForABI(Ty)) { 5728 // Treat an enum type as its underlying type. 5729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5730 Ty = EnumTy->getDecl()->getIntegerType(); 5731 5732 if (const auto *EIT = Ty->getAs<BitIntType>()) 5733 if (EIT->getNumBits() > 128) 5734 return getNaturalAlignIndirect(Ty); 5735 5736 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5737 ? ABIArgInfo::getExtend(Ty) 5738 : ABIArgInfo::getDirect()); 5739 } 5740 5741 // Structures with either a non-trivial destructor or a non-trivial 5742 // copy constructor are always indirect. 5743 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5744 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5745 CGCXXABI::RAA_DirectInMemory); 5746 } 5747 5748 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5749 // elsewhere for GNU compatibility. 5750 uint64_t Size = getContext().getTypeSize(Ty); 5751 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5752 if (IsEmpty || Size == 0) { 5753 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5754 return ABIArgInfo::getIgnore(); 5755 5756 // GNU C mode. The only argument that gets ignored is an empty one with size 5757 // 0. 5758 if (IsEmpty && Size == 0) 5759 return ABIArgInfo::getIgnore(); 5760 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5761 } 5762 5763 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5764 const Type *Base = nullptr; 5765 uint64_t Members = 0; 5766 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5767 bool IsWinVariadic = IsWin64 && IsVariadic; 5768 // In variadic functions on Windows, all composite types are treated alike, 5769 // no special handling of HFAs/HVAs. 5770 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5771 if (Kind != AArch64ABIInfo::AAPCS) 5772 return ABIArgInfo::getDirect( 5773 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5774 5775 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5776 // default otherwise. 5777 unsigned Align = 5778 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5779 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5780 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5781 return ABIArgInfo::getDirect( 5782 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5783 nullptr, true, Align); 5784 } 5785 5786 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5787 if (Size <= 128) { 5788 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5789 // same size and alignment. 5790 if (getTarget().isRenderScriptTarget()) { 5791 return coerceToIntArray(Ty, getContext(), getVMContext()); 5792 } 5793 unsigned Alignment; 5794 if (Kind == AArch64ABIInfo::AAPCS) { 5795 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5796 Alignment = Alignment < 128 ? 64 : 128; 5797 } else { 5798 Alignment = std::max(getContext().getTypeAlign(Ty), 5799 (unsigned)getTarget().getPointerWidth(0)); 5800 } 5801 Size = llvm::alignTo(Size, Alignment); 5802 5803 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5804 // For aggregates with 16-byte alignment, we use i128. 5805 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5806 return ABIArgInfo::getDirect( 5807 Size == Alignment ? BaseTy 5808 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5809 } 5810 5811 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5812 } 5813 5814 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5815 bool IsVariadic) const { 5816 if (RetTy->isVoidType()) 5817 return ABIArgInfo::getIgnore(); 5818 5819 if (const auto *VT = RetTy->getAs<VectorType>()) { 5820 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5821 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5822 return coerceIllegalVector(RetTy); 5823 } 5824 5825 // Large vector types should be returned via memory. 5826 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5827 return getNaturalAlignIndirect(RetTy); 5828 5829 if (!isAggregateTypeForABI(RetTy)) { 5830 // Treat an enum type as its underlying type. 5831 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5832 RetTy = EnumTy->getDecl()->getIntegerType(); 5833 5834 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5835 if (EIT->getNumBits() > 128) 5836 return getNaturalAlignIndirect(RetTy); 5837 5838 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5839 ? ABIArgInfo::getExtend(RetTy) 5840 : ABIArgInfo::getDirect()); 5841 } 5842 5843 uint64_t Size = getContext().getTypeSize(RetTy); 5844 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5845 return ABIArgInfo::getIgnore(); 5846 5847 const Type *Base = nullptr; 5848 uint64_t Members = 0; 5849 if (isHomogeneousAggregate(RetTy, Base, Members) && 5850 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5851 IsVariadic)) 5852 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5853 return ABIArgInfo::getDirect(); 5854 5855 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5856 if (Size <= 128) { 5857 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5858 // same size and alignment. 5859 if (getTarget().isRenderScriptTarget()) { 5860 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5861 } 5862 5863 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5864 // Composite types are returned in lower bits of a 64-bit register for LE, 5865 // and in higher bits for BE. However, integer types are always returned 5866 // in lower bits for both LE and BE, and they are not rounded up to 5867 // 64-bits. We can skip rounding up of composite types for LE, but not for 5868 // BE, otherwise composite types will be indistinguishable from integer 5869 // types. 5870 return ABIArgInfo::getDirect( 5871 llvm::IntegerType::get(getVMContext(), Size)); 5872 } 5873 5874 unsigned Alignment = getContext().getTypeAlign(RetTy); 5875 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5876 5877 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5878 // For aggregates with 16-byte alignment, we use i128. 5879 if (Alignment < 128 && Size == 128) { 5880 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5881 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5882 } 5883 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5884 } 5885 5886 return getNaturalAlignIndirect(RetTy); 5887 } 5888 5889 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5890 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5891 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5892 // Check whether VT is a fixed-length SVE vector. These types are 5893 // represented as scalable vectors in function args/return and must be 5894 // coerced from fixed vectors. 5895 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5896 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5897 return true; 5898 5899 // Check whether VT is legal. 5900 unsigned NumElements = VT->getNumElements(); 5901 uint64_t Size = getContext().getTypeSize(VT); 5902 // NumElements should be power of 2. 5903 if (!llvm::isPowerOf2_32(NumElements)) 5904 return true; 5905 5906 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5907 // vectors for some reason. 5908 llvm::Triple Triple = getTarget().getTriple(); 5909 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5910 Triple.isOSBinFormatMachO()) 5911 return Size <= 32; 5912 5913 return Size != 64 && (Size != 128 || NumElements == 1); 5914 } 5915 return false; 5916 } 5917 5918 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5919 llvm::Type *eltTy, 5920 unsigned elts) const { 5921 if (!llvm::isPowerOf2_32(elts)) 5922 return false; 5923 if (totalSize.getQuantity() != 8 && 5924 (totalSize.getQuantity() != 16 || elts == 1)) 5925 return false; 5926 return true; 5927 } 5928 5929 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5930 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5931 // point type or a short-vector type. This is the same as the 32-bit ABI, 5932 // but with the difference that any floating-point type is allowed, 5933 // including __fp16. 5934 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5935 if (BT->isFloatingPoint()) 5936 return true; 5937 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5938 unsigned VecSize = getContext().getTypeSize(VT); 5939 if (VecSize == 64 || VecSize == 128) 5940 return true; 5941 } 5942 return false; 5943 } 5944 5945 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5946 uint64_t Members) const { 5947 return Members <= 4; 5948 } 5949 5950 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5951 CodeGenFunction &CGF) const { 5952 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5953 CGF.CurFnInfo->getCallingConvention()); 5954 bool IsIndirect = AI.isIndirect(); 5955 5956 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5957 if (IsIndirect) 5958 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5959 else if (AI.getCoerceToType()) 5960 BaseTy = AI.getCoerceToType(); 5961 5962 unsigned NumRegs = 1; 5963 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5964 BaseTy = ArrTy->getElementType(); 5965 NumRegs = ArrTy->getNumElements(); 5966 } 5967 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5968 5969 // The AArch64 va_list type and handling is specified in the Procedure Call 5970 // Standard, section B.4: 5971 // 5972 // struct { 5973 // void *__stack; 5974 // void *__gr_top; 5975 // void *__vr_top; 5976 // int __gr_offs; 5977 // int __vr_offs; 5978 // }; 5979 5980 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5981 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5982 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5983 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5984 5985 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5986 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5987 5988 Address reg_offs_p = Address::invalid(); 5989 llvm::Value *reg_offs = nullptr; 5990 int reg_top_index; 5991 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5992 if (!IsFPR) { 5993 // 3 is the field number of __gr_offs 5994 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5995 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5996 reg_top_index = 1; // field number for __gr_top 5997 RegSize = llvm::alignTo(RegSize, 8); 5998 } else { 5999 // 4 is the field number of __vr_offs. 6000 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 6001 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 6002 reg_top_index = 2; // field number for __vr_top 6003 RegSize = 16 * NumRegs; 6004 } 6005 6006 //======================================= 6007 // Find out where argument was passed 6008 //======================================= 6009 6010 // If reg_offs >= 0 we're already using the stack for this type of 6011 // argument. We don't want to keep updating reg_offs (in case it overflows, 6012 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6013 // whatever they get). 6014 llvm::Value *UsingStack = nullptr; 6015 UsingStack = CGF.Builder.CreateICmpSGE( 6016 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6017 6018 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6019 6020 // Otherwise, at least some kind of argument could go in these registers, the 6021 // question is whether this particular type is too big. 6022 CGF.EmitBlock(MaybeRegBlock); 6023 6024 // Integer arguments may need to correct register alignment (for example a 6025 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6026 // align __gr_offs to calculate the potential address. 6027 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6028 int Align = TyAlign.getQuantity(); 6029 6030 reg_offs = CGF.Builder.CreateAdd( 6031 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6032 "align_regoffs"); 6033 reg_offs = CGF.Builder.CreateAnd( 6034 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6035 "aligned_regoffs"); 6036 } 6037 6038 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6039 // The fact that this is done unconditionally reflects the fact that 6040 // allocating an argument to the stack also uses up all the remaining 6041 // registers of the appropriate kind. 6042 llvm::Value *NewOffset = nullptr; 6043 NewOffset = CGF.Builder.CreateAdd( 6044 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6045 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6046 6047 // Now we're in a position to decide whether this argument really was in 6048 // registers or not. 6049 llvm::Value *InRegs = nullptr; 6050 InRegs = CGF.Builder.CreateICmpSLE( 6051 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6052 6053 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6054 6055 //======================================= 6056 // Argument was in registers 6057 //======================================= 6058 6059 // Now we emit the code for if the argument was originally passed in 6060 // registers. First start the appropriate block: 6061 CGF.EmitBlock(InRegBlock); 6062 6063 llvm::Value *reg_top = nullptr; 6064 Address reg_top_p = 6065 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6066 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6067 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6068 CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6069 Address RegAddr = Address::invalid(); 6070 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy; 6071 6072 if (IsIndirect) { 6073 // If it's been passed indirectly (actually a struct), whatever we find from 6074 // stored registers or on the stack will actually be a struct **. 6075 MemTy = llvm::PointerType::getUnqual(MemTy); 6076 } 6077 6078 const Type *Base = nullptr; 6079 uint64_t NumMembers = 0; 6080 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6081 if (IsHFA && NumMembers > 1) { 6082 // Homogeneous aggregates passed in registers will have their elements split 6083 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6084 // qN+1, ...). We reload and store into a temporary local variable 6085 // contiguously. 6086 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6087 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6088 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6089 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6090 Address Tmp = CGF.CreateTempAlloca(HFATy, 6091 std::max(TyAlign, BaseTyInfo.Align)); 6092 6093 // On big-endian platforms, the value will be right-aligned in its slot. 6094 int Offset = 0; 6095 if (CGF.CGM.getDataLayout().isBigEndian() && 6096 BaseTyInfo.Width.getQuantity() < 16) 6097 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6098 6099 for (unsigned i = 0; i < NumMembers; ++i) { 6100 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6101 Address LoadAddr = 6102 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6103 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6104 6105 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6106 6107 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6108 CGF.Builder.CreateStore(Elem, StoreAddr); 6109 } 6110 6111 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6112 } else { 6113 // Otherwise the object is contiguous in memory. 6114 6115 // It might be right-aligned in its slot. 6116 CharUnits SlotSize = BaseAddr.getAlignment(); 6117 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6118 (IsHFA || !isAggregateTypeForABI(Ty)) && 6119 TySize < SlotSize) { 6120 CharUnits Offset = SlotSize - TySize; 6121 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6122 } 6123 6124 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6125 } 6126 6127 CGF.EmitBranch(ContBlock); 6128 6129 //======================================= 6130 // Argument was on the stack 6131 //======================================= 6132 CGF.EmitBlock(OnStackBlock); 6133 6134 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6135 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6136 6137 // Again, stack arguments may need realignment. In this case both integer and 6138 // floating-point ones might be affected. 6139 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6140 int Align = TyAlign.getQuantity(); 6141 6142 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6143 6144 OnStackPtr = CGF.Builder.CreateAdd( 6145 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6146 "align_stack"); 6147 OnStackPtr = CGF.Builder.CreateAnd( 6148 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6149 "align_stack"); 6150 6151 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6152 } 6153 Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty, 6154 std::max(CharUnits::fromQuantity(8), TyAlign)); 6155 6156 // All stack slots are multiples of 8 bytes. 6157 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6158 CharUnits StackSize; 6159 if (IsIndirect) 6160 StackSize = StackSlotSize; 6161 else 6162 StackSize = TySize.alignTo(StackSlotSize); 6163 6164 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6165 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6166 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6167 6168 // Write the new value of __stack for the next call to va_arg 6169 CGF.Builder.CreateStore(NewStack, stack_p); 6170 6171 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6172 TySize < StackSlotSize) { 6173 CharUnits Offset = StackSlotSize - TySize; 6174 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6175 } 6176 6177 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6178 6179 CGF.EmitBranch(ContBlock); 6180 6181 //======================================= 6182 // Tidy up 6183 //======================================= 6184 CGF.EmitBlock(ContBlock); 6185 6186 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr, 6187 OnStackBlock, "vaargs.addr"); 6188 6189 if (IsIndirect) 6190 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy, 6191 TyAlign); 6192 6193 return ResAddr; 6194 } 6195 6196 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6197 CodeGenFunction &CGF) const { 6198 // The backend's lowering doesn't support va_arg for aggregates or 6199 // illegal vector types. Lower VAArg here for these cases and use 6200 // the LLVM va_arg instruction for everything else. 6201 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6202 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6203 6204 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6205 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6206 6207 // Empty records are ignored for parameter passing purposes. 6208 if (isEmptyRecord(getContext(), Ty, true)) { 6209 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), 6210 getVAListElementType(CGF), SlotSize); 6211 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6212 return Addr; 6213 } 6214 6215 // The size of the actual thing passed, which might end up just 6216 // being a pointer for indirect types. 6217 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6218 6219 // Arguments bigger than 16 bytes which aren't homogeneous 6220 // aggregates should be passed indirectly. 6221 bool IsIndirect = false; 6222 if (TyInfo.Width.getQuantity() > 16) { 6223 const Type *Base = nullptr; 6224 uint64_t Members = 0; 6225 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6226 } 6227 6228 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6229 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6230 } 6231 6232 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6233 QualType Ty) const { 6234 bool IsIndirect = false; 6235 6236 // Composites larger than 16 bytes are passed by reference. 6237 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6238 IsIndirect = true; 6239 6240 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6241 CGF.getContext().getTypeInfoInChars(Ty), 6242 CharUnits::fromQuantity(8), 6243 /*allowHigherAlign*/ false); 6244 } 6245 6246 //===----------------------------------------------------------------------===// 6247 // ARM ABI Implementation 6248 //===----------------------------------------------------------------------===// 6249 6250 namespace { 6251 6252 class ARMABIInfo : public SwiftABIInfo { 6253 public: 6254 enum ABIKind { 6255 APCS = 0, 6256 AAPCS = 1, 6257 AAPCS_VFP = 2, 6258 AAPCS16_VFP = 3, 6259 }; 6260 6261 private: 6262 ABIKind Kind; 6263 bool IsFloatABISoftFP; 6264 6265 public: 6266 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6267 : SwiftABIInfo(CGT), Kind(_Kind) { 6268 setCCs(); 6269 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6270 CGT.getCodeGenOpts().FloatABI == ""; // default 6271 } 6272 6273 bool isEABI() const { 6274 switch (getTarget().getTriple().getEnvironment()) { 6275 case llvm::Triple::Android: 6276 case llvm::Triple::EABI: 6277 case llvm::Triple::EABIHF: 6278 case llvm::Triple::GNUEABI: 6279 case llvm::Triple::GNUEABIHF: 6280 case llvm::Triple::MuslEABI: 6281 case llvm::Triple::MuslEABIHF: 6282 return true; 6283 default: 6284 return false; 6285 } 6286 } 6287 6288 bool isEABIHF() const { 6289 switch (getTarget().getTriple().getEnvironment()) { 6290 case llvm::Triple::EABIHF: 6291 case llvm::Triple::GNUEABIHF: 6292 case llvm::Triple::MuslEABIHF: 6293 return true; 6294 default: 6295 return false; 6296 } 6297 } 6298 6299 ABIKind getABIKind() const { return Kind; } 6300 6301 bool allowBFloatArgsAndRet() const override { 6302 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6303 } 6304 6305 private: 6306 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6307 unsigned functionCallConv) const; 6308 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6309 unsigned functionCallConv) const; 6310 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6311 uint64_t Members) const; 6312 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6313 bool isIllegalVectorType(QualType Ty) const; 6314 bool containsAnyFP16Vectors(QualType Ty) const; 6315 6316 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6317 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6318 uint64_t Members) const override; 6319 6320 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6321 6322 void computeInfo(CGFunctionInfo &FI) const override; 6323 6324 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6325 QualType Ty) const override; 6326 6327 llvm::CallingConv::ID getLLVMDefaultCC() const; 6328 llvm::CallingConv::ID getABIDefaultCC() const; 6329 void setCCs(); 6330 6331 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6332 bool asReturnValue) const override { 6333 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6334 } 6335 bool isSwiftErrorInRegister() const override { 6336 return true; 6337 } 6338 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6339 unsigned elts) const override; 6340 }; 6341 6342 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6343 public: 6344 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6345 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6346 6347 const ARMABIInfo &getABIInfo() const { 6348 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6349 } 6350 6351 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6352 return 13; 6353 } 6354 6355 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6356 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6357 } 6358 6359 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6360 llvm::Value *Address) const override { 6361 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6362 6363 // 0-15 are the 16 integer registers. 6364 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6365 return false; 6366 } 6367 6368 unsigned getSizeOfUnwindException() const override { 6369 if (getABIInfo().isEABI()) return 88; 6370 return TargetCodeGenInfo::getSizeOfUnwindException(); 6371 } 6372 6373 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6374 CodeGen::CodeGenModule &CGM) const override { 6375 if (GV->isDeclaration()) 6376 return; 6377 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6378 if (!FD) 6379 return; 6380 auto *Fn = cast<llvm::Function>(GV); 6381 6382 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6383 ParsedTargetAttr Attr = TA->parse(); 6384 if (!Attr.BranchProtection.empty()) { 6385 TargetInfo::BranchProtectionInfo BPI; 6386 StringRef DiagMsg; 6387 StringRef Arch = Attr.Architecture.empty() 6388 ? CGM.getTarget().getTargetOpts().CPU 6389 : Attr.Architecture; 6390 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6391 Arch, BPI, DiagMsg)) { 6392 CGM.getDiags().Report( 6393 D->getLocation(), 6394 diag::warn_target_unsupported_branch_protection_attribute) 6395 << Arch; 6396 } else { 6397 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6398 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6399 "Unexpected SignReturnAddressScopeKind"); 6400 Fn->addFnAttr( 6401 "sign-return-address", 6402 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6403 6404 Fn->addFnAttr("branch-target-enforcement", 6405 BPI.BranchTargetEnforcement ? "true" : "false"); 6406 } 6407 } else if (CGM.getLangOpts().BranchTargetEnforcement || 6408 CGM.getLangOpts().hasSignReturnAddress()) { 6409 // If the Branch Protection attribute is missing, validate the target 6410 // Architecture attribute against Branch Protection command line 6411 // settings. 6412 if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture)) 6413 CGM.getDiags().Report( 6414 D->getLocation(), 6415 diag::warn_target_unsupported_branch_protection_attribute) 6416 << Attr.Architecture; 6417 } 6418 } 6419 6420 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6421 if (!Attr) 6422 return; 6423 6424 const char *Kind; 6425 switch (Attr->getInterrupt()) { 6426 case ARMInterruptAttr::Generic: Kind = ""; break; 6427 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6428 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6429 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6430 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6431 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6432 } 6433 6434 Fn->addFnAttr("interrupt", Kind); 6435 6436 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6437 if (ABI == ARMABIInfo::APCS) 6438 return; 6439 6440 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6441 // however this is not necessarily true on taking any interrupt. Instruct 6442 // the backend to perform a realignment as part of the function prologue. 6443 llvm::AttrBuilder B(Fn->getContext()); 6444 B.addStackAlignmentAttr(8); 6445 Fn->addFnAttrs(B); 6446 } 6447 }; 6448 6449 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6450 public: 6451 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6452 : ARMTargetCodeGenInfo(CGT, K) {} 6453 6454 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6455 CodeGen::CodeGenModule &CGM) const override; 6456 6457 void getDependentLibraryOption(llvm::StringRef Lib, 6458 llvm::SmallString<24> &Opt) const override { 6459 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6460 } 6461 6462 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6463 llvm::SmallString<32> &Opt) const override { 6464 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6465 } 6466 }; 6467 6468 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6469 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6470 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6471 if (GV->isDeclaration()) 6472 return; 6473 addStackProbeTargetAttributes(D, GV, CGM); 6474 } 6475 } 6476 6477 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6478 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6479 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6480 FI.getCallingConvention()); 6481 6482 for (auto &I : FI.arguments()) 6483 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6484 FI.getCallingConvention()); 6485 6486 6487 // Always honor user-specified calling convention. 6488 if (FI.getCallingConvention() != llvm::CallingConv::C) 6489 return; 6490 6491 llvm::CallingConv::ID cc = getRuntimeCC(); 6492 if (cc != llvm::CallingConv::C) 6493 FI.setEffectiveCallingConvention(cc); 6494 } 6495 6496 /// Return the default calling convention that LLVM will use. 6497 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6498 // The default calling convention that LLVM will infer. 6499 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6500 return llvm::CallingConv::ARM_AAPCS_VFP; 6501 else if (isEABI()) 6502 return llvm::CallingConv::ARM_AAPCS; 6503 else 6504 return llvm::CallingConv::ARM_APCS; 6505 } 6506 6507 /// Return the calling convention that our ABI would like us to use 6508 /// as the C calling convention. 6509 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6510 switch (getABIKind()) { 6511 case APCS: return llvm::CallingConv::ARM_APCS; 6512 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6513 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6514 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6515 } 6516 llvm_unreachable("bad ABI kind"); 6517 } 6518 6519 void ARMABIInfo::setCCs() { 6520 assert(getRuntimeCC() == llvm::CallingConv::C); 6521 6522 // Don't muddy up the IR with a ton of explicit annotations if 6523 // they'd just match what LLVM will infer from the triple. 6524 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6525 if (abiCC != getLLVMDefaultCC()) 6526 RuntimeCC = abiCC; 6527 } 6528 6529 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6530 uint64_t Size = getContext().getTypeSize(Ty); 6531 if (Size <= 32) { 6532 llvm::Type *ResType = 6533 llvm::Type::getInt32Ty(getVMContext()); 6534 return ABIArgInfo::getDirect(ResType); 6535 } 6536 if (Size == 64 || Size == 128) { 6537 auto *ResType = llvm::FixedVectorType::get( 6538 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6539 return ABIArgInfo::getDirect(ResType); 6540 } 6541 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6542 } 6543 6544 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6545 const Type *Base, 6546 uint64_t Members) const { 6547 assert(Base && "Base class should be set for homogeneous aggregate"); 6548 // Base can be a floating-point or a vector. 6549 if (const VectorType *VT = Base->getAs<VectorType>()) { 6550 // FP16 vectors should be converted to integer vectors 6551 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6552 uint64_t Size = getContext().getTypeSize(VT); 6553 auto *NewVecTy = llvm::FixedVectorType::get( 6554 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6555 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6556 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6557 } 6558 } 6559 unsigned Align = 0; 6560 if (getABIKind() == ARMABIInfo::AAPCS || 6561 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6562 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6563 // default otherwise. 6564 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6565 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6566 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6567 } 6568 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6569 } 6570 6571 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6572 unsigned functionCallConv) const { 6573 // 6.1.2.1 The following argument types are VFP CPRCs: 6574 // A single-precision floating-point type (including promoted 6575 // half-precision types); A double-precision floating-point type; 6576 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6577 // with a Base Type of a single- or double-precision floating-point type, 6578 // 64-bit containerized vectors or 128-bit containerized vectors with one 6579 // to four Elements. 6580 // Variadic functions should always marshal to the base standard. 6581 bool IsAAPCS_VFP = 6582 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6583 6584 Ty = useFirstFieldIfTransparentUnion(Ty); 6585 6586 // Handle illegal vector types here. 6587 if (isIllegalVectorType(Ty)) 6588 return coerceIllegalVector(Ty); 6589 6590 if (!isAggregateTypeForABI(Ty)) { 6591 // Treat an enum type as its underlying type. 6592 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6593 Ty = EnumTy->getDecl()->getIntegerType(); 6594 } 6595 6596 if (const auto *EIT = Ty->getAs<BitIntType>()) 6597 if (EIT->getNumBits() > 64) 6598 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6599 6600 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6601 : ABIArgInfo::getDirect()); 6602 } 6603 6604 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6605 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6606 } 6607 6608 // Ignore empty records. 6609 if (isEmptyRecord(getContext(), Ty, true)) 6610 return ABIArgInfo::getIgnore(); 6611 6612 if (IsAAPCS_VFP) { 6613 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6614 // into VFP registers. 6615 const Type *Base = nullptr; 6616 uint64_t Members = 0; 6617 if (isHomogeneousAggregate(Ty, Base, Members)) 6618 return classifyHomogeneousAggregate(Ty, Base, Members); 6619 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6620 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6621 // this convention even for a variadic function: the backend will use GPRs 6622 // if needed. 6623 const Type *Base = nullptr; 6624 uint64_t Members = 0; 6625 if (isHomogeneousAggregate(Ty, Base, Members)) { 6626 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6627 llvm::Type *Ty = 6628 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6629 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6630 } 6631 } 6632 6633 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6634 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6635 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6636 // bigger than 128-bits, they get placed in space allocated by the caller, 6637 // and a pointer is passed. 6638 return ABIArgInfo::getIndirect( 6639 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6640 } 6641 6642 // Support byval for ARM. 6643 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6644 // most 8-byte. We realign the indirect argument if type alignment is bigger 6645 // than ABI alignment. 6646 uint64_t ABIAlign = 4; 6647 uint64_t TyAlign; 6648 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6649 getABIKind() == ARMABIInfo::AAPCS) { 6650 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6651 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6652 } else { 6653 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6654 } 6655 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6656 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6657 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6658 /*ByVal=*/true, 6659 /*Realign=*/TyAlign > ABIAlign); 6660 } 6661 6662 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6663 // same size and alignment. 6664 if (getTarget().isRenderScriptTarget()) { 6665 return coerceToIntArray(Ty, getContext(), getVMContext()); 6666 } 6667 6668 // Otherwise, pass by coercing to a structure of the appropriate size. 6669 llvm::Type* ElemTy; 6670 unsigned SizeRegs; 6671 // FIXME: Try to match the types of the arguments more accurately where 6672 // we can. 6673 if (TyAlign <= 4) { 6674 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6675 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6676 } else { 6677 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6678 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6679 } 6680 6681 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6682 } 6683 6684 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6685 llvm::LLVMContext &VMContext) { 6686 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6687 // is called integer-like if its size is less than or equal to one word, and 6688 // the offset of each of its addressable sub-fields is zero. 6689 6690 uint64_t Size = Context.getTypeSize(Ty); 6691 6692 // Check that the type fits in a word. 6693 if (Size > 32) 6694 return false; 6695 6696 // FIXME: Handle vector types! 6697 if (Ty->isVectorType()) 6698 return false; 6699 6700 // Float types are never treated as "integer like". 6701 if (Ty->isRealFloatingType()) 6702 return false; 6703 6704 // If this is a builtin or pointer type then it is ok. 6705 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6706 return true; 6707 6708 // Small complex integer types are "integer like". 6709 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6710 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6711 6712 // Single element and zero sized arrays should be allowed, by the definition 6713 // above, but they are not. 6714 6715 // Otherwise, it must be a record type. 6716 const RecordType *RT = Ty->getAs<RecordType>(); 6717 if (!RT) return false; 6718 6719 // Ignore records with flexible arrays. 6720 const RecordDecl *RD = RT->getDecl(); 6721 if (RD->hasFlexibleArrayMember()) 6722 return false; 6723 6724 // Check that all sub-fields are at offset 0, and are themselves "integer 6725 // like". 6726 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6727 6728 bool HadField = false; 6729 unsigned idx = 0; 6730 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6731 i != e; ++i, ++idx) { 6732 const FieldDecl *FD = *i; 6733 6734 // Bit-fields are not addressable, we only need to verify they are "integer 6735 // like". We still have to disallow a subsequent non-bitfield, for example: 6736 // struct { int : 0; int x } 6737 // is non-integer like according to gcc. 6738 if (FD->isBitField()) { 6739 if (!RD->isUnion()) 6740 HadField = true; 6741 6742 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6743 return false; 6744 6745 continue; 6746 } 6747 6748 // Check if this field is at offset 0. 6749 if (Layout.getFieldOffset(idx) != 0) 6750 return false; 6751 6752 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6753 return false; 6754 6755 // Only allow at most one field in a structure. This doesn't match the 6756 // wording above, but follows gcc in situations with a field following an 6757 // empty structure. 6758 if (!RD->isUnion()) { 6759 if (HadField) 6760 return false; 6761 6762 HadField = true; 6763 } 6764 } 6765 6766 return true; 6767 } 6768 6769 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6770 unsigned functionCallConv) const { 6771 6772 // Variadic functions should always marshal to the base standard. 6773 bool IsAAPCS_VFP = 6774 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6775 6776 if (RetTy->isVoidType()) 6777 return ABIArgInfo::getIgnore(); 6778 6779 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6780 // Large vector types should be returned via memory. 6781 if (getContext().getTypeSize(RetTy) > 128) 6782 return getNaturalAlignIndirect(RetTy); 6783 // TODO: FP16/BF16 vectors should be converted to integer vectors 6784 // This check is similar to isIllegalVectorType - refactor? 6785 if ((!getTarget().hasLegalHalfType() && 6786 (VT->getElementType()->isFloat16Type() || 6787 VT->getElementType()->isHalfType())) || 6788 (IsFloatABISoftFP && 6789 VT->getElementType()->isBFloat16Type())) 6790 return coerceIllegalVector(RetTy); 6791 } 6792 6793 if (!isAggregateTypeForABI(RetTy)) { 6794 // Treat an enum type as its underlying type. 6795 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6796 RetTy = EnumTy->getDecl()->getIntegerType(); 6797 6798 if (const auto *EIT = RetTy->getAs<BitIntType>()) 6799 if (EIT->getNumBits() > 64) 6800 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6801 6802 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6803 : ABIArgInfo::getDirect(); 6804 } 6805 6806 // Are we following APCS? 6807 if (getABIKind() == APCS) { 6808 if (isEmptyRecord(getContext(), RetTy, false)) 6809 return ABIArgInfo::getIgnore(); 6810 6811 // Complex types are all returned as packed integers. 6812 // 6813 // FIXME: Consider using 2 x vector types if the back end handles them 6814 // correctly. 6815 if (RetTy->isAnyComplexType()) 6816 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6817 getVMContext(), getContext().getTypeSize(RetTy))); 6818 6819 // Integer like structures are returned in r0. 6820 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6821 // Return in the smallest viable integer type. 6822 uint64_t Size = getContext().getTypeSize(RetTy); 6823 if (Size <= 8) 6824 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6825 if (Size <= 16) 6826 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6827 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6828 } 6829 6830 // Otherwise return in memory. 6831 return getNaturalAlignIndirect(RetTy); 6832 } 6833 6834 // Otherwise this is an AAPCS variant. 6835 6836 if (isEmptyRecord(getContext(), RetTy, true)) 6837 return ABIArgInfo::getIgnore(); 6838 6839 // Check for homogeneous aggregates with AAPCS-VFP. 6840 if (IsAAPCS_VFP) { 6841 const Type *Base = nullptr; 6842 uint64_t Members = 0; 6843 if (isHomogeneousAggregate(RetTy, Base, Members)) 6844 return classifyHomogeneousAggregate(RetTy, Base, Members); 6845 } 6846 6847 // Aggregates <= 4 bytes are returned in r0; other aggregates 6848 // are returned indirectly. 6849 uint64_t Size = getContext().getTypeSize(RetTy); 6850 if (Size <= 32) { 6851 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6852 // same size and alignment. 6853 if (getTarget().isRenderScriptTarget()) { 6854 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6855 } 6856 if (getDataLayout().isBigEndian()) 6857 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6858 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6859 6860 // Return in the smallest viable integer type. 6861 if (Size <= 8) 6862 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6863 if (Size <= 16) 6864 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6865 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6866 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6867 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6868 llvm::Type *CoerceTy = 6869 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6870 return ABIArgInfo::getDirect(CoerceTy); 6871 } 6872 6873 return getNaturalAlignIndirect(RetTy); 6874 } 6875 6876 /// isIllegalVector - check whether Ty is an illegal vector type. 6877 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6878 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6879 // On targets that don't support half, fp16 or bfloat, they are expanded 6880 // into float, and we don't want the ABI to depend on whether or not they 6881 // are supported in hardware. Thus return false to coerce vectors of these 6882 // types into integer vectors. 6883 // We do not depend on hasLegalHalfType for bfloat as it is a 6884 // separate IR type. 6885 if ((!getTarget().hasLegalHalfType() && 6886 (VT->getElementType()->isFloat16Type() || 6887 VT->getElementType()->isHalfType())) || 6888 (IsFloatABISoftFP && 6889 VT->getElementType()->isBFloat16Type())) 6890 return true; 6891 if (isAndroid()) { 6892 // Android shipped using Clang 3.1, which supported a slightly different 6893 // vector ABI. The primary differences were that 3-element vector types 6894 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6895 // accepts that legacy behavior for Android only. 6896 // Check whether VT is legal. 6897 unsigned NumElements = VT->getNumElements(); 6898 // NumElements should be power of 2 or equal to 3. 6899 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6900 return true; 6901 } else { 6902 // Check whether VT is legal. 6903 unsigned NumElements = VT->getNumElements(); 6904 uint64_t Size = getContext().getTypeSize(VT); 6905 // NumElements should be power of 2. 6906 if (!llvm::isPowerOf2_32(NumElements)) 6907 return true; 6908 // Size should be greater than 32 bits. 6909 return Size <= 32; 6910 } 6911 } 6912 return false; 6913 } 6914 6915 /// Return true if a type contains any 16-bit floating point vectors 6916 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6917 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6918 uint64_t NElements = AT->getSize().getZExtValue(); 6919 if (NElements == 0) 6920 return false; 6921 return containsAnyFP16Vectors(AT->getElementType()); 6922 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6923 const RecordDecl *RD = RT->getDecl(); 6924 6925 // If this is a C++ record, check the bases first. 6926 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6927 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6928 return containsAnyFP16Vectors(B.getType()); 6929 })) 6930 return true; 6931 6932 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6933 return FD && containsAnyFP16Vectors(FD->getType()); 6934 })) 6935 return true; 6936 6937 return false; 6938 } else { 6939 if (const VectorType *VT = Ty->getAs<VectorType>()) 6940 return (VT->getElementType()->isFloat16Type() || 6941 VT->getElementType()->isBFloat16Type() || 6942 VT->getElementType()->isHalfType()); 6943 return false; 6944 } 6945 } 6946 6947 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6948 llvm::Type *eltTy, 6949 unsigned numElts) const { 6950 if (!llvm::isPowerOf2_32(numElts)) 6951 return false; 6952 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6953 if (size > 64) 6954 return false; 6955 if (vectorSize.getQuantity() != 8 && 6956 (vectorSize.getQuantity() != 16 || numElts == 1)) 6957 return false; 6958 return true; 6959 } 6960 6961 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6962 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6963 // double, or 64-bit or 128-bit vectors. 6964 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6965 if (BT->getKind() == BuiltinType::Float || 6966 BT->getKind() == BuiltinType::Double || 6967 BT->getKind() == BuiltinType::LongDouble) 6968 return true; 6969 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6970 unsigned VecSize = getContext().getTypeSize(VT); 6971 if (VecSize == 64 || VecSize == 128) 6972 return true; 6973 } 6974 return false; 6975 } 6976 6977 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6978 uint64_t Members) const { 6979 return Members <= 4; 6980 } 6981 6982 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6983 bool acceptHalf) const { 6984 // Give precedence to user-specified calling conventions. 6985 if (callConvention != llvm::CallingConv::C) 6986 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6987 else 6988 return (getABIKind() == AAPCS_VFP) || 6989 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6990 } 6991 6992 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6993 QualType Ty) const { 6994 CharUnits SlotSize = CharUnits::fromQuantity(4); 6995 6996 // Empty records are ignored for parameter passing purposes. 6997 if (isEmptyRecord(getContext(), Ty, true)) { 6998 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 6999 getVAListElementType(CGF), SlotSize); 7000 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 7001 return Addr; 7002 } 7003 7004 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 7005 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 7006 7007 // Use indirect if size of the illegal vector is bigger than 16 bytes. 7008 bool IsIndirect = false; 7009 const Type *Base = nullptr; 7010 uint64_t Members = 0; 7011 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 7012 IsIndirect = true; 7013 7014 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 7015 // allocated by the caller. 7016 } else if (TySize > CharUnits::fromQuantity(16) && 7017 getABIKind() == ARMABIInfo::AAPCS16_VFP && 7018 !isHomogeneousAggregate(Ty, Base, Members)) { 7019 IsIndirect = true; 7020 7021 // Otherwise, bound the type's ABI alignment. 7022 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 7023 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 7024 // Our callers should be prepared to handle an under-aligned address. 7025 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 7026 getABIKind() == ARMABIInfo::AAPCS) { 7027 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7028 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 7029 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 7030 // ARMv7k allows type alignment up to 16 bytes. 7031 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7032 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7033 } else { 7034 TyAlignForABI = CharUnits::fromQuantity(4); 7035 } 7036 7037 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7038 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7039 SlotSize, /*AllowHigherAlign*/ true); 7040 } 7041 7042 //===----------------------------------------------------------------------===// 7043 // NVPTX ABI Implementation 7044 //===----------------------------------------------------------------------===// 7045 7046 namespace { 7047 7048 class NVPTXTargetCodeGenInfo; 7049 7050 class NVPTXABIInfo : public ABIInfo { 7051 NVPTXTargetCodeGenInfo &CGInfo; 7052 7053 public: 7054 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7055 : ABIInfo(CGT), CGInfo(Info) {} 7056 7057 ABIArgInfo classifyReturnType(QualType RetTy) const; 7058 ABIArgInfo classifyArgumentType(QualType Ty) const; 7059 7060 void computeInfo(CGFunctionInfo &FI) const override; 7061 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7062 QualType Ty) const override; 7063 bool isUnsupportedType(QualType T) const; 7064 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7065 }; 7066 7067 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7068 public: 7069 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7070 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7071 7072 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7073 CodeGen::CodeGenModule &M) const override; 7074 bool shouldEmitStaticExternCAliases() const override; 7075 7076 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7077 // On the device side, surface reference is represented as an object handle 7078 // in 64-bit integer. 7079 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7080 } 7081 7082 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7083 // On the device side, texture reference is represented as an object handle 7084 // in 64-bit integer. 7085 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7086 } 7087 7088 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7089 LValue Src) const override { 7090 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7091 return true; 7092 } 7093 7094 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7095 LValue Src) const override { 7096 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7097 return true; 7098 } 7099 7100 private: 7101 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7102 // resulting MDNode to the nvvm.annotations MDNode. 7103 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7104 int Operand); 7105 7106 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7107 LValue Src) { 7108 llvm::Value *Handle = nullptr; 7109 llvm::Constant *C = 7110 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7111 // Lookup `addrspacecast` through the constant pointer if any. 7112 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7113 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7114 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7115 // Load the handle from the specific global variable using 7116 // `nvvm.texsurf.handle.internal` intrinsic. 7117 Handle = CGF.EmitRuntimeCall( 7118 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7119 {GV->getType()}), 7120 {GV}, "texsurf_handle"); 7121 } else 7122 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7123 CGF.EmitStoreOfScalar(Handle, Dst); 7124 } 7125 }; 7126 7127 /// Checks if the type is unsupported directly by the current target. 7128 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7129 ASTContext &Context = getContext(); 7130 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7131 return true; 7132 if (!Context.getTargetInfo().hasFloat128Type() && 7133 (T->isFloat128Type() || 7134 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7135 return true; 7136 if (const auto *EIT = T->getAs<BitIntType>()) 7137 return EIT->getNumBits() > 7138 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7139 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7140 Context.getTypeSize(T) > 64U) 7141 return true; 7142 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7143 return isUnsupportedType(AT->getElementType()); 7144 const auto *RT = T->getAs<RecordType>(); 7145 if (!RT) 7146 return false; 7147 const RecordDecl *RD = RT->getDecl(); 7148 7149 // If this is a C++ record, check the bases first. 7150 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7151 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7152 if (isUnsupportedType(I.getType())) 7153 return true; 7154 7155 for (const FieldDecl *I : RD->fields()) 7156 if (isUnsupportedType(I->getType())) 7157 return true; 7158 return false; 7159 } 7160 7161 /// Coerce the given type into an array with maximum allowed size of elements. 7162 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7163 unsigned MaxSize) const { 7164 // Alignment and Size are measured in bits. 7165 const uint64_t Size = getContext().getTypeSize(Ty); 7166 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7167 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7168 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7169 const uint64_t NumElements = (Size + Div - 1) / Div; 7170 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7171 } 7172 7173 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7174 if (RetTy->isVoidType()) 7175 return ABIArgInfo::getIgnore(); 7176 7177 if (getContext().getLangOpts().OpenMP && 7178 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7179 return coerceToIntArrayWithLimit(RetTy, 64); 7180 7181 // note: this is different from default ABI 7182 if (!RetTy->isScalarType()) 7183 return ABIArgInfo::getDirect(); 7184 7185 // Treat an enum type as its underlying type. 7186 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7187 RetTy = EnumTy->getDecl()->getIntegerType(); 7188 7189 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7190 : ABIArgInfo::getDirect()); 7191 } 7192 7193 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7194 // Treat an enum type as its underlying type. 7195 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7196 Ty = EnumTy->getDecl()->getIntegerType(); 7197 7198 // Return aggregates type as indirect by value 7199 if (isAggregateTypeForABI(Ty)) { 7200 // Under CUDA device compilation, tex/surf builtin types are replaced with 7201 // object types and passed directly. 7202 if (getContext().getLangOpts().CUDAIsDevice) { 7203 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7204 return ABIArgInfo::getDirect( 7205 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7206 if (Ty->isCUDADeviceBuiltinTextureType()) 7207 return ABIArgInfo::getDirect( 7208 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7209 } 7210 return getNaturalAlignIndirect(Ty, /* byval */ true); 7211 } 7212 7213 if (const auto *EIT = Ty->getAs<BitIntType>()) { 7214 if ((EIT->getNumBits() > 128) || 7215 (!getContext().getTargetInfo().hasInt128Type() && 7216 EIT->getNumBits() > 64)) 7217 return getNaturalAlignIndirect(Ty, /* byval */ true); 7218 } 7219 7220 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7221 : ABIArgInfo::getDirect()); 7222 } 7223 7224 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7225 if (!getCXXABI().classifyReturnType(FI)) 7226 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7227 for (auto &I : FI.arguments()) 7228 I.info = classifyArgumentType(I.type); 7229 7230 // Always honor user-specified calling convention. 7231 if (FI.getCallingConvention() != llvm::CallingConv::C) 7232 return; 7233 7234 FI.setEffectiveCallingConvention(getRuntimeCC()); 7235 } 7236 7237 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7238 QualType Ty) const { 7239 llvm_unreachable("NVPTX does not support varargs"); 7240 } 7241 7242 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7243 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7244 if (GV->isDeclaration()) 7245 return; 7246 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7247 if (VD) { 7248 if (M.getLangOpts().CUDA) { 7249 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7250 addNVVMMetadata(GV, "surface", 1); 7251 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7252 addNVVMMetadata(GV, "texture", 1); 7253 return; 7254 } 7255 } 7256 7257 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7258 if (!FD) return; 7259 7260 llvm::Function *F = cast<llvm::Function>(GV); 7261 7262 // Perform special handling in OpenCL mode 7263 if (M.getLangOpts().OpenCL) { 7264 // Use OpenCL function attributes to check for kernel functions 7265 // By default, all functions are device functions 7266 if (FD->hasAttr<OpenCLKernelAttr>()) { 7267 // OpenCL __kernel functions get kernel metadata 7268 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7269 addNVVMMetadata(F, "kernel", 1); 7270 // And kernel functions are not subject to inlining 7271 F->addFnAttr(llvm::Attribute::NoInline); 7272 } 7273 } 7274 7275 // Perform special handling in CUDA mode. 7276 if (M.getLangOpts().CUDA) { 7277 // CUDA __global__ functions get a kernel metadata entry. Since 7278 // __global__ functions cannot be called from the device, we do not 7279 // need to set the noinline attribute. 7280 if (FD->hasAttr<CUDAGlobalAttr>()) { 7281 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7282 addNVVMMetadata(F, "kernel", 1); 7283 } 7284 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7285 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7286 llvm::APSInt MaxThreads(32); 7287 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7288 if (MaxThreads > 0) 7289 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7290 7291 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7292 // not specified in __launch_bounds__ or if the user specified a 0 value, 7293 // we don't have to add a PTX directive. 7294 if (Attr->getMinBlocks()) { 7295 llvm::APSInt MinBlocks(32); 7296 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7297 if (MinBlocks > 0) 7298 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7299 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7300 } 7301 } 7302 } 7303 } 7304 7305 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7306 StringRef Name, int Operand) { 7307 llvm::Module *M = GV->getParent(); 7308 llvm::LLVMContext &Ctx = M->getContext(); 7309 7310 // Get "nvvm.annotations" metadata node 7311 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7312 7313 llvm::Metadata *MDVals[] = { 7314 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7315 llvm::ConstantAsMetadata::get( 7316 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7317 // Append metadata to nvvm.annotations 7318 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7319 } 7320 7321 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7322 return false; 7323 } 7324 } 7325 7326 //===----------------------------------------------------------------------===// 7327 // SystemZ ABI Implementation 7328 //===----------------------------------------------------------------------===// 7329 7330 namespace { 7331 7332 class SystemZABIInfo : public SwiftABIInfo { 7333 bool HasVector; 7334 bool IsSoftFloatABI; 7335 7336 public: 7337 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7338 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7339 7340 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7341 bool isCompoundType(QualType Ty) const; 7342 bool isVectorArgumentType(QualType Ty) const; 7343 bool isFPArgumentType(QualType Ty) const; 7344 QualType GetSingleElementType(QualType Ty) const; 7345 7346 ABIArgInfo classifyReturnType(QualType RetTy) const; 7347 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7348 7349 void computeInfo(CGFunctionInfo &FI) const override { 7350 if (!getCXXABI().classifyReturnType(FI)) 7351 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7352 for (auto &I : FI.arguments()) 7353 I.info = classifyArgumentType(I.type); 7354 } 7355 7356 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7357 QualType Ty) const override; 7358 7359 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7360 bool asReturnValue) const override { 7361 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7362 } 7363 bool isSwiftErrorInRegister() const override { 7364 return false; 7365 } 7366 }; 7367 7368 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7369 public: 7370 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7371 : TargetCodeGenInfo( 7372 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7373 7374 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7375 CGBuilderTy &Builder, 7376 CodeGenModule &CGM) const override { 7377 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7378 // Only use TDC in constrained FP mode. 7379 if (!Builder.getIsFPConstrained()) 7380 return nullptr; 7381 7382 llvm::Type *Ty = V->getType(); 7383 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7384 llvm::Module &M = CGM.getModule(); 7385 auto &Ctx = M.getContext(); 7386 llvm::Function *TDCFunc = 7387 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7388 unsigned TDCBits = 0; 7389 switch (BuiltinID) { 7390 case Builtin::BI__builtin_isnan: 7391 TDCBits = 0xf; 7392 break; 7393 case Builtin::BIfinite: 7394 case Builtin::BI__finite: 7395 case Builtin::BIfinitef: 7396 case Builtin::BI__finitef: 7397 case Builtin::BIfinitel: 7398 case Builtin::BI__finitel: 7399 case Builtin::BI__builtin_isfinite: 7400 TDCBits = 0xfc0; 7401 break; 7402 case Builtin::BI__builtin_isinf: 7403 TDCBits = 0x30; 7404 break; 7405 default: 7406 break; 7407 } 7408 if (TDCBits) 7409 return Builder.CreateCall( 7410 TDCFunc, 7411 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7412 } 7413 return nullptr; 7414 } 7415 }; 7416 } 7417 7418 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7419 // Treat an enum type as its underlying type. 7420 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7421 Ty = EnumTy->getDecl()->getIntegerType(); 7422 7423 // Promotable integer types are required to be promoted by the ABI. 7424 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7425 return true; 7426 7427 if (const auto *EIT = Ty->getAs<BitIntType>()) 7428 if (EIT->getNumBits() < 64) 7429 return true; 7430 7431 // 32-bit values must also be promoted. 7432 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7433 switch (BT->getKind()) { 7434 case BuiltinType::Int: 7435 case BuiltinType::UInt: 7436 return true; 7437 default: 7438 return false; 7439 } 7440 return false; 7441 } 7442 7443 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7444 return (Ty->isAnyComplexType() || 7445 Ty->isVectorType() || 7446 isAggregateTypeForABI(Ty)); 7447 } 7448 7449 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7450 return (HasVector && 7451 Ty->isVectorType() && 7452 getContext().getTypeSize(Ty) <= 128); 7453 } 7454 7455 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7456 if (IsSoftFloatABI) 7457 return false; 7458 7459 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7460 switch (BT->getKind()) { 7461 case BuiltinType::Float: 7462 case BuiltinType::Double: 7463 return true; 7464 default: 7465 return false; 7466 } 7467 7468 return false; 7469 } 7470 7471 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7472 const RecordType *RT = Ty->getAs<RecordType>(); 7473 7474 if (RT && RT->isStructureOrClassType()) { 7475 const RecordDecl *RD = RT->getDecl(); 7476 QualType Found; 7477 7478 // If this is a C++ record, check the bases first. 7479 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7480 for (const auto &I : CXXRD->bases()) { 7481 QualType Base = I.getType(); 7482 7483 // Empty bases don't affect things either way. 7484 if (isEmptyRecord(getContext(), Base, true)) 7485 continue; 7486 7487 if (!Found.isNull()) 7488 return Ty; 7489 Found = GetSingleElementType(Base); 7490 } 7491 7492 // Check the fields. 7493 for (const auto *FD : RD->fields()) { 7494 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7495 // Unlike isSingleElementStruct(), empty structure and array fields 7496 // do count. So do anonymous bitfields that aren't zero-sized. 7497 if (getContext().getLangOpts().CPlusPlus && 7498 FD->isZeroLengthBitField(getContext())) 7499 continue; 7500 // Like isSingleElementStruct(), ignore C++20 empty data members. 7501 if (FD->hasAttr<NoUniqueAddressAttr>() && 7502 isEmptyRecord(getContext(), FD->getType(), true)) 7503 continue; 7504 7505 // Unlike isSingleElementStruct(), arrays do not count. 7506 // Nested structures still do though. 7507 if (!Found.isNull()) 7508 return Ty; 7509 Found = GetSingleElementType(FD->getType()); 7510 } 7511 7512 // Unlike isSingleElementStruct(), trailing padding is allowed. 7513 // An 8-byte aligned struct s { float f; } is passed as a double. 7514 if (!Found.isNull()) 7515 return Found; 7516 } 7517 7518 return Ty; 7519 } 7520 7521 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7522 QualType Ty) const { 7523 // Assume that va_list type is correct; should be pointer to LLVM type: 7524 // struct { 7525 // i64 __gpr; 7526 // i64 __fpr; 7527 // i8 *__overflow_arg_area; 7528 // i8 *__reg_save_area; 7529 // }; 7530 7531 // Every non-vector argument occupies 8 bytes and is passed by preference 7532 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7533 // always passed on the stack. 7534 Ty = getContext().getCanonicalType(Ty); 7535 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7536 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7537 llvm::Type *DirectTy = ArgTy; 7538 ABIArgInfo AI = classifyArgumentType(Ty); 7539 bool IsIndirect = AI.isIndirect(); 7540 bool InFPRs = false; 7541 bool IsVector = false; 7542 CharUnits UnpaddedSize; 7543 CharUnits DirectAlign; 7544 if (IsIndirect) { 7545 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7546 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7547 } else { 7548 if (AI.getCoerceToType()) 7549 ArgTy = AI.getCoerceToType(); 7550 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7551 IsVector = ArgTy->isVectorTy(); 7552 UnpaddedSize = TyInfo.Width; 7553 DirectAlign = TyInfo.Align; 7554 } 7555 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7556 if (IsVector && UnpaddedSize > PaddedSize) 7557 PaddedSize = CharUnits::fromQuantity(16); 7558 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7559 7560 CharUnits Padding = (PaddedSize - UnpaddedSize); 7561 7562 llvm::Type *IndexTy = CGF.Int64Ty; 7563 llvm::Value *PaddedSizeV = 7564 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7565 7566 if (IsVector) { 7567 // Work out the address of a vector argument on the stack. 7568 // Vector arguments are always passed in the high bits of a 7569 // single (8 byte) or double (16 byte) stack slot. 7570 Address OverflowArgAreaPtr = 7571 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7572 Address OverflowArgArea = 7573 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7574 CGF.Int8Ty, TyInfo.Align); 7575 Address MemAddr = 7576 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7577 7578 // Update overflow_arg_area_ptr pointer 7579 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP( 7580 OverflowArgArea.getElementType(), OverflowArgArea.getPointer(), 7581 PaddedSizeV, "overflow_arg_area"); 7582 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7583 7584 return MemAddr; 7585 } 7586 7587 assert(PaddedSize.getQuantity() == 8); 7588 7589 unsigned MaxRegs, RegCountField, RegSaveIndex; 7590 CharUnits RegPadding; 7591 if (InFPRs) { 7592 MaxRegs = 4; // Maximum of 4 FPR arguments 7593 RegCountField = 1; // __fpr 7594 RegSaveIndex = 16; // save offset for f0 7595 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7596 } else { 7597 MaxRegs = 5; // Maximum of 5 GPR arguments 7598 RegCountField = 0; // __gpr 7599 RegSaveIndex = 2; // save offset for r2 7600 RegPadding = Padding; // values are passed in the low bits of a GPR 7601 } 7602 7603 Address RegCountPtr = 7604 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7605 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7606 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7607 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7608 "fits_in_regs"); 7609 7610 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7611 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7612 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7613 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7614 7615 // Emit code to load the value if it was passed in registers. 7616 CGF.EmitBlock(InRegBlock); 7617 7618 // Work out the address of an argument register. 7619 llvm::Value *ScaledRegCount = 7620 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7621 llvm::Value *RegBase = 7622 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7623 + RegPadding.getQuantity()); 7624 llvm::Value *RegOffset = 7625 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7626 Address RegSaveAreaPtr = 7627 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7628 llvm::Value *RegSaveArea = 7629 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7630 Address RawRegAddr( 7631 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"), 7632 CGF.Int8Ty, PaddedSize); 7633 Address RegAddr = 7634 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7635 7636 // Update the register count 7637 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7638 llvm::Value *NewRegCount = 7639 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7640 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7641 CGF.EmitBranch(ContBlock); 7642 7643 // Emit code to load the value if it was passed in memory. 7644 CGF.EmitBlock(InMemBlock); 7645 7646 // Work out the address of a stack argument. 7647 Address OverflowArgAreaPtr = 7648 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7649 Address OverflowArgArea = 7650 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7651 CGF.Int8Ty, PaddedSize); 7652 Address RawMemAddr = 7653 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7654 Address MemAddr = 7655 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7656 7657 // Update overflow_arg_area_ptr pointer 7658 llvm::Value *NewOverflowArgArea = 7659 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7660 OverflowArgArea.getPointer(), PaddedSizeV, 7661 "overflow_arg_area"); 7662 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7663 CGF.EmitBranch(ContBlock); 7664 7665 // Return the appropriate result. 7666 CGF.EmitBlock(ContBlock); 7667 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 7668 "va_arg.addr"); 7669 7670 if (IsIndirect) 7671 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy, 7672 TyInfo.Align); 7673 7674 return ResAddr; 7675 } 7676 7677 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7678 if (RetTy->isVoidType()) 7679 return ABIArgInfo::getIgnore(); 7680 if (isVectorArgumentType(RetTy)) 7681 return ABIArgInfo::getDirect(); 7682 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7683 return getNaturalAlignIndirect(RetTy); 7684 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7685 : ABIArgInfo::getDirect()); 7686 } 7687 7688 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7689 // Handle the generic C++ ABI. 7690 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7691 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7692 7693 // Integers and enums are extended to full register width. 7694 if (isPromotableIntegerTypeForABI(Ty)) 7695 return ABIArgInfo::getExtend(Ty); 7696 7697 // Handle vector types and vector-like structure types. Note that 7698 // as opposed to float-like structure types, we do not allow any 7699 // padding for vector-like structures, so verify the sizes match. 7700 uint64_t Size = getContext().getTypeSize(Ty); 7701 QualType SingleElementTy = GetSingleElementType(Ty); 7702 if (isVectorArgumentType(SingleElementTy) && 7703 getContext().getTypeSize(SingleElementTy) == Size) 7704 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7705 7706 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7707 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7708 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7709 7710 // Handle small structures. 7711 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7712 // Structures with flexible arrays have variable length, so really 7713 // fail the size test above. 7714 const RecordDecl *RD = RT->getDecl(); 7715 if (RD->hasFlexibleArrayMember()) 7716 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7717 7718 // The structure is passed as an unextended integer, a float, or a double. 7719 llvm::Type *PassTy; 7720 if (isFPArgumentType(SingleElementTy)) { 7721 assert(Size == 32 || Size == 64); 7722 if (Size == 32) 7723 PassTy = llvm::Type::getFloatTy(getVMContext()); 7724 else 7725 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7726 } else 7727 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7728 return ABIArgInfo::getDirect(PassTy); 7729 } 7730 7731 // Non-structure compounds are passed indirectly. 7732 if (isCompoundType(Ty)) 7733 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7734 7735 return ABIArgInfo::getDirect(nullptr); 7736 } 7737 7738 //===----------------------------------------------------------------------===// 7739 // MSP430 ABI Implementation 7740 //===----------------------------------------------------------------------===// 7741 7742 namespace { 7743 7744 class MSP430ABIInfo : public DefaultABIInfo { 7745 static ABIArgInfo complexArgInfo() { 7746 ABIArgInfo Info = ABIArgInfo::getDirect(); 7747 Info.setCanBeFlattened(false); 7748 return Info; 7749 } 7750 7751 public: 7752 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7753 7754 ABIArgInfo classifyReturnType(QualType RetTy) const { 7755 if (RetTy->isAnyComplexType()) 7756 return complexArgInfo(); 7757 7758 return DefaultABIInfo::classifyReturnType(RetTy); 7759 } 7760 7761 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7762 if (RetTy->isAnyComplexType()) 7763 return complexArgInfo(); 7764 7765 return DefaultABIInfo::classifyArgumentType(RetTy); 7766 } 7767 7768 // Just copy the original implementations because 7769 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7770 void computeInfo(CGFunctionInfo &FI) const override { 7771 if (!getCXXABI().classifyReturnType(FI)) 7772 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7773 for (auto &I : FI.arguments()) 7774 I.info = classifyArgumentType(I.type); 7775 } 7776 7777 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7778 QualType Ty) const override { 7779 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7780 } 7781 }; 7782 7783 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7784 public: 7785 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7786 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7787 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7788 CodeGen::CodeGenModule &M) const override; 7789 }; 7790 7791 } 7792 7793 void MSP430TargetCodeGenInfo::setTargetAttributes( 7794 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7795 if (GV->isDeclaration()) 7796 return; 7797 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7798 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7799 if (!InterruptAttr) 7800 return; 7801 7802 // Handle 'interrupt' attribute: 7803 llvm::Function *F = cast<llvm::Function>(GV); 7804 7805 // Step 1: Set ISR calling convention. 7806 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7807 7808 // Step 2: Add attributes goodness. 7809 F->addFnAttr(llvm::Attribute::NoInline); 7810 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7811 } 7812 } 7813 7814 //===----------------------------------------------------------------------===// 7815 // MIPS ABI Implementation. This works for both little-endian and 7816 // big-endian variants. 7817 //===----------------------------------------------------------------------===// 7818 7819 namespace { 7820 class MipsABIInfo : public ABIInfo { 7821 bool IsO32; 7822 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7823 void CoerceToIntArgs(uint64_t TySize, 7824 SmallVectorImpl<llvm::Type *> &ArgList) const; 7825 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7826 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7827 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7828 public: 7829 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7830 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7831 StackAlignInBytes(IsO32 ? 8 : 16) {} 7832 7833 ABIArgInfo classifyReturnType(QualType RetTy) const; 7834 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7835 void computeInfo(CGFunctionInfo &FI) const override; 7836 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7837 QualType Ty) const override; 7838 ABIArgInfo extendType(QualType Ty) const; 7839 }; 7840 7841 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7842 unsigned SizeOfUnwindException; 7843 public: 7844 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7845 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7846 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7847 7848 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7849 return 29; 7850 } 7851 7852 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7853 CodeGen::CodeGenModule &CGM) const override { 7854 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7855 if (!FD) return; 7856 llvm::Function *Fn = cast<llvm::Function>(GV); 7857 7858 if (FD->hasAttr<MipsLongCallAttr>()) 7859 Fn->addFnAttr("long-call"); 7860 else if (FD->hasAttr<MipsShortCallAttr>()) 7861 Fn->addFnAttr("short-call"); 7862 7863 // Other attributes do not have a meaning for declarations. 7864 if (GV->isDeclaration()) 7865 return; 7866 7867 if (FD->hasAttr<Mips16Attr>()) { 7868 Fn->addFnAttr("mips16"); 7869 } 7870 else if (FD->hasAttr<NoMips16Attr>()) { 7871 Fn->addFnAttr("nomips16"); 7872 } 7873 7874 if (FD->hasAttr<MicroMipsAttr>()) 7875 Fn->addFnAttr("micromips"); 7876 else if (FD->hasAttr<NoMicroMipsAttr>()) 7877 Fn->addFnAttr("nomicromips"); 7878 7879 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7880 if (!Attr) 7881 return; 7882 7883 const char *Kind; 7884 switch (Attr->getInterrupt()) { 7885 case MipsInterruptAttr::eic: Kind = "eic"; break; 7886 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7887 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7888 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7889 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7890 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7891 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7892 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7893 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7894 } 7895 7896 Fn->addFnAttr("interrupt", Kind); 7897 7898 } 7899 7900 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7901 llvm::Value *Address) const override; 7902 7903 unsigned getSizeOfUnwindException() const override { 7904 return SizeOfUnwindException; 7905 } 7906 }; 7907 } 7908 7909 void MipsABIInfo::CoerceToIntArgs( 7910 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7911 llvm::IntegerType *IntTy = 7912 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7913 7914 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7915 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7916 ArgList.push_back(IntTy); 7917 7918 // If necessary, add one more integer type to ArgList. 7919 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7920 7921 if (R) 7922 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7923 } 7924 7925 // In N32/64, an aligned double precision floating point field is passed in 7926 // a register. 7927 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7928 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7929 7930 if (IsO32) { 7931 CoerceToIntArgs(TySize, ArgList); 7932 return llvm::StructType::get(getVMContext(), ArgList); 7933 } 7934 7935 if (Ty->isComplexType()) 7936 return CGT.ConvertType(Ty); 7937 7938 const RecordType *RT = Ty->getAs<RecordType>(); 7939 7940 // Unions/vectors are passed in integer registers. 7941 if (!RT || !RT->isStructureOrClassType()) { 7942 CoerceToIntArgs(TySize, ArgList); 7943 return llvm::StructType::get(getVMContext(), ArgList); 7944 } 7945 7946 const RecordDecl *RD = RT->getDecl(); 7947 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7948 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7949 7950 uint64_t LastOffset = 0; 7951 unsigned idx = 0; 7952 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7953 7954 // Iterate over fields in the struct/class and check if there are any aligned 7955 // double fields. 7956 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7957 i != e; ++i, ++idx) { 7958 const QualType Ty = i->getType(); 7959 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7960 7961 if (!BT || BT->getKind() != BuiltinType::Double) 7962 continue; 7963 7964 uint64_t Offset = Layout.getFieldOffset(idx); 7965 if (Offset % 64) // Ignore doubles that are not aligned. 7966 continue; 7967 7968 // Add ((Offset - LastOffset) / 64) args of type i64. 7969 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7970 ArgList.push_back(I64); 7971 7972 // Add double type. 7973 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7974 LastOffset = Offset + 64; 7975 } 7976 7977 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7978 ArgList.append(IntArgList.begin(), IntArgList.end()); 7979 7980 return llvm::StructType::get(getVMContext(), ArgList); 7981 } 7982 7983 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7984 uint64_t Offset) const { 7985 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7986 return nullptr; 7987 7988 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7989 } 7990 7991 ABIArgInfo 7992 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7993 Ty = useFirstFieldIfTransparentUnion(Ty); 7994 7995 uint64_t OrigOffset = Offset; 7996 uint64_t TySize = getContext().getTypeSize(Ty); 7997 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7998 7999 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 8000 (uint64_t)StackAlignInBytes); 8001 unsigned CurrOffset = llvm::alignTo(Offset, Align); 8002 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 8003 8004 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 8005 // Ignore empty aggregates. 8006 if (TySize == 0) 8007 return ABIArgInfo::getIgnore(); 8008 8009 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8010 Offset = OrigOffset + MinABIStackAlignInBytes; 8011 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8012 } 8013 8014 // If we have reached here, aggregates are passed directly by coercing to 8015 // another structure type. Padding is inserted if the offset of the 8016 // aggregate is unaligned. 8017 ABIArgInfo ArgInfo = 8018 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 8019 getPaddingType(OrigOffset, CurrOffset)); 8020 ArgInfo.setInReg(true); 8021 return ArgInfo; 8022 } 8023 8024 // Treat an enum type as its underlying type. 8025 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8026 Ty = EnumTy->getDecl()->getIntegerType(); 8027 8028 // Make sure we pass indirectly things that are too large. 8029 if (const auto *EIT = Ty->getAs<BitIntType>()) 8030 if (EIT->getNumBits() > 128 || 8031 (EIT->getNumBits() > 64 && 8032 !getContext().getTargetInfo().hasInt128Type())) 8033 return getNaturalAlignIndirect(Ty); 8034 8035 // All integral types are promoted to the GPR width. 8036 if (Ty->isIntegralOrEnumerationType()) 8037 return extendType(Ty); 8038 8039 return ABIArgInfo::getDirect( 8040 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8041 } 8042 8043 llvm::Type* 8044 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8045 const RecordType *RT = RetTy->getAs<RecordType>(); 8046 SmallVector<llvm::Type*, 8> RTList; 8047 8048 if (RT && RT->isStructureOrClassType()) { 8049 const RecordDecl *RD = RT->getDecl(); 8050 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8051 unsigned FieldCnt = Layout.getFieldCount(); 8052 8053 // N32/64 returns struct/classes in floating point registers if the 8054 // following conditions are met: 8055 // 1. The size of the struct/class is no larger than 128-bit. 8056 // 2. The struct/class has one or two fields all of which are floating 8057 // point types. 8058 // 3. The offset of the first field is zero (this follows what gcc does). 8059 // 8060 // Any other composite results are returned in integer registers. 8061 // 8062 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8063 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8064 for (; b != e; ++b) { 8065 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8066 8067 if (!BT || !BT->isFloatingPoint()) 8068 break; 8069 8070 RTList.push_back(CGT.ConvertType(b->getType())); 8071 } 8072 8073 if (b == e) 8074 return llvm::StructType::get(getVMContext(), RTList, 8075 RD->hasAttr<PackedAttr>()); 8076 8077 RTList.clear(); 8078 } 8079 } 8080 8081 CoerceToIntArgs(Size, RTList); 8082 return llvm::StructType::get(getVMContext(), RTList); 8083 } 8084 8085 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8086 uint64_t Size = getContext().getTypeSize(RetTy); 8087 8088 if (RetTy->isVoidType()) 8089 return ABIArgInfo::getIgnore(); 8090 8091 // O32 doesn't treat zero-sized structs differently from other structs. 8092 // However, N32/N64 ignores zero sized return values. 8093 if (!IsO32 && Size == 0) 8094 return ABIArgInfo::getIgnore(); 8095 8096 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8097 if (Size <= 128) { 8098 if (RetTy->isAnyComplexType()) 8099 return ABIArgInfo::getDirect(); 8100 8101 // O32 returns integer vectors in registers and N32/N64 returns all small 8102 // aggregates in registers. 8103 if (!IsO32 || 8104 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8105 ABIArgInfo ArgInfo = 8106 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8107 ArgInfo.setInReg(true); 8108 return ArgInfo; 8109 } 8110 } 8111 8112 return getNaturalAlignIndirect(RetTy); 8113 } 8114 8115 // Treat an enum type as its underlying type. 8116 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8117 RetTy = EnumTy->getDecl()->getIntegerType(); 8118 8119 // Make sure we pass indirectly things that are too large. 8120 if (const auto *EIT = RetTy->getAs<BitIntType>()) 8121 if (EIT->getNumBits() > 128 || 8122 (EIT->getNumBits() > 64 && 8123 !getContext().getTargetInfo().hasInt128Type())) 8124 return getNaturalAlignIndirect(RetTy); 8125 8126 if (isPromotableIntegerTypeForABI(RetTy)) 8127 return ABIArgInfo::getExtend(RetTy); 8128 8129 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8130 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8131 return ABIArgInfo::getSignExtend(RetTy); 8132 8133 return ABIArgInfo::getDirect(); 8134 } 8135 8136 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8137 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8138 if (!getCXXABI().classifyReturnType(FI)) 8139 RetInfo = classifyReturnType(FI.getReturnType()); 8140 8141 // Check if a pointer to an aggregate is passed as a hidden argument. 8142 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8143 8144 for (auto &I : FI.arguments()) 8145 I.info = classifyArgumentType(I.type, Offset); 8146 } 8147 8148 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8149 QualType OrigTy) const { 8150 QualType Ty = OrigTy; 8151 8152 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8153 // Pointers are also promoted in the same way but this only matters for N32. 8154 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8155 unsigned PtrWidth = getTarget().getPointerWidth(0); 8156 bool DidPromote = false; 8157 if ((Ty->isIntegerType() && 8158 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8159 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8160 DidPromote = true; 8161 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8162 Ty->isSignedIntegerType()); 8163 } 8164 8165 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8166 8167 // The alignment of things in the argument area is never larger than 8168 // StackAlignInBytes. 8169 TyInfo.Align = 8170 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8171 8172 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8173 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8174 8175 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8176 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8177 8178 8179 // If there was a promotion, "unpromote" into a temporary. 8180 // TODO: can we just use a pointer into a subset of the original slot? 8181 if (DidPromote) { 8182 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8183 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8184 8185 // Truncate down to the right width. 8186 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8187 : CGF.IntPtrTy); 8188 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8189 if (OrigTy->isPointerType()) 8190 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8191 8192 CGF.Builder.CreateStore(V, Temp); 8193 Addr = Temp; 8194 } 8195 8196 return Addr; 8197 } 8198 8199 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8200 int TySize = getContext().getTypeSize(Ty); 8201 8202 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8203 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8204 return ABIArgInfo::getSignExtend(Ty); 8205 8206 return ABIArgInfo::getExtend(Ty); 8207 } 8208 8209 bool 8210 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8211 llvm::Value *Address) const { 8212 // This information comes from gcc's implementation, which seems to 8213 // as canonical as it gets. 8214 8215 // Everything on MIPS is 4 bytes. Double-precision FP registers 8216 // are aliased to pairs of single-precision FP registers. 8217 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8218 8219 // 0-31 are the general purpose registers, $0 - $31. 8220 // 32-63 are the floating-point registers, $f0 - $f31. 8221 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8222 // 66 is the (notional, I think) register for signal-handler return. 8223 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8224 8225 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8226 // They are one bit wide and ignored here. 8227 8228 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8229 // (coprocessor 1 is the FP unit) 8230 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8231 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8232 // 176-181 are the DSP accumulator registers. 8233 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8234 return false; 8235 } 8236 8237 //===----------------------------------------------------------------------===// 8238 // M68k ABI Implementation 8239 //===----------------------------------------------------------------------===// 8240 8241 namespace { 8242 8243 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8244 public: 8245 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8246 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8247 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8248 CodeGen::CodeGenModule &M) const override; 8249 }; 8250 8251 } // namespace 8252 8253 void M68kTargetCodeGenInfo::setTargetAttributes( 8254 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8255 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8256 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8257 // Handle 'interrupt' attribute: 8258 llvm::Function *F = cast<llvm::Function>(GV); 8259 8260 // Step 1: Set ISR calling convention. 8261 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8262 8263 // Step 2: Add attributes goodness. 8264 F->addFnAttr(llvm::Attribute::NoInline); 8265 8266 // Step 3: Emit ISR vector alias. 8267 unsigned Num = attr->getNumber() / 2; 8268 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8269 "__isr_" + Twine(Num), F); 8270 } 8271 } 8272 } 8273 8274 //===----------------------------------------------------------------------===// 8275 // AVR ABI Implementation. Documented at 8276 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8277 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8278 //===----------------------------------------------------------------------===// 8279 8280 namespace { 8281 class AVRABIInfo : public DefaultABIInfo { 8282 private: 8283 // The total amount of registers can be used to pass parameters. It is 18 on 8284 // AVR, or 6 on AVRTiny. 8285 const unsigned ParamRegs; 8286 // The total amount of registers can be used to pass return value. It is 8 on 8287 // AVR, or 4 on AVRTiny. 8288 const unsigned RetRegs; 8289 8290 public: 8291 AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) 8292 : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {} 8293 8294 ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const { 8295 if (isAggregateTypeForABI(Ty)) { 8296 // On AVR, a return struct with size less than or equals to 8 bytes is 8297 // returned directly via registers R18-R25. On AVRTiny, a return struct 8298 // with size less than or equals to 4 bytes is returned directly via 8299 // registers R22-R25. 8300 if (getContext().getTypeSize(Ty) <= RetRegs * 8) 8301 return ABIArgInfo::getDirect(); 8302 // A return struct with larger size is returned via a stack 8303 // slot, along with a pointer to it as the function's implicit argument. 8304 LargeRet = true; 8305 return getNaturalAlignIndirect(Ty); 8306 } 8307 // Otherwise we follow the default way which is compatible. 8308 return DefaultABIInfo::classifyReturnType(Ty); 8309 } 8310 8311 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const { 8312 unsigned TySize = getContext().getTypeSize(Ty); 8313 8314 // An int8 type argument always costs two registers like an int16. 8315 if (TySize == 8 && NumRegs >= 2) { 8316 NumRegs -= 2; 8317 return ABIArgInfo::getExtend(Ty); 8318 } 8319 8320 // If the argument size is an odd number of bytes, round up the size 8321 // to the next even number. 8322 TySize = llvm::alignTo(TySize, 16); 8323 8324 // Any type including an array/struct type can be passed in rgisters, 8325 // if there are enough registers left. 8326 if (TySize <= NumRegs * 8) { 8327 NumRegs -= TySize / 8; 8328 return ABIArgInfo::getDirect(); 8329 } 8330 8331 // An argument is passed either completely in registers or completely in 8332 // memory. Since there are not enough registers left, current argument 8333 // and all other unprocessed arguments should be passed in memory. 8334 // However we still need to return `ABIArgInfo::getDirect()` other than 8335 // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot 8336 // will be allocated, so the stack frame layout will be incompatible with 8337 // avr-gcc. 8338 NumRegs = 0; 8339 return ABIArgInfo::getDirect(); 8340 } 8341 8342 void computeInfo(CGFunctionInfo &FI) const override { 8343 // Decide the return type. 8344 bool LargeRet = false; 8345 if (!getCXXABI().classifyReturnType(FI)) 8346 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet); 8347 8348 // Decide each argument type. The total number of registers can be used for 8349 // arguments depends on several factors: 8350 // 1. Arguments of varargs functions are passed on the stack. This applies 8351 // even to the named arguments. So no register can be used. 8352 // 2. Total 18 registers can be used on avr and 6 ones on avrtiny. 8353 // 3. If the return type is a struct with too large size, two registers 8354 // (out of 18/6) will be cost as an implicit pointer argument. 8355 unsigned NumRegs = ParamRegs; 8356 if (FI.isVariadic()) 8357 NumRegs = 0; 8358 else if (LargeRet) 8359 NumRegs -= 2; 8360 for (auto &I : FI.arguments()) 8361 I.info = classifyArgumentType(I.type, NumRegs); 8362 } 8363 }; 8364 8365 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8366 public: 8367 AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) 8368 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {} 8369 8370 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8371 const VarDecl *D) const override { 8372 // Check if global/static variable is defined in address space 8373 // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) 8374 // but not constant. 8375 if (D) { 8376 LangAS AS = D->getType().getAddressSpace(); 8377 if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && 8378 toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) 8379 CGM.getDiags().Report(D->getLocation(), 8380 diag::err_verify_nonconst_addrspace) 8381 << "__flash*"; 8382 } 8383 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8384 } 8385 8386 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8387 CodeGen::CodeGenModule &CGM) const override { 8388 if (GV->isDeclaration()) 8389 return; 8390 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8391 if (!FD) return; 8392 auto *Fn = cast<llvm::Function>(GV); 8393 8394 if (FD->getAttr<AVRInterruptAttr>()) 8395 Fn->addFnAttr("interrupt"); 8396 8397 if (FD->getAttr<AVRSignalAttr>()) 8398 Fn->addFnAttr("signal"); 8399 } 8400 }; 8401 } 8402 8403 //===----------------------------------------------------------------------===// 8404 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8405 // Currently subclassed only to implement custom OpenCL C function attribute 8406 // handling. 8407 //===----------------------------------------------------------------------===// 8408 8409 namespace { 8410 8411 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8412 public: 8413 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8414 : DefaultTargetCodeGenInfo(CGT) {} 8415 8416 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8417 CodeGen::CodeGenModule &M) const override; 8418 }; 8419 8420 void TCETargetCodeGenInfo::setTargetAttributes( 8421 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8422 if (GV->isDeclaration()) 8423 return; 8424 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8425 if (!FD) return; 8426 8427 llvm::Function *F = cast<llvm::Function>(GV); 8428 8429 if (M.getLangOpts().OpenCL) { 8430 if (FD->hasAttr<OpenCLKernelAttr>()) { 8431 // OpenCL C Kernel functions are not subject to inlining 8432 F->addFnAttr(llvm::Attribute::NoInline); 8433 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8434 if (Attr) { 8435 // Convert the reqd_work_group_size() attributes to metadata. 8436 llvm::LLVMContext &Context = F->getContext(); 8437 llvm::NamedMDNode *OpenCLMetadata = 8438 M.getModule().getOrInsertNamedMetadata( 8439 "opencl.kernel_wg_size_info"); 8440 8441 SmallVector<llvm::Metadata *, 5> Operands; 8442 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8443 8444 Operands.push_back( 8445 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8446 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8447 Operands.push_back( 8448 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8449 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8450 Operands.push_back( 8451 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8452 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8453 8454 // Add a boolean constant operand for "required" (true) or "hint" 8455 // (false) for implementing the work_group_size_hint attr later. 8456 // Currently always true as the hint is not yet implemented. 8457 Operands.push_back( 8458 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8459 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8460 } 8461 } 8462 } 8463 } 8464 8465 } 8466 8467 //===----------------------------------------------------------------------===// 8468 // Hexagon ABI Implementation 8469 //===----------------------------------------------------------------------===// 8470 8471 namespace { 8472 8473 class HexagonABIInfo : public DefaultABIInfo { 8474 public: 8475 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8476 8477 private: 8478 ABIArgInfo classifyReturnType(QualType RetTy) const; 8479 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8480 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8481 8482 void computeInfo(CGFunctionInfo &FI) const override; 8483 8484 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8485 QualType Ty) const override; 8486 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8487 QualType Ty) const; 8488 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8489 QualType Ty) const; 8490 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8491 QualType Ty) const; 8492 }; 8493 8494 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8495 public: 8496 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8497 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8498 8499 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8500 return 29; 8501 } 8502 8503 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8504 CodeGen::CodeGenModule &GCM) const override { 8505 if (GV->isDeclaration()) 8506 return; 8507 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8508 if (!FD) 8509 return; 8510 } 8511 }; 8512 8513 } // namespace 8514 8515 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8516 unsigned RegsLeft = 6; 8517 if (!getCXXABI().classifyReturnType(FI)) 8518 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8519 for (auto &I : FI.arguments()) 8520 I.info = classifyArgumentType(I.type, &RegsLeft); 8521 } 8522 8523 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8524 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8525 " through registers"); 8526 8527 if (*RegsLeft == 0) 8528 return false; 8529 8530 if (Size <= 32) { 8531 (*RegsLeft)--; 8532 return true; 8533 } 8534 8535 if (2 <= (*RegsLeft & (~1U))) { 8536 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8537 return true; 8538 } 8539 8540 // Next available register was r5 but candidate was greater than 32-bits so it 8541 // has to go on the stack. However we still consume r5 8542 if (*RegsLeft == 1) 8543 *RegsLeft = 0; 8544 8545 return false; 8546 } 8547 8548 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8549 unsigned *RegsLeft) const { 8550 if (!isAggregateTypeForABI(Ty)) { 8551 // Treat an enum type as its underlying type. 8552 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8553 Ty = EnumTy->getDecl()->getIntegerType(); 8554 8555 uint64_t Size = getContext().getTypeSize(Ty); 8556 if (Size <= 64) 8557 HexagonAdjustRegsLeft(Size, RegsLeft); 8558 8559 if (Size > 64 && Ty->isBitIntType()) 8560 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8561 8562 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8563 : ABIArgInfo::getDirect(); 8564 } 8565 8566 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8567 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8568 8569 // Ignore empty records. 8570 if (isEmptyRecord(getContext(), Ty, true)) 8571 return ABIArgInfo::getIgnore(); 8572 8573 uint64_t Size = getContext().getTypeSize(Ty); 8574 unsigned Align = getContext().getTypeAlign(Ty); 8575 8576 if (Size > 64) 8577 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8578 8579 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8580 Align = Size <= 32 ? 32 : 64; 8581 if (Size <= Align) { 8582 // Pass in the smallest viable integer type. 8583 if (!llvm::isPowerOf2_64(Size)) 8584 Size = llvm::NextPowerOf2(Size); 8585 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8586 } 8587 return DefaultABIInfo::classifyArgumentType(Ty); 8588 } 8589 8590 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8591 if (RetTy->isVoidType()) 8592 return ABIArgInfo::getIgnore(); 8593 8594 const TargetInfo &T = CGT.getTarget(); 8595 uint64_t Size = getContext().getTypeSize(RetTy); 8596 8597 if (RetTy->getAs<VectorType>()) { 8598 // HVX vectors are returned in vector registers or register pairs. 8599 if (T.hasFeature("hvx")) { 8600 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8601 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8602 if (Size == VecSize || Size == 2*VecSize) 8603 return ABIArgInfo::getDirectInReg(); 8604 } 8605 // Large vector types should be returned via memory. 8606 if (Size > 64) 8607 return getNaturalAlignIndirect(RetTy); 8608 } 8609 8610 if (!isAggregateTypeForABI(RetTy)) { 8611 // Treat an enum type as its underlying type. 8612 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8613 RetTy = EnumTy->getDecl()->getIntegerType(); 8614 8615 if (Size > 64 && RetTy->isBitIntType()) 8616 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8617 8618 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8619 : ABIArgInfo::getDirect(); 8620 } 8621 8622 if (isEmptyRecord(getContext(), RetTy, true)) 8623 return ABIArgInfo::getIgnore(); 8624 8625 // Aggregates <= 8 bytes are returned in registers, other aggregates 8626 // are returned indirectly. 8627 if (Size <= 64) { 8628 // Return in the smallest viable integer type. 8629 if (!llvm::isPowerOf2_64(Size)) 8630 Size = llvm::NextPowerOf2(Size); 8631 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8632 } 8633 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8634 } 8635 8636 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8637 Address VAListAddr, 8638 QualType Ty) const { 8639 // Load the overflow area pointer. 8640 Address __overflow_area_pointer_p = 8641 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8642 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8643 __overflow_area_pointer_p, "__overflow_area_pointer"); 8644 8645 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8646 if (Align > 4) { 8647 // Alignment should be a power of 2. 8648 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8649 8650 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8651 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8652 8653 // Add offset to the current pointer to access the argument. 8654 __overflow_area_pointer = 8655 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8656 llvm::Value *AsInt = 8657 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8658 8659 // Create a mask which should be "AND"ed 8660 // with (overflow_arg_area + align - 1) 8661 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8662 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8663 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8664 "__overflow_area_pointer.align"); 8665 } 8666 8667 // Get the type of the argument from memory and bitcast 8668 // overflow area pointer to the argument type. 8669 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8670 Address AddrTyped = CGF.Builder.CreateElementBitCast( 8671 Address(__overflow_area_pointer, CGF.Int8Ty, 8672 CharUnits::fromQuantity(Align)), 8673 PTy); 8674 8675 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8676 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8677 8678 __overflow_area_pointer = CGF.Builder.CreateGEP( 8679 CGF.Int8Ty, __overflow_area_pointer, 8680 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8681 "__overflow_area_pointer.next"); 8682 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8683 8684 return AddrTyped; 8685 } 8686 8687 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8688 Address VAListAddr, 8689 QualType Ty) const { 8690 // FIXME: Need to handle alignment 8691 llvm::Type *BP = CGF.Int8PtrTy; 8692 CGBuilderTy &Builder = CGF.Builder; 8693 Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap"); 8694 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8695 // Handle address alignment for type alignment > 32 bits 8696 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8697 if (TyAlign > 4) { 8698 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8699 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8700 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8701 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8702 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8703 } 8704 Address AddrTyped = Builder.CreateElementBitCast( 8705 Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)), 8706 CGF.ConvertType(Ty)); 8707 8708 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8709 llvm::Value *NextAddr = Builder.CreateGEP( 8710 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8711 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8712 8713 return AddrTyped; 8714 } 8715 8716 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8717 Address VAListAddr, 8718 QualType Ty) const { 8719 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8720 8721 if (ArgSize > 8) 8722 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8723 8724 // Here we have check if the argument is in register area or 8725 // in overflow area. 8726 // If the saved register area pointer + argsize rounded up to alignment > 8727 // saved register area end pointer, argument is in overflow area. 8728 unsigned RegsLeft = 6; 8729 Ty = CGF.getContext().getCanonicalType(Ty); 8730 (void)classifyArgumentType(Ty, &RegsLeft); 8731 8732 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8733 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8734 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8735 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8736 8737 // Get rounded size of the argument.GCC does not allow vararg of 8738 // size < 4 bytes. We follow the same logic here. 8739 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8740 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8741 8742 // Argument may be in saved register area 8743 CGF.EmitBlock(MaybeRegBlock); 8744 8745 // Load the current saved register area pointer. 8746 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8747 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8748 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8749 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8750 8751 // Load the saved register area end pointer. 8752 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8753 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8754 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8755 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8756 8757 // If the size of argument is > 4 bytes, check if the stack 8758 // location is aligned to 8 bytes 8759 if (ArgAlign > 4) { 8760 8761 llvm::Value *__current_saved_reg_area_pointer_int = 8762 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8763 CGF.Int32Ty); 8764 8765 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8766 __current_saved_reg_area_pointer_int, 8767 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8768 "align_current_saved_reg_area_pointer"); 8769 8770 __current_saved_reg_area_pointer_int = 8771 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8772 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8773 "align_current_saved_reg_area_pointer"); 8774 8775 __current_saved_reg_area_pointer = 8776 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8777 __current_saved_reg_area_pointer->getType(), 8778 "align_current_saved_reg_area_pointer"); 8779 } 8780 8781 llvm::Value *__new_saved_reg_area_pointer = 8782 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8783 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8784 "__new_saved_reg_area_pointer"); 8785 8786 llvm::Value *UsingStack = nullptr; 8787 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8788 __saved_reg_area_end_pointer); 8789 8790 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8791 8792 // Argument in saved register area 8793 // Implement the block where argument is in register saved area 8794 CGF.EmitBlock(InRegBlock); 8795 8796 llvm::Type *PTy = CGF.ConvertType(Ty); 8797 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8798 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8799 8800 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8801 __current_saved_reg_area_pointer_p); 8802 8803 CGF.EmitBranch(ContBlock); 8804 8805 // Argument in overflow area 8806 // Implement the block where the argument is in overflow area. 8807 CGF.EmitBlock(OnStackBlock); 8808 8809 // Load the overflow area pointer 8810 Address __overflow_area_pointer_p = 8811 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8812 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8813 __overflow_area_pointer_p, "__overflow_area_pointer"); 8814 8815 // Align the overflow area pointer according to the alignment of the argument 8816 if (ArgAlign > 4) { 8817 llvm::Value *__overflow_area_pointer_int = 8818 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8819 8820 __overflow_area_pointer_int = 8821 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8822 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8823 "align_overflow_area_pointer"); 8824 8825 __overflow_area_pointer_int = 8826 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8827 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8828 "align_overflow_area_pointer"); 8829 8830 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8831 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8832 "align_overflow_area_pointer"); 8833 } 8834 8835 // Get the pointer for next argument in overflow area and store it 8836 // to overflow area pointer. 8837 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8838 CGF.Int8Ty, __overflow_area_pointer, 8839 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8840 "__overflow_area_pointer.next"); 8841 8842 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8843 __overflow_area_pointer_p); 8844 8845 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8846 __current_saved_reg_area_pointer_p); 8847 8848 // Bitcast the overflow area pointer to the type of argument. 8849 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8850 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8851 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8852 8853 CGF.EmitBranch(ContBlock); 8854 8855 // Get the correct pointer to load the variable argument 8856 // Implement the ContBlock 8857 CGF.EmitBlock(ContBlock); 8858 8859 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 8860 llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy); 8861 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8862 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8863 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8864 8865 return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign)); 8866 } 8867 8868 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8869 QualType Ty) const { 8870 8871 if (getTarget().getTriple().isMusl()) 8872 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8873 8874 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8875 } 8876 8877 //===----------------------------------------------------------------------===// 8878 // Lanai ABI Implementation 8879 //===----------------------------------------------------------------------===// 8880 8881 namespace { 8882 class LanaiABIInfo : public DefaultABIInfo { 8883 public: 8884 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8885 8886 bool shouldUseInReg(QualType Ty, CCState &State) const; 8887 8888 void computeInfo(CGFunctionInfo &FI) const override { 8889 CCState State(FI); 8890 // Lanai uses 4 registers to pass arguments unless the function has the 8891 // regparm attribute set. 8892 if (FI.getHasRegParm()) { 8893 State.FreeRegs = FI.getRegParm(); 8894 } else { 8895 State.FreeRegs = 4; 8896 } 8897 8898 if (!getCXXABI().classifyReturnType(FI)) 8899 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8900 for (auto &I : FI.arguments()) 8901 I.info = classifyArgumentType(I.type, State); 8902 } 8903 8904 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8905 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8906 }; 8907 } // end anonymous namespace 8908 8909 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8910 unsigned Size = getContext().getTypeSize(Ty); 8911 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8912 8913 if (SizeInRegs == 0) 8914 return false; 8915 8916 if (SizeInRegs > State.FreeRegs) { 8917 State.FreeRegs = 0; 8918 return false; 8919 } 8920 8921 State.FreeRegs -= SizeInRegs; 8922 8923 return true; 8924 } 8925 8926 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8927 CCState &State) const { 8928 if (!ByVal) { 8929 if (State.FreeRegs) { 8930 --State.FreeRegs; // Non-byval indirects just use one pointer. 8931 return getNaturalAlignIndirectInReg(Ty); 8932 } 8933 return getNaturalAlignIndirect(Ty, false); 8934 } 8935 8936 // Compute the byval alignment. 8937 const unsigned MinABIStackAlignInBytes = 4; 8938 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8939 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8940 /*Realign=*/TypeAlign > 8941 MinABIStackAlignInBytes); 8942 } 8943 8944 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8945 CCState &State) const { 8946 // Check with the C++ ABI first. 8947 const RecordType *RT = Ty->getAs<RecordType>(); 8948 if (RT) { 8949 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8950 if (RAA == CGCXXABI::RAA_Indirect) { 8951 return getIndirectResult(Ty, /*ByVal=*/false, State); 8952 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8953 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8954 } 8955 } 8956 8957 if (isAggregateTypeForABI(Ty)) { 8958 // Structures with flexible arrays are always indirect. 8959 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8960 return getIndirectResult(Ty, /*ByVal=*/true, State); 8961 8962 // Ignore empty structs/unions. 8963 if (isEmptyRecord(getContext(), Ty, true)) 8964 return ABIArgInfo::getIgnore(); 8965 8966 llvm::LLVMContext &LLVMContext = getVMContext(); 8967 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8968 if (SizeInRegs <= State.FreeRegs) { 8969 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8970 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8971 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8972 State.FreeRegs -= SizeInRegs; 8973 return ABIArgInfo::getDirectInReg(Result); 8974 } else { 8975 State.FreeRegs = 0; 8976 } 8977 return getIndirectResult(Ty, true, State); 8978 } 8979 8980 // Treat an enum type as its underlying type. 8981 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8982 Ty = EnumTy->getDecl()->getIntegerType(); 8983 8984 bool InReg = shouldUseInReg(Ty, State); 8985 8986 // Don't pass >64 bit integers in registers. 8987 if (const auto *EIT = Ty->getAs<BitIntType>()) 8988 if (EIT->getNumBits() > 64) 8989 return getIndirectResult(Ty, /*ByVal=*/true, State); 8990 8991 if (isPromotableIntegerTypeForABI(Ty)) { 8992 if (InReg) 8993 return ABIArgInfo::getDirectInReg(); 8994 return ABIArgInfo::getExtend(Ty); 8995 } 8996 if (InReg) 8997 return ABIArgInfo::getDirectInReg(); 8998 return ABIArgInfo::getDirect(); 8999 } 9000 9001 namespace { 9002 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 9003 public: 9004 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9005 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 9006 }; 9007 } 9008 9009 //===----------------------------------------------------------------------===// 9010 // AMDGPU ABI Implementation 9011 //===----------------------------------------------------------------------===// 9012 9013 namespace { 9014 9015 class AMDGPUABIInfo final : public DefaultABIInfo { 9016 private: 9017 static const unsigned MaxNumRegsForArgsRet = 16; 9018 9019 unsigned numRegsForType(QualType Ty) const; 9020 9021 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 9022 bool isHomogeneousAggregateSmallEnough(const Type *Base, 9023 uint64_t Members) const override; 9024 9025 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 9026 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 9027 unsigned ToAS) const { 9028 // Single value types. 9029 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty); 9030 if (PtrTy && PtrTy->getAddressSpace() == FromAS) 9031 return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS); 9032 return Ty; 9033 } 9034 9035 public: 9036 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 9037 DefaultABIInfo(CGT) {} 9038 9039 ABIArgInfo classifyReturnType(QualType RetTy) const; 9040 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 9041 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 9042 9043 void computeInfo(CGFunctionInfo &FI) const override; 9044 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9045 QualType Ty) const override; 9046 }; 9047 9048 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 9049 return true; 9050 } 9051 9052 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 9053 const Type *Base, uint64_t Members) const { 9054 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 9055 9056 // Homogeneous Aggregates may occupy at most 16 registers. 9057 return Members * NumRegs <= MaxNumRegsForArgsRet; 9058 } 9059 9060 /// Estimate number of registers the type will use when passed in registers. 9061 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 9062 unsigned NumRegs = 0; 9063 9064 if (const VectorType *VT = Ty->getAs<VectorType>()) { 9065 // Compute from the number of elements. The reported size is based on the 9066 // in-memory size, which includes the padding 4th element for 3-vectors. 9067 QualType EltTy = VT->getElementType(); 9068 unsigned EltSize = getContext().getTypeSize(EltTy); 9069 9070 // 16-bit element vectors should be passed as packed. 9071 if (EltSize == 16) 9072 return (VT->getNumElements() + 1) / 2; 9073 9074 unsigned EltNumRegs = (EltSize + 31) / 32; 9075 return EltNumRegs * VT->getNumElements(); 9076 } 9077 9078 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9079 const RecordDecl *RD = RT->getDecl(); 9080 assert(!RD->hasFlexibleArrayMember()); 9081 9082 for (const FieldDecl *Field : RD->fields()) { 9083 QualType FieldTy = Field->getType(); 9084 NumRegs += numRegsForType(FieldTy); 9085 } 9086 9087 return NumRegs; 9088 } 9089 9090 return (getContext().getTypeSize(Ty) + 31) / 32; 9091 } 9092 9093 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 9094 llvm::CallingConv::ID CC = FI.getCallingConvention(); 9095 9096 if (!getCXXABI().classifyReturnType(FI)) 9097 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9098 9099 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9100 for (auto &Arg : FI.arguments()) { 9101 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9102 Arg.info = classifyKernelArgumentType(Arg.type); 9103 } else { 9104 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9105 } 9106 } 9107 } 9108 9109 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9110 QualType Ty) const { 9111 llvm_unreachable("AMDGPU does not support varargs"); 9112 } 9113 9114 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9115 if (isAggregateTypeForABI(RetTy)) { 9116 // Records with non-trivial destructors/copy-constructors should not be 9117 // returned by value. 9118 if (!getRecordArgABI(RetTy, getCXXABI())) { 9119 // Ignore empty structs/unions. 9120 if (isEmptyRecord(getContext(), RetTy, true)) 9121 return ABIArgInfo::getIgnore(); 9122 9123 // Lower single-element structs to just return a regular value. 9124 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9125 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9126 9127 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9128 const RecordDecl *RD = RT->getDecl(); 9129 if (RD->hasFlexibleArrayMember()) 9130 return DefaultABIInfo::classifyReturnType(RetTy); 9131 } 9132 9133 // Pack aggregates <= 4 bytes into single VGPR or pair. 9134 uint64_t Size = getContext().getTypeSize(RetTy); 9135 if (Size <= 16) 9136 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9137 9138 if (Size <= 32) 9139 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9140 9141 if (Size <= 64) { 9142 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9143 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9144 } 9145 9146 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9147 return ABIArgInfo::getDirect(); 9148 } 9149 } 9150 9151 // Otherwise just do the default thing. 9152 return DefaultABIInfo::classifyReturnType(RetTy); 9153 } 9154 9155 /// For kernels all parameters are really passed in a special buffer. It doesn't 9156 /// make sense to pass anything byval, so everything must be direct. 9157 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9158 Ty = useFirstFieldIfTransparentUnion(Ty); 9159 9160 // TODO: Can we omit empty structs? 9161 9162 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9163 Ty = QualType(SeltTy, 0); 9164 9165 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9166 llvm::Type *LTy = OrigLTy; 9167 if (getContext().getLangOpts().HIP) { 9168 LTy = coerceKernelArgumentType( 9169 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9170 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9171 } 9172 9173 // FIXME: Should also use this for OpenCL, but it requires addressing the 9174 // problem of kernels being called. 9175 // 9176 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9177 // to global address space when using byref. This would require implementing a 9178 // new kind of coercion of the in-memory type when for indirect arguments. 9179 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9180 isAggregateTypeForABI(Ty)) { 9181 return ABIArgInfo::getIndirectAliased( 9182 getContext().getTypeAlignInChars(Ty), 9183 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9184 false /*Realign*/, nullptr /*Padding*/); 9185 } 9186 9187 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9188 // individual elements, which confuses the Clover OpenCL backend; therefore we 9189 // have to set it to false here. Other args of getDirect() are just defaults. 9190 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9191 } 9192 9193 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9194 unsigned &NumRegsLeft) const { 9195 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9196 9197 Ty = useFirstFieldIfTransparentUnion(Ty); 9198 9199 if (isAggregateTypeForABI(Ty)) { 9200 // Records with non-trivial destructors/copy-constructors should not be 9201 // passed by value. 9202 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9203 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9204 9205 // Ignore empty structs/unions. 9206 if (isEmptyRecord(getContext(), Ty, true)) 9207 return ABIArgInfo::getIgnore(); 9208 9209 // Lower single-element structs to just pass a regular value. TODO: We 9210 // could do reasonable-size multiple-element structs too, using getExpand(), 9211 // though watch out for things like bitfields. 9212 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9213 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9214 9215 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9216 const RecordDecl *RD = RT->getDecl(); 9217 if (RD->hasFlexibleArrayMember()) 9218 return DefaultABIInfo::classifyArgumentType(Ty); 9219 } 9220 9221 // Pack aggregates <= 8 bytes into single VGPR or pair. 9222 uint64_t Size = getContext().getTypeSize(Ty); 9223 if (Size <= 64) { 9224 unsigned NumRegs = (Size + 31) / 32; 9225 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9226 9227 if (Size <= 16) 9228 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9229 9230 if (Size <= 32) 9231 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9232 9233 // XXX: Should this be i64 instead, and should the limit increase? 9234 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9235 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9236 } 9237 9238 if (NumRegsLeft > 0) { 9239 unsigned NumRegs = numRegsForType(Ty); 9240 if (NumRegsLeft >= NumRegs) { 9241 NumRegsLeft -= NumRegs; 9242 return ABIArgInfo::getDirect(); 9243 } 9244 } 9245 } 9246 9247 // Otherwise just do the default thing. 9248 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9249 if (!ArgInfo.isIndirect()) { 9250 unsigned NumRegs = numRegsForType(Ty); 9251 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9252 } 9253 9254 return ArgInfo; 9255 } 9256 9257 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9258 public: 9259 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9260 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9261 9262 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, 9263 CodeGenModule &CGM) const; 9264 9265 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9266 CodeGen::CodeGenModule &M) const override; 9267 unsigned getOpenCLKernelCallingConv() const override; 9268 9269 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9270 llvm::PointerType *T, QualType QT) const override; 9271 9272 LangAS getASTAllocaAddressSpace() const override { 9273 return getLangASFromTargetAS( 9274 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9275 } 9276 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9277 const VarDecl *D) const override; 9278 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9279 SyncScope Scope, 9280 llvm::AtomicOrdering Ordering, 9281 llvm::LLVMContext &Ctx) const override; 9282 llvm::Function * 9283 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9284 llvm::Function *BlockInvokeFunc, 9285 llvm::Type *BlockTy) const override; 9286 bool shouldEmitStaticExternCAliases() const override; 9287 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9288 }; 9289 } 9290 9291 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9292 llvm::GlobalValue *GV) { 9293 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9294 return false; 9295 9296 return D->hasAttr<OpenCLKernelAttr>() || 9297 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9298 (isa<VarDecl>(D) && 9299 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9300 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9301 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9302 } 9303 9304 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( 9305 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { 9306 const auto *ReqdWGS = 9307 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9308 const bool IsOpenCLKernel = 9309 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>(); 9310 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>(); 9311 9312 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9313 if (ReqdWGS || FlatWGS) { 9314 unsigned Min = 0; 9315 unsigned Max = 0; 9316 if (FlatWGS) { 9317 Min = FlatWGS->getMin() 9318 ->EvaluateKnownConstInt(M.getContext()) 9319 .getExtValue(); 9320 Max = FlatWGS->getMax() 9321 ->EvaluateKnownConstInt(M.getContext()) 9322 .getExtValue(); 9323 } 9324 if (ReqdWGS && Min == 0 && Max == 0) 9325 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9326 9327 if (Min != 0) { 9328 assert(Min <= Max && "Min must be less than or equal Max"); 9329 9330 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9331 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9332 } else 9333 assert(Max == 0 && "Max must be zero"); 9334 } else if (IsOpenCLKernel || IsHIPKernel) { 9335 // By default, restrict the maximum size to a value specified by 9336 // --gpu-max-threads-per-block=n or its default value for HIP. 9337 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9338 const unsigned DefaultMaxWorkGroupSize = 9339 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9340 : M.getLangOpts().GPUMaxThreadsPerBlock; 9341 std::string AttrVal = 9342 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9343 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9344 } 9345 9346 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9347 unsigned Min = 9348 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9349 unsigned Max = Attr->getMax() ? Attr->getMax() 9350 ->EvaluateKnownConstInt(M.getContext()) 9351 .getExtValue() 9352 : 0; 9353 9354 if (Min != 0) { 9355 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9356 9357 std::string AttrVal = llvm::utostr(Min); 9358 if (Max != 0) 9359 AttrVal = AttrVal + "," + llvm::utostr(Max); 9360 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9361 } else 9362 assert(Max == 0 && "Max must be zero"); 9363 } 9364 9365 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9366 unsigned NumSGPR = Attr->getNumSGPR(); 9367 9368 if (NumSGPR != 0) 9369 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9370 } 9371 9372 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9373 uint32_t NumVGPR = Attr->getNumVGPR(); 9374 9375 if (NumVGPR != 0) 9376 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9377 } 9378 } 9379 9380 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9381 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9382 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9383 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9384 GV->setDSOLocal(true); 9385 } 9386 9387 if (GV->isDeclaration()) 9388 return; 9389 9390 llvm::Function *F = dyn_cast<llvm::Function>(GV); 9391 if (!F) 9392 return; 9393 9394 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9395 if (FD) 9396 setFunctionDeclAttributes(FD, F, M); 9397 9398 const bool IsHIPKernel = 9399 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>(); 9400 9401 if (IsHIPKernel) 9402 F->addFnAttr("uniform-work-group-size", "true"); 9403 9404 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9405 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9406 9407 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9408 F->addFnAttr("amdgpu-ieee", "false"); 9409 } 9410 9411 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9412 return llvm::CallingConv::AMDGPU_KERNEL; 9413 } 9414 9415 // Currently LLVM assumes null pointers always have value 0, 9416 // which results in incorrectly transformed IR. Therefore, instead of 9417 // emitting null pointers in private and local address spaces, a null 9418 // pointer in generic address space is emitted which is casted to a 9419 // pointer in local or private address space. 9420 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9421 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9422 QualType QT) const { 9423 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9424 return llvm::ConstantPointerNull::get(PT); 9425 9426 auto &Ctx = CGM.getContext(); 9427 auto NPT = llvm::PointerType::getWithSamePointeeType( 9428 PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9429 return llvm::ConstantExpr::getAddrSpaceCast( 9430 llvm::ConstantPointerNull::get(NPT), PT); 9431 } 9432 9433 LangAS 9434 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9435 const VarDecl *D) const { 9436 assert(!CGM.getLangOpts().OpenCL && 9437 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9438 "Address space agnostic languages only"); 9439 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9440 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9441 if (!D) 9442 return DefaultGlobalAS; 9443 9444 LangAS AddrSpace = D->getType().getAddressSpace(); 9445 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9446 if (AddrSpace != LangAS::Default) 9447 return AddrSpace; 9448 9449 // Only promote to address space 4 if VarDecl has constant initialization. 9450 if (CGM.isTypeConstant(D->getType(), false) && 9451 D->hasConstantInitialization()) { 9452 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9453 return ConstAS.getValue(); 9454 } 9455 return DefaultGlobalAS; 9456 } 9457 9458 llvm::SyncScope::ID 9459 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9460 SyncScope Scope, 9461 llvm::AtomicOrdering Ordering, 9462 llvm::LLVMContext &Ctx) const { 9463 std::string Name; 9464 switch (Scope) { 9465 case SyncScope::HIPSingleThread: 9466 Name = "singlethread"; 9467 break; 9468 case SyncScope::HIPWavefront: 9469 case SyncScope::OpenCLSubGroup: 9470 Name = "wavefront"; 9471 break; 9472 case SyncScope::HIPWorkgroup: 9473 case SyncScope::OpenCLWorkGroup: 9474 Name = "workgroup"; 9475 break; 9476 case SyncScope::HIPAgent: 9477 case SyncScope::OpenCLDevice: 9478 Name = "agent"; 9479 break; 9480 case SyncScope::HIPSystem: 9481 case SyncScope::OpenCLAllSVMDevices: 9482 Name = ""; 9483 break; 9484 } 9485 9486 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9487 if (!Name.empty()) 9488 Name = Twine(Twine(Name) + Twine("-")).str(); 9489 9490 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9491 } 9492 9493 return Ctx.getOrInsertSyncScopeID(Name); 9494 } 9495 9496 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9497 return false; 9498 } 9499 9500 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9501 const FunctionType *&FT) const { 9502 FT = getABIInfo().getContext().adjustFunctionType( 9503 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9504 } 9505 9506 //===----------------------------------------------------------------------===// 9507 // SPARC v8 ABI Implementation. 9508 // Based on the SPARC Compliance Definition version 2.4.1. 9509 // 9510 // Ensures that complex values are passed in registers. 9511 // 9512 namespace { 9513 class SparcV8ABIInfo : public DefaultABIInfo { 9514 public: 9515 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9516 9517 private: 9518 ABIArgInfo classifyReturnType(QualType RetTy) const; 9519 void computeInfo(CGFunctionInfo &FI) const override; 9520 }; 9521 } // end anonymous namespace 9522 9523 9524 ABIArgInfo 9525 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9526 if (Ty->isAnyComplexType()) { 9527 return ABIArgInfo::getDirect(); 9528 } 9529 else { 9530 return DefaultABIInfo::classifyReturnType(Ty); 9531 } 9532 } 9533 9534 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9535 9536 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9537 for (auto &Arg : FI.arguments()) 9538 Arg.info = classifyArgumentType(Arg.type); 9539 } 9540 9541 namespace { 9542 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9543 public: 9544 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9545 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9546 9547 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9548 llvm::Value *Address) const override { 9549 int Offset; 9550 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9551 Offset = 12; 9552 else 9553 Offset = 8; 9554 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9555 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9556 } 9557 9558 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9559 llvm::Value *Address) const override { 9560 int Offset; 9561 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9562 Offset = -12; 9563 else 9564 Offset = -8; 9565 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9566 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9567 } 9568 }; 9569 } // end anonymous namespace 9570 9571 //===----------------------------------------------------------------------===// 9572 // SPARC v9 ABI Implementation. 9573 // Based on the SPARC Compliance Definition version 2.4.1. 9574 // 9575 // Function arguments a mapped to a nominal "parameter array" and promoted to 9576 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9577 // the array, structs larger than 16 bytes are passed indirectly. 9578 // 9579 // One case requires special care: 9580 // 9581 // struct mixed { 9582 // int i; 9583 // float f; 9584 // }; 9585 // 9586 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9587 // parameter array, but the int is passed in an integer register, and the float 9588 // is passed in a floating point register. This is represented as two arguments 9589 // with the LLVM IR inreg attribute: 9590 // 9591 // declare void f(i32 inreg %i, float inreg %f) 9592 // 9593 // The code generator will only allocate 4 bytes from the parameter array for 9594 // the inreg arguments. All other arguments are allocated a multiple of 8 9595 // bytes. 9596 // 9597 namespace { 9598 class SparcV9ABIInfo : public ABIInfo { 9599 public: 9600 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9601 9602 private: 9603 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9604 void computeInfo(CGFunctionInfo &FI) const override; 9605 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9606 QualType Ty) const override; 9607 9608 // Coercion type builder for structs passed in registers. The coercion type 9609 // serves two purposes: 9610 // 9611 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9612 // in registers. 9613 // 2. Expose aligned floating point elements as first-level elements, so the 9614 // code generator knows to pass them in floating point registers. 9615 // 9616 // We also compute the InReg flag which indicates that the struct contains 9617 // aligned 32-bit floats. 9618 // 9619 struct CoerceBuilder { 9620 llvm::LLVMContext &Context; 9621 const llvm::DataLayout &DL; 9622 SmallVector<llvm::Type*, 8> Elems; 9623 uint64_t Size; 9624 bool InReg; 9625 9626 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9627 : Context(c), DL(dl), Size(0), InReg(false) {} 9628 9629 // Pad Elems with integers until Size is ToSize. 9630 void pad(uint64_t ToSize) { 9631 assert(ToSize >= Size && "Cannot remove elements"); 9632 if (ToSize == Size) 9633 return; 9634 9635 // Finish the current 64-bit word. 9636 uint64_t Aligned = llvm::alignTo(Size, 64); 9637 if (Aligned > Size && Aligned <= ToSize) { 9638 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9639 Size = Aligned; 9640 } 9641 9642 // Add whole 64-bit words. 9643 while (Size + 64 <= ToSize) { 9644 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9645 Size += 64; 9646 } 9647 9648 // Final in-word padding. 9649 if (Size < ToSize) { 9650 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9651 Size = ToSize; 9652 } 9653 } 9654 9655 // Add a floating point element at Offset. 9656 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9657 // Unaligned floats are treated as integers. 9658 if (Offset % Bits) 9659 return; 9660 // The InReg flag is only required if there are any floats < 64 bits. 9661 if (Bits < 64) 9662 InReg = true; 9663 pad(Offset); 9664 Elems.push_back(Ty); 9665 Size = Offset + Bits; 9666 } 9667 9668 // Add a struct type to the coercion type, starting at Offset (in bits). 9669 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9670 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9671 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9672 llvm::Type *ElemTy = StrTy->getElementType(i); 9673 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9674 switch (ElemTy->getTypeID()) { 9675 case llvm::Type::StructTyID: 9676 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9677 break; 9678 case llvm::Type::FloatTyID: 9679 addFloat(ElemOffset, ElemTy, 32); 9680 break; 9681 case llvm::Type::DoubleTyID: 9682 addFloat(ElemOffset, ElemTy, 64); 9683 break; 9684 case llvm::Type::FP128TyID: 9685 addFloat(ElemOffset, ElemTy, 128); 9686 break; 9687 case llvm::Type::PointerTyID: 9688 if (ElemOffset % 64 == 0) { 9689 pad(ElemOffset); 9690 Elems.push_back(ElemTy); 9691 Size += 64; 9692 } 9693 break; 9694 default: 9695 break; 9696 } 9697 } 9698 } 9699 9700 // Check if Ty is a usable substitute for the coercion type. 9701 bool isUsableType(llvm::StructType *Ty) const { 9702 return llvm::makeArrayRef(Elems) == Ty->elements(); 9703 } 9704 9705 // Get the coercion type as a literal struct type. 9706 llvm::Type *getType() const { 9707 if (Elems.size() == 1) 9708 return Elems.front(); 9709 else 9710 return llvm::StructType::get(Context, Elems); 9711 } 9712 }; 9713 }; 9714 } // end anonymous namespace 9715 9716 ABIArgInfo 9717 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9718 if (Ty->isVoidType()) 9719 return ABIArgInfo::getIgnore(); 9720 9721 uint64_t Size = getContext().getTypeSize(Ty); 9722 9723 // Anything too big to fit in registers is passed with an explicit indirect 9724 // pointer / sret pointer. 9725 if (Size > SizeLimit) 9726 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9727 9728 // Treat an enum type as its underlying type. 9729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9730 Ty = EnumTy->getDecl()->getIntegerType(); 9731 9732 // Integer types smaller than a register are extended. 9733 if (Size < 64 && Ty->isIntegerType()) 9734 return ABIArgInfo::getExtend(Ty); 9735 9736 if (const auto *EIT = Ty->getAs<BitIntType>()) 9737 if (EIT->getNumBits() < 64) 9738 return ABIArgInfo::getExtend(Ty); 9739 9740 // Other non-aggregates go in registers. 9741 if (!isAggregateTypeForABI(Ty)) 9742 return ABIArgInfo::getDirect(); 9743 9744 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9745 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9746 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9747 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9748 9749 // This is a small aggregate type that should be passed in registers. 9750 // Build a coercion type from the LLVM struct type. 9751 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9752 if (!StrTy) 9753 return ABIArgInfo::getDirect(); 9754 9755 CoerceBuilder CB(getVMContext(), getDataLayout()); 9756 CB.addStruct(0, StrTy); 9757 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9758 9759 // Try to use the original type for coercion. 9760 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9761 9762 if (CB.InReg) 9763 return ABIArgInfo::getDirectInReg(CoerceTy); 9764 else 9765 return ABIArgInfo::getDirect(CoerceTy); 9766 } 9767 9768 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9769 QualType Ty) const { 9770 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9771 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9772 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9773 AI.setCoerceToType(ArgTy); 9774 9775 CharUnits SlotSize = CharUnits::fromQuantity(8); 9776 9777 CGBuilderTy &Builder = CGF.Builder; 9778 Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"), 9779 getVAListElementType(CGF), SlotSize); 9780 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9781 9782 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9783 9784 Address ArgAddr = Address::invalid(); 9785 CharUnits Stride; 9786 switch (AI.getKind()) { 9787 case ABIArgInfo::Expand: 9788 case ABIArgInfo::CoerceAndExpand: 9789 case ABIArgInfo::InAlloca: 9790 llvm_unreachable("Unsupported ABI kind for va_arg"); 9791 9792 case ABIArgInfo::Extend: { 9793 Stride = SlotSize; 9794 CharUnits Offset = SlotSize - TypeInfo.Width; 9795 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9796 break; 9797 } 9798 9799 case ABIArgInfo::Direct: { 9800 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9801 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9802 ArgAddr = Addr; 9803 break; 9804 } 9805 9806 case ABIArgInfo::Indirect: 9807 case ABIArgInfo::IndirectAliased: 9808 Stride = SlotSize; 9809 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9810 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy, 9811 TypeInfo.Align); 9812 break; 9813 9814 case ABIArgInfo::Ignore: 9815 return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align); 9816 } 9817 9818 // Update VAList. 9819 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9820 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9821 9822 return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr"); 9823 } 9824 9825 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9826 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9827 for (auto &I : FI.arguments()) 9828 I.info = classifyType(I.type, 16 * 8); 9829 } 9830 9831 namespace { 9832 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9833 public: 9834 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9835 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9836 9837 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9838 return 14; 9839 } 9840 9841 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9842 llvm::Value *Address) const override; 9843 9844 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9845 llvm::Value *Address) const override { 9846 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9847 llvm::ConstantInt::get(CGF.Int32Ty, 8)); 9848 } 9849 9850 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9851 llvm::Value *Address) const override { 9852 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9853 llvm::ConstantInt::get(CGF.Int32Ty, -8)); 9854 } 9855 }; 9856 } // end anonymous namespace 9857 9858 bool 9859 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9860 llvm::Value *Address) const { 9861 // This is calculated from the LLVM and GCC tables and verified 9862 // against gcc output. AFAIK all ABIs use the same encoding. 9863 9864 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9865 9866 llvm::IntegerType *i8 = CGF.Int8Ty; 9867 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9868 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9869 9870 // 0-31: the 8-byte general-purpose registers 9871 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9872 9873 // 32-63: f0-31, the 4-byte floating-point registers 9874 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9875 9876 // Y = 64 9877 // PSR = 65 9878 // WIM = 66 9879 // TBR = 67 9880 // PC = 68 9881 // NPC = 69 9882 // FSR = 70 9883 // CSR = 71 9884 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9885 9886 // 72-87: d0-15, the 8-byte floating-point registers 9887 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9888 9889 return false; 9890 } 9891 9892 // ARC ABI implementation. 9893 namespace { 9894 9895 class ARCABIInfo : public DefaultABIInfo { 9896 public: 9897 using DefaultABIInfo::DefaultABIInfo; 9898 9899 private: 9900 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9901 QualType Ty) const override; 9902 9903 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9904 if (!State.FreeRegs) 9905 return; 9906 if (Info.isIndirect() && Info.getInReg()) 9907 State.FreeRegs--; 9908 else if (Info.isDirect() && Info.getInReg()) { 9909 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9910 if (sz < State.FreeRegs) 9911 State.FreeRegs -= sz; 9912 else 9913 State.FreeRegs = 0; 9914 } 9915 } 9916 9917 void computeInfo(CGFunctionInfo &FI) const override { 9918 CCState State(FI); 9919 // ARC uses 8 registers to pass arguments. 9920 State.FreeRegs = 8; 9921 9922 if (!getCXXABI().classifyReturnType(FI)) 9923 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9924 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9925 for (auto &I : FI.arguments()) { 9926 I.info = classifyArgumentType(I.type, State.FreeRegs); 9927 updateState(I.info, I.type, State); 9928 } 9929 } 9930 9931 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9932 ABIArgInfo getIndirectByValue(QualType Ty) const; 9933 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9934 ABIArgInfo classifyReturnType(QualType RetTy) const; 9935 }; 9936 9937 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9938 public: 9939 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9940 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9941 }; 9942 9943 9944 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9945 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9946 getNaturalAlignIndirect(Ty, false); 9947 } 9948 9949 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9950 // Compute the byval alignment. 9951 const unsigned MinABIStackAlignInBytes = 4; 9952 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9953 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9954 TypeAlign > MinABIStackAlignInBytes); 9955 } 9956 9957 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9958 QualType Ty) const { 9959 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9960 getContext().getTypeInfoInChars(Ty), 9961 CharUnits::fromQuantity(4), true); 9962 } 9963 9964 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9965 uint8_t FreeRegs) const { 9966 // Handle the generic C++ ABI. 9967 const RecordType *RT = Ty->getAs<RecordType>(); 9968 if (RT) { 9969 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9970 if (RAA == CGCXXABI::RAA_Indirect) 9971 return getIndirectByRef(Ty, FreeRegs > 0); 9972 9973 if (RAA == CGCXXABI::RAA_DirectInMemory) 9974 return getIndirectByValue(Ty); 9975 } 9976 9977 // Treat an enum type as its underlying type. 9978 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9979 Ty = EnumTy->getDecl()->getIntegerType(); 9980 9981 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9982 9983 if (isAggregateTypeForABI(Ty)) { 9984 // Structures with flexible arrays are always indirect. 9985 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9986 return getIndirectByValue(Ty); 9987 9988 // Ignore empty structs/unions. 9989 if (isEmptyRecord(getContext(), Ty, true)) 9990 return ABIArgInfo::getIgnore(); 9991 9992 llvm::LLVMContext &LLVMContext = getVMContext(); 9993 9994 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9995 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9996 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9997 9998 return FreeRegs >= SizeInRegs ? 9999 ABIArgInfo::getDirectInReg(Result) : 10000 ABIArgInfo::getDirect(Result, 0, nullptr, false); 10001 } 10002 10003 if (const auto *EIT = Ty->getAs<BitIntType>()) 10004 if (EIT->getNumBits() > 64) 10005 return getIndirectByValue(Ty); 10006 10007 return isPromotableIntegerTypeForABI(Ty) 10008 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 10009 : ABIArgInfo::getExtend(Ty)) 10010 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 10011 : ABIArgInfo::getDirect()); 10012 } 10013 10014 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 10015 if (RetTy->isAnyComplexType()) 10016 return ABIArgInfo::getDirectInReg(); 10017 10018 // Arguments of size > 4 registers are indirect. 10019 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 10020 if (RetSize > 4) 10021 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 10022 10023 return DefaultABIInfo::classifyReturnType(RetTy); 10024 } 10025 10026 } // End anonymous namespace. 10027 10028 //===----------------------------------------------------------------------===// 10029 // XCore ABI Implementation 10030 //===----------------------------------------------------------------------===// 10031 10032 namespace { 10033 10034 /// A SmallStringEnc instance is used to build up the TypeString by passing 10035 /// it by reference between functions that append to it. 10036 typedef llvm::SmallString<128> SmallStringEnc; 10037 10038 /// TypeStringCache caches the meta encodings of Types. 10039 /// 10040 /// The reason for caching TypeStrings is two fold: 10041 /// 1. To cache a type's encoding for later uses; 10042 /// 2. As a means to break recursive member type inclusion. 10043 /// 10044 /// A cache Entry can have a Status of: 10045 /// NonRecursive: The type encoding is not recursive; 10046 /// Recursive: The type encoding is recursive; 10047 /// Incomplete: An incomplete TypeString; 10048 /// IncompleteUsed: An incomplete TypeString that has been used in a 10049 /// Recursive type encoding. 10050 /// 10051 /// A NonRecursive entry will have all of its sub-members expanded as fully 10052 /// as possible. Whilst it may contain types which are recursive, the type 10053 /// itself is not recursive and thus its encoding may be safely used whenever 10054 /// the type is encountered. 10055 /// 10056 /// A Recursive entry will have all of its sub-members expanded as fully as 10057 /// possible. The type itself is recursive and it may contain other types which 10058 /// are recursive. The Recursive encoding must not be used during the expansion 10059 /// of a recursive type's recursive branch. For simplicity the code uses 10060 /// IncompleteCount to reject all usage of Recursive encodings for member types. 10061 /// 10062 /// An Incomplete entry is always a RecordType and only encodes its 10063 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 10064 /// are placed into the cache during type expansion as a means to identify and 10065 /// handle recursive inclusion of types as sub-members. If there is recursion 10066 /// the entry becomes IncompleteUsed. 10067 /// 10068 /// During the expansion of a RecordType's members: 10069 /// 10070 /// If the cache contains a NonRecursive encoding for the member type, the 10071 /// cached encoding is used; 10072 /// 10073 /// If the cache contains a Recursive encoding for the member type, the 10074 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 10075 /// 10076 /// If the member is a RecordType, an Incomplete encoding is placed into the 10077 /// cache to break potential recursive inclusion of itself as a sub-member; 10078 /// 10079 /// Once a member RecordType has been expanded, its temporary incomplete 10080 /// entry is removed from the cache. If a Recursive encoding was swapped out 10081 /// it is swapped back in; 10082 /// 10083 /// If an incomplete entry is used to expand a sub-member, the incomplete 10084 /// entry is marked as IncompleteUsed. The cache keeps count of how many 10085 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 10086 /// 10087 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 10088 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 10089 /// Else the member is part of a recursive type and thus the recursion has 10090 /// been exited too soon for the encoding to be correct for the member. 10091 /// 10092 class TypeStringCache { 10093 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 10094 struct Entry { 10095 std::string Str; // The encoded TypeString for the type. 10096 enum Status State; // Information about the encoding in 'Str'. 10097 std::string Swapped; // A temporary place holder for a Recursive encoding 10098 // during the expansion of RecordType's members. 10099 }; 10100 std::map<const IdentifierInfo *, struct Entry> Map; 10101 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 10102 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 10103 public: 10104 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 10105 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 10106 bool removeIncomplete(const IdentifierInfo *ID); 10107 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 10108 bool IsRecursive); 10109 StringRef lookupStr(const IdentifierInfo *ID); 10110 }; 10111 10112 /// TypeString encodings for enum & union fields must be order. 10113 /// FieldEncoding is a helper for this ordering process. 10114 class FieldEncoding { 10115 bool HasName; 10116 std::string Enc; 10117 public: 10118 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 10119 StringRef str() { return Enc; } 10120 bool operator<(const FieldEncoding &rhs) const { 10121 if (HasName != rhs.HasName) return HasName; 10122 return Enc < rhs.Enc; 10123 } 10124 }; 10125 10126 class XCoreABIInfo : public DefaultABIInfo { 10127 public: 10128 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10129 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10130 QualType Ty) const override; 10131 }; 10132 10133 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 10134 mutable TypeStringCache TSC; 10135 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 10136 const CodeGen::CodeGenModule &M) const; 10137 10138 public: 10139 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10140 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10141 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10142 const llvm::MapVector<GlobalDecl, StringRef> 10143 &MangledDeclNames) const override; 10144 }; 10145 10146 } // End anonymous namespace. 10147 10148 // TODO: this implementation is likely now redundant with the default 10149 // EmitVAArg. 10150 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10151 QualType Ty) const { 10152 CGBuilderTy &Builder = CGF.Builder; 10153 10154 // Get the VAList. 10155 CharUnits SlotSize = CharUnits::fromQuantity(4); 10156 Address AP = Address(Builder.CreateLoad(VAListAddr), 10157 getVAListElementType(CGF), SlotSize); 10158 10159 // Handle the argument. 10160 ABIArgInfo AI = classifyArgumentType(Ty); 10161 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10162 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10163 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10164 AI.setCoerceToType(ArgTy); 10165 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10166 10167 Address Val = Address::invalid(); 10168 CharUnits ArgSize = CharUnits::Zero(); 10169 switch (AI.getKind()) { 10170 case ABIArgInfo::Expand: 10171 case ABIArgInfo::CoerceAndExpand: 10172 case ABIArgInfo::InAlloca: 10173 llvm_unreachable("Unsupported ABI kind for va_arg"); 10174 case ABIArgInfo::Ignore: 10175 Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign); 10176 ArgSize = CharUnits::Zero(); 10177 break; 10178 case ABIArgInfo::Extend: 10179 case ABIArgInfo::Direct: 10180 Val = Builder.CreateElementBitCast(AP, ArgTy); 10181 ArgSize = CharUnits::fromQuantity( 10182 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10183 ArgSize = ArgSize.alignTo(SlotSize); 10184 break; 10185 case ABIArgInfo::Indirect: 10186 case ABIArgInfo::IndirectAliased: 10187 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10188 Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign); 10189 ArgSize = SlotSize; 10190 break; 10191 } 10192 10193 // Increment the VAList. 10194 if (!ArgSize.isZero()) { 10195 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10196 Builder.CreateStore(APN.getPointer(), VAListAddr); 10197 } 10198 10199 return Val; 10200 } 10201 10202 /// During the expansion of a RecordType, an incomplete TypeString is placed 10203 /// into the cache as a means to identify and break recursion. 10204 /// If there is a Recursive encoding in the cache, it is swapped out and will 10205 /// be reinserted by removeIncomplete(). 10206 /// All other types of encoding should have been used rather than arriving here. 10207 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10208 std::string StubEnc) { 10209 if (!ID) 10210 return; 10211 Entry &E = Map[ID]; 10212 assert( (E.Str.empty() || E.State == Recursive) && 10213 "Incorrectly use of addIncomplete"); 10214 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10215 E.Swapped.swap(E.Str); // swap out the Recursive 10216 E.Str.swap(StubEnc); 10217 E.State = Incomplete; 10218 ++IncompleteCount; 10219 } 10220 10221 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10222 /// must be removed from the cache. 10223 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10224 /// Returns true if the RecordType was defined recursively. 10225 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10226 if (!ID) 10227 return false; 10228 auto I = Map.find(ID); 10229 assert(I != Map.end() && "Entry not present"); 10230 Entry &E = I->second; 10231 assert( (E.State == Incomplete || 10232 E.State == IncompleteUsed) && 10233 "Entry must be an incomplete type"); 10234 bool IsRecursive = false; 10235 if (E.State == IncompleteUsed) { 10236 // We made use of our Incomplete encoding, thus we are recursive. 10237 IsRecursive = true; 10238 --IncompleteUsedCount; 10239 } 10240 if (E.Swapped.empty()) 10241 Map.erase(I); 10242 else { 10243 // Swap the Recursive back. 10244 E.Swapped.swap(E.Str); 10245 E.Swapped.clear(); 10246 E.State = Recursive; 10247 } 10248 --IncompleteCount; 10249 return IsRecursive; 10250 } 10251 10252 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10253 /// Recursive (viz: all sub-members were expanded as fully as possible). 10254 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10255 bool IsRecursive) { 10256 if (!ID || IncompleteUsedCount) 10257 return; // No key or it is is an incomplete sub-type so don't add. 10258 Entry &E = Map[ID]; 10259 if (IsRecursive && !E.Str.empty()) { 10260 assert(E.State==Recursive && E.Str.size() == Str.size() && 10261 "This is not the same Recursive entry"); 10262 // The parent container was not recursive after all, so we could have used 10263 // this Recursive sub-member entry after all, but we assumed the worse when 10264 // we started viz: IncompleteCount!=0. 10265 return; 10266 } 10267 assert(E.Str.empty() && "Entry already present"); 10268 E.Str = Str.str(); 10269 E.State = IsRecursive? Recursive : NonRecursive; 10270 } 10271 10272 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10273 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10274 /// encoding is Recursive, return an empty StringRef. 10275 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10276 if (!ID) 10277 return StringRef(); // We have no key. 10278 auto I = Map.find(ID); 10279 if (I == Map.end()) 10280 return StringRef(); // We have no encoding. 10281 Entry &E = I->second; 10282 if (E.State == Recursive && IncompleteCount) 10283 return StringRef(); // We don't use Recursive encodings for member types. 10284 10285 if (E.State == Incomplete) { 10286 // The incomplete type is being used to break out of recursion. 10287 E.State = IncompleteUsed; 10288 ++IncompleteUsedCount; 10289 } 10290 return E.Str; 10291 } 10292 10293 /// The XCore ABI includes a type information section that communicates symbol 10294 /// type information to the linker. The linker uses this information to verify 10295 /// safety/correctness of things such as array bound and pointers et al. 10296 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10297 /// This type information (TypeString) is emitted into meta data for all global 10298 /// symbols: definitions, declarations, functions & variables. 10299 /// 10300 /// The TypeString carries type, qualifier, name, size & value details. 10301 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10302 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10303 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10304 /// 10305 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10306 const CodeGen::CodeGenModule &CGM, 10307 TypeStringCache &TSC); 10308 10309 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10310 void XCoreTargetCodeGenInfo::emitTargetMD( 10311 const Decl *D, llvm::GlobalValue *GV, 10312 const CodeGen::CodeGenModule &CGM) const { 10313 SmallStringEnc Enc; 10314 if (getTypeString(Enc, D, CGM, TSC)) { 10315 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10316 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10317 llvm::MDString::get(Ctx, Enc.str())}; 10318 llvm::NamedMDNode *MD = 10319 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10320 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10321 } 10322 } 10323 10324 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10325 CodeGen::CodeGenModule &CGM, 10326 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10327 // Warning, new MangledDeclNames may be appended within this loop. 10328 // We rely on MapVector insertions adding new elements to the end 10329 // of the container. 10330 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10331 auto Val = *(MangledDeclNames.begin() + I); 10332 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10333 if (GV) { 10334 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10335 emitTargetMD(D, GV, CGM); 10336 } 10337 } 10338 } 10339 10340 //===----------------------------------------------------------------------===// 10341 // Base ABI and target codegen info implementation common between SPIR and 10342 // SPIR-V. 10343 //===----------------------------------------------------------------------===// 10344 10345 namespace { 10346 class CommonSPIRABIInfo : public DefaultABIInfo { 10347 public: 10348 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10349 10350 private: 10351 void setCCs(); 10352 }; 10353 10354 class SPIRVABIInfo : public CommonSPIRABIInfo { 10355 public: 10356 SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {} 10357 void computeInfo(CGFunctionInfo &FI) const override; 10358 10359 private: 10360 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 10361 }; 10362 } // end anonymous namespace 10363 namespace { 10364 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10365 public: 10366 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10367 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10368 CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo) 10369 : TargetCodeGenInfo(std::move(ABIInfo)) {} 10370 10371 LangAS getASTAllocaAddressSpace() const override { 10372 return getLangASFromTargetAS( 10373 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10374 } 10375 10376 unsigned getOpenCLKernelCallingConv() const override; 10377 }; 10378 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo { 10379 public: 10380 SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10381 : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {} 10382 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 10383 }; 10384 } // End anonymous namespace. 10385 10386 void CommonSPIRABIInfo::setCCs() { 10387 assert(getRuntimeCC() == llvm::CallingConv::C); 10388 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10389 } 10390 10391 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const { 10392 if (getContext().getLangOpts().CUDAIsDevice) { 10393 // Coerce pointer arguments with default address space to CrossWorkGroup 10394 // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the 10395 // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space. 10396 llvm::Type *LTy = CGT.ConvertType(Ty); 10397 auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default); 10398 auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device); 10399 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy); 10400 if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) { 10401 LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS); 10402 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 10403 } 10404 } 10405 return classifyArgumentType(Ty); 10406 } 10407 10408 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10409 // The logic is same as in DefaultABIInfo with an exception on the kernel 10410 // arguments handling. 10411 llvm::CallingConv::ID CC = FI.getCallingConvention(); 10412 10413 if (!getCXXABI().classifyReturnType(FI)) 10414 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10415 10416 for (auto &I : FI.arguments()) { 10417 if (CC == llvm::CallingConv::SPIR_KERNEL) { 10418 I.info = classifyKernelArgumentType(I.type); 10419 } else { 10420 I.info = classifyArgumentType(I.type); 10421 } 10422 } 10423 } 10424 10425 namespace clang { 10426 namespace CodeGen { 10427 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10428 if (CGM.getTarget().getTriple().isSPIRV()) 10429 SPIRVABIInfo(CGM.getTypes()).computeInfo(FI); 10430 else 10431 CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI); 10432 } 10433 } 10434 } 10435 10436 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10437 return llvm::CallingConv::SPIR_KERNEL; 10438 } 10439 10440 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention( 10441 const FunctionType *&FT) const { 10442 // Convert HIP kernels to SPIR-V kernels. 10443 if (getABIInfo().getContext().getLangOpts().HIP) { 10444 FT = getABIInfo().getContext().adjustFunctionType( 10445 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 10446 return; 10447 } 10448 } 10449 10450 static bool appendType(SmallStringEnc &Enc, QualType QType, 10451 const CodeGen::CodeGenModule &CGM, 10452 TypeStringCache &TSC); 10453 10454 /// Helper function for appendRecordType(). 10455 /// Builds a SmallVector containing the encoded field types in declaration 10456 /// order. 10457 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10458 const RecordDecl *RD, 10459 const CodeGen::CodeGenModule &CGM, 10460 TypeStringCache &TSC) { 10461 for (const auto *Field : RD->fields()) { 10462 SmallStringEnc Enc; 10463 Enc += "m("; 10464 Enc += Field->getName(); 10465 Enc += "){"; 10466 if (Field->isBitField()) { 10467 Enc += "b("; 10468 llvm::raw_svector_ostream OS(Enc); 10469 OS << Field->getBitWidthValue(CGM.getContext()); 10470 Enc += ':'; 10471 } 10472 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10473 return false; 10474 if (Field->isBitField()) 10475 Enc += ')'; 10476 Enc += '}'; 10477 FE.emplace_back(!Field->getName().empty(), Enc); 10478 } 10479 return true; 10480 } 10481 10482 /// Appends structure and union types to Enc and adds encoding to cache. 10483 /// Recursively calls appendType (via extractFieldType) for each field. 10484 /// Union types have their fields ordered according to the ABI. 10485 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10486 const CodeGen::CodeGenModule &CGM, 10487 TypeStringCache &TSC, const IdentifierInfo *ID) { 10488 // Append the cached TypeString if we have one. 10489 StringRef TypeString = TSC.lookupStr(ID); 10490 if (!TypeString.empty()) { 10491 Enc += TypeString; 10492 return true; 10493 } 10494 10495 // Start to emit an incomplete TypeString. 10496 size_t Start = Enc.size(); 10497 Enc += (RT->isUnionType()? 'u' : 's'); 10498 Enc += '('; 10499 if (ID) 10500 Enc += ID->getName(); 10501 Enc += "){"; 10502 10503 // We collect all encoded fields and order as necessary. 10504 bool IsRecursive = false; 10505 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10506 if (RD && !RD->field_empty()) { 10507 // An incomplete TypeString stub is placed in the cache for this RecordType 10508 // so that recursive calls to this RecordType will use it whilst building a 10509 // complete TypeString for this RecordType. 10510 SmallVector<FieldEncoding, 16> FE; 10511 std::string StubEnc(Enc.substr(Start).str()); 10512 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10513 TSC.addIncomplete(ID, std::move(StubEnc)); 10514 if (!extractFieldType(FE, RD, CGM, TSC)) { 10515 (void) TSC.removeIncomplete(ID); 10516 return false; 10517 } 10518 IsRecursive = TSC.removeIncomplete(ID); 10519 // The ABI requires unions to be sorted but not structures. 10520 // See FieldEncoding::operator< for sort algorithm. 10521 if (RT->isUnionType()) 10522 llvm::sort(FE); 10523 // We can now complete the TypeString. 10524 unsigned E = FE.size(); 10525 for (unsigned I = 0; I != E; ++I) { 10526 if (I) 10527 Enc += ','; 10528 Enc += FE[I].str(); 10529 } 10530 } 10531 Enc += '}'; 10532 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10533 return true; 10534 } 10535 10536 /// Appends enum types to Enc and adds the encoding to the cache. 10537 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10538 TypeStringCache &TSC, 10539 const IdentifierInfo *ID) { 10540 // Append the cached TypeString if we have one. 10541 StringRef TypeString = TSC.lookupStr(ID); 10542 if (!TypeString.empty()) { 10543 Enc += TypeString; 10544 return true; 10545 } 10546 10547 size_t Start = Enc.size(); 10548 Enc += "e("; 10549 if (ID) 10550 Enc += ID->getName(); 10551 Enc += "){"; 10552 10553 // We collect all encoded enumerations and order them alphanumerically. 10554 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10555 SmallVector<FieldEncoding, 16> FE; 10556 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10557 ++I) { 10558 SmallStringEnc EnumEnc; 10559 EnumEnc += "m("; 10560 EnumEnc += I->getName(); 10561 EnumEnc += "){"; 10562 I->getInitVal().toString(EnumEnc); 10563 EnumEnc += '}'; 10564 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10565 } 10566 llvm::sort(FE); 10567 unsigned E = FE.size(); 10568 for (unsigned I = 0; I != E; ++I) { 10569 if (I) 10570 Enc += ','; 10571 Enc += FE[I].str(); 10572 } 10573 } 10574 Enc += '}'; 10575 TSC.addIfComplete(ID, Enc.substr(Start), false); 10576 return true; 10577 } 10578 10579 /// Appends type's qualifier to Enc. 10580 /// This is done prior to appending the type's encoding. 10581 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10582 // Qualifiers are emitted in alphabetical order. 10583 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10584 int Lookup = 0; 10585 if (QT.isConstQualified()) 10586 Lookup += 1<<0; 10587 if (QT.isRestrictQualified()) 10588 Lookup += 1<<1; 10589 if (QT.isVolatileQualified()) 10590 Lookup += 1<<2; 10591 Enc += Table[Lookup]; 10592 } 10593 10594 /// Appends built-in types to Enc. 10595 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10596 const char *EncType; 10597 switch (BT->getKind()) { 10598 case BuiltinType::Void: 10599 EncType = "0"; 10600 break; 10601 case BuiltinType::Bool: 10602 EncType = "b"; 10603 break; 10604 case BuiltinType::Char_U: 10605 EncType = "uc"; 10606 break; 10607 case BuiltinType::UChar: 10608 EncType = "uc"; 10609 break; 10610 case BuiltinType::SChar: 10611 EncType = "sc"; 10612 break; 10613 case BuiltinType::UShort: 10614 EncType = "us"; 10615 break; 10616 case BuiltinType::Short: 10617 EncType = "ss"; 10618 break; 10619 case BuiltinType::UInt: 10620 EncType = "ui"; 10621 break; 10622 case BuiltinType::Int: 10623 EncType = "si"; 10624 break; 10625 case BuiltinType::ULong: 10626 EncType = "ul"; 10627 break; 10628 case BuiltinType::Long: 10629 EncType = "sl"; 10630 break; 10631 case BuiltinType::ULongLong: 10632 EncType = "ull"; 10633 break; 10634 case BuiltinType::LongLong: 10635 EncType = "sll"; 10636 break; 10637 case BuiltinType::Float: 10638 EncType = "ft"; 10639 break; 10640 case BuiltinType::Double: 10641 EncType = "d"; 10642 break; 10643 case BuiltinType::LongDouble: 10644 EncType = "ld"; 10645 break; 10646 default: 10647 return false; 10648 } 10649 Enc += EncType; 10650 return true; 10651 } 10652 10653 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10654 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10655 const CodeGen::CodeGenModule &CGM, 10656 TypeStringCache &TSC) { 10657 Enc += "p("; 10658 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10659 return false; 10660 Enc += ')'; 10661 return true; 10662 } 10663 10664 /// Appends array encoding to Enc before calling appendType for the element. 10665 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10666 const ArrayType *AT, 10667 const CodeGen::CodeGenModule &CGM, 10668 TypeStringCache &TSC, StringRef NoSizeEnc) { 10669 if (AT->getSizeModifier() != ArrayType::Normal) 10670 return false; 10671 Enc += "a("; 10672 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10673 CAT->getSize().toStringUnsigned(Enc); 10674 else 10675 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10676 Enc += ':'; 10677 // The Qualifiers should be attached to the type rather than the array. 10678 appendQualifier(Enc, QT); 10679 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10680 return false; 10681 Enc += ')'; 10682 return true; 10683 } 10684 10685 /// Appends a function encoding to Enc, calling appendType for the return type 10686 /// and the arguments. 10687 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10688 const CodeGen::CodeGenModule &CGM, 10689 TypeStringCache &TSC) { 10690 Enc += "f{"; 10691 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10692 return false; 10693 Enc += "}("; 10694 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10695 // N.B. we are only interested in the adjusted param types. 10696 auto I = FPT->param_type_begin(); 10697 auto E = FPT->param_type_end(); 10698 if (I != E) { 10699 do { 10700 if (!appendType(Enc, *I, CGM, TSC)) 10701 return false; 10702 ++I; 10703 if (I != E) 10704 Enc += ','; 10705 } while (I != E); 10706 if (FPT->isVariadic()) 10707 Enc += ",va"; 10708 } else { 10709 if (FPT->isVariadic()) 10710 Enc += "va"; 10711 else 10712 Enc += '0'; 10713 } 10714 } 10715 Enc += ')'; 10716 return true; 10717 } 10718 10719 /// Handles the type's qualifier before dispatching a call to handle specific 10720 /// type encodings. 10721 static bool appendType(SmallStringEnc &Enc, QualType QType, 10722 const CodeGen::CodeGenModule &CGM, 10723 TypeStringCache &TSC) { 10724 10725 QualType QT = QType.getCanonicalType(); 10726 10727 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10728 // The Qualifiers should be attached to the type rather than the array. 10729 // Thus we don't call appendQualifier() here. 10730 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10731 10732 appendQualifier(Enc, QT); 10733 10734 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10735 return appendBuiltinType(Enc, BT); 10736 10737 if (const PointerType *PT = QT->getAs<PointerType>()) 10738 return appendPointerType(Enc, PT, CGM, TSC); 10739 10740 if (const EnumType *ET = QT->getAs<EnumType>()) 10741 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10742 10743 if (const RecordType *RT = QT->getAsStructureType()) 10744 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10745 10746 if (const RecordType *RT = QT->getAsUnionType()) 10747 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10748 10749 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10750 return appendFunctionType(Enc, FT, CGM, TSC); 10751 10752 return false; 10753 } 10754 10755 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10756 const CodeGen::CodeGenModule &CGM, 10757 TypeStringCache &TSC) { 10758 if (!D) 10759 return false; 10760 10761 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10762 if (FD->getLanguageLinkage() != CLanguageLinkage) 10763 return false; 10764 return appendType(Enc, FD->getType(), CGM, TSC); 10765 } 10766 10767 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10768 if (VD->getLanguageLinkage() != CLanguageLinkage) 10769 return false; 10770 QualType QT = VD->getType().getCanonicalType(); 10771 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10772 // Global ArrayTypes are given a size of '*' if the size is unknown. 10773 // The Qualifiers should be attached to the type rather than the array. 10774 // Thus we don't call appendQualifier() here. 10775 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10776 } 10777 return appendType(Enc, QT, CGM, TSC); 10778 } 10779 return false; 10780 } 10781 10782 //===----------------------------------------------------------------------===// 10783 // RISCV ABI Implementation 10784 //===----------------------------------------------------------------------===// 10785 10786 namespace { 10787 class RISCVABIInfo : public DefaultABIInfo { 10788 private: 10789 // Size of the integer ('x') registers in bits. 10790 unsigned XLen; 10791 // Size of the floating point ('f') registers in bits. Note that the target 10792 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10793 // with soft float ABI has FLen==0). 10794 unsigned FLen; 10795 static const int NumArgGPRs = 8; 10796 static const int NumArgFPRs = 8; 10797 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10798 llvm::Type *&Field1Ty, 10799 CharUnits &Field1Off, 10800 llvm::Type *&Field2Ty, 10801 CharUnits &Field2Off) const; 10802 10803 public: 10804 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10805 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10806 10807 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10808 // non-virtual, but computeInfo is virtual, so we overload it. 10809 void computeInfo(CGFunctionInfo &FI) const override; 10810 10811 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10812 int &ArgFPRsLeft) const; 10813 ABIArgInfo classifyReturnType(QualType RetTy) const; 10814 10815 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10816 QualType Ty) const override; 10817 10818 ABIArgInfo extendType(QualType Ty) const; 10819 10820 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10821 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10822 CharUnits &Field2Off, int &NeededArgGPRs, 10823 int &NeededArgFPRs) const; 10824 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10825 CharUnits Field1Off, 10826 llvm::Type *Field2Ty, 10827 CharUnits Field2Off) const; 10828 }; 10829 } // end anonymous namespace 10830 10831 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10832 QualType RetTy = FI.getReturnType(); 10833 if (!getCXXABI().classifyReturnType(FI)) 10834 FI.getReturnInfo() = classifyReturnType(RetTy); 10835 10836 // IsRetIndirect is true if classifyArgumentType indicated the value should 10837 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10838 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10839 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10840 // list and pass indirectly on RV32. 10841 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10842 if (!IsRetIndirect && RetTy->isScalarType() && 10843 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10844 if (RetTy->isComplexType() && FLen) { 10845 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10846 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10847 } else { 10848 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10849 IsRetIndirect = true; 10850 } 10851 } 10852 10853 // We must track the number of GPRs used in order to conform to the RISC-V 10854 // ABI, as integer scalars passed in registers should have signext/zeroext 10855 // when promoted, but are anyext if passed on the stack. As GPR usage is 10856 // different for variadic arguments, we must also track whether we are 10857 // examining a vararg or not. 10858 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10859 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10860 int NumFixedArgs = FI.getNumRequiredArgs(); 10861 10862 int ArgNum = 0; 10863 for (auto &ArgInfo : FI.arguments()) { 10864 bool IsFixed = ArgNum < NumFixedArgs; 10865 ArgInfo.info = 10866 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10867 ArgNum++; 10868 } 10869 } 10870 10871 // Returns true if the struct is a potential candidate for the floating point 10872 // calling convention. If this function returns true, the caller is 10873 // responsible for checking that if there is only a single field then that 10874 // field is a float. 10875 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10876 llvm::Type *&Field1Ty, 10877 CharUnits &Field1Off, 10878 llvm::Type *&Field2Ty, 10879 CharUnits &Field2Off) const { 10880 bool IsInt = Ty->isIntegralOrEnumerationType(); 10881 bool IsFloat = Ty->isRealFloatingType(); 10882 10883 if (IsInt || IsFloat) { 10884 uint64_t Size = getContext().getTypeSize(Ty); 10885 if (IsInt && Size > XLen) 10886 return false; 10887 // Can't be eligible if larger than the FP registers. Half precision isn't 10888 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10889 // default to the integer ABI in that case. 10890 if (IsFloat && (Size > FLen || Size < 32)) 10891 return false; 10892 // Can't be eligible if an integer type was already found (int+int pairs 10893 // are not eligible). 10894 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10895 return false; 10896 if (!Field1Ty) { 10897 Field1Ty = CGT.ConvertType(Ty); 10898 Field1Off = CurOff; 10899 return true; 10900 } 10901 if (!Field2Ty) { 10902 Field2Ty = CGT.ConvertType(Ty); 10903 Field2Off = CurOff; 10904 return true; 10905 } 10906 return false; 10907 } 10908 10909 if (auto CTy = Ty->getAs<ComplexType>()) { 10910 if (Field1Ty) 10911 return false; 10912 QualType EltTy = CTy->getElementType(); 10913 if (getContext().getTypeSize(EltTy) > FLen) 10914 return false; 10915 Field1Ty = CGT.ConvertType(EltTy); 10916 Field1Off = CurOff; 10917 Field2Ty = Field1Ty; 10918 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10919 return true; 10920 } 10921 10922 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10923 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10924 QualType EltTy = ATy->getElementType(); 10925 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10926 for (uint64_t i = 0; i < ArraySize; ++i) { 10927 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10928 Field1Off, Field2Ty, Field2Off); 10929 if (!Ret) 10930 return false; 10931 CurOff += EltSize; 10932 } 10933 return true; 10934 } 10935 10936 if (const auto *RTy = Ty->getAs<RecordType>()) { 10937 // Structures with either a non-trivial destructor or a non-trivial 10938 // copy constructor are not eligible for the FP calling convention. 10939 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10940 return false; 10941 if (isEmptyRecord(getContext(), Ty, true)) 10942 return true; 10943 const RecordDecl *RD = RTy->getDecl(); 10944 // Unions aren't eligible unless they're empty (which is caught above). 10945 if (RD->isUnion()) 10946 return false; 10947 int ZeroWidthBitFieldCount = 0; 10948 for (const FieldDecl *FD : RD->fields()) { 10949 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10950 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10951 QualType QTy = FD->getType(); 10952 if (FD->isBitField()) { 10953 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10954 // Allow a bitfield with a type greater than XLen as long as the 10955 // bitwidth is XLen or less. 10956 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10957 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10958 if (BitWidth == 0) { 10959 ZeroWidthBitFieldCount++; 10960 continue; 10961 } 10962 } 10963 10964 bool Ret = detectFPCCEligibleStructHelper( 10965 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10966 Field1Ty, Field1Off, Field2Ty, Field2Off); 10967 if (!Ret) 10968 return false; 10969 10970 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10971 // or int+fp structs, but are ignored for a struct with an fp field and 10972 // any number of zero-width bitfields. 10973 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10974 return false; 10975 } 10976 return Field1Ty != nullptr; 10977 } 10978 10979 return false; 10980 } 10981 10982 // Determine if a struct is eligible for passing according to the floating 10983 // point calling convention (i.e., when flattened it contains a single fp 10984 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10985 // NeededArgGPRs are incremented appropriately. 10986 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10987 CharUnits &Field1Off, 10988 llvm::Type *&Field2Ty, 10989 CharUnits &Field2Off, 10990 int &NeededArgGPRs, 10991 int &NeededArgFPRs) const { 10992 Field1Ty = nullptr; 10993 Field2Ty = nullptr; 10994 NeededArgGPRs = 0; 10995 NeededArgFPRs = 0; 10996 bool IsCandidate = detectFPCCEligibleStructHelper( 10997 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10998 // Not really a candidate if we have a single int but no float. 10999 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 11000 return false; 11001 if (!IsCandidate) 11002 return false; 11003 if (Field1Ty && Field1Ty->isFloatingPointTy()) 11004 NeededArgFPRs++; 11005 else if (Field1Ty) 11006 NeededArgGPRs++; 11007 if (Field2Ty && Field2Ty->isFloatingPointTy()) 11008 NeededArgFPRs++; 11009 else if (Field2Ty) 11010 NeededArgGPRs++; 11011 return true; 11012 } 11013 11014 // Call getCoerceAndExpand for the two-element flattened struct described by 11015 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 11016 // appropriate coerceToType and unpaddedCoerceToType. 11017 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 11018 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 11019 CharUnits Field2Off) const { 11020 SmallVector<llvm::Type *, 3> CoerceElts; 11021 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 11022 if (!Field1Off.isZero()) 11023 CoerceElts.push_back(llvm::ArrayType::get( 11024 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 11025 11026 CoerceElts.push_back(Field1Ty); 11027 UnpaddedCoerceElts.push_back(Field1Ty); 11028 11029 if (!Field2Ty) { 11030 return ABIArgInfo::getCoerceAndExpand( 11031 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 11032 UnpaddedCoerceElts[0]); 11033 } 11034 11035 CharUnits Field2Align = 11036 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 11037 CharUnits Field1End = Field1Off + 11038 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 11039 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 11040 11041 CharUnits Padding = CharUnits::Zero(); 11042 if (Field2Off > Field2OffNoPadNoPack) 11043 Padding = Field2Off - Field2OffNoPadNoPack; 11044 else if (Field2Off != Field2Align && Field2Off > Field1End) 11045 Padding = Field2Off - Field1End; 11046 11047 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 11048 11049 if (!Padding.isZero()) 11050 CoerceElts.push_back(llvm::ArrayType::get( 11051 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 11052 11053 CoerceElts.push_back(Field2Ty); 11054 UnpaddedCoerceElts.push_back(Field2Ty); 11055 11056 auto CoerceToType = 11057 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 11058 auto UnpaddedCoerceToType = 11059 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 11060 11061 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 11062 } 11063 11064 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 11065 int &ArgGPRsLeft, 11066 int &ArgFPRsLeft) const { 11067 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 11068 Ty = useFirstFieldIfTransparentUnion(Ty); 11069 11070 // Structures with either a non-trivial destructor or a non-trivial 11071 // copy constructor are always passed indirectly. 11072 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11073 if (ArgGPRsLeft) 11074 ArgGPRsLeft -= 1; 11075 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11076 CGCXXABI::RAA_DirectInMemory); 11077 } 11078 11079 // Ignore empty structs/unions. 11080 if (isEmptyRecord(getContext(), Ty, true)) 11081 return ABIArgInfo::getIgnore(); 11082 11083 uint64_t Size = getContext().getTypeSize(Ty); 11084 11085 // Pass floating point values via FPRs if possible. 11086 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 11087 FLen >= Size && ArgFPRsLeft) { 11088 ArgFPRsLeft--; 11089 return ABIArgInfo::getDirect(); 11090 } 11091 11092 // Complex types for the hard float ABI must be passed direct rather than 11093 // using CoerceAndExpand. 11094 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 11095 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11096 if (getContext().getTypeSize(EltTy) <= FLen) { 11097 ArgFPRsLeft -= 2; 11098 return ABIArgInfo::getDirect(); 11099 } 11100 } 11101 11102 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 11103 llvm::Type *Field1Ty = nullptr; 11104 llvm::Type *Field2Ty = nullptr; 11105 CharUnits Field1Off = CharUnits::Zero(); 11106 CharUnits Field2Off = CharUnits::Zero(); 11107 int NeededArgGPRs = 0; 11108 int NeededArgFPRs = 0; 11109 bool IsCandidate = 11110 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 11111 NeededArgGPRs, NeededArgFPRs); 11112 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 11113 NeededArgFPRs <= ArgFPRsLeft) { 11114 ArgGPRsLeft -= NeededArgGPRs; 11115 ArgFPRsLeft -= NeededArgFPRs; 11116 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 11117 Field2Off); 11118 } 11119 } 11120 11121 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 11122 bool MustUseStack = false; 11123 // Determine the number of GPRs needed to pass the current argument 11124 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 11125 // register pairs, so may consume 3 registers. 11126 int NeededArgGPRs = 1; 11127 if (!IsFixed && NeededAlign == 2 * XLen) 11128 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 11129 else if (Size > XLen && Size <= 2 * XLen) 11130 NeededArgGPRs = 2; 11131 11132 if (NeededArgGPRs > ArgGPRsLeft) { 11133 MustUseStack = true; 11134 NeededArgGPRs = ArgGPRsLeft; 11135 } 11136 11137 ArgGPRsLeft -= NeededArgGPRs; 11138 11139 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 11140 // Treat an enum type as its underlying type. 11141 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11142 Ty = EnumTy->getDecl()->getIntegerType(); 11143 11144 // All integral types are promoted to XLen width, unless passed on the 11145 // stack. 11146 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 11147 return extendType(Ty); 11148 } 11149 11150 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11151 if (EIT->getNumBits() < XLen && !MustUseStack) 11152 return extendType(Ty); 11153 if (EIT->getNumBits() > 128 || 11154 (!getContext().getTargetInfo().hasInt128Type() && 11155 EIT->getNumBits() > 64)) 11156 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11157 } 11158 11159 return ABIArgInfo::getDirect(); 11160 } 11161 11162 // Aggregates which are <= 2*XLen will be passed in registers if possible, 11163 // so coerce to integers. 11164 if (Size <= 2 * XLen) { 11165 unsigned Alignment = getContext().getTypeAlign(Ty); 11166 11167 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 11168 // required, and a 2-element XLen array if only XLen alignment is required. 11169 if (Size <= XLen) { 11170 return ABIArgInfo::getDirect( 11171 llvm::IntegerType::get(getVMContext(), XLen)); 11172 } else if (Alignment == 2 * XLen) { 11173 return ABIArgInfo::getDirect( 11174 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 11175 } else { 11176 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11177 llvm::IntegerType::get(getVMContext(), XLen), 2)); 11178 } 11179 } 11180 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11181 } 11182 11183 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 11184 if (RetTy->isVoidType()) 11185 return ABIArgInfo::getIgnore(); 11186 11187 int ArgGPRsLeft = 2; 11188 int ArgFPRsLeft = FLen ? 2 : 0; 11189 11190 // The rules for return and argument types are the same, so defer to 11191 // classifyArgumentType. 11192 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 11193 ArgFPRsLeft); 11194 } 11195 11196 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11197 QualType Ty) const { 11198 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11199 11200 // Empty records are ignored for parameter passing purposes. 11201 if (isEmptyRecord(getContext(), Ty, true)) { 11202 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 11203 getVAListElementType(CGF), SlotSize); 11204 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11205 return Addr; 11206 } 11207 11208 auto TInfo = getContext().getTypeInfoInChars(Ty); 11209 11210 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11211 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11212 11213 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11214 SlotSize, /*AllowHigherAlign=*/true); 11215 } 11216 11217 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11218 int TySize = getContext().getTypeSize(Ty); 11219 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11220 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11221 return ABIArgInfo::getSignExtend(Ty); 11222 return ABIArgInfo::getExtend(Ty); 11223 } 11224 11225 namespace { 11226 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11227 public: 11228 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11229 unsigned FLen) 11230 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11231 11232 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11233 CodeGen::CodeGenModule &CGM) const override { 11234 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11235 if (!FD) return; 11236 11237 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11238 if (!Attr) 11239 return; 11240 11241 const char *Kind; 11242 switch (Attr->getInterrupt()) { 11243 case RISCVInterruptAttr::user: Kind = "user"; break; 11244 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11245 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11246 } 11247 11248 auto *Fn = cast<llvm::Function>(GV); 11249 11250 Fn->addFnAttr("interrupt", Kind); 11251 } 11252 }; 11253 } // namespace 11254 11255 //===----------------------------------------------------------------------===// 11256 // VE ABI Implementation. 11257 // 11258 namespace { 11259 class VEABIInfo : public DefaultABIInfo { 11260 public: 11261 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11262 11263 private: 11264 ABIArgInfo classifyReturnType(QualType RetTy) const; 11265 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11266 void computeInfo(CGFunctionInfo &FI) const override; 11267 }; 11268 } // end anonymous namespace 11269 11270 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11271 if (Ty->isAnyComplexType()) 11272 return ABIArgInfo::getDirect(); 11273 uint64_t Size = getContext().getTypeSize(Ty); 11274 if (Size < 64 && Ty->isIntegerType()) 11275 return ABIArgInfo::getExtend(Ty); 11276 return DefaultABIInfo::classifyReturnType(Ty); 11277 } 11278 11279 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11280 if (Ty->isAnyComplexType()) 11281 return ABIArgInfo::getDirect(); 11282 uint64_t Size = getContext().getTypeSize(Ty); 11283 if (Size < 64 && Ty->isIntegerType()) 11284 return ABIArgInfo::getExtend(Ty); 11285 return DefaultABIInfo::classifyArgumentType(Ty); 11286 } 11287 11288 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11289 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11290 for (auto &Arg : FI.arguments()) 11291 Arg.info = classifyArgumentType(Arg.type); 11292 } 11293 11294 namespace { 11295 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11296 public: 11297 VETargetCodeGenInfo(CodeGenTypes &CGT) 11298 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11299 // VE ABI requires the arguments of variadic and prototype-less functions 11300 // are passed in both registers and memory. 11301 bool isNoProtoCallVariadic(const CallArgList &args, 11302 const FunctionNoProtoType *fnType) const override { 11303 return true; 11304 } 11305 }; 11306 } // end anonymous namespace 11307 11308 //===----------------------------------------------------------------------===// 11309 // Driver code 11310 //===----------------------------------------------------------------------===// 11311 11312 bool CodeGenModule::supportsCOMDAT() const { 11313 return getTriple().supportsCOMDAT(); 11314 } 11315 11316 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11317 if (TheTargetCodeGenInfo) 11318 return *TheTargetCodeGenInfo; 11319 11320 // Helper to set the unique_ptr while still keeping the return value. 11321 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11322 this->TheTargetCodeGenInfo.reset(P); 11323 return *P; 11324 }; 11325 11326 const llvm::Triple &Triple = getTarget().getTriple(); 11327 switch (Triple.getArch()) { 11328 default: 11329 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11330 11331 case llvm::Triple::le32: 11332 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11333 case llvm::Triple::m68k: 11334 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11335 case llvm::Triple::mips: 11336 case llvm::Triple::mipsel: 11337 if (Triple.getOS() == llvm::Triple::NaCl) 11338 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11339 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11340 11341 case llvm::Triple::mips64: 11342 case llvm::Triple::mips64el: 11343 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11344 11345 case llvm::Triple::avr: { 11346 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 11347 // on avrtiny. For passing return value, R18~R25 are used on avr, and 11348 // R22~R25 are used on avrtiny. 11349 unsigned NPR = getTarget().getABI() == "avrtiny" ? 6 : 18; 11350 unsigned NRR = getTarget().getABI() == "avrtiny" ? 4 : 8; 11351 return SetCGInfo(new AVRTargetCodeGenInfo(Types, NPR, NRR)); 11352 } 11353 11354 case llvm::Triple::aarch64: 11355 case llvm::Triple::aarch64_32: 11356 case llvm::Triple::aarch64_be: { 11357 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11358 if (getTarget().getABI() == "darwinpcs") 11359 Kind = AArch64ABIInfo::DarwinPCS; 11360 else if (Triple.isOSWindows()) 11361 return SetCGInfo( 11362 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11363 11364 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11365 } 11366 11367 case llvm::Triple::wasm32: 11368 case llvm::Triple::wasm64: { 11369 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11370 if (getTarget().getABI() == "experimental-mv") 11371 Kind = WebAssemblyABIInfo::ExperimentalMV; 11372 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11373 } 11374 11375 case llvm::Triple::arm: 11376 case llvm::Triple::armeb: 11377 case llvm::Triple::thumb: 11378 case llvm::Triple::thumbeb: { 11379 if (Triple.getOS() == llvm::Triple::Win32) { 11380 return SetCGInfo( 11381 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11382 } 11383 11384 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11385 StringRef ABIStr = getTarget().getABI(); 11386 if (ABIStr == "apcs-gnu") 11387 Kind = ARMABIInfo::APCS; 11388 else if (ABIStr == "aapcs16") 11389 Kind = ARMABIInfo::AAPCS16_VFP; 11390 else if (CodeGenOpts.FloatABI == "hard" || 11391 (CodeGenOpts.FloatABI != "soft" && 11392 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11393 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11394 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11395 Kind = ARMABIInfo::AAPCS_VFP; 11396 11397 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11398 } 11399 11400 case llvm::Triple::ppc: { 11401 if (Triple.isOSAIX()) 11402 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11403 11404 bool IsSoftFloat = 11405 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11406 bool RetSmallStructInRegABI = 11407 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11408 return SetCGInfo( 11409 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11410 } 11411 case llvm::Triple::ppcle: { 11412 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11413 bool RetSmallStructInRegABI = 11414 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11415 return SetCGInfo( 11416 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11417 } 11418 case llvm::Triple::ppc64: 11419 if (Triple.isOSAIX()) 11420 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11421 11422 if (Triple.isOSBinFormatELF()) { 11423 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11424 if (getTarget().getABI() == "elfv2") 11425 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11426 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11427 11428 return SetCGInfo( 11429 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11430 } 11431 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11432 case llvm::Triple::ppc64le: { 11433 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11434 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11435 if (getTarget().getABI() == "elfv1") 11436 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11437 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11438 11439 return SetCGInfo( 11440 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11441 } 11442 11443 case llvm::Triple::nvptx: 11444 case llvm::Triple::nvptx64: 11445 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11446 11447 case llvm::Triple::msp430: 11448 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11449 11450 case llvm::Triple::riscv32: 11451 case llvm::Triple::riscv64: { 11452 StringRef ABIStr = getTarget().getABI(); 11453 unsigned XLen = getTarget().getPointerWidth(0); 11454 unsigned ABIFLen = 0; 11455 if (ABIStr.endswith("f")) 11456 ABIFLen = 32; 11457 else if (ABIStr.endswith("d")) 11458 ABIFLen = 64; 11459 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11460 } 11461 11462 case llvm::Triple::systemz: { 11463 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11464 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11465 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11466 } 11467 11468 case llvm::Triple::tce: 11469 case llvm::Triple::tcele: 11470 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11471 11472 case llvm::Triple::x86: { 11473 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11474 bool RetSmallStructInRegABI = 11475 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11476 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11477 11478 if (Triple.getOS() == llvm::Triple::Win32) { 11479 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11480 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11481 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11482 } else { 11483 return SetCGInfo(new X86_32TargetCodeGenInfo( 11484 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11485 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11486 CodeGenOpts.FloatABI == "soft")); 11487 } 11488 } 11489 11490 case llvm::Triple::x86_64: { 11491 StringRef ABI = getTarget().getABI(); 11492 X86AVXABILevel AVXLevel = 11493 (ABI == "avx512" 11494 ? X86AVXABILevel::AVX512 11495 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11496 11497 switch (Triple.getOS()) { 11498 case llvm::Triple::Win32: 11499 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11500 default: 11501 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11502 } 11503 } 11504 case llvm::Triple::hexagon: 11505 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11506 case llvm::Triple::lanai: 11507 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11508 case llvm::Triple::r600: 11509 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11510 case llvm::Triple::amdgcn: 11511 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11512 case llvm::Triple::sparc: 11513 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11514 case llvm::Triple::sparcv9: 11515 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11516 case llvm::Triple::xcore: 11517 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11518 case llvm::Triple::arc: 11519 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11520 case llvm::Triple::spir: 11521 case llvm::Triple::spir64: 11522 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11523 case llvm::Triple::spirv32: 11524 case llvm::Triple::spirv64: 11525 return SetCGInfo(new SPIRVTargetCodeGenInfo(Types)); 11526 case llvm::Triple::ve: 11527 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11528 } 11529 } 11530 11531 /// Create an OpenCL kernel for an enqueued block. 11532 /// 11533 /// The kernel has the same function type as the block invoke function. Its 11534 /// name is the name of the block invoke function postfixed with "_kernel". 11535 /// It simply calls the block invoke function then returns. 11536 llvm::Function * 11537 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11538 llvm::Function *Invoke, 11539 llvm::Type *BlockTy) const { 11540 auto *InvokeFT = Invoke->getFunctionType(); 11541 auto &C = CGF.getLLVMContext(); 11542 std::string Name = Invoke->getName().str() + "_kernel"; 11543 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), 11544 InvokeFT->params(), false); 11545 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name, 11546 &CGF.CGM.getModule()); 11547 auto IP = CGF.Builder.saveIP(); 11548 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11549 auto &Builder = CGF.Builder; 11550 Builder.SetInsertPoint(BB); 11551 llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args())); 11552 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11553 call->setCallingConv(Invoke->getCallingConv()); 11554 Builder.CreateRetVoid(); 11555 Builder.restoreIP(IP); 11556 return F; 11557 } 11558 11559 /// Create an OpenCL kernel for an enqueued block. 11560 /// 11561 /// The type of the first argument (the block literal) is the struct type 11562 /// of the block literal instead of a pointer type. The first argument 11563 /// (block literal) is passed directly by value to the kernel. The kernel 11564 /// allocates the same type of struct on stack and stores the block literal 11565 /// to it and passes its pointer to the block invoke function. The kernel 11566 /// has "enqueued-block" function attribute and kernel argument metadata. 11567 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11568 CodeGenFunction &CGF, llvm::Function *Invoke, 11569 llvm::Type *BlockTy) const { 11570 auto &Builder = CGF.Builder; 11571 auto &C = CGF.getLLVMContext(); 11572 11573 auto *InvokeFT = Invoke->getFunctionType(); 11574 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11575 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11576 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11577 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11578 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11579 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11580 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11581 11582 ArgTys.push_back(BlockTy); 11583 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11584 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11585 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11586 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11587 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11588 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11589 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11590 ArgTys.push_back(InvokeFT->getParamType(I)); 11591 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11592 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11593 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11594 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11595 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11596 ArgNames.push_back( 11597 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11598 } 11599 std::string Name = Invoke->getName().str() + "_kernel"; 11600 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11601 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11602 &CGF.CGM.getModule()); 11603 F->addFnAttr("enqueued-block"); 11604 auto IP = CGF.Builder.saveIP(); 11605 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11606 Builder.SetInsertPoint(BB); 11607 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11608 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11609 BlockPtr->setAlignment(BlockAlign); 11610 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11611 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11612 llvm::SmallVector<llvm::Value *, 2> Args; 11613 Args.push_back(Cast); 11614 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11615 Args.push_back(I); 11616 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11617 call->setCallingConv(Invoke->getCallingConv()); 11618 Builder.CreateRetVoid(); 11619 Builder.restoreIP(IP); 11620 11621 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11622 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11623 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11624 F->setMetadata("kernel_arg_base_type", 11625 llvm::MDNode::get(C, ArgBaseTypeNames)); 11626 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11627 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11628 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11629 11630 return F; 11631 } 11632