1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   Address NextPtr =
313       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
314   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
315 
316   // If the argument is smaller than a slot, and this is a big-endian
317   // target, the argument will be right-adjusted in its slot.
318   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
319       !DirectTy->isStructTy()) {
320     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
321   }
322 
323   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
324   return Addr;
325 }
326 
327 /// Emit va_arg for a platform using the common void* representation,
328 /// where arguments are simply emitted in an array of slots on the stack.
329 ///
330 /// \param IsIndirect - Values of this type are passed indirectly.
331 /// \param ValueInfo - The size and alignment of this type, generally
332 ///   computed with getContext().getTypeInfoInChars(ValueTy).
333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
334 ///   Each argument will be allocated to a multiple of this number of
335 ///   slots, and all the slots will be aligned to this value.
336 /// \param AllowHigherAlign - The slot alignment is not a cap;
337 ///   an argument type with an alignment greater than the slot size
338 ///   will be emitted on a higher-alignment address, potentially
339 ///   leaving one or more empty slots behind as padding.
340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
341                                 QualType ValueTy, bool IsIndirect,
342                                 std::pair<CharUnits, CharUnits> ValueInfo,
343                                 CharUnits SlotSizeAndAlign,
344                                 bool AllowHigherAlign) {
345   // The size and alignment of the value that was passed directly.
346   CharUnits DirectSize, DirectAlign;
347   if (IsIndirect) {
348     DirectSize = CGF.getPointerSize();
349     DirectAlign = CGF.getPointerAlign();
350   } else {
351     DirectSize = ValueInfo.first;
352     DirectAlign = ValueInfo.second;
353   }
354 
355   // Cast the address we've calculated to the right type.
356   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
357   if (IsIndirect)
358     DirectTy = DirectTy->getPointerTo(0);
359 
360   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
361                                         DirectSize, DirectAlign,
362                                         SlotSizeAndAlign,
363                                         AllowHigherAlign);
364 
365   if (IsIndirect) {
366     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
367   }
368 
369   return Addr;
370 
371 }
372 
373 static Address emitMergePHI(CodeGenFunction &CGF,
374                             Address Addr1, llvm::BasicBlock *Block1,
375                             Address Addr2, llvm::BasicBlock *Block2,
376                             const llvm::Twine &Name = "") {
377   assert(Addr1.getType() == Addr2.getType());
378   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
379   PHI->addIncoming(Addr1.getPointer(), Block1);
380   PHI->addIncoming(Addr2.getPointer(), Block2);
381   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
382   return Address(PHI, Align);
383 }
384 
385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
386 
387 // If someone can figure out a general rule for this, that would be great.
388 // It's probably just doomed to be platform-dependent, though.
389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
390   // Verified for:
391   //   x86-64     FreeBSD, Linux, Darwin
392   //   x86-32     FreeBSD, Linux, Darwin
393   //   PowerPC    Linux, Darwin
394   //   ARM        Darwin (*not* EABI)
395   //   AArch64    Linux
396   return 32;
397 }
398 
399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
400                                      const FunctionNoProtoType *fnType) const {
401   // The following conventions are known to require this to be false:
402   //   x86_stdcall
403   //   MIPS
404   // For everything else, we just prefer false unless we opt out.
405   return false;
406 }
407 
408 void
409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
410                                              llvm::SmallString<24> &Opt) const {
411   // This assumes the user is passing a library name like "rt" instead of a
412   // filename like "librt.a/so", and that they don't care whether it's static or
413   // dynamic.
414   Opt = "-l";
415   Opt += Lib;
416 }
417 
418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
419   // OpenCL kernels are called via an explicit runtime API with arguments
420   // set with clSetKernelArg(), not as normal sub-functions.
421   // Return SPIR_KERNEL by default as the kernel calling convention to
422   // ensure the fingerprint is fixed such way that each OpenCL argument
423   // gets one matching argument in the produced kernel function argument
424   // list to enable feasible implementation of clSetKernelArg() with
425   // aggregates etc. In case we would use the default C calling conv here,
426   // clSetKernelArg() might break depending on the target-specific
427   // conventions; different targets might split structs passed as values
428   // to multiple function arguments etc.
429   return llvm::CallingConv::SPIR_KERNEL;
430 }
431 
432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
433     llvm::PointerType *T, QualType QT) const {
434   return llvm::ConstantPointerNull::get(T);
435 }
436 
437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
438                                                    const VarDecl *D) const {
439   assert(!CGM.getLangOpts().OpenCL &&
440          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
441          "Address space agnostic languages only");
442   return D ? D->getType().getAddressSpace() : LangAS::Default;
443 }
444 
445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
446     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
447     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   if (auto *C = dyn_cast<llvm::Constant>(Src))
451     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
452   // Try to preserve the source's name to make IR more readable.
453   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
454       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
455 }
456 
457 llvm::Constant *
458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
459                                         LangAS SrcAddr, LangAS DestAddr,
460                                         llvm::Type *DestTy) const {
461   // Since target may map different address spaces in AST to the same address
462   // space, an address space conversion may end up as a bitcast.
463   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
464 }
465 
466 llvm::SyncScope::ID
467 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
468                                       SyncScope Scope,
469                                       llvm::AtomicOrdering Ordering,
470                                       llvm::LLVMContext &Ctx) const {
471   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
472 }
473 
474 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
475 
476 /// isEmptyField - Return true iff a the field is "empty", that is it
477 /// is an unnamed bit-field or an (array of) empty record(s).
478 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
479                          bool AllowArrays) {
480   if (FD->isUnnamedBitfield())
481     return true;
482 
483   QualType FT = FD->getType();
484 
485   // Constant arrays of empty records count as empty, strip them off.
486   // Constant arrays of zero length always count as empty.
487   if (AllowArrays)
488     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
489       if (AT->getSize() == 0)
490         return true;
491       FT = AT->getElementType();
492     }
493 
494   const RecordType *RT = FT->getAs<RecordType>();
495   if (!RT)
496     return false;
497 
498   // C++ record fields are never empty, at least in the Itanium ABI.
499   //
500   // FIXME: We should use a predicate for whether this behavior is true in the
501   // current ABI.
502   if (isa<CXXRecordDecl>(RT->getDecl()))
503     return false;
504 
505   return isEmptyRecord(Context, FT, AllowArrays);
506 }
507 
508 /// isEmptyRecord - Return true iff a structure contains only empty
509 /// fields. Note that a structure with a flexible array member is not
510 /// considered empty.
511 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
512   const RecordType *RT = T->getAs<RecordType>();
513   if (!RT)
514     return false;
515   const RecordDecl *RD = RT->getDecl();
516   if (RD->hasFlexibleArrayMember())
517     return false;
518 
519   // If this is a C++ record, check the bases first.
520   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
521     for (const auto &I : CXXRD->bases())
522       if (!isEmptyRecord(Context, I.getType(), true))
523         return false;
524 
525   for (const auto *I : RD->fields())
526     if (!isEmptyField(Context, I, AllowArrays))
527       return false;
528   return true;
529 }
530 
531 /// isSingleElementStruct - Determine if a structure is a "single
532 /// element struct", i.e. it has exactly one non-empty field or
533 /// exactly one field which is itself a single element
534 /// struct. Structures with flexible array members are never
535 /// considered single element structs.
536 ///
537 /// \return The field declaration for the single non-empty field, if
538 /// it exists.
539 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
540   const RecordType *RT = T->getAs<RecordType>();
541   if (!RT)
542     return nullptr;
543 
544   const RecordDecl *RD = RT->getDecl();
545   if (RD->hasFlexibleArrayMember())
546     return nullptr;
547 
548   const Type *Found = nullptr;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
552     for (const auto &I : CXXRD->bases()) {
553       // Ignore empty records.
554       if (isEmptyRecord(Context, I.getType(), true))
555         continue;
556 
557       // If we already found an element then this isn't a single-element struct.
558       if (Found)
559         return nullptr;
560 
561       // If this is non-empty and not a single element struct, the composite
562       // cannot be a single element struct.
563       Found = isSingleElementStruct(I.getType(), Context);
564       if (!Found)
565         return nullptr;
566     }
567   }
568 
569   // Check for single element.
570   for (const auto *FD : RD->fields()) {
571     QualType FT = FD->getType();
572 
573     // Ignore empty fields.
574     if (isEmptyField(Context, FD, true))
575       continue;
576 
577     // If we already found an element then this isn't a single-element
578     // struct.
579     if (Found)
580       return nullptr;
581 
582     // Treat single element arrays as the element.
583     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
584       if (AT->getSize().getZExtValue() != 1)
585         break;
586       FT = AT->getElementType();
587     }
588 
589     if (!isAggregateTypeForABI(FT)) {
590       Found = FT.getTypePtr();
591     } else {
592       Found = isSingleElementStruct(FT, Context);
593       if (!Found)
594         return nullptr;
595     }
596   }
597 
598   // We don't consider a struct a single-element struct if it has
599   // padding beyond the element type.
600   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
601     return nullptr;
602 
603   return Found;
604 }
605 
606 namespace {
607 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
608                        const ABIArgInfo &AI) {
609   // This default implementation defers to the llvm backend's va_arg
610   // instruction. It can handle only passing arguments directly
611   // (typically only handled in the backend for primitive types), or
612   // aggregates passed indirectly by pointer (NOTE: if the "byval"
613   // flag has ABI impact in the callee, this implementation cannot
614   // work.)
615 
616   // Only a few cases are covered here at the moment -- those needed
617   // by the default abi.
618   llvm::Value *Val;
619 
620   if (AI.isIndirect()) {
621     assert(!AI.getPaddingType() &&
622            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
623     assert(
624         !AI.getIndirectRealign() &&
625         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
626 
627     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
628     CharUnits TyAlignForABI = TyInfo.second;
629 
630     llvm::Type *BaseTy =
631         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
632     llvm::Value *Addr =
633         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
634     return Address(Addr, TyAlignForABI);
635   } else {
636     assert((AI.isDirect() || AI.isExtend()) &&
637            "Unexpected ArgInfo Kind in generic VAArg emitter!");
638 
639     assert(!AI.getInReg() &&
640            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
641     assert(!AI.getPaddingType() &&
642            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
643     assert(!AI.getDirectOffset() &&
644            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
645     assert(!AI.getCoerceToType() &&
646            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
647 
648     Address Temp = CGF.CreateMemTemp(Ty, "varet");
649     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
650     CGF.Builder.CreateStore(Val, Temp);
651     return Temp;
652   }
653 }
654 
655 /// DefaultABIInfo - The default implementation for ABI specific
656 /// details. This implementation provides information which results in
657 /// self-consistent and sensible LLVM IR generation, but does not
658 /// conform to any particular ABI.
659 class DefaultABIInfo : public ABIInfo {
660 public:
661   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
662 
663   ABIArgInfo classifyReturnType(QualType RetTy) const;
664   ABIArgInfo classifyArgumentType(QualType RetTy) const;
665 
666   void computeInfo(CGFunctionInfo &FI) const override {
667     if (!getCXXABI().classifyReturnType(FI))
668       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
669     for (auto &I : FI.arguments())
670       I.info = classifyArgumentType(I.type);
671   }
672 
673   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
674                     QualType Ty) const override {
675     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
676   }
677 };
678 
679 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
680 public:
681   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
682     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
683 };
684 
685 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
686   Ty = useFirstFieldIfTransparentUnion(Ty);
687 
688   if (isAggregateTypeForABI(Ty)) {
689     // Records with non-trivial destructors/copy-constructors should not be
690     // passed by value.
691     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
692       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
693 
694     return getNaturalAlignIndirect(Ty);
695   }
696 
697   // Treat an enum type as its underlying type.
698   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
699     Ty = EnumTy->getDecl()->getIntegerType();
700 
701   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
702                                         : ABIArgInfo::getDirect());
703 }
704 
705 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
706   if (RetTy->isVoidType())
707     return ABIArgInfo::getIgnore();
708 
709   if (isAggregateTypeForABI(RetTy))
710     return getNaturalAlignIndirect(RetTy);
711 
712   // Treat an enum type as its underlying type.
713   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
714     RetTy = EnumTy->getDecl()->getIntegerType();
715 
716   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
717                                            : ABIArgInfo::getDirect());
718 }
719 
720 //===----------------------------------------------------------------------===//
721 // WebAssembly ABI Implementation
722 //
723 // This is a very simple ABI that relies a lot on DefaultABIInfo.
724 //===----------------------------------------------------------------------===//
725 
726 class WebAssemblyABIInfo final : public SwiftABIInfo {
727   DefaultABIInfo defaultInfo;
728 
729 public:
730   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
731       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
732 
733 private:
734   ABIArgInfo classifyReturnType(QualType RetTy) const;
735   ABIArgInfo classifyArgumentType(QualType Ty) const;
736 
737   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
738   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
739   // overload them.
740   void computeInfo(CGFunctionInfo &FI) const override {
741     if (!getCXXABI().classifyReturnType(FI))
742       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
743     for (auto &Arg : FI.arguments())
744       Arg.info = classifyArgumentType(Arg.type);
745   }
746 
747   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
748                     QualType Ty) const override;
749 
750   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
751                                     bool asReturnValue) const override {
752     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
753   }
754 
755   bool isSwiftErrorInRegister() const override {
756     return false;
757   }
758 };
759 
760 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
761 public:
762   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
763       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
764 
765   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
766                            CodeGen::CodeGenModule &CGM) const override {
767     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
768     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
769       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
770         llvm::Function *Fn = cast<llvm::Function>(GV);
771         llvm::AttrBuilder B;
772         B.addAttribute("wasm-import-module", Attr->getImportModule());
773         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
774       }
775       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
776         llvm::Function *Fn = cast<llvm::Function>(GV);
777         llvm::AttrBuilder B;
778         B.addAttribute("wasm-import-name", Attr->getImportName());
779         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
780       }
781     }
782 
783     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
784       llvm::Function *Fn = cast<llvm::Function>(GV);
785       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
786         Fn->addFnAttr("no-prototype");
787     }
788   }
789 };
790 
791 /// Classify argument of given type \p Ty.
792 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
793   Ty = useFirstFieldIfTransparentUnion(Ty);
794 
795   if (isAggregateTypeForABI(Ty)) {
796     // Records with non-trivial destructors/copy-constructors should not be
797     // passed by value.
798     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
799       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
800     // Ignore empty structs/unions.
801     if (isEmptyRecord(getContext(), Ty, true))
802       return ABIArgInfo::getIgnore();
803     // Lower single-element structs to just pass a regular value. TODO: We
804     // could do reasonable-size multiple-element structs too, using getExpand(),
805     // though watch out for things like bitfields.
806     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
807       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
808   }
809 
810   // Otherwise just do the default thing.
811   return defaultInfo.classifyArgumentType(Ty);
812 }
813 
814 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
815   if (isAggregateTypeForABI(RetTy)) {
816     // Records with non-trivial destructors/copy-constructors should not be
817     // returned by value.
818     if (!getRecordArgABI(RetTy, getCXXABI())) {
819       // Ignore empty structs/unions.
820       if (isEmptyRecord(getContext(), RetTy, true))
821         return ABIArgInfo::getIgnore();
822       // Lower single-element structs to just return a regular value. TODO: We
823       // could do reasonable-size multiple-element structs too, using
824       // ABIArgInfo::getDirect().
825       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
826         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
827     }
828   }
829 
830   // Otherwise just do the default thing.
831   return defaultInfo.classifyReturnType(RetTy);
832 }
833 
834 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
835                                       QualType Ty) const {
836   bool IsIndirect =
837       isAggregateTypeForABI(Ty) && !isSingleElementStruct(Ty, getContext());
838   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
839                           getContext().getTypeInfoInChars(Ty),
840                           CharUnits::fromQuantity(4),
841                           /*AllowHigherAlign=*/true);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 // le32/PNaCl bitcode ABI Implementation
846 //
847 // This is a simplified version of the x86_32 ABI.  Arguments and return values
848 // are always passed on the stack.
849 //===----------------------------------------------------------------------===//
850 
851 class PNaClABIInfo : public ABIInfo {
852  public:
853   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
854 
855   ABIArgInfo classifyReturnType(QualType RetTy) const;
856   ABIArgInfo classifyArgumentType(QualType RetTy) const;
857 
858   void computeInfo(CGFunctionInfo &FI) const override;
859   Address EmitVAArg(CodeGenFunction &CGF,
860                     Address VAListAddr, QualType Ty) const override;
861 };
862 
863 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
864  public:
865   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
866     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
867 };
868 
869 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
870   if (!getCXXABI().classifyReturnType(FI))
871     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
872 
873   for (auto &I : FI.arguments())
874     I.info = classifyArgumentType(I.type);
875 }
876 
877 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
878                                 QualType Ty) const {
879   // The PNaCL ABI is a bit odd, in that varargs don't use normal
880   // function classification. Structs get passed directly for varargs
881   // functions, through a rewriting transform in
882   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
883   // this target to actually support a va_arg instructions with an
884   // aggregate type, unlike other targets.
885   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
886 }
887 
888 /// Classify argument of given type \p Ty.
889 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
890   if (isAggregateTypeForABI(Ty)) {
891     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
892       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
893     return getNaturalAlignIndirect(Ty);
894   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
895     // Treat an enum type as its underlying type.
896     Ty = EnumTy->getDecl()->getIntegerType();
897   } else if (Ty->isFloatingType()) {
898     // Floating-point types don't go inreg.
899     return ABIArgInfo::getDirect();
900   }
901 
902   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
903                                         : ABIArgInfo::getDirect());
904 }
905 
906 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
907   if (RetTy->isVoidType())
908     return ABIArgInfo::getIgnore();
909 
910   // In the PNaCl ABI we always return records/structures on the stack.
911   if (isAggregateTypeForABI(RetTy))
912     return getNaturalAlignIndirect(RetTy);
913 
914   // Treat an enum type as its underlying type.
915   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
916     RetTy = EnumTy->getDecl()->getIntegerType();
917 
918   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
919                                            : ABIArgInfo::getDirect());
920 }
921 
922 /// IsX86_MMXType - Return true if this is an MMX type.
923 bool IsX86_MMXType(llvm::Type *IRType) {
924   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
925   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
926     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
927     IRType->getScalarSizeInBits() != 64;
928 }
929 
930 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
931                                           StringRef Constraint,
932                                           llvm::Type* Ty) {
933   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
934                      .Cases("y", "&y", "^Ym", true)
935                      .Default(false);
936   if (IsMMXCons && Ty->isVectorTy()) {
937     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
938       // Invalid MMX constraint
939       return nullptr;
940     }
941 
942     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
943   }
944 
945   // No operation needed
946   return Ty;
947 }
948 
949 /// Returns true if this type can be passed in SSE registers with the
950 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
951 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
952   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
953     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
954       if (BT->getKind() == BuiltinType::LongDouble) {
955         if (&Context.getTargetInfo().getLongDoubleFormat() ==
956             &llvm::APFloat::x87DoubleExtended())
957           return false;
958       }
959       return true;
960     }
961   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
962     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
963     // registers specially.
964     unsigned VecSize = Context.getTypeSize(VT);
965     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
966       return true;
967   }
968   return false;
969 }
970 
971 /// Returns true if this aggregate is small enough to be passed in SSE registers
972 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
973 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
974   return NumMembers <= 4;
975 }
976 
977 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
978 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
979   auto AI = ABIArgInfo::getDirect(T);
980   AI.setInReg(true);
981   AI.setCanBeFlattened(false);
982   return AI;
983 }
984 
985 //===----------------------------------------------------------------------===//
986 // X86-32 ABI Implementation
987 //===----------------------------------------------------------------------===//
988 
989 /// Similar to llvm::CCState, but for Clang.
990 struct CCState {
991   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
992 
993   unsigned CC;
994   unsigned FreeRegs;
995   unsigned FreeSSERegs;
996 };
997 
998 enum {
999   // Vectorcall only allows the first 6 parameters to be passed in registers.
1000   VectorcallMaxParamNumAsReg = 6
1001 };
1002 
1003 /// X86_32ABIInfo - The X86-32 ABI information.
1004 class X86_32ABIInfo : public SwiftABIInfo {
1005   enum Class {
1006     Integer,
1007     Float
1008   };
1009 
1010   static const unsigned MinABIStackAlignInBytes = 4;
1011 
1012   bool IsDarwinVectorABI;
1013   bool IsRetSmallStructInRegABI;
1014   bool IsWin32StructABI;
1015   bool IsSoftFloatABI;
1016   bool IsMCUABI;
1017   unsigned DefaultNumRegisterParameters;
1018 
1019   static bool isRegisterSize(unsigned Size) {
1020     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1021   }
1022 
1023   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1024     // FIXME: Assumes vectorcall is in use.
1025     return isX86VectorTypeForVectorCall(getContext(), Ty);
1026   }
1027 
1028   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1029                                          uint64_t NumMembers) const override {
1030     // FIXME: Assumes vectorcall is in use.
1031     return isX86VectorCallAggregateSmallEnough(NumMembers);
1032   }
1033 
1034   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1035 
1036   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1037   /// such that the argument will be passed in memory.
1038   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1039 
1040   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1041 
1042   /// Return the alignment to use for the given type on the stack.
1043   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1044 
1045   Class classify(QualType Ty) const;
1046   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1047   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1048 
1049   /// Updates the number of available free registers, returns
1050   /// true if any registers were allocated.
1051   bool updateFreeRegs(QualType Ty, CCState &State) const;
1052 
1053   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1054                                 bool &NeedsPadding) const;
1055   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1056 
1057   bool canExpandIndirectArgument(QualType Ty) const;
1058 
1059   /// Rewrite the function info so that all memory arguments use
1060   /// inalloca.
1061   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1062 
1063   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1064                            CharUnits &StackOffset, ABIArgInfo &Info,
1065                            QualType Type) const;
1066   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1067                              bool &UsedInAlloca) const;
1068 
1069 public:
1070 
1071   void computeInfo(CGFunctionInfo &FI) const override;
1072   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1073                     QualType Ty) const override;
1074 
1075   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1076                 bool RetSmallStructInRegABI, bool Win32StructABI,
1077                 unsigned NumRegisterParameters, bool SoftFloatABI)
1078     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1079       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1080       IsWin32StructABI(Win32StructABI),
1081       IsSoftFloatABI(SoftFloatABI),
1082       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1083       DefaultNumRegisterParameters(NumRegisterParameters) {}
1084 
1085   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1086                                     bool asReturnValue) const override {
1087     // LLVM's x86-32 lowering currently only assigns up to three
1088     // integer registers and three fp registers.  Oddly, it'll use up to
1089     // four vector registers for vectors, but those can overlap with the
1090     // scalar registers.
1091     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1092   }
1093 
1094   bool isSwiftErrorInRegister() const override {
1095     // x86-32 lowering does not support passing swifterror in a register.
1096     return false;
1097   }
1098 };
1099 
1100 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1101 public:
1102   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1103                           bool RetSmallStructInRegABI, bool Win32StructABI,
1104                           unsigned NumRegisterParameters, bool SoftFloatABI)
1105       : TargetCodeGenInfo(new X86_32ABIInfo(
1106             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1107             NumRegisterParameters, SoftFloatABI)) {}
1108 
1109   static bool isStructReturnInRegABI(
1110       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1111 
1112   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1113                            CodeGen::CodeGenModule &CGM) const override;
1114 
1115   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1116     // Darwin uses different dwarf register numbers for EH.
1117     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1118     return 4;
1119   }
1120 
1121   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1122                                llvm::Value *Address) const override;
1123 
1124   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1125                                   StringRef Constraint,
1126                                   llvm::Type* Ty) const override {
1127     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1128   }
1129 
1130   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1131                                 std::string &Constraints,
1132                                 std::vector<llvm::Type *> &ResultRegTypes,
1133                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1134                                 std::vector<LValue> &ResultRegDests,
1135                                 std::string &AsmString,
1136                                 unsigned NumOutputs) const override;
1137 
1138   llvm::Constant *
1139   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1140     unsigned Sig = (0xeb << 0) |  // jmp rel8
1141                    (0x06 << 8) |  //           .+0x08
1142                    ('v' << 16) |
1143                    ('2' << 24);
1144     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1145   }
1146 
1147   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1148     return "movl\t%ebp, %ebp"
1149            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1150   }
1151 };
1152 
1153 }
1154 
1155 /// Rewrite input constraint references after adding some output constraints.
1156 /// In the case where there is one output and one input and we add one output,
1157 /// we need to replace all operand references greater than or equal to 1:
1158 ///     mov $0, $1
1159 ///     mov eax, $1
1160 /// The result will be:
1161 ///     mov $0, $2
1162 ///     mov eax, $2
1163 static void rewriteInputConstraintReferences(unsigned FirstIn,
1164                                              unsigned NumNewOuts,
1165                                              std::string &AsmString) {
1166   std::string Buf;
1167   llvm::raw_string_ostream OS(Buf);
1168   size_t Pos = 0;
1169   while (Pos < AsmString.size()) {
1170     size_t DollarStart = AsmString.find('$', Pos);
1171     if (DollarStart == std::string::npos)
1172       DollarStart = AsmString.size();
1173     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1174     if (DollarEnd == std::string::npos)
1175       DollarEnd = AsmString.size();
1176     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1177     Pos = DollarEnd;
1178     size_t NumDollars = DollarEnd - DollarStart;
1179     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1180       // We have an operand reference.
1181       size_t DigitStart = Pos;
1182       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1183       if (DigitEnd == std::string::npos)
1184         DigitEnd = AsmString.size();
1185       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1186       unsigned OperandIndex;
1187       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1188         if (OperandIndex >= FirstIn)
1189           OperandIndex += NumNewOuts;
1190         OS << OperandIndex;
1191       } else {
1192         OS << OperandStr;
1193       }
1194       Pos = DigitEnd;
1195     }
1196   }
1197   AsmString = std::move(OS.str());
1198 }
1199 
1200 /// Add output constraints for EAX:EDX because they are return registers.
1201 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1202     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1203     std::vector<llvm::Type *> &ResultRegTypes,
1204     std::vector<llvm::Type *> &ResultTruncRegTypes,
1205     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1206     unsigned NumOutputs) const {
1207   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1208 
1209   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1210   // larger.
1211   if (!Constraints.empty())
1212     Constraints += ',';
1213   if (RetWidth <= 32) {
1214     Constraints += "={eax}";
1215     ResultRegTypes.push_back(CGF.Int32Ty);
1216   } else {
1217     // Use the 'A' constraint for EAX:EDX.
1218     Constraints += "=A";
1219     ResultRegTypes.push_back(CGF.Int64Ty);
1220   }
1221 
1222   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1223   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1224   ResultTruncRegTypes.push_back(CoerceTy);
1225 
1226   // Coerce the integer by bitcasting the return slot pointer.
1227   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1228                                                   CoerceTy->getPointerTo()));
1229   ResultRegDests.push_back(ReturnSlot);
1230 
1231   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1232 }
1233 
1234 /// shouldReturnTypeInRegister - Determine if the given type should be
1235 /// returned in a register (for the Darwin and MCU ABI).
1236 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1237                                                ASTContext &Context) const {
1238   uint64_t Size = Context.getTypeSize(Ty);
1239 
1240   // For i386, type must be register sized.
1241   // For the MCU ABI, it only needs to be <= 8-byte
1242   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1243    return false;
1244 
1245   if (Ty->isVectorType()) {
1246     // 64- and 128- bit vectors inside structures are not returned in
1247     // registers.
1248     if (Size == 64 || Size == 128)
1249       return false;
1250 
1251     return true;
1252   }
1253 
1254   // If this is a builtin, pointer, enum, complex type, member pointer, or
1255   // member function pointer it is ok.
1256   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1257       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1258       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1259     return true;
1260 
1261   // Arrays are treated like records.
1262   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1263     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1264 
1265   // Otherwise, it must be a record type.
1266   const RecordType *RT = Ty->getAs<RecordType>();
1267   if (!RT) return false;
1268 
1269   // FIXME: Traverse bases here too.
1270 
1271   // Structure types are passed in register if all fields would be
1272   // passed in a register.
1273   for (const auto *FD : RT->getDecl()->fields()) {
1274     // Empty fields are ignored.
1275     if (isEmptyField(Context, FD, true))
1276       continue;
1277 
1278     // Check fields recursively.
1279     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1280       return false;
1281   }
1282   return true;
1283 }
1284 
1285 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1286   // Treat complex types as the element type.
1287   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1288     Ty = CTy->getElementType();
1289 
1290   // Check for a type which we know has a simple scalar argument-passing
1291   // convention without any padding.  (We're specifically looking for 32
1292   // and 64-bit integer and integer-equivalents, float, and double.)
1293   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1294       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1295     return false;
1296 
1297   uint64_t Size = Context.getTypeSize(Ty);
1298   return Size == 32 || Size == 64;
1299 }
1300 
1301 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1302                           uint64_t &Size) {
1303   for (const auto *FD : RD->fields()) {
1304     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1305     // argument is smaller than 32-bits, expanding the struct will create
1306     // alignment padding.
1307     if (!is32Or64BitBasicType(FD->getType(), Context))
1308       return false;
1309 
1310     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1311     // how to expand them yet, and the predicate for telling if a bitfield still
1312     // counts as "basic" is more complicated than what we were doing previously.
1313     if (FD->isBitField())
1314       return false;
1315 
1316     Size += Context.getTypeSize(FD->getType());
1317   }
1318   return true;
1319 }
1320 
1321 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1322                                  uint64_t &Size) {
1323   // Don't do this if there are any non-empty bases.
1324   for (const CXXBaseSpecifier &Base : RD->bases()) {
1325     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1326                               Size))
1327       return false;
1328   }
1329   if (!addFieldSizes(Context, RD, Size))
1330     return false;
1331   return true;
1332 }
1333 
1334 /// Test whether an argument type which is to be passed indirectly (on the
1335 /// stack) would have the equivalent layout if it was expanded into separate
1336 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1337 /// optimizations.
1338 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1339   // We can only expand structure types.
1340   const RecordType *RT = Ty->getAs<RecordType>();
1341   if (!RT)
1342     return false;
1343   const RecordDecl *RD = RT->getDecl();
1344   uint64_t Size = 0;
1345   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1346     if (!IsWin32StructABI) {
1347       // On non-Windows, we have to conservatively match our old bitcode
1348       // prototypes in order to be ABI-compatible at the bitcode level.
1349       if (!CXXRD->isCLike())
1350         return false;
1351     } else {
1352       // Don't do this for dynamic classes.
1353       if (CXXRD->isDynamicClass())
1354         return false;
1355     }
1356     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1357       return false;
1358   } else {
1359     if (!addFieldSizes(getContext(), RD, Size))
1360       return false;
1361   }
1362 
1363   // We can do this if there was no alignment padding.
1364   return Size == getContext().getTypeSize(Ty);
1365 }
1366 
1367 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1368   // If the return value is indirect, then the hidden argument is consuming one
1369   // integer register.
1370   if (State.FreeRegs) {
1371     --State.FreeRegs;
1372     if (!IsMCUABI)
1373       return getNaturalAlignIndirectInReg(RetTy);
1374   }
1375   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1376 }
1377 
1378 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1379                                              CCState &State) const {
1380   if (RetTy->isVoidType())
1381     return ABIArgInfo::getIgnore();
1382 
1383   const Type *Base = nullptr;
1384   uint64_t NumElts = 0;
1385   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1386        State.CC == llvm::CallingConv::X86_RegCall) &&
1387       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1388     // The LLVM struct type for such an aggregate should lower properly.
1389     return ABIArgInfo::getDirect();
1390   }
1391 
1392   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1393     // On Darwin, some vectors are returned in registers.
1394     if (IsDarwinVectorABI) {
1395       uint64_t Size = getContext().getTypeSize(RetTy);
1396 
1397       // 128-bit vectors are a special case; they are returned in
1398       // registers and we need to make sure to pick a type the LLVM
1399       // backend will like.
1400       if (Size == 128)
1401         return ABIArgInfo::getDirect(llvm::VectorType::get(
1402                   llvm::Type::getInt64Ty(getVMContext()), 2));
1403 
1404       // Always return in register if it fits in a general purpose
1405       // register, or if it is 64 bits and has a single element.
1406       if ((Size == 8 || Size == 16 || Size == 32) ||
1407           (Size == 64 && VT->getNumElements() == 1))
1408         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1409                                                             Size));
1410 
1411       return getIndirectReturnResult(RetTy, State);
1412     }
1413 
1414     return ABIArgInfo::getDirect();
1415   }
1416 
1417   if (isAggregateTypeForABI(RetTy)) {
1418     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1419       // Structures with flexible arrays are always indirect.
1420       if (RT->getDecl()->hasFlexibleArrayMember())
1421         return getIndirectReturnResult(RetTy, State);
1422     }
1423 
1424     // If specified, structs and unions are always indirect.
1425     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1426       return getIndirectReturnResult(RetTy, State);
1427 
1428     // Ignore empty structs/unions.
1429     if (isEmptyRecord(getContext(), RetTy, true))
1430       return ABIArgInfo::getIgnore();
1431 
1432     // Small structures which are register sized are generally returned
1433     // in a register.
1434     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1435       uint64_t Size = getContext().getTypeSize(RetTy);
1436 
1437       // As a special-case, if the struct is a "single-element" struct, and
1438       // the field is of type "float" or "double", return it in a
1439       // floating-point register. (MSVC does not apply this special case.)
1440       // We apply a similar transformation for pointer types to improve the
1441       // quality of the generated IR.
1442       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1443         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1444             || SeltTy->hasPointerRepresentation())
1445           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1446 
1447       // FIXME: We should be able to narrow this integer in cases with dead
1448       // padding.
1449       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1450     }
1451 
1452     return getIndirectReturnResult(RetTy, State);
1453   }
1454 
1455   // Treat an enum type as its underlying type.
1456   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1457     RetTy = EnumTy->getDecl()->getIntegerType();
1458 
1459   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1460                                            : ABIArgInfo::getDirect());
1461 }
1462 
1463 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1464   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1465 }
1466 
1467 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1468   const RecordType *RT = Ty->getAs<RecordType>();
1469   if (!RT)
1470     return 0;
1471   const RecordDecl *RD = RT->getDecl();
1472 
1473   // If this is a C++ record, check the bases first.
1474   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1475     for (const auto &I : CXXRD->bases())
1476       if (!isRecordWithSSEVectorType(Context, I.getType()))
1477         return false;
1478 
1479   for (const auto *i : RD->fields()) {
1480     QualType FT = i->getType();
1481 
1482     if (isSSEVectorType(Context, FT))
1483       return true;
1484 
1485     if (isRecordWithSSEVectorType(Context, FT))
1486       return true;
1487   }
1488 
1489   return false;
1490 }
1491 
1492 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1493                                                  unsigned Align) const {
1494   // Otherwise, if the alignment is less than or equal to the minimum ABI
1495   // alignment, just use the default; the backend will handle this.
1496   if (Align <= MinABIStackAlignInBytes)
1497     return 0; // Use default alignment.
1498 
1499   // On non-Darwin, the stack type alignment is always 4.
1500   if (!IsDarwinVectorABI) {
1501     // Set explicit alignment, since we may need to realign the top.
1502     return MinABIStackAlignInBytes;
1503   }
1504 
1505   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1506   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1507                       isRecordWithSSEVectorType(getContext(), Ty)))
1508     return 16;
1509 
1510   return MinABIStackAlignInBytes;
1511 }
1512 
1513 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1514                                             CCState &State) const {
1515   if (!ByVal) {
1516     if (State.FreeRegs) {
1517       --State.FreeRegs; // Non-byval indirects just use one pointer.
1518       if (!IsMCUABI)
1519         return getNaturalAlignIndirectInReg(Ty);
1520     }
1521     return getNaturalAlignIndirect(Ty, false);
1522   }
1523 
1524   // Compute the byval alignment.
1525   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1526   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1527   if (StackAlign == 0)
1528     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1529 
1530   // If the stack alignment is less than the type alignment, realign the
1531   // argument.
1532   bool Realign = TypeAlign > StackAlign;
1533   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1534                                  /*ByVal=*/true, Realign);
1535 }
1536 
1537 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1538   const Type *T = isSingleElementStruct(Ty, getContext());
1539   if (!T)
1540     T = Ty.getTypePtr();
1541 
1542   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1543     BuiltinType::Kind K = BT->getKind();
1544     if (K == BuiltinType::Float || K == BuiltinType::Double)
1545       return Float;
1546   }
1547   return Integer;
1548 }
1549 
1550 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1551   if (!IsSoftFloatABI) {
1552     Class C = classify(Ty);
1553     if (C == Float)
1554       return false;
1555   }
1556 
1557   unsigned Size = getContext().getTypeSize(Ty);
1558   unsigned SizeInRegs = (Size + 31) / 32;
1559 
1560   if (SizeInRegs == 0)
1561     return false;
1562 
1563   if (!IsMCUABI) {
1564     if (SizeInRegs > State.FreeRegs) {
1565       State.FreeRegs = 0;
1566       return false;
1567     }
1568   } else {
1569     // The MCU psABI allows passing parameters in-reg even if there are
1570     // earlier parameters that are passed on the stack. Also,
1571     // it does not allow passing >8-byte structs in-register,
1572     // even if there are 3 free registers available.
1573     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1574       return false;
1575   }
1576 
1577   State.FreeRegs -= SizeInRegs;
1578   return true;
1579 }
1580 
1581 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1582                                              bool &InReg,
1583                                              bool &NeedsPadding) const {
1584   // On Windows, aggregates other than HFAs are never passed in registers, and
1585   // they do not consume register slots. Homogenous floating-point aggregates
1586   // (HFAs) have already been dealt with at this point.
1587   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1588     return false;
1589 
1590   NeedsPadding = false;
1591   InReg = !IsMCUABI;
1592 
1593   if (!updateFreeRegs(Ty, State))
1594     return false;
1595 
1596   if (IsMCUABI)
1597     return true;
1598 
1599   if (State.CC == llvm::CallingConv::X86_FastCall ||
1600       State.CC == llvm::CallingConv::X86_VectorCall ||
1601       State.CC == llvm::CallingConv::X86_RegCall) {
1602     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1603       NeedsPadding = true;
1604 
1605     return false;
1606   }
1607 
1608   return true;
1609 }
1610 
1611 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1612   if (!updateFreeRegs(Ty, State))
1613     return false;
1614 
1615   if (IsMCUABI)
1616     return false;
1617 
1618   if (State.CC == llvm::CallingConv::X86_FastCall ||
1619       State.CC == llvm::CallingConv::X86_VectorCall ||
1620       State.CC == llvm::CallingConv::X86_RegCall) {
1621     if (getContext().getTypeSize(Ty) > 32)
1622       return false;
1623 
1624     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1625         Ty->isReferenceType());
1626   }
1627 
1628   return true;
1629 }
1630 
1631 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1632                                                CCState &State) const {
1633   // FIXME: Set alignment on indirect arguments.
1634 
1635   Ty = useFirstFieldIfTransparentUnion(Ty);
1636 
1637   // Check with the C++ ABI first.
1638   const RecordType *RT = Ty->getAs<RecordType>();
1639   if (RT) {
1640     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1641     if (RAA == CGCXXABI::RAA_Indirect) {
1642       return getIndirectResult(Ty, false, State);
1643     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1644       // The field index doesn't matter, we'll fix it up later.
1645       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1646     }
1647   }
1648 
1649   // Regcall uses the concept of a homogenous vector aggregate, similar
1650   // to other targets.
1651   const Type *Base = nullptr;
1652   uint64_t NumElts = 0;
1653   if (State.CC == llvm::CallingConv::X86_RegCall &&
1654       isHomogeneousAggregate(Ty, Base, NumElts)) {
1655 
1656     if (State.FreeSSERegs >= NumElts) {
1657       State.FreeSSERegs -= NumElts;
1658       if (Ty->isBuiltinType() || Ty->isVectorType())
1659         return ABIArgInfo::getDirect();
1660       return ABIArgInfo::getExpand();
1661     }
1662     return getIndirectResult(Ty, /*ByVal=*/false, State);
1663   }
1664 
1665   if (isAggregateTypeForABI(Ty)) {
1666     // Structures with flexible arrays are always indirect.
1667     // FIXME: This should not be byval!
1668     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1669       return getIndirectResult(Ty, true, State);
1670 
1671     // Ignore empty structs/unions on non-Windows.
1672     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1673       return ABIArgInfo::getIgnore();
1674 
1675     llvm::LLVMContext &LLVMContext = getVMContext();
1676     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1677     bool NeedsPadding = false;
1678     bool InReg;
1679     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1680       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1681       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1682       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1683       if (InReg)
1684         return ABIArgInfo::getDirectInReg(Result);
1685       else
1686         return ABIArgInfo::getDirect(Result);
1687     }
1688     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1689 
1690     // Expand small (<= 128-bit) record types when we know that the stack layout
1691     // of those arguments will match the struct. This is important because the
1692     // LLVM backend isn't smart enough to remove byval, which inhibits many
1693     // optimizations.
1694     // Don't do this for the MCU if there are still free integer registers
1695     // (see X86_64 ABI for full explanation).
1696     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1697         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1698       return ABIArgInfo::getExpandWithPadding(
1699           State.CC == llvm::CallingConv::X86_FastCall ||
1700               State.CC == llvm::CallingConv::X86_VectorCall ||
1701               State.CC == llvm::CallingConv::X86_RegCall,
1702           PaddingType);
1703 
1704     return getIndirectResult(Ty, true, State);
1705   }
1706 
1707   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1708     // On Darwin, some vectors are passed in memory, we handle this by passing
1709     // it as an i8/i16/i32/i64.
1710     if (IsDarwinVectorABI) {
1711       uint64_t Size = getContext().getTypeSize(Ty);
1712       if ((Size == 8 || Size == 16 || Size == 32) ||
1713           (Size == 64 && VT->getNumElements() == 1))
1714         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1715                                                             Size));
1716     }
1717 
1718     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1719       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1720 
1721     return ABIArgInfo::getDirect();
1722   }
1723 
1724 
1725   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1726     Ty = EnumTy->getDecl()->getIntegerType();
1727 
1728   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1729 
1730   if (Ty->isPromotableIntegerType()) {
1731     if (InReg)
1732       return ABIArgInfo::getExtendInReg(Ty);
1733     return ABIArgInfo::getExtend(Ty);
1734   }
1735 
1736   if (InReg)
1737     return ABIArgInfo::getDirectInReg();
1738   return ABIArgInfo::getDirect();
1739 }
1740 
1741 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1742                                           bool &UsedInAlloca) const {
1743   // Vectorcall x86 works subtly different than in x64, so the format is
1744   // a bit different than the x64 version.  First, all vector types (not HVAs)
1745   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1746   // This differs from the x64 implementation, where the first 6 by INDEX get
1747   // registers.
1748   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1749   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1750   // first take up the remaining YMM/XMM registers. If insufficient registers
1751   // remain but an integer register (ECX/EDX) is available, it will be passed
1752   // in that, else, on the stack.
1753   for (auto &I : FI.arguments()) {
1754     // First pass do all the vector types.
1755     const Type *Base = nullptr;
1756     uint64_t NumElts = 0;
1757     const QualType& Ty = I.type;
1758     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1759         isHomogeneousAggregate(Ty, Base, NumElts)) {
1760       if (State.FreeSSERegs >= NumElts) {
1761         State.FreeSSERegs -= NumElts;
1762         I.info = ABIArgInfo::getDirect();
1763       } else {
1764         I.info = classifyArgumentType(Ty, State);
1765       }
1766       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1767     }
1768   }
1769 
1770   for (auto &I : FI.arguments()) {
1771     // Second pass, do the rest!
1772     const Type *Base = nullptr;
1773     uint64_t NumElts = 0;
1774     const QualType& Ty = I.type;
1775     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1776 
1777     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1778       // Assign true HVAs (non vector/native FP types).
1779       if (State.FreeSSERegs >= NumElts) {
1780         State.FreeSSERegs -= NumElts;
1781         I.info = getDirectX86Hva();
1782       } else {
1783         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1784       }
1785     } else if (!IsHva) {
1786       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1787       I.info = classifyArgumentType(Ty, State);
1788       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1789     }
1790   }
1791 }
1792 
1793 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1794   CCState State(FI.getCallingConvention());
1795   if (IsMCUABI)
1796     State.FreeRegs = 3;
1797   else if (State.CC == llvm::CallingConv::X86_FastCall)
1798     State.FreeRegs = 2;
1799   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1800     State.FreeRegs = 2;
1801     State.FreeSSERegs = 6;
1802   } else if (FI.getHasRegParm())
1803     State.FreeRegs = FI.getRegParm();
1804   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1805     State.FreeRegs = 5;
1806     State.FreeSSERegs = 8;
1807   } else
1808     State.FreeRegs = DefaultNumRegisterParameters;
1809 
1810   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1811     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1812   } else if (FI.getReturnInfo().isIndirect()) {
1813     // The C++ ABI is not aware of register usage, so we have to check if the
1814     // return value was sret and put it in a register ourselves if appropriate.
1815     if (State.FreeRegs) {
1816       --State.FreeRegs;  // The sret parameter consumes a register.
1817       if (!IsMCUABI)
1818         FI.getReturnInfo().setInReg(true);
1819     }
1820   }
1821 
1822   // The chain argument effectively gives us another free register.
1823   if (FI.isChainCall())
1824     ++State.FreeRegs;
1825 
1826   bool UsedInAlloca = false;
1827   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1828     computeVectorCallArgs(FI, State, UsedInAlloca);
1829   } else {
1830     // If not vectorcall, revert to normal behavior.
1831     for (auto &I : FI.arguments()) {
1832       I.info = classifyArgumentType(I.type, State);
1833       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1834     }
1835   }
1836 
1837   // If we needed to use inalloca for any argument, do a second pass and rewrite
1838   // all the memory arguments to use inalloca.
1839   if (UsedInAlloca)
1840     rewriteWithInAlloca(FI);
1841 }
1842 
1843 void
1844 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1845                                    CharUnits &StackOffset, ABIArgInfo &Info,
1846                                    QualType Type) const {
1847   // Arguments are always 4-byte-aligned.
1848   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1849 
1850   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1851   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1852   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1853   StackOffset += getContext().getTypeSizeInChars(Type);
1854 
1855   // Insert padding bytes to respect alignment.
1856   CharUnits FieldEnd = StackOffset;
1857   StackOffset = FieldEnd.alignTo(FieldAlign);
1858   if (StackOffset != FieldEnd) {
1859     CharUnits NumBytes = StackOffset - FieldEnd;
1860     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1861     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1862     FrameFields.push_back(Ty);
1863   }
1864 }
1865 
1866 static bool isArgInAlloca(const ABIArgInfo &Info) {
1867   // Leave ignored and inreg arguments alone.
1868   switch (Info.getKind()) {
1869   case ABIArgInfo::InAlloca:
1870     return true;
1871   case ABIArgInfo::Indirect:
1872     assert(Info.getIndirectByVal());
1873     return true;
1874   case ABIArgInfo::Ignore:
1875     return false;
1876   case ABIArgInfo::Direct:
1877   case ABIArgInfo::Extend:
1878     if (Info.getInReg())
1879       return false;
1880     return true;
1881   case ABIArgInfo::Expand:
1882   case ABIArgInfo::CoerceAndExpand:
1883     // These are aggregate types which are never passed in registers when
1884     // inalloca is involved.
1885     return true;
1886   }
1887   llvm_unreachable("invalid enum");
1888 }
1889 
1890 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1891   assert(IsWin32StructABI && "inalloca only supported on win32");
1892 
1893   // Build a packed struct type for all of the arguments in memory.
1894   SmallVector<llvm::Type *, 6> FrameFields;
1895 
1896   // The stack alignment is always 4.
1897   CharUnits StackAlign = CharUnits::fromQuantity(4);
1898 
1899   CharUnits StackOffset;
1900   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1901 
1902   // Put 'this' into the struct before 'sret', if necessary.
1903   bool IsThisCall =
1904       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1905   ABIArgInfo &Ret = FI.getReturnInfo();
1906   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1907       isArgInAlloca(I->info)) {
1908     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1909     ++I;
1910   }
1911 
1912   // Put the sret parameter into the inalloca struct if it's in memory.
1913   if (Ret.isIndirect() && !Ret.getInReg()) {
1914     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1915     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1916     // On Windows, the hidden sret parameter is always returned in eax.
1917     Ret.setInAllocaSRet(IsWin32StructABI);
1918   }
1919 
1920   // Skip the 'this' parameter in ecx.
1921   if (IsThisCall)
1922     ++I;
1923 
1924   // Put arguments passed in memory into the struct.
1925   for (; I != E; ++I) {
1926     if (isArgInAlloca(I->info))
1927       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1928   }
1929 
1930   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1931                                         /*isPacked=*/true),
1932                   StackAlign);
1933 }
1934 
1935 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1936                                  Address VAListAddr, QualType Ty) const {
1937 
1938   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1939 
1940   // x86-32 changes the alignment of certain arguments on the stack.
1941   //
1942   // Just messing with TypeInfo like this works because we never pass
1943   // anything indirectly.
1944   TypeInfo.second = CharUnits::fromQuantity(
1945                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1946 
1947   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1948                           TypeInfo, CharUnits::fromQuantity(4),
1949                           /*AllowHigherAlign*/ true);
1950 }
1951 
1952 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1953     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1954   assert(Triple.getArch() == llvm::Triple::x86);
1955 
1956   switch (Opts.getStructReturnConvention()) {
1957   case CodeGenOptions::SRCK_Default:
1958     break;
1959   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1960     return false;
1961   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1962     return true;
1963   }
1964 
1965   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1966     return true;
1967 
1968   switch (Triple.getOS()) {
1969   case llvm::Triple::DragonFly:
1970   case llvm::Triple::FreeBSD:
1971   case llvm::Triple::OpenBSD:
1972   case llvm::Triple::Win32:
1973     return true;
1974   default:
1975     return false;
1976   }
1977 }
1978 
1979 void X86_32TargetCodeGenInfo::setTargetAttributes(
1980     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1981   if (GV->isDeclaration())
1982     return;
1983   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1984     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1985       llvm::Function *Fn = cast<llvm::Function>(GV);
1986       Fn->addFnAttr("stackrealign");
1987     }
1988     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1989       llvm::Function *Fn = cast<llvm::Function>(GV);
1990       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1991     }
1992   }
1993 }
1994 
1995 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1996                                                CodeGen::CodeGenFunction &CGF,
1997                                                llvm::Value *Address) const {
1998   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1999 
2000   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2001 
2002   // 0-7 are the eight integer registers;  the order is different
2003   //   on Darwin (for EH), but the range is the same.
2004   // 8 is %eip.
2005   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2006 
2007   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2008     // 12-16 are st(0..4).  Not sure why we stop at 4.
2009     // These have size 16, which is sizeof(long double) on
2010     // platforms with 8-byte alignment for that type.
2011     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2012     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2013 
2014   } else {
2015     // 9 is %eflags, which doesn't get a size on Darwin for some
2016     // reason.
2017     Builder.CreateAlignedStore(
2018         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2019                                CharUnits::One());
2020 
2021     // 11-16 are st(0..5).  Not sure why we stop at 5.
2022     // These have size 12, which is sizeof(long double) on
2023     // platforms with 4-byte alignment for that type.
2024     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2025     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2026   }
2027 
2028   return false;
2029 }
2030 
2031 //===----------------------------------------------------------------------===//
2032 // X86-64 ABI Implementation
2033 //===----------------------------------------------------------------------===//
2034 
2035 
2036 namespace {
2037 /// The AVX ABI level for X86 targets.
2038 enum class X86AVXABILevel {
2039   None,
2040   AVX,
2041   AVX512
2042 };
2043 
2044 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2045 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2046   switch (AVXLevel) {
2047   case X86AVXABILevel::AVX512:
2048     return 512;
2049   case X86AVXABILevel::AVX:
2050     return 256;
2051   case X86AVXABILevel::None:
2052     return 128;
2053   }
2054   llvm_unreachable("Unknown AVXLevel");
2055 }
2056 
2057 /// X86_64ABIInfo - The X86_64 ABI information.
2058 class X86_64ABIInfo : public SwiftABIInfo {
2059   enum Class {
2060     Integer = 0,
2061     SSE,
2062     SSEUp,
2063     X87,
2064     X87Up,
2065     ComplexX87,
2066     NoClass,
2067     Memory
2068   };
2069 
2070   /// merge - Implement the X86_64 ABI merging algorithm.
2071   ///
2072   /// Merge an accumulating classification \arg Accum with a field
2073   /// classification \arg Field.
2074   ///
2075   /// \param Accum - The accumulating classification. This should
2076   /// always be either NoClass or the result of a previous merge
2077   /// call. In addition, this should never be Memory (the caller
2078   /// should just return Memory for the aggregate).
2079   static Class merge(Class Accum, Class Field);
2080 
2081   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2082   ///
2083   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2084   /// final MEMORY or SSE classes when necessary.
2085   ///
2086   /// \param AggregateSize - The size of the current aggregate in
2087   /// the classification process.
2088   ///
2089   /// \param Lo - The classification for the parts of the type
2090   /// residing in the low word of the containing object.
2091   ///
2092   /// \param Hi - The classification for the parts of the type
2093   /// residing in the higher words of the containing object.
2094   ///
2095   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2096 
2097   /// classify - Determine the x86_64 register classes in which the
2098   /// given type T should be passed.
2099   ///
2100   /// \param Lo - The classification for the parts of the type
2101   /// residing in the low word of the containing object.
2102   ///
2103   /// \param Hi - The classification for the parts of the type
2104   /// residing in the high word of the containing object.
2105   ///
2106   /// \param OffsetBase - The bit offset of this type in the
2107   /// containing object.  Some parameters are classified different
2108   /// depending on whether they straddle an eightbyte boundary.
2109   ///
2110   /// \param isNamedArg - Whether the argument in question is a "named"
2111   /// argument, as used in AMD64-ABI 3.5.7.
2112   ///
2113   /// If a word is unused its result will be NoClass; if a type should
2114   /// be passed in Memory then at least the classification of \arg Lo
2115   /// will be Memory.
2116   ///
2117   /// The \arg Lo class will be NoClass iff the argument is ignored.
2118   ///
2119   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2120   /// also be ComplexX87.
2121   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2122                 bool isNamedArg) const;
2123 
2124   llvm::Type *GetByteVectorType(QualType Ty) const;
2125   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2126                                  unsigned IROffset, QualType SourceTy,
2127                                  unsigned SourceOffset) const;
2128   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2129                                      unsigned IROffset, QualType SourceTy,
2130                                      unsigned SourceOffset) const;
2131 
2132   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2133   /// such that the argument will be returned in memory.
2134   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2135 
2136   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2137   /// such that the argument will be passed in memory.
2138   ///
2139   /// \param freeIntRegs - The number of free integer registers remaining
2140   /// available.
2141   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2142 
2143   ABIArgInfo classifyReturnType(QualType RetTy) const;
2144 
2145   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2146                                   unsigned &neededInt, unsigned &neededSSE,
2147                                   bool isNamedArg) const;
2148 
2149   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2150                                        unsigned &NeededSSE) const;
2151 
2152   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2153                                            unsigned &NeededSSE) const;
2154 
2155   bool IsIllegalVectorType(QualType Ty) const;
2156 
2157   /// The 0.98 ABI revision clarified a lot of ambiguities,
2158   /// unfortunately in ways that were not always consistent with
2159   /// certain previous compilers.  In particular, platforms which
2160   /// required strict binary compatibility with older versions of GCC
2161   /// may need to exempt themselves.
2162   bool honorsRevision0_98() const {
2163     return !getTarget().getTriple().isOSDarwin();
2164   }
2165 
2166   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2167   /// classify it as INTEGER (for compatibility with older clang compilers).
2168   bool classifyIntegerMMXAsSSE() const {
2169     // Clang <= 3.8 did not do this.
2170     if (getContext().getLangOpts().getClangABICompat() <=
2171         LangOptions::ClangABI::Ver3_8)
2172       return false;
2173 
2174     const llvm::Triple &Triple = getTarget().getTriple();
2175     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2176       return false;
2177     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2178       return false;
2179     return true;
2180   }
2181 
2182   X86AVXABILevel AVXLevel;
2183   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2184   // 64-bit hardware.
2185   bool Has64BitPointers;
2186 
2187 public:
2188   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2189       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2190       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2191   }
2192 
2193   bool isPassedUsingAVXType(QualType type) const {
2194     unsigned neededInt, neededSSE;
2195     // The freeIntRegs argument doesn't matter here.
2196     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2197                                            /*isNamedArg*/true);
2198     if (info.isDirect()) {
2199       llvm::Type *ty = info.getCoerceToType();
2200       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2201         return (vectorTy->getBitWidth() > 128);
2202     }
2203     return false;
2204   }
2205 
2206   void computeInfo(CGFunctionInfo &FI) const override;
2207 
2208   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2209                     QualType Ty) const override;
2210   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2211                       QualType Ty) const override;
2212 
2213   bool has64BitPointers() const {
2214     return Has64BitPointers;
2215   }
2216 
2217   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2218                                     bool asReturnValue) const override {
2219     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2220   }
2221   bool isSwiftErrorInRegister() const override {
2222     return true;
2223   }
2224 };
2225 
2226 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2227 class WinX86_64ABIInfo : public SwiftABIInfo {
2228 public:
2229   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2230       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2231         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2232 
2233   void computeInfo(CGFunctionInfo &FI) const override;
2234 
2235   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2236                     QualType Ty) const override;
2237 
2238   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2239     // FIXME: Assumes vectorcall is in use.
2240     return isX86VectorTypeForVectorCall(getContext(), Ty);
2241   }
2242 
2243   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2244                                          uint64_t NumMembers) const override {
2245     // FIXME: Assumes vectorcall is in use.
2246     return isX86VectorCallAggregateSmallEnough(NumMembers);
2247   }
2248 
2249   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2250                                     bool asReturnValue) const override {
2251     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2252   }
2253 
2254   bool isSwiftErrorInRegister() const override {
2255     return true;
2256   }
2257 
2258 private:
2259   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2260                       bool IsVectorCall, bool IsRegCall) const;
2261   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2262                                       const ABIArgInfo &current) const;
2263   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2264                              bool IsVectorCall, bool IsRegCall) const;
2265 
2266   X86AVXABILevel AVXLevel;
2267 
2268   bool IsMingw64;
2269 };
2270 
2271 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2272 public:
2273   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2274       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2275 
2276   const X86_64ABIInfo &getABIInfo() const {
2277     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2278   }
2279 
2280   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2281   /// the autoreleaseRV/retainRV optimization.
2282   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2283     return true;
2284   }
2285 
2286   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2287     return 7;
2288   }
2289 
2290   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2291                                llvm::Value *Address) const override {
2292     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2293 
2294     // 0-15 are the 16 integer registers.
2295     // 16 is %rip.
2296     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2297     return false;
2298   }
2299 
2300   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2301                                   StringRef Constraint,
2302                                   llvm::Type* Ty) const override {
2303     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2304   }
2305 
2306   bool isNoProtoCallVariadic(const CallArgList &args,
2307                              const FunctionNoProtoType *fnType) const override {
2308     // The default CC on x86-64 sets %al to the number of SSA
2309     // registers used, and GCC sets this when calling an unprototyped
2310     // function, so we override the default behavior.  However, don't do
2311     // that when AVX types are involved: the ABI explicitly states it is
2312     // undefined, and it doesn't work in practice because of how the ABI
2313     // defines varargs anyway.
2314     if (fnType->getCallConv() == CC_C) {
2315       bool HasAVXType = false;
2316       for (CallArgList::const_iterator
2317              it = args.begin(), ie = args.end(); it != ie; ++it) {
2318         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2319           HasAVXType = true;
2320           break;
2321         }
2322       }
2323 
2324       if (!HasAVXType)
2325         return true;
2326     }
2327 
2328     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2329   }
2330 
2331   llvm::Constant *
2332   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2333     unsigned Sig = (0xeb << 0) | // jmp rel8
2334                    (0x06 << 8) | //           .+0x08
2335                    ('v' << 16) |
2336                    ('2' << 24);
2337     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2338   }
2339 
2340   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2341                            CodeGen::CodeGenModule &CGM) const override {
2342     if (GV->isDeclaration())
2343       return;
2344     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2345       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2346         llvm::Function *Fn = cast<llvm::Function>(GV);
2347         Fn->addFnAttr("stackrealign");
2348       }
2349       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2350         llvm::Function *Fn = cast<llvm::Function>(GV);
2351         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2352       }
2353     }
2354   }
2355 };
2356 
2357 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2358   // If the argument does not end in .lib, automatically add the suffix.
2359   // If the argument contains a space, enclose it in quotes.
2360   // This matches the behavior of MSVC.
2361   bool Quote = (Lib.find(" ") != StringRef::npos);
2362   std::string ArgStr = Quote ? "\"" : "";
2363   ArgStr += Lib;
2364   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2365     ArgStr += ".lib";
2366   ArgStr += Quote ? "\"" : "";
2367   return ArgStr;
2368 }
2369 
2370 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2371 public:
2372   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2373         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2374         unsigned NumRegisterParameters)
2375     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2376         Win32StructABI, NumRegisterParameters, false) {}
2377 
2378   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2379                            CodeGen::CodeGenModule &CGM) const override;
2380 
2381   void getDependentLibraryOption(llvm::StringRef Lib,
2382                                  llvm::SmallString<24> &Opt) const override {
2383     Opt = "/DEFAULTLIB:";
2384     Opt += qualifyWindowsLibrary(Lib);
2385   }
2386 
2387   void getDetectMismatchOption(llvm::StringRef Name,
2388                                llvm::StringRef Value,
2389                                llvm::SmallString<32> &Opt) const override {
2390     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2391   }
2392 };
2393 
2394 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2395                                           CodeGen::CodeGenModule &CGM) {
2396   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2397 
2398     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2399       Fn->addFnAttr("stack-probe-size",
2400                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2401     if (CGM.getCodeGenOpts().NoStackArgProbe)
2402       Fn->addFnAttr("no-stack-arg-probe");
2403   }
2404 }
2405 
2406 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2407     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2408   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2409   if (GV->isDeclaration())
2410     return;
2411   addStackProbeTargetAttributes(D, GV, CGM);
2412 }
2413 
2414 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2415 public:
2416   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2417                              X86AVXABILevel AVXLevel)
2418       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}
2419 
2420   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2421                            CodeGen::CodeGenModule &CGM) const override;
2422 
2423   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2424     return 7;
2425   }
2426 
2427   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2428                                llvm::Value *Address) const override {
2429     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2430 
2431     // 0-15 are the 16 integer registers.
2432     // 16 is %rip.
2433     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2434     return false;
2435   }
2436 
2437   void getDependentLibraryOption(llvm::StringRef Lib,
2438                                  llvm::SmallString<24> &Opt) const override {
2439     Opt = "/DEFAULTLIB:";
2440     Opt += qualifyWindowsLibrary(Lib);
2441   }
2442 
2443   void getDetectMismatchOption(llvm::StringRef Name,
2444                                llvm::StringRef Value,
2445                                llvm::SmallString<32> &Opt) const override {
2446     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2447   }
2448 };
2449 
2450 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2451     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2452   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2453   if (GV->isDeclaration())
2454     return;
2455   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2456     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2457       llvm::Function *Fn = cast<llvm::Function>(GV);
2458       Fn->addFnAttr("stackrealign");
2459     }
2460     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2461       llvm::Function *Fn = cast<llvm::Function>(GV);
2462       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2463     }
2464   }
2465 
2466   addStackProbeTargetAttributes(D, GV, CGM);
2467 }
2468 }
2469 
2470 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2471                               Class &Hi) const {
2472   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2473   //
2474   // (a) If one of the classes is Memory, the whole argument is passed in
2475   //     memory.
2476   //
2477   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2478   //     memory.
2479   //
2480   // (c) If the size of the aggregate exceeds two eightbytes and the first
2481   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2482   //     argument is passed in memory. NOTE: This is necessary to keep the
2483   //     ABI working for processors that don't support the __m256 type.
2484   //
2485   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2486   //
2487   // Some of these are enforced by the merging logic.  Others can arise
2488   // only with unions; for example:
2489   //   union { _Complex double; unsigned; }
2490   //
2491   // Note that clauses (b) and (c) were added in 0.98.
2492   //
2493   if (Hi == Memory)
2494     Lo = Memory;
2495   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2496     Lo = Memory;
2497   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2498     Lo = Memory;
2499   if (Hi == SSEUp && Lo != SSE)
2500     Hi = SSE;
2501 }
2502 
2503 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2504   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2505   // classified recursively so that always two fields are
2506   // considered. The resulting class is calculated according to
2507   // the classes of the fields in the eightbyte:
2508   //
2509   // (a) If both classes are equal, this is the resulting class.
2510   //
2511   // (b) If one of the classes is NO_CLASS, the resulting class is
2512   // the other class.
2513   //
2514   // (c) If one of the classes is MEMORY, the result is the MEMORY
2515   // class.
2516   //
2517   // (d) If one of the classes is INTEGER, the result is the
2518   // INTEGER.
2519   //
2520   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2521   // MEMORY is used as class.
2522   //
2523   // (f) Otherwise class SSE is used.
2524 
2525   // Accum should never be memory (we should have returned) or
2526   // ComplexX87 (because this cannot be passed in a structure).
2527   assert((Accum != Memory && Accum != ComplexX87) &&
2528          "Invalid accumulated classification during merge.");
2529   if (Accum == Field || Field == NoClass)
2530     return Accum;
2531   if (Field == Memory)
2532     return Memory;
2533   if (Accum == NoClass)
2534     return Field;
2535   if (Accum == Integer || Field == Integer)
2536     return Integer;
2537   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2538       Accum == X87 || Accum == X87Up)
2539     return Memory;
2540   return SSE;
2541 }
2542 
2543 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2544                              Class &Lo, Class &Hi, bool isNamedArg) const {
2545   // FIXME: This code can be simplified by introducing a simple value class for
2546   // Class pairs with appropriate constructor methods for the various
2547   // situations.
2548 
2549   // FIXME: Some of the split computations are wrong; unaligned vectors
2550   // shouldn't be passed in registers for example, so there is no chance they
2551   // can straddle an eightbyte. Verify & simplify.
2552 
2553   Lo = Hi = NoClass;
2554 
2555   Class &Current = OffsetBase < 64 ? Lo : Hi;
2556   Current = Memory;
2557 
2558   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2559     BuiltinType::Kind k = BT->getKind();
2560 
2561     if (k == BuiltinType::Void) {
2562       Current = NoClass;
2563     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2564       Lo = Integer;
2565       Hi = Integer;
2566     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2567       Current = Integer;
2568     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2569       Current = SSE;
2570     } else if (k == BuiltinType::LongDouble) {
2571       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2572       if (LDF == &llvm::APFloat::IEEEquad()) {
2573         Lo = SSE;
2574         Hi = SSEUp;
2575       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2576         Lo = X87;
2577         Hi = X87Up;
2578       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2579         Current = SSE;
2580       } else
2581         llvm_unreachable("unexpected long double representation!");
2582     }
2583     // FIXME: _Decimal32 and _Decimal64 are SSE.
2584     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2585     return;
2586   }
2587 
2588   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2589     // Classify the underlying integer type.
2590     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2591     return;
2592   }
2593 
2594   if (Ty->hasPointerRepresentation()) {
2595     Current = Integer;
2596     return;
2597   }
2598 
2599   if (Ty->isMemberPointerType()) {
2600     if (Ty->isMemberFunctionPointerType()) {
2601       if (Has64BitPointers) {
2602         // If Has64BitPointers, this is an {i64, i64}, so classify both
2603         // Lo and Hi now.
2604         Lo = Hi = Integer;
2605       } else {
2606         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2607         // straddles an eightbyte boundary, Hi should be classified as well.
2608         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2609         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2610         if (EB_FuncPtr != EB_ThisAdj) {
2611           Lo = Hi = Integer;
2612         } else {
2613           Current = Integer;
2614         }
2615       }
2616     } else {
2617       Current = Integer;
2618     }
2619     return;
2620   }
2621 
2622   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2623     uint64_t Size = getContext().getTypeSize(VT);
2624     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2625       // gcc passes the following as integer:
2626       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2627       // 2 bytes - <2 x char>, <1 x short>
2628       // 1 byte  - <1 x char>
2629       Current = Integer;
2630 
2631       // If this type crosses an eightbyte boundary, it should be
2632       // split.
2633       uint64_t EB_Lo = (OffsetBase) / 64;
2634       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2635       if (EB_Lo != EB_Hi)
2636         Hi = Lo;
2637     } else if (Size == 64) {
2638       QualType ElementType = VT->getElementType();
2639 
2640       // gcc passes <1 x double> in memory. :(
2641       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2642         return;
2643 
2644       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2645       // pass them as integer.  For platforms where clang is the de facto
2646       // platform compiler, we must continue to use integer.
2647       if (!classifyIntegerMMXAsSSE() &&
2648           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2649            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2650            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2651            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2652         Current = Integer;
2653       else
2654         Current = SSE;
2655 
2656       // If this type crosses an eightbyte boundary, it should be
2657       // split.
2658       if (OffsetBase && OffsetBase != 64)
2659         Hi = Lo;
2660     } else if (Size == 128 ||
2661                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2662       // Arguments of 256-bits are split into four eightbyte chunks. The
2663       // least significant one belongs to class SSE and all the others to class
2664       // SSEUP. The original Lo and Hi design considers that types can't be
2665       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2666       // This design isn't correct for 256-bits, but since there're no cases
2667       // where the upper parts would need to be inspected, avoid adding
2668       // complexity and just consider Hi to match the 64-256 part.
2669       //
2670       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2671       // registers if they are "named", i.e. not part of the "..." of a
2672       // variadic function.
2673       //
2674       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2675       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2676       Lo = SSE;
2677       Hi = SSEUp;
2678     }
2679     return;
2680   }
2681 
2682   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2683     QualType ET = getContext().getCanonicalType(CT->getElementType());
2684 
2685     uint64_t Size = getContext().getTypeSize(Ty);
2686     if (ET->isIntegralOrEnumerationType()) {
2687       if (Size <= 64)
2688         Current = Integer;
2689       else if (Size <= 128)
2690         Lo = Hi = Integer;
2691     } else if (ET == getContext().FloatTy) {
2692       Current = SSE;
2693     } else if (ET == getContext().DoubleTy) {
2694       Lo = Hi = SSE;
2695     } else if (ET == getContext().LongDoubleTy) {
2696       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2697       if (LDF == &llvm::APFloat::IEEEquad())
2698         Current = Memory;
2699       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2700         Current = ComplexX87;
2701       else if (LDF == &llvm::APFloat::IEEEdouble())
2702         Lo = Hi = SSE;
2703       else
2704         llvm_unreachable("unexpected long double representation!");
2705     }
2706 
2707     // If this complex type crosses an eightbyte boundary then it
2708     // should be split.
2709     uint64_t EB_Real = (OffsetBase) / 64;
2710     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2711     if (Hi == NoClass && EB_Real != EB_Imag)
2712       Hi = Lo;
2713 
2714     return;
2715   }
2716 
2717   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2718     // Arrays are treated like structures.
2719 
2720     uint64_t Size = getContext().getTypeSize(Ty);
2721 
2722     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2723     // than eight eightbytes, ..., it has class MEMORY.
2724     if (Size > 512)
2725       return;
2726 
2727     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2728     // fields, it has class MEMORY.
2729     //
2730     // Only need to check alignment of array base.
2731     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2732       return;
2733 
2734     // Otherwise implement simplified merge. We could be smarter about
2735     // this, but it isn't worth it and would be harder to verify.
2736     Current = NoClass;
2737     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2738     uint64_t ArraySize = AT->getSize().getZExtValue();
2739 
2740     // The only case a 256-bit wide vector could be used is when the array
2741     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2742     // to work for sizes wider than 128, early check and fallback to memory.
2743     //
2744     if (Size > 128 &&
2745         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2746       return;
2747 
2748     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2749       Class FieldLo, FieldHi;
2750       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2751       Lo = merge(Lo, FieldLo);
2752       Hi = merge(Hi, FieldHi);
2753       if (Lo == Memory || Hi == Memory)
2754         break;
2755     }
2756 
2757     postMerge(Size, Lo, Hi);
2758     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2759     return;
2760   }
2761 
2762   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2763     uint64_t Size = getContext().getTypeSize(Ty);
2764 
2765     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2766     // than eight eightbytes, ..., it has class MEMORY.
2767     if (Size > 512)
2768       return;
2769 
2770     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2771     // copy constructor or a non-trivial destructor, it is passed by invisible
2772     // reference.
2773     if (getRecordArgABI(RT, getCXXABI()))
2774       return;
2775 
2776     const RecordDecl *RD = RT->getDecl();
2777 
2778     // Assume variable sized types are passed in memory.
2779     if (RD->hasFlexibleArrayMember())
2780       return;
2781 
2782     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2783 
2784     // Reset Lo class, this will be recomputed.
2785     Current = NoClass;
2786 
2787     // If this is a C++ record, classify the bases first.
2788     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2789       for (const auto &I : CXXRD->bases()) {
2790         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2791                "Unexpected base class!");
2792         const CXXRecordDecl *Base =
2793           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2794 
2795         // Classify this field.
2796         //
2797         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2798         // single eightbyte, each is classified separately. Each eightbyte gets
2799         // initialized to class NO_CLASS.
2800         Class FieldLo, FieldHi;
2801         uint64_t Offset =
2802           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2803         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2804         Lo = merge(Lo, FieldLo);
2805         Hi = merge(Hi, FieldHi);
2806         if (Lo == Memory || Hi == Memory) {
2807           postMerge(Size, Lo, Hi);
2808           return;
2809         }
2810       }
2811     }
2812 
2813     // Classify the fields one at a time, merging the results.
2814     unsigned idx = 0;
2815     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2816            i != e; ++i, ++idx) {
2817       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2818       bool BitField = i->isBitField();
2819 
2820       // Ignore padding bit-fields.
2821       if (BitField && i->isUnnamedBitfield())
2822         continue;
2823 
2824       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2825       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2826       //
2827       // The only case a 256-bit wide vector could be used is when the struct
2828       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2829       // to work for sizes wider than 128, early check and fallback to memory.
2830       //
2831       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2832                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2833         Lo = Memory;
2834         postMerge(Size, Lo, Hi);
2835         return;
2836       }
2837       // Note, skip this test for bit-fields, see below.
2838       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2839         Lo = Memory;
2840         postMerge(Size, Lo, Hi);
2841         return;
2842       }
2843 
2844       // Classify this field.
2845       //
2846       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2847       // exceeds a single eightbyte, each is classified
2848       // separately. Each eightbyte gets initialized to class
2849       // NO_CLASS.
2850       Class FieldLo, FieldHi;
2851 
2852       // Bit-fields require special handling, they do not force the
2853       // structure to be passed in memory even if unaligned, and
2854       // therefore they can straddle an eightbyte.
2855       if (BitField) {
2856         assert(!i->isUnnamedBitfield());
2857         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2858         uint64_t Size = i->getBitWidthValue(getContext());
2859 
2860         uint64_t EB_Lo = Offset / 64;
2861         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2862 
2863         if (EB_Lo) {
2864           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2865           FieldLo = NoClass;
2866           FieldHi = Integer;
2867         } else {
2868           FieldLo = Integer;
2869           FieldHi = EB_Hi ? Integer : NoClass;
2870         }
2871       } else
2872         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2873       Lo = merge(Lo, FieldLo);
2874       Hi = merge(Hi, FieldHi);
2875       if (Lo == Memory || Hi == Memory)
2876         break;
2877     }
2878 
2879     postMerge(Size, Lo, Hi);
2880   }
2881 }
2882 
2883 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2884   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2885   // place naturally.
2886   if (!isAggregateTypeForABI(Ty)) {
2887     // Treat an enum type as its underlying type.
2888     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2889       Ty = EnumTy->getDecl()->getIntegerType();
2890 
2891     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2892                                           : ABIArgInfo::getDirect());
2893   }
2894 
2895   return getNaturalAlignIndirect(Ty);
2896 }
2897 
2898 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2899   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2900     uint64_t Size = getContext().getTypeSize(VecTy);
2901     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2902     if (Size <= 64 || Size > LargestVector)
2903       return true;
2904   }
2905 
2906   return false;
2907 }
2908 
2909 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2910                                             unsigned freeIntRegs) const {
2911   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2912   // place naturally.
2913   //
2914   // This assumption is optimistic, as there could be free registers available
2915   // when we need to pass this argument in memory, and LLVM could try to pass
2916   // the argument in the free register. This does not seem to happen currently,
2917   // but this code would be much safer if we could mark the argument with
2918   // 'onstack'. See PR12193.
2919   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2920     // Treat an enum type as its underlying type.
2921     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2922       Ty = EnumTy->getDecl()->getIntegerType();
2923 
2924     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2925                                           : ABIArgInfo::getDirect());
2926   }
2927 
2928   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2929     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2930 
2931   // Compute the byval alignment. We specify the alignment of the byval in all
2932   // cases so that the mid-level optimizer knows the alignment of the byval.
2933   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2934 
2935   // Attempt to avoid passing indirect results using byval when possible. This
2936   // is important for good codegen.
2937   //
2938   // We do this by coercing the value into a scalar type which the backend can
2939   // handle naturally (i.e., without using byval).
2940   //
2941   // For simplicity, we currently only do this when we have exhausted all of the
2942   // free integer registers. Doing this when there are free integer registers
2943   // would require more care, as we would have to ensure that the coerced value
2944   // did not claim the unused register. That would require either reording the
2945   // arguments to the function (so that any subsequent inreg values came first),
2946   // or only doing this optimization when there were no following arguments that
2947   // might be inreg.
2948   //
2949   // We currently expect it to be rare (particularly in well written code) for
2950   // arguments to be passed on the stack when there are still free integer
2951   // registers available (this would typically imply large structs being passed
2952   // by value), so this seems like a fair tradeoff for now.
2953   //
2954   // We can revisit this if the backend grows support for 'onstack' parameter
2955   // attributes. See PR12193.
2956   if (freeIntRegs == 0) {
2957     uint64_t Size = getContext().getTypeSize(Ty);
2958 
2959     // If this type fits in an eightbyte, coerce it into the matching integral
2960     // type, which will end up on the stack (with alignment 8).
2961     if (Align == 8 && Size <= 64)
2962       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2963                                                           Size));
2964   }
2965 
2966   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2967 }
2968 
2969 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2970 /// register. Pick an LLVM IR type that will be passed as a vector register.
2971 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2972   // Wrapper structs/arrays that only contain vectors are passed just like
2973   // vectors; strip them off if present.
2974   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2975     Ty = QualType(InnerTy, 0);
2976 
2977   llvm::Type *IRType = CGT.ConvertType(Ty);
2978   if (isa<llvm::VectorType>(IRType) ||
2979       IRType->getTypeID() == llvm::Type::FP128TyID)
2980     return IRType;
2981 
2982   // We couldn't find the preferred IR vector type for 'Ty'.
2983   uint64_t Size = getContext().getTypeSize(Ty);
2984   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2985 
2986   // Return a LLVM IR vector type based on the size of 'Ty'.
2987   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2988                                Size / 64);
2989 }
2990 
2991 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2992 /// is known to either be off the end of the specified type or being in
2993 /// alignment padding.  The user type specified is known to be at most 128 bits
2994 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2995 /// classification that put one of the two halves in the INTEGER class.
2996 ///
2997 /// It is conservatively correct to return false.
2998 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2999                                   unsigned EndBit, ASTContext &Context) {
3000   // If the bytes being queried are off the end of the type, there is no user
3001   // data hiding here.  This handles analysis of builtins, vectors and other
3002   // types that don't contain interesting padding.
3003   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3004   if (TySize <= StartBit)
3005     return true;
3006 
3007   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3008     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3009     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3010 
3011     // Check each element to see if the element overlaps with the queried range.
3012     for (unsigned i = 0; i != NumElts; ++i) {
3013       // If the element is after the span we care about, then we're done..
3014       unsigned EltOffset = i*EltSize;
3015       if (EltOffset >= EndBit) break;
3016 
3017       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3018       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3019                                  EndBit-EltOffset, Context))
3020         return false;
3021     }
3022     // If it overlaps no elements, then it is safe to process as padding.
3023     return true;
3024   }
3025 
3026   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3027     const RecordDecl *RD = RT->getDecl();
3028     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3029 
3030     // If this is a C++ record, check the bases first.
3031     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3032       for (const auto &I : CXXRD->bases()) {
3033         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3034                "Unexpected base class!");
3035         const CXXRecordDecl *Base =
3036           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3037 
3038         // If the base is after the span we care about, ignore it.
3039         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3040         if (BaseOffset >= EndBit) continue;
3041 
3042         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3043         if (!BitsContainNoUserData(I.getType(), BaseStart,
3044                                    EndBit-BaseOffset, Context))
3045           return false;
3046       }
3047     }
3048 
3049     // Verify that no field has data that overlaps the region of interest.  Yes
3050     // this could be sped up a lot by being smarter about queried fields,
3051     // however we're only looking at structs up to 16 bytes, so we don't care
3052     // much.
3053     unsigned idx = 0;
3054     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3055          i != e; ++i, ++idx) {
3056       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3057 
3058       // If we found a field after the region we care about, then we're done.
3059       if (FieldOffset >= EndBit) break;
3060 
3061       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3062       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3063                                  Context))
3064         return false;
3065     }
3066 
3067     // If nothing in this record overlapped the area of interest, then we're
3068     // clean.
3069     return true;
3070   }
3071 
3072   return false;
3073 }
3074 
3075 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3076 /// float member at the specified offset.  For example, {int,{float}} has a
3077 /// float at offset 4.  It is conservatively correct for this routine to return
3078 /// false.
3079 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3080                                   const llvm::DataLayout &TD) {
3081   // Base case if we find a float.
3082   if (IROffset == 0 && IRType->isFloatTy())
3083     return true;
3084 
3085   // If this is a struct, recurse into the field at the specified offset.
3086   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3087     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3088     unsigned Elt = SL->getElementContainingOffset(IROffset);
3089     IROffset -= SL->getElementOffset(Elt);
3090     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3091   }
3092 
3093   // If this is an array, recurse into the field at the specified offset.
3094   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3095     llvm::Type *EltTy = ATy->getElementType();
3096     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3097     IROffset -= IROffset/EltSize*EltSize;
3098     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3099   }
3100 
3101   return false;
3102 }
3103 
3104 
3105 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3106 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3107 llvm::Type *X86_64ABIInfo::
3108 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3109                    QualType SourceTy, unsigned SourceOffset) const {
3110   // The only three choices we have are either double, <2 x float>, or float. We
3111   // pass as float if the last 4 bytes is just padding.  This happens for
3112   // structs that contain 3 floats.
3113   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3114                             SourceOffset*8+64, getContext()))
3115     return llvm::Type::getFloatTy(getVMContext());
3116 
3117   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3118   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3119   // case.
3120   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3121       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3122     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3123 
3124   return llvm::Type::getDoubleTy(getVMContext());
3125 }
3126 
3127 
3128 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3129 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3130 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3131 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3132 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3133 /// etc).
3134 ///
3135 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3136 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3137 /// the 8-byte value references.  PrefType may be null.
3138 ///
3139 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3140 /// an offset into this that we're processing (which is always either 0 or 8).
3141 ///
3142 llvm::Type *X86_64ABIInfo::
3143 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3144                        QualType SourceTy, unsigned SourceOffset) const {
3145   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3146   // returning an 8-byte unit starting with it.  See if we can safely use it.
3147   if (IROffset == 0) {
3148     // Pointers and int64's always fill the 8-byte unit.
3149     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3150         IRType->isIntegerTy(64))
3151       return IRType;
3152 
3153     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3154     // goodness in the source type is just tail padding.  This is allowed to
3155     // kick in for struct {double,int} on the int, but not on
3156     // struct{double,int,int} because we wouldn't return the second int.  We
3157     // have to do this analysis on the source type because we can't depend on
3158     // unions being lowered a specific way etc.
3159     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3160         IRType->isIntegerTy(32) ||
3161         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3162       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3163           cast<llvm::IntegerType>(IRType)->getBitWidth();
3164 
3165       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3166                                 SourceOffset*8+64, getContext()))
3167         return IRType;
3168     }
3169   }
3170 
3171   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3172     // If this is a struct, recurse into the field at the specified offset.
3173     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3174     if (IROffset < SL->getSizeInBytes()) {
3175       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3176       IROffset -= SL->getElementOffset(FieldIdx);
3177 
3178       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3179                                     SourceTy, SourceOffset);
3180     }
3181   }
3182 
3183   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3184     llvm::Type *EltTy = ATy->getElementType();
3185     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3186     unsigned EltOffset = IROffset/EltSize*EltSize;
3187     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3188                                   SourceOffset);
3189   }
3190 
3191   // Okay, we don't have any better idea of what to pass, so we pass this in an
3192   // integer register that isn't too big to fit the rest of the struct.
3193   unsigned TySizeInBytes =
3194     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3195 
3196   assert(TySizeInBytes != SourceOffset && "Empty field?");
3197 
3198   // It is always safe to classify this as an integer type up to i64 that
3199   // isn't larger than the structure.
3200   return llvm::IntegerType::get(getVMContext(),
3201                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3202 }
3203 
3204 
3205 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3206 /// be used as elements of a two register pair to pass or return, return a
3207 /// first class aggregate to represent them.  For example, if the low part of
3208 /// a by-value argument should be passed as i32* and the high part as float,
3209 /// return {i32*, float}.
3210 static llvm::Type *
3211 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3212                            const llvm::DataLayout &TD) {
3213   // In order to correctly satisfy the ABI, we need to the high part to start
3214   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3215   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3216   // the second element at offset 8.  Check for this:
3217   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3218   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3219   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3220   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3221 
3222   // To handle this, we have to increase the size of the low part so that the
3223   // second element will start at an 8 byte offset.  We can't increase the size
3224   // of the second element because it might make us access off the end of the
3225   // struct.
3226   if (HiStart != 8) {
3227     // There are usually two sorts of types the ABI generation code can produce
3228     // for the low part of a pair that aren't 8 bytes in size: float or
3229     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3230     // NaCl).
3231     // Promote these to a larger type.
3232     if (Lo->isFloatTy())
3233       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3234     else {
3235       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3236              && "Invalid/unknown lo type");
3237       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3238     }
3239   }
3240 
3241   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3242 
3243   // Verify that the second element is at an 8-byte offset.
3244   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3245          "Invalid x86-64 argument pair!");
3246   return Result;
3247 }
3248 
3249 ABIArgInfo X86_64ABIInfo::
3250 classifyReturnType(QualType RetTy) const {
3251   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3252   // classification algorithm.
3253   X86_64ABIInfo::Class Lo, Hi;
3254   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3255 
3256   // Check some invariants.
3257   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3258   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3259 
3260   llvm::Type *ResType = nullptr;
3261   switch (Lo) {
3262   case NoClass:
3263     if (Hi == NoClass)
3264       return ABIArgInfo::getIgnore();
3265     // If the low part is just padding, it takes no register, leave ResType
3266     // null.
3267     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3268            "Unknown missing lo part");
3269     break;
3270 
3271   case SSEUp:
3272   case X87Up:
3273     llvm_unreachable("Invalid classification for lo word.");
3274 
3275     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3276     // hidden argument.
3277   case Memory:
3278     return getIndirectReturnResult(RetTy);
3279 
3280     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3281     // available register of the sequence %rax, %rdx is used.
3282   case Integer:
3283     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3284 
3285     // If we have a sign or zero extended integer, make sure to return Extend
3286     // so that the parameter gets the right LLVM IR attributes.
3287     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3288       // Treat an enum type as its underlying type.
3289       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3290         RetTy = EnumTy->getDecl()->getIntegerType();
3291 
3292       if (RetTy->isIntegralOrEnumerationType() &&
3293           RetTy->isPromotableIntegerType())
3294         return ABIArgInfo::getExtend(RetTy);
3295     }
3296     break;
3297 
3298     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3299     // available SSE register of the sequence %xmm0, %xmm1 is used.
3300   case SSE:
3301     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3302     break;
3303 
3304     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3305     // returned on the X87 stack in %st0 as 80-bit x87 number.
3306   case X87:
3307     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3308     break;
3309 
3310     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3311     // part of the value is returned in %st0 and the imaginary part in
3312     // %st1.
3313   case ComplexX87:
3314     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3315     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3316                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3317     break;
3318   }
3319 
3320   llvm::Type *HighPart = nullptr;
3321   switch (Hi) {
3322     // Memory was handled previously and X87 should
3323     // never occur as a hi class.
3324   case Memory:
3325   case X87:
3326     llvm_unreachable("Invalid classification for hi word.");
3327 
3328   case ComplexX87: // Previously handled.
3329   case NoClass:
3330     break;
3331 
3332   case Integer:
3333     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3334     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3335       return ABIArgInfo::getDirect(HighPart, 8);
3336     break;
3337   case SSE:
3338     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3339     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3340       return ABIArgInfo::getDirect(HighPart, 8);
3341     break;
3342 
3343     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3344     // is passed in the next available eightbyte chunk if the last used
3345     // vector register.
3346     //
3347     // SSEUP should always be preceded by SSE, just widen.
3348   case SSEUp:
3349     assert(Lo == SSE && "Unexpected SSEUp classification.");
3350     ResType = GetByteVectorType(RetTy);
3351     break;
3352 
3353     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3354     // returned together with the previous X87 value in %st0.
3355   case X87Up:
3356     // If X87Up is preceded by X87, we don't need to do
3357     // anything. However, in some cases with unions it may not be
3358     // preceded by X87. In such situations we follow gcc and pass the
3359     // extra bits in an SSE reg.
3360     if (Lo != X87) {
3361       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3362       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3363         return ABIArgInfo::getDirect(HighPart, 8);
3364     }
3365     break;
3366   }
3367 
3368   // If a high part was specified, merge it together with the low part.  It is
3369   // known to pass in the high eightbyte of the result.  We do this by forming a
3370   // first class struct aggregate with the high and low part: {low, high}
3371   if (HighPart)
3372     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3373 
3374   return ABIArgInfo::getDirect(ResType);
3375 }
3376 
3377 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3378   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3379   bool isNamedArg)
3380   const
3381 {
3382   Ty = useFirstFieldIfTransparentUnion(Ty);
3383 
3384   X86_64ABIInfo::Class Lo, Hi;
3385   classify(Ty, 0, Lo, Hi, isNamedArg);
3386 
3387   // Check some invariants.
3388   // FIXME: Enforce these by construction.
3389   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3390   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3391 
3392   neededInt = 0;
3393   neededSSE = 0;
3394   llvm::Type *ResType = nullptr;
3395   switch (Lo) {
3396   case NoClass:
3397     if (Hi == NoClass)
3398       return ABIArgInfo::getIgnore();
3399     // If the low part is just padding, it takes no register, leave ResType
3400     // null.
3401     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3402            "Unknown missing lo part");
3403     break;
3404 
3405     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3406     // on the stack.
3407   case Memory:
3408 
3409     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3410     // COMPLEX_X87, it is passed in memory.
3411   case X87:
3412   case ComplexX87:
3413     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3414       ++neededInt;
3415     return getIndirectResult(Ty, freeIntRegs);
3416 
3417   case SSEUp:
3418   case X87Up:
3419     llvm_unreachable("Invalid classification for lo word.");
3420 
3421     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3422     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3423     // and %r9 is used.
3424   case Integer:
3425     ++neededInt;
3426 
3427     // Pick an 8-byte type based on the preferred type.
3428     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3429 
3430     // If we have a sign or zero extended integer, make sure to return Extend
3431     // so that the parameter gets the right LLVM IR attributes.
3432     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3433       // Treat an enum type as its underlying type.
3434       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3435         Ty = EnumTy->getDecl()->getIntegerType();
3436 
3437       if (Ty->isIntegralOrEnumerationType() &&
3438           Ty->isPromotableIntegerType())
3439         return ABIArgInfo::getExtend(Ty);
3440     }
3441 
3442     break;
3443 
3444     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3445     // available SSE register is used, the registers are taken in the
3446     // order from %xmm0 to %xmm7.
3447   case SSE: {
3448     llvm::Type *IRType = CGT.ConvertType(Ty);
3449     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3450     ++neededSSE;
3451     break;
3452   }
3453   }
3454 
3455   llvm::Type *HighPart = nullptr;
3456   switch (Hi) {
3457     // Memory was handled previously, ComplexX87 and X87 should
3458     // never occur as hi classes, and X87Up must be preceded by X87,
3459     // which is passed in memory.
3460   case Memory:
3461   case X87:
3462   case ComplexX87:
3463     llvm_unreachable("Invalid classification for hi word.");
3464 
3465   case NoClass: break;
3466 
3467   case Integer:
3468     ++neededInt;
3469     // Pick an 8-byte type based on the preferred type.
3470     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3471 
3472     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3473       return ABIArgInfo::getDirect(HighPart, 8);
3474     break;
3475 
3476     // X87Up generally doesn't occur here (long double is passed in
3477     // memory), except in situations involving unions.
3478   case X87Up:
3479   case SSE:
3480     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3481 
3482     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3483       return ABIArgInfo::getDirect(HighPart, 8);
3484 
3485     ++neededSSE;
3486     break;
3487 
3488     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3489     // eightbyte is passed in the upper half of the last used SSE
3490     // register.  This only happens when 128-bit vectors are passed.
3491   case SSEUp:
3492     assert(Lo == SSE && "Unexpected SSEUp classification");
3493     ResType = GetByteVectorType(Ty);
3494     break;
3495   }
3496 
3497   // If a high part was specified, merge it together with the low part.  It is
3498   // known to pass in the high eightbyte of the result.  We do this by forming a
3499   // first class struct aggregate with the high and low part: {low, high}
3500   if (HighPart)
3501     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3502 
3503   return ABIArgInfo::getDirect(ResType);
3504 }
3505 
3506 ABIArgInfo
3507 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3508                                              unsigned &NeededSSE) const {
3509   auto RT = Ty->getAs<RecordType>();
3510   assert(RT && "classifyRegCallStructType only valid with struct types");
3511 
3512   if (RT->getDecl()->hasFlexibleArrayMember())
3513     return getIndirectReturnResult(Ty);
3514 
3515   // Sum up bases
3516   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3517     if (CXXRD->isDynamicClass()) {
3518       NeededInt = NeededSSE = 0;
3519       return getIndirectReturnResult(Ty);
3520     }
3521 
3522     for (const auto &I : CXXRD->bases())
3523       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3524               .isIndirect()) {
3525         NeededInt = NeededSSE = 0;
3526         return getIndirectReturnResult(Ty);
3527       }
3528   }
3529 
3530   // Sum up members
3531   for (const auto *FD : RT->getDecl()->fields()) {
3532     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3533       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3534               .isIndirect()) {
3535         NeededInt = NeededSSE = 0;
3536         return getIndirectReturnResult(Ty);
3537       }
3538     } else {
3539       unsigned LocalNeededInt, LocalNeededSSE;
3540       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3541                                LocalNeededSSE, true)
3542               .isIndirect()) {
3543         NeededInt = NeededSSE = 0;
3544         return getIndirectReturnResult(Ty);
3545       }
3546       NeededInt += LocalNeededInt;
3547       NeededSSE += LocalNeededSSE;
3548     }
3549   }
3550 
3551   return ABIArgInfo::getDirect();
3552 }
3553 
3554 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3555                                                     unsigned &NeededInt,
3556                                                     unsigned &NeededSSE) const {
3557 
3558   NeededInt = 0;
3559   NeededSSE = 0;
3560 
3561   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3562 }
3563 
3564 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3565 
3566   const unsigned CallingConv = FI.getCallingConvention();
3567   // It is possible to force Win64 calling convention on any x86_64 target by
3568   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3569   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3570   if (CallingConv == llvm::CallingConv::Win64) {
3571     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3572     Win64ABIInfo.computeInfo(FI);
3573     return;
3574   }
3575 
3576   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3577 
3578   // Keep track of the number of assigned registers.
3579   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3580   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3581   unsigned NeededInt, NeededSSE;
3582 
3583   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3584     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3585         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3586       FI.getReturnInfo() =
3587           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3588       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3589         FreeIntRegs -= NeededInt;
3590         FreeSSERegs -= NeededSSE;
3591       } else {
3592         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3593       }
3594     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3595       // Complex Long Double Type is passed in Memory when Regcall
3596       // calling convention is used.
3597       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3598       if (getContext().getCanonicalType(CT->getElementType()) ==
3599           getContext().LongDoubleTy)
3600         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3601     } else
3602       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3603   }
3604 
3605   // If the return value is indirect, then the hidden argument is consuming one
3606   // integer register.
3607   if (FI.getReturnInfo().isIndirect())
3608     --FreeIntRegs;
3609 
3610   // The chain argument effectively gives us another free register.
3611   if (FI.isChainCall())
3612     ++FreeIntRegs;
3613 
3614   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3615   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3616   // get assigned (in left-to-right order) for passing as follows...
3617   unsigned ArgNo = 0;
3618   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3619        it != ie; ++it, ++ArgNo) {
3620     bool IsNamedArg = ArgNo < NumRequiredArgs;
3621 
3622     if (IsRegCall && it->type->isStructureOrClassType())
3623       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3624     else
3625       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3626                                       NeededSSE, IsNamedArg);
3627 
3628     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3629     // eightbyte of an argument, the whole argument is passed on the
3630     // stack. If registers have already been assigned for some
3631     // eightbytes of such an argument, the assignments get reverted.
3632     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3633       FreeIntRegs -= NeededInt;
3634       FreeSSERegs -= NeededSSE;
3635     } else {
3636       it->info = getIndirectResult(it->type, FreeIntRegs);
3637     }
3638   }
3639 }
3640 
3641 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3642                                          Address VAListAddr, QualType Ty) {
3643   Address overflow_arg_area_p =
3644       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3645   llvm::Value *overflow_arg_area =
3646     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3647 
3648   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3649   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3650   // It isn't stated explicitly in the standard, but in practice we use
3651   // alignment greater than 16 where necessary.
3652   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3653   if (Align > CharUnits::fromQuantity(8)) {
3654     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3655                                                       Align);
3656   }
3657 
3658   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3659   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3660   llvm::Value *Res =
3661     CGF.Builder.CreateBitCast(overflow_arg_area,
3662                               llvm::PointerType::getUnqual(LTy));
3663 
3664   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3665   // l->overflow_arg_area + sizeof(type).
3666   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3667   // an 8 byte boundary.
3668 
3669   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3670   llvm::Value *Offset =
3671       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3672   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3673                                             "overflow_arg_area.next");
3674   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3675 
3676   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3677   return Address(Res, Align);
3678 }
3679 
3680 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3681                                  QualType Ty) const {
3682   // Assume that va_list type is correct; should be pointer to LLVM type:
3683   // struct {
3684   //   i32 gp_offset;
3685   //   i32 fp_offset;
3686   //   i8* overflow_arg_area;
3687   //   i8* reg_save_area;
3688   // };
3689   unsigned neededInt, neededSSE;
3690 
3691   Ty = getContext().getCanonicalType(Ty);
3692   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3693                                        /*isNamedArg*/false);
3694 
3695   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3696   // in the registers. If not go to step 7.
3697   if (!neededInt && !neededSSE)
3698     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3699 
3700   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3701   // general purpose registers needed to pass type and num_fp to hold
3702   // the number of floating point registers needed.
3703 
3704   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3705   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3706   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3707   //
3708   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3709   // register save space).
3710 
3711   llvm::Value *InRegs = nullptr;
3712   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3713   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3714   if (neededInt) {
3715     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3716     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3717     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3718     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3719   }
3720 
3721   if (neededSSE) {
3722     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3723     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3724     llvm::Value *FitsInFP =
3725       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3726     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3727     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3728   }
3729 
3730   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3731   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3732   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3733   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3734 
3735   // Emit code to load the value if it was passed in registers.
3736 
3737   CGF.EmitBlock(InRegBlock);
3738 
3739   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3740   // an offset of l->gp_offset and/or l->fp_offset. This may require
3741   // copying to a temporary location in case the parameter is passed
3742   // in different register classes or requires an alignment greater
3743   // than 8 for general purpose registers and 16 for XMM registers.
3744   //
3745   // FIXME: This really results in shameful code when we end up needing to
3746   // collect arguments from different places; often what should result in a
3747   // simple assembling of a structure from scattered addresses has many more
3748   // loads than necessary. Can we clean this up?
3749   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3750   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3751       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3752 
3753   Address RegAddr = Address::invalid();
3754   if (neededInt && neededSSE) {
3755     // FIXME: Cleanup.
3756     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3757     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3758     Address Tmp = CGF.CreateMemTemp(Ty);
3759     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3760     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3761     llvm::Type *TyLo = ST->getElementType(0);
3762     llvm::Type *TyHi = ST->getElementType(1);
3763     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3764            "Unexpected ABI info for mixed regs");
3765     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3766     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3767     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3768     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3769     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3770     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3771 
3772     // Copy the first element.
3773     // FIXME: Our choice of alignment here and below is probably pessimistic.
3774     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3775         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3776         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3777     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3778 
3779     // Copy the second element.
3780     V = CGF.Builder.CreateAlignedLoad(
3781         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3782         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3783     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3784 
3785     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3786   } else if (neededInt) {
3787     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3788                       CharUnits::fromQuantity(8));
3789     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3790 
3791     // Copy to a temporary if necessary to ensure the appropriate alignment.
3792     std::pair<CharUnits, CharUnits> SizeAlign =
3793         getContext().getTypeInfoInChars(Ty);
3794     uint64_t TySize = SizeAlign.first.getQuantity();
3795     CharUnits TyAlign = SizeAlign.second;
3796 
3797     // Copy into a temporary if the type is more aligned than the
3798     // register save area.
3799     if (TyAlign.getQuantity() > 8) {
3800       Address Tmp = CGF.CreateMemTemp(Ty);
3801       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3802       RegAddr = Tmp;
3803     }
3804 
3805   } else if (neededSSE == 1) {
3806     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3807                       CharUnits::fromQuantity(16));
3808     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3809   } else {
3810     assert(neededSSE == 2 && "Invalid number of needed registers!");
3811     // SSE registers are spaced 16 bytes apart in the register save
3812     // area, we need to collect the two eightbytes together.
3813     // The ABI isn't explicit about this, but it seems reasonable
3814     // to assume that the slots are 16-byte aligned, since the stack is
3815     // naturally 16-byte aligned and the prologue is expected to store
3816     // all the SSE registers to the RSA.
3817     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3818                                 CharUnits::fromQuantity(16));
3819     Address RegAddrHi =
3820       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3821                                              CharUnits::fromQuantity(16));
3822     llvm::Type *ST = AI.canHaveCoerceToType()
3823                          ? AI.getCoerceToType()
3824                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3825     llvm::Value *V;
3826     Address Tmp = CGF.CreateMemTemp(Ty);
3827     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3828     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3829         RegAddrLo, ST->getStructElementType(0)));
3830     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3831     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3832         RegAddrHi, ST->getStructElementType(1)));
3833     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3834 
3835     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3836   }
3837 
3838   // AMD64-ABI 3.5.7p5: Step 5. Set:
3839   // l->gp_offset = l->gp_offset + num_gp * 8
3840   // l->fp_offset = l->fp_offset + num_fp * 16.
3841   if (neededInt) {
3842     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3843     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3844                             gp_offset_p);
3845   }
3846   if (neededSSE) {
3847     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3848     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3849                             fp_offset_p);
3850   }
3851   CGF.EmitBranch(ContBlock);
3852 
3853   // Emit code to load the value if it was passed in memory.
3854 
3855   CGF.EmitBlock(InMemBlock);
3856   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3857 
3858   // Return the appropriate result.
3859 
3860   CGF.EmitBlock(ContBlock);
3861   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3862                                  "vaarg.addr");
3863   return ResAddr;
3864 }
3865 
3866 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3867                                    QualType Ty) const {
3868   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3869                           CGF.getContext().getTypeInfoInChars(Ty),
3870                           CharUnits::fromQuantity(8),
3871                           /*allowHigherAlign*/ false);
3872 }
3873 
3874 ABIArgInfo
3875 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3876                                     const ABIArgInfo &current) const {
3877   // Assumes vectorCall calling convention.
3878   const Type *Base = nullptr;
3879   uint64_t NumElts = 0;
3880 
3881   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3882       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3883     FreeSSERegs -= NumElts;
3884     return getDirectX86Hva();
3885   }
3886   return current;
3887 }
3888 
3889 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3890                                       bool IsReturnType, bool IsVectorCall,
3891                                       bool IsRegCall) const {
3892 
3893   if (Ty->isVoidType())
3894     return ABIArgInfo::getIgnore();
3895 
3896   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3897     Ty = EnumTy->getDecl()->getIntegerType();
3898 
3899   TypeInfo Info = getContext().getTypeInfo(Ty);
3900   uint64_t Width = Info.Width;
3901   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3902 
3903   const RecordType *RT = Ty->getAs<RecordType>();
3904   if (RT) {
3905     if (!IsReturnType) {
3906       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3907         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3908     }
3909 
3910     if (RT->getDecl()->hasFlexibleArrayMember())
3911       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3912 
3913   }
3914 
3915   const Type *Base = nullptr;
3916   uint64_t NumElts = 0;
3917   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3918   // other targets.
3919   if ((IsVectorCall || IsRegCall) &&
3920       isHomogeneousAggregate(Ty, Base, NumElts)) {
3921     if (IsRegCall) {
3922       if (FreeSSERegs >= NumElts) {
3923         FreeSSERegs -= NumElts;
3924         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3925           return ABIArgInfo::getDirect();
3926         return ABIArgInfo::getExpand();
3927       }
3928       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3929     } else if (IsVectorCall) {
3930       if (FreeSSERegs >= NumElts &&
3931           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3932         FreeSSERegs -= NumElts;
3933         return ABIArgInfo::getDirect();
3934       } else if (IsReturnType) {
3935         return ABIArgInfo::getExpand();
3936       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3937         // HVAs are delayed and reclassified in the 2nd step.
3938         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3939       }
3940     }
3941   }
3942 
3943   if (Ty->isMemberPointerType()) {
3944     // If the member pointer is represented by an LLVM int or ptr, pass it
3945     // directly.
3946     llvm::Type *LLTy = CGT.ConvertType(Ty);
3947     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3948       return ABIArgInfo::getDirect();
3949   }
3950 
3951   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3952     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3953     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3954     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3955       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3956 
3957     // Otherwise, coerce it to a small integer.
3958     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3959   }
3960 
3961   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3962     switch (BT->getKind()) {
3963     case BuiltinType::Bool:
3964       // Bool type is always extended to the ABI, other builtin types are not
3965       // extended.
3966       return ABIArgInfo::getExtend(Ty);
3967 
3968     case BuiltinType::LongDouble:
3969       // Mingw64 GCC uses the old 80 bit extended precision floating point
3970       // unit. It passes them indirectly through memory.
3971       if (IsMingw64) {
3972         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3973         if (LDF == &llvm::APFloat::x87DoubleExtended())
3974           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3975       }
3976       break;
3977 
3978     case BuiltinType::Int128:
3979     case BuiltinType::UInt128:
3980       // If it's a parameter type, the normal ABI rule is that arguments larger
3981       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3982       // even though it isn't particularly efficient.
3983       if (!IsReturnType)
3984         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3985 
3986       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3987       // Clang matches them for compatibility.
3988       return ABIArgInfo::getDirect(
3989           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3990 
3991     default:
3992       break;
3993     }
3994   }
3995 
3996   return ABIArgInfo::getDirect();
3997 }
3998 
3999 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4000                                              unsigned FreeSSERegs,
4001                                              bool IsVectorCall,
4002                                              bool IsRegCall) const {
4003   unsigned Count = 0;
4004   for (auto &I : FI.arguments()) {
4005     // Vectorcall in x64 only permits the first 6 arguments to be passed
4006     // as XMM/YMM registers.
4007     if (Count < VectorcallMaxParamNumAsReg)
4008       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4009     else {
4010       // Since these cannot be passed in registers, pretend no registers
4011       // are left.
4012       unsigned ZeroSSERegsAvail = 0;
4013       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4014                         IsVectorCall, IsRegCall);
4015     }
4016     ++Count;
4017   }
4018 
4019   for (auto &I : FI.arguments()) {
4020     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4021   }
4022 }
4023 
4024 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4025   const unsigned CC = FI.getCallingConvention();
4026   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4027   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4028 
4029   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4030   // classification rules.
4031   if (CC == llvm::CallingConv::X86_64_SysV) {
4032     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4033     SysVABIInfo.computeInfo(FI);
4034     return;
4035   }
4036 
4037   unsigned FreeSSERegs = 0;
4038   if (IsVectorCall) {
4039     // We can use up to 4 SSE return registers with vectorcall.
4040     FreeSSERegs = 4;
4041   } else if (IsRegCall) {
4042     // RegCall gives us 16 SSE registers.
4043     FreeSSERegs = 16;
4044   }
4045 
4046   if (!getCXXABI().classifyReturnType(FI))
4047     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4048                                   IsVectorCall, IsRegCall);
4049 
4050   if (IsVectorCall) {
4051     // We can use up to 6 SSE register parameters with vectorcall.
4052     FreeSSERegs = 6;
4053   } else if (IsRegCall) {
4054     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4055     FreeSSERegs = 16;
4056   }
4057 
4058   if (IsVectorCall) {
4059     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4060   } else {
4061     for (auto &I : FI.arguments())
4062       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4063   }
4064 
4065 }
4066 
4067 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4068                                     QualType Ty) const {
4069 
4070   bool IsIndirect = false;
4071 
4072   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4073   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4074   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4075     uint64_t Width = getContext().getTypeSize(Ty);
4076     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4077   }
4078 
4079   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4080                           CGF.getContext().getTypeInfoInChars(Ty),
4081                           CharUnits::fromQuantity(8),
4082                           /*allowHigherAlign*/ false);
4083 }
4084 
4085 // PowerPC-32
4086 namespace {
4087 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4088 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4089   bool IsSoftFloatABI;
4090 
4091   CharUnits getParamTypeAlignment(QualType Ty) const;
4092 
4093 public:
4094   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4095       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4096 
4097   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4098                     QualType Ty) const override;
4099 };
4100 
4101 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4102 public:
4103   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4104       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4105 
4106   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4107     // This is recovered from gcc output.
4108     return 1; // r1 is the dedicated stack pointer
4109   }
4110 
4111   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4112                                llvm::Value *Address) const override;
4113 };
4114 }
4115 
4116 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4117   // Complex types are passed just like their elements
4118   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4119     Ty = CTy->getElementType();
4120 
4121   if (Ty->isVectorType())
4122     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4123                                                                        : 4);
4124 
4125   // For single-element float/vector structs, we consider the whole type
4126   // to have the same alignment requirements as its single element.
4127   const Type *AlignTy = nullptr;
4128   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4129     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4130     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4131         (BT && BT->isFloatingPoint()))
4132       AlignTy = EltType;
4133   }
4134 
4135   if (AlignTy)
4136     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4137   return CharUnits::fromQuantity(4);
4138 }
4139 
4140 // TODO: this implementation is now likely redundant with
4141 // DefaultABIInfo::EmitVAArg.
4142 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4143                                       QualType Ty) const {
4144   if (getTarget().getTriple().isOSDarwin()) {
4145     auto TI = getContext().getTypeInfoInChars(Ty);
4146     TI.second = getParamTypeAlignment(Ty);
4147 
4148     CharUnits SlotSize = CharUnits::fromQuantity(4);
4149     return emitVoidPtrVAArg(CGF, VAList, Ty,
4150                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4151                             /*AllowHigherAlign=*/true);
4152   }
4153 
4154   const unsigned OverflowLimit = 8;
4155   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4156     // TODO: Implement this. For now ignore.
4157     (void)CTy;
4158     return Address::invalid(); // FIXME?
4159   }
4160 
4161   // struct __va_list_tag {
4162   //   unsigned char gpr;
4163   //   unsigned char fpr;
4164   //   unsigned short reserved;
4165   //   void *overflow_arg_area;
4166   //   void *reg_save_area;
4167   // };
4168 
4169   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4170   bool isInt =
4171       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4172   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4173 
4174   // All aggregates are passed indirectly?  That doesn't seem consistent
4175   // with the argument-lowering code.
4176   bool isIndirect = Ty->isAggregateType();
4177 
4178   CGBuilderTy &Builder = CGF.Builder;
4179 
4180   // The calling convention either uses 1-2 GPRs or 1 FPR.
4181   Address NumRegsAddr = Address::invalid();
4182   if (isInt || IsSoftFloatABI) {
4183     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4184   } else {
4185     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4186   }
4187 
4188   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4189 
4190   // "Align" the register count when TY is i64.
4191   if (isI64 || (isF64 && IsSoftFloatABI)) {
4192     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4193     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4194   }
4195 
4196   llvm::Value *CC =
4197       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4198 
4199   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4200   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4201   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4202 
4203   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4204 
4205   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4206   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4207 
4208   // Case 1: consume registers.
4209   Address RegAddr = Address::invalid();
4210   {
4211     CGF.EmitBlock(UsingRegs);
4212 
4213     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4214     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4215                       CharUnits::fromQuantity(8));
4216     assert(RegAddr.getElementType() == CGF.Int8Ty);
4217 
4218     // Floating-point registers start after the general-purpose registers.
4219     if (!(isInt || IsSoftFloatABI)) {
4220       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4221                                                    CharUnits::fromQuantity(32));
4222     }
4223 
4224     // Get the address of the saved value by scaling the number of
4225     // registers we've used by the number of
4226     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4227     llvm::Value *RegOffset =
4228       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4229     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4230                                             RegAddr.getPointer(), RegOffset),
4231                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4232     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4233 
4234     // Increase the used-register count.
4235     NumRegs =
4236       Builder.CreateAdd(NumRegs,
4237                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4238     Builder.CreateStore(NumRegs, NumRegsAddr);
4239 
4240     CGF.EmitBranch(Cont);
4241   }
4242 
4243   // Case 2: consume space in the overflow area.
4244   Address MemAddr = Address::invalid();
4245   {
4246     CGF.EmitBlock(UsingOverflow);
4247 
4248     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4249 
4250     // Everything in the overflow area is rounded up to a size of at least 4.
4251     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4252 
4253     CharUnits Size;
4254     if (!isIndirect) {
4255       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4256       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4257     } else {
4258       Size = CGF.getPointerSize();
4259     }
4260 
4261     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4262     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4263                          OverflowAreaAlign);
4264     // Round up address of argument to alignment
4265     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4266     if (Align > OverflowAreaAlign) {
4267       llvm::Value *Ptr = OverflowArea.getPointer();
4268       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4269                                                            Align);
4270     }
4271 
4272     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4273 
4274     // Increase the overflow area.
4275     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4276     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4277     CGF.EmitBranch(Cont);
4278   }
4279 
4280   CGF.EmitBlock(Cont);
4281 
4282   // Merge the cases with a phi.
4283   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4284                                 "vaarg.addr");
4285 
4286   // Load the pointer if the argument was passed indirectly.
4287   if (isIndirect) {
4288     Result = Address(Builder.CreateLoad(Result, "aggr"),
4289                      getContext().getTypeAlignInChars(Ty));
4290   }
4291 
4292   return Result;
4293 }
4294 
4295 bool
4296 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4297                                                 llvm::Value *Address) const {
4298   // This is calculated from the LLVM and GCC tables and verified
4299   // against gcc output.  AFAIK all ABIs use the same encoding.
4300 
4301   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4302 
4303   llvm::IntegerType *i8 = CGF.Int8Ty;
4304   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4305   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4306   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4307 
4308   // 0-31: r0-31, the 4-byte general-purpose registers
4309   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4310 
4311   // 32-63: fp0-31, the 8-byte floating-point registers
4312   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4313 
4314   // 64-76 are various 4-byte special-purpose registers:
4315   // 64: mq
4316   // 65: lr
4317   // 66: ctr
4318   // 67: ap
4319   // 68-75 cr0-7
4320   // 76: xer
4321   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4322 
4323   // 77-108: v0-31, the 16-byte vector registers
4324   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4325 
4326   // 109: vrsave
4327   // 110: vscr
4328   // 111: spe_acc
4329   // 112: spefscr
4330   // 113: sfp
4331   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4332 
4333   return false;
4334 }
4335 
4336 // PowerPC-64
4337 
4338 namespace {
4339 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4340 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4341 public:
4342   enum ABIKind {
4343     ELFv1 = 0,
4344     ELFv2
4345   };
4346 
4347 private:
4348   static const unsigned GPRBits = 64;
4349   ABIKind Kind;
4350   bool HasQPX;
4351   bool IsSoftFloatABI;
4352 
4353   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4354   // will be passed in a QPX register.
4355   bool IsQPXVectorTy(const Type *Ty) const {
4356     if (!HasQPX)
4357       return false;
4358 
4359     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4360       unsigned NumElements = VT->getNumElements();
4361       if (NumElements == 1)
4362         return false;
4363 
4364       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4365         if (getContext().getTypeSize(Ty) <= 256)
4366           return true;
4367       } else if (VT->getElementType()->
4368                    isSpecificBuiltinType(BuiltinType::Float)) {
4369         if (getContext().getTypeSize(Ty) <= 128)
4370           return true;
4371       }
4372     }
4373 
4374     return false;
4375   }
4376 
4377   bool IsQPXVectorTy(QualType Ty) const {
4378     return IsQPXVectorTy(Ty.getTypePtr());
4379   }
4380 
4381 public:
4382   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4383                      bool SoftFloatABI)
4384       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4385         IsSoftFloatABI(SoftFloatABI) {}
4386 
4387   bool isPromotableTypeForABI(QualType Ty) const;
4388   CharUnits getParamTypeAlignment(QualType Ty) const;
4389 
4390   ABIArgInfo classifyReturnType(QualType RetTy) const;
4391   ABIArgInfo classifyArgumentType(QualType Ty) const;
4392 
4393   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4394   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4395                                          uint64_t Members) const override;
4396 
4397   // TODO: We can add more logic to computeInfo to improve performance.
4398   // Example: For aggregate arguments that fit in a register, we could
4399   // use getDirectInReg (as is done below for structs containing a single
4400   // floating-point value) to avoid pushing them to memory on function
4401   // entry.  This would require changing the logic in PPCISelLowering
4402   // when lowering the parameters in the caller and args in the callee.
4403   void computeInfo(CGFunctionInfo &FI) const override {
4404     if (!getCXXABI().classifyReturnType(FI))
4405       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4406     for (auto &I : FI.arguments()) {
4407       // We rely on the default argument classification for the most part.
4408       // One exception:  An aggregate containing a single floating-point
4409       // or vector item must be passed in a register if one is available.
4410       const Type *T = isSingleElementStruct(I.type, getContext());
4411       if (T) {
4412         const BuiltinType *BT = T->getAs<BuiltinType>();
4413         if (IsQPXVectorTy(T) ||
4414             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4415             (BT && BT->isFloatingPoint())) {
4416           QualType QT(T, 0);
4417           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4418           continue;
4419         }
4420       }
4421       I.info = classifyArgumentType(I.type);
4422     }
4423   }
4424 
4425   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4426                     QualType Ty) const override;
4427 
4428   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4429                                     bool asReturnValue) const override {
4430     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4431   }
4432 
4433   bool isSwiftErrorInRegister() const override {
4434     return false;
4435   }
4436 };
4437 
4438 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4439 
4440 public:
4441   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4442                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4443                                bool SoftFloatABI)
4444       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4445                                                  SoftFloatABI)) {}
4446 
4447   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4448     // This is recovered from gcc output.
4449     return 1; // r1 is the dedicated stack pointer
4450   }
4451 
4452   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4453                                llvm::Value *Address) const override;
4454 };
4455 
4456 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4457 public:
4458   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4459 
4460   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4461     // This is recovered from gcc output.
4462     return 1; // r1 is the dedicated stack pointer
4463   }
4464 
4465   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4466                                llvm::Value *Address) const override;
4467 };
4468 
4469 }
4470 
4471 // Return true if the ABI requires Ty to be passed sign- or zero-
4472 // extended to 64 bits.
4473 bool
4474 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4475   // Treat an enum type as its underlying type.
4476   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4477     Ty = EnumTy->getDecl()->getIntegerType();
4478 
4479   // Promotable integer types are required to be promoted by the ABI.
4480   if (Ty->isPromotableIntegerType())
4481     return true;
4482 
4483   // In addition to the usual promotable integer types, we also need to
4484   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4485   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4486     switch (BT->getKind()) {
4487     case BuiltinType::Int:
4488     case BuiltinType::UInt:
4489       return true;
4490     default:
4491       break;
4492     }
4493 
4494   return false;
4495 }
4496 
4497 /// isAlignedParamType - Determine whether a type requires 16-byte or
4498 /// higher alignment in the parameter area.  Always returns at least 8.
4499 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4500   // Complex types are passed just like their elements.
4501   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4502     Ty = CTy->getElementType();
4503 
4504   // Only vector types of size 16 bytes need alignment (larger types are
4505   // passed via reference, smaller types are not aligned).
4506   if (IsQPXVectorTy(Ty)) {
4507     if (getContext().getTypeSize(Ty) > 128)
4508       return CharUnits::fromQuantity(32);
4509 
4510     return CharUnits::fromQuantity(16);
4511   } else if (Ty->isVectorType()) {
4512     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4513   }
4514 
4515   // For single-element float/vector structs, we consider the whole type
4516   // to have the same alignment requirements as its single element.
4517   const Type *AlignAsType = nullptr;
4518   const Type *EltType = isSingleElementStruct(Ty, getContext());
4519   if (EltType) {
4520     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4521     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4522          getContext().getTypeSize(EltType) == 128) ||
4523         (BT && BT->isFloatingPoint()))
4524       AlignAsType = EltType;
4525   }
4526 
4527   // Likewise for ELFv2 homogeneous aggregates.
4528   const Type *Base = nullptr;
4529   uint64_t Members = 0;
4530   if (!AlignAsType && Kind == ELFv2 &&
4531       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4532     AlignAsType = Base;
4533 
4534   // With special case aggregates, only vector base types need alignment.
4535   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4536     if (getContext().getTypeSize(AlignAsType) > 128)
4537       return CharUnits::fromQuantity(32);
4538 
4539     return CharUnits::fromQuantity(16);
4540   } else if (AlignAsType) {
4541     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4542   }
4543 
4544   // Otherwise, we only need alignment for any aggregate type that
4545   // has an alignment requirement of >= 16 bytes.
4546   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4547     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4548       return CharUnits::fromQuantity(32);
4549     return CharUnits::fromQuantity(16);
4550   }
4551 
4552   return CharUnits::fromQuantity(8);
4553 }
4554 
4555 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4556 /// aggregate.  Base is set to the base element type, and Members is set
4557 /// to the number of base elements.
4558 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4559                                      uint64_t &Members) const {
4560   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4561     uint64_t NElements = AT->getSize().getZExtValue();
4562     if (NElements == 0)
4563       return false;
4564     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4565       return false;
4566     Members *= NElements;
4567   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4568     const RecordDecl *RD = RT->getDecl();
4569     if (RD->hasFlexibleArrayMember())
4570       return false;
4571 
4572     Members = 0;
4573 
4574     // If this is a C++ record, check the bases first.
4575     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4576       for (const auto &I : CXXRD->bases()) {
4577         // Ignore empty records.
4578         if (isEmptyRecord(getContext(), I.getType(), true))
4579           continue;
4580 
4581         uint64_t FldMembers;
4582         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4583           return false;
4584 
4585         Members += FldMembers;
4586       }
4587     }
4588 
4589     for (const auto *FD : RD->fields()) {
4590       // Ignore (non-zero arrays of) empty records.
4591       QualType FT = FD->getType();
4592       while (const ConstantArrayType *AT =
4593              getContext().getAsConstantArrayType(FT)) {
4594         if (AT->getSize().getZExtValue() == 0)
4595           return false;
4596         FT = AT->getElementType();
4597       }
4598       if (isEmptyRecord(getContext(), FT, true))
4599         continue;
4600 
4601       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4602       if (getContext().getLangOpts().CPlusPlus &&
4603           FD->isZeroLengthBitField(getContext()))
4604         continue;
4605 
4606       uint64_t FldMembers;
4607       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4608         return false;
4609 
4610       Members = (RD->isUnion() ?
4611                  std::max(Members, FldMembers) : Members + FldMembers);
4612     }
4613 
4614     if (!Base)
4615       return false;
4616 
4617     // Ensure there is no padding.
4618     if (getContext().getTypeSize(Base) * Members !=
4619         getContext().getTypeSize(Ty))
4620       return false;
4621   } else {
4622     Members = 1;
4623     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4624       Members = 2;
4625       Ty = CT->getElementType();
4626     }
4627 
4628     // Most ABIs only support float, double, and some vector type widths.
4629     if (!isHomogeneousAggregateBaseType(Ty))
4630       return false;
4631 
4632     // The base type must be the same for all members.  Types that
4633     // agree in both total size and mode (float vs. vector) are
4634     // treated as being equivalent here.
4635     const Type *TyPtr = Ty.getTypePtr();
4636     if (!Base) {
4637       Base = TyPtr;
4638       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4639       // so make sure to widen it explicitly.
4640       if (const VectorType *VT = Base->getAs<VectorType>()) {
4641         QualType EltTy = VT->getElementType();
4642         unsigned NumElements =
4643             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4644         Base = getContext()
4645                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4646                    .getTypePtr();
4647       }
4648     }
4649 
4650     if (Base->isVectorType() != TyPtr->isVectorType() ||
4651         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4652       return false;
4653   }
4654   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4655 }
4656 
4657 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4658   // Homogeneous aggregates for ELFv2 must have base types of float,
4659   // double, long double, or 128-bit vectors.
4660   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4661     if (BT->getKind() == BuiltinType::Float ||
4662         BT->getKind() == BuiltinType::Double ||
4663         BT->getKind() == BuiltinType::LongDouble ||
4664         (getContext().getTargetInfo().hasFloat128Type() &&
4665           (BT->getKind() == BuiltinType::Float128))) {
4666       if (IsSoftFloatABI)
4667         return false;
4668       return true;
4669     }
4670   }
4671   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4672     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4673       return true;
4674   }
4675   return false;
4676 }
4677 
4678 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4679     const Type *Base, uint64_t Members) const {
4680   // Vector and fp128 types require one register, other floating point types
4681   // require one or two registers depending on their size.
4682   uint32_t NumRegs =
4683       ((getContext().getTargetInfo().hasFloat128Type() &&
4684           Base->isFloat128Type()) ||
4685         Base->isVectorType()) ? 1
4686                               : (getContext().getTypeSize(Base) + 63) / 64;
4687 
4688   // Homogeneous Aggregates may occupy at most 8 registers.
4689   return Members * NumRegs <= 8;
4690 }
4691 
4692 ABIArgInfo
4693 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4694   Ty = useFirstFieldIfTransparentUnion(Ty);
4695 
4696   if (Ty->isAnyComplexType())
4697     return ABIArgInfo::getDirect();
4698 
4699   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4700   // or via reference (larger than 16 bytes).
4701   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4702     uint64_t Size = getContext().getTypeSize(Ty);
4703     if (Size > 128)
4704       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4705     else if (Size < 128) {
4706       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4707       return ABIArgInfo::getDirect(CoerceTy);
4708     }
4709   }
4710 
4711   if (isAggregateTypeForABI(Ty)) {
4712     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4713       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4714 
4715     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4716     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4717 
4718     // ELFv2 homogeneous aggregates are passed as array types.
4719     const Type *Base = nullptr;
4720     uint64_t Members = 0;
4721     if (Kind == ELFv2 &&
4722         isHomogeneousAggregate(Ty, Base, Members)) {
4723       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4724       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4725       return ABIArgInfo::getDirect(CoerceTy);
4726     }
4727 
4728     // If an aggregate may end up fully in registers, we do not
4729     // use the ByVal method, but pass the aggregate as array.
4730     // This is usually beneficial since we avoid forcing the
4731     // back-end to store the argument to memory.
4732     uint64_t Bits = getContext().getTypeSize(Ty);
4733     if (Bits > 0 && Bits <= 8 * GPRBits) {
4734       llvm::Type *CoerceTy;
4735 
4736       // Types up to 8 bytes are passed as integer type (which will be
4737       // properly aligned in the argument save area doubleword).
4738       if (Bits <= GPRBits)
4739         CoerceTy =
4740             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4741       // Larger types are passed as arrays, with the base type selected
4742       // according to the required alignment in the save area.
4743       else {
4744         uint64_t RegBits = ABIAlign * 8;
4745         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4746         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4747         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4748       }
4749 
4750       return ABIArgInfo::getDirect(CoerceTy);
4751     }
4752 
4753     // All other aggregates are passed ByVal.
4754     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4755                                    /*ByVal=*/true,
4756                                    /*Realign=*/TyAlign > ABIAlign);
4757   }
4758 
4759   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4760                                      : ABIArgInfo::getDirect());
4761 }
4762 
4763 ABIArgInfo
4764 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4765   if (RetTy->isVoidType())
4766     return ABIArgInfo::getIgnore();
4767 
4768   if (RetTy->isAnyComplexType())
4769     return ABIArgInfo::getDirect();
4770 
4771   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4772   // or via reference (larger than 16 bytes).
4773   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4774     uint64_t Size = getContext().getTypeSize(RetTy);
4775     if (Size > 128)
4776       return getNaturalAlignIndirect(RetTy);
4777     else if (Size < 128) {
4778       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4779       return ABIArgInfo::getDirect(CoerceTy);
4780     }
4781   }
4782 
4783   if (isAggregateTypeForABI(RetTy)) {
4784     // ELFv2 homogeneous aggregates are returned as array types.
4785     const Type *Base = nullptr;
4786     uint64_t Members = 0;
4787     if (Kind == ELFv2 &&
4788         isHomogeneousAggregate(RetTy, Base, Members)) {
4789       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4790       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4791       return ABIArgInfo::getDirect(CoerceTy);
4792     }
4793 
4794     // ELFv2 small aggregates are returned in up to two registers.
4795     uint64_t Bits = getContext().getTypeSize(RetTy);
4796     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4797       if (Bits == 0)
4798         return ABIArgInfo::getIgnore();
4799 
4800       llvm::Type *CoerceTy;
4801       if (Bits > GPRBits) {
4802         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4803         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4804       } else
4805         CoerceTy =
4806             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4807       return ABIArgInfo::getDirect(CoerceTy);
4808     }
4809 
4810     // All other aggregates are returned indirectly.
4811     return getNaturalAlignIndirect(RetTy);
4812   }
4813 
4814   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4815                                         : ABIArgInfo::getDirect());
4816 }
4817 
4818 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4819 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4820                                       QualType Ty) const {
4821   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4822   TypeInfo.second = getParamTypeAlignment(Ty);
4823 
4824   CharUnits SlotSize = CharUnits::fromQuantity(8);
4825 
4826   // If we have a complex type and the base type is smaller than 8 bytes,
4827   // the ABI calls for the real and imaginary parts to be right-adjusted
4828   // in separate doublewords.  However, Clang expects us to produce a
4829   // pointer to a structure with the two parts packed tightly.  So generate
4830   // loads of the real and imaginary parts relative to the va_list pointer,
4831   // and store them to a temporary structure.
4832   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4833     CharUnits EltSize = TypeInfo.first / 2;
4834     if (EltSize < SlotSize) {
4835       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4836                                             SlotSize * 2, SlotSize,
4837                                             SlotSize, /*AllowHigher*/ true);
4838 
4839       Address RealAddr = Addr;
4840       Address ImagAddr = RealAddr;
4841       if (CGF.CGM.getDataLayout().isBigEndian()) {
4842         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4843                                                           SlotSize - EltSize);
4844         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4845                                                       2 * SlotSize - EltSize);
4846       } else {
4847         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4848       }
4849 
4850       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4851       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4852       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4853       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4854       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4855 
4856       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4857       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4858                              /*init*/ true);
4859       return Temp;
4860     }
4861   }
4862 
4863   // Otherwise, just use the general rule.
4864   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4865                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4866 }
4867 
4868 static bool
4869 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4870                               llvm::Value *Address) {
4871   // This is calculated from the LLVM and GCC tables and verified
4872   // against gcc output.  AFAIK all ABIs use the same encoding.
4873 
4874   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4875 
4876   llvm::IntegerType *i8 = CGF.Int8Ty;
4877   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4878   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4879   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4880 
4881   // 0-31: r0-31, the 8-byte general-purpose registers
4882   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4883 
4884   // 32-63: fp0-31, the 8-byte floating-point registers
4885   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4886 
4887   // 64-67 are various 8-byte special-purpose registers:
4888   // 64: mq
4889   // 65: lr
4890   // 66: ctr
4891   // 67: ap
4892   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4893 
4894   // 68-76 are various 4-byte special-purpose registers:
4895   // 68-75 cr0-7
4896   // 76: xer
4897   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4898 
4899   // 77-108: v0-31, the 16-byte vector registers
4900   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4901 
4902   // 109: vrsave
4903   // 110: vscr
4904   // 111: spe_acc
4905   // 112: spefscr
4906   // 113: sfp
4907   // 114: tfhar
4908   // 115: tfiar
4909   // 116: texasr
4910   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4911 
4912   return false;
4913 }
4914 
4915 bool
4916 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4917   CodeGen::CodeGenFunction &CGF,
4918   llvm::Value *Address) const {
4919 
4920   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4921 }
4922 
4923 bool
4924 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4925                                                 llvm::Value *Address) const {
4926 
4927   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4928 }
4929 
4930 //===----------------------------------------------------------------------===//
4931 // AArch64 ABI Implementation
4932 //===----------------------------------------------------------------------===//
4933 
4934 namespace {
4935 
4936 class AArch64ABIInfo : public SwiftABIInfo {
4937 public:
4938   enum ABIKind {
4939     AAPCS = 0,
4940     DarwinPCS,
4941     Win64
4942   };
4943 
4944 private:
4945   ABIKind Kind;
4946 
4947 public:
4948   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4949     : SwiftABIInfo(CGT), Kind(Kind) {}
4950 
4951 private:
4952   ABIKind getABIKind() const { return Kind; }
4953   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4954 
4955   ABIArgInfo classifyReturnType(QualType RetTy) const;
4956   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4957   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4958   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4959                                          uint64_t Members) const override;
4960 
4961   bool isIllegalVectorType(QualType Ty) const;
4962 
4963   void computeInfo(CGFunctionInfo &FI) const override {
4964     if (!::classifyReturnType(getCXXABI(), FI, *this))
4965       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4966 
4967     for (auto &it : FI.arguments())
4968       it.info = classifyArgumentType(it.type);
4969   }
4970 
4971   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4972                           CodeGenFunction &CGF) const;
4973 
4974   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4975                          CodeGenFunction &CGF) const;
4976 
4977   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4978                     QualType Ty) const override {
4979     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4980                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4981                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4982   }
4983 
4984   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4985                       QualType Ty) const override;
4986 
4987   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4988                                     bool asReturnValue) const override {
4989     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4990   }
4991   bool isSwiftErrorInRegister() const override {
4992     return true;
4993   }
4994 
4995   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4996                                  unsigned elts) const override;
4997 };
4998 
4999 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5000 public:
5001   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5002       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5003 
5004   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5005     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5006   }
5007 
5008   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5009     return 31;
5010   }
5011 
5012   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5013 
5014   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5015                            CodeGen::CodeGenModule &CGM) const override {
5016     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5017     if (!FD)
5018       return;
5019     llvm::Function *Fn = cast<llvm::Function>(GV);
5020 
5021     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5022     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5023       Fn->addFnAttr("sign-return-address",
5024                     Kind == CodeGenOptions::SignReturnAddressScope::All
5025                         ? "all"
5026                         : "non-leaf");
5027 
5028       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5029       Fn->addFnAttr("sign-return-address-key",
5030                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5031                         ? "a_key"
5032                         : "b_key");
5033     }
5034 
5035     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5036       Fn->addFnAttr("branch-target-enforcement");
5037   }
5038 };
5039 
5040 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5041 public:
5042   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5043       : AArch64TargetCodeGenInfo(CGT, K) {}
5044 
5045   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5046                            CodeGen::CodeGenModule &CGM) const override;
5047 
5048   void getDependentLibraryOption(llvm::StringRef Lib,
5049                                  llvm::SmallString<24> &Opt) const override {
5050     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5051   }
5052 
5053   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5054                                llvm::SmallString<32> &Opt) const override {
5055     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5056   }
5057 };
5058 
5059 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5060     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5061   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5062   if (GV->isDeclaration())
5063     return;
5064   addStackProbeTargetAttributes(D, GV, CGM);
5065 }
5066 }
5067 
5068 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5069   Ty = useFirstFieldIfTransparentUnion(Ty);
5070 
5071   // Handle illegal vector types here.
5072   if (isIllegalVectorType(Ty)) {
5073     uint64_t Size = getContext().getTypeSize(Ty);
5074     // Android promotes <2 x i8> to i16, not i32
5075     if (isAndroid() && (Size <= 16)) {
5076       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5077       return ABIArgInfo::getDirect(ResType);
5078     }
5079     if (Size <= 32) {
5080       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5081       return ABIArgInfo::getDirect(ResType);
5082     }
5083     if (Size == 64) {
5084       llvm::Type *ResType =
5085           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5086       return ABIArgInfo::getDirect(ResType);
5087     }
5088     if (Size == 128) {
5089       llvm::Type *ResType =
5090           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5091       return ABIArgInfo::getDirect(ResType);
5092     }
5093     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5094   }
5095 
5096   if (!isAggregateTypeForABI(Ty)) {
5097     // Treat an enum type as its underlying type.
5098     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5099       Ty = EnumTy->getDecl()->getIntegerType();
5100 
5101     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5102                 ? ABIArgInfo::getExtend(Ty)
5103                 : ABIArgInfo::getDirect());
5104   }
5105 
5106   // Structures with either a non-trivial destructor or a non-trivial
5107   // copy constructor are always indirect.
5108   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5109     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5110                                      CGCXXABI::RAA_DirectInMemory);
5111   }
5112 
5113   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5114   // elsewhere for GNU compatibility.
5115   uint64_t Size = getContext().getTypeSize(Ty);
5116   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5117   if (IsEmpty || Size == 0) {
5118     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5119       return ABIArgInfo::getIgnore();
5120 
5121     // GNU C mode. The only argument that gets ignored is an empty one with size
5122     // 0.
5123     if (IsEmpty && Size == 0)
5124       return ABIArgInfo::getIgnore();
5125     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5126   }
5127 
5128   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5129   const Type *Base = nullptr;
5130   uint64_t Members = 0;
5131   if (isHomogeneousAggregate(Ty, Base, Members)) {
5132     return ABIArgInfo::getDirect(
5133         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5134   }
5135 
5136   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5137   if (Size <= 128) {
5138     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5139     // same size and alignment.
5140     if (getTarget().isRenderScriptTarget()) {
5141       return coerceToIntArray(Ty, getContext(), getVMContext());
5142     }
5143     unsigned Alignment;
5144     if (Kind == AArch64ABIInfo::AAPCS) {
5145       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5146       Alignment = Alignment < 128 ? 64 : 128;
5147     } else {
5148       Alignment = getContext().getTypeAlign(Ty);
5149     }
5150     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5151 
5152     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5153     // For aggregates with 16-byte alignment, we use i128.
5154     if (Alignment < 128 && Size == 128) {
5155       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5156       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5157     }
5158     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5159   }
5160 
5161   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5162 }
5163 
5164 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5165   if (RetTy->isVoidType())
5166     return ABIArgInfo::getIgnore();
5167 
5168   // Large vector types should be returned via memory.
5169   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5170     return getNaturalAlignIndirect(RetTy);
5171 
5172   if (!isAggregateTypeForABI(RetTy)) {
5173     // Treat an enum type as its underlying type.
5174     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5175       RetTy = EnumTy->getDecl()->getIntegerType();
5176 
5177     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5178                 ? ABIArgInfo::getExtend(RetTy)
5179                 : ABIArgInfo::getDirect());
5180   }
5181 
5182   uint64_t Size = getContext().getTypeSize(RetTy);
5183   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5184     return ABIArgInfo::getIgnore();
5185 
5186   const Type *Base = nullptr;
5187   uint64_t Members = 0;
5188   if (isHomogeneousAggregate(RetTy, Base, Members))
5189     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5190     return ABIArgInfo::getDirect();
5191 
5192   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5193   if (Size <= 128) {
5194     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5195     // same size and alignment.
5196     if (getTarget().isRenderScriptTarget()) {
5197       return coerceToIntArray(RetTy, getContext(), getVMContext());
5198     }
5199     unsigned Alignment = getContext().getTypeAlign(RetTy);
5200     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5201 
5202     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5203     // For aggregates with 16-byte alignment, we use i128.
5204     if (Alignment < 128 && Size == 128) {
5205       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5206       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5207     }
5208     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5209   }
5210 
5211   return getNaturalAlignIndirect(RetTy);
5212 }
5213 
5214 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5215 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5216   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5217     // Check whether VT is legal.
5218     unsigned NumElements = VT->getNumElements();
5219     uint64_t Size = getContext().getTypeSize(VT);
5220     // NumElements should be power of 2.
5221     if (!llvm::isPowerOf2_32(NumElements))
5222       return true;
5223     return Size != 64 && (Size != 128 || NumElements == 1);
5224   }
5225   return false;
5226 }
5227 
5228 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5229                                                llvm::Type *eltTy,
5230                                                unsigned elts) const {
5231   if (!llvm::isPowerOf2_32(elts))
5232     return false;
5233   if (totalSize.getQuantity() != 8 &&
5234       (totalSize.getQuantity() != 16 || elts == 1))
5235     return false;
5236   return true;
5237 }
5238 
5239 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5240   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5241   // point type or a short-vector type. This is the same as the 32-bit ABI,
5242   // but with the difference that any floating-point type is allowed,
5243   // including __fp16.
5244   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5245     if (BT->isFloatingPoint())
5246       return true;
5247   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5248     unsigned VecSize = getContext().getTypeSize(VT);
5249     if (VecSize == 64 || VecSize == 128)
5250       return true;
5251   }
5252   return false;
5253 }
5254 
5255 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5256                                                        uint64_t Members) const {
5257   return Members <= 4;
5258 }
5259 
5260 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5261                                             QualType Ty,
5262                                             CodeGenFunction &CGF) const {
5263   ABIArgInfo AI = classifyArgumentType(Ty);
5264   bool IsIndirect = AI.isIndirect();
5265 
5266   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5267   if (IsIndirect)
5268     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5269   else if (AI.getCoerceToType())
5270     BaseTy = AI.getCoerceToType();
5271 
5272   unsigned NumRegs = 1;
5273   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5274     BaseTy = ArrTy->getElementType();
5275     NumRegs = ArrTy->getNumElements();
5276   }
5277   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5278 
5279   // The AArch64 va_list type and handling is specified in the Procedure Call
5280   // Standard, section B.4:
5281   //
5282   // struct {
5283   //   void *__stack;
5284   //   void *__gr_top;
5285   //   void *__vr_top;
5286   //   int __gr_offs;
5287   //   int __vr_offs;
5288   // };
5289 
5290   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5291   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5292   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5293   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5294 
5295   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5296   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5297 
5298   Address reg_offs_p = Address::invalid();
5299   llvm::Value *reg_offs = nullptr;
5300   int reg_top_index;
5301   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5302   if (!IsFPR) {
5303     // 3 is the field number of __gr_offs
5304     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5305     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5306     reg_top_index = 1; // field number for __gr_top
5307     RegSize = llvm::alignTo(RegSize, 8);
5308   } else {
5309     // 4 is the field number of __vr_offs.
5310     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5311     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5312     reg_top_index = 2; // field number for __vr_top
5313     RegSize = 16 * NumRegs;
5314   }
5315 
5316   //=======================================
5317   // Find out where argument was passed
5318   //=======================================
5319 
5320   // If reg_offs >= 0 we're already using the stack for this type of
5321   // argument. We don't want to keep updating reg_offs (in case it overflows,
5322   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5323   // whatever they get).
5324   llvm::Value *UsingStack = nullptr;
5325   UsingStack = CGF.Builder.CreateICmpSGE(
5326       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5327 
5328   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5329 
5330   // Otherwise, at least some kind of argument could go in these registers, the
5331   // question is whether this particular type is too big.
5332   CGF.EmitBlock(MaybeRegBlock);
5333 
5334   // Integer arguments may need to correct register alignment (for example a
5335   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5336   // align __gr_offs to calculate the potential address.
5337   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5338     int Align = TyAlign.getQuantity();
5339 
5340     reg_offs = CGF.Builder.CreateAdd(
5341         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5342         "align_regoffs");
5343     reg_offs = CGF.Builder.CreateAnd(
5344         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5345         "aligned_regoffs");
5346   }
5347 
5348   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5349   // The fact that this is done unconditionally reflects the fact that
5350   // allocating an argument to the stack also uses up all the remaining
5351   // registers of the appropriate kind.
5352   llvm::Value *NewOffset = nullptr;
5353   NewOffset = CGF.Builder.CreateAdd(
5354       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5355   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5356 
5357   // Now we're in a position to decide whether this argument really was in
5358   // registers or not.
5359   llvm::Value *InRegs = nullptr;
5360   InRegs = CGF.Builder.CreateICmpSLE(
5361       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5362 
5363   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5364 
5365   //=======================================
5366   // Argument was in registers
5367   //=======================================
5368 
5369   // Now we emit the code for if the argument was originally passed in
5370   // registers. First start the appropriate block:
5371   CGF.EmitBlock(InRegBlock);
5372 
5373   llvm::Value *reg_top = nullptr;
5374   Address reg_top_p =
5375       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5376   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5377   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5378                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5379   Address RegAddr = Address::invalid();
5380   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5381 
5382   if (IsIndirect) {
5383     // If it's been passed indirectly (actually a struct), whatever we find from
5384     // stored registers or on the stack will actually be a struct **.
5385     MemTy = llvm::PointerType::getUnqual(MemTy);
5386   }
5387 
5388   const Type *Base = nullptr;
5389   uint64_t NumMembers = 0;
5390   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5391   if (IsHFA && NumMembers > 1) {
5392     // Homogeneous aggregates passed in registers will have their elements split
5393     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5394     // qN+1, ...). We reload and store into a temporary local variable
5395     // contiguously.
5396     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5397     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5398     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5399     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5400     Address Tmp = CGF.CreateTempAlloca(HFATy,
5401                                        std::max(TyAlign, BaseTyInfo.second));
5402 
5403     // On big-endian platforms, the value will be right-aligned in its slot.
5404     int Offset = 0;
5405     if (CGF.CGM.getDataLayout().isBigEndian() &&
5406         BaseTyInfo.first.getQuantity() < 16)
5407       Offset = 16 - BaseTyInfo.first.getQuantity();
5408 
5409     for (unsigned i = 0; i < NumMembers; ++i) {
5410       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5411       Address LoadAddr =
5412         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5413       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5414 
5415       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5416 
5417       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5418       CGF.Builder.CreateStore(Elem, StoreAddr);
5419     }
5420 
5421     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5422   } else {
5423     // Otherwise the object is contiguous in memory.
5424 
5425     // It might be right-aligned in its slot.
5426     CharUnits SlotSize = BaseAddr.getAlignment();
5427     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5428         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5429         TySize < SlotSize) {
5430       CharUnits Offset = SlotSize - TySize;
5431       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5432     }
5433 
5434     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5435   }
5436 
5437   CGF.EmitBranch(ContBlock);
5438 
5439   //=======================================
5440   // Argument was on the stack
5441   //=======================================
5442   CGF.EmitBlock(OnStackBlock);
5443 
5444   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5445   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5446 
5447   // Again, stack arguments may need realignment. In this case both integer and
5448   // floating-point ones might be affected.
5449   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5450     int Align = TyAlign.getQuantity();
5451 
5452     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5453 
5454     OnStackPtr = CGF.Builder.CreateAdd(
5455         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5456         "align_stack");
5457     OnStackPtr = CGF.Builder.CreateAnd(
5458         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5459         "align_stack");
5460 
5461     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5462   }
5463   Address OnStackAddr(OnStackPtr,
5464                       std::max(CharUnits::fromQuantity(8), TyAlign));
5465 
5466   // All stack slots are multiples of 8 bytes.
5467   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5468   CharUnits StackSize;
5469   if (IsIndirect)
5470     StackSize = StackSlotSize;
5471   else
5472     StackSize = TySize.alignTo(StackSlotSize);
5473 
5474   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5475   llvm::Value *NewStack =
5476       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5477 
5478   // Write the new value of __stack for the next call to va_arg
5479   CGF.Builder.CreateStore(NewStack, stack_p);
5480 
5481   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5482       TySize < StackSlotSize) {
5483     CharUnits Offset = StackSlotSize - TySize;
5484     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5485   }
5486 
5487   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5488 
5489   CGF.EmitBranch(ContBlock);
5490 
5491   //=======================================
5492   // Tidy up
5493   //=======================================
5494   CGF.EmitBlock(ContBlock);
5495 
5496   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5497                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5498 
5499   if (IsIndirect)
5500     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5501                    TyAlign);
5502 
5503   return ResAddr;
5504 }
5505 
5506 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5507                                         CodeGenFunction &CGF) const {
5508   // The backend's lowering doesn't support va_arg for aggregates or
5509   // illegal vector types.  Lower VAArg here for these cases and use
5510   // the LLVM va_arg instruction for everything else.
5511   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5512     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5513 
5514   CharUnits SlotSize = CharUnits::fromQuantity(8);
5515 
5516   // Empty records are ignored for parameter passing purposes.
5517   if (isEmptyRecord(getContext(), Ty, true)) {
5518     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5519     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5520     return Addr;
5521   }
5522 
5523   // The size of the actual thing passed, which might end up just
5524   // being a pointer for indirect types.
5525   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5526 
5527   // Arguments bigger than 16 bytes which aren't homogeneous
5528   // aggregates should be passed indirectly.
5529   bool IsIndirect = false;
5530   if (TyInfo.first.getQuantity() > 16) {
5531     const Type *Base = nullptr;
5532     uint64_t Members = 0;
5533     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5534   }
5535 
5536   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5537                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5538 }
5539 
5540 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5541                                     QualType Ty) const {
5542   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5543                           CGF.getContext().getTypeInfoInChars(Ty),
5544                           CharUnits::fromQuantity(8),
5545                           /*allowHigherAlign*/ false);
5546 }
5547 
5548 //===----------------------------------------------------------------------===//
5549 // ARM ABI Implementation
5550 //===----------------------------------------------------------------------===//
5551 
5552 namespace {
5553 
5554 class ARMABIInfo : public SwiftABIInfo {
5555 public:
5556   enum ABIKind {
5557     APCS = 0,
5558     AAPCS = 1,
5559     AAPCS_VFP = 2,
5560     AAPCS16_VFP = 3,
5561   };
5562 
5563 private:
5564   ABIKind Kind;
5565 
5566 public:
5567   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5568       : SwiftABIInfo(CGT), Kind(_Kind) {
5569     setCCs();
5570   }
5571 
5572   bool isEABI() const {
5573     switch (getTarget().getTriple().getEnvironment()) {
5574     case llvm::Triple::Android:
5575     case llvm::Triple::EABI:
5576     case llvm::Triple::EABIHF:
5577     case llvm::Triple::GNUEABI:
5578     case llvm::Triple::GNUEABIHF:
5579     case llvm::Triple::MuslEABI:
5580     case llvm::Triple::MuslEABIHF:
5581       return true;
5582     default:
5583       return false;
5584     }
5585   }
5586 
5587   bool isEABIHF() const {
5588     switch (getTarget().getTriple().getEnvironment()) {
5589     case llvm::Triple::EABIHF:
5590     case llvm::Triple::GNUEABIHF:
5591     case llvm::Triple::MuslEABIHF:
5592       return true;
5593     default:
5594       return false;
5595     }
5596   }
5597 
5598   ABIKind getABIKind() const { return Kind; }
5599 
5600 private:
5601   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5602                                 unsigned functionCallConv) const;
5603   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5604                                   unsigned functionCallConv) const;
5605   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5606                                           uint64_t Members) const;
5607   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5608   bool isIllegalVectorType(QualType Ty) const;
5609   bool containsAnyFP16Vectors(QualType Ty) const;
5610 
5611   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5612   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5613                                          uint64_t Members) const override;
5614 
5615   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5616 
5617   void computeInfo(CGFunctionInfo &FI) const override;
5618 
5619   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5620                     QualType Ty) const override;
5621 
5622   llvm::CallingConv::ID getLLVMDefaultCC() const;
5623   llvm::CallingConv::ID getABIDefaultCC() const;
5624   void setCCs();
5625 
5626   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5627                                     bool asReturnValue) const override {
5628     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5629   }
5630   bool isSwiftErrorInRegister() const override {
5631     return true;
5632   }
5633   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5634                                  unsigned elts) const override;
5635 };
5636 
5637 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5638 public:
5639   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5640     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5641 
5642   const ARMABIInfo &getABIInfo() const {
5643     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5644   }
5645 
5646   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5647     return 13;
5648   }
5649 
5650   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5651     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5652   }
5653 
5654   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5655                                llvm::Value *Address) const override {
5656     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5657 
5658     // 0-15 are the 16 integer registers.
5659     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5660     return false;
5661   }
5662 
5663   unsigned getSizeOfUnwindException() const override {
5664     if (getABIInfo().isEABI()) return 88;
5665     return TargetCodeGenInfo::getSizeOfUnwindException();
5666   }
5667 
5668   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5669                            CodeGen::CodeGenModule &CGM) const override {
5670     if (GV->isDeclaration())
5671       return;
5672     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5673     if (!FD)
5674       return;
5675 
5676     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5677     if (!Attr)
5678       return;
5679 
5680     const char *Kind;
5681     switch (Attr->getInterrupt()) {
5682     case ARMInterruptAttr::Generic: Kind = ""; break;
5683     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5684     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5685     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5686     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5687     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5688     }
5689 
5690     llvm::Function *Fn = cast<llvm::Function>(GV);
5691 
5692     Fn->addFnAttr("interrupt", Kind);
5693 
5694     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5695     if (ABI == ARMABIInfo::APCS)
5696       return;
5697 
5698     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5699     // however this is not necessarily true on taking any interrupt. Instruct
5700     // the backend to perform a realignment as part of the function prologue.
5701     llvm::AttrBuilder B;
5702     B.addStackAlignmentAttr(8);
5703     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5704   }
5705 };
5706 
5707 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5708 public:
5709   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5710       : ARMTargetCodeGenInfo(CGT, K) {}
5711 
5712   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5713                            CodeGen::CodeGenModule &CGM) const override;
5714 
5715   void getDependentLibraryOption(llvm::StringRef Lib,
5716                                  llvm::SmallString<24> &Opt) const override {
5717     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5718   }
5719 
5720   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5721                                llvm::SmallString<32> &Opt) const override {
5722     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5723   }
5724 };
5725 
5726 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5727     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5728   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5729   if (GV->isDeclaration())
5730     return;
5731   addStackProbeTargetAttributes(D, GV, CGM);
5732 }
5733 }
5734 
5735 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5736   if (!::classifyReturnType(getCXXABI(), FI, *this))
5737     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5738                                             FI.getCallingConvention());
5739 
5740   for (auto &I : FI.arguments())
5741     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5742                                   FI.getCallingConvention());
5743 
5744 
5745   // Always honor user-specified calling convention.
5746   if (FI.getCallingConvention() != llvm::CallingConv::C)
5747     return;
5748 
5749   llvm::CallingConv::ID cc = getRuntimeCC();
5750   if (cc != llvm::CallingConv::C)
5751     FI.setEffectiveCallingConvention(cc);
5752 }
5753 
5754 /// Return the default calling convention that LLVM will use.
5755 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5756   // The default calling convention that LLVM will infer.
5757   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5758     return llvm::CallingConv::ARM_AAPCS_VFP;
5759   else if (isEABI())
5760     return llvm::CallingConv::ARM_AAPCS;
5761   else
5762     return llvm::CallingConv::ARM_APCS;
5763 }
5764 
5765 /// Return the calling convention that our ABI would like us to use
5766 /// as the C calling convention.
5767 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5768   switch (getABIKind()) {
5769   case APCS: return llvm::CallingConv::ARM_APCS;
5770   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5771   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5772   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5773   }
5774   llvm_unreachable("bad ABI kind");
5775 }
5776 
5777 void ARMABIInfo::setCCs() {
5778   assert(getRuntimeCC() == llvm::CallingConv::C);
5779 
5780   // Don't muddy up the IR with a ton of explicit annotations if
5781   // they'd just match what LLVM will infer from the triple.
5782   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5783   if (abiCC != getLLVMDefaultCC())
5784     RuntimeCC = abiCC;
5785 }
5786 
5787 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5788   uint64_t Size = getContext().getTypeSize(Ty);
5789   if (Size <= 32) {
5790     llvm::Type *ResType =
5791         llvm::Type::getInt32Ty(getVMContext());
5792     return ABIArgInfo::getDirect(ResType);
5793   }
5794   if (Size == 64 || Size == 128) {
5795     llvm::Type *ResType = llvm::VectorType::get(
5796         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5797     return ABIArgInfo::getDirect(ResType);
5798   }
5799   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5800 }
5801 
5802 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5803                                                     const Type *Base,
5804                                                     uint64_t Members) const {
5805   assert(Base && "Base class should be set for homogeneous aggregate");
5806   // Base can be a floating-point or a vector.
5807   if (const VectorType *VT = Base->getAs<VectorType>()) {
5808     // FP16 vectors should be converted to integer vectors
5809     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
5810       uint64_t Size = getContext().getTypeSize(VT);
5811       llvm::Type *NewVecTy = llvm::VectorType::get(
5812           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5813       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5814       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5815     }
5816   }
5817   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5818 }
5819 
5820 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5821                                             unsigned functionCallConv) const {
5822   // 6.1.2.1 The following argument types are VFP CPRCs:
5823   //   A single-precision floating-point type (including promoted
5824   //   half-precision types); A double-precision floating-point type;
5825   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5826   //   with a Base Type of a single- or double-precision floating-point type,
5827   //   64-bit containerized vectors or 128-bit containerized vectors with one
5828   //   to four Elements.
5829   // Variadic functions should always marshal to the base standard.
5830   bool IsAAPCS_VFP =
5831       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5832 
5833   Ty = useFirstFieldIfTransparentUnion(Ty);
5834 
5835   // Handle illegal vector types here.
5836   if (isIllegalVectorType(Ty))
5837     return coerceIllegalVector(Ty);
5838 
5839   // _Float16 and __fp16 get passed as if it were an int or float, but with
5840   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5841   // half type natively, and does not need to interwork with AAPCS code.
5842   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5843       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5844     llvm::Type *ResType = IsAAPCS_VFP ?
5845       llvm::Type::getFloatTy(getVMContext()) :
5846       llvm::Type::getInt32Ty(getVMContext());
5847     return ABIArgInfo::getDirect(ResType);
5848   }
5849 
5850   if (!isAggregateTypeForABI(Ty)) {
5851     // Treat an enum type as its underlying type.
5852     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5853       Ty = EnumTy->getDecl()->getIntegerType();
5854     }
5855 
5856     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5857                                           : ABIArgInfo::getDirect());
5858   }
5859 
5860   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5861     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5862   }
5863 
5864   // Ignore empty records.
5865   if (isEmptyRecord(getContext(), Ty, true))
5866     return ABIArgInfo::getIgnore();
5867 
5868   if (IsAAPCS_VFP) {
5869     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5870     // into VFP registers.
5871     const Type *Base = nullptr;
5872     uint64_t Members = 0;
5873     if (isHomogeneousAggregate(Ty, Base, Members))
5874       return classifyHomogeneousAggregate(Ty, Base, Members);
5875   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5876     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5877     // this convention even for a variadic function: the backend will use GPRs
5878     // if needed.
5879     const Type *Base = nullptr;
5880     uint64_t Members = 0;
5881     if (isHomogeneousAggregate(Ty, Base, Members)) {
5882       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5883       llvm::Type *Ty =
5884         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5885       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5886     }
5887   }
5888 
5889   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5890       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5891     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5892     // bigger than 128-bits, they get placed in space allocated by the caller,
5893     // and a pointer is passed.
5894     return ABIArgInfo::getIndirect(
5895         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5896   }
5897 
5898   // Support byval for ARM.
5899   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5900   // most 8-byte. We realign the indirect argument if type alignment is bigger
5901   // than ABI alignment.
5902   uint64_t ABIAlign = 4;
5903   uint64_t TyAlign;
5904   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5905       getABIKind() == ARMABIInfo::AAPCS) {
5906     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5907     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5908   } else {
5909     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5910   }
5911   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5912     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5913     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5914                                    /*ByVal=*/true,
5915                                    /*Realign=*/TyAlign > ABIAlign);
5916   }
5917 
5918   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5919   // same size and alignment.
5920   if (getTarget().isRenderScriptTarget()) {
5921     return coerceToIntArray(Ty, getContext(), getVMContext());
5922   }
5923 
5924   // Otherwise, pass by coercing to a structure of the appropriate size.
5925   llvm::Type* ElemTy;
5926   unsigned SizeRegs;
5927   // FIXME: Try to match the types of the arguments more accurately where
5928   // we can.
5929   if (TyAlign <= 4) {
5930     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5931     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5932   } else {
5933     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5934     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5935   }
5936 
5937   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5938 }
5939 
5940 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5941                               llvm::LLVMContext &VMContext) {
5942   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5943   // is called integer-like if its size is less than or equal to one word, and
5944   // the offset of each of its addressable sub-fields is zero.
5945 
5946   uint64_t Size = Context.getTypeSize(Ty);
5947 
5948   // Check that the type fits in a word.
5949   if (Size > 32)
5950     return false;
5951 
5952   // FIXME: Handle vector types!
5953   if (Ty->isVectorType())
5954     return false;
5955 
5956   // Float types are never treated as "integer like".
5957   if (Ty->isRealFloatingType())
5958     return false;
5959 
5960   // If this is a builtin or pointer type then it is ok.
5961   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5962     return true;
5963 
5964   // Small complex integer types are "integer like".
5965   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5966     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5967 
5968   // Single element and zero sized arrays should be allowed, by the definition
5969   // above, but they are not.
5970 
5971   // Otherwise, it must be a record type.
5972   const RecordType *RT = Ty->getAs<RecordType>();
5973   if (!RT) return false;
5974 
5975   // Ignore records with flexible arrays.
5976   const RecordDecl *RD = RT->getDecl();
5977   if (RD->hasFlexibleArrayMember())
5978     return false;
5979 
5980   // Check that all sub-fields are at offset 0, and are themselves "integer
5981   // like".
5982   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5983 
5984   bool HadField = false;
5985   unsigned idx = 0;
5986   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5987        i != e; ++i, ++idx) {
5988     const FieldDecl *FD = *i;
5989 
5990     // Bit-fields are not addressable, we only need to verify they are "integer
5991     // like". We still have to disallow a subsequent non-bitfield, for example:
5992     //   struct { int : 0; int x }
5993     // is non-integer like according to gcc.
5994     if (FD->isBitField()) {
5995       if (!RD->isUnion())
5996         HadField = true;
5997 
5998       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5999         return false;
6000 
6001       continue;
6002     }
6003 
6004     // Check if this field is at offset 0.
6005     if (Layout.getFieldOffset(idx) != 0)
6006       return false;
6007 
6008     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6009       return false;
6010 
6011     // Only allow at most one field in a structure. This doesn't match the
6012     // wording above, but follows gcc in situations with a field following an
6013     // empty structure.
6014     if (!RD->isUnion()) {
6015       if (HadField)
6016         return false;
6017 
6018       HadField = true;
6019     }
6020   }
6021 
6022   return true;
6023 }
6024 
6025 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6026                                           unsigned functionCallConv) const {
6027 
6028   // Variadic functions should always marshal to the base standard.
6029   bool IsAAPCS_VFP =
6030       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6031 
6032   if (RetTy->isVoidType())
6033     return ABIArgInfo::getIgnore();
6034 
6035   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6036     // Large vector types should be returned via memory.
6037     if (getContext().getTypeSize(RetTy) > 128)
6038       return getNaturalAlignIndirect(RetTy);
6039     // FP16 vectors should be converted to integer vectors
6040     if (!getTarget().hasLegalHalfType() &&
6041         (VT->getElementType()->isFloat16Type() ||
6042          VT->getElementType()->isHalfType()))
6043       return coerceIllegalVector(RetTy);
6044   }
6045 
6046   // _Float16 and __fp16 get returned as if it were an int or float, but with
6047   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6048   // half type natively, and does not need to interwork with AAPCS code.
6049   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6050       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6051     llvm::Type *ResType = IsAAPCS_VFP ?
6052       llvm::Type::getFloatTy(getVMContext()) :
6053       llvm::Type::getInt32Ty(getVMContext());
6054     return ABIArgInfo::getDirect(ResType);
6055   }
6056 
6057   if (!isAggregateTypeForABI(RetTy)) {
6058     // Treat an enum type as its underlying type.
6059     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6060       RetTy = EnumTy->getDecl()->getIntegerType();
6061 
6062     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6063                                             : ABIArgInfo::getDirect();
6064   }
6065 
6066   // Are we following APCS?
6067   if (getABIKind() == APCS) {
6068     if (isEmptyRecord(getContext(), RetTy, false))
6069       return ABIArgInfo::getIgnore();
6070 
6071     // Complex types are all returned as packed integers.
6072     //
6073     // FIXME: Consider using 2 x vector types if the back end handles them
6074     // correctly.
6075     if (RetTy->isAnyComplexType())
6076       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6077           getVMContext(), getContext().getTypeSize(RetTy)));
6078 
6079     // Integer like structures are returned in r0.
6080     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6081       // Return in the smallest viable integer type.
6082       uint64_t Size = getContext().getTypeSize(RetTy);
6083       if (Size <= 8)
6084         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6085       if (Size <= 16)
6086         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6087       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6088     }
6089 
6090     // Otherwise return in memory.
6091     return getNaturalAlignIndirect(RetTy);
6092   }
6093 
6094   // Otherwise this is an AAPCS variant.
6095 
6096   if (isEmptyRecord(getContext(), RetTy, true))
6097     return ABIArgInfo::getIgnore();
6098 
6099   // Check for homogeneous aggregates with AAPCS-VFP.
6100   if (IsAAPCS_VFP) {
6101     const Type *Base = nullptr;
6102     uint64_t Members = 0;
6103     if (isHomogeneousAggregate(RetTy, Base, Members))
6104       return classifyHomogeneousAggregate(RetTy, Base, Members);
6105   }
6106 
6107   // Aggregates <= 4 bytes are returned in r0; other aggregates
6108   // are returned indirectly.
6109   uint64_t Size = getContext().getTypeSize(RetTy);
6110   if (Size <= 32) {
6111     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6112     // same size and alignment.
6113     if (getTarget().isRenderScriptTarget()) {
6114       return coerceToIntArray(RetTy, getContext(), getVMContext());
6115     }
6116     if (getDataLayout().isBigEndian())
6117       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6118       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6119 
6120     // Return in the smallest viable integer type.
6121     if (Size <= 8)
6122       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6123     if (Size <= 16)
6124       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6125     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6126   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6127     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6128     llvm::Type *CoerceTy =
6129         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6130     return ABIArgInfo::getDirect(CoerceTy);
6131   }
6132 
6133   return getNaturalAlignIndirect(RetTy);
6134 }
6135 
6136 /// isIllegalVector - check whether Ty is an illegal vector type.
6137 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6138   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6139     // On targets that don't support FP16, FP16 is expanded into float, and we
6140     // don't want the ABI to depend on whether or not FP16 is supported in
6141     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6142     if (!getTarget().hasLegalHalfType() &&
6143         (VT->getElementType()->isFloat16Type() ||
6144          VT->getElementType()->isHalfType()))
6145       return true;
6146     if (isAndroid()) {
6147       // Android shipped using Clang 3.1, which supported a slightly different
6148       // vector ABI. The primary differences were that 3-element vector types
6149       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6150       // accepts that legacy behavior for Android only.
6151       // Check whether VT is legal.
6152       unsigned NumElements = VT->getNumElements();
6153       // NumElements should be power of 2 or equal to 3.
6154       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6155         return true;
6156     } else {
6157       // Check whether VT is legal.
6158       unsigned NumElements = VT->getNumElements();
6159       uint64_t Size = getContext().getTypeSize(VT);
6160       // NumElements should be power of 2.
6161       if (!llvm::isPowerOf2_32(NumElements))
6162         return true;
6163       // Size should be greater than 32 bits.
6164       return Size <= 32;
6165     }
6166   }
6167   return false;
6168 }
6169 
6170 /// Return true if a type contains any 16-bit floating point vectors
6171 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6172   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6173     uint64_t NElements = AT->getSize().getZExtValue();
6174     if (NElements == 0)
6175       return false;
6176     return containsAnyFP16Vectors(AT->getElementType());
6177   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6178     const RecordDecl *RD = RT->getDecl();
6179 
6180     // If this is a C++ record, check the bases first.
6181     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6182       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6183             return containsAnyFP16Vectors(B.getType());
6184           }))
6185         return true;
6186 
6187     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6188           return FD && containsAnyFP16Vectors(FD->getType());
6189         }))
6190       return true;
6191 
6192     return false;
6193   } else {
6194     if (const VectorType *VT = Ty->getAs<VectorType>())
6195       return (VT->getElementType()->isFloat16Type() ||
6196               VT->getElementType()->isHalfType());
6197     return false;
6198   }
6199 }
6200 
6201 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6202                                            llvm::Type *eltTy,
6203                                            unsigned numElts) const {
6204   if (!llvm::isPowerOf2_32(numElts))
6205     return false;
6206   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6207   if (size > 64)
6208     return false;
6209   if (vectorSize.getQuantity() != 8 &&
6210       (vectorSize.getQuantity() != 16 || numElts == 1))
6211     return false;
6212   return true;
6213 }
6214 
6215 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6216   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6217   // double, or 64-bit or 128-bit vectors.
6218   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6219     if (BT->getKind() == BuiltinType::Float ||
6220         BT->getKind() == BuiltinType::Double ||
6221         BT->getKind() == BuiltinType::LongDouble)
6222       return true;
6223   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6224     unsigned VecSize = getContext().getTypeSize(VT);
6225     if (VecSize == 64 || VecSize == 128)
6226       return true;
6227   }
6228   return false;
6229 }
6230 
6231 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6232                                                    uint64_t Members) const {
6233   return Members <= 4;
6234 }
6235 
6236 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6237                                         bool acceptHalf) const {
6238   // Give precedence to user-specified calling conventions.
6239   if (callConvention != llvm::CallingConv::C)
6240     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6241   else
6242     return (getABIKind() == AAPCS_VFP) ||
6243            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6244 }
6245 
6246 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6247                               QualType Ty) const {
6248   CharUnits SlotSize = CharUnits::fromQuantity(4);
6249 
6250   // Empty records are ignored for parameter passing purposes.
6251   if (isEmptyRecord(getContext(), Ty, true)) {
6252     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6253     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6254     return Addr;
6255   }
6256 
6257   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6258   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6259 
6260   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6261   bool IsIndirect = false;
6262   const Type *Base = nullptr;
6263   uint64_t Members = 0;
6264   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6265     IsIndirect = true;
6266 
6267   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6268   // allocated by the caller.
6269   } else if (TySize > CharUnits::fromQuantity(16) &&
6270              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6271              !isHomogeneousAggregate(Ty, Base, Members)) {
6272     IsIndirect = true;
6273 
6274   // Otherwise, bound the type's ABI alignment.
6275   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6276   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6277   // Our callers should be prepared to handle an under-aligned address.
6278   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6279              getABIKind() == ARMABIInfo::AAPCS) {
6280     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6281     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6282   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6283     // ARMv7k allows type alignment up to 16 bytes.
6284     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6285     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6286   } else {
6287     TyAlignForABI = CharUnits::fromQuantity(4);
6288   }
6289 
6290   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6291   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6292                           SlotSize, /*AllowHigherAlign*/ true);
6293 }
6294 
6295 //===----------------------------------------------------------------------===//
6296 // NVPTX ABI Implementation
6297 //===----------------------------------------------------------------------===//
6298 
6299 namespace {
6300 
6301 class NVPTXABIInfo : public ABIInfo {
6302 public:
6303   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6304 
6305   ABIArgInfo classifyReturnType(QualType RetTy) const;
6306   ABIArgInfo classifyArgumentType(QualType Ty) const;
6307 
6308   void computeInfo(CGFunctionInfo &FI) const override;
6309   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6310                     QualType Ty) const override;
6311 };
6312 
6313 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6314 public:
6315   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6316     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6317 
6318   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6319                            CodeGen::CodeGenModule &M) const override;
6320   bool shouldEmitStaticExternCAliases() const override;
6321 
6322 private:
6323   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6324   // resulting MDNode to the nvvm.annotations MDNode.
6325   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6326 };
6327 
6328 /// Checks if the type is unsupported directly by the current target.
6329 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6330   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6331     return true;
6332   if (!Context.getTargetInfo().hasFloat128Type() &&
6333       (T->isFloat128Type() ||
6334        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6335     return true;
6336   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6337       Context.getTypeSize(T) > 64)
6338     return true;
6339   if (const auto *AT = T->getAsArrayTypeUnsafe())
6340     return isUnsupportedType(Context, AT->getElementType());
6341   const auto *RT = T->getAs<RecordType>();
6342   if (!RT)
6343     return false;
6344   const RecordDecl *RD = RT->getDecl();
6345 
6346   // If this is a C++ record, check the bases first.
6347   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6348     for (const CXXBaseSpecifier &I : CXXRD->bases())
6349       if (isUnsupportedType(Context, I.getType()))
6350         return true;
6351 
6352   for (const FieldDecl *I : RD->fields())
6353     if (isUnsupportedType(Context, I->getType()))
6354       return true;
6355   return false;
6356 }
6357 
6358 /// Coerce the given type into an array with maximum allowed size of elements.
6359 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6360                                             llvm::LLVMContext &LLVMContext,
6361                                             unsigned MaxSize) {
6362   // Alignment and Size are measured in bits.
6363   const uint64_t Size = Context.getTypeSize(Ty);
6364   const uint64_t Alignment = Context.getTypeAlign(Ty);
6365   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6366   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6367   const uint64_t NumElements = (Size + Div - 1) / Div;
6368   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6369 }
6370 
6371 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6372   if (RetTy->isVoidType())
6373     return ABIArgInfo::getIgnore();
6374 
6375   if (getContext().getLangOpts().OpenMP &&
6376       getContext().getLangOpts().OpenMPIsDevice &&
6377       isUnsupportedType(getContext(), RetTy))
6378     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6379 
6380   // note: this is different from default ABI
6381   if (!RetTy->isScalarType())
6382     return ABIArgInfo::getDirect();
6383 
6384   // Treat an enum type as its underlying type.
6385   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6386     RetTy = EnumTy->getDecl()->getIntegerType();
6387 
6388   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6389                                            : ABIArgInfo::getDirect());
6390 }
6391 
6392 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6393   // Treat an enum type as its underlying type.
6394   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6395     Ty = EnumTy->getDecl()->getIntegerType();
6396 
6397   // Return aggregates type as indirect by value
6398   if (isAggregateTypeForABI(Ty))
6399     return getNaturalAlignIndirect(Ty, /* byval */ true);
6400 
6401   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6402                                         : ABIArgInfo::getDirect());
6403 }
6404 
6405 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6406   if (!getCXXABI().classifyReturnType(FI))
6407     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6408   for (auto &I : FI.arguments())
6409     I.info = classifyArgumentType(I.type);
6410 
6411   // Always honor user-specified calling convention.
6412   if (FI.getCallingConvention() != llvm::CallingConv::C)
6413     return;
6414 
6415   FI.setEffectiveCallingConvention(getRuntimeCC());
6416 }
6417 
6418 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6419                                 QualType Ty) const {
6420   llvm_unreachable("NVPTX does not support varargs");
6421 }
6422 
6423 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6424     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6425   if (GV->isDeclaration())
6426     return;
6427   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6428   if (!FD) return;
6429 
6430   llvm::Function *F = cast<llvm::Function>(GV);
6431 
6432   // Perform special handling in OpenCL mode
6433   if (M.getLangOpts().OpenCL) {
6434     // Use OpenCL function attributes to check for kernel functions
6435     // By default, all functions are device functions
6436     if (FD->hasAttr<OpenCLKernelAttr>()) {
6437       // OpenCL __kernel functions get kernel metadata
6438       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6439       addNVVMMetadata(F, "kernel", 1);
6440       // And kernel functions are not subject to inlining
6441       F->addFnAttr(llvm::Attribute::NoInline);
6442     }
6443   }
6444 
6445   // Perform special handling in CUDA mode.
6446   if (M.getLangOpts().CUDA) {
6447     // CUDA __global__ functions get a kernel metadata entry.  Since
6448     // __global__ functions cannot be called from the device, we do not
6449     // need to set the noinline attribute.
6450     if (FD->hasAttr<CUDAGlobalAttr>()) {
6451       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6452       addNVVMMetadata(F, "kernel", 1);
6453     }
6454     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6455       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6456       llvm::APSInt MaxThreads(32);
6457       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6458       if (MaxThreads > 0)
6459         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6460 
6461       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6462       // not specified in __launch_bounds__ or if the user specified a 0 value,
6463       // we don't have to add a PTX directive.
6464       if (Attr->getMinBlocks()) {
6465         llvm::APSInt MinBlocks(32);
6466         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6467         if (MinBlocks > 0)
6468           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6469           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6470       }
6471     }
6472   }
6473 }
6474 
6475 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6476                                              int Operand) {
6477   llvm::Module *M = F->getParent();
6478   llvm::LLVMContext &Ctx = M->getContext();
6479 
6480   // Get "nvvm.annotations" metadata node
6481   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6482 
6483   llvm::Metadata *MDVals[] = {
6484       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6485       llvm::ConstantAsMetadata::get(
6486           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6487   // Append metadata to nvvm.annotations
6488   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6489 }
6490 
6491 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6492   return false;
6493 }
6494 }
6495 
6496 //===----------------------------------------------------------------------===//
6497 // SystemZ ABI Implementation
6498 //===----------------------------------------------------------------------===//
6499 
6500 namespace {
6501 
6502 class SystemZABIInfo : public SwiftABIInfo {
6503   bool HasVector;
6504 
6505 public:
6506   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6507     : SwiftABIInfo(CGT), HasVector(HV) {}
6508 
6509   bool isPromotableIntegerType(QualType Ty) const;
6510   bool isCompoundType(QualType Ty) const;
6511   bool isVectorArgumentType(QualType Ty) const;
6512   bool isFPArgumentType(QualType Ty) const;
6513   QualType GetSingleElementType(QualType Ty) const;
6514 
6515   ABIArgInfo classifyReturnType(QualType RetTy) const;
6516   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6517 
6518   void computeInfo(CGFunctionInfo &FI) const override {
6519     if (!getCXXABI().classifyReturnType(FI))
6520       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6521     for (auto &I : FI.arguments())
6522       I.info = classifyArgumentType(I.type);
6523   }
6524 
6525   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6526                     QualType Ty) const override;
6527 
6528   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6529                                     bool asReturnValue) const override {
6530     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6531   }
6532   bool isSwiftErrorInRegister() const override {
6533     return false;
6534   }
6535 };
6536 
6537 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6538 public:
6539   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6540     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6541 };
6542 
6543 }
6544 
6545 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6546   // Treat an enum type as its underlying type.
6547   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6548     Ty = EnumTy->getDecl()->getIntegerType();
6549 
6550   // Promotable integer types are required to be promoted by the ABI.
6551   if (Ty->isPromotableIntegerType())
6552     return true;
6553 
6554   // 32-bit values must also be promoted.
6555   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6556     switch (BT->getKind()) {
6557     case BuiltinType::Int:
6558     case BuiltinType::UInt:
6559       return true;
6560     default:
6561       return false;
6562     }
6563   return false;
6564 }
6565 
6566 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6567   return (Ty->isAnyComplexType() ||
6568           Ty->isVectorType() ||
6569           isAggregateTypeForABI(Ty));
6570 }
6571 
6572 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6573   return (HasVector &&
6574           Ty->isVectorType() &&
6575           getContext().getTypeSize(Ty) <= 128);
6576 }
6577 
6578 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6579   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6580     switch (BT->getKind()) {
6581     case BuiltinType::Float:
6582     case BuiltinType::Double:
6583       return true;
6584     default:
6585       return false;
6586     }
6587 
6588   return false;
6589 }
6590 
6591 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6592   if (const RecordType *RT = Ty->getAsStructureType()) {
6593     const RecordDecl *RD = RT->getDecl();
6594     QualType Found;
6595 
6596     // If this is a C++ record, check the bases first.
6597     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6598       for (const auto &I : CXXRD->bases()) {
6599         QualType Base = I.getType();
6600 
6601         // Empty bases don't affect things either way.
6602         if (isEmptyRecord(getContext(), Base, true))
6603           continue;
6604 
6605         if (!Found.isNull())
6606           return Ty;
6607         Found = GetSingleElementType(Base);
6608       }
6609 
6610     // Check the fields.
6611     for (const auto *FD : RD->fields()) {
6612       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6613       // Unlike isSingleElementStruct(), empty structure and array fields
6614       // do count.  So do anonymous bitfields that aren't zero-sized.
6615       if (getContext().getLangOpts().CPlusPlus &&
6616           FD->isZeroLengthBitField(getContext()))
6617         continue;
6618 
6619       // Unlike isSingleElementStruct(), arrays do not count.
6620       // Nested structures still do though.
6621       if (!Found.isNull())
6622         return Ty;
6623       Found = GetSingleElementType(FD->getType());
6624     }
6625 
6626     // Unlike isSingleElementStruct(), trailing padding is allowed.
6627     // An 8-byte aligned struct s { float f; } is passed as a double.
6628     if (!Found.isNull())
6629       return Found;
6630   }
6631 
6632   return Ty;
6633 }
6634 
6635 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6636                                   QualType Ty) const {
6637   // Assume that va_list type is correct; should be pointer to LLVM type:
6638   // struct {
6639   //   i64 __gpr;
6640   //   i64 __fpr;
6641   //   i8 *__overflow_arg_area;
6642   //   i8 *__reg_save_area;
6643   // };
6644 
6645   // Every non-vector argument occupies 8 bytes and is passed by preference
6646   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6647   // always passed on the stack.
6648   Ty = getContext().getCanonicalType(Ty);
6649   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6650   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6651   llvm::Type *DirectTy = ArgTy;
6652   ABIArgInfo AI = classifyArgumentType(Ty);
6653   bool IsIndirect = AI.isIndirect();
6654   bool InFPRs = false;
6655   bool IsVector = false;
6656   CharUnits UnpaddedSize;
6657   CharUnits DirectAlign;
6658   if (IsIndirect) {
6659     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6660     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6661   } else {
6662     if (AI.getCoerceToType())
6663       ArgTy = AI.getCoerceToType();
6664     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6665     IsVector = ArgTy->isVectorTy();
6666     UnpaddedSize = TyInfo.first;
6667     DirectAlign = TyInfo.second;
6668   }
6669   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6670   if (IsVector && UnpaddedSize > PaddedSize)
6671     PaddedSize = CharUnits::fromQuantity(16);
6672   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6673 
6674   CharUnits Padding = (PaddedSize - UnpaddedSize);
6675 
6676   llvm::Type *IndexTy = CGF.Int64Ty;
6677   llvm::Value *PaddedSizeV =
6678     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6679 
6680   if (IsVector) {
6681     // Work out the address of a vector argument on the stack.
6682     // Vector arguments are always passed in the high bits of a
6683     // single (8 byte) or double (16 byte) stack slot.
6684     Address OverflowArgAreaPtr =
6685         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6686     Address OverflowArgArea =
6687       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6688               TyInfo.second);
6689     Address MemAddr =
6690       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6691 
6692     // Update overflow_arg_area_ptr pointer
6693     llvm::Value *NewOverflowArgArea =
6694       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6695                             "overflow_arg_area");
6696     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6697 
6698     return MemAddr;
6699   }
6700 
6701   assert(PaddedSize.getQuantity() == 8);
6702 
6703   unsigned MaxRegs, RegCountField, RegSaveIndex;
6704   CharUnits RegPadding;
6705   if (InFPRs) {
6706     MaxRegs = 4; // Maximum of 4 FPR arguments
6707     RegCountField = 1; // __fpr
6708     RegSaveIndex = 16; // save offset for f0
6709     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6710   } else {
6711     MaxRegs = 5; // Maximum of 5 GPR arguments
6712     RegCountField = 0; // __gpr
6713     RegSaveIndex = 2; // save offset for r2
6714     RegPadding = Padding; // values are passed in the low bits of a GPR
6715   }
6716 
6717   Address RegCountPtr =
6718       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6719   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6720   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6721   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6722                                                  "fits_in_regs");
6723 
6724   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6725   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6726   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6727   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6728 
6729   // Emit code to load the value if it was passed in registers.
6730   CGF.EmitBlock(InRegBlock);
6731 
6732   // Work out the address of an argument register.
6733   llvm::Value *ScaledRegCount =
6734     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6735   llvm::Value *RegBase =
6736     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6737                                       + RegPadding.getQuantity());
6738   llvm::Value *RegOffset =
6739     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6740   Address RegSaveAreaPtr =
6741       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6742   llvm::Value *RegSaveArea =
6743     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6744   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6745                                            "raw_reg_addr"),
6746                      PaddedSize);
6747   Address RegAddr =
6748     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6749 
6750   // Update the register count
6751   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6752   llvm::Value *NewRegCount =
6753     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6754   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6755   CGF.EmitBranch(ContBlock);
6756 
6757   // Emit code to load the value if it was passed in memory.
6758   CGF.EmitBlock(InMemBlock);
6759 
6760   // Work out the address of a stack argument.
6761   Address OverflowArgAreaPtr =
6762       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6763   Address OverflowArgArea =
6764     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6765             PaddedSize);
6766   Address RawMemAddr =
6767     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6768   Address MemAddr =
6769     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6770 
6771   // Update overflow_arg_area_ptr pointer
6772   llvm::Value *NewOverflowArgArea =
6773     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6774                           "overflow_arg_area");
6775   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6776   CGF.EmitBranch(ContBlock);
6777 
6778   // Return the appropriate result.
6779   CGF.EmitBlock(ContBlock);
6780   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6781                                  MemAddr, InMemBlock, "va_arg.addr");
6782 
6783   if (IsIndirect)
6784     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6785                       TyInfo.second);
6786 
6787   return ResAddr;
6788 }
6789 
6790 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6791   if (RetTy->isVoidType())
6792     return ABIArgInfo::getIgnore();
6793   if (isVectorArgumentType(RetTy))
6794     return ABIArgInfo::getDirect();
6795   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6796     return getNaturalAlignIndirect(RetTy);
6797   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6798                                          : ABIArgInfo::getDirect());
6799 }
6800 
6801 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6802   // Handle the generic C++ ABI.
6803   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6804     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6805 
6806   // Integers and enums are extended to full register width.
6807   if (isPromotableIntegerType(Ty))
6808     return ABIArgInfo::getExtend(Ty);
6809 
6810   // Handle vector types and vector-like structure types.  Note that
6811   // as opposed to float-like structure types, we do not allow any
6812   // padding for vector-like structures, so verify the sizes match.
6813   uint64_t Size = getContext().getTypeSize(Ty);
6814   QualType SingleElementTy = GetSingleElementType(Ty);
6815   if (isVectorArgumentType(SingleElementTy) &&
6816       getContext().getTypeSize(SingleElementTy) == Size)
6817     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6818 
6819   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6820   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6821     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6822 
6823   // Handle small structures.
6824   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6825     // Structures with flexible arrays have variable length, so really
6826     // fail the size test above.
6827     const RecordDecl *RD = RT->getDecl();
6828     if (RD->hasFlexibleArrayMember())
6829       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6830 
6831     // The structure is passed as an unextended integer, a float, or a double.
6832     llvm::Type *PassTy;
6833     if (isFPArgumentType(SingleElementTy)) {
6834       assert(Size == 32 || Size == 64);
6835       if (Size == 32)
6836         PassTy = llvm::Type::getFloatTy(getVMContext());
6837       else
6838         PassTy = llvm::Type::getDoubleTy(getVMContext());
6839     } else
6840       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6841     return ABIArgInfo::getDirect(PassTy);
6842   }
6843 
6844   // Non-structure compounds are passed indirectly.
6845   if (isCompoundType(Ty))
6846     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6847 
6848   return ABIArgInfo::getDirect(nullptr);
6849 }
6850 
6851 //===----------------------------------------------------------------------===//
6852 // MSP430 ABI Implementation
6853 //===----------------------------------------------------------------------===//
6854 
6855 namespace {
6856 
6857 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6858 public:
6859   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6860     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6861   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6862                            CodeGen::CodeGenModule &M) const override;
6863 };
6864 
6865 }
6866 
6867 void MSP430TargetCodeGenInfo::setTargetAttributes(
6868     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6869   if (GV->isDeclaration())
6870     return;
6871   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6872     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6873     if (!InterruptAttr)
6874       return;
6875 
6876     // Handle 'interrupt' attribute:
6877     llvm::Function *F = cast<llvm::Function>(GV);
6878 
6879     // Step 1: Set ISR calling convention.
6880     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6881 
6882     // Step 2: Add attributes goodness.
6883     F->addFnAttr(llvm::Attribute::NoInline);
6884     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6885   }
6886 }
6887 
6888 //===----------------------------------------------------------------------===//
6889 // MIPS ABI Implementation.  This works for both little-endian and
6890 // big-endian variants.
6891 //===----------------------------------------------------------------------===//
6892 
6893 namespace {
6894 class MipsABIInfo : public ABIInfo {
6895   bool IsO32;
6896   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6897   void CoerceToIntArgs(uint64_t TySize,
6898                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6899   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6900   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6901   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6902 public:
6903   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6904     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6905     StackAlignInBytes(IsO32 ? 8 : 16) {}
6906 
6907   ABIArgInfo classifyReturnType(QualType RetTy) const;
6908   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6909   void computeInfo(CGFunctionInfo &FI) const override;
6910   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6911                     QualType Ty) const override;
6912   ABIArgInfo extendType(QualType Ty) const;
6913 };
6914 
6915 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6916   unsigned SizeOfUnwindException;
6917 public:
6918   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6919     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6920       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6921 
6922   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6923     return 29;
6924   }
6925 
6926   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6927                            CodeGen::CodeGenModule &CGM) const override {
6928     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6929     if (!FD) return;
6930     llvm::Function *Fn = cast<llvm::Function>(GV);
6931 
6932     if (FD->hasAttr<MipsLongCallAttr>())
6933       Fn->addFnAttr("long-call");
6934     else if (FD->hasAttr<MipsShortCallAttr>())
6935       Fn->addFnAttr("short-call");
6936 
6937     // Other attributes do not have a meaning for declarations.
6938     if (GV->isDeclaration())
6939       return;
6940 
6941     if (FD->hasAttr<Mips16Attr>()) {
6942       Fn->addFnAttr("mips16");
6943     }
6944     else if (FD->hasAttr<NoMips16Attr>()) {
6945       Fn->addFnAttr("nomips16");
6946     }
6947 
6948     if (FD->hasAttr<MicroMipsAttr>())
6949       Fn->addFnAttr("micromips");
6950     else if (FD->hasAttr<NoMicroMipsAttr>())
6951       Fn->addFnAttr("nomicromips");
6952 
6953     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6954     if (!Attr)
6955       return;
6956 
6957     const char *Kind;
6958     switch (Attr->getInterrupt()) {
6959     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6960     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6961     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6962     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6963     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6964     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6965     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6966     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6967     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6968     }
6969 
6970     Fn->addFnAttr("interrupt", Kind);
6971 
6972   }
6973 
6974   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6975                                llvm::Value *Address) const override;
6976 
6977   unsigned getSizeOfUnwindException() const override {
6978     return SizeOfUnwindException;
6979   }
6980 };
6981 }
6982 
6983 void MipsABIInfo::CoerceToIntArgs(
6984     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6985   llvm::IntegerType *IntTy =
6986     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6987 
6988   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6989   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6990     ArgList.push_back(IntTy);
6991 
6992   // If necessary, add one more integer type to ArgList.
6993   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6994 
6995   if (R)
6996     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6997 }
6998 
6999 // In N32/64, an aligned double precision floating point field is passed in
7000 // a register.
7001 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7002   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7003 
7004   if (IsO32) {
7005     CoerceToIntArgs(TySize, ArgList);
7006     return llvm::StructType::get(getVMContext(), ArgList);
7007   }
7008 
7009   if (Ty->isComplexType())
7010     return CGT.ConvertType(Ty);
7011 
7012   const RecordType *RT = Ty->getAs<RecordType>();
7013 
7014   // Unions/vectors are passed in integer registers.
7015   if (!RT || !RT->isStructureOrClassType()) {
7016     CoerceToIntArgs(TySize, ArgList);
7017     return llvm::StructType::get(getVMContext(), ArgList);
7018   }
7019 
7020   const RecordDecl *RD = RT->getDecl();
7021   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7022   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7023 
7024   uint64_t LastOffset = 0;
7025   unsigned idx = 0;
7026   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7027 
7028   // Iterate over fields in the struct/class and check if there are any aligned
7029   // double fields.
7030   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7031        i != e; ++i, ++idx) {
7032     const QualType Ty = i->getType();
7033     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7034 
7035     if (!BT || BT->getKind() != BuiltinType::Double)
7036       continue;
7037 
7038     uint64_t Offset = Layout.getFieldOffset(idx);
7039     if (Offset % 64) // Ignore doubles that are not aligned.
7040       continue;
7041 
7042     // Add ((Offset - LastOffset) / 64) args of type i64.
7043     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7044       ArgList.push_back(I64);
7045 
7046     // Add double type.
7047     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7048     LastOffset = Offset + 64;
7049   }
7050 
7051   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7052   ArgList.append(IntArgList.begin(), IntArgList.end());
7053 
7054   return llvm::StructType::get(getVMContext(), ArgList);
7055 }
7056 
7057 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7058                                         uint64_t Offset) const {
7059   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7060     return nullptr;
7061 
7062   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7063 }
7064 
7065 ABIArgInfo
7066 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7067   Ty = useFirstFieldIfTransparentUnion(Ty);
7068 
7069   uint64_t OrigOffset = Offset;
7070   uint64_t TySize = getContext().getTypeSize(Ty);
7071   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7072 
7073   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7074                    (uint64_t)StackAlignInBytes);
7075   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7076   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7077 
7078   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7079     // Ignore empty aggregates.
7080     if (TySize == 0)
7081       return ABIArgInfo::getIgnore();
7082 
7083     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7084       Offset = OrigOffset + MinABIStackAlignInBytes;
7085       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7086     }
7087 
7088     // If we have reached here, aggregates are passed directly by coercing to
7089     // another structure type. Padding is inserted if the offset of the
7090     // aggregate is unaligned.
7091     ABIArgInfo ArgInfo =
7092         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7093                               getPaddingType(OrigOffset, CurrOffset));
7094     ArgInfo.setInReg(true);
7095     return ArgInfo;
7096   }
7097 
7098   // Treat an enum type as its underlying type.
7099   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7100     Ty = EnumTy->getDecl()->getIntegerType();
7101 
7102   // All integral types are promoted to the GPR width.
7103   if (Ty->isIntegralOrEnumerationType())
7104     return extendType(Ty);
7105 
7106   return ABIArgInfo::getDirect(
7107       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7108 }
7109 
7110 llvm::Type*
7111 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7112   const RecordType *RT = RetTy->getAs<RecordType>();
7113   SmallVector<llvm::Type*, 8> RTList;
7114 
7115   if (RT && RT->isStructureOrClassType()) {
7116     const RecordDecl *RD = RT->getDecl();
7117     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7118     unsigned FieldCnt = Layout.getFieldCount();
7119 
7120     // N32/64 returns struct/classes in floating point registers if the
7121     // following conditions are met:
7122     // 1. The size of the struct/class is no larger than 128-bit.
7123     // 2. The struct/class has one or two fields all of which are floating
7124     //    point types.
7125     // 3. The offset of the first field is zero (this follows what gcc does).
7126     //
7127     // Any other composite results are returned in integer registers.
7128     //
7129     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7130       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7131       for (; b != e; ++b) {
7132         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7133 
7134         if (!BT || !BT->isFloatingPoint())
7135           break;
7136 
7137         RTList.push_back(CGT.ConvertType(b->getType()));
7138       }
7139 
7140       if (b == e)
7141         return llvm::StructType::get(getVMContext(), RTList,
7142                                      RD->hasAttr<PackedAttr>());
7143 
7144       RTList.clear();
7145     }
7146   }
7147 
7148   CoerceToIntArgs(Size, RTList);
7149   return llvm::StructType::get(getVMContext(), RTList);
7150 }
7151 
7152 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7153   uint64_t Size = getContext().getTypeSize(RetTy);
7154 
7155   if (RetTy->isVoidType())
7156     return ABIArgInfo::getIgnore();
7157 
7158   // O32 doesn't treat zero-sized structs differently from other structs.
7159   // However, N32/N64 ignores zero sized return values.
7160   if (!IsO32 && Size == 0)
7161     return ABIArgInfo::getIgnore();
7162 
7163   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7164     if (Size <= 128) {
7165       if (RetTy->isAnyComplexType())
7166         return ABIArgInfo::getDirect();
7167 
7168       // O32 returns integer vectors in registers and N32/N64 returns all small
7169       // aggregates in registers.
7170       if (!IsO32 ||
7171           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7172         ABIArgInfo ArgInfo =
7173             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7174         ArgInfo.setInReg(true);
7175         return ArgInfo;
7176       }
7177     }
7178 
7179     return getNaturalAlignIndirect(RetTy);
7180   }
7181 
7182   // Treat an enum type as its underlying type.
7183   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7184     RetTy = EnumTy->getDecl()->getIntegerType();
7185 
7186   if (RetTy->isPromotableIntegerType())
7187     return ABIArgInfo::getExtend(RetTy);
7188 
7189   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7190       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7191     return ABIArgInfo::getSignExtend(RetTy);
7192 
7193   return ABIArgInfo::getDirect();
7194 }
7195 
7196 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7197   ABIArgInfo &RetInfo = FI.getReturnInfo();
7198   if (!getCXXABI().classifyReturnType(FI))
7199     RetInfo = classifyReturnType(FI.getReturnType());
7200 
7201   // Check if a pointer to an aggregate is passed as a hidden argument.
7202   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7203 
7204   for (auto &I : FI.arguments())
7205     I.info = classifyArgumentType(I.type, Offset);
7206 }
7207 
7208 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7209                                QualType OrigTy) const {
7210   QualType Ty = OrigTy;
7211 
7212   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7213   // Pointers are also promoted in the same way but this only matters for N32.
7214   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7215   unsigned PtrWidth = getTarget().getPointerWidth(0);
7216   bool DidPromote = false;
7217   if ((Ty->isIntegerType() &&
7218           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7219       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7220     DidPromote = true;
7221     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7222                                             Ty->isSignedIntegerType());
7223   }
7224 
7225   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7226 
7227   // The alignment of things in the argument area is never larger than
7228   // StackAlignInBytes.
7229   TyInfo.second =
7230     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7231 
7232   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7233   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7234 
7235   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7236                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7237 
7238 
7239   // If there was a promotion, "unpromote" into a temporary.
7240   // TODO: can we just use a pointer into a subset of the original slot?
7241   if (DidPromote) {
7242     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7243     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7244 
7245     // Truncate down to the right width.
7246     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7247                                                  : CGF.IntPtrTy);
7248     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7249     if (OrigTy->isPointerType())
7250       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7251 
7252     CGF.Builder.CreateStore(V, Temp);
7253     Addr = Temp;
7254   }
7255 
7256   return Addr;
7257 }
7258 
7259 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7260   int TySize = getContext().getTypeSize(Ty);
7261 
7262   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7263   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7264     return ABIArgInfo::getSignExtend(Ty);
7265 
7266   return ABIArgInfo::getExtend(Ty);
7267 }
7268 
7269 bool
7270 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7271                                                llvm::Value *Address) const {
7272   // This information comes from gcc's implementation, which seems to
7273   // as canonical as it gets.
7274 
7275   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7276   // are aliased to pairs of single-precision FP registers.
7277   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7278 
7279   // 0-31 are the general purpose registers, $0 - $31.
7280   // 32-63 are the floating-point registers, $f0 - $f31.
7281   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7282   // 66 is the (notional, I think) register for signal-handler return.
7283   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7284 
7285   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7286   // They are one bit wide and ignored here.
7287 
7288   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7289   // (coprocessor 1 is the FP unit)
7290   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7291   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7292   // 176-181 are the DSP accumulator registers.
7293   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7294   return false;
7295 }
7296 
7297 //===----------------------------------------------------------------------===//
7298 // AVR ABI Implementation.
7299 //===----------------------------------------------------------------------===//
7300 
7301 namespace {
7302 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7303 public:
7304   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7305     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7306 
7307   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7308                            CodeGen::CodeGenModule &CGM) const override {
7309     if (GV->isDeclaration())
7310       return;
7311     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7312     if (!FD) return;
7313     auto *Fn = cast<llvm::Function>(GV);
7314 
7315     if (FD->getAttr<AVRInterruptAttr>())
7316       Fn->addFnAttr("interrupt");
7317 
7318     if (FD->getAttr<AVRSignalAttr>())
7319       Fn->addFnAttr("signal");
7320   }
7321 };
7322 }
7323 
7324 //===----------------------------------------------------------------------===//
7325 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7326 // Currently subclassed only to implement custom OpenCL C function attribute
7327 // handling.
7328 //===----------------------------------------------------------------------===//
7329 
7330 namespace {
7331 
7332 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7333 public:
7334   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7335     : DefaultTargetCodeGenInfo(CGT) {}
7336 
7337   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7338                            CodeGen::CodeGenModule &M) const override;
7339 };
7340 
7341 void TCETargetCodeGenInfo::setTargetAttributes(
7342     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7343   if (GV->isDeclaration())
7344     return;
7345   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7346   if (!FD) return;
7347 
7348   llvm::Function *F = cast<llvm::Function>(GV);
7349 
7350   if (M.getLangOpts().OpenCL) {
7351     if (FD->hasAttr<OpenCLKernelAttr>()) {
7352       // OpenCL C Kernel functions are not subject to inlining
7353       F->addFnAttr(llvm::Attribute::NoInline);
7354       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7355       if (Attr) {
7356         // Convert the reqd_work_group_size() attributes to metadata.
7357         llvm::LLVMContext &Context = F->getContext();
7358         llvm::NamedMDNode *OpenCLMetadata =
7359             M.getModule().getOrInsertNamedMetadata(
7360                 "opencl.kernel_wg_size_info");
7361 
7362         SmallVector<llvm::Metadata *, 5> Operands;
7363         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7364 
7365         Operands.push_back(
7366             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7367                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7368         Operands.push_back(
7369             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7370                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7371         Operands.push_back(
7372             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7373                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7374 
7375         // Add a boolean constant operand for "required" (true) or "hint"
7376         // (false) for implementing the work_group_size_hint attr later.
7377         // Currently always true as the hint is not yet implemented.
7378         Operands.push_back(
7379             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7380         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7381       }
7382     }
7383   }
7384 }
7385 
7386 }
7387 
7388 //===----------------------------------------------------------------------===//
7389 // Hexagon ABI Implementation
7390 //===----------------------------------------------------------------------===//
7391 
7392 namespace {
7393 
7394 class HexagonABIInfo : public ABIInfo {
7395 
7396 
7397 public:
7398   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7399 
7400 private:
7401 
7402   ABIArgInfo classifyReturnType(QualType RetTy) const;
7403   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7404 
7405   void computeInfo(CGFunctionInfo &FI) const override;
7406 
7407   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7408                     QualType Ty) const override;
7409 };
7410 
7411 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7412 public:
7413   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7414     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7415 
7416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7417     return 29;
7418   }
7419 };
7420 
7421 }
7422 
7423 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7424   if (!getCXXABI().classifyReturnType(FI))
7425     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7426   for (auto &I : FI.arguments())
7427     I.info = classifyArgumentType(I.type);
7428 }
7429 
7430 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7431   if (!isAggregateTypeForABI(Ty)) {
7432     // Treat an enum type as its underlying type.
7433     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7434       Ty = EnumTy->getDecl()->getIntegerType();
7435 
7436     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7437                                           : ABIArgInfo::getDirect());
7438   }
7439 
7440   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7441     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7442 
7443   // Ignore empty records.
7444   if (isEmptyRecord(getContext(), Ty, true))
7445     return ABIArgInfo::getIgnore();
7446 
7447   uint64_t Size = getContext().getTypeSize(Ty);
7448   if (Size > 64)
7449     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7450     // Pass in the smallest viable integer type.
7451   else if (Size > 32)
7452       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7453   else if (Size > 16)
7454       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7455   else if (Size > 8)
7456       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7457   else
7458       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7459 }
7460 
7461 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7462   if (RetTy->isVoidType())
7463     return ABIArgInfo::getIgnore();
7464 
7465   // Large vector types should be returned via memory.
7466   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7467     return getNaturalAlignIndirect(RetTy);
7468 
7469   if (!isAggregateTypeForABI(RetTy)) {
7470     // Treat an enum type as its underlying type.
7471     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7472       RetTy = EnumTy->getDecl()->getIntegerType();
7473 
7474     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7475                                              : ABIArgInfo::getDirect());
7476   }
7477 
7478   if (isEmptyRecord(getContext(), RetTy, true))
7479     return ABIArgInfo::getIgnore();
7480 
7481   // Aggregates <= 8 bytes are returned in r0; other aggregates
7482   // are returned indirectly.
7483   uint64_t Size = getContext().getTypeSize(RetTy);
7484   if (Size <= 64) {
7485     // Return in the smallest viable integer type.
7486     if (Size <= 8)
7487       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7488     if (Size <= 16)
7489       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7490     if (Size <= 32)
7491       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7492     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7493   }
7494 
7495   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7496 }
7497 
7498 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7499                                   QualType Ty) const {
7500   // FIXME: Someone needs to audit that this handle alignment correctly.
7501   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7502                           getContext().getTypeInfoInChars(Ty),
7503                           CharUnits::fromQuantity(4),
7504                           /*AllowHigherAlign*/ true);
7505 }
7506 
7507 //===----------------------------------------------------------------------===//
7508 // Lanai ABI Implementation
7509 //===----------------------------------------------------------------------===//
7510 
7511 namespace {
7512 class LanaiABIInfo : public DefaultABIInfo {
7513 public:
7514   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7515 
7516   bool shouldUseInReg(QualType Ty, CCState &State) const;
7517 
7518   void computeInfo(CGFunctionInfo &FI) const override {
7519     CCState State(FI.getCallingConvention());
7520     // Lanai uses 4 registers to pass arguments unless the function has the
7521     // regparm attribute set.
7522     if (FI.getHasRegParm()) {
7523       State.FreeRegs = FI.getRegParm();
7524     } else {
7525       State.FreeRegs = 4;
7526     }
7527 
7528     if (!getCXXABI().classifyReturnType(FI))
7529       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7530     for (auto &I : FI.arguments())
7531       I.info = classifyArgumentType(I.type, State);
7532   }
7533 
7534   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7535   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7536 };
7537 } // end anonymous namespace
7538 
7539 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7540   unsigned Size = getContext().getTypeSize(Ty);
7541   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7542 
7543   if (SizeInRegs == 0)
7544     return false;
7545 
7546   if (SizeInRegs > State.FreeRegs) {
7547     State.FreeRegs = 0;
7548     return false;
7549   }
7550 
7551   State.FreeRegs -= SizeInRegs;
7552 
7553   return true;
7554 }
7555 
7556 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7557                                            CCState &State) const {
7558   if (!ByVal) {
7559     if (State.FreeRegs) {
7560       --State.FreeRegs; // Non-byval indirects just use one pointer.
7561       return getNaturalAlignIndirectInReg(Ty);
7562     }
7563     return getNaturalAlignIndirect(Ty, false);
7564   }
7565 
7566   // Compute the byval alignment.
7567   const unsigned MinABIStackAlignInBytes = 4;
7568   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7569   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7570                                  /*Realign=*/TypeAlign >
7571                                      MinABIStackAlignInBytes);
7572 }
7573 
7574 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7575                                               CCState &State) const {
7576   // Check with the C++ ABI first.
7577   const RecordType *RT = Ty->getAs<RecordType>();
7578   if (RT) {
7579     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7580     if (RAA == CGCXXABI::RAA_Indirect) {
7581       return getIndirectResult(Ty, /*ByVal=*/false, State);
7582     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7583       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7584     }
7585   }
7586 
7587   if (isAggregateTypeForABI(Ty)) {
7588     // Structures with flexible arrays are always indirect.
7589     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7590       return getIndirectResult(Ty, /*ByVal=*/true, State);
7591 
7592     // Ignore empty structs/unions.
7593     if (isEmptyRecord(getContext(), Ty, true))
7594       return ABIArgInfo::getIgnore();
7595 
7596     llvm::LLVMContext &LLVMContext = getVMContext();
7597     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7598     if (SizeInRegs <= State.FreeRegs) {
7599       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7600       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7601       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7602       State.FreeRegs -= SizeInRegs;
7603       return ABIArgInfo::getDirectInReg(Result);
7604     } else {
7605       State.FreeRegs = 0;
7606     }
7607     return getIndirectResult(Ty, true, State);
7608   }
7609 
7610   // Treat an enum type as its underlying type.
7611   if (const auto *EnumTy = Ty->getAs<EnumType>())
7612     Ty = EnumTy->getDecl()->getIntegerType();
7613 
7614   bool InReg = shouldUseInReg(Ty, State);
7615   if (Ty->isPromotableIntegerType()) {
7616     if (InReg)
7617       return ABIArgInfo::getDirectInReg();
7618     return ABIArgInfo::getExtend(Ty);
7619   }
7620   if (InReg)
7621     return ABIArgInfo::getDirectInReg();
7622   return ABIArgInfo::getDirect();
7623 }
7624 
7625 namespace {
7626 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7627 public:
7628   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7629       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7630 };
7631 }
7632 
7633 //===----------------------------------------------------------------------===//
7634 // AMDGPU ABI Implementation
7635 //===----------------------------------------------------------------------===//
7636 
7637 namespace {
7638 
7639 class AMDGPUABIInfo final : public DefaultABIInfo {
7640 private:
7641   static const unsigned MaxNumRegsForArgsRet = 16;
7642 
7643   unsigned numRegsForType(QualType Ty) const;
7644 
7645   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7646   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7647                                          uint64_t Members) const override;
7648 
7649 public:
7650   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7651     DefaultABIInfo(CGT) {}
7652 
7653   ABIArgInfo classifyReturnType(QualType RetTy) const;
7654   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7655   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7656 
7657   void computeInfo(CGFunctionInfo &FI) const override;
7658 };
7659 
7660 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7661   return true;
7662 }
7663 
7664 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7665   const Type *Base, uint64_t Members) const {
7666   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7667 
7668   // Homogeneous Aggregates may occupy at most 16 registers.
7669   return Members * NumRegs <= MaxNumRegsForArgsRet;
7670 }
7671 
7672 /// Estimate number of registers the type will use when passed in registers.
7673 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7674   unsigned NumRegs = 0;
7675 
7676   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7677     // Compute from the number of elements. The reported size is based on the
7678     // in-memory size, which includes the padding 4th element for 3-vectors.
7679     QualType EltTy = VT->getElementType();
7680     unsigned EltSize = getContext().getTypeSize(EltTy);
7681 
7682     // 16-bit element vectors should be passed as packed.
7683     if (EltSize == 16)
7684       return (VT->getNumElements() + 1) / 2;
7685 
7686     unsigned EltNumRegs = (EltSize + 31) / 32;
7687     return EltNumRegs * VT->getNumElements();
7688   }
7689 
7690   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7691     const RecordDecl *RD = RT->getDecl();
7692     assert(!RD->hasFlexibleArrayMember());
7693 
7694     for (const FieldDecl *Field : RD->fields()) {
7695       QualType FieldTy = Field->getType();
7696       NumRegs += numRegsForType(FieldTy);
7697     }
7698 
7699     return NumRegs;
7700   }
7701 
7702   return (getContext().getTypeSize(Ty) + 31) / 32;
7703 }
7704 
7705 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7706   llvm::CallingConv::ID CC = FI.getCallingConvention();
7707 
7708   if (!getCXXABI().classifyReturnType(FI))
7709     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7710 
7711   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7712   for (auto &Arg : FI.arguments()) {
7713     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7714       Arg.info = classifyKernelArgumentType(Arg.type);
7715     } else {
7716       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7717     }
7718   }
7719 }
7720 
7721 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7722   if (isAggregateTypeForABI(RetTy)) {
7723     // Records with non-trivial destructors/copy-constructors should not be
7724     // returned by value.
7725     if (!getRecordArgABI(RetTy, getCXXABI())) {
7726       // Ignore empty structs/unions.
7727       if (isEmptyRecord(getContext(), RetTy, true))
7728         return ABIArgInfo::getIgnore();
7729 
7730       // Lower single-element structs to just return a regular value.
7731       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7732         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7733 
7734       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7735         const RecordDecl *RD = RT->getDecl();
7736         if (RD->hasFlexibleArrayMember())
7737           return DefaultABIInfo::classifyReturnType(RetTy);
7738       }
7739 
7740       // Pack aggregates <= 4 bytes into single VGPR or pair.
7741       uint64_t Size = getContext().getTypeSize(RetTy);
7742       if (Size <= 16)
7743         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7744 
7745       if (Size <= 32)
7746         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7747 
7748       if (Size <= 64) {
7749         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7750         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7751       }
7752 
7753       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7754         return ABIArgInfo::getDirect();
7755     }
7756   }
7757 
7758   // Otherwise just do the default thing.
7759   return DefaultABIInfo::classifyReturnType(RetTy);
7760 }
7761 
7762 /// For kernels all parameters are really passed in a special buffer. It doesn't
7763 /// make sense to pass anything byval, so everything must be direct.
7764 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7765   Ty = useFirstFieldIfTransparentUnion(Ty);
7766 
7767   // TODO: Can we omit empty structs?
7768 
7769   // Coerce single element structs to its element.
7770   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7771     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7772 
7773   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7774   // individual elements, which confuses the Clover OpenCL backend; therefore we
7775   // have to set it to false here. Other args of getDirect() are just defaults.
7776   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7777 }
7778 
7779 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7780                                                unsigned &NumRegsLeft) const {
7781   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7782 
7783   Ty = useFirstFieldIfTransparentUnion(Ty);
7784 
7785   if (isAggregateTypeForABI(Ty)) {
7786     // Records with non-trivial destructors/copy-constructors should not be
7787     // passed by value.
7788     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7789       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7790 
7791     // Ignore empty structs/unions.
7792     if (isEmptyRecord(getContext(), Ty, true))
7793       return ABIArgInfo::getIgnore();
7794 
7795     // Lower single-element structs to just pass a regular value. TODO: We
7796     // could do reasonable-size multiple-element structs too, using getExpand(),
7797     // though watch out for things like bitfields.
7798     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7799       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7800 
7801     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7802       const RecordDecl *RD = RT->getDecl();
7803       if (RD->hasFlexibleArrayMember())
7804         return DefaultABIInfo::classifyArgumentType(Ty);
7805     }
7806 
7807     // Pack aggregates <= 8 bytes into single VGPR or pair.
7808     uint64_t Size = getContext().getTypeSize(Ty);
7809     if (Size <= 64) {
7810       unsigned NumRegs = (Size + 31) / 32;
7811       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7812 
7813       if (Size <= 16)
7814         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7815 
7816       if (Size <= 32)
7817         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7818 
7819       // XXX: Should this be i64 instead, and should the limit increase?
7820       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7821       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7822     }
7823 
7824     if (NumRegsLeft > 0) {
7825       unsigned NumRegs = numRegsForType(Ty);
7826       if (NumRegsLeft >= NumRegs) {
7827         NumRegsLeft -= NumRegs;
7828         return ABIArgInfo::getDirect();
7829       }
7830     }
7831   }
7832 
7833   // Otherwise just do the default thing.
7834   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7835   if (!ArgInfo.isIndirect()) {
7836     unsigned NumRegs = numRegsForType(Ty);
7837     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7838   }
7839 
7840   return ArgInfo;
7841 }
7842 
7843 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7844 public:
7845   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7846     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7847   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7848                            CodeGen::CodeGenModule &M) const override;
7849   unsigned getOpenCLKernelCallingConv() const override;
7850 
7851   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7852       llvm::PointerType *T, QualType QT) const override;
7853 
7854   LangAS getASTAllocaAddressSpace() const override {
7855     return getLangASFromTargetAS(
7856         getABIInfo().getDataLayout().getAllocaAddrSpace());
7857   }
7858   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7859                                   const VarDecl *D) const override;
7860   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
7861                                          SyncScope Scope,
7862                                          llvm::AtomicOrdering Ordering,
7863                                          llvm::LLVMContext &Ctx) const override;
7864   llvm::Function *
7865   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7866                             llvm::Function *BlockInvokeFunc,
7867                             llvm::Value *BlockLiteral) const override;
7868   bool shouldEmitStaticExternCAliases() const override;
7869   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7870 };
7871 }
7872 
7873 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
7874                                               llvm::GlobalValue *GV) {
7875   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7876     return false;
7877 
7878   return D->hasAttr<OpenCLKernelAttr>() ||
7879          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
7880          (isa<VarDecl>(D) &&
7881           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
7882            D->hasAttr<HIPPinnedShadowAttr>()));
7883 }
7884 
7885 static bool requiresAMDGPUDefaultVisibility(const Decl *D,
7886                                             llvm::GlobalValue *GV) {
7887   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7888     return false;
7889 
7890   return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>();
7891 }
7892 
7893 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7894     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7895   if (requiresAMDGPUDefaultVisibility(D, GV)) {
7896     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
7897     GV->setDSOLocal(false);
7898   } else if (requiresAMDGPUProtectedVisibility(D, GV)) {
7899     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
7900     GV->setDSOLocal(true);
7901   }
7902 
7903   if (GV->isDeclaration())
7904     return;
7905   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7906   if (!FD)
7907     return;
7908 
7909   llvm::Function *F = cast<llvm::Function>(GV);
7910 
7911   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7912     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7913 
7914   if (((M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>()) ||
7915       (M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>())) &&
7916       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7917     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
7918 
7919   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7920   if (ReqdWGS || FlatWGS) {
7921     unsigned Min = 0;
7922     unsigned Max = 0;
7923     if (FlatWGS) {
7924       Min = FlatWGS->getMin()
7925                 ->EvaluateKnownConstInt(M.getContext())
7926                 .getExtValue();
7927       Max = FlatWGS->getMax()
7928                 ->EvaluateKnownConstInt(M.getContext())
7929                 .getExtValue();
7930     }
7931     if (ReqdWGS && Min == 0 && Max == 0)
7932       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7933 
7934     if (Min != 0) {
7935       assert(Min <= Max && "Min must be less than or equal Max");
7936 
7937       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7938       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7939     } else
7940       assert(Max == 0 && "Max must be zero");
7941   }
7942 
7943   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7944     unsigned Min =
7945         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
7946     unsigned Max = Attr->getMax() ? Attr->getMax()
7947                                         ->EvaluateKnownConstInt(M.getContext())
7948                                         .getExtValue()
7949                                   : 0;
7950 
7951     if (Min != 0) {
7952       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7953 
7954       std::string AttrVal = llvm::utostr(Min);
7955       if (Max != 0)
7956         AttrVal = AttrVal + "," + llvm::utostr(Max);
7957       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7958     } else
7959       assert(Max == 0 && "Max must be zero");
7960   }
7961 
7962   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7963     unsigned NumSGPR = Attr->getNumSGPR();
7964 
7965     if (NumSGPR != 0)
7966       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7967   }
7968 
7969   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7970     uint32_t NumVGPR = Attr->getNumVGPR();
7971 
7972     if (NumVGPR != 0)
7973       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7974   }
7975 }
7976 
7977 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7978   return llvm::CallingConv::AMDGPU_KERNEL;
7979 }
7980 
7981 // Currently LLVM assumes null pointers always have value 0,
7982 // which results in incorrectly transformed IR. Therefore, instead of
7983 // emitting null pointers in private and local address spaces, a null
7984 // pointer in generic address space is emitted which is casted to a
7985 // pointer in local or private address space.
7986 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7987     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7988     QualType QT) const {
7989   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7990     return llvm::ConstantPointerNull::get(PT);
7991 
7992   auto &Ctx = CGM.getContext();
7993   auto NPT = llvm::PointerType::get(PT->getElementType(),
7994       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7995   return llvm::ConstantExpr::getAddrSpaceCast(
7996       llvm::ConstantPointerNull::get(NPT), PT);
7997 }
7998 
7999 LangAS
8000 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
8001                                                   const VarDecl *D) const {
8002   assert(!CGM.getLangOpts().OpenCL &&
8003          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
8004          "Address space agnostic languages only");
8005   LangAS DefaultGlobalAS = getLangASFromTargetAS(
8006       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
8007   if (!D)
8008     return DefaultGlobalAS;
8009 
8010   LangAS AddrSpace = D->getType().getAddressSpace();
8011   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
8012   if (AddrSpace != LangAS::Default)
8013     return AddrSpace;
8014 
8015   if (CGM.isTypeConstant(D->getType(), false)) {
8016     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8017       return ConstAS.getValue();
8018   }
8019   return DefaultGlobalAS;
8020 }
8021 
8022 llvm::SyncScope::ID
8023 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8024                                             SyncScope Scope,
8025                                             llvm::AtomicOrdering Ordering,
8026                                             llvm::LLVMContext &Ctx) const {
8027   std::string Name;
8028   switch (Scope) {
8029   case SyncScope::OpenCLWorkGroup:
8030     Name = "workgroup";
8031     break;
8032   case SyncScope::OpenCLDevice:
8033     Name = "agent";
8034     break;
8035   case SyncScope::OpenCLAllSVMDevices:
8036     Name = "";
8037     break;
8038   case SyncScope::OpenCLSubGroup:
8039     Name = "wavefront";
8040   }
8041 
8042   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8043     if (!Name.empty())
8044       Name = Twine(Twine(Name) + Twine("-")).str();
8045 
8046     Name = Twine(Twine(Name) + Twine("one-as")).str();
8047   }
8048 
8049   return Ctx.getOrInsertSyncScopeID(Name);
8050 }
8051 
8052 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8053   return false;
8054 }
8055 
8056 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8057     const FunctionType *&FT) const {
8058   FT = getABIInfo().getContext().adjustFunctionType(
8059       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8060 }
8061 
8062 //===----------------------------------------------------------------------===//
8063 // SPARC v8 ABI Implementation.
8064 // Based on the SPARC Compliance Definition version 2.4.1.
8065 //
8066 // Ensures that complex values are passed in registers.
8067 //
8068 namespace {
8069 class SparcV8ABIInfo : public DefaultABIInfo {
8070 public:
8071   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8072 
8073 private:
8074   ABIArgInfo classifyReturnType(QualType RetTy) const;
8075   void computeInfo(CGFunctionInfo &FI) const override;
8076 };
8077 } // end anonymous namespace
8078 
8079 
8080 ABIArgInfo
8081 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8082   if (Ty->isAnyComplexType()) {
8083     return ABIArgInfo::getDirect();
8084   }
8085   else {
8086     return DefaultABIInfo::classifyReturnType(Ty);
8087   }
8088 }
8089 
8090 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8091 
8092   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8093   for (auto &Arg : FI.arguments())
8094     Arg.info = classifyArgumentType(Arg.type);
8095 }
8096 
8097 namespace {
8098 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8099 public:
8100   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8101     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8102 };
8103 } // end anonymous namespace
8104 
8105 //===----------------------------------------------------------------------===//
8106 // SPARC v9 ABI Implementation.
8107 // Based on the SPARC Compliance Definition version 2.4.1.
8108 //
8109 // Function arguments a mapped to a nominal "parameter array" and promoted to
8110 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8111 // the array, structs larger than 16 bytes are passed indirectly.
8112 //
8113 // One case requires special care:
8114 //
8115 //   struct mixed {
8116 //     int i;
8117 //     float f;
8118 //   };
8119 //
8120 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8121 // parameter array, but the int is passed in an integer register, and the float
8122 // is passed in a floating point register. This is represented as two arguments
8123 // with the LLVM IR inreg attribute:
8124 //
8125 //   declare void f(i32 inreg %i, float inreg %f)
8126 //
8127 // The code generator will only allocate 4 bytes from the parameter array for
8128 // the inreg arguments. All other arguments are allocated a multiple of 8
8129 // bytes.
8130 //
8131 namespace {
8132 class SparcV9ABIInfo : public ABIInfo {
8133 public:
8134   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8135 
8136 private:
8137   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8138   void computeInfo(CGFunctionInfo &FI) const override;
8139   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8140                     QualType Ty) const override;
8141 
8142   // Coercion type builder for structs passed in registers. The coercion type
8143   // serves two purposes:
8144   //
8145   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8146   //    in registers.
8147   // 2. Expose aligned floating point elements as first-level elements, so the
8148   //    code generator knows to pass them in floating point registers.
8149   //
8150   // We also compute the InReg flag which indicates that the struct contains
8151   // aligned 32-bit floats.
8152   //
8153   struct CoerceBuilder {
8154     llvm::LLVMContext &Context;
8155     const llvm::DataLayout &DL;
8156     SmallVector<llvm::Type*, 8> Elems;
8157     uint64_t Size;
8158     bool InReg;
8159 
8160     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8161       : Context(c), DL(dl), Size(0), InReg(false) {}
8162 
8163     // Pad Elems with integers until Size is ToSize.
8164     void pad(uint64_t ToSize) {
8165       assert(ToSize >= Size && "Cannot remove elements");
8166       if (ToSize == Size)
8167         return;
8168 
8169       // Finish the current 64-bit word.
8170       uint64_t Aligned = llvm::alignTo(Size, 64);
8171       if (Aligned > Size && Aligned <= ToSize) {
8172         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8173         Size = Aligned;
8174       }
8175 
8176       // Add whole 64-bit words.
8177       while (Size + 64 <= ToSize) {
8178         Elems.push_back(llvm::Type::getInt64Ty(Context));
8179         Size += 64;
8180       }
8181 
8182       // Final in-word padding.
8183       if (Size < ToSize) {
8184         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8185         Size = ToSize;
8186       }
8187     }
8188 
8189     // Add a floating point element at Offset.
8190     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8191       // Unaligned floats are treated as integers.
8192       if (Offset % Bits)
8193         return;
8194       // The InReg flag is only required if there are any floats < 64 bits.
8195       if (Bits < 64)
8196         InReg = true;
8197       pad(Offset);
8198       Elems.push_back(Ty);
8199       Size = Offset + Bits;
8200     }
8201 
8202     // Add a struct type to the coercion type, starting at Offset (in bits).
8203     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8204       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8205       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8206         llvm::Type *ElemTy = StrTy->getElementType(i);
8207         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8208         switch (ElemTy->getTypeID()) {
8209         case llvm::Type::StructTyID:
8210           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8211           break;
8212         case llvm::Type::FloatTyID:
8213           addFloat(ElemOffset, ElemTy, 32);
8214           break;
8215         case llvm::Type::DoubleTyID:
8216           addFloat(ElemOffset, ElemTy, 64);
8217           break;
8218         case llvm::Type::FP128TyID:
8219           addFloat(ElemOffset, ElemTy, 128);
8220           break;
8221         case llvm::Type::PointerTyID:
8222           if (ElemOffset % 64 == 0) {
8223             pad(ElemOffset);
8224             Elems.push_back(ElemTy);
8225             Size += 64;
8226           }
8227           break;
8228         default:
8229           break;
8230         }
8231       }
8232     }
8233 
8234     // Check if Ty is a usable substitute for the coercion type.
8235     bool isUsableType(llvm::StructType *Ty) const {
8236       return llvm::makeArrayRef(Elems) == Ty->elements();
8237     }
8238 
8239     // Get the coercion type as a literal struct type.
8240     llvm::Type *getType() const {
8241       if (Elems.size() == 1)
8242         return Elems.front();
8243       else
8244         return llvm::StructType::get(Context, Elems);
8245     }
8246   };
8247 };
8248 } // end anonymous namespace
8249 
8250 ABIArgInfo
8251 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8252   if (Ty->isVoidType())
8253     return ABIArgInfo::getIgnore();
8254 
8255   uint64_t Size = getContext().getTypeSize(Ty);
8256 
8257   // Anything too big to fit in registers is passed with an explicit indirect
8258   // pointer / sret pointer.
8259   if (Size > SizeLimit)
8260     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8261 
8262   // Treat an enum type as its underlying type.
8263   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8264     Ty = EnumTy->getDecl()->getIntegerType();
8265 
8266   // Integer types smaller than a register are extended.
8267   if (Size < 64 && Ty->isIntegerType())
8268     return ABIArgInfo::getExtend(Ty);
8269 
8270   // Other non-aggregates go in registers.
8271   if (!isAggregateTypeForABI(Ty))
8272     return ABIArgInfo::getDirect();
8273 
8274   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8275   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8276   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8277     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8278 
8279   // This is a small aggregate type that should be passed in registers.
8280   // Build a coercion type from the LLVM struct type.
8281   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8282   if (!StrTy)
8283     return ABIArgInfo::getDirect();
8284 
8285   CoerceBuilder CB(getVMContext(), getDataLayout());
8286   CB.addStruct(0, StrTy);
8287   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8288 
8289   // Try to use the original type for coercion.
8290   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8291 
8292   if (CB.InReg)
8293     return ABIArgInfo::getDirectInReg(CoerceTy);
8294   else
8295     return ABIArgInfo::getDirect(CoerceTy);
8296 }
8297 
8298 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8299                                   QualType Ty) const {
8300   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8301   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8302   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8303     AI.setCoerceToType(ArgTy);
8304 
8305   CharUnits SlotSize = CharUnits::fromQuantity(8);
8306 
8307   CGBuilderTy &Builder = CGF.Builder;
8308   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8309   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8310 
8311   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8312 
8313   Address ArgAddr = Address::invalid();
8314   CharUnits Stride;
8315   switch (AI.getKind()) {
8316   case ABIArgInfo::Expand:
8317   case ABIArgInfo::CoerceAndExpand:
8318   case ABIArgInfo::InAlloca:
8319     llvm_unreachable("Unsupported ABI kind for va_arg");
8320 
8321   case ABIArgInfo::Extend: {
8322     Stride = SlotSize;
8323     CharUnits Offset = SlotSize - TypeInfo.first;
8324     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8325     break;
8326   }
8327 
8328   case ABIArgInfo::Direct: {
8329     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8330     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8331     ArgAddr = Addr;
8332     break;
8333   }
8334 
8335   case ABIArgInfo::Indirect:
8336     Stride = SlotSize;
8337     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8338     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8339                       TypeInfo.second);
8340     break;
8341 
8342   case ABIArgInfo::Ignore:
8343     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8344   }
8345 
8346   // Update VAList.
8347   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8348   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8349 
8350   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8351 }
8352 
8353 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8354   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8355   for (auto &I : FI.arguments())
8356     I.info = classifyType(I.type, 16 * 8);
8357 }
8358 
8359 namespace {
8360 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8361 public:
8362   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8363     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8364 
8365   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8366     return 14;
8367   }
8368 
8369   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8370                                llvm::Value *Address) const override;
8371 };
8372 } // end anonymous namespace
8373 
8374 bool
8375 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8376                                                 llvm::Value *Address) const {
8377   // This is calculated from the LLVM and GCC tables and verified
8378   // against gcc output.  AFAIK all ABIs use the same encoding.
8379 
8380   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8381 
8382   llvm::IntegerType *i8 = CGF.Int8Ty;
8383   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8384   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8385 
8386   // 0-31: the 8-byte general-purpose registers
8387   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8388 
8389   // 32-63: f0-31, the 4-byte floating-point registers
8390   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8391 
8392   //   Y   = 64
8393   //   PSR = 65
8394   //   WIM = 66
8395   //   TBR = 67
8396   //   PC  = 68
8397   //   NPC = 69
8398   //   FSR = 70
8399   //   CSR = 71
8400   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8401 
8402   // 72-87: d0-15, the 8-byte floating-point registers
8403   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8404 
8405   return false;
8406 }
8407 
8408 // ARC ABI implementation.
8409 namespace {
8410 
8411 class ARCABIInfo : public DefaultABIInfo {
8412 public:
8413   using DefaultABIInfo::DefaultABIInfo;
8414 
8415 private:
8416   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8417                     QualType Ty) const override;
8418 
8419   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8420     if (!State.FreeRegs)
8421       return;
8422     if (Info.isIndirect() && Info.getInReg())
8423       State.FreeRegs--;
8424     else if (Info.isDirect() && Info.getInReg()) {
8425       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8426       if (sz < State.FreeRegs)
8427         State.FreeRegs -= sz;
8428       else
8429         State.FreeRegs = 0;
8430     }
8431   }
8432 
8433   void computeInfo(CGFunctionInfo &FI) const override {
8434     CCState State(FI.getCallingConvention());
8435     // ARC uses 8 registers to pass arguments.
8436     State.FreeRegs = 8;
8437 
8438     if (!getCXXABI().classifyReturnType(FI))
8439       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8440     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8441     for (auto &I : FI.arguments()) {
8442       I.info = classifyArgumentType(I.type, State.FreeRegs);
8443       updateState(I.info, I.type, State);
8444     }
8445   }
8446 
8447   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8448   ABIArgInfo getIndirectByValue(QualType Ty) const;
8449   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8450   ABIArgInfo classifyReturnType(QualType RetTy) const;
8451 };
8452 
8453 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8454 public:
8455   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8456       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8457 };
8458 
8459 
8460 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8461   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8462                        getNaturalAlignIndirect(Ty, false);
8463 }
8464 
8465 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8466   // Compute the byval alignment.
8467   const unsigned MinABIStackAlignInBytes = 4;
8468   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8469   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8470                                  TypeAlign > MinABIStackAlignInBytes);
8471 }
8472 
8473 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8474                               QualType Ty) const {
8475   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8476                           getContext().getTypeInfoInChars(Ty),
8477                           CharUnits::fromQuantity(4), true);
8478 }
8479 
8480 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8481                                             uint8_t FreeRegs) const {
8482   // Handle the generic C++ ABI.
8483   const RecordType *RT = Ty->getAs<RecordType>();
8484   if (RT) {
8485     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8486     if (RAA == CGCXXABI::RAA_Indirect)
8487       return getIndirectByRef(Ty, FreeRegs > 0);
8488 
8489     if (RAA == CGCXXABI::RAA_DirectInMemory)
8490       return getIndirectByValue(Ty);
8491   }
8492 
8493   // Treat an enum type as its underlying type.
8494   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8495     Ty = EnumTy->getDecl()->getIntegerType();
8496 
8497   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8498 
8499   if (isAggregateTypeForABI(Ty)) {
8500     // Structures with flexible arrays are always indirect.
8501     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8502       return getIndirectByValue(Ty);
8503 
8504     // Ignore empty structs/unions.
8505     if (isEmptyRecord(getContext(), Ty, true))
8506       return ABIArgInfo::getIgnore();
8507 
8508     llvm::LLVMContext &LLVMContext = getVMContext();
8509 
8510     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8511     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8512     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8513 
8514     return FreeRegs >= SizeInRegs ?
8515         ABIArgInfo::getDirectInReg(Result) :
8516         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8517   }
8518 
8519   return Ty->isPromotableIntegerType() ?
8520       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8521                                 ABIArgInfo::getExtend(Ty)) :
8522       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8523                                 ABIArgInfo::getDirect());
8524 }
8525 
8526 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8527   if (RetTy->isAnyComplexType())
8528     return ABIArgInfo::getDirectInReg();
8529 
8530   // Arguments of size > 4 registers are indirect.
8531   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8532   if (RetSize > 4)
8533     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8534 
8535   return DefaultABIInfo::classifyReturnType(RetTy);
8536 }
8537 
8538 } // End anonymous namespace.
8539 
8540 //===----------------------------------------------------------------------===//
8541 // XCore ABI Implementation
8542 //===----------------------------------------------------------------------===//
8543 
8544 namespace {
8545 
8546 /// A SmallStringEnc instance is used to build up the TypeString by passing
8547 /// it by reference between functions that append to it.
8548 typedef llvm::SmallString<128> SmallStringEnc;
8549 
8550 /// TypeStringCache caches the meta encodings of Types.
8551 ///
8552 /// The reason for caching TypeStrings is two fold:
8553 ///   1. To cache a type's encoding for later uses;
8554 ///   2. As a means to break recursive member type inclusion.
8555 ///
8556 /// A cache Entry can have a Status of:
8557 ///   NonRecursive:   The type encoding is not recursive;
8558 ///   Recursive:      The type encoding is recursive;
8559 ///   Incomplete:     An incomplete TypeString;
8560 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8561 ///                   Recursive type encoding.
8562 ///
8563 /// A NonRecursive entry will have all of its sub-members expanded as fully
8564 /// as possible. Whilst it may contain types which are recursive, the type
8565 /// itself is not recursive and thus its encoding may be safely used whenever
8566 /// the type is encountered.
8567 ///
8568 /// A Recursive entry will have all of its sub-members expanded as fully as
8569 /// possible. The type itself is recursive and it may contain other types which
8570 /// are recursive. The Recursive encoding must not be used during the expansion
8571 /// of a recursive type's recursive branch. For simplicity the code uses
8572 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8573 ///
8574 /// An Incomplete entry is always a RecordType and only encodes its
8575 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8576 /// are placed into the cache during type expansion as a means to identify and
8577 /// handle recursive inclusion of types as sub-members. If there is recursion
8578 /// the entry becomes IncompleteUsed.
8579 ///
8580 /// During the expansion of a RecordType's members:
8581 ///
8582 ///   If the cache contains a NonRecursive encoding for the member type, the
8583 ///   cached encoding is used;
8584 ///
8585 ///   If the cache contains a Recursive encoding for the member type, the
8586 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8587 ///
8588 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8589 ///   cache to break potential recursive inclusion of itself as a sub-member;
8590 ///
8591 ///   Once a member RecordType has been expanded, its temporary incomplete
8592 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8593 ///   it is swapped back in;
8594 ///
8595 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8596 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8597 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8598 ///
8599 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8600 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8601 ///   Else the member is part of a recursive type and thus the recursion has
8602 ///   been exited too soon for the encoding to be correct for the member.
8603 ///
8604 class TypeStringCache {
8605   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8606   struct Entry {
8607     std::string Str;     // The encoded TypeString for the type.
8608     enum Status State;   // Information about the encoding in 'Str'.
8609     std::string Swapped; // A temporary place holder for a Recursive encoding
8610                          // during the expansion of RecordType's members.
8611   };
8612   std::map<const IdentifierInfo *, struct Entry> Map;
8613   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8614   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8615 public:
8616   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8617   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8618   bool removeIncomplete(const IdentifierInfo *ID);
8619   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8620                      bool IsRecursive);
8621   StringRef lookupStr(const IdentifierInfo *ID);
8622 };
8623 
8624 /// TypeString encodings for enum & union fields must be order.
8625 /// FieldEncoding is a helper for this ordering process.
8626 class FieldEncoding {
8627   bool HasName;
8628   std::string Enc;
8629 public:
8630   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8631   StringRef str() { return Enc; }
8632   bool operator<(const FieldEncoding &rhs) const {
8633     if (HasName != rhs.HasName) return HasName;
8634     return Enc < rhs.Enc;
8635   }
8636 };
8637 
8638 class XCoreABIInfo : public DefaultABIInfo {
8639 public:
8640   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8641   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8642                     QualType Ty) const override;
8643 };
8644 
8645 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8646   mutable TypeStringCache TSC;
8647 public:
8648   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8649     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8650   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8651                     CodeGen::CodeGenModule &M) const override;
8652 };
8653 
8654 } // End anonymous namespace.
8655 
8656 // TODO: this implementation is likely now redundant with the default
8657 // EmitVAArg.
8658 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8659                                 QualType Ty) const {
8660   CGBuilderTy &Builder = CGF.Builder;
8661 
8662   // Get the VAList.
8663   CharUnits SlotSize = CharUnits::fromQuantity(4);
8664   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8665 
8666   // Handle the argument.
8667   ABIArgInfo AI = classifyArgumentType(Ty);
8668   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8669   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8670   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8671     AI.setCoerceToType(ArgTy);
8672   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8673 
8674   Address Val = Address::invalid();
8675   CharUnits ArgSize = CharUnits::Zero();
8676   switch (AI.getKind()) {
8677   case ABIArgInfo::Expand:
8678   case ABIArgInfo::CoerceAndExpand:
8679   case ABIArgInfo::InAlloca:
8680     llvm_unreachable("Unsupported ABI kind for va_arg");
8681   case ABIArgInfo::Ignore:
8682     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8683     ArgSize = CharUnits::Zero();
8684     break;
8685   case ABIArgInfo::Extend:
8686   case ABIArgInfo::Direct:
8687     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8688     ArgSize = CharUnits::fromQuantity(
8689                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8690     ArgSize = ArgSize.alignTo(SlotSize);
8691     break;
8692   case ABIArgInfo::Indirect:
8693     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8694     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8695     ArgSize = SlotSize;
8696     break;
8697   }
8698 
8699   // Increment the VAList.
8700   if (!ArgSize.isZero()) {
8701     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
8702     Builder.CreateStore(APN.getPointer(), VAListAddr);
8703   }
8704 
8705   return Val;
8706 }
8707 
8708 /// During the expansion of a RecordType, an incomplete TypeString is placed
8709 /// into the cache as a means to identify and break recursion.
8710 /// If there is a Recursive encoding in the cache, it is swapped out and will
8711 /// be reinserted by removeIncomplete().
8712 /// All other types of encoding should have been used rather than arriving here.
8713 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8714                                     std::string StubEnc) {
8715   if (!ID)
8716     return;
8717   Entry &E = Map[ID];
8718   assert( (E.Str.empty() || E.State == Recursive) &&
8719          "Incorrectly use of addIncomplete");
8720   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8721   E.Swapped.swap(E.Str); // swap out the Recursive
8722   E.Str.swap(StubEnc);
8723   E.State = Incomplete;
8724   ++IncompleteCount;
8725 }
8726 
8727 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8728 /// must be removed from the cache.
8729 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8730 /// Returns true if the RecordType was defined recursively.
8731 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8732   if (!ID)
8733     return false;
8734   auto I = Map.find(ID);
8735   assert(I != Map.end() && "Entry not present");
8736   Entry &E = I->second;
8737   assert( (E.State == Incomplete ||
8738            E.State == IncompleteUsed) &&
8739          "Entry must be an incomplete type");
8740   bool IsRecursive = false;
8741   if (E.State == IncompleteUsed) {
8742     // We made use of our Incomplete encoding, thus we are recursive.
8743     IsRecursive = true;
8744     --IncompleteUsedCount;
8745   }
8746   if (E.Swapped.empty())
8747     Map.erase(I);
8748   else {
8749     // Swap the Recursive back.
8750     E.Swapped.swap(E.Str);
8751     E.Swapped.clear();
8752     E.State = Recursive;
8753   }
8754   --IncompleteCount;
8755   return IsRecursive;
8756 }
8757 
8758 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8759 /// Recursive (viz: all sub-members were expanded as fully as possible).
8760 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8761                                     bool IsRecursive) {
8762   if (!ID || IncompleteUsedCount)
8763     return; // No key or it is is an incomplete sub-type so don't add.
8764   Entry &E = Map[ID];
8765   if (IsRecursive && !E.Str.empty()) {
8766     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8767            "This is not the same Recursive entry");
8768     // The parent container was not recursive after all, so we could have used
8769     // this Recursive sub-member entry after all, but we assumed the worse when
8770     // we started viz: IncompleteCount!=0.
8771     return;
8772   }
8773   assert(E.Str.empty() && "Entry already present");
8774   E.Str = Str.str();
8775   E.State = IsRecursive? Recursive : NonRecursive;
8776 }
8777 
8778 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8779 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8780 /// encoding is Recursive, return an empty StringRef.
8781 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8782   if (!ID)
8783     return StringRef();   // We have no key.
8784   auto I = Map.find(ID);
8785   if (I == Map.end())
8786     return StringRef();   // We have no encoding.
8787   Entry &E = I->second;
8788   if (E.State == Recursive && IncompleteCount)
8789     return StringRef();   // We don't use Recursive encodings for member types.
8790 
8791   if (E.State == Incomplete) {
8792     // The incomplete type is being used to break out of recursion.
8793     E.State = IncompleteUsed;
8794     ++IncompleteUsedCount;
8795   }
8796   return E.Str;
8797 }
8798 
8799 /// The XCore ABI includes a type information section that communicates symbol
8800 /// type information to the linker. The linker uses this information to verify
8801 /// safety/correctness of things such as array bound and pointers et al.
8802 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8803 /// This type information (TypeString) is emitted into meta data for all global
8804 /// symbols: definitions, declarations, functions & variables.
8805 ///
8806 /// The TypeString carries type, qualifier, name, size & value details.
8807 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8808 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8809 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8810 ///
8811 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8812                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8813 
8814 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8815 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8816                                           CodeGen::CodeGenModule &CGM) const {
8817   SmallStringEnc Enc;
8818   if (getTypeString(Enc, D, CGM, TSC)) {
8819     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8820     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8821                                 llvm::MDString::get(Ctx, Enc.str())};
8822     llvm::NamedMDNode *MD =
8823       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8824     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8825   }
8826 }
8827 
8828 //===----------------------------------------------------------------------===//
8829 // SPIR ABI Implementation
8830 //===----------------------------------------------------------------------===//
8831 
8832 namespace {
8833 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8834 public:
8835   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8836     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8837   unsigned getOpenCLKernelCallingConv() const override;
8838 };
8839 
8840 } // End anonymous namespace.
8841 
8842 namespace clang {
8843 namespace CodeGen {
8844 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8845   DefaultABIInfo SPIRABI(CGM.getTypes());
8846   SPIRABI.computeInfo(FI);
8847 }
8848 }
8849 }
8850 
8851 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8852   return llvm::CallingConv::SPIR_KERNEL;
8853 }
8854 
8855 static bool appendType(SmallStringEnc &Enc, QualType QType,
8856                        const CodeGen::CodeGenModule &CGM,
8857                        TypeStringCache &TSC);
8858 
8859 /// Helper function for appendRecordType().
8860 /// Builds a SmallVector containing the encoded field types in declaration
8861 /// order.
8862 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8863                              const RecordDecl *RD,
8864                              const CodeGen::CodeGenModule &CGM,
8865                              TypeStringCache &TSC) {
8866   for (const auto *Field : RD->fields()) {
8867     SmallStringEnc Enc;
8868     Enc += "m(";
8869     Enc += Field->getName();
8870     Enc += "){";
8871     if (Field->isBitField()) {
8872       Enc += "b(";
8873       llvm::raw_svector_ostream OS(Enc);
8874       OS << Field->getBitWidthValue(CGM.getContext());
8875       Enc += ':';
8876     }
8877     if (!appendType(Enc, Field->getType(), CGM, TSC))
8878       return false;
8879     if (Field->isBitField())
8880       Enc += ')';
8881     Enc += '}';
8882     FE.emplace_back(!Field->getName().empty(), Enc);
8883   }
8884   return true;
8885 }
8886 
8887 /// Appends structure and union types to Enc and adds encoding to cache.
8888 /// Recursively calls appendType (via extractFieldType) for each field.
8889 /// Union types have their fields ordered according to the ABI.
8890 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8891                              const CodeGen::CodeGenModule &CGM,
8892                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8893   // Append the cached TypeString if we have one.
8894   StringRef TypeString = TSC.lookupStr(ID);
8895   if (!TypeString.empty()) {
8896     Enc += TypeString;
8897     return true;
8898   }
8899 
8900   // Start to emit an incomplete TypeString.
8901   size_t Start = Enc.size();
8902   Enc += (RT->isUnionType()? 'u' : 's');
8903   Enc += '(';
8904   if (ID)
8905     Enc += ID->getName();
8906   Enc += "){";
8907 
8908   // We collect all encoded fields and order as necessary.
8909   bool IsRecursive = false;
8910   const RecordDecl *RD = RT->getDecl()->getDefinition();
8911   if (RD && !RD->field_empty()) {
8912     // An incomplete TypeString stub is placed in the cache for this RecordType
8913     // so that recursive calls to this RecordType will use it whilst building a
8914     // complete TypeString for this RecordType.
8915     SmallVector<FieldEncoding, 16> FE;
8916     std::string StubEnc(Enc.substr(Start).str());
8917     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8918     TSC.addIncomplete(ID, std::move(StubEnc));
8919     if (!extractFieldType(FE, RD, CGM, TSC)) {
8920       (void) TSC.removeIncomplete(ID);
8921       return false;
8922     }
8923     IsRecursive = TSC.removeIncomplete(ID);
8924     // The ABI requires unions to be sorted but not structures.
8925     // See FieldEncoding::operator< for sort algorithm.
8926     if (RT->isUnionType())
8927       llvm::sort(FE);
8928     // We can now complete the TypeString.
8929     unsigned E = FE.size();
8930     for (unsigned I = 0; I != E; ++I) {
8931       if (I)
8932         Enc += ',';
8933       Enc += FE[I].str();
8934     }
8935   }
8936   Enc += '}';
8937   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8938   return true;
8939 }
8940 
8941 /// Appends enum types to Enc and adds the encoding to the cache.
8942 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8943                            TypeStringCache &TSC,
8944                            const IdentifierInfo *ID) {
8945   // Append the cached TypeString if we have one.
8946   StringRef TypeString = TSC.lookupStr(ID);
8947   if (!TypeString.empty()) {
8948     Enc += TypeString;
8949     return true;
8950   }
8951 
8952   size_t Start = Enc.size();
8953   Enc += "e(";
8954   if (ID)
8955     Enc += ID->getName();
8956   Enc += "){";
8957 
8958   // We collect all encoded enumerations and order them alphanumerically.
8959   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8960     SmallVector<FieldEncoding, 16> FE;
8961     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8962          ++I) {
8963       SmallStringEnc EnumEnc;
8964       EnumEnc += "m(";
8965       EnumEnc += I->getName();
8966       EnumEnc += "){";
8967       I->getInitVal().toString(EnumEnc);
8968       EnumEnc += '}';
8969       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8970     }
8971     llvm::sort(FE);
8972     unsigned E = FE.size();
8973     for (unsigned I = 0; I != E; ++I) {
8974       if (I)
8975         Enc += ',';
8976       Enc += FE[I].str();
8977     }
8978   }
8979   Enc += '}';
8980   TSC.addIfComplete(ID, Enc.substr(Start), false);
8981   return true;
8982 }
8983 
8984 /// Appends type's qualifier to Enc.
8985 /// This is done prior to appending the type's encoding.
8986 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8987   // Qualifiers are emitted in alphabetical order.
8988   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8989   int Lookup = 0;
8990   if (QT.isConstQualified())
8991     Lookup += 1<<0;
8992   if (QT.isRestrictQualified())
8993     Lookup += 1<<1;
8994   if (QT.isVolatileQualified())
8995     Lookup += 1<<2;
8996   Enc += Table[Lookup];
8997 }
8998 
8999 /// Appends built-in types to Enc.
9000 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
9001   const char *EncType;
9002   switch (BT->getKind()) {
9003     case BuiltinType::Void:
9004       EncType = "0";
9005       break;
9006     case BuiltinType::Bool:
9007       EncType = "b";
9008       break;
9009     case BuiltinType::Char_U:
9010       EncType = "uc";
9011       break;
9012     case BuiltinType::UChar:
9013       EncType = "uc";
9014       break;
9015     case BuiltinType::SChar:
9016       EncType = "sc";
9017       break;
9018     case BuiltinType::UShort:
9019       EncType = "us";
9020       break;
9021     case BuiltinType::Short:
9022       EncType = "ss";
9023       break;
9024     case BuiltinType::UInt:
9025       EncType = "ui";
9026       break;
9027     case BuiltinType::Int:
9028       EncType = "si";
9029       break;
9030     case BuiltinType::ULong:
9031       EncType = "ul";
9032       break;
9033     case BuiltinType::Long:
9034       EncType = "sl";
9035       break;
9036     case BuiltinType::ULongLong:
9037       EncType = "ull";
9038       break;
9039     case BuiltinType::LongLong:
9040       EncType = "sll";
9041       break;
9042     case BuiltinType::Float:
9043       EncType = "ft";
9044       break;
9045     case BuiltinType::Double:
9046       EncType = "d";
9047       break;
9048     case BuiltinType::LongDouble:
9049       EncType = "ld";
9050       break;
9051     default:
9052       return false;
9053   }
9054   Enc += EncType;
9055   return true;
9056 }
9057 
9058 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9059 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9060                               const CodeGen::CodeGenModule &CGM,
9061                               TypeStringCache &TSC) {
9062   Enc += "p(";
9063   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9064     return false;
9065   Enc += ')';
9066   return true;
9067 }
9068 
9069 /// Appends array encoding to Enc before calling appendType for the element.
9070 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9071                             const ArrayType *AT,
9072                             const CodeGen::CodeGenModule &CGM,
9073                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9074   if (AT->getSizeModifier() != ArrayType::Normal)
9075     return false;
9076   Enc += "a(";
9077   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9078     CAT->getSize().toStringUnsigned(Enc);
9079   else
9080     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9081   Enc += ':';
9082   // The Qualifiers should be attached to the type rather than the array.
9083   appendQualifier(Enc, QT);
9084   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9085     return false;
9086   Enc += ')';
9087   return true;
9088 }
9089 
9090 /// Appends a function encoding to Enc, calling appendType for the return type
9091 /// and the arguments.
9092 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9093                              const CodeGen::CodeGenModule &CGM,
9094                              TypeStringCache &TSC) {
9095   Enc += "f{";
9096   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9097     return false;
9098   Enc += "}(";
9099   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9100     // N.B. we are only interested in the adjusted param types.
9101     auto I = FPT->param_type_begin();
9102     auto E = FPT->param_type_end();
9103     if (I != E) {
9104       do {
9105         if (!appendType(Enc, *I, CGM, TSC))
9106           return false;
9107         ++I;
9108         if (I != E)
9109           Enc += ',';
9110       } while (I != E);
9111       if (FPT->isVariadic())
9112         Enc += ",va";
9113     } else {
9114       if (FPT->isVariadic())
9115         Enc += "va";
9116       else
9117         Enc += '0';
9118     }
9119   }
9120   Enc += ')';
9121   return true;
9122 }
9123 
9124 /// Handles the type's qualifier before dispatching a call to handle specific
9125 /// type encodings.
9126 static bool appendType(SmallStringEnc &Enc, QualType QType,
9127                        const CodeGen::CodeGenModule &CGM,
9128                        TypeStringCache &TSC) {
9129 
9130   QualType QT = QType.getCanonicalType();
9131 
9132   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9133     // The Qualifiers should be attached to the type rather than the array.
9134     // Thus we don't call appendQualifier() here.
9135     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9136 
9137   appendQualifier(Enc, QT);
9138 
9139   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9140     return appendBuiltinType(Enc, BT);
9141 
9142   if (const PointerType *PT = QT->getAs<PointerType>())
9143     return appendPointerType(Enc, PT, CGM, TSC);
9144 
9145   if (const EnumType *ET = QT->getAs<EnumType>())
9146     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9147 
9148   if (const RecordType *RT = QT->getAsStructureType())
9149     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9150 
9151   if (const RecordType *RT = QT->getAsUnionType())
9152     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9153 
9154   if (const FunctionType *FT = QT->getAs<FunctionType>())
9155     return appendFunctionType(Enc, FT, CGM, TSC);
9156 
9157   return false;
9158 }
9159 
9160 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9161                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9162   if (!D)
9163     return false;
9164 
9165   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9166     if (FD->getLanguageLinkage() != CLanguageLinkage)
9167       return false;
9168     return appendType(Enc, FD->getType(), CGM, TSC);
9169   }
9170 
9171   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9172     if (VD->getLanguageLinkage() != CLanguageLinkage)
9173       return false;
9174     QualType QT = VD->getType().getCanonicalType();
9175     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9176       // Global ArrayTypes are given a size of '*' if the size is unknown.
9177       // The Qualifiers should be attached to the type rather than the array.
9178       // Thus we don't call appendQualifier() here.
9179       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9180     }
9181     return appendType(Enc, QT, CGM, TSC);
9182   }
9183   return false;
9184 }
9185 
9186 //===----------------------------------------------------------------------===//
9187 // RISCV ABI Implementation
9188 //===----------------------------------------------------------------------===//
9189 
9190 namespace {
9191 class RISCVABIInfo : public DefaultABIInfo {
9192 private:
9193   // Size of the integer ('x') registers in bits.
9194   unsigned XLen;
9195   // Size of the floating point ('f') registers in bits. Note that the target
9196   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
9197   // with soft float ABI has FLen==0).
9198   unsigned FLen;
9199   static const int NumArgGPRs = 8;
9200   static const int NumArgFPRs = 8;
9201   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9202                                       llvm::Type *&Field1Ty,
9203                                       CharUnits &Field1Off,
9204                                       llvm::Type *&Field2Ty,
9205                                       CharUnits &Field2Off) const;
9206 
9207 public:
9208   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
9209       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
9210 
9211   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9212   // non-virtual, but computeInfo is virtual, so we overload it.
9213   void computeInfo(CGFunctionInfo &FI) const override;
9214 
9215   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
9216                                   int &ArgFPRsLeft) const;
9217   ABIArgInfo classifyReturnType(QualType RetTy) const;
9218 
9219   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9220                     QualType Ty) const override;
9221 
9222   ABIArgInfo extendType(QualType Ty) const;
9223 
9224   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9225                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
9226                                 CharUnits &Field2Off, int &NeededArgGPRs,
9227                                 int &NeededArgFPRs) const;
9228   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
9229                                                CharUnits Field1Off,
9230                                                llvm::Type *Field2Ty,
9231                                                CharUnits Field2Off) const;
9232 };
9233 } // end anonymous namespace
9234 
9235 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9236   QualType RetTy = FI.getReturnType();
9237   if (!getCXXABI().classifyReturnType(FI))
9238     FI.getReturnInfo() = classifyReturnType(RetTy);
9239 
9240   // IsRetIndirect is true if classifyArgumentType indicated the value should
9241   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9242   // is passed direct in LLVM IR, relying on the backend lowering code to
9243   // rewrite the argument list and pass indirectly on RV32.
9244   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9245                        getContext().getTypeSize(RetTy) > (2 * XLen);
9246 
9247   // We must track the number of GPRs used in order to conform to the RISC-V
9248   // ABI, as integer scalars passed in registers should have signext/zeroext
9249   // when promoted, but are anyext if passed on the stack. As GPR usage is
9250   // different for variadic arguments, we must also track whether we are
9251   // examining a vararg or not.
9252   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9253   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
9254   int NumFixedArgs = FI.getNumRequiredArgs();
9255 
9256   int ArgNum = 0;
9257   for (auto &ArgInfo : FI.arguments()) {
9258     bool IsFixed = ArgNum < NumFixedArgs;
9259     ArgInfo.info =
9260         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
9261     ArgNum++;
9262   }
9263 }
9264 
9265 // Returns true if the struct is a potential candidate for the floating point
9266 // calling convention. If this function returns true, the caller is
9267 // responsible for checking that if there is only a single field then that
9268 // field is a float.
9269 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9270                                                   llvm::Type *&Field1Ty,
9271                                                   CharUnits &Field1Off,
9272                                                   llvm::Type *&Field2Ty,
9273                                                   CharUnits &Field2Off) const {
9274   bool IsInt = Ty->isIntegralOrEnumerationType();
9275   bool IsFloat = Ty->isRealFloatingType();
9276 
9277   if (IsInt || IsFloat) {
9278     uint64_t Size = getContext().getTypeSize(Ty);
9279     if (IsInt && Size > XLen)
9280       return false;
9281     // Can't be eligible if larger than the FP registers. Half precision isn't
9282     // currently supported on RISC-V and the ABI hasn't been confirmed, so
9283     // default to the integer ABI in that case.
9284     if (IsFloat && (Size > FLen || Size < 32))
9285       return false;
9286     // Can't be eligible if an integer type was already found (int+int pairs
9287     // are not eligible).
9288     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
9289       return false;
9290     if (!Field1Ty) {
9291       Field1Ty = CGT.ConvertType(Ty);
9292       Field1Off = CurOff;
9293       return true;
9294     }
9295     if (!Field2Ty) {
9296       Field2Ty = CGT.ConvertType(Ty);
9297       Field2Off = CurOff;
9298       return true;
9299     }
9300     return false;
9301   }
9302 
9303   if (auto CTy = Ty->getAs<ComplexType>()) {
9304     if (Field1Ty)
9305       return false;
9306     QualType EltTy = CTy->getElementType();
9307     if (getContext().getTypeSize(EltTy) > FLen)
9308       return false;
9309     Field1Ty = CGT.ConvertType(EltTy);
9310     Field1Off = CurOff;
9311     assert(CurOff.isZero() && "Unexpected offset for first field");
9312     Field2Ty = Field1Ty;
9313     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
9314     return true;
9315   }
9316 
9317   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
9318     uint64_t ArraySize = ATy->getSize().getZExtValue();
9319     QualType EltTy = ATy->getElementType();
9320     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
9321     for (uint64_t i = 0; i < ArraySize; ++i) {
9322       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
9323                                                 Field1Off, Field2Ty, Field2Off);
9324       if (!Ret)
9325         return false;
9326       CurOff += EltSize;
9327     }
9328     return true;
9329   }
9330 
9331   if (const auto *RTy = Ty->getAs<RecordType>()) {
9332     // Structures with either a non-trivial destructor or a non-trivial
9333     // copy constructor are not eligible for the FP calling convention.
9334     if (getRecordArgABI(Ty, CGT.getCXXABI()))
9335       return false;
9336     if (isEmptyRecord(getContext(), Ty, true))
9337       return true;
9338     const RecordDecl *RD = RTy->getDecl();
9339     // Unions aren't eligible unless they're empty (which is caught above).
9340     if (RD->isUnion())
9341       return false;
9342     int ZeroWidthBitFieldCount = 0;
9343     for (const FieldDecl *FD : RD->fields()) {
9344       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
9345       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
9346       QualType QTy = FD->getType();
9347       if (FD->isBitField()) {
9348         unsigned BitWidth = FD->getBitWidthValue(getContext());
9349         // Allow a bitfield with a type greater than XLen as long as the
9350         // bitwidth is XLen or less.
9351         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
9352           QTy = getContext().getIntTypeForBitwidth(XLen, false);
9353         if (BitWidth == 0) {
9354           ZeroWidthBitFieldCount++;
9355           continue;
9356         }
9357       }
9358 
9359       bool Ret = detectFPCCEligibleStructHelper(
9360           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
9361           Field1Ty, Field1Off, Field2Ty, Field2Off);
9362       if (!Ret)
9363         return false;
9364 
9365       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
9366       // or int+fp structs, but are ignored for a struct with an fp field and
9367       // any number of zero-width bitfields.
9368       if (Field2Ty && ZeroWidthBitFieldCount > 0)
9369         return false;
9370     }
9371     return Field1Ty != nullptr;
9372   }
9373 
9374   return false;
9375 }
9376 
9377 // Determine if a struct is eligible for passing according to the floating
9378 // point calling convention (i.e., when flattened it contains a single fp
9379 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
9380 // NeededArgGPRs are incremented appropriately.
9381 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9382                                             CharUnits &Field1Off,
9383                                             llvm::Type *&Field2Ty,
9384                                             CharUnits &Field2Off,
9385                                             int &NeededArgGPRs,
9386                                             int &NeededArgFPRs) const {
9387   Field1Ty = nullptr;
9388   Field2Ty = nullptr;
9389   NeededArgGPRs = 0;
9390   NeededArgFPRs = 0;
9391   bool IsCandidate = detectFPCCEligibleStructHelper(
9392       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
9393   // Not really a candidate if we have a single int but no float.
9394   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
9395     return IsCandidate = false;
9396   if (!IsCandidate)
9397     return false;
9398   if (Field1Ty && Field1Ty->isFloatingPointTy())
9399     NeededArgFPRs++;
9400   else if (Field1Ty)
9401     NeededArgGPRs++;
9402   if (Field2Ty && Field2Ty->isFloatingPointTy())
9403     NeededArgFPRs++;
9404   else if (Field2Ty)
9405     NeededArgGPRs++;
9406   return IsCandidate;
9407 }
9408 
9409 // Call getCoerceAndExpand for the two-element flattened struct described by
9410 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
9411 // appropriate coerceToType and unpaddedCoerceToType.
9412 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
9413     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
9414     CharUnits Field2Off) const {
9415   SmallVector<llvm::Type *, 3> CoerceElts;
9416   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
9417   if (!Field1Off.isZero())
9418     CoerceElts.push_back(llvm::ArrayType::get(
9419         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
9420 
9421   CoerceElts.push_back(Field1Ty);
9422   UnpaddedCoerceElts.push_back(Field1Ty);
9423 
9424   if (!Field2Ty) {
9425     return ABIArgInfo::getCoerceAndExpand(
9426         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
9427         UnpaddedCoerceElts[0]);
9428   }
9429 
9430   CharUnits Field2Align =
9431       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
9432   CharUnits Field1Size =
9433       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
9434   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
9435 
9436   CharUnits Padding = CharUnits::Zero();
9437   if (Field2Off > Field2OffNoPadNoPack)
9438     Padding = Field2Off - Field2OffNoPadNoPack;
9439   else if (Field2Off != Field2Align && Field2Off > Field1Size)
9440     Padding = Field2Off - Field1Size;
9441 
9442   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
9443 
9444   if (!Padding.isZero())
9445     CoerceElts.push_back(llvm::ArrayType::get(
9446         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
9447 
9448   CoerceElts.push_back(Field2Ty);
9449   UnpaddedCoerceElts.push_back(Field2Ty);
9450 
9451   auto CoerceToType =
9452       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
9453   auto UnpaddedCoerceToType =
9454       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
9455 
9456   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
9457 }
9458 
9459 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9460                                               int &ArgGPRsLeft,
9461                                               int &ArgFPRsLeft) const {
9462   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9463   Ty = useFirstFieldIfTransparentUnion(Ty);
9464 
9465   // Structures with either a non-trivial destructor or a non-trivial
9466   // copy constructor are always passed indirectly.
9467   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9468     if (ArgGPRsLeft)
9469       ArgGPRsLeft -= 1;
9470     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9471                                            CGCXXABI::RAA_DirectInMemory);
9472   }
9473 
9474   // Ignore empty structs/unions.
9475   if (isEmptyRecord(getContext(), Ty, true))
9476     return ABIArgInfo::getIgnore();
9477 
9478   uint64_t Size = getContext().getTypeSize(Ty);
9479 
9480   // Pass floating point values via FPRs if possible.
9481   if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
9482     ArgFPRsLeft--;
9483     return ABIArgInfo::getDirect();
9484   }
9485 
9486   // Complex types for the hard float ABI must be passed direct rather than
9487   // using CoerceAndExpand.
9488   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
9489     QualType EltTy = Ty->getAs<ComplexType>()->getElementType();
9490     if (getContext().getTypeSize(EltTy) <= FLen) {
9491       ArgFPRsLeft -= 2;
9492       return ABIArgInfo::getDirect();
9493     }
9494   }
9495 
9496   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
9497     llvm::Type *Field1Ty = nullptr;
9498     llvm::Type *Field2Ty = nullptr;
9499     CharUnits Field1Off = CharUnits::Zero();
9500     CharUnits Field2Off = CharUnits::Zero();
9501     int NeededArgGPRs;
9502     int NeededArgFPRs;
9503     bool IsCandidate =
9504         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
9505                                  NeededArgGPRs, NeededArgFPRs);
9506     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
9507         NeededArgFPRs <= ArgFPRsLeft) {
9508       ArgGPRsLeft -= NeededArgGPRs;
9509       ArgFPRsLeft -= NeededArgFPRs;
9510       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
9511                                                Field2Off);
9512     }
9513   }
9514 
9515   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9516   bool MustUseStack = false;
9517   // Determine the number of GPRs needed to pass the current argument
9518   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9519   // register pairs, so may consume 3 registers.
9520   int NeededArgGPRs = 1;
9521   if (!IsFixed && NeededAlign == 2 * XLen)
9522     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9523   else if (Size > XLen && Size <= 2 * XLen)
9524     NeededArgGPRs = 2;
9525 
9526   if (NeededArgGPRs > ArgGPRsLeft) {
9527     MustUseStack = true;
9528     NeededArgGPRs = ArgGPRsLeft;
9529   }
9530 
9531   ArgGPRsLeft -= NeededArgGPRs;
9532 
9533   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9534     // Treat an enum type as its underlying type.
9535     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9536       Ty = EnumTy->getDecl()->getIntegerType();
9537 
9538     // All integral types are promoted to XLen width, unless passed on the
9539     // stack.
9540     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9541       return extendType(Ty);
9542     }
9543 
9544     return ABIArgInfo::getDirect();
9545   }
9546 
9547   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9548   // so coerce to integers.
9549   if (Size <= 2 * XLen) {
9550     unsigned Alignment = getContext().getTypeAlign(Ty);
9551 
9552     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9553     // required, and a 2-element XLen array if only XLen alignment is required.
9554     if (Size <= XLen) {
9555       return ABIArgInfo::getDirect(
9556           llvm::IntegerType::get(getVMContext(), XLen));
9557     } else if (Alignment == 2 * XLen) {
9558       return ABIArgInfo::getDirect(
9559           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9560     } else {
9561       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9562           llvm::IntegerType::get(getVMContext(), XLen), 2));
9563     }
9564   }
9565   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9566 }
9567 
9568 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9569   if (RetTy->isVoidType())
9570     return ABIArgInfo::getIgnore();
9571 
9572   int ArgGPRsLeft = 2;
9573   int ArgFPRsLeft = FLen ? 2 : 0;
9574 
9575   // The rules for return and argument types are the same, so defer to
9576   // classifyArgumentType.
9577   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
9578                               ArgFPRsLeft);
9579 }
9580 
9581 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9582                                 QualType Ty) const {
9583   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9584 
9585   // Empty records are ignored for parameter passing purposes.
9586   if (isEmptyRecord(getContext(), Ty, true)) {
9587     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9588     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9589     return Addr;
9590   }
9591 
9592   std::pair<CharUnits, CharUnits> SizeAndAlign =
9593       getContext().getTypeInfoInChars(Ty);
9594 
9595   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9596   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9597 
9598   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9599                           SlotSize, /*AllowHigherAlign=*/true);
9600 }
9601 
9602 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9603   int TySize = getContext().getTypeSize(Ty);
9604   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9605   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9606     return ABIArgInfo::getSignExtend(Ty);
9607   return ABIArgInfo::getExtend(Ty);
9608 }
9609 
9610 namespace {
9611 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9612 public:
9613   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
9614                          unsigned FLen)
9615       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
9616 
9617   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9618                            CodeGen::CodeGenModule &CGM) const override {
9619     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9620     if (!FD) return;
9621 
9622     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9623     if (!Attr)
9624       return;
9625 
9626     const char *Kind;
9627     switch (Attr->getInterrupt()) {
9628     case RISCVInterruptAttr::user: Kind = "user"; break;
9629     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9630     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9631     }
9632 
9633     auto *Fn = cast<llvm::Function>(GV);
9634 
9635     Fn->addFnAttr("interrupt", Kind);
9636   }
9637 };
9638 } // namespace
9639 
9640 //===----------------------------------------------------------------------===//
9641 // Driver code
9642 //===----------------------------------------------------------------------===//
9643 
9644 bool CodeGenModule::supportsCOMDAT() const {
9645   return getTriple().supportsCOMDAT();
9646 }
9647 
9648 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9649   if (TheTargetCodeGenInfo)
9650     return *TheTargetCodeGenInfo;
9651 
9652   // Helper to set the unique_ptr while still keeping the return value.
9653   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9654     this->TheTargetCodeGenInfo.reset(P);
9655     return *P;
9656   };
9657 
9658   const llvm::Triple &Triple = getTarget().getTriple();
9659   switch (Triple.getArch()) {
9660   default:
9661     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9662 
9663   case llvm::Triple::le32:
9664     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9665   case llvm::Triple::mips:
9666   case llvm::Triple::mipsel:
9667     if (Triple.getOS() == llvm::Triple::NaCl)
9668       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9669     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9670 
9671   case llvm::Triple::mips64:
9672   case llvm::Triple::mips64el:
9673     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9674 
9675   case llvm::Triple::avr:
9676     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9677 
9678   case llvm::Triple::aarch64:
9679   case llvm::Triple::aarch64_be: {
9680     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9681     if (getTarget().getABI() == "darwinpcs")
9682       Kind = AArch64ABIInfo::DarwinPCS;
9683     else if (Triple.isOSWindows())
9684       return SetCGInfo(
9685           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9686 
9687     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9688   }
9689 
9690   case llvm::Triple::wasm32:
9691   case llvm::Triple::wasm64:
9692     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9693 
9694   case llvm::Triple::arm:
9695   case llvm::Triple::armeb:
9696   case llvm::Triple::thumb:
9697   case llvm::Triple::thumbeb: {
9698     if (Triple.getOS() == llvm::Triple::Win32) {
9699       return SetCGInfo(
9700           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9701     }
9702 
9703     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9704     StringRef ABIStr = getTarget().getABI();
9705     if (ABIStr == "apcs-gnu")
9706       Kind = ARMABIInfo::APCS;
9707     else if (ABIStr == "aapcs16")
9708       Kind = ARMABIInfo::AAPCS16_VFP;
9709     else if (CodeGenOpts.FloatABI == "hard" ||
9710              (CodeGenOpts.FloatABI != "soft" &&
9711               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9712                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9713                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9714       Kind = ARMABIInfo::AAPCS_VFP;
9715 
9716     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9717   }
9718 
9719   case llvm::Triple::ppc:
9720     return SetCGInfo(
9721         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9722   case llvm::Triple::ppc64:
9723     if (Triple.isOSBinFormatELF()) {
9724       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9725       if (getTarget().getABI() == "elfv2")
9726         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9727       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9728       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9729 
9730       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9731                                                         IsSoftFloat));
9732     } else
9733       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9734   case llvm::Triple::ppc64le: {
9735     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9736     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9737     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9738       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9739     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9740     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9741 
9742     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9743                                                       IsSoftFloat));
9744   }
9745 
9746   case llvm::Triple::nvptx:
9747   case llvm::Triple::nvptx64:
9748     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9749 
9750   case llvm::Triple::msp430:
9751     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9752 
9753   case llvm::Triple::riscv32:
9754   case llvm::Triple::riscv64: {
9755     StringRef ABIStr = getTarget().getABI();
9756     unsigned XLen = getTarget().getPointerWidth(0);
9757     unsigned ABIFLen = 0;
9758     if (ABIStr.endswith("f"))
9759       ABIFLen = 32;
9760     else if (ABIStr.endswith("d"))
9761       ABIFLen = 64;
9762     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
9763   }
9764 
9765   case llvm::Triple::systemz: {
9766     bool HasVector = getTarget().getABI() == "vector";
9767     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9768   }
9769 
9770   case llvm::Triple::tce:
9771   case llvm::Triple::tcele:
9772     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9773 
9774   case llvm::Triple::x86: {
9775     bool IsDarwinVectorABI = Triple.isOSDarwin();
9776     bool RetSmallStructInRegABI =
9777         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9778     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9779 
9780     if (Triple.getOS() == llvm::Triple::Win32) {
9781       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9782           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9783           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9784     } else {
9785       return SetCGInfo(new X86_32TargetCodeGenInfo(
9786           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9787           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9788           CodeGenOpts.FloatABI == "soft"));
9789     }
9790   }
9791 
9792   case llvm::Triple::x86_64: {
9793     StringRef ABI = getTarget().getABI();
9794     X86AVXABILevel AVXLevel =
9795         (ABI == "avx512"
9796              ? X86AVXABILevel::AVX512
9797              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9798 
9799     switch (Triple.getOS()) {
9800     case llvm::Triple::Win32:
9801       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9802     default:
9803       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9804     }
9805   }
9806   case llvm::Triple::hexagon:
9807     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9808   case llvm::Triple::lanai:
9809     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9810   case llvm::Triple::r600:
9811     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9812   case llvm::Triple::amdgcn:
9813     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9814   case llvm::Triple::sparc:
9815     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9816   case llvm::Triple::sparcv9:
9817     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9818   case llvm::Triple::xcore:
9819     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9820   case llvm::Triple::arc:
9821     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9822   case llvm::Triple::spir:
9823   case llvm::Triple::spir64:
9824     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9825   }
9826 }
9827 
9828 /// Create an OpenCL kernel for an enqueued block.
9829 ///
9830 /// The kernel has the same function type as the block invoke function. Its
9831 /// name is the name of the block invoke function postfixed with "_kernel".
9832 /// It simply calls the block invoke function then returns.
9833 llvm::Function *
9834 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9835                                              llvm::Function *Invoke,
9836                                              llvm::Value *BlockLiteral) const {
9837   auto *InvokeFT = Invoke->getFunctionType();
9838   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9839   for (auto &P : InvokeFT->params())
9840     ArgTys.push_back(P);
9841   auto &C = CGF.getLLVMContext();
9842   std::string Name = Invoke->getName().str() + "_kernel";
9843   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9844   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9845                                    &CGF.CGM.getModule());
9846   auto IP = CGF.Builder.saveIP();
9847   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9848   auto &Builder = CGF.Builder;
9849   Builder.SetInsertPoint(BB);
9850   llvm::SmallVector<llvm::Value *, 2> Args;
9851   for (auto &A : F->args())
9852     Args.push_back(&A);
9853   Builder.CreateCall(Invoke, Args);
9854   Builder.CreateRetVoid();
9855   Builder.restoreIP(IP);
9856   return F;
9857 }
9858 
9859 /// Create an OpenCL kernel for an enqueued block.
9860 ///
9861 /// The type of the first argument (the block literal) is the struct type
9862 /// of the block literal instead of a pointer type. The first argument
9863 /// (block literal) is passed directly by value to the kernel. The kernel
9864 /// allocates the same type of struct on stack and stores the block literal
9865 /// to it and passes its pointer to the block invoke function. The kernel
9866 /// has "enqueued-block" function attribute and kernel argument metadata.
9867 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9868     CodeGenFunction &CGF, llvm::Function *Invoke,
9869     llvm::Value *BlockLiteral) const {
9870   auto &Builder = CGF.Builder;
9871   auto &C = CGF.getLLVMContext();
9872 
9873   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9874   auto *InvokeFT = Invoke->getFunctionType();
9875   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9876   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9877   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9878   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9879   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9880   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9881   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9882 
9883   ArgTys.push_back(BlockTy);
9884   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9885   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9886   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9887   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9888   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9889   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9890   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9891     ArgTys.push_back(InvokeFT->getParamType(I));
9892     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9893     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9894     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9895     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9896     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9897     ArgNames.push_back(
9898         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9899   }
9900   std::string Name = Invoke->getName().str() + "_kernel";
9901   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9902   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9903                                    &CGF.CGM.getModule());
9904   F->addFnAttr("enqueued-block");
9905   auto IP = CGF.Builder.saveIP();
9906   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9907   Builder.SetInsertPoint(BB);
9908   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9909   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9910   BlockPtr->setAlignment(BlockAlign);
9911   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9912   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9913   llvm::SmallVector<llvm::Value *, 2> Args;
9914   Args.push_back(Cast);
9915   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9916     Args.push_back(I);
9917   Builder.CreateCall(Invoke, Args);
9918   Builder.CreateRetVoid();
9919   Builder.restoreIP(IP);
9920 
9921   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9922   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9923   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9924   F->setMetadata("kernel_arg_base_type",
9925                  llvm::MDNode::get(C, ArgBaseTypeNames));
9926   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9927   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9928     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9929 
9930   return F;
9931 }
9932