1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
84                                             bool Realign,
85                                             llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
87                                  Realign, Padding);
88 }
89 
90 ABIArgInfo
91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByVal*/ false, Realign);
94 }
95 
96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case IndirectAliased:
261     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
262        << " AadrSpace=" << getIndirectAddrSpace()
263        << " Realign=" << getIndirectRealign();
264     break;
265   case Expand:
266     OS << "Expand";
267     break;
268   case CoerceAndExpand:
269     OS << "CoerceAndExpand Type=";
270     getCoerceAndExpandType()->print(OS);
271     break;
272   }
273   OS << ")\n";
274 }
275 
276 // Dynamically round a pointer up to a multiple of the given alignment.
277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
278                                                   llvm::Value *Ptr,
279                                                   CharUnits Align) {
280   llvm::Value *PtrAsInt = Ptr;
281   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
282   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
283   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
284         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
285   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
286            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
287   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
288                                         Ptr->getType(),
289                                         Ptr->getName() + ".aligned");
290   return PtrAsInt;
291 }
292 
293 /// Emit va_arg for a platform using the common void* representation,
294 /// where arguments are simply emitted in an array of slots on the stack.
295 ///
296 /// This version implements the core direct-value passing rules.
297 ///
298 /// \param SlotSize - The size and alignment of a stack slot.
299 ///   Each argument will be allocated to a multiple of this number of
300 ///   slots, and all the slots will be aligned to this value.
301 /// \param AllowHigherAlign - The slot alignment is not a cap;
302 ///   an argument type with an alignment greater than the slot size
303 ///   will be emitted on a higher-alignment address, potentially
304 ///   leaving one or more empty slots behind as padding.  If this
305 ///   is false, the returned address might be less-aligned than
306 ///   DirectAlign.
307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
308                                       Address VAListAddr,
309                                       llvm::Type *DirectTy,
310                                       CharUnits DirectSize,
311                                       CharUnits DirectAlign,
312                                       CharUnits SlotSize,
313                                       bool AllowHigherAlign) {
314   // Cast the element type to i8* if necessary.  Some platforms define
315   // va_list as a struct containing an i8* instead of just an i8*.
316   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
317     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
318 
319   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
320 
321   // If the CC aligns values higher than the slot size, do so if needed.
322   Address Addr = Address::invalid();
323   if (AllowHigherAlign && DirectAlign > SlotSize) {
324     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
325                                                  DirectAlign);
326   } else {
327     Addr = Address(Ptr, SlotSize);
328   }
329 
330   // Advance the pointer past the argument, then store that back.
331   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
332   Address NextPtr =
333       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
334   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
335 
336   // If the argument is smaller than a slot, and this is a big-endian
337   // target, the argument will be right-adjusted in its slot.
338   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
339       !DirectTy->isStructTy()) {
340     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
341   }
342 
343   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
344   return Addr;
345 }
346 
347 /// Emit va_arg for a platform using the common void* representation,
348 /// where arguments are simply emitted in an array of slots on the stack.
349 ///
350 /// \param IsIndirect - Values of this type are passed indirectly.
351 /// \param ValueInfo - The size and alignment of this type, generally
352 ///   computed with getContext().getTypeInfoInChars(ValueTy).
353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
354 ///   Each argument will be allocated to a multiple of this number of
355 ///   slots, and all the slots will be aligned to this value.
356 /// \param AllowHigherAlign - The slot alignment is not a cap;
357 ///   an argument type with an alignment greater than the slot size
358 ///   will be emitted on a higher-alignment address, potentially
359 ///   leaving one or more empty slots behind as padding.
360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
361                                 QualType ValueTy, bool IsIndirect,
362                                 std::pair<CharUnits, CharUnits> ValueInfo,
363                                 CharUnits SlotSizeAndAlign,
364                                 bool AllowHigherAlign) {
365   // The size and alignment of the value that was passed directly.
366   CharUnits DirectSize, DirectAlign;
367   if (IsIndirect) {
368     DirectSize = CGF.getPointerSize();
369     DirectAlign = CGF.getPointerAlign();
370   } else {
371     DirectSize = ValueInfo.first;
372     DirectAlign = ValueInfo.second;
373   }
374 
375   // Cast the address we've calculated to the right type.
376   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
377   if (IsIndirect)
378     DirectTy = DirectTy->getPointerTo(0);
379 
380   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
381                                         DirectSize, DirectAlign,
382                                         SlotSizeAndAlign,
383                                         AllowHigherAlign);
384 
385   if (IsIndirect) {
386     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
387   }
388 
389   return Addr;
390 
391 }
392 
393 static Address emitMergePHI(CodeGenFunction &CGF,
394                             Address Addr1, llvm::BasicBlock *Block1,
395                             Address Addr2, llvm::BasicBlock *Block2,
396                             const llvm::Twine &Name = "") {
397   assert(Addr1.getType() == Addr2.getType());
398   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
399   PHI->addIncoming(Addr1.getPointer(), Block1);
400   PHI->addIncoming(Addr2.getPointer(), Block2);
401   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
402   return Address(PHI, Align);
403 }
404 
405 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
406 
407 // If someone can figure out a general rule for this, that would be great.
408 // It's probably just doomed to be platform-dependent, though.
409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
410   // Verified for:
411   //   x86-64     FreeBSD, Linux, Darwin
412   //   x86-32     FreeBSD, Linux, Darwin
413   //   PowerPC    Linux, Darwin
414   //   ARM        Darwin (*not* EABI)
415   //   AArch64    Linux
416   return 32;
417 }
418 
419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
420                                      const FunctionNoProtoType *fnType) const {
421   // The following conventions are known to require this to be false:
422   //   x86_stdcall
423   //   MIPS
424   // For everything else, we just prefer false unless we opt out.
425   return false;
426 }
427 
428 void
429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
430                                              llvm::SmallString<24> &Opt) const {
431   // This assumes the user is passing a library name like "rt" instead of a
432   // filename like "librt.a/so", and that they don't care whether it's static or
433   // dynamic.
434   Opt = "-l";
435   Opt += Lib;
436 }
437 
438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
439   // OpenCL kernels are called via an explicit runtime API with arguments
440   // set with clSetKernelArg(), not as normal sub-functions.
441   // Return SPIR_KERNEL by default as the kernel calling convention to
442   // ensure the fingerprint is fixed such way that each OpenCL argument
443   // gets one matching argument in the produced kernel function argument
444   // list to enable feasible implementation of clSetKernelArg() with
445   // aggregates etc. In case we would use the default C calling conv here,
446   // clSetKernelArg() might break depending on the target-specific
447   // conventions; different targets might split structs passed as values
448   // to multiple function arguments etc.
449   return llvm::CallingConv::SPIR_KERNEL;
450 }
451 
452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
453     llvm::PointerType *T, QualType QT) const {
454   return llvm::ConstantPointerNull::get(T);
455 }
456 
457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
458                                                    const VarDecl *D) const {
459   assert(!CGM.getLangOpts().OpenCL &&
460          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
461          "Address space agnostic languages only");
462   return D ? D->getType().getAddressSpace() : LangAS::Default;
463 }
464 
465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
466     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
467     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
468   // Since target may map different address spaces in AST to the same address
469   // space, an address space conversion may end up as a bitcast.
470   if (auto *C = dyn_cast<llvm::Constant>(Src))
471     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
472   // Try to preserve the source's name to make IR more readable.
473   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
474       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
475 }
476 
477 llvm::Constant *
478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
479                                         LangAS SrcAddr, LangAS DestAddr,
480                                         llvm::Type *DestTy) const {
481   // Since target may map different address spaces in AST to the same address
482   // space, an address space conversion may end up as a bitcast.
483   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
484 }
485 
486 llvm::SyncScope::ID
487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
488                                       SyncScope Scope,
489                                       llvm::AtomicOrdering Ordering,
490                                       llvm::LLVMContext &Ctx) const {
491   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
492 }
493 
494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
495 
496 /// isEmptyField - Return true iff a the field is "empty", that is it
497 /// is an unnamed bit-field or an (array of) empty record(s).
498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
499                          bool AllowArrays) {
500   if (FD->isUnnamedBitfield())
501     return true;
502 
503   QualType FT = FD->getType();
504 
505   // Constant arrays of empty records count as empty, strip them off.
506   // Constant arrays of zero length always count as empty.
507   bool WasArray = false;
508   if (AllowArrays)
509     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
510       if (AT->getSize() == 0)
511         return true;
512       FT = AT->getElementType();
513       // The [[no_unique_address]] special case below does not apply to
514       // arrays of C++ empty records, so we need to remember this fact.
515       WasArray = true;
516     }
517 
518   const RecordType *RT = FT->getAs<RecordType>();
519   if (!RT)
520     return false;
521 
522   // C++ record fields are never empty, at least in the Itanium ABI.
523   //
524   // FIXME: We should use a predicate for whether this behavior is true in the
525   // current ABI.
526   //
527   // The exception to the above rule are fields marked with the
528   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
529   // according to the Itanium ABI.  The exception applies only to records,
530   // not arrays of records, so we must also check whether we stripped off an
531   // array type above.
532   if (isa<CXXRecordDecl>(RT->getDecl()) &&
533       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
534     return false;
535 
536   return isEmptyRecord(Context, FT, AllowArrays);
537 }
538 
539 /// isEmptyRecord - Return true iff a structure contains only empty
540 /// fields. Note that a structure with a flexible array member is not
541 /// considered empty.
542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return false;
546   const RecordDecl *RD = RT->getDecl();
547   if (RD->hasFlexibleArrayMember())
548     return false;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
552     for (const auto &I : CXXRD->bases())
553       if (!isEmptyRecord(Context, I.getType(), true))
554         return false;
555 
556   for (const auto *I : RD->fields())
557     if (!isEmptyField(Context, I, AllowArrays))
558       return false;
559   return true;
560 }
561 
562 /// isSingleElementStruct - Determine if a structure is a "single
563 /// element struct", i.e. it has exactly one non-empty field or
564 /// exactly one field which is itself a single element
565 /// struct. Structures with flexible array members are never
566 /// considered single element structs.
567 ///
568 /// \return The field declaration for the single non-empty field, if
569 /// it exists.
570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
571   const RecordType *RT = T->getAs<RecordType>();
572   if (!RT)
573     return nullptr;
574 
575   const RecordDecl *RD = RT->getDecl();
576   if (RD->hasFlexibleArrayMember())
577     return nullptr;
578 
579   const Type *Found = nullptr;
580 
581   // If this is a C++ record, check the bases first.
582   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
583     for (const auto &I : CXXRD->bases()) {
584       // Ignore empty records.
585       if (isEmptyRecord(Context, I.getType(), true))
586         continue;
587 
588       // If we already found an element then this isn't a single-element struct.
589       if (Found)
590         return nullptr;
591 
592       // If this is non-empty and not a single element struct, the composite
593       // cannot be a single element struct.
594       Found = isSingleElementStruct(I.getType(), Context);
595       if (!Found)
596         return nullptr;
597     }
598   }
599 
600   // Check for single element.
601   for (const auto *FD : RD->fields()) {
602     QualType FT = FD->getType();
603 
604     // Ignore empty fields.
605     if (isEmptyField(Context, FD, true))
606       continue;
607 
608     // If we already found an element then this isn't a single-element
609     // struct.
610     if (Found)
611       return nullptr;
612 
613     // Treat single element arrays as the element.
614     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
615       if (AT->getSize().getZExtValue() != 1)
616         break;
617       FT = AT->getElementType();
618     }
619 
620     if (!isAggregateTypeForABI(FT)) {
621       Found = FT.getTypePtr();
622     } else {
623       Found = isSingleElementStruct(FT, Context);
624       if (!Found)
625         return nullptr;
626     }
627   }
628 
629   // We don't consider a struct a single-element struct if it has
630   // padding beyond the element type.
631   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
632     return nullptr;
633 
634   return Found;
635 }
636 
637 namespace {
638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
639                        const ABIArgInfo &AI) {
640   // This default implementation defers to the llvm backend's va_arg
641   // instruction. It can handle only passing arguments directly
642   // (typically only handled in the backend for primitive types), or
643   // aggregates passed indirectly by pointer (NOTE: if the "byval"
644   // flag has ABI impact in the callee, this implementation cannot
645   // work.)
646 
647   // Only a few cases are covered here at the moment -- those needed
648   // by the default abi.
649   llvm::Value *Val;
650 
651   if (AI.isIndirect()) {
652     assert(!AI.getPaddingType() &&
653            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
654     assert(
655         !AI.getIndirectRealign() &&
656         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
657 
658     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
659     CharUnits TyAlignForABI = TyInfo.second;
660 
661     llvm::Type *BaseTy =
662         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
663     llvm::Value *Addr =
664         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
665     return Address(Addr, TyAlignForABI);
666   } else {
667     assert((AI.isDirect() || AI.isExtend()) &&
668            "Unexpected ArgInfo Kind in generic VAArg emitter!");
669 
670     assert(!AI.getInReg() &&
671            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
672     assert(!AI.getPaddingType() &&
673            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getDirectOffset() &&
675            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getCoerceToType() &&
677            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
678 
679     Address Temp = CGF.CreateMemTemp(Ty, "varet");
680     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
681     CGF.Builder.CreateStore(Val, Temp);
682     return Temp;
683   }
684 }
685 
686 /// DefaultABIInfo - The default implementation for ABI specific
687 /// details. This implementation provides information which results in
688 /// self-consistent and sensible LLVM IR generation, but does not
689 /// conform to any particular ABI.
690 class DefaultABIInfo : public ABIInfo {
691 public:
692   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
693 
694   ABIArgInfo classifyReturnType(QualType RetTy) const;
695   ABIArgInfo classifyArgumentType(QualType RetTy) const;
696 
697   void computeInfo(CGFunctionInfo &FI) const override {
698     if (!getCXXABI().classifyReturnType(FI))
699       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
700     for (auto &I : FI.arguments())
701       I.info = classifyArgumentType(I.type);
702   }
703 
704   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
705                     QualType Ty) const override {
706     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
707   }
708 };
709 
710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
711 public:
712   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
713       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
714 };
715 
716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
717   Ty = useFirstFieldIfTransparentUnion(Ty);
718 
719   if (isAggregateTypeForABI(Ty)) {
720     // Records with non-trivial destructors/copy-constructors should not be
721     // passed by value.
722     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
723       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
724 
725     return getNaturalAlignIndirect(Ty);
726   }
727 
728   // Treat an enum type as its underlying type.
729   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730     Ty = EnumTy->getDecl()->getIntegerType();
731 
732   ASTContext &Context = getContext();
733   if (const auto *EIT = Ty->getAs<ExtIntType>())
734     if (EIT->getNumBits() >
735         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
736                                 ? Context.Int128Ty
737                                 : Context.LongLongTy))
738       return getNaturalAlignIndirect(Ty);
739 
740   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
741                                             : ABIArgInfo::getDirect());
742 }
743 
744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
745   if (RetTy->isVoidType())
746     return ABIArgInfo::getIgnore();
747 
748   if (isAggregateTypeForABI(RetTy))
749     return getNaturalAlignIndirect(RetTy);
750 
751   // Treat an enum type as its underlying type.
752   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
753     RetTy = EnumTy->getDecl()->getIntegerType();
754 
755   if (const auto *EIT = RetTy->getAs<ExtIntType>())
756     if (EIT->getNumBits() >
757         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
758                                      ? getContext().Int128Ty
759                                      : getContext().LongLongTy))
760       return getNaturalAlignIndirect(RetTy);
761 
762   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
763                                                : ABIArgInfo::getDirect());
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // WebAssembly ABI Implementation
768 //
769 // This is a very simple ABI that relies a lot on DefaultABIInfo.
770 //===----------------------------------------------------------------------===//
771 
772 class WebAssemblyABIInfo final : public SwiftABIInfo {
773 public:
774   enum ABIKind {
775     MVP = 0,
776     ExperimentalMV = 1,
777   };
778 
779 private:
780   DefaultABIInfo defaultInfo;
781   ABIKind Kind;
782 
783 public:
784   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
785       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
786 
787 private:
788   ABIArgInfo classifyReturnType(QualType RetTy) const;
789   ABIArgInfo classifyArgumentType(QualType Ty) const;
790 
791   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
792   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
793   // overload them.
794   void computeInfo(CGFunctionInfo &FI) const override {
795     if (!getCXXABI().classifyReturnType(FI))
796       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
797     for (auto &Arg : FI.arguments())
798       Arg.info = classifyArgumentType(Arg.type);
799   }
800 
801   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
802                     QualType Ty) const override;
803 
804   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
805                                     bool asReturnValue) const override {
806     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
807   }
808 
809   bool isSwiftErrorInRegister() const override {
810     return false;
811   }
812 };
813 
814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
815 public:
816   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
817                                         WebAssemblyABIInfo::ABIKind K)
818       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
819 
820   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
821                            CodeGen::CodeGenModule &CGM) const override {
822     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
823     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
824       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
825         llvm::Function *Fn = cast<llvm::Function>(GV);
826         llvm::AttrBuilder B;
827         B.addAttribute("wasm-import-module", Attr->getImportModule());
828         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
829       }
830       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
831         llvm::Function *Fn = cast<llvm::Function>(GV);
832         llvm::AttrBuilder B;
833         B.addAttribute("wasm-import-name", Attr->getImportName());
834         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
835       }
836       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
837         llvm::Function *Fn = cast<llvm::Function>(GV);
838         llvm::AttrBuilder B;
839         B.addAttribute("wasm-export-name", Attr->getExportName());
840         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
841       }
842     }
843 
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
845       llvm::Function *Fn = cast<llvm::Function>(GV);
846       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
847         Fn->addFnAttr("no-prototype");
848     }
849   }
850 };
851 
852 /// Classify argument of given type \p Ty.
853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
854   Ty = useFirstFieldIfTransparentUnion(Ty);
855 
856   if (isAggregateTypeForABI(Ty)) {
857     // Records with non-trivial destructors/copy-constructors should not be
858     // passed by value.
859     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     // Ignore empty structs/unions.
862     if (isEmptyRecord(getContext(), Ty, true))
863       return ABIArgInfo::getIgnore();
864     // Lower single-element structs to just pass a regular value. TODO: We
865     // could do reasonable-size multiple-element structs too, using getExpand(),
866     // though watch out for things like bitfields.
867     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
868       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
869     // For the experimental multivalue ABI, fully expand all other aggregates
870     if (Kind == ABIKind::ExperimentalMV) {
871       const RecordType *RT = Ty->getAs<RecordType>();
872       assert(RT);
873       bool HasBitField = false;
874       for (auto *Field : RT->getDecl()->fields()) {
875         if (Field->isBitField()) {
876           HasBitField = true;
877           break;
878         }
879       }
880       if (!HasBitField)
881         return ABIArgInfo::getExpand();
882     }
883   }
884 
885   // Otherwise just do the default thing.
886   return defaultInfo.classifyArgumentType(Ty);
887 }
888 
889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
890   if (isAggregateTypeForABI(RetTy)) {
891     // Records with non-trivial destructors/copy-constructors should not be
892     // returned by value.
893     if (!getRecordArgABI(RetTy, getCXXABI())) {
894       // Ignore empty structs/unions.
895       if (isEmptyRecord(getContext(), RetTy, true))
896         return ABIArgInfo::getIgnore();
897       // Lower single-element structs to just return a regular value. TODO: We
898       // could do reasonable-size multiple-element structs too, using
899       // ABIArgInfo::getDirect().
900       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
901         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
902       // For the experimental multivalue ABI, return all other aggregates
903       if (Kind == ABIKind::ExperimentalMV)
904         return ABIArgInfo::getDirect();
905     }
906   }
907 
908   // Otherwise just do the default thing.
909   return defaultInfo.classifyReturnType(RetTy);
910 }
911 
912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
913                                       QualType Ty) const {
914   bool IsIndirect = isAggregateTypeForABI(Ty) &&
915                     !isEmptyRecord(getContext(), Ty, true) &&
916                     !isSingleElementStruct(Ty, getContext());
917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
918                           getContext().getTypeInfoInChars(Ty),
919                           CharUnits::fromQuantity(4),
920                           /*AllowHigherAlign=*/true);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 // le32/PNaCl bitcode ABI Implementation
925 //
926 // This is a simplified version of the x86_32 ABI.  Arguments and return values
927 // are always passed on the stack.
928 //===----------------------------------------------------------------------===//
929 
930 class PNaClABIInfo : public ABIInfo {
931  public:
932   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
933 
934   ABIArgInfo classifyReturnType(QualType RetTy) const;
935   ABIArgInfo classifyArgumentType(QualType RetTy) const;
936 
937   void computeInfo(CGFunctionInfo &FI) const override;
938   Address EmitVAArg(CodeGenFunction &CGF,
939                     Address VAListAddr, QualType Ty) const override;
940 };
941 
942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
943  public:
944    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
945        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
946 };
947 
948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
949   if (!getCXXABI().classifyReturnType(FI))
950     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
951 
952   for (auto &I : FI.arguments())
953     I.info = classifyArgumentType(I.type);
954 }
955 
956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
957                                 QualType Ty) const {
958   // The PNaCL ABI is a bit odd, in that varargs don't use normal
959   // function classification. Structs get passed directly for varargs
960   // functions, through a rewriting transform in
961   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
962   // this target to actually support a va_arg instructions with an
963   // aggregate type, unlike other targets.
964   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
965 }
966 
967 /// Classify argument of given type \p Ty.
968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
969   if (isAggregateTypeForABI(Ty)) {
970     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
971       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
972     return getNaturalAlignIndirect(Ty);
973   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
974     // Treat an enum type as its underlying type.
975     Ty = EnumTy->getDecl()->getIntegerType();
976   } else if (Ty->isFloatingType()) {
977     // Floating-point types don't go inreg.
978     return ABIArgInfo::getDirect();
979   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
980     // Treat extended integers as integers if <=64, otherwise pass indirectly.
981     if (EIT->getNumBits() > 64)
982       return getNaturalAlignIndirect(Ty);
983     return ABIArgInfo::getDirect();
984   }
985 
986   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
987                                             : ABIArgInfo::getDirect());
988 }
989 
990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
991   if (RetTy->isVoidType())
992     return ABIArgInfo::getIgnore();
993 
994   // In the PNaCl ABI we always return records/structures on the stack.
995   if (isAggregateTypeForABI(RetTy))
996     return getNaturalAlignIndirect(RetTy);
997 
998   // Treat extended integers as integers if <=64, otherwise pass indirectly.
999   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1000     if (EIT->getNumBits() > 64)
1001       return getNaturalAlignIndirect(RetTy);
1002     return ABIArgInfo::getDirect();
1003   }
1004 
1005   // Treat an enum type as its underlying type.
1006   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1007     RetTy = EnumTy->getDecl()->getIntegerType();
1008 
1009   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1010                                                : ABIArgInfo::getDirect());
1011 }
1012 
1013 /// IsX86_MMXType - Return true if this is an MMX type.
1014 bool IsX86_MMXType(llvm::Type *IRType) {
1015   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1016   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1017     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1018     IRType->getScalarSizeInBits() != 64;
1019 }
1020 
1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1022                                           StringRef Constraint,
1023                                           llvm::Type* Ty) {
1024   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1025                      .Cases("y", "&y", "^Ym", true)
1026                      .Default(false);
1027   if (IsMMXCons && Ty->isVectorTy()) {
1028     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1029         64) {
1030       // Invalid MMX constraint
1031       return nullptr;
1032     }
1033 
1034     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1035   }
1036 
1037   // No operation needed
1038   return Ty;
1039 }
1040 
1041 /// Returns true if this type can be passed in SSE registers with the
1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1044   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1045     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1046       if (BT->getKind() == BuiltinType::LongDouble) {
1047         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1048             &llvm::APFloat::x87DoubleExtended())
1049           return false;
1050       }
1051       return true;
1052     }
1053   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1054     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1055     // registers specially.
1056     unsigned VecSize = Context.getTypeSize(VT);
1057     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1058       return true;
1059   }
1060   return false;
1061 }
1062 
1063 /// Returns true if this aggregate is small enough to be passed in SSE registers
1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1066   return NumMembers <= 4;
1067 }
1068 
1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1071   auto AI = ABIArgInfo::getDirect(T);
1072   AI.setInReg(true);
1073   AI.setCanBeFlattened(false);
1074   return AI;
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 // X86-32 ABI Implementation
1079 //===----------------------------------------------------------------------===//
1080 
1081 /// Similar to llvm::CCState, but for Clang.
1082 struct CCState {
1083   CCState(CGFunctionInfo &FI)
1084       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1085 
1086   llvm::SmallBitVector IsPreassigned;
1087   unsigned CC = CallingConv::CC_C;
1088   unsigned FreeRegs = 0;
1089   unsigned FreeSSERegs = 0;
1090 };
1091 
1092 enum {
1093   // Vectorcall only allows the first 6 parameters to be passed in registers.
1094   VectorcallMaxParamNumAsReg = 6
1095 };
1096 
1097 /// X86_32ABIInfo - The X86-32 ABI information.
1098 class X86_32ABIInfo : public SwiftABIInfo {
1099   enum Class {
1100     Integer,
1101     Float
1102   };
1103 
1104   static const unsigned MinABIStackAlignInBytes = 4;
1105 
1106   bool IsDarwinVectorABI;
1107   bool IsRetSmallStructInRegABI;
1108   bool IsWin32StructABI;
1109   bool IsSoftFloatABI;
1110   bool IsMCUABI;
1111   unsigned DefaultNumRegisterParameters;
1112 
1113   static bool isRegisterSize(unsigned Size) {
1114     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1115   }
1116 
1117   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1118     // FIXME: Assumes vectorcall is in use.
1119     return isX86VectorTypeForVectorCall(getContext(), Ty);
1120   }
1121 
1122   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1123                                          uint64_t NumMembers) const override {
1124     // FIXME: Assumes vectorcall is in use.
1125     return isX86VectorCallAggregateSmallEnough(NumMembers);
1126   }
1127 
1128   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1129 
1130   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1131   /// such that the argument will be passed in memory.
1132   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1133 
1134   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1135 
1136   /// Return the alignment to use for the given type on the stack.
1137   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1138 
1139   Class classify(QualType Ty) const;
1140   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1141   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1142 
1143   /// Updates the number of available free registers, returns
1144   /// true if any registers were allocated.
1145   bool updateFreeRegs(QualType Ty, CCState &State) const;
1146 
1147   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1148                                 bool &NeedsPadding) const;
1149   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1150 
1151   bool canExpandIndirectArgument(QualType Ty) const;
1152 
1153   /// Rewrite the function info so that all memory arguments use
1154   /// inalloca.
1155   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1156 
1157   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1158                            CharUnits &StackOffset, ABIArgInfo &Info,
1159                            QualType Type) const;
1160   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1161 
1162 public:
1163 
1164   void computeInfo(CGFunctionInfo &FI) const override;
1165   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1166                     QualType Ty) const override;
1167 
1168   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1169                 bool RetSmallStructInRegABI, bool Win32StructABI,
1170                 unsigned NumRegisterParameters, bool SoftFloatABI)
1171     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1172       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1173       IsWin32StructABI(Win32StructABI),
1174       IsSoftFloatABI(SoftFloatABI),
1175       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1176       DefaultNumRegisterParameters(NumRegisterParameters) {}
1177 
1178   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1179                                     bool asReturnValue) const override {
1180     // LLVM's x86-32 lowering currently only assigns up to three
1181     // integer registers and three fp registers.  Oddly, it'll use up to
1182     // four vector registers for vectors, but those can overlap with the
1183     // scalar registers.
1184     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1185   }
1186 
1187   bool isSwiftErrorInRegister() const override {
1188     // x86-32 lowering does not support passing swifterror in a register.
1189     return false;
1190   }
1191 };
1192 
1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1194 public:
1195   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1196                           bool RetSmallStructInRegABI, bool Win32StructABI,
1197                           unsigned NumRegisterParameters, bool SoftFloatABI)
1198       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1199             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1200             NumRegisterParameters, SoftFloatABI)) {}
1201 
1202   static bool isStructReturnInRegABI(
1203       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1204 
1205   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1206                            CodeGen::CodeGenModule &CGM) const override;
1207 
1208   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1209     // Darwin uses different dwarf register numbers for EH.
1210     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1211     return 4;
1212   }
1213 
1214   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1215                                llvm::Value *Address) const override;
1216 
1217   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1218                                   StringRef Constraint,
1219                                   llvm::Type* Ty) const override {
1220     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1221   }
1222 
1223   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1224                                 std::string &Constraints,
1225                                 std::vector<llvm::Type *> &ResultRegTypes,
1226                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1227                                 std::vector<LValue> &ResultRegDests,
1228                                 std::string &AsmString,
1229                                 unsigned NumOutputs) const override;
1230 
1231   llvm::Constant *
1232   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1233     unsigned Sig = (0xeb << 0) |  // jmp rel8
1234                    (0x06 << 8) |  //           .+0x08
1235                    ('v' << 16) |
1236                    ('2' << 24);
1237     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1238   }
1239 
1240   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1241     return "movl\t%ebp, %ebp"
1242            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1243   }
1244 };
1245 
1246 }
1247 
1248 /// Rewrite input constraint references after adding some output constraints.
1249 /// In the case where there is one output and one input and we add one output,
1250 /// we need to replace all operand references greater than or equal to 1:
1251 ///     mov $0, $1
1252 ///     mov eax, $1
1253 /// The result will be:
1254 ///     mov $0, $2
1255 ///     mov eax, $2
1256 static void rewriteInputConstraintReferences(unsigned FirstIn,
1257                                              unsigned NumNewOuts,
1258                                              std::string &AsmString) {
1259   std::string Buf;
1260   llvm::raw_string_ostream OS(Buf);
1261   size_t Pos = 0;
1262   while (Pos < AsmString.size()) {
1263     size_t DollarStart = AsmString.find('$', Pos);
1264     if (DollarStart == std::string::npos)
1265       DollarStart = AsmString.size();
1266     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1267     if (DollarEnd == std::string::npos)
1268       DollarEnd = AsmString.size();
1269     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1270     Pos = DollarEnd;
1271     size_t NumDollars = DollarEnd - DollarStart;
1272     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1273       // We have an operand reference.
1274       size_t DigitStart = Pos;
1275       if (AsmString[DigitStart] == '{') {
1276         OS << '{';
1277         ++DigitStart;
1278       }
1279       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1280       if (DigitEnd == std::string::npos)
1281         DigitEnd = AsmString.size();
1282       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1283       unsigned OperandIndex;
1284       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1285         if (OperandIndex >= FirstIn)
1286           OperandIndex += NumNewOuts;
1287         OS << OperandIndex;
1288       } else {
1289         OS << OperandStr;
1290       }
1291       Pos = DigitEnd;
1292     }
1293   }
1294   AsmString = std::move(OS.str());
1295 }
1296 
1297 /// Add output constraints for EAX:EDX because they are return registers.
1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1299     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1300     std::vector<llvm::Type *> &ResultRegTypes,
1301     std::vector<llvm::Type *> &ResultTruncRegTypes,
1302     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1303     unsigned NumOutputs) const {
1304   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1305 
1306   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1307   // larger.
1308   if (!Constraints.empty())
1309     Constraints += ',';
1310   if (RetWidth <= 32) {
1311     Constraints += "={eax}";
1312     ResultRegTypes.push_back(CGF.Int32Ty);
1313   } else {
1314     // Use the 'A' constraint for EAX:EDX.
1315     Constraints += "=A";
1316     ResultRegTypes.push_back(CGF.Int64Ty);
1317   }
1318 
1319   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1320   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1321   ResultTruncRegTypes.push_back(CoerceTy);
1322 
1323   // Coerce the integer by bitcasting the return slot pointer.
1324   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1325                                                   CoerceTy->getPointerTo()));
1326   ResultRegDests.push_back(ReturnSlot);
1327 
1328   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1329 }
1330 
1331 /// shouldReturnTypeInRegister - Determine if the given type should be
1332 /// returned in a register (for the Darwin and MCU ABI).
1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1334                                                ASTContext &Context) const {
1335   uint64_t Size = Context.getTypeSize(Ty);
1336 
1337   // For i386, type must be register sized.
1338   // For the MCU ABI, it only needs to be <= 8-byte
1339   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1340    return false;
1341 
1342   if (Ty->isVectorType()) {
1343     // 64- and 128- bit vectors inside structures are not returned in
1344     // registers.
1345     if (Size == 64 || Size == 128)
1346       return false;
1347 
1348     return true;
1349   }
1350 
1351   // If this is a builtin, pointer, enum, complex type, member pointer, or
1352   // member function pointer it is ok.
1353   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1354       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1355       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1356     return true;
1357 
1358   // Arrays are treated like records.
1359   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1360     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1361 
1362   // Otherwise, it must be a record type.
1363   const RecordType *RT = Ty->getAs<RecordType>();
1364   if (!RT) return false;
1365 
1366   // FIXME: Traverse bases here too.
1367 
1368   // Structure types are passed in register if all fields would be
1369   // passed in a register.
1370   for (const auto *FD : RT->getDecl()->fields()) {
1371     // Empty fields are ignored.
1372     if (isEmptyField(Context, FD, true))
1373       continue;
1374 
1375     // Check fields recursively.
1376     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1377       return false;
1378   }
1379   return true;
1380 }
1381 
1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1383   // Treat complex types as the element type.
1384   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1385     Ty = CTy->getElementType();
1386 
1387   // Check for a type which we know has a simple scalar argument-passing
1388   // convention without any padding.  (We're specifically looking for 32
1389   // and 64-bit integer and integer-equivalents, float, and double.)
1390   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1391       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1392     return false;
1393 
1394   uint64_t Size = Context.getTypeSize(Ty);
1395   return Size == 32 || Size == 64;
1396 }
1397 
1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1399                           uint64_t &Size) {
1400   for (const auto *FD : RD->fields()) {
1401     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1402     // argument is smaller than 32-bits, expanding the struct will create
1403     // alignment padding.
1404     if (!is32Or64BitBasicType(FD->getType(), Context))
1405       return false;
1406 
1407     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1408     // how to expand them yet, and the predicate for telling if a bitfield still
1409     // counts as "basic" is more complicated than what we were doing previously.
1410     if (FD->isBitField())
1411       return false;
1412 
1413     Size += Context.getTypeSize(FD->getType());
1414   }
1415   return true;
1416 }
1417 
1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1419                                  uint64_t &Size) {
1420   // Don't do this if there are any non-empty bases.
1421   for (const CXXBaseSpecifier &Base : RD->bases()) {
1422     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1423                               Size))
1424       return false;
1425   }
1426   if (!addFieldSizes(Context, RD, Size))
1427     return false;
1428   return true;
1429 }
1430 
1431 /// Test whether an argument type which is to be passed indirectly (on the
1432 /// stack) would have the equivalent layout if it was expanded into separate
1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1434 /// optimizations.
1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1436   // We can only expand structure types.
1437   const RecordType *RT = Ty->getAs<RecordType>();
1438   if (!RT)
1439     return false;
1440   const RecordDecl *RD = RT->getDecl();
1441   uint64_t Size = 0;
1442   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1443     if (!IsWin32StructABI) {
1444       // On non-Windows, we have to conservatively match our old bitcode
1445       // prototypes in order to be ABI-compatible at the bitcode level.
1446       if (!CXXRD->isCLike())
1447         return false;
1448     } else {
1449       // Don't do this for dynamic classes.
1450       if (CXXRD->isDynamicClass())
1451         return false;
1452     }
1453     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1454       return false;
1455   } else {
1456     if (!addFieldSizes(getContext(), RD, Size))
1457       return false;
1458   }
1459 
1460   // We can do this if there was no alignment padding.
1461   return Size == getContext().getTypeSize(Ty);
1462 }
1463 
1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1465   // If the return value is indirect, then the hidden argument is consuming one
1466   // integer register.
1467   if (State.FreeRegs) {
1468     --State.FreeRegs;
1469     if (!IsMCUABI)
1470       return getNaturalAlignIndirectInReg(RetTy);
1471   }
1472   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1473 }
1474 
1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1476                                              CCState &State) const {
1477   if (RetTy->isVoidType())
1478     return ABIArgInfo::getIgnore();
1479 
1480   const Type *Base = nullptr;
1481   uint64_t NumElts = 0;
1482   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1483        State.CC == llvm::CallingConv::X86_RegCall) &&
1484       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1485     // The LLVM struct type for such an aggregate should lower properly.
1486     return ABIArgInfo::getDirect();
1487   }
1488 
1489   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1490     // On Darwin, some vectors are returned in registers.
1491     if (IsDarwinVectorABI) {
1492       uint64_t Size = getContext().getTypeSize(RetTy);
1493 
1494       // 128-bit vectors are a special case; they are returned in
1495       // registers and we need to make sure to pick a type the LLVM
1496       // backend will like.
1497       if (Size == 128)
1498         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1499             llvm::Type::getInt64Ty(getVMContext()), 2));
1500 
1501       // Always return in register if it fits in a general purpose
1502       // register, or if it is 64 bits and has a single element.
1503       if ((Size == 8 || Size == 16 || Size == 32) ||
1504           (Size == 64 && VT->getNumElements() == 1))
1505         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1506                                                             Size));
1507 
1508       return getIndirectReturnResult(RetTy, State);
1509     }
1510 
1511     return ABIArgInfo::getDirect();
1512   }
1513 
1514   if (isAggregateTypeForABI(RetTy)) {
1515     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1516       // Structures with flexible arrays are always indirect.
1517       if (RT->getDecl()->hasFlexibleArrayMember())
1518         return getIndirectReturnResult(RetTy, State);
1519     }
1520 
1521     // If specified, structs and unions are always indirect.
1522     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1523       return getIndirectReturnResult(RetTy, State);
1524 
1525     // Ignore empty structs/unions.
1526     if (isEmptyRecord(getContext(), RetTy, true))
1527       return ABIArgInfo::getIgnore();
1528 
1529     // Small structures which are register sized are generally returned
1530     // in a register.
1531     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1532       uint64_t Size = getContext().getTypeSize(RetTy);
1533 
1534       // As a special-case, if the struct is a "single-element" struct, and
1535       // the field is of type "float" or "double", return it in a
1536       // floating-point register. (MSVC does not apply this special case.)
1537       // We apply a similar transformation for pointer types to improve the
1538       // quality of the generated IR.
1539       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1540         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1541             || SeltTy->hasPointerRepresentation())
1542           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1543 
1544       // FIXME: We should be able to narrow this integer in cases with dead
1545       // padding.
1546       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1547     }
1548 
1549     return getIndirectReturnResult(RetTy, State);
1550   }
1551 
1552   // Treat an enum type as its underlying type.
1553   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1554     RetTy = EnumTy->getDecl()->getIntegerType();
1555 
1556   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1557     if (EIT->getNumBits() > 64)
1558       return getIndirectReturnResult(RetTy, State);
1559 
1560   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1561                                                : ABIArgInfo::getDirect());
1562 }
1563 
1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1565   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1566 }
1567 
1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1569   const RecordType *RT = Ty->getAs<RecordType>();
1570   if (!RT)
1571     return 0;
1572   const RecordDecl *RD = RT->getDecl();
1573 
1574   // If this is a C++ record, check the bases first.
1575   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1576     for (const auto &I : CXXRD->bases())
1577       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1578         return false;
1579 
1580   for (const auto *i : RD->fields()) {
1581     QualType FT = i->getType();
1582 
1583     if (isSIMDVectorType(Context, FT))
1584       return true;
1585 
1586     if (isRecordWithSIMDVectorType(Context, FT))
1587       return true;
1588   }
1589 
1590   return false;
1591 }
1592 
1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1594                                                  unsigned Align) const {
1595   // Otherwise, if the alignment is less than or equal to the minimum ABI
1596   // alignment, just use the default; the backend will handle this.
1597   if (Align <= MinABIStackAlignInBytes)
1598     return 0; // Use default alignment.
1599 
1600   // On non-Darwin, the stack type alignment is always 4.
1601   if (!IsDarwinVectorABI) {
1602     // Set explicit alignment, since we may need to realign the top.
1603     return MinABIStackAlignInBytes;
1604   }
1605 
1606   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1607   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1608                       isRecordWithSIMDVectorType(getContext(), Ty)))
1609     return 16;
1610 
1611   return MinABIStackAlignInBytes;
1612 }
1613 
1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1615                                             CCState &State) const {
1616   if (!ByVal) {
1617     if (State.FreeRegs) {
1618       --State.FreeRegs; // Non-byval indirects just use one pointer.
1619       if (!IsMCUABI)
1620         return getNaturalAlignIndirectInReg(Ty);
1621     }
1622     return getNaturalAlignIndirect(Ty, false);
1623   }
1624 
1625   // Compute the byval alignment.
1626   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1627   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1628   if (StackAlign == 0)
1629     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1630 
1631   // If the stack alignment is less than the type alignment, realign the
1632   // argument.
1633   bool Realign = TypeAlign > StackAlign;
1634   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1635                                  /*ByVal=*/true, Realign);
1636 }
1637 
1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1639   const Type *T = isSingleElementStruct(Ty, getContext());
1640   if (!T)
1641     T = Ty.getTypePtr();
1642 
1643   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1644     BuiltinType::Kind K = BT->getKind();
1645     if (K == BuiltinType::Float || K == BuiltinType::Double)
1646       return Float;
1647   }
1648   return Integer;
1649 }
1650 
1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1652   if (!IsSoftFloatABI) {
1653     Class C = classify(Ty);
1654     if (C == Float)
1655       return false;
1656   }
1657 
1658   unsigned Size = getContext().getTypeSize(Ty);
1659   unsigned SizeInRegs = (Size + 31) / 32;
1660 
1661   if (SizeInRegs == 0)
1662     return false;
1663 
1664   if (!IsMCUABI) {
1665     if (SizeInRegs > State.FreeRegs) {
1666       State.FreeRegs = 0;
1667       return false;
1668     }
1669   } else {
1670     // The MCU psABI allows passing parameters in-reg even if there are
1671     // earlier parameters that are passed on the stack. Also,
1672     // it does not allow passing >8-byte structs in-register,
1673     // even if there are 3 free registers available.
1674     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1675       return false;
1676   }
1677 
1678   State.FreeRegs -= SizeInRegs;
1679   return true;
1680 }
1681 
1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1683                                              bool &InReg,
1684                                              bool &NeedsPadding) const {
1685   // On Windows, aggregates other than HFAs are never passed in registers, and
1686   // they do not consume register slots. Homogenous floating-point aggregates
1687   // (HFAs) have already been dealt with at this point.
1688   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1689     return false;
1690 
1691   NeedsPadding = false;
1692   InReg = !IsMCUABI;
1693 
1694   if (!updateFreeRegs(Ty, State))
1695     return false;
1696 
1697   if (IsMCUABI)
1698     return true;
1699 
1700   if (State.CC == llvm::CallingConv::X86_FastCall ||
1701       State.CC == llvm::CallingConv::X86_VectorCall ||
1702       State.CC == llvm::CallingConv::X86_RegCall) {
1703     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1704       NeedsPadding = true;
1705 
1706     return false;
1707   }
1708 
1709   return true;
1710 }
1711 
1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1713   if (!updateFreeRegs(Ty, State))
1714     return false;
1715 
1716   if (IsMCUABI)
1717     return false;
1718 
1719   if (State.CC == llvm::CallingConv::X86_FastCall ||
1720       State.CC == llvm::CallingConv::X86_VectorCall ||
1721       State.CC == llvm::CallingConv::X86_RegCall) {
1722     if (getContext().getTypeSize(Ty) > 32)
1723       return false;
1724 
1725     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1726         Ty->isReferenceType());
1727   }
1728 
1729   return true;
1730 }
1731 
1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1733   // Vectorcall x86 works subtly different than in x64, so the format is
1734   // a bit different than the x64 version.  First, all vector types (not HVAs)
1735   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1736   // This differs from the x64 implementation, where the first 6 by INDEX get
1737   // registers.
1738   // In the second pass over the arguments, HVAs are passed in the remaining
1739   // vector registers if possible, or indirectly by address. The address will be
1740   // passed in ECX/EDX if available. Any other arguments are passed according to
1741   // the usual fastcall rules.
1742   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1743   for (int I = 0, E = Args.size(); I < E; ++I) {
1744     const Type *Base = nullptr;
1745     uint64_t NumElts = 0;
1746     const QualType &Ty = Args[I].type;
1747     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1748         isHomogeneousAggregate(Ty, Base, NumElts)) {
1749       if (State.FreeSSERegs >= NumElts) {
1750         State.FreeSSERegs -= NumElts;
1751         Args[I].info = ABIArgInfo::getDirectInReg();
1752         State.IsPreassigned.set(I);
1753       }
1754     }
1755   }
1756 }
1757 
1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1759                                                CCState &State) const {
1760   // FIXME: Set alignment on indirect arguments.
1761   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1762   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1763   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1764 
1765   Ty = useFirstFieldIfTransparentUnion(Ty);
1766   TypeInfo TI = getContext().getTypeInfo(Ty);
1767 
1768   // Check with the C++ ABI first.
1769   const RecordType *RT = Ty->getAs<RecordType>();
1770   if (RT) {
1771     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1772     if (RAA == CGCXXABI::RAA_Indirect) {
1773       return getIndirectResult(Ty, false, State);
1774     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1775       // The field index doesn't matter, we'll fix it up later.
1776       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1777     }
1778   }
1779 
1780   // Regcall uses the concept of a homogenous vector aggregate, similar
1781   // to other targets.
1782   const Type *Base = nullptr;
1783   uint64_t NumElts = 0;
1784   if ((IsRegCall || IsVectorCall) &&
1785       isHomogeneousAggregate(Ty, Base, NumElts)) {
1786     if (State.FreeSSERegs >= NumElts) {
1787       State.FreeSSERegs -= NumElts;
1788 
1789       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1790       // does.
1791       if (IsVectorCall)
1792         return getDirectX86Hva();
1793 
1794       if (Ty->isBuiltinType() || Ty->isVectorType())
1795         return ABIArgInfo::getDirect();
1796       return ABIArgInfo::getExpand();
1797     }
1798     return getIndirectResult(Ty, /*ByVal=*/false, State);
1799   }
1800 
1801   if (isAggregateTypeForABI(Ty)) {
1802     // Structures with flexible arrays are always indirect.
1803     // FIXME: This should not be byval!
1804     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1805       return getIndirectResult(Ty, true, State);
1806 
1807     // Ignore empty structs/unions on non-Windows.
1808     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1809       return ABIArgInfo::getIgnore();
1810 
1811     llvm::LLVMContext &LLVMContext = getVMContext();
1812     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1813     bool NeedsPadding = false;
1814     bool InReg;
1815     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1816       unsigned SizeInRegs = (TI.Width + 31) / 32;
1817       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1818       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1819       if (InReg)
1820         return ABIArgInfo::getDirectInReg(Result);
1821       else
1822         return ABIArgInfo::getDirect(Result);
1823     }
1824     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1825 
1826     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1827     // added in MSVC 2015.
1828     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1829       return getIndirectResult(Ty, /*ByVal=*/false, State);
1830 
1831     // Expand small (<= 128-bit) record types when we know that the stack layout
1832     // of those arguments will match the struct. This is important because the
1833     // LLVM backend isn't smart enough to remove byval, which inhibits many
1834     // optimizations.
1835     // Don't do this for the MCU if there are still free integer registers
1836     // (see X86_64 ABI for full explanation).
1837     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1838         canExpandIndirectArgument(Ty))
1839       return ABIArgInfo::getExpandWithPadding(
1840           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1841 
1842     return getIndirectResult(Ty, true, State);
1843   }
1844 
1845   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1846     // On Windows, vectors are passed directly if registers are available, or
1847     // indirectly if not. This avoids the need to align argument memory. Pass
1848     // user-defined vector types larger than 512 bits indirectly for simplicity.
1849     if (IsWin32StructABI) {
1850       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1851         --State.FreeSSERegs;
1852         return ABIArgInfo::getDirectInReg();
1853       }
1854       return getIndirectResult(Ty, /*ByVal=*/false, State);
1855     }
1856 
1857     // On Darwin, some vectors are passed in memory, we handle this by passing
1858     // it as an i8/i16/i32/i64.
1859     if (IsDarwinVectorABI) {
1860       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1861           (TI.Width == 64 && VT->getNumElements() == 1))
1862         return ABIArgInfo::getDirect(
1863             llvm::IntegerType::get(getVMContext(), TI.Width));
1864     }
1865 
1866     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1867       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1868 
1869     return ABIArgInfo::getDirect();
1870   }
1871 
1872 
1873   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1874     Ty = EnumTy->getDecl()->getIntegerType();
1875 
1876   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1877 
1878   if (isPromotableIntegerTypeForABI(Ty)) {
1879     if (InReg)
1880       return ABIArgInfo::getExtendInReg(Ty);
1881     return ABIArgInfo::getExtend(Ty);
1882   }
1883 
1884   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1885     if (EIT->getNumBits() <= 64) {
1886       if (InReg)
1887         return ABIArgInfo::getDirectInReg();
1888       return ABIArgInfo::getDirect();
1889     }
1890     return getIndirectResult(Ty, /*ByVal=*/false, State);
1891   }
1892 
1893   if (InReg)
1894     return ABIArgInfo::getDirectInReg();
1895   return ABIArgInfo::getDirect();
1896 }
1897 
1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1899   CCState State(FI);
1900   if (IsMCUABI)
1901     State.FreeRegs = 3;
1902   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1903     State.FreeRegs = 2;
1904     State.FreeSSERegs = 3;
1905   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1906     State.FreeRegs = 2;
1907     State.FreeSSERegs = 6;
1908   } else if (FI.getHasRegParm())
1909     State.FreeRegs = FI.getRegParm();
1910   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1911     State.FreeRegs = 5;
1912     State.FreeSSERegs = 8;
1913   } else if (IsWin32StructABI) {
1914     // Since MSVC 2015, the first three SSE vectors have been passed in
1915     // registers. The rest are passed indirectly.
1916     State.FreeRegs = DefaultNumRegisterParameters;
1917     State.FreeSSERegs = 3;
1918   } else
1919     State.FreeRegs = DefaultNumRegisterParameters;
1920 
1921   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1922     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1923   } else if (FI.getReturnInfo().isIndirect()) {
1924     // The C++ ABI is not aware of register usage, so we have to check if the
1925     // return value was sret and put it in a register ourselves if appropriate.
1926     if (State.FreeRegs) {
1927       --State.FreeRegs;  // The sret parameter consumes a register.
1928       if (!IsMCUABI)
1929         FI.getReturnInfo().setInReg(true);
1930     }
1931   }
1932 
1933   // The chain argument effectively gives us another free register.
1934   if (FI.isChainCall())
1935     ++State.FreeRegs;
1936 
1937   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1938   // arguments to XMM registers as available.
1939   if (State.CC == llvm::CallingConv::X86_VectorCall)
1940     runVectorCallFirstPass(FI, State);
1941 
1942   bool UsedInAlloca = false;
1943   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1944   for (int I = 0, E = Args.size(); I < E; ++I) {
1945     // Skip arguments that have already been assigned.
1946     if (State.IsPreassigned.test(I))
1947       continue;
1948 
1949     Args[I].info = classifyArgumentType(Args[I].type, State);
1950     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1951   }
1952 
1953   // If we needed to use inalloca for any argument, do a second pass and rewrite
1954   // all the memory arguments to use inalloca.
1955   if (UsedInAlloca)
1956     rewriteWithInAlloca(FI);
1957 }
1958 
1959 void
1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1961                                    CharUnits &StackOffset, ABIArgInfo &Info,
1962                                    QualType Type) const {
1963   // Arguments are always 4-byte-aligned.
1964   CharUnits WordSize = CharUnits::fromQuantity(4);
1965   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1966 
1967   // sret pointers and indirect things will require an extra pointer
1968   // indirection, unless they are byval. Most things are byval, and will not
1969   // require this indirection.
1970   bool IsIndirect = false;
1971   if (Info.isIndirect() && !Info.getIndirectByVal())
1972     IsIndirect = true;
1973   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1974   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1975   if (IsIndirect)
1976     LLTy = LLTy->getPointerTo(0);
1977   FrameFields.push_back(LLTy);
1978   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1979 
1980   // Insert padding bytes to respect alignment.
1981   CharUnits FieldEnd = StackOffset;
1982   StackOffset = FieldEnd.alignTo(WordSize);
1983   if (StackOffset != FieldEnd) {
1984     CharUnits NumBytes = StackOffset - FieldEnd;
1985     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1986     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1987     FrameFields.push_back(Ty);
1988   }
1989 }
1990 
1991 static bool isArgInAlloca(const ABIArgInfo &Info) {
1992   // Leave ignored and inreg arguments alone.
1993   switch (Info.getKind()) {
1994   case ABIArgInfo::InAlloca:
1995     return true;
1996   case ABIArgInfo::Ignore:
1997   case ABIArgInfo::IndirectAliased:
1998     return false;
1999   case ABIArgInfo::Indirect:
2000   case ABIArgInfo::Direct:
2001   case ABIArgInfo::Extend:
2002     return !Info.getInReg();
2003   case ABIArgInfo::Expand:
2004   case ABIArgInfo::CoerceAndExpand:
2005     // These are aggregate types which are never passed in registers when
2006     // inalloca is involved.
2007     return true;
2008   }
2009   llvm_unreachable("invalid enum");
2010 }
2011 
2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2013   assert(IsWin32StructABI && "inalloca only supported on win32");
2014 
2015   // Build a packed struct type for all of the arguments in memory.
2016   SmallVector<llvm::Type *, 6> FrameFields;
2017 
2018   // The stack alignment is always 4.
2019   CharUnits StackAlign = CharUnits::fromQuantity(4);
2020 
2021   CharUnits StackOffset;
2022   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2023 
2024   // Put 'this' into the struct before 'sret', if necessary.
2025   bool IsThisCall =
2026       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2027   ABIArgInfo &Ret = FI.getReturnInfo();
2028   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2029       isArgInAlloca(I->info)) {
2030     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2031     ++I;
2032   }
2033 
2034   // Put the sret parameter into the inalloca struct if it's in memory.
2035   if (Ret.isIndirect() && !Ret.getInReg()) {
2036     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2037     // On Windows, the hidden sret parameter is always returned in eax.
2038     Ret.setInAllocaSRet(IsWin32StructABI);
2039   }
2040 
2041   // Skip the 'this' parameter in ecx.
2042   if (IsThisCall)
2043     ++I;
2044 
2045   // Put arguments passed in memory into the struct.
2046   for (; I != E; ++I) {
2047     if (isArgInAlloca(I->info))
2048       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2049   }
2050 
2051   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2052                                         /*isPacked=*/true),
2053                   StackAlign);
2054 }
2055 
2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2057                                  Address VAListAddr, QualType Ty) const {
2058 
2059   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2060 
2061   // x86-32 changes the alignment of certain arguments on the stack.
2062   //
2063   // Just messing with TypeInfo like this works because we never pass
2064   // anything indirectly.
2065   TypeInfo.second = CharUnits::fromQuantity(
2066                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
2067 
2068   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2069                           TypeInfo, CharUnits::fromQuantity(4),
2070                           /*AllowHigherAlign*/ true);
2071 }
2072 
2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2074     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2075   assert(Triple.getArch() == llvm::Triple::x86);
2076 
2077   switch (Opts.getStructReturnConvention()) {
2078   case CodeGenOptions::SRCK_Default:
2079     break;
2080   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2081     return false;
2082   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2083     return true;
2084   }
2085 
2086   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2087     return true;
2088 
2089   switch (Triple.getOS()) {
2090   case llvm::Triple::DragonFly:
2091   case llvm::Triple::FreeBSD:
2092   case llvm::Triple::OpenBSD:
2093   case llvm::Triple::Win32:
2094     return true;
2095   default:
2096     return false;
2097   }
2098 }
2099 
2100 void X86_32TargetCodeGenInfo::setTargetAttributes(
2101     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2102   if (GV->isDeclaration())
2103     return;
2104   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2105     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2106       llvm::Function *Fn = cast<llvm::Function>(GV);
2107       Fn->addFnAttr("stackrealign");
2108     }
2109     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2110       llvm::Function *Fn = cast<llvm::Function>(GV);
2111       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2112     }
2113   }
2114 }
2115 
2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2117                                                CodeGen::CodeGenFunction &CGF,
2118                                                llvm::Value *Address) const {
2119   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2120 
2121   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2122 
2123   // 0-7 are the eight integer registers;  the order is different
2124   //   on Darwin (for EH), but the range is the same.
2125   // 8 is %eip.
2126   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2127 
2128   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2129     // 12-16 are st(0..4).  Not sure why we stop at 4.
2130     // These have size 16, which is sizeof(long double) on
2131     // platforms with 8-byte alignment for that type.
2132     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2133     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2134 
2135   } else {
2136     // 9 is %eflags, which doesn't get a size on Darwin for some
2137     // reason.
2138     Builder.CreateAlignedStore(
2139         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2140                                CharUnits::One());
2141 
2142     // 11-16 are st(0..5).  Not sure why we stop at 5.
2143     // These have size 12, which is sizeof(long double) on
2144     // platforms with 4-byte alignment for that type.
2145     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2146     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2147   }
2148 
2149   return false;
2150 }
2151 
2152 //===----------------------------------------------------------------------===//
2153 // X86-64 ABI Implementation
2154 //===----------------------------------------------------------------------===//
2155 
2156 
2157 namespace {
2158 /// The AVX ABI level for X86 targets.
2159 enum class X86AVXABILevel {
2160   None,
2161   AVX,
2162   AVX512
2163 };
2164 
2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2167   switch (AVXLevel) {
2168   case X86AVXABILevel::AVX512:
2169     return 512;
2170   case X86AVXABILevel::AVX:
2171     return 256;
2172   case X86AVXABILevel::None:
2173     return 128;
2174   }
2175   llvm_unreachable("Unknown AVXLevel");
2176 }
2177 
2178 /// X86_64ABIInfo - The X86_64 ABI information.
2179 class X86_64ABIInfo : public SwiftABIInfo {
2180   enum Class {
2181     Integer = 0,
2182     SSE,
2183     SSEUp,
2184     X87,
2185     X87Up,
2186     ComplexX87,
2187     NoClass,
2188     Memory
2189   };
2190 
2191   /// merge - Implement the X86_64 ABI merging algorithm.
2192   ///
2193   /// Merge an accumulating classification \arg Accum with a field
2194   /// classification \arg Field.
2195   ///
2196   /// \param Accum - The accumulating classification. This should
2197   /// always be either NoClass or the result of a previous merge
2198   /// call. In addition, this should never be Memory (the caller
2199   /// should just return Memory for the aggregate).
2200   static Class merge(Class Accum, Class Field);
2201 
2202   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2203   ///
2204   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2205   /// final MEMORY or SSE classes when necessary.
2206   ///
2207   /// \param AggregateSize - The size of the current aggregate in
2208   /// the classification process.
2209   ///
2210   /// \param Lo - The classification for the parts of the type
2211   /// residing in the low word of the containing object.
2212   ///
2213   /// \param Hi - The classification for the parts of the type
2214   /// residing in the higher words of the containing object.
2215   ///
2216   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2217 
2218   /// classify - Determine the x86_64 register classes in which the
2219   /// given type T should be passed.
2220   ///
2221   /// \param Lo - The classification for the parts of the type
2222   /// residing in the low word of the containing object.
2223   ///
2224   /// \param Hi - The classification for the parts of the type
2225   /// residing in the high word of the containing object.
2226   ///
2227   /// \param OffsetBase - The bit offset of this type in the
2228   /// containing object.  Some parameters are classified different
2229   /// depending on whether they straddle an eightbyte boundary.
2230   ///
2231   /// \param isNamedArg - Whether the argument in question is a "named"
2232   /// argument, as used in AMD64-ABI 3.5.7.
2233   ///
2234   /// If a word is unused its result will be NoClass; if a type should
2235   /// be passed in Memory then at least the classification of \arg Lo
2236   /// will be Memory.
2237   ///
2238   /// The \arg Lo class will be NoClass iff the argument is ignored.
2239   ///
2240   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2241   /// also be ComplexX87.
2242   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2243                 bool isNamedArg) const;
2244 
2245   llvm::Type *GetByteVectorType(QualType Ty) const;
2246   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2247                                  unsigned IROffset, QualType SourceTy,
2248                                  unsigned SourceOffset) const;
2249   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2250                                      unsigned IROffset, QualType SourceTy,
2251                                      unsigned SourceOffset) const;
2252 
2253   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2254   /// such that the argument will be returned in memory.
2255   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2256 
2257   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2258   /// such that the argument will be passed in memory.
2259   ///
2260   /// \param freeIntRegs - The number of free integer registers remaining
2261   /// available.
2262   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2263 
2264   ABIArgInfo classifyReturnType(QualType RetTy) const;
2265 
2266   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2267                                   unsigned &neededInt, unsigned &neededSSE,
2268                                   bool isNamedArg) const;
2269 
2270   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2271                                        unsigned &NeededSSE) const;
2272 
2273   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2274                                            unsigned &NeededSSE) const;
2275 
2276   bool IsIllegalVectorType(QualType Ty) const;
2277 
2278   /// The 0.98 ABI revision clarified a lot of ambiguities,
2279   /// unfortunately in ways that were not always consistent with
2280   /// certain previous compilers.  In particular, platforms which
2281   /// required strict binary compatibility with older versions of GCC
2282   /// may need to exempt themselves.
2283   bool honorsRevision0_98() const {
2284     return !getTarget().getTriple().isOSDarwin();
2285   }
2286 
2287   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2288   /// classify it as INTEGER (for compatibility with older clang compilers).
2289   bool classifyIntegerMMXAsSSE() const {
2290     // Clang <= 3.8 did not do this.
2291     if (getContext().getLangOpts().getClangABICompat() <=
2292         LangOptions::ClangABI::Ver3_8)
2293       return false;
2294 
2295     const llvm::Triple &Triple = getTarget().getTriple();
2296     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2297       return false;
2298     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2299       return false;
2300     return true;
2301   }
2302 
2303   // GCC classifies vectors of __int128 as memory.
2304   bool passInt128VectorsInMem() const {
2305     // Clang <= 9.0 did not do this.
2306     if (getContext().getLangOpts().getClangABICompat() <=
2307         LangOptions::ClangABI::Ver9)
2308       return false;
2309 
2310     const llvm::Triple &T = getTarget().getTriple();
2311     return T.isOSLinux() || T.isOSNetBSD();
2312   }
2313 
2314   X86AVXABILevel AVXLevel;
2315   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2316   // 64-bit hardware.
2317   bool Has64BitPointers;
2318 
2319 public:
2320   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2321       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2322       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2323   }
2324 
2325   bool isPassedUsingAVXType(QualType type) const {
2326     unsigned neededInt, neededSSE;
2327     // The freeIntRegs argument doesn't matter here.
2328     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2329                                            /*isNamedArg*/true);
2330     if (info.isDirect()) {
2331       llvm::Type *ty = info.getCoerceToType();
2332       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2333         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2334     }
2335     return false;
2336   }
2337 
2338   void computeInfo(CGFunctionInfo &FI) const override;
2339 
2340   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2341                     QualType Ty) const override;
2342   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2343                       QualType Ty) const override;
2344 
2345   bool has64BitPointers() const {
2346     return Has64BitPointers;
2347   }
2348 
2349   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2350                                     bool asReturnValue) const override {
2351     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2352   }
2353   bool isSwiftErrorInRegister() const override {
2354     return true;
2355   }
2356 };
2357 
2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2359 class WinX86_64ABIInfo : public SwiftABIInfo {
2360 public:
2361   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2362       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2363         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2364 
2365   void computeInfo(CGFunctionInfo &FI) const override;
2366 
2367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2368                     QualType Ty) const override;
2369 
2370   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2371     // FIXME: Assumes vectorcall is in use.
2372     return isX86VectorTypeForVectorCall(getContext(), Ty);
2373   }
2374 
2375   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2376                                          uint64_t NumMembers) const override {
2377     // FIXME: Assumes vectorcall is in use.
2378     return isX86VectorCallAggregateSmallEnough(NumMembers);
2379   }
2380 
2381   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2382                                     bool asReturnValue) const override {
2383     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2384   }
2385 
2386   bool isSwiftErrorInRegister() const override {
2387     return true;
2388   }
2389 
2390 private:
2391   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2392                       bool IsVectorCall, bool IsRegCall) const;
2393   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2394                                       const ABIArgInfo &current) const;
2395   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2396                              bool IsVectorCall, bool IsRegCall) const;
2397 
2398   X86AVXABILevel AVXLevel;
2399 
2400   bool IsMingw64;
2401 };
2402 
2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2404 public:
2405   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2406       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2407 
2408   const X86_64ABIInfo &getABIInfo() const {
2409     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2410   }
2411 
2412   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2413   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2414   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2415 
2416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2417     return 7;
2418   }
2419 
2420   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2421                                llvm::Value *Address) const override {
2422     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2423 
2424     // 0-15 are the 16 integer registers.
2425     // 16 is %rip.
2426     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2427     return false;
2428   }
2429 
2430   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2431                                   StringRef Constraint,
2432                                   llvm::Type* Ty) const override {
2433     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2434   }
2435 
2436   bool isNoProtoCallVariadic(const CallArgList &args,
2437                              const FunctionNoProtoType *fnType) const override {
2438     // The default CC on x86-64 sets %al to the number of SSA
2439     // registers used, and GCC sets this when calling an unprototyped
2440     // function, so we override the default behavior.  However, don't do
2441     // that when AVX types are involved: the ABI explicitly states it is
2442     // undefined, and it doesn't work in practice because of how the ABI
2443     // defines varargs anyway.
2444     if (fnType->getCallConv() == CC_C) {
2445       bool HasAVXType = false;
2446       for (CallArgList::const_iterator
2447              it = args.begin(), ie = args.end(); it != ie; ++it) {
2448         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2449           HasAVXType = true;
2450           break;
2451         }
2452       }
2453 
2454       if (!HasAVXType)
2455         return true;
2456     }
2457 
2458     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2459   }
2460 
2461   llvm::Constant *
2462   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2463     unsigned Sig = (0xeb << 0) | // jmp rel8
2464                    (0x06 << 8) | //           .+0x08
2465                    ('v' << 16) |
2466                    ('2' << 24);
2467     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2468   }
2469 
2470   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2471                            CodeGen::CodeGenModule &CGM) const override {
2472     if (GV->isDeclaration())
2473       return;
2474     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2475       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2476         llvm::Function *Fn = cast<llvm::Function>(GV);
2477         Fn->addFnAttr("stackrealign");
2478       }
2479       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2480         llvm::Function *Fn = cast<llvm::Function>(GV);
2481         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2482       }
2483     }
2484   }
2485 
2486   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2487                             const FunctionDecl *Caller,
2488                             const FunctionDecl *Callee,
2489                             const CallArgList &Args) const override;
2490 };
2491 
2492 static void initFeatureMaps(const ASTContext &Ctx,
2493                             llvm::StringMap<bool> &CallerMap,
2494                             const FunctionDecl *Caller,
2495                             llvm::StringMap<bool> &CalleeMap,
2496                             const FunctionDecl *Callee) {
2497   if (CalleeMap.empty() && CallerMap.empty()) {
2498     // The caller is potentially nullptr in the case where the call isn't in a
2499     // function.  In this case, the getFunctionFeatureMap ensures we just get
2500     // the TU level setting (since it cannot be modified by 'target'..
2501     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2502     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2503   }
2504 }
2505 
2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2507                                  SourceLocation CallLoc,
2508                                  const llvm::StringMap<bool> &CallerMap,
2509                                  const llvm::StringMap<bool> &CalleeMap,
2510                                  QualType Ty, StringRef Feature,
2511                                  bool IsArgument) {
2512   bool CallerHasFeat = CallerMap.lookup(Feature);
2513   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2514   if (!CallerHasFeat && !CalleeHasFeat)
2515     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2516            << IsArgument << Ty << Feature;
2517 
2518   // Mixing calling conventions here is very clearly an error.
2519   if (!CallerHasFeat || !CalleeHasFeat)
2520     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2521            << IsArgument << Ty << Feature;
2522 
2523   // Else, both caller and callee have the required feature, so there is no need
2524   // to diagnose.
2525   return false;
2526 }
2527 
2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2529                           SourceLocation CallLoc,
2530                           const llvm::StringMap<bool> &CallerMap,
2531                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2532                           bool IsArgument) {
2533   uint64_t Size = Ctx.getTypeSize(Ty);
2534   if (Size > 256)
2535     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2536                                 "avx512f", IsArgument);
2537 
2538   if (Size > 128)
2539     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2540                                 IsArgument);
2541 
2542   return false;
2543 }
2544 
2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2546     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2547     const FunctionDecl *Callee, const CallArgList &Args) const {
2548   llvm::StringMap<bool> CallerMap;
2549   llvm::StringMap<bool> CalleeMap;
2550   unsigned ArgIndex = 0;
2551 
2552   // We need to loop through the actual call arguments rather than the the
2553   // function's parameters, in case this variadic.
2554   for (const CallArg &Arg : Args) {
2555     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2556     // additionally changes how vectors >256 in size are passed. Like GCC, we
2557     // warn when a function is called with an argument where this will change.
2558     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2559     // the caller and callee features are mismatched.
2560     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2561     // change its ABI with attribute-target after this call.
2562     if (Arg.getType()->isVectorType() &&
2563         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2564       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2565       QualType Ty = Arg.getType();
2566       // The CallArg seems to have desugared the type already, so for clearer
2567       // diagnostics, replace it with the type in the FunctionDecl if possible.
2568       if (ArgIndex < Callee->getNumParams())
2569         Ty = Callee->getParamDecl(ArgIndex)->getType();
2570 
2571       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2572                         CalleeMap, Ty, /*IsArgument*/ true))
2573         return;
2574     }
2575     ++ArgIndex;
2576   }
2577 
2578   // Check return always, as we don't have a good way of knowing in codegen
2579   // whether this value is used, tail-called, etc.
2580   if (Callee->getReturnType()->isVectorType() &&
2581       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2582     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2583     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2584                   CalleeMap, Callee->getReturnType(),
2585                   /*IsArgument*/ false);
2586   }
2587 }
2588 
2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2590   // If the argument does not end in .lib, automatically add the suffix.
2591   // If the argument contains a space, enclose it in quotes.
2592   // This matches the behavior of MSVC.
2593   bool Quote = (Lib.find(" ") != StringRef::npos);
2594   std::string ArgStr = Quote ? "\"" : "";
2595   ArgStr += Lib;
2596   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2597     ArgStr += ".lib";
2598   ArgStr += Quote ? "\"" : "";
2599   return ArgStr;
2600 }
2601 
2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2603 public:
2604   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2605         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2606         unsigned NumRegisterParameters)
2607     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2608         Win32StructABI, NumRegisterParameters, false) {}
2609 
2610   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2611                            CodeGen::CodeGenModule &CGM) const override;
2612 
2613   void getDependentLibraryOption(llvm::StringRef Lib,
2614                                  llvm::SmallString<24> &Opt) const override {
2615     Opt = "/DEFAULTLIB:";
2616     Opt += qualifyWindowsLibrary(Lib);
2617   }
2618 
2619   void getDetectMismatchOption(llvm::StringRef Name,
2620                                llvm::StringRef Value,
2621                                llvm::SmallString<32> &Opt) const override {
2622     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2623   }
2624 };
2625 
2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2627                                           CodeGen::CodeGenModule &CGM) {
2628   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2629 
2630     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2631       Fn->addFnAttr("stack-probe-size",
2632                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2633     if (CGM.getCodeGenOpts().NoStackArgProbe)
2634       Fn->addFnAttr("no-stack-arg-probe");
2635   }
2636 }
2637 
2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2639     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2640   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2641   if (GV->isDeclaration())
2642     return;
2643   addStackProbeTargetAttributes(D, GV, CGM);
2644 }
2645 
2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2647 public:
2648   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2649                              X86AVXABILevel AVXLevel)
2650       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2651 
2652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2653                            CodeGen::CodeGenModule &CGM) const override;
2654 
2655   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2656     return 7;
2657   }
2658 
2659   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2660                                llvm::Value *Address) const override {
2661     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2662 
2663     // 0-15 are the 16 integer registers.
2664     // 16 is %rip.
2665     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2666     return false;
2667   }
2668 
2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2683     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2684   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2685   if (GV->isDeclaration())
2686     return;
2687   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2688     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2689       llvm::Function *Fn = cast<llvm::Function>(GV);
2690       Fn->addFnAttr("stackrealign");
2691     }
2692     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2693       llvm::Function *Fn = cast<llvm::Function>(GV);
2694       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2695     }
2696   }
2697 
2698   addStackProbeTargetAttributes(D, GV, CGM);
2699 }
2700 }
2701 
2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2703                               Class &Hi) const {
2704   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2705   //
2706   // (a) If one of the classes is Memory, the whole argument is passed in
2707   //     memory.
2708   //
2709   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2710   //     memory.
2711   //
2712   // (c) If the size of the aggregate exceeds two eightbytes and the first
2713   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2714   //     argument is passed in memory. NOTE: This is necessary to keep the
2715   //     ABI working for processors that don't support the __m256 type.
2716   //
2717   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2718   //
2719   // Some of these are enforced by the merging logic.  Others can arise
2720   // only with unions; for example:
2721   //   union { _Complex double; unsigned; }
2722   //
2723   // Note that clauses (b) and (c) were added in 0.98.
2724   //
2725   if (Hi == Memory)
2726     Lo = Memory;
2727   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2728     Lo = Memory;
2729   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2730     Lo = Memory;
2731   if (Hi == SSEUp && Lo != SSE)
2732     Hi = SSE;
2733 }
2734 
2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2736   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2737   // classified recursively so that always two fields are
2738   // considered. The resulting class is calculated according to
2739   // the classes of the fields in the eightbyte:
2740   //
2741   // (a) If both classes are equal, this is the resulting class.
2742   //
2743   // (b) If one of the classes is NO_CLASS, the resulting class is
2744   // the other class.
2745   //
2746   // (c) If one of the classes is MEMORY, the result is the MEMORY
2747   // class.
2748   //
2749   // (d) If one of the classes is INTEGER, the result is the
2750   // INTEGER.
2751   //
2752   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2753   // MEMORY is used as class.
2754   //
2755   // (f) Otherwise class SSE is used.
2756 
2757   // Accum should never be memory (we should have returned) or
2758   // ComplexX87 (because this cannot be passed in a structure).
2759   assert((Accum != Memory && Accum != ComplexX87) &&
2760          "Invalid accumulated classification during merge.");
2761   if (Accum == Field || Field == NoClass)
2762     return Accum;
2763   if (Field == Memory)
2764     return Memory;
2765   if (Accum == NoClass)
2766     return Field;
2767   if (Accum == Integer || Field == Integer)
2768     return Integer;
2769   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2770       Accum == X87 || Accum == X87Up)
2771     return Memory;
2772   return SSE;
2773 }
2774 
2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2776                              Class &Lo, Class &Hi, bool isNamedArg) const {
2777   // FIXME: This code can be simplified by introducing a simple value class for
2778   // Class pairs with appropriate constructor methods for the various
2779   // situations.
2780 
2781   // FIXME: Some of the split computations are wrong; unaligned vectors
2782   // shouldn't be passed in registers for example, so there is no chance they
2783   // can straddle an eightbyte. Verify & simplify.
2784 
2785   Lo = Hi = NoClass;
2786 
2787   Class &Current = OffsetBase < 64 ? Lo : Hi;
2788   Current = Memory;
2789 
2790   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2791     BuiltinType::Kind k = BT->getKind();
2792 
2793     if (k == BuiltinType::Void) {
2794       Current = NoClass;
2795     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2796       Lo = Integer;
2797       Hi = Integer;
2798     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2799       Current = Integer;
2800     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2801       Current = SSE;
2802     } else if (k == BuiltinType::LongDouble) {
2803       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2804       if (LDF == &llvm::APFloat::IEEEquad()) {
2805         Lo = SSE;
2806         Hi = SSEUp;
2807       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2808         Lo = X87;
2809         Hi = X87Up;
2810       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2811         Current = SSE;
2812       } else
2813         llvm_unreachable("unexpected long double representation!");
2814     }
2815     // FIXME: _Decimal32 and _Decimal64 are SSE.
2816     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2817     return;
2818   }
2819 
2820   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2821     // Classify the underlying integer type.
2822     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2823     return;
2824   }
2825 
2826   if (Ty->hasPointerRepresentation()) {
2827     Current = Integer;
2828     return;
2829   }
2830 
2831   if (Ty->isMemberPointerType()) {
2832     if (Ty->isMemberFunctionPointerType()) {
2833       if (Has64BitPointers) {
2834         // If Has64BitPointers, this is an {i64, i64}, so classify both
2835         // Lo and Hi now.
2836         Lo = Hi = Integer;
2837       } else {
2838         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2839         // straddles an eightbyte boundary, Hi should be classified as well.
2840         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2841         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2842         if (EB_FuncPtr != EB_ThisAdj) {
2843           Lo = Hi = Integer;
2844         } else {
2845           Current = Integer;
2846         }
2847       }
2848     } else {
2849       Current = Integer;
2850     }
2851     return;
2852   }
2853 
2854   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2855     uint64_t Size = getContext().getTypeSize(VT);
2856     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2857       // gcc passes the following as integer:
2858       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2859       // 2 bytes - <2 x char>, <1 x short>
2860       // 1 byte  - <1 x char>
2861       Current = Integer;
2862 
2863       // If this type crosses an eightbyte boundary, it should be
2864       // split.
2865       uint64_t EB_Lo = (OffsetBase) / 64;
2866       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2867       if (EB_Lo != EB_Hi)
2868         Hi = Lo;
2869     } else if (Size == 64) {
2870       QualType ElementType = VT->getElementType();
2871 
2872       // gcc passes <1 x double> in memory. :(
2873       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2874         return;
2875 
2876       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2877       // pass them as integer.  For platforms where clang is the de facto
2878       // platform compiler, we must continue to use integer.
2879       if (!classifyIntegerMMXAsSSE() &&
2880           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2881            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2882            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2883            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2884         Current = Integer;
2885       else
2886         Current = SSE;
2887 
2888       // If this type crosses an eightbyte boundary, it should be
2889       // split.
2890       if (OffsetBase && OffsetBase != 64)
2891         Hi = Lo;
2892     } else if (Size == 128 ||
2893                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2894       QualType ElementType = VT->getElementType();
2895 
2896       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2897       if (passInt128VectorsInMem() && Size != 128 &&
2898           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2899            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2900         return;
2901 
2902       // Arguments of 256-bits are split into four eightbyte chunks. The
2903       // least significant one belongs to class SSE and all the others to class
2904       // SSEUP. The original Lo and Hi design considers that types can't be
2905       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2906       // This design isn't correct for 256-bits, but since there're no cases
2907       // where the upper parts would need to be inspected, avoid adding
2908       // complexity and just consider Hi to match the 64-256 part.
2909       //
2910       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2911       // registers if they are "named", i.e. not part of the "..." of a
2912       // variadic function.
2913       //
2914       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2915       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2916       Lo = SSE;
2917       Hi = SSEUp;
2918     }
2919     return;
2920   }
2921 
2922   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2923     QualType ET = getContext().getCanonicalType(CT->getElementType());
2924 
2925     uint64_t Size = getContext().getTypeSize(Ty);
2926     if (ET->isIntegralOrEnumerationType()) {
2927       if (Size <= 64)
2928         Current = Integer;
2929       else if (Size <= 128)
2930         Lo = Hi = Integer;
2931     } else if (ET == getContext().FloatTy) {
2932       Current = SSE;
2933     } else if (ET == getContext().DoubleTy) {
2934       Lo = Hi = SSE;
2935     } else if (ET == getContext().LongDoubleTy) {
2936       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2937       if (LDF == &llvm::APFloat::IEEEquad())
2938         Current = Memory;
2939       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2940         Current = ComplexX87;
2941       else if (LDF == &llvm::APFloat::IEEEdouble())
2942         Lo = Hi = SSE;
2943       else
2944         llvm_unreachable("unexpected long double representation!");
2945     }
2946 
2947     // If this complex type crosses an eightbyte boundary then it
2948     // should be split.
2949     uint64_t EB_Real = (OffsetBase) / 64;
2950     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2951     if (Hi == NoClass && EB_Real != EB_Imag)
2952       Hi = Lo;
2953 
2954     return;
2955   }
2956 
2957   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2958     if (EITy->getNumBits() <= 64)
2959       Current = Integer;
2960     else if (EITy->getNumBits() <= 128)
2961       Lo = Hi = Integer;
2962     // Larger values need to get passed in memory.
2963     return;
2964   }
2965 
2966   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2967     // Arrays are treated like structures.
2968 
2969     uint64_t Size = getContext().getTypeSize(Ty);
2970 
2971     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2972     // than eight eightbytes, ..., it has class MEMORY.
2973     if (Size > 512)
2974       return;
2975 
2976     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2977     // fields, it has class MEMORY.
2978     //
2979     // Only need to check alignment of array base.
2980     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2981       return;
2982 
2983     // Otherwise implement simplified merge. We could be smarter about
2984     // this, but it isn't worth it and would be harder to verify.
2985     Current = NoClass;
2986     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2987     uint64_t ArraySize = AT->getSize().getZExtValue();
2988 
2989     // The only case a 256-bit wide vector could be used is when the array
2990     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2991     // to work for sizes wider than 128, early check and fallback to memory.
2992     //
2993     if (Size > 128 &&
2994         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2995       return;
2996 
2997     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2998       Class FieldLo, FieldHi;
2999       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3000       Lo = merge(Lo, FieldLo);
3001       Hi = merge(Hi, FieldHi);
3002       if (Lo == Memory || Hi == Memory)
3003         break;
3004     }
3005 
3006     postMerge(Size, Lo, Hi);
3007     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3008     return;
3009   }
3010 
3011   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3012     uint64_t Size = getContext().getTypeSize(Ty);
3013 
3014     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3015     // than eight eightbytes, ..., it has class MEMORY.
3016     if (Size > 512)
3017       return;
3018 
3019     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3020     // copy constructor or a non-trivial destructor, it is passed by invisible
3021     // reference.
3022     if (getRecordArgABI(RT, getCXXABI()))
3023       return;
3024 
3025     const RecordDecl *RD = RT->getDecl();
3026 
3027     // Assume variable sized types are passed in memory.
3028     if (RD->hasFlexibleArrayMember())
3029       return;
3030 
3031     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3032 
3033     // Reset Lo class, this will be recomputed.
3034     Current = NoClass;
3035 
3036     // If this is a C++ record, classify the bases first.
3037     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3038       for (const auto &I : CXXRD->bases()) {
3039         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3040                "Unexpected base class!");
3041         const auto *Base =
3042             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3043 
3044         // Classify this field.
3045         //
3046         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3047         // single eightbyte, each is classified separately. Each eightbyte gets
3048         // initialized to class NO_CLASS.
3049         Class FieldLo, FieldHi;
3050         uint64_t Offset =
3051           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3052         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3053         Lo = merge(Lo, FieldLo);
3054         Hi = merge(Hi, FieldHi);
3055         if (Lo == Memory || Hi == Memory) {
3056           postMerge(Size, Lo, Hi);
3057           return;
3058         }
3059       }
3060     }
3061 
3062     // Classify the fields one at a time, merging the results.
3063     unsigned idx = 0;
3064     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3065            i != e; ++i, ++idx) {
3066       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3067       bool BitField = i->isBitField();
3068 
3069       // Ignore padding bit-fields.
3070       if (BitField && i->isUnnamedBitfield())
3071         continue;
3072 
3073       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3074       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
3075       //
3076       // The only case a 256-bit wide vector could be used is when the struct
3077       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3078       // to work for sizes wider than 128, early check and fallback to memory.
3079       //
3080       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
3081                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3082         Lo = Memory;
3083         postMerge(Size, Lo, Hi);
3084         return;
3085       }
3086       // Note, skip this test for bit-fields, see below.
3087       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3088         Lo = Memory;
3089         postMerge(Size, Lo, Hi);
3090         return;
3091       }
3092 
3093       // Classify this field.
3094       //
3095       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3096       // exceeds a single eightbyte, each is classified
3097       // separately. Each eightbyte gets initialized to class
3098       // NO_CLASS.
3099       Class FieldLo, FieldHi;
3100 
3101       // Bit-fields require special handling, they do not force the
3102       // structure to be passed in memory even if unaligned, and
3103       // therefore they can straddle an eightbyte.
3104       if (BitField) {
3105         assert(!i->isUnnamedBitfield());
3106         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3107         uint64_t Size = i->getBitWidthValue(getContext());
3108 
3109         uint64_t EB_Lo = Offset / 64;
3110         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3111 
3112         if (EB_Lo) {
3113           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3114           FieldLo = NoClass;
3115           FieldHi = Integer;
3116         } else {
3117           FieldLo = Integer;
3118           FieldHi = EB_Hi ? Integer : NoClass;
3119         }
3120       } else
3121         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3122       Lo = merge(Lo, FieldLo);
3123       Hi = merge(Hi, FieldHi);
3124       if (Lo == Memory || Hi == Memory)
3125         break;
3126     }
3127 
3128     postMerge(Size, Lo, Hi);
3129   }
3130 }
3131 
3132 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3133   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3134   // place naturally.
3135   if (!isAggregateTypeForABI(Ty)) {
3136     // Treat an enum type as its underlying type.
3137     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3138       Ty = EnumTy->getDecl()->getIntegerType();
3139 
3140     if (Ty->isExtIntType())
3141       return getNaturalAlignIndirect(Ty);
3142 
3143     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3144                                               : ABIArgInfo::getDirect());
3145   }
3146 
3147   return getNaturalAlignIndirect(Ty);
3148 }
3149 
3150 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3151   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3152     uint64_t Size = getContext().getTypeSize(VecTy);
3153     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3154     if (Size <= 64 || Size > LargestVector)
3155       return true;
3156     QualType EltTy = VecTy->getElementType();
3157     if (passInt128VectorsInMem() &&
3158         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3159          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3160       return true;
3161   }
3162 
3163   return false;
3164 }
3165 
3166 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3167                                             unsigned freeIntRegs) const {
3168   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3169   // place naturally.
3170   //
3171   // This assumption is optimistic, as there could be free registers available
3172   // when we need to pass this argument in memory, and LLVM could try to pass
3173   // the argument in the free register. This does not seem to happen currently,
3174   // but this code would be much safer if we could mark the argument with
3175   // 'onstack'. See PR12193.
3176   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3177       !Ty->isExtIntType()) {
3178     // Treat an enum type as its underlying type.
3179     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3180       Ty = EnumTy->getDecl()->getIntegerType();
3181 
3182     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3183                                               : ABIArgInfo::getDirect());
3184   }
3185 
3186   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3187     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3188 
3189   // Compute the byval alignment. We specify the alignment of the byval in all
3190   // cases so that the mid-level optimizer knows the alignment of the byval.
3191   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3192 
3193   // Attempt to avoid passing indirect results using byval when possible. This
3194   // is important for good codegen.
3195   //
3196   // We do this by coercing the value into a scalar type which the backend can
3197   // handle naturally (i.e., without using byval).
3198   //
3199   // For simplicity, we currently only do this when we have exhausted all of the
3200   // free integer registers. Doing this when there are free integer registers
3201   // would require more care, as we would have to ensure that the coerced value
3202   // did not claim the unused register. That would require either reording the
3203   // arguments to the function (so that any subsequent inreg values came first),
3204   // or only doing this optimization when there were no following arguments that
3205   // might be inreg.
3206   //
3207   // We currently expect it to be rare (particularly in well written code) for
3208   // arguments to be passed on the stack when there are still free integer
3209   // registers available (this would typically imply large structs being passed
3210   // by value), so this seems like a fair tradeoff for now.
3211   //
3212   // We can revisit this if the backend grows support for 'onstack' parameter
3213   // attributes. See PR12193.
3214   if (freeIntRegs == 0) {
3215     uint64_t Size = getContext().getTypeSize(Ty);
3216 
3217     // If this type fits in an eightbyte, coerce it into the matching integral
3218     // type, which will end up on the stack (with alignment 8).
3219     if (Align == 8 && Size <= 64)
3220       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3221                                                           Size));
3222   }
3223 
3224   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3225 }
3226 
3227 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3228 /// register. Pick an LLVM IR type that will be passed as a vector register.
3229 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3230   // Wrapper structs/arrays that only contain vectors are passed just like
3231   // vectors; strip them off if present.
3232   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3233     Ty = QualType(InnerTy, 0);
3234 
3235   llvm::Type *IRType = CGT.ConvertType(Ty);
3236   if (isa<llvm::VectorType>(IRType)) {
3237     // Don't pass vXi128 vectors in their native type, the backend can't
3238     // legalize them.
3239     if (passInt128VectorsInMem() &&
3240         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3241       // Use a vXi64 vector.
3242       uint64_t Size = getContext().getTypeSize(Ty);
3243       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3244                                         Size / 64);
3245     }
3246 
3247     return IRType;
3248   }
3249 
3250   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3251     return IRType;
3252 
3253   // We couldn't find the preferred IR vector type for 'Ty'.
3254   uint64_t Size = getContext().getTypeSize(Ty);
3255   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3256 
3257 
3258   // Return a LLVM IR vector type based on the size of 'Ty'.
3259   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3260                                     Size / 64);
3261 }
3262 
3263 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3264 /// is known to either be off the end of the specified type or being in
3265 /// alignment padding.  The user type specified is known to be at most 128 bits
3266 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3267 /// classification that put one of the two halves in the INTEGER class.
3268 ///
3269 /// It is conservatively correct to return false.
3270 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3271                                   unsigned EndBit, ASTContext &Context) {
3272   // If the bytes being queried are off the end of the type, there is no user
3273   // data hiding here.  This handles analysis of builtins, vectors and other
3274   // types that don't contain interesting padding.
3275   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3276   if (TySize <= StartBit)
3277     return true;
3278 
3279   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3280     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3281     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3282 
3283     // Check each element to see if the element overlaps with the queried range.
3284     for (unsigned i = 0; i != NumElts; ++i) {
3285       // If the element is after the span we care about, then we're done..
3286       unsigned EltOffset = i*EltSize;
3287       if (EltOffset >= EndBit) break;
3288 
3289       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3290       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3291                                  EndBit-EltOffset, Context))
3292         return false;
3293     }
3294     // If it overlaps no elements, then it is safe to process as padding.
3295     return true;
3296   }
3297 
3298   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3299     const RecordDecl *RD = RT->getDecl();
3300     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3301 
3302     // If this is a C++ record, check the bases first.
3303     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3304       for (const auto &I : CXXRD->bases()) {
3305         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3306                "Unexpected base class!");
3307         const auto *Base =
3308             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3309 
3310         // If the base is after the span we care about, ignore it.
3311         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3312         if (BaseOffset >= EndBit) continue;
3313 
3314         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3315         if (!BitsContainNoUserData(I.getType(), BaseStart,
3316                                    EndBit-BaseOffset, Context))
3317           return false;
3318       }
3319     }
3320 
3321     // Verify that no field has data that overlaps the region of interest.  Yes
3322     // this could be sped up a lot by being smarter about queried fields,
3323     // however we're only looking at structs up to 16 bytes, so we don't care
3324     // much.
3325     unsigned idx = 0;
3326     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3327          i != e; ++i, ++idx) {
3328       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3329 
3330       // If we found a field after the region we care about, then we're done.
3331       if (FieldOffset >= EndBit) break;
3332 
3333       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3334       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3335                                  Context))
3336         return false;
3337     }
3338 
3339     // If nothing in this record overlapped the area of interest, then we're
3340     // clean.
3341     return true;
3342   }
3343 
3344   return false;
3345 }
3346 
3347 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3348 /// float member at the specified offset.  For example, {int,{float}} has a
3349 /// float at offset 4.  It is conservatively correct for this routine to return
3350 /// false.
3351 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3352                                   const llvm::DataLayout &TD) {
3353   // Base case if we find a float.
3354   if (IROffset == 0 && IRType->isFloatTy())
3355     return true;
3356 
3357   // If this is a struct, recurse into the field at the specified offset.
3358   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3359     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3360     unsigned Elt = SL->getElementContainingOffset(IROffset);
3361     IROffset -= SL->getElementOffset(Elt);
3362     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3363   }
3364 
3365   // If this is an array, recurse into the field at the specified offset.
3366   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3367     llvm::Type *EltTy = ATy->getElementType();
3368     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3369     IROffset -= IROffset/EltSize*EltSize;
3370     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3371   }
3372 
3373   return false;
3374 }
3375 
3376 
3377 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3378 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3379 llvm::Type *X86_64ABIInfo::
3380 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3381                    QualType SourceTy, unsigned SourceOffset) const {
3382   // The only three choices we have are either double, <2 x float>, or float. We
3383   // pass as float if the last 4 bytes is just padding.  This happens for
3384   // structs that contain 3 floats.
3385   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3386                             SourceOffset*8+64, getContext()))
3387     return llvm::Type::getFloatTy(getVMContext());
3388 
3389   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3390   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3391   // case.
3392   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3393       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3394     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3395                                       2);
3396 
3397   return llvm::Type::getDoubleTy(getVMContext());
3398 }
3399 
3400 
3401 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3402 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3403 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3404 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3405 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3406 /// etc).
3407 ///
3408 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3409 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3410 /// the 8-byte value references.  PrefType may be null.
3411 ///
3412 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3413 /// an offset into this that we're processing (which is always either 0 or 8).
3414 ///
3415 llvm::Type *X86_64ABIInfo::
3416 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3417                        QualType SourceTy, unsigned SourceOffset) const {
3418   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3419   // returning an 8-byte unit starting with it.  See if we can safely use it.
3420   if (IROffset == 0) {
3421     // Pointers and int64's always fill the 8-byte unit.
3422     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3423         IRType->isIntegerTy(64))
3424       return IRType;
3425 
3426     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3427     // goodness in the source type is just tail padding.  This is allowed to
3428     // kick in for struct {double,int} on the int, but not on
3429     // struct{double,int,int} because we wouldn't return the second int.  We
3430     // have to do this analysis on the source type because we can't depend on
3431     // unions being lowered a specific way etc.
3432     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3433         IRType->isIntegerTy(32) ||
3434         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3435       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3436           cast<llvm::IntegerType>(IRType)->getBitWidth();
3437 
3438       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3439                                 SourceOffset*8+64, getContext()))
3440         return IRType;
3441     }
3442   }
3443 
3444   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3445     // If this is a struct, recurse into the field at the specified offset.
3446     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3447     if (IROffset < SL->getSizeInBytes()) {
3448       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3449       IROffset -= SL->getElementOffset(FieldIdx);
3450 
3451       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3452                                     SourceTy, SourceOffset);
3453     }
3454   }
3455 
3456   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3457     llvm::Type *EltTy = ATy->getElementType();
3458     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3459     unsigned EltOffset = IROffset/EltSize*EltSize;
3460     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3461                                   SourceOffset);
3462   }
3463 
3464   // Okay, we don't have any better idea of what to pass, so we pass this in an
3465   // integer register that isn't too big to fit the rest of the struct.
3466   unsigned TySizeInBytes =
3467     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3468 
3469   assert(TySizeInBytes != SourceOffset && "Empty field?");
3470 
3471   // It is always safe to classify this as an integer type up to i64 that
3472   // isn't larger than the structure.
3473   return llvm::IntegerType::get(getVMContext(),
3474                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3475 }
3476 
3477 
3478 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3479 /// be used as elements of a two register pair to pass or return, return a
3480 /// first class aggregate to represent them.  For example, if the low part of
3481 /// a by-value argument should be passed as i32* and the high part as float,
3482 /// return {i32*, float}.
3483 static llvm::Type *
3484 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3485                            const llvm::DataLayout &TD) {
3486   // In order to correctly satisfy the ABI, we need to the high part to start
3487   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3488   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3489   // the second element at offset 8.  Check for this:
3490   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3491   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3492   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3493   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3494 
3495   // To handle this, we have to increase the size of the low part so that the
3496   // second element will start at an 8 byte offset.  We can't increase the size
3497   // of the second element because it might make us access off the end of the
3498   // struct.
3499   if (HiStart != 8) {
3500     // There are usually two sorts of types the ABI generation code can produce
3501     // for the low part of a pair that aren't 8 bytes in size: float or
3502     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3503     // NaCl).
3504     // Promote these to a larger type.
3505     if (Lo->isFloatTy())
3506       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3507     else {
3508       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3509              && "Invalid/unknown lo type");
3510       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3511     }
3512   }
3513 
3514   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3515 
3516   // Verify that the second element is at an 8-byte offset.
3517   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3518          "Invalid x86-64 argument pair!");
3519   return Result;
3520 }
3521 
3522 ABIArgInfo X86_64ABIInfo::
3523 classifyReturnType(QualType RetTy) const {
3524   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3525   // classification algorithm.
3526   X86_64ABIInfo::Class Lo, Hi;
3527   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3528 
3529   // Check some invariants.
3530   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3531   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3532 
3533   llvm::Type *ResType = nullptr;
3534   switch (Lo) {
3535   case NoClass:
3536     if (Hi == NoClass)
3537       return ABIArgInfo::getIgnore();
3538     // If the low part is just padding, it takes no register, leave ResType
3539     // null.
3540     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3541            "Unknown missing lo part");
3542     break;
3543 
3544   case SSEUp:
3545   case X87Up:
3546     llvm_unreachable("Invalid classification for lo word.");
3547 
3548     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3549     // hidden argument.
3550   case Memory:
3551     return getIndirectReturnResult(RetTy);
3552 
3553     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3554     // available register of the sequence %rax, %rdx is used.
3555   case Integer:
3556     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3557 
3558     // If we have a sign or zero extended integer, make sure to return Extend
3559     // so that the parameter gets the right LLVM IR attributes.
3560     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3561       // Treat an enum type as its underlying type.
3562       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3563         RetTy = EnumTy->getDecl()->getIntegerType();
3564 
3565       if (RetTy->isIntegralOrEnumerationType() &&
3566           isPromotableIntegerTypeForABI(RetTy))
3567         return ABIArgInfo::getExtend(RetTy);
3568     }
3569     break;
3570 
3571     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3572     // available SSE register of the sequence %xmm0, %xmm1 is used.
3573   case SSE:
3574     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3575     break;
3576 
3577     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3578     // returned on the X87 stack in %st0 as 80-bit x87 number.
3579   case X87:
3580     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3581     break;
3582 
3583     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3584     // part of the value is returned in %st0 and the imaginary part in
3585     // %st1.
3586   case ComplexX87:
3587     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3588     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3589                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3590     break;
3591   }
3592 
3593   llvm::Type *HighPart = nullptr;
3594   switch (Hi) {
3595     // Memory was handled previously and X87 should
3596     // never occur as a hi class.
3597   case Memory:
3598   case X87:
3599     llvm_unreachable("Invalid classification for hi word.");
3600 
3601   case ComplexX87: // Previously handled.
3602   case NoClass:
3603     break;
3604 
3605   case Integer:
3606     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3607     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3608       return ABIArgInfo::getDirect(HighPart, 8);
3609     break;
3610   case SSE:
3611     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3612     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3613       return ABIArgInfo::getDirect(HighPart, 8);
3614     break;
3615 
3616     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3617     // is passed in the next available eightbyte chunk if the last used
3618     // vector register.
3619     //
3620     // SSEUP should always be preceded by SSE, just widen.
3621   case SSEUp:
3622     assert(Lo == SSE && "Unexpected SSEUp classification.");
3623     ResType = GetByteVectorType(RetTy);
3624     break;
3625 
3626     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3627     // returned together with the previous X87 value in %st0.
3628   case X87Up:
3629     // If X87Up is preceded by X87, we don't need to do
3630     // anything. However, in some cases with unions it may not be
3631     // preceded by X87. In such situations we follow gcc and pass the
3632     // extra bits in an SSE reg.
3633     if (Lo != X87) {
3634       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3635       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3636         return ABIArgInfo::getDirect(HighPart, 8);
3637     }
3638     break;
3639   }
3640 
3641   // If a high part was specified, merge it together with the low part.  It is
3642   // known to pass in the high eightbyte of the result.  We do this by forming a
3643   // first class struct aggregate with the high and low part: {low, high}
3644   if (HighPart)
3645     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3646 
3647   return ABIArgInfo::getDirect(ResType);
3648 }
3649 
3650 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3651   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3652   bool isNamedArg)
3653   const
3654 {
3655   Ty = useFirstFieldIfTransparentUnion(Ty);
3656 
3657   X86_64ABIInfo::Class Lo, Hi;
3658   classify(Ty, 0, Lo, Hi, isNamedArg);
3659 
3660   // Check some invariants.
3661   // FIXME: Enforce these by construction.
3662   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3663   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3664 
3665   neededInt = 0;
3666   neededSSE = 0;
3667   llvm::Type *ResType = nullptr;
3668   switch (Lo) {
3669   case NoClass:
3670     if (Hi == NoClass)
3671       return ABIArgInfo::getIgnore();
3672     // If the low part is just padding, it takes no register, leave ResType
3673     // null.
3674     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3675            "Unknown missing lo part");
3676     break;
3677 
3678     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3679     // on the stack.
3680   case Memory:
3681 
3682     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3683     // COMPLEX_X87, it is passed in memory.
3684   case X87:
3685   case ComplexX87:
3686     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3687       ++neededInt;
3688     return getIndirectResult(Ty, freeIntRegs);
3689 
3690   case SSEUp:
3691   case X87Up:
3692     llvm_unreachable("Invalid classification for lo word.");
3693 
3694     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3695     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3696     // and %r9 is used.
3697   case Integer:
3698     ++neededInt;
3699 
3700     // Pick an 8-byte type based on the preferred type.
3701     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3702 
3703     // If we have a sign or zero extended integer, make sure to return Extend
3704     // so that the parameter gets the right LLVM IR attributes.
3705     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3706       // Treat an enum type as its underlying type.
3707       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3708         Ty = EnumTy->getDecl()->getIntegerType();
3709 
3710       if (Ty->isIntegralOrEnumerationType() &&
3711           isPromotableIntegerTypeForABI(Ty))
3712         return ABIArgInfo::getExtend(Ty);
3713     }
3714 
3715     break;
3716 
3717     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3718     // available SSE register is used, the registers are taken in the
3719     // order from %xmm0 to %xmm7.
3720   case SSE: {
3721     llvm::Type *IRType = CGT.ConvertType(Ty);
3722     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3723     ++neededSSE;
3724     break;
3725   }
3726   }
3727 
3728   llvm::Type *HighPart = nullptr;
3729   switch (Hi) {
3730     // Memory was handled previously, ComplexX87 and X87 should
3731     // never occur as hi classes, and X87Up must be preceded by X87,
3732     // which is passed in memory.
3733   case Memory:
3734   case X87:
3735   case ComplexX87:
3736     llvm_unreachable("Invalid classification for hi word.");
3737 
3738   case NoClass: break;
3739 
3740   case Integer:
3741     ++neededInt;
3742     // Pick an 8-byte type based on the preferred type.
3743     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3744 
3745     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3746       return ABIArgInfo::getDirect(HighPart, 8);
3747     break;
3748 
3749     // X87Up generally doesn't occur here (long double is passed in
3750     // memory), except in situations involving unions.
3751   case X87Up:
3752   case SSE:
3753     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3754 
3755     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3756       return ABIArgInfo::getDirect(HighPart, 8);
3757 
3758     ++neededSSE;
3759     break;
3760 
3761     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3762     // eightbyte is passed in the upper half of the last used SSE
3763     // register.  This only happens when 128-bit vectors are passed.
3764   case SSEUp:
3765     assert(Lo == SSE && "Unexpected SSEUp classification");
3766     ResType = GetByteVectorType(Ty);
3767     break;
3768   }
3769 
3770   // If a high part was specified, merge it together with the low part.  It is
3771   // known to pass in the high eightbyte of the result.  We do this by forming a
3772   // first class struct aggregate with the high and low part: {low, high}
3773   if (HighPart)
3774     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3775 
3776   return ABIArgInfo::getDirect(ResType);
3777 }
3778 
3779 ABIArgInfo
3780 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3781                                              unsigned &NeededSSE) const {
3782   auto RT = Ty->getAs<RecordType>();
3783   assert(RT && "classifyRegCallStructType only valid with struct types");
3784 
3785   if (RT->getDecl()->hasFlexibleArrayMember())
3786     return getIndirectReturnResult(Ty);
3787 
3788   // Sum up bases
3789   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3790     if (CXXRD->isDynamicClass()) {
3791       NeededInt = NeededSSE = 0;
3792       return getIndirectReturnResult(Ty);
3793     }
3794 
3795     for (const auto &I : CXXRD->bases())
3796       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3797               .isIndirect()) {
3798         NeededInt = NeededSSE = 0;
3799         return getIndirectReturnResult(Ty);
3800       }
3801   }
3802 
3803   // Sum up members
3804   for (const auto *FD : RT->getDecl()->fields()) {
3805     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3806       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3807               .isIndirect()) {
3808         NeededInt = NeededSSE = 0;
3809         return getIndirectReturnResult(Ty);
3810       }
3811     } else {
3812       unsigned LocalNeededInt, LocalNeededSSE;
3813       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3814                                LocalNeededSSE, true)
3815               .isIndirect()) {
3816         NeededInt = NeededSSE = 0;
3817         return getIndirectReturnResult(Ty);
3818       }
3819       NeededInt += LocalNeededInt;
3820       NeededSSE += LocalNeededSSE;
3821     }
3822   }
3823 
3824   return ABIArgInfo::getDirect();
3825 }
3826 
3827 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3828                                                     unsigned &NeededInt,
3829                                                     unsigned &NeededSSE) const {
3830 
3831   NeededInt = 0;
3832   NeededSSE = 0;
3833 
3834   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3835 }
3836 
3837 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3838 
3839   const unsigned CallingConv = FI.getCallingConvention();
3840   // It is possible to force Win64 calling convention on any x86_64 target by
3841   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3842   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3843   if (CallingConv == llvm::CallingConv::Win64) {
3844     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3845     Win64ABIInfo.computeInfo(FI);
3846     return;
3847   }
3848 
3849   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3850 
3851   // Keep track of the number of assigned registers.
3852   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3853   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3854   unsigned NeededInt, NeededSSE;
3855 
3856   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3857     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3858         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3859       FI.getReturnInfo() =
3860           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3861       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3862         FreeIntRegs -= NeededInt;
3863         FreeSSERegs -= NeededSSE;
3864       } else {
3865         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3866       }
3867     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3868                getContext().getCanonicalType(FI.getReturnType()
3869                                                  ->getAs<ComplexType>()
3870                                                  ->getElementType()) ==
3871                    getContext().LongDoubleTy)
3872       // Complex Long Double Type is passed in Memory when Regcall
3873       // calling convention is used.
3874       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3875     else
3876       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3877   }
3878 
3879   // If the return value is indirect, then the hidden argument is consuming one
3880   // integer register.
3881   if (FI.getReturnInfo().isIndirect())
3882     --FreeIntRegs;
3883 
3884   // The chain argument effectively gives us another free register.
3885   if (FI.isChainCall())
3886     ++FreeIntRegs;
3887 
3888   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3889   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3890   // get assigned (in left-to-right order) for passing as follows...
3891   unsigned ArgNo = 0;
3892   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3893        it != ie; ++it, ++ArgNo) {
3894     bool IsNamedArg = ArgNo < NumRequiredArgs;
3895 
3896     if (IsRegCall && it->type->isStructureOrClassType())
3897       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3898     else
3899       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3900                                       NeededSSE, IsNamedArg);
3901 
3902     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3903     // eightbyte of an argument, the whole argument is passed on the
3904     // stack. If registers have already been assigned for some
3905     // eightbytes of such an argument, the assignments get reverted.
3906     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3907       FreeIntRegs -= NeededInt;
3908       FreeSSERegs -= NeededSSE;
3909     } else {
3910       it->info = getIndirectResult(it->type, FreeIntRegs);
3911     }
3912   }
3913 }
3914 
3915 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3916                                          Address VAListAddr, QualType Ty) {
3917   Address overflow_arg_area_p =
3918       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3919   llvm::Value *overflow_arg_area =
3920     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3921 
3922   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3923   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3924   // It isn't stated explicitly in the standard, but in practice we use
3925   // alignment greater than 16 where necessary.
3926   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3927   if (Align > CharUnits::fromQuantity(8)) {
3928     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3929                                                       Align);
3930   }
3931 
3932   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3933   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3934   llvm::Value *Res =
3935     CGF.Builder.CreateBitCast(overflow_arg_area,
3936                               llvm::PointerType::getUnqual(LTy));
3937 
3938   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3939   // l->overflow_arg_area + sizeof(type).
3940   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3941   // an 8 byte boundary.
3942 
3943   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3944   llvm::Value *Offset =
3945       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3946   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3947                                             "overflow_arg_area.next");
3948   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3949 
3950   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3951   return Address(Res, Align);
3952 }
3953 
3954 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3955                                  QualType Ty) const {
3956   // Assume that va_list type is correct; should be pointer to LLVM type:
3957   // struct {
3958   //   i32 gp_offset;
3959   //   i32 fp_offset;
3960   //   i8* overflow_arg_area;
3961   //   i8* reg_save_area;
3962   // };
3963   unsigned neededInt, neededSSE;
3964 
3965   Ty = getContext().getCanonicalType(Ty);
3966   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3967                                        /*isNamedArg*/false);
3968 
3969   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3970   // in the registers. If not go to step 7.
3971   if (!neededInt && !neededSSE)
3972     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3973 
3974   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3975   // general purpose registers needed to pass type and num_fp to hold
3976   // the number of floating point registers needed.
3977 
3978   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3979   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3980   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3981   //
3982   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3983   // register save space).
3984 
3985   llvm::Value *InRegs = nullptr;
3986   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3987   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3988   if (neededInt) {
3989     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3990     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3991     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3992     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3993   }
3994 
3995   if (neededSSE) {
3996     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3997     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3998     llvm::Value *FitsInFP =
3999       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4000     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4001     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4002   }
4003 
4004   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4005   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4006   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4007   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4008 
4009   // Emit code to load the value if it was passed in registers.
4010 
4011   CGF.EmitBlock(InRegBlock);
4012 
4013   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4014   // an offset of l->gp_offset and/or l->fp_offset. This may require
4015   // copying to a temporary location in case the parameter is passed
4016   // in different register classes or requires an alignment greater
4017   // than 8 for general purpose registers and 16 for XMM registers.
4018   //
4019   // FIXME: This really results in shameful code when we end up needing to
4020   // collect arguments from different places; often what should result in a
4021   // simple assembling of a structure from scattered addresses has many more
4022   // loads than necessary. Can we clean this up?
4023   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4024   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4025       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4026 
4027   Address RegAddr = Address::invalid();
4028   if (neededInt && neededSSE) {
4029     // FIXME: Cleanup.
4030     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4031     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4032     Address Tmp = CGF.CreateMemTemp(Ty);
4033     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4034     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4035     llvm::Type *TyLo = ST->getElementType(0);
4036     llvm::Type *TyHi = ST->getElementType(1);
4037     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4038            "Unexpected ABI info for mixed regs");
4039     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4040     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4041     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4042     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4043     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4044     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4045 
4046     // Copy the first element.
4047     // FIXME: Our choice of alignment here and below is probably pessimistic.
4048     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4049         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4050         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4051     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4052 
4053     // Copy the second element.
4054     V = CGF.Builder.CreateAlignedLoad(
4055         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4056         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4057     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4058 
4059     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4060   } else if (neededInt) {
4061     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4062                       CharUnits::fromQuantity(8));
4063     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4064 
4065     // Copy to a temporary if necessary to ensure the appropriate alignment.
4066     std::pair<CharUnits, CharUnits> SizeAlign =
4067         getContext().getTypeInfoInChars(Ty);
4068     uint64_t TySize = SizeAlign.first.getQuantity();
4069     CharUnits TyAlign = SizeAlign.second;
4070 
4071     // Copy into a temporary if the type is more aligned than the
4072     // register save area.
4073     if (TyAlign.getQuantity() > 8) {
4074       Address Tmp = CGF.CreateMemTemp(Ty);
4075       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4076       RegAddr = Tmp;
4077     }
4078 
4079   } else if (neededSSE == 1) {
4080     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4081                       CharUnits::fromQuantity(16));
4082     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4083   } else {
4084     assert(neededSSE == 2 && "Invalid number of needed registers!");
4085     // SSE registers are spaced 16 bytes apart in the register save
4086     // area, we need to collect the two eightbytes together.
4087     // The ABI isn't explicit about this, but it seems reasonable
4088     // to assume that the slots are 16-byte aligned, since the stack is
4089     // naturally 16-byte aligned and the prologue is expected to store
4090     // all the SSE registers to the RSA.
4091     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4092                                 CharUnits::fromQuantity(16));
4093     Address RegAddrHi =
4094       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4095                                              CharUnits::fromQuantity(16));
4096     llvm::Type *ST = AI.canHaveCoerceToType()
4097                          ? AI.getCoerceToType()
4098                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4099     llvm::Value *V;
4100     Address Tmp = CGF.CreateMemTemp(Ty);
4101     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4102     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4103         RegAddrLo, ST->getStructElementType(0)));
4104     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4105     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4106         RegAddrHi, ST->getStructElementType(1)));
4107     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4108 
4109     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4110   }
4111 
4112   // AMD64-ABI 3.5.7p5: Step 5. Set:
4113   // l->gp_offset = l->gp_offset + num_gp * 8
4114   // l->fp_offset = l->fp_offset + num_fp * 16.
4115   if (neededInt) {
4116     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4117     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4118                             gp_offset_p);
4119   }
4120   if (neededSSE) {
4121     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4122     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4123                             fp_offset_p);
4124   }
4125   CGF.EmitBranch(ContBlock);
4126 
4127   // Emit code to load the value if it was passed in memory.
4128 
4129   CGF.EmitBlock(InMemBlock);
4130   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4131 
4132   // Return the appropriate result.
4133 
4134   CGF.EmitBlock(ContBlock);
4135   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4136                                  "vaarg.addr");
4137   return ResAddr;
4138 }
4139 
4140 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4141                                    QualType Ty) const {
4142   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4143                           CGF.getContext().getTypeInfoInChars(Ty),
4144                           CharUnits::fromQuantity(8),
4145                           /*allowHigherAlign*/ false);
4146 }
4147 
4148 ABIArgInfo
4149 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4150                                     const ABIArgInfo &current) const {
4151   // Assumes vectorCall calling convention.
4152   const Type *Base = nullptr;
4153   uint64_t NumElts = 0;
4154 
4155   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4156       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4157     FreeSSERegs -= NumElts;
4158     return getDirectX86Hva();
4159   }
4160   return current;
4161 }
4162 
4163 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4164                                       bool IsReturnType, bool IsVectorCall,
4165                                       bool IsRegCall) const {
4166 
4167   if (Ty->isVoidType())
4168     return ABIArgInfo::getIgnore();
4169 
4170   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4171     Ty = EnumTy->getDecl()->getIntegerType();
4172 
4173   TypeInfo Info = getContext().getTypeInfo(Ty);
4174   uint64_t Width = Info.Width;
4175   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4176 
4177   const RecordType *RT = Ty->getAs<RecordType>();
4178   if (RT) {
4179     if (!IsReturnType) {
4180       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4181         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4182     }
4183 
4184     if (RT->getDecl()->hasFlexibleArrayMember())
4185       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4186 
4187   }
4188 
4189   const Type *Base = nullptr;
4190   uint64_t NumElts = 0;
4191   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4192   // other targets.
4193   if ((IsVectorCall || IsRegCall) &&
4194       isHomogeneousAggregate(Ty, Base, NumElts)) {
4195     if (IsRegCall) {
4196       if (FreeSSERegs >= NumElts) {
4197         FreeSSERegs -= NumElts;
4198         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4199           return ABIArgInfo::getDirect();
4200         return ABIArgInfo::getExpand();
4201       }
4202       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4203     } else if (IsVectorCall) {
4204       if (FreeSSERegs >= NumElts &&
4205           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4206         FreeSSERegs -= NumElts;
4207         return ABIArgInfo::getDirect();
4208       } else if (IsReturnType) {
4209         return ABIArgInfo::getExpand();
4210       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4211         // HVAs are delayed and reclassified in the 2nd step.
4212         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4213       }
4214     }
4215   }
4216 
4217   if (Ty->isMemberPointerType()) {
4218     // If the member pointer is represented by an LLVM int or ptr, pass it
4219     // directly.
4220     llvm::Type *LLTy = CGT.ConvertType(Ty);
4221     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4222       return ABIArgInfo::getDirect();
4223   }
4224 
4225   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4226     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4227     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4228     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4229       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4230 
4231     // Otherwise, coerce it to a small integer.
4232     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4233   }
4234 
4235   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4236     switch (BT->getKind()) {
4237     case BuiltinType::Bool:
4238       // Bool type is always extended to the ABI, other builtin types are not
4239       // extended.
4240       return ABIArgInfo::getExtend(Ty);
4241 
4242     case BuiltinType::LongDouble:
4243       // Mingw64 GCC uses the old 80 bit extended precision floating point
4244       // unit. It passes them indirectly through memory.
4245       if (IsMingw64) {
4246         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4247         if (LDF == &llvm::APFloat::x87DoubleExtended())
4248           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4249       }
4250       break;
4251 
4252     case BuiltinType::Int128:
4253     case BuiltinType::UInt128:
4254       // If it's a parameter type, the normal ABI rule is that arguments larger
4255       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4256       // even though it isn't particularly efficient.
4257       if (!IsReturnType)
4258         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4259 
4260       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4261       // Clang matches them for compatibility.
4262       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4263           llvm::Type::getInt64Ty(getVMContext()), 2));
4264 
4265     default:
4266       break;
4267     }
4268   }
4269 
4270   if (Ty->isExtIntType()) {
4271     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4272     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4273     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4274     // anyway as long is it fits in them, so we don't have to check the power of
4275     // 2.
4276     if (Width <= 64)
4277       return ABIArgInfo::getDirect();
4278     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4279   }
4280 
4281   return ABIArgInfo::getDirect();
4282 }
4283 
4284 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4285                                              unsigned FreeSSERegs,
4286                                              bool IsVectorCall,
4287                                              bool IsRegCall) const {
4288   unsigned Count = 0;
4289   for (auto &I : FI.arguments()) {
4290     // Vectorcall in x64 only permits the first 6 arguments to be passed
4291     // as XMM/YMM registers.
4292     if (Count < VectorcallMaxParamNumAsReg)
4293       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4294     else {
4295       // Since these cannot be passed in registers, pretend no registers
4296       // are left.
4297       unsigned ZeroSSERegsAvail = 0;
4298       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4299                         IsVectorCall, IsRegCall);
4300     }
4301     ++Count;
4302   }
4303 
4304   for (auto &I : FI.arguments()) {
4305     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4306   }
4307 }
4308 
4309 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4310   const unsigned CC = FI.getCallingConvention();
4311   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4312   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4313 
4314   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4315   // classification rules.
4316   if (CC == llvm::CallingConv::X86_64_SysV) {
4317     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4318     SysVABIInfo.computeInfo(FI);
4319     return;
4320   }
4321 
4322   unsigned FreeSSERegs = 0;
4323   if (IsVectorCall) {
4324     // We can use up to 4 SSE return registers with vectorcall.
4325     FreeSSERegs = 4;
4326   } else if (IsRegCall) {
4327     // RegCall gives us 16 SSE registers.
4328     FreeSSERegs = 16;
4329   }
4330 
4331   if (!getCXXABI().classifyReturnType(FI))
4332     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4333                                   IsVectorCall, IsRegCall);
4334 
4335   if (IsVectorCall) {
4336     // We can use up to 6 SSE register parameters with vectorcall.
4337     FreeSSERegs = 6;
4338   } else if (IsRegCall) {
4339     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4340     FreeSSERegs = 16;
4341   }
4342 
4343   if (IsVectorCall) {
4344     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4345   } else {
4346     for (auto &I : FI.arguments())
4347       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4348   }
4349 
4350 }
4351 
4352 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4353                                     QualType Ty) const {
4354 
4355   bool IsIndirect = false;
4356 
4357   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4358   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4359   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4360     uint64_t Width = getContext().getTypeSize(Ty);
4361     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4362   }
4363 
4364   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4365                           CGF.getContext().getTypeInfoInChars(Ty),
4366                           CharUnits::fromQuantity(8),
4367                           /*allowHigherAlign*/ false);
4368 }
4369 
4370 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4371                                         llvm::Value *Address, bool Is64Bit,
4372                                         bool IsAIX) {
4373   // This is calculated from the LLVM and GCC tables and verified
4374   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4375 
4376   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4377 
4378   llvm::IntegerType *i8 = CGF.Int8Ty;
4379   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4380   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4381   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4382 
4383   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4384   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4385 
4386   // 32-63: fp0-31, the 8-byte floating-point registers
4387   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4388 
4389   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4390   // 64: mq
4391   // 65: lr
4392   // 66: ctr
4393   // 67: ap
4394   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4395 
4396   // 68-76 are various 4-byte special-purpose registers:
4397   // 68-75 cr0-7
4398   // 76: xer
4399   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4400 
4401   // 77-108: v0-31, the 16-byte vector registers
4402   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4403 
4404   // 109: vrsave
4405   // 110: vscr
4406   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4407 
4408   // AIX does not utilize the rest of the registers.
4409   if (IsAIX)
4410     return false;
4411 
4412   // 111: spe_acc
4413   // 112: spefscr
4414   // 113: sfp
4415   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4416 
4417   if (!Is64Bit)
4418     return false;
4419 
4420   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4421   // or above CPU.
4422   // 64-bit only registers:
4423   // 114: tfhar
4424   // 115: tfiar
4425   // 116: texasr
4426   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4427 
4428   return false;
4429 }
4430 
4431 // AIX
4432 namespace {
4433 /// AIXABIInfo - The AIX XCOFF ABI information.
4434 class AIXABIInfo : public ABIInfo {
4435   const bool Is64Bit;
4436   const unsigned PtrByteSize;
4437   CharUnits getParamTypeAlignment(QualType Ty) const;
4438 
4439 public:
4440   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4441       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4442 
4443   bool isPromotableTypeForABI(QualType Ty) const;
4444 
4445   ABIArgInfo classifyReturnType(QualType RetTy) const;
4446   ABIArgInfo classifyArgumentType(QualType Ty) const;
4447 
4448   void computeInfo(CGFunctionInfo &FI) const override {
4449     if (!getCXXABI().classifyReturnType(FI))
4450       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4451 
4452     for (auto &I : FI.arguments())
4453       I.info = classifyArgumentType(I.type);
4454   }
4455 
4456   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4457                     QualType Ty) const override;
4458 };
4459 
4460 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4461   const bool Is64Bit;
4462 
4463 public:
4464   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4465       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4466         Is64Bit(Is64Bit) {}
4467   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4468     return 1; // r1 is the dedicated stack pointer
4469   }
4470 
4471   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4472                                llvm::Value *Address) const override;
4473 };
4474 } // namespace
4475 
4476 // Return true if the ABI requires Ty to be passed sign- or zero-
4477 // extended to 32/64 bits.
4478 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4479   // Treat an enum type as its underlying type.
4480   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4481     Ty = EnumTy->getDecl()->getIntegerType();
4482 
4483   // Promotable integer types are required to be promoted by the ABI.
4484   if (Ty->isPromotableIntegerType())
4485     return true;
4486 
4487   if (!Is64Bit)
4488     return false;
4489 
4490   // For 64 bit mode, in addition to the usual promotable integer types, we also
4491   // need to extend all 32-bit types, since the ABI requires promotion to 64
4492   // bits.
4493   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4494     switch (BT->getKind()) {
4495     case BuiltinType::Int:
4496     case BuiltinType::UInt:
4497       return true;
4498     default:
4499       break;
4500     }
4501 
4502   return false;
4503 }
4504 
4505 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4506   if (RetTy->isAnyComplexType())
4507     return ABIArgInfo::getDirect();
4508 
4509   if (RetTy->isVectorType())
4510     llvm::report_fatal_error("vector type is not supported on AIX yet");
4511 
4512   if (RetTy->isVoidType())
4513     return ABIArgInfo::getIgnore();
4514 
4515   if (isAggregateTypeForABI(RetTy))
4516     return getNaturalAlignIndirect(RetTy);
4517 
4518   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4519                                         : ABIArgInfo::getDirect());
4520 }
4521 
4522 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4523   Ty = useFirstFieldIfTransparentUnion(Ty);
4524 
4525   if (Ty->isAnyComplexType())
4526     return ABIArgInfo::getDirect();
4527 
4528   if (Ty->isVectorType())
4529     llvm::report_fatal_error("vector type is not supported on AIX yet");
4530 
4531   if (isAggregateTypeForABI(Ty)) {
4532     // Records with non-trivial destructors/copy-constructors should not be
4533     // passed by value.
4534     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4535       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4536 
4537     CharUnits CCAlign = getParamTypeAlignment(Ty);
4538     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4539 
4540     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4541                                    /*Realign*/ TyAlign > CCAlign);
4542   }
4543 
4544   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4545                                      : ABIArgInfo::getDirect());
4546 }
4547 
4548 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4549   // Complex types are passed just like their elements.
4550   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4551     Ty = CTy->getElementType();
4552 
4553   if (Ty->isVectorType())
4554     llvm::report_fatal_error("vector type is not supported on AIX yet");
4555 
4556   // If the structure contains a vector type, the alignment is 16.
4557   if (isRecordWithSIMDVectorType(getContext(), Ty))
4558     return CharUnits::fromQuantity(16);
4559 
4560   return CharUnits::fromQuantity(PtrByteSize);
4561 }
4562 
4563 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4564                               QualType Ty) const {
4565   if (Ty->isAnyComplexType())
4566     llvm::report_fatal_error("complex type is not supported on AIX yet");
4567 
4568   if (Ty->isVectorType())
4569     llvm::report_fatal_error("vector type is not supported on AIX yet");
4570 
4571   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4572   TypeInfo.second = getParamTypeAlignment(Ty);
4573 
4574   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4575 
4576   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4577                           SlotSize, /*AllowHigher*/ true);
4578 }
4579 
4580 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4581     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4582   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4583 }
4584 
4585 // PowerPC-32
4586 namespace {
4587 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4588 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4589   bool IsSoftFloatABI;
4590   bool IsRetSmallStructInRegABI;
4591 
4592   CharUnits getParamTypeAlignment(QualType Ty) const;
4593 
4594 public:
4595   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4596                      bool RetSmallStructInRegABI)
4597       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4598         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4599 
4600   ABIArgInfo classifyReturnType(QualType RetTy) const;
4601 
4602   void computeInfo(CGFunctionInfo &FI) const override {
4603     if (!getCXXABI().classifyReturnType(FI))
4604       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4605     for (auto &I : FI.arguments())
4606       I.info = classifyArgumentType(I.type);
4607   }
4608 
4609   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4610                     QualType Ty) const override;
4611 };
4612 
4613 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4614 public:
4615   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4616                          bool RetSmallStructInRegABI)
4617       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4618             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4619 
4620   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4621                                      const CodeGenOptions &Opts);
4622 
4623   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4624     // This is recovered from gcc output.
4625     return 1; // r1 is the dedicated stack pointer
4626   }
4627 
4628   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4629                                llvm::Value *Address) const override;
4630 };
4631 }
4632 
4633 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4634   // Complex types are passed just like their elements.
4635   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4636     Ty = CTy->getElementType();
4637 
4638   if (Ty->isVectorType())
4639     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4640                                                                        : 4);
4641 
4642   // For single-element float/vector structs, we consider the whole type
4643   // to have the same alignment requirements as its single element.
4644   const Type *AlignTy = nullptr;
4645   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4646     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4647     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4648         (BT && BT->isFloatingPoint()))
4649       AlignTy = EltType;
4650   }
4651 
4652   if (AlignTy)
4653     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4654   return CharUnits::fromQuantity(4);
4655 }
4656 
4657 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4658   uint64_t Size;
4659 
4660   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4661   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4662       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4663     // System V ABI (1995), page 3-22, specified:
4664     // > A structure or union whose size is less than or equal to 8 bytes
4665     // > shall be returned in r3 and r4, as if it were first stored in the
4666     // > 8-byte aligned memory area and then the low addressed word were
4667     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4668     // > the last member of the structure or union are not defined.
4669     //
4670     // GCC for big-endian PPC32 inserts the pad before the first member,
4671     // not "beyond the last member" of the struct.  To stay compatible
4672     // with GCC, we coerce the struct to an integer of the same size.
4673     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4674     if (Size == 0)
4675       return ABIArgInfo::getIgnore();
4676     else {
4677       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4678       return ABIArgInfo::getDirect(CoerceTy);
4679     }
4680   }
4681 
4682   return DefaultABIInfo::classifyReturnType(RetTy);
4683 }
4684 
4685 // TODO: this implementation is now likely redundant with
4686 // DefaultABIInfo::EmitVAArg.
4687 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4688                                       QualType Ty) const {
4689   if (getTarget().getTriple().isOSDarwin()) {
4690     auto TI = getContext().getTypeInfoInChars(Ty);
4691     TI.second = getParamTypeAlignment(Ty);
4692 
4693     CharUnits SlotSize = CharUnits::fromQuantity(4);
4694     return emitVoidPtrVAArg(CGF, VAList, Ty,
4695                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4696                             /*AllowHigherAlign=*/true);
4697   }
4698 
4699   const unsigned OverflowLimit = 8;
4700   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4701     // TODO: Implement this. For now ignore.
4702     (void)CTy;
4703     return Address::invalid(); // FIXME?
4704   }
4705 
4706   // struct __va_list_tag {
4707   //   unsigned char gpr;
4708   //   unsigned char fpr;
4709   //   unsigned short reserved;
4710   //   void *overflow_arg_area;
4711   //   void *reg_save_area;
4712   // };
4713 
4714   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4715   bool isInt =
4716       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4717   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4718 
4719   // All aggregates are passed indirectly?  That doesn't seem consistent
4720   // with the argument-lowering code.
4721   bool isIndirect = Ty->isAggregateType();
4722 
4723   CGBuilderTy &Builder = CGF.Builder;
4724 
4725   // The calling convention either uses 1-2 GPRs or 1 FPR.
4726   Address NumRegsAddr = Address::invalid();
4727   if (isInt || IsSoftFloatABI) {
4728     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4729   } else {
4730     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4731   }
4732 
4733   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4734 
4735   // "Align" the register count when TY is i64.
4736   if (isI64 || (isF64 && IsSoftFloatABI)) {
4737     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4738     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4739   }
4740 
4741   llvm::Value *CC =
4742       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4743 
4744   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4745   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4746   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4747 
4748   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4749 
4750   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4751   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4752 
4753   // Case 1: consume registers.
4754   Address RegAddr = Address::invalid();
4755   {
4756     CGF.EmitBlock(UsingRegs);
4757 
4758     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4759     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4760                       CharUnits::fromQuantity(8));
4761     assert(RegAddr.getElementType() == CGF.Int8Ty);
4762 
4763     // Floating-point registers start after the general-purpose registers.
4764     if (!(isInt || IsSoftFloatABI)) {
4765       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4766                                                    CharUnits::fromQuantity(32));
4767     }
4768 
4769     // Get the address of the saved value by scaling the number of
4770     // registers we've used by the number of
4771     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4772     llvm::Value *RegOffset =
4773       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4774     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4775                                             RegAddr.getPointer(), RegOffset),
4776                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4777     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4778 
4779     // Increase the used-register count.
4780     NumRegs =
4781       Builder.CreateAdd(NumRegs,
4782                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4783     Builder.CreateStore(NumRegs, NumRegsAddr);
4784 
4785     CGF.EmitBranch(Cont);
4786   }
4787 
4788   // Case 2: consume space in the overflow area.
4789   Address MemAddr = Address::invalid();
4790   {
4791     CGF.EmitBlock(UsingOverflow);
4792 
4793     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4794 
4795     // Everything in the overflow area is rounded up to a size of at least 4.
4796     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4797 
4798     CharUnits Size;
4799     if (!isIndirect) {
4800       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4801       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4802     } else {
4803       Size = CGF.getPointerSize();
4804     }
4805 
4806     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4807     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4808                          OverflowAreaAlign);
4809     // Round up address of argument to alignment
4810     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4811     if (Align > OverflowAreaAlign) {
4812       llvm::Value *Ptr = OverflowArea.getPointer();
4813       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4814                                                            Align);
4815     }
4816 
4817     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4818 
4819     // Increase the overflow area.
4820     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4821     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4822     CGF.EmitBranch(Cont);
4823   }
4824 
4825   CGF.EmitBlock(Cont);
4826 
4827   // Merge the cases with a phi.
4828   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4829                                 "vaarg.addr");
4830 
4831   // Load the pointer if the argument was passed indirectly.
4832   if (isIndirect) {
4833     Result = Address(Builder.CreateLoad(Result, "aggr"),
4834                      getContext().getTypeAlignInChars(Ty));
4835   }
4836 
4837   return Result;
4838 }
4839 
4840 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4841     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4842   assert(Triple.getArch() == llvm::Triple::ppc);
4843 
4844   switch (Opts.getStructReturnConvention()) {
4845   case CodeGenOptions::SRCK_Default:
4846     break;
4847   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4848     return false;
4849   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4850     return true;
4851   }
4852 
4853   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4854     return true;
4855 
4856   return false;
4857 }
4858 
4859 bool
4860 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4861                                                 llvm::Value *Address) const {
4862   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4863                                      /*IsAIX*/ false);
4864 }
4865 
4866 // PowerPC-64
4867 
4868 namespace {
4869 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4870 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4871 public:
4872   enum ABIKind {
4873     ELFv1 = 0,
4874     ELFv2
4875   };
4876 
4877 private:
4878   static const unsigned GPRBits = 64;
4879   ABIKind Kind;
4880   bool HasQPX;
4881   bool IsSoftFloatABI;
4882 
4883   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4884   // will be passed in a QPX register.
4885   bool IsQPXVectorTy(const Type *Ty) const {
4886     if (!HasQPX)
4887       return false;
4888 
4889     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4890       unsigned NumElements = VT->getNumElements();
4891       if (NumElements == 1)
4892         return false;
4893 
4894       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4895         if (getContext().getTypeSize(Ty) <= 256)
4896           return true;
4897       } else if (VT->getElementType()->
4898                    isSpecificBuiltinType(BuiltinType::Float)) {
4899         if (getContext().getTypeSize(Ty) <= 128)
4900           return true;
4901       }
4902     }
4903 
4904     return false;
4905   }
4906 
4907   bool IsQPXVectorTy(QualType Ty) const {
4908     return IsQPXVectorTy(Ty.getTypePtr());
4909   }
4910 
4911 public:
4912   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4913                      bool SoftFloatABI)
4914       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4915         IsSoftFloatABI(SoftFloatABI) {}
4916 
4917   bool isPromotableTypeForABI(QualType Ty) const;
4918   CharUnits getParamTypeAlignment(QualType Ty) const;
4919 
4920   ABIArgInfo classifyReturnType(QualType RetTy) const;
4921   ABIArgInfo classifyArgumentType(QualType Ty) const;
4922 
4923   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4924   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4925                                          uint64_t Members) const override;
4926 
4927   // TODO: We can add more logic to computeInfo to improve performance.
4928   // Example: For aggregate arguments that fit in a register, we could
4929   // use getDirectInReg (as is done below for structs containing a single
4930   // floating-point value) to avoid pushing them to memory on function
4931   // entry.  This would require changing the logic in PPCISelLowering
4932   // when lowering the parameters in the caller and args in the callee.
4933   void computeInfo(CGFunctionInfo &FI) const override {
4934     if (!getCXXABI().classifyReturnType(FI))
4935       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4936     for (auto &I : FI.arguments()) {
4937       // We rely on the default argument classification for the most part.
4938       // One exception:  An aggregate containing a single floating-point
4939       // or vector item must be passed in a register if one is available.
4940       const Type *T = isSingleElementStruct(I.type, getContext());
4941       if (T) {
4942         const BuiltinType *BT = T->getAs<BuiltinType>();
4943         if (IsQPXVectorTy(T) ||
4944             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4945             (BT && BT->isFloatingPoint())) {
4946           QualType QT(T, 0);
4947           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4948           continue;
4949         }
4950       }
4951       I.info = classifyArgumentType(I.type);
4952     }
4953   }
4954 
4955   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4956                     QualType Ty) const override;
4957 
4958   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4959                                     bool asReturnValue) const override {
4960     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4961   }
4962 
4963   bool isSwiftErrorInRegister() const override {
4964     return false;
4965   }
4966 };
4967 
4968 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4969 
4970 public:
4971   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4972                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4973                                bool SoftFloatABI)
4974       : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>(
4975             CGT, Kind, HasQPX, SoftFloatABI)) {}
4976 
4977   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4978     // This is recovered from gcc output.
4979     return 1; // r1 is the dedicated stack pointer
4980   }
4981 
4982   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4983                                llvm::Value *Address) const override;
4984 };
4985 
4986 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4987 public:
4988   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4989 
4990   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4991     // This is recovered from gcc output.
4992     return 1; // r1 is the dedicated stack pointer
4993   }
4994 
4995   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4996                                llvm::Value *Address) const override;
4997 };
4998 
4999 }
5000 
5001 // Return true if the ABI requires Ty to be passed sign- or zero-
5002 // extended to 64 bits.
5003 bool
5004 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5005   // Treat an enum type as its underlying type.
5006   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5007     Ty = EnumTy->getDecl()->getIntegerType();
5008 
5009   // Promotable integer types are required to be promoted by the ABI.
5010   if (isPromotableIntegerTypeForABI(Ty))
5011     return true;
5012 
5013   // In addition to the usual promotable integer types, we also need to
5014   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5015   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5016     switch (BT->getKind()) {
5017     case BuiltinType::Int:
5018     case BuiltinType::UInt:
5019       return true;
5020     default:
5021       break;
5022     }
5023 
5024   if (const auto *EIT = Ty->getAs<ExtIntType>())
5025     if (EIT->getNumBits() < 64)
5026       return true;
5027 
5028   return false;
5029 }
5030 
5031 /// isAlignedParamType - Determine whether a type requires 16-byte or
5032 /// higher alignment in the parameter area.  Always returns at least 8.
5033 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5034   // Complex types are passed just like their elements.
5035   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5036     Ty = CTy->getElementType();
5037 
5038   // Only vector types of size 16 bytes need alignment (larger types are
5039   // passed via reference, smaller types are not aligned).
5040   if (IsQPXVectorTy(Ty)) {
5041     if (getContext().getTypeSize(Ty) > 128)
5042       return CharUnits::fromQuantity(32);
5043 
5044     return CharUnits::fromQuantity(16);
5045   } else if (Ty->isVectorType()) {
5046     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5047   }
5048 
5049   // For single-element float/vector structs, we consider the whole type
5050   // to have the same alignment requirements as its single element.
5051   const Type *AlignAsType = nullptr;
5052   const Type *EltType = isSingleElementStruct(Ty, getContext());
5053   if (EltType) {
5054     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5055     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
5056          getContext().getTypeSize(EltType) == 128) ||
5057         (BT && BT->isFloatingPoint()))
5058       AlignAsType = EltType;
5059   }
5060 
5061   // Likewise for ELFv2 homogeneous aggregates.
5062   const Type *Base = nullptr;
5063   uint64_t Members = 0;
5064   if (!AlignAsType && Kind == ELFv2 &&
5065       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5066     AlignAsType = Base;
5067 
5068   // With special case aggregates, only vector base types need alignment.
5069   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
5070     if (getContext().getTypeSize(AlignAsType) > 128)
5071       return CharUnits::fromQuantity(32);
5072 
5073     return CharUnits::fromQuantity(16);
5074   } else if (AlignAsType) {
5075     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5076   }
5077 
5078   // Otherwise, we only need alignment for any aggregate type that
5079   // has an alignment requirement of >= 16 bytes.
5080   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5081     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
5082       return CharUnits::fromQuantity(32);
5083     return CharUnits::fromQuantity(16);
5084   }
5085 
5086   return CharUnits::fromQuantity(8);
5087 }
5088 
5089 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5090 /// aggregate.  Base is set to the base element type, and Members is set
5091 /// to the number of base elements.
5092 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5093                                      uint64_t &Members) const {
5094   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5095     uint64_t NElements = AT->getSize().getZExtValue();
5096     if (NElements == 0)
5097       return false;
5098     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5099       return false;
5100     Members *= NElements;
5101   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5102     const RecordDecl *RD = RT->getDecl();
5103     if (RD->hasFlexibleArrayMember())
5104       return false;
5105 
5106     Members = 0;
5107 
5108     // If this is a C++ record, check the bases first.
5109     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5110       for (const auto &I : CXXRD->bases()) {
5111         // Ignore empty records.
5112         if (isEmptyRecord(getContext(), I.getType(), true))
5113           continue;
5114 
5115         uint64_t FldMembers;
5116         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5117           return false;
5118 
5119         Members += FldMembers;
5120       }
5121     }
5122 
5123     for (const auto *FD : RD->fields()) {
5124       // Ignore (non-zero arrays of) empty records.
5125       QualType FT = FD->getType();
5126       while (const ConstantArrayType *AT =
5127              getContext().getAsConstantArrayType(FT)) {
5128         if (AT->getSize().getZExtValue() == 0)
5129           return false;
5130         FT = AT->getElementType();
5131       }
5132       if (isEmptyRecord(getContext(), FT, true))
5133         continue;
5134 
5135       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5136       if (getContext().getLangOpts().CPlusPlus &&
5137           FD->isZeroLengthBitField(getContext()))
5138         continue;
5139 
5140       uint64_t FldMembers;
5141       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5142         return false;
5143 
5144       Members = (RD->isUnion() ?
5145                  std::max(Members, FldMembers) : Members + FldMembers);
5146     }
5147 
5148     if (!Base)
5149       return false;
5150 
5151     // Ensure there is no padding.
5152     if (getContext().getTypeSize(Base) * Members !=
5153         getContext().getTypeSize(Ty))
5154       return false;
5155   } else {
5156     Members = 1;
5157     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5158       Members = 2;
5159       Ty = CT->getElementType();
5160     }
5161 
5162     // Most ABIs only support float, double, and some vector type widths.
5163     if (!isHomogeneousAggregateBaseType(Ty))
5164       return false;
5165 
5166     // The base type must be the same for all members.  Types that
5167     // agree in both total size and mode (float vs. vector) are
5168     // treated as being equivalent here.
5169     const Type *TyPtr = Ty.getTypePtr();
5170     if (!Base) {
5171       Base = TyPtr;
5172       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5173       // so make sure to widen it explicitly.
5174       if (const VectorType *VT = Base->getAs<VectorType>()) {
5175         QualType EltTy = VT->getElementType();
5176         unsigned NumElements =
5177             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5178         Base = getContext()
5179                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5180                    .getTypePtr();
5181       }
5182     }
5183 
5184     if (Base->isVectorType() != TyPtr->isVectorType() ||
5185         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5186       return false;
5187   }
5188   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5189 }
5190 
5191 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5192   // Homogeneous aggregates for ELFv2 must have base types of float,
5193   // double, long double, or 128-bit vectors.
5194   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5195     if (BT->getKind() == BuiltinType::Float ||
5196         BT->getKind() == BuiltinType::Double ||
5197         BT->getKind() == BuiltinType::LongDouble ||
5198         (getContext().getTargetInfo().hasFloat128Type() &&
5199           (BT->getKind() == BuiltinType::Float128))) {
5200       if (IsSoftFloatABI)
5201         return false;
5202       return true;
5203     }
5204   }
5205   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5206     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
5207       return true;
5208   }
5209   return false;
5210 }
5211 
5212 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5213     const Type *Base, uint64_t Members) const {
5214   // Vector and fp128 types require one register, other floating point types
5215   // require one or two registers depending on their size.
5216   uint32_t NumRegs =
5217       ((getContext().getTargetInfo().hasFloat128Type() &&
5218           Base->isFloat128Type()) ||
5219         Base->isVectorType()) ? 1
5220                               : (getContext().getTypeSize(Base) + 63) / 64;
5221 
5222   // Homogeneous Aggregates may occupy at most 8 registers.
5223   return Members * NumRegs <= 8;
5224 }
5225 
5226 ABIArgInfo
5227 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5228   Ty = useFirstFieldIfTransparentUnion(Ty);
5229 
5230   if (Ty->isAnyComplexType())
5231     return ABIArgInfo::getDirect();
5232 
5233   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5234   // or via reference (larger than 16 bytes).
5235   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
5236     uint64_t Size = getContext().getTypeSize(Ty);
5237     if (Size > 128)
5238       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5239     else if (Size < 128) {
5240       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5241       return ABIArgInfo::getDirect(CoerceTy);
5242     }
5243   }
5244 
5245   if (const auto *EIT = Ty->getAs<ExtIntType>())
5246     if (EIT->getNumBits() > 128)
5247       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5248 
5249   if (isAggregateTypeForABI(Ty)) {
5250     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5251       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5252 
5253     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5254     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5255 
5256     // ELFv2 homogeneous aggregates are passed as array types.
5257     const Type *Base = nullptr;
5258     uint64_t Members = 0;
5259     if (Kind == ELFv2 &&
5260         isHomogeneousAggregate(Ty, Base, Members)) {
5261       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5262       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5263       return ABIArgInfo::getDirect(CoerceTy);
5264     }
5265 
5266     // If an aggregate may end up fully in registers, we do not
5267     // use the ByVal method, but pass the aggregate as array.
5268     // This is usually beneficial since we avoid forcing the
5269     // back-end to store the argument to memory.
5270     uint64_t Bits = getContext().getTypeSize(Ty);
5271     if (Bits > 0 && Bits <= 8 * GPRBits) {
5272       llvm::Type *CoerceTy;
5273 
5274       // Types up to 8 bytes are passed as integer type (which will be
5275       // properly aligned in the argument save area doubleword).
5276       if (Bits <= GPRBits)
5277         CoerceTy =
5278             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5279       // Larger types are passed as arrays, with the base type selected
5280       // according to the required alignment in the save area.
5281       else {
5282         uint64_t RegBits = ABIAlign * 8;
5283         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5284         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5285         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5286       }
5287 
5288       return ABIArgInfo::getDirect(CoerceTy);
5289     }
5290 
5291     // All other aggregates are passed ByVal.
5292     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5293                                    /*ByVal=*/true,
5294                                    /*Realign=*/TyAlign > ABIAlign);
5295   }
5296 
5297   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5298                                      : ABIArgInfo::getDirect());
5299 }
5300 
5301 ABIArgInfo
5302 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5303   if (RetTy->isVoidType())
5304     return ABIArgInfo::getIgnore();
5305 
5306   if (RetTy->isAnyComplexType())
5307     return ABIArgInfo::getDirect();
5308 
5309   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5310   // or via reference (larger than 16 bytes).
5311   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
5312     uint64_t Size = getContext().getTypeSize(RetTy);
5313     if (Size > 128)
5314       return getNaturalAlignIndirect(RetTy);
5315     else if (Size < 128) {
5316       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5317       return ABIArgInfo::getDirect(CoerceTy);
5318     }
5319   }
5320 
5321   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5322     if (EIT->getNumBits() > 128)
5323       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5324 
5325   if (isAggregateTypeForABI(RetTy)) {
5326     // ELFv2 homogeneous aggregates are returned as array types.
5327     const Type *Base = nullptr;
5328     uint64_t Members = 0;
5329     if (Kind == ELFv2 &&
5330         isHomogeneousAggregate(RetTy, Base, Members)) {
5331       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5332       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5333       return ABIArgInfo::getDirect(CoerceTy);
5334     }
5335 
5336     // ELFv2 small aggregates are returned in up to two registers.
5337     uint64_t Bits = getContext().getTypeSize(RetTy);
5338     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5339       if (Bits == 0)
5340         return ABIArgInfo::getIgnore();
5341 
5342       llvm::Type *CoerceTy;
5343       if (Bits > GPRBits) {
5344         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5345         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5346       } else
5347         CoerceTy =
5348             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5349       return ABIArgInfo::getDirect(CoerceTy);
5350     }
5351 
5352     // All other aggregates are returned indirectly.
5353     return getNaturalAlignIndirect(RetTy);
5354   }
5355 
5356   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5357                                         : ABIArgInfo::getDirect());
5358 }
5359 
5360 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5361 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5362                                       QualType Ty) const {
5363   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5364   TypeInfo.second = getParamTypeAlignment(Ty);
5365 
5366   CharUnits SlotSize = CharUnits::fromQuantity(8);
5367 
5368   // If we have a complex type and the base type is smaller than 8 bytes,
5369   // the ABI calls for the real and imaginary parts to be right-adjusted
5370   // in separate doublewords.  However, Clang expects us to produce a
5371   // pointer to a structure with the two parts packed tightly.  So generate
5372   // loads of the real and imaginary parts relative to the va_list pointer,
5373   // and store them to a temporary structure.
5374   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5375     CharUnits EltSize = TypeInfo.first / 2;
5376     if (EltSize < SlotSize) {
5377       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5378                                             SlotSize * 2, SlotSize,
5379                                             SlotSize, /*AllowHigher*/ true);
5380 
5381       Address RealAddr = Addr;
5382       Address ImagAddr = RealAddr;
5383       if (CGF.CGM.getDataLayout().isBigEndian()) {
5384         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5385                                                           SlotSize - EltSize);
5386         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5387                                                       2 * SlotSize - EltSize);
5388       } else {
5389         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5390       }
5391 
5392       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5393       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5394       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5395       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5396       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5397 
5398       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5399       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5400                              /*init*/ true);
5401       return Temp;
5402     }
5403   }
5404 
5405   // Otherwise, just use the general rule.
5406   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5407                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5408 }
5409 
5410 bool
5411 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5412   CodeGen::CodeGenFunction &CGF,
5413   llvm::Value *Address) const {
5414   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5415                                      /*IsAIX*/ false);
5416 }
5417 
5418 bool
5419 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5420                                                 llvm::Value *Address) const {
5421   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5422                                      /*IsAIX*/ false);
5423 }
5424 
5425 //===----------------------------------------------------------------------===//
5426 // AArch64 ABI Implementation
5427 //===----------------------------------------------------------------------===//
5428 
5429 namespace {
5430 
5431 class AArch64ABIInfo : public SwiftABIInfo {
5432 public:
5433   enum ABIKind {
5434     AAPCS = 0,
5435     DarwinPCS,
5436     Win64
5437   };
5438 
5439 private:
5440   ABIKind Kind;
5441 
5442 public:
5443   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5444     : SwiftABIInfo(CGT), Kind(Kind) {}
5445 
5446 private:
5447   ABIKind getABIKind() const { return Kind; }
5448   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5449 
5450   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5451   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5452   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5453   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5454   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5455                                          uint64_t Members) const override;
5456 
5457   bool isIllegalVectorType(QualType Ty) const;
5458 
5459   void computeInfo(CGFunctionInfo &FI) const override {
5460     if (!::classifyReturnType(getCXXABI(), FI, *this))
5461       FI.getReturnInfo() =
5462           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5463 
5464     for (auto &it : FI.arguments())
5465       it.info = classifyArgumentType(it.type);
5466   }
5467 
5468   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5469                           CodeGenFunction &CGF) const;
5470 
5471   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5472                          CodeGenFunction &CGF) const;
5473 
5474   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5475                     QualType Ty) const override {
5476     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5477                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5478                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5479   }
5480 
5481   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5482                       QualType Ty) const override;
5483 
5484   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5485                                     bool asReturnValue) const override {
5486     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5487   }
5488   bool isSwiftErrorInRegister() const override {
5489     return true;
5490   }
5491 
5492   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5493                                  unsigned elts) const override;
5494 
5495   bool allowBFloatArgsAndRet() const override {
5496     return getTarget().hasBFloat16Type();
5497   }
5498 };
5499 
5500 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5501 public:
5502   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5503       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5504 
5505   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5506     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5507   }
5508 
5509   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5510     return 31;
5511   }
5512 
5513   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5514 
5515   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5516                            CodeGen::CodeGenModule &CGM) const override {
5517     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5518     if (!FD)
5519       return;
5520 
5521     const auto *TA = FD->getAttr<TargetAttr>();
5522     if (TA == nullptr)
5523       return;
5524 
5525     ParsedTargetAttr Attr = TA->parse();
5526     if (Attr.BranchProtection.empty())
5527       return;
5528 
5529     TargetInfo::BranchProtectionInfo BPI;
5530     StringRef Error;
5531     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5532                                                    BPI, Error);
5533     assert(Error.empty());
5534 
5535     auto *Fn = cast<llvm::Function>(GV);
5536     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5537     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5538 
5539     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5540       Fn->addFnAttr("sign-return-address-key",
5541                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5542                         ? "a_key"
5543                         : "b_key");
5544     }
5545 
5546     Fn->addFnAttr("branch-target-enforcement",
5547                   BPI.BranchTargetEnforcement ? "true" : "false");
5548   }
5549 };
5550 
5551 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5552 public:
5553   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5554       : AArch64TargetCodeGenInfo(CGT, K) {}
5555 
5556   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5557                            CodeGen::CodeGenModule &CGM) const override;
5558 
5559   void getDependentLibraryOption(llvm::StringRef Lib,
5560                                  llvm::SmallString<24> &Opt) const override {
5561     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5562   }
5563 
5564   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5565                                llvm::SmallString<32> &Opt) const override {
5566     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5567   }
5568 };
5569 
5570 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5571     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5572   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5573   if (GV->isDeclaration())
5574     return;
5575   addStackProbeTargetAttributes(D, GV, CGM);
5576 }
5577 }
5578 
5579 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5580   assert(Ty->isVectorType() && "expected vector type!");
5581 
5582   const auto *VT = Ty->castAs<VectorType>();
5583   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5584     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5585     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5586                BuiltinType::UChar &&
5587            "unexpected builtin type for SVE predicate!");
5588     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5589         llvm::Type::getInt1Ty(getVMContext()), 16));
5590   }
5591 
5592   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5593     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5594 
5595     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5596     llvm::ScalableVectorType *ResType = nullptr;
5597     switch (BT->getKind()) {
5598     default:
5599       llvm_unreachable("unexpected builtin type for SVE vector!");
5600     case BuiltinType::SChar:
5601     case BuiltinType::UChar:
5602       ResType = llvm::ScalableVectorType::get(
5603           llvm::Type::getInt8Ty(getVMContext()), 16);
5604       break;
5605     case BuiltinType::Short:
5606     case BuiltinType::UShort:
5607       ResType = llvm::ScalableVectorType::get(
5608           llvm::Type::getInt16Ty(getVMContext()), 8);
5609       break;
5610     case BuiltinType::Int:
5611     case BuiltinType::UInt:
5612       ResType = llvm::ScalableVectorType::get(
5613           llvm::Type::getInt32Ty(getVMContext()), 4);
5614       break;
5615     case BuiltinType::Long:
5616     case BuiltinType::ULong:
5617       ResType = llvm::ScalableVectorType::get(
5618           llvm::Type::getInt64Ty(getVMContext()), 2);
5619       break;
5620     case BuiltinType::Half:
5621       ResType = llvm::ScalableVectorType::get(
5622           llvm::Type::getHalfTy(getVMContext()), 8);
5623       break;
5624     case BuiltinType::Float:
5625       ResType = llvm::ScalableVectorType::get(
5626           llvm::Type::getFloatTy(getVMContext()), 4);
5627       break;
5628     case BuiltinType::Double:
5629       ResType = llvm::ScalableVectorType::get(
5630           llvm::Type::getDoubleTy(getVMContext()), 2);
5631       break;
5632     case BuiltinType::BFloat16:
5633       ResType = llvm::ScalableVectorType::get(
5634           llvm::Type::getBFloatTy(getVMContext()), 8);
5635       break;
5636     }
5637     return ABIArgInfo::getDirect(ResType);
5638   }
5639 
5640   uint64_t Size = getContext().getTypeSize(Ty);
5641   // Android promotes <2 x i8> to i16, not i32
5642   if (isAndroid() && (Size <= 16)) {
5643     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5644     return ABIArgInfo::getDirect(ResType);
5645   }
5646   if (Size <= 32) {
5647     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5648     return ABIArgInfo::getDirect(ResType);
5649   }
5650   if (Size == 64) {
5651     auto *ResType =
5652         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5653     return ABIArgInfo::getDirect(ResType);
5654   }
5655   if (Size == 128) {
5656     auto *ResType =
5657         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5658     return ABIArgInfo::getDirect(ResType);
5659   }
5660   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5661 }
5662 
5663 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5664   Ty = useFirstFieldIfTransparentUnion(Ty);
5665 
5666   // Handle illegal vector types here.
5667   if (isIllegalVectorType(Ty))
5668     return coerceIllegalVector(Ty);
5669 
5670   if (!isAggregateTypeForABI(Ty)) {
5671     // Treat an enum type as its underlying type.
5672     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5673       Ty = EnumTy->getDecl()->getIntegerType();
5674 
5675     if (const auto *EIT = Ty->getAs<ExtIntType>())
5676       if (EIT->getNumBits() > 128)
5677         return getNaturalAlignIndirect(Ty);
5678 
5679     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5680                 ? ABIArgInfo::getExtend(Ty)
5681                 : ABIArgInfo::getDirect());
5682   }
5683 
5684   // Structures with either a non-trivial destructor or a non-trivial
5685   // copy constructor are always indirect.
5686   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5687     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5688                                      CGCXXABI::RAA_DirectInMemory);
5689   }
5690 
5691   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5692   // elsewhere for GNU compatibility.
5693   uint64_t Size = getContext().getTypeSize(Ty);
5694   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5695   if (IsEmpty || Size == 0) {
5696     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5697       return ABIArgInfo::getIgnore();
5698 
5699     // GNU C mode. The only argument that gets ignored is an empty one with size
5700     // 0.
5701     if (IsEmpty && Size == 0)
5702       return ABIArgInfo::getIgnore();
5703     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5704   }
5705 
5706   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5707   const Type *Base = nullptr;
5708   uint64_t Members = 0;
5709   if (isHomogeneousAggregate(Ty, Base, Members)) {
5710     return ABIArgInfo::getDirect(
5711         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5712   }
5713 
5714   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5715   if (Size <= 128) {
5716     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5717     // same size and alignment.
5718     if (getTarget().isRenderScriptTarget()) {
5719       return coerceToIntArray(Ty, getContext(), getVMContext());
5720     }
5721     unsigned Alignment;
5722     if (Kind == AArch64ABIInfo::AAPCS) {
5723       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5724       Alignment = Alignment < 128 ? 64 : 128;
5725     } else {
5726       Alignment = std::max(getContext().getTypeAlign(Ty),
5727                            (unsigned)getTarget().getPointerWidth(0));
5728     }
5729     Size = llvm::alignTo(Size, Alignment);
5730 
5731     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5732     // For aggregates with 16-byte alignment, we use i128.
5733     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5734     return ABIArgInfo::getDirect(
5735         Size == Alignment ? BaseTy
5736                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5737   }
5738 
5739   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5740 }
5741 
5742 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5743                                               bool IsVariadic) const {
5744   if (RetTy->isVoidType())
5745     return ABIArgInfo::getIgnore();
5746 
5747   if (const auto *VT = RetTy->getAs<VectorType>()) {
5748     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5749         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5750       return coerceIllegalVector(RetTy);
5751   }
5752 
5753   // Large vector types should be returned via memory.
5754   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5755     return getNaturalAlignIndirect(RetTy);
5756 
5757   if (!isAggregateTypeForABI(RetTy)) {
5758     // Treat an enum type as its underlying type.
5759     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5760       RetTy = EnumTy->getDecl()->getIntegerType();
5761 
5762     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5763       if (EIT->getNumBits() > 128)
5764         return getNaturalAlignIndirect(RetTy);
5765 
5766     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5767                 ? ABIArgInfo::getExtend(RetTy)
5768                 : ABIArgInfo::getDirect());
5769   }
5770 
5771   uint64_t Size = getContext().getTypeSize(RetTy);
5772   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5773     return ABIArgInfo::getIgnore();
5774 
5775   const Type *Base = nullptr;
5776   uint64_t Members = 0;
5777   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5778       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5779         IsVariadic))
5780     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5781     return ABIArgInfo::getDirect();
5782 
5783   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5784   if (Size <= 128) {
5785     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5786     // same size and alignment.
5787     if (getTarget().isRenderScriptTarget()) {
5788       return coerceToIntArray(RetTy, getContext(), getVMContext());
5789     }
5790     unsigned Alignment = getContext().getTypeAlign(RetTy);
5791     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5792 
5793     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5794     // For aggregates with 16-byte alignment, we use i128.
5795     if (Alignment < 128 && Size == 128) {
5796       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5797       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5798     }
5799     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5800   }
5801 
5802   return getNaturalAlignIndirect(RetTy);
5803 }
5804 
5805 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5806 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5807   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5808     // Check whether VT is a fixed-length SVE vector. These types are
5809     // represented as scalable vectors in function args/return and must be
5810     // coerced from fixed vectors.
5811     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5812         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5813       return true;
5814 
5815     // Check whether VT is legal.
5816     unsigned NumElements = VT->getNumElements();
5817     uint64_t Size = getContext().getTypeSize(VT);
5818     // NumElements should be power of 2.
5819     if (!llvm::isPowerOf2_32(NumElements))
5820       return true;
5821 
5822     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5823     // vectors for some reason.
5824     llvm::Triple Triple = getTarget().getTriple();
5825     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5826         Triple.isOSBinFormatMachO())
5827       return Size <= 32;
5828 
5829     return Size != 64 && (Size != 128 || NumElements == 1);
5830   }
5831   return false;
5832 }
5833 
5834 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5835                                                llvm::Type *eltTy,
5836                                                unsigned elts) const {
5837   if (!llvm::isPowerOf2_32(elts))
5838     return false;
5839   if (totalSize.getQuantity() != 8 &&
5840       (totalSize.getQuantity() != 16 || elts == 1))
5841     return false;
5842   return true;
5843 }
5844 
5845 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5846   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5847   // point type or a short-vector type. This is the same as the 32-bit ABI,
5848   // but with the difference that any floating-point type is allowed,
5849   // including __fp16.
5850   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5851     if (BT->isFloatingPoint())
5852       return true;
5853   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5854     unsigned VecSize = getContext().getTypeSize(VT);
5855     if (VecSize == 64 || VecSize == 128)
5856       return true;
5857   }
5858   return false;
5859 }
5860 
5861 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5862                                                        uint64_t Members) const {
5863   return Members <= 4;
5864 }
5865 
5866 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5867                                             QualType Ty,
5868                                             CodeGenFunction &CGF) const {
5869   ABIArgInfo AI = classifyArgumentType(Ty);
5870   bool IsIndirect = AI.isIndirect();
5871 
5872   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5873   if (IsIndirect)
5874     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5875   else if (AI.getCoerceToType())
5876     BaseTy = AI.getCoerceToType();
5877 
5878   unsigned NumRegs = 1;
5879   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5880     BaseTy = ArrTy->getElementType();
5881     NumRegs = ArrTy->getNumElements();
5882   }
5883   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5884 
5885   // The AArch64 va_list type and handling is specified in the Procedure Call
5886   // Standard, section B.4:
5887   //
5888   // struct {
5889   //   void *__stack;
5890   //   void *__gr_top;
5891   //   void *__vr_top;
5892   //   int __gr_offs;
5893   //   int __vr_offs;
5894   // };
5895 
5896   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5897   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5898   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5899   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5900 
5901   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5902   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5903 
5904   Address reg_offs_p = Address::invalid();
5905   llvm::Value *reg_offs = nullptr;
5906   int reg_top_index;
5907   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5908   if (!IsFPR) {
5909     // 3 is the field number of __gr_offs
5910     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5911     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5912     reg_top_index = 1; // field number for __gr_top
5913     RegSize = llvm::alignTo(RegSize, 8);
5914   } else {
5915     // 4 is the field number of __vr_offs.
5916     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5917     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5918     reg_top_index = 2; // field number for __vr_top
5919     RegSize = 16 * NumRegs;
5920   }
5921 
5922   //=======================================
5923   // Find out where argument was passed
5924   //=======================================
5925 
5926   // If reg_offs >= 0 we're already using the stack for this type of
5927   // argument. We don't want to keep updating reg_offs (in case it overflows,
5928   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5929   // whatever they get).
5930   llvm::Value *UsingStack = nullptr;
5931   UsingStack = CGF.Builder.CreateICmpSGE(
5932       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5933 
5934   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5935 
5936   // Otherwise, at least some kind of argument could go in these registers, the
5937   // question is whether this particular type is too big.
5938   CGF.EmitBlock(MaybeRegBlock);
5939 
5940   // Integer arguments may need to correct register alignment (for example a
5941   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5942   // align __gr_offs to calculate the potential address.
5943   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5944     int Align = TyAlign.getQuantity();
5945 
5946     reg_offs = CGF.Builder.CreateAdd(
5947         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5948         "align_regoffs");
5949     reg_offs = CGF.Builder.CreateAnd(
5950         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5951         "aligned_regoffs");
5952   }
5953 
5954   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5955   // The fact that this is done unconditionally reflects the fact that
5956   // allocating an argument to the stack also uses up all the remaining
5957   // registers of the appropriate kind.
5958   llvm::Value *NewOffset = nullptr;
5959   NewOffset = CGF.Builder.CreateAdd(
5960       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5961   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5962 
5963   // Now we're in a position to decide whether this argument really was in
5964   // registers or not.
5965   llvm::Value *InRegs = nullptr;
5966   InRegs = CGF.Builder.CreateICmpSLE(
5967       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5968 
5969   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5970 
5971   //=======================================
5972   // Argument was in registers
5973   //=======================================
5974 
5975   // Now we emit the code for if the argument was originally passed in
5976   // registers. First start the appropriate block:
5977   CGF.EmitBlock(InRegBlock);
5978 
5979   llvm::Value *reg_top = nullptr;
5980   Address reg_top_p =
5981       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5982   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5983   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5984                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5985   Address RegAddr = Address::invalid();
5986   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5987 
5988   if (IsIndirect) {
5989     // If it's been passed indirectly (actually a struct), whatever we find from
5990     // stored registers or on the stack will actually be a struct **.
5991     MemTy = llvm::PointerType::getUnqual(MemTy);
5992   }
5993 
5994   const Type *Base = nullptr;
5995   uint64_t NumMembers = 0;
5996   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5997   if (IsHFA && NumMembers > 1) {
5998     // Homogeneous aggregates passed in registers will have their elements split
5999     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6000     // qN+1, ...). We reload and store into a temporary local variable
6001     // contiguously.
6002     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6003     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6004     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6005     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6006     Address Tmp = CGF.CreateTempAlloca(HFATy,
6007                                        std::max(TyAlign, BaseTyInfo.second));
6008 
6009     // On big-endian platforms, the value will be right-aligned in its slot.
6010     int Offset = 0;
6011     if (CGF.CGM.getDataLayout().isBigEndian() &&
6012         BaseTyInfo.first.getQuantity() < 16)
6013       Offset = 16 - BaseTyInfo.first.getQuantity();
6014 
6015     for (unsigned i = 0; i < NumMembers; ++i) {
6016       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6017       Address LoadAddr =
6018         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6019       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6020 
6021       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6022 
6023       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6024       CGF.Builder.CreateStore(Elem, StoreAddr);
6025     }
6026 
6027     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6028   } else {
6029     // Otherwise the object is contiguous in memory.
6030 
6031     // It might be right-aligned in its slot.
6032     CharUnits SlotSize = BaseAddr.getAlignment();
6033     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6034         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6035         TySize < SlotSize) {
6036       CharUnits Offset = SlotSize - TySize;
6037       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6038     }
6039 
6040     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6041   }
6042 
6043   CGF.EmitBranch(ContBlock);
6044 
6045   //=======================================
6046   // Argument was on the stack
6047   //=======================================
6048   CGF.EmitBlock(OnStackBlock);
6049 
6050   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6051   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6052 
6053   // Again, stack arguments may need realignment. In this case both integer and
6054   // floating-point ones might be affected.
6055   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6056     int Align = TyAlign.getQuantity();
6057 
6058     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6059 
6060     OnStackPtr = CGF.Builder.CreateAdd(
6061         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6062         "align_stack");
6063     OnStackPtr = CGF.Builder.CreateAnd(
6064         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6065         "align_stack");
6066 
6067     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6068   }
6069   Address OnStackAddr(OnStackPtr,
6070                       std::max(CharUnits::fromQuantity(8), TyAlign));
6071 
6072   // All stack slots are multiples of 8 bytes.
6073   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6074   CharUnits StackSize;
6075   if (IsIndirect)
6076     StackSize = StackSlotSize;
6077   else
6078     StackSize = TySize.alignTo(StackSlotSize);
6079 
6080   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6081   llvm::Value *NewStack =
6082       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6083 
6084   // Write the new value of __stack for the next call to va_arg
6085   CGF.Builder.CreateStore(NewStack, stack_p);
6086 
6087   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6088       TySize < StackSlotSize) {
6089     CharUnits Offset = StackSlotSize - TySize;
6090     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6091   }
6092 
6093   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6094 
6095   CGF.EmitBranch(ContBlock);
6096 
6097   //=======================================
6098   // Tidy up
6099   //=======================================
6100   CGF.EmitBlock(ContBlock);
6101 
6102   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6103                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6104 
6105   if (IsIndirect)
6106     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6107                    TyAlign);
6108 
6109   return ResAddr;
6110 }
6111 
6112 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6113                                         CodeGenFunction &CGF) const {
6114   // The backend's lowering doesn't support va_arg for aggregates or
6115   // illegal vector types.  Lower VAArg here for these cases and use
6116   // the LLVM va_arg instruction for everything else.
6117   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6118     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6119 
6120   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6121   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6122 
6123   // Empty records are ignored for parameter passing purposes.
6124   if (isEmptyRecord(getContext(), Ty, true)) {
6125     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6126     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6127     return Addr;
6128   }
6129 
6130   // The size of the actual thing passed, which might end up just
6131   // being a pointer for indirect types.
6132   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6133 
6134   // Arguments bigger than 16 bytes which aren't homogeneous
6135   // aggregates should be passed indirectly.
6136   bool IsIndirect = false;
6137   if (TyInfo.first.getQuantity() > 16) {
6138     const Type *Base = nullptr;
6139     uint64_t Members = 0;
6140     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6141   }
6142 
6143   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6144                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6145 }
6146 
6147 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6148                                     QualType Ty) const {
6149   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6150                           CGF.getContext().getTypeInfoInChars(Ty),
6151                           CharUnits::fromQuantity(8),
6152                           /*allowHigherAlign*/ false);
6153 }
6154 
6155 //===----------------------------------------------------------------------===//
6156 // ARM ABI Implementation
6157 //===----------------------------------------------------------------------===//
6158 
6159 namespace {
6160 
6161 class ARMABIInfo : public SwiftABIInfo {
6162 public:
6163   enum ABIKind {
6164     APCS = 0,
6165     AAPCS = 1,
6166     AAPCS_VFP = 2,
6167     AAPCS16_VFP = 3,
6168   };
6169 
6170 private:
6171   ABIKind Kind;
6172   bool IsFloatABISoftFP;
6173 
6174 public:
6175   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6176       : SwiftABIInfo(CGT), Kind(_Kind) {
6177     setCCs();
6178     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6179         CGT.getCodeGenOpts().FloatABI == ""; // default
6180   }
6181 
6182   bool isEABI() const {
6183     switch (getTarget().getTriple().getEnvironment()) {
6184     case llvm::Triple::Android:
6185     case llvm::Triple::EABI:
6186     case llvm::Triple::EABIHF:
6187     case llvm::Triple::GNUEABI:
6188     case llvm::Triple::GNUEABIHF:
6189     case llvm::Triple::MuslEABI:
6190     case llvm::Triple::MuslEABIHF:
6191       return true;
6192     default:
6193       return false;
6194     }
6195   }
6196 
6197   bool isEABIHF() const {
6198     switch (getTarget().getTriple().getEnvironment()) {
6199     case llvm::Triple::EABIHF:
6200     case llvm::Triple::GNUEABIHF:
6201     case llvm::Triple::MuslEABIHF:
6202       return true;
6203     default:
6204       return false;
6205     }
6206   }
6207 
6208   ABIKind getABIKind() const { return Kind; }
6209 
6210   bool allowBFloatArgsAndRet() const override {
6211     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6212   }
6213 
6214 private:
6215   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6216                                 unsigned functionCallConv) const;
6217   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6218                                   unsigned functionCallConv) const;
6219   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6220                                           uint64_t Members) const;
6221   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6222   bool isIllegalVectorType(QualType Ty) const;
6223   bool containsAnyFP16Vectors(QualType Ty) const;
6224 
6225   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6226   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6227                                          uint64_t Members) const override;
6228 
6229   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6230 
6231   void computeInfo(CGFunctionInfo &FI) const override;
6232 
6233   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6234                     QualType Ty) const override;
6235 
6236   llvm::CallingConv::ID getLLVMDefaultCC() const;
6237   llvm::CallingConv::ID getABIDefaultCC() const;
6238   void setCCs();
6239 
6240   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6241                                     bool asReturnValue) const override {
6242     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6243   }
6244   bool isSwiftErrorInRegister() const override {
6245     return true;
6246   }
6247   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6248                                  unsigned elts) const override;
6249 };
6250 
6251 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6252 public:
6253   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6254       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6255 
6256   const ARMABIInfo &getABIInfo() const {
6257     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6258   }
6259 
6260   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6261     return 13;
6262   }
6263 
6264   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6265     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6266   }
6267 
6268   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6269                                llvm::Value *Address) const override {
6270     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6271 
6272     // 0-15 are the 16 integer registers.
6273     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6274     return false;
6275   }
6276 
6277   unsigned getSizeOfUnwindException() const override {
6278     if (getABIInfo().isEABI()) return 88;
6279     return TargetCodeGenInfo::getSizeOfUnwindException();
6280   }
6281 
6282   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6283                            CodeGen::CodeGenModule &CGM) const override {
6284     if (GV->isDeclaration())
6285       return;
6286     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6287     if (!FD)
6288       return;
6289 
6290     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6291     if (!Attr)
6292       return;
6293 
6294     const char *Kind;
6295     switch (Attr->getInterrupt()) {
6296     case ARMInterruptAttr::Generic: Kind = ""; break;
6297     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6298     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6299     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6300     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6301     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6302     }
6303 
6304     llvm::Function *Fn = cast<llvm::Function>(GV);
6305 
6306     Fn->addFnAttr("interrupt", Kind);
6307 
6308     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6309     if (ABI == ARMABIInfo::APCS)
6310       return;
6311 
6312     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6313     // however this is not necessarily true on taking any interrupt. Instruct
6314     // the backend to perform a realignment as part of the function prologue.
6315     llvm::AttrBuilder B;
6316     B.addStackAlignmentAttr(8);
6317     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6318   }
6319 };
6320 
6321 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6322 public:
6323   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6324       : ARMTargetCodeGenInfo(CGT, K) {}
6325 
6326   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6327                            CodeGen::CodeGenModule &CGM) const override;
6328 
6329   void getDependentLibraryOption(llvm::StringRef Lib,
6330                                  llvm::SmallString<24> &Opt) const override {
6331     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6332   }
6333 
6334   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6335                                llvm::SmallString<32> &Opt) const override {
6336     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6337   }
6338 };
6339 
6340 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6341     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6342   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6343   if (GV->isDeclaration())
6344     return;
6345   addStackProbeTargetAttributes(D, GV, CGM);
6346 }
6347 }
6348 
6349 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6350   if (!::classifyReturnType(getCXXABI(), FI, *this))
6351     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6352                                             FI.getCallingConvention());
6353 
6354   for (auto &I : FI.arguments())
6355     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6356                                   FI.getCallingConvention());
6357 
6358 
6359   // Always honor user-specified calling convention.
6360   if (FI.getCallingConvention() != llvm::CallingConv::C)
6361     return;
6362 
6363   llvm::CallingConv::ID cc = getRuntimeCC();
6364   if (cc != llvm::CallingConv::C)
6365     FI.setEffectiveCallingConvention(cc);
6366 }
6367 
6368 /// Return the default calling convention that LLVM will use.
6369 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6370   // The default calling convention that LLVM will infer.
6371   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6372     return llvm::CallingConv::ARM_AAPCS_VFP;
6373   else if (isEABI())
6374     return llvm::CallingConv::ARM_AAPCS;
6375   else
6376     return llvm::CallingConv::ARM_APCS;
6377 }
6378 
6379 /// Return the calling convention that our ABI would like us to use
6380 /// as the C calling convention.
6381 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6382   switch (getABIKind()) {
6383   case APCS: return llvm::CallingConv::ARM_APCS;
6384   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6385   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6386   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6387   }
6388   llvm_unreachable("bad ABI kind");
6389 }
6390 
6391 void ARMABIInfo::setCCs() {
6392   assert(getRuntimeCC() == llvm::CallingConv::C);
6393 
6394   // Don't muddy up the IR with a ton of explicit annotations if
6395   // they'd just match what LLVM will infer from the triple.
6396   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6397   if (abiCC != getLLVMDefaultCC())
6398     RuntimeCC = abiCC;
6399 }
6400 
6401 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6402   uint64_t Size = getContext().getTypeSize(Ty);
6403   if (Size <= 32) {
6404     llvm::Type *ResType =
6405         llvm::Type::getInt32Ty(getVMContext());
6406     return ABIArgInfo::getDirect(ResType);
6407   }
6408   if (Size == 64 || Size == 128) {
6409     auto *ResType = llvm::FixedVectorType::get(
6410         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6411     return ABIArgInfo::getDirect(ResType);
6412   }
6413   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6414 }
6415 
6416 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6417                                                     const Type *Base,
6418                                                     uint64_t Members) const {
6419   assert(Base && "Base class should be set for homogeneous aggregate");
6420   // Base can be a floating-point or a vector.
6421   if (const VectorType *VT = Base->getAs<VectorType>()) {
6422     // FP16 vectors should be converted to integer vectors
6423     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6424       uint64_t Size = getContext().getTypeSize(VT);
6425       auto *NewVecTy = llvm::FixedVectorType::get(
6426           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6427       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6428       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6429     }
6430   }
6431   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6432 }
6433 
6434 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6435                                             unsigned functionCallConv) const {
6436   // 6.1.2.1 The following argument types are VFP CPRCs:
6437   //   A single-precision floating-point type (including promoted
6438   //   half-precision types); A double-precision floating-point type;
6439   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6440   //   with a Base Type of a single- or double-precision floating-point type,
6441   //   64-bit containerized vectors or 128-bit containerized vectors with one
6442   //   to four Elements.
6443   // Variadic functions should always marshal to the base standard.
6444   bool IsAAPCS_VFP =
6445       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6446 
6447   Ty = useFirstFieldIfTransparentUnion(Ty);
6448 
6449   // Handle illegal vector types here.
6450   if (isIllegalVectorType(Ty))
6451     return coerceIllegalVector(Ty);
6452 
6453   if (!isAggregateTypeForABI(Ty)) {
6454     // Treat an enum type as its underlying type.
6455     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6456       Ty = EnumTy->getDecl()->getIntegerType();
6457     }
6458 
6459     if (const auto *EIT = Ty->getAs<ExtIntType>())
6460       if (EIT->getNumBits() > 64)
6461         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6462 
6463     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6464                                               : ABIArgInfo::getDirect());
6465   }
6466 
6467   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6468     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6469   }
6470 
6471   // Ignore empty records.
6472   if (isEmptyRecord(getContext(), Ty, true))
6473     return ABIArgInfo::getIgnore();
6474 
6475   if (IsAAPCS_VFP) {
6476     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6477     // into VFP registers.
6478     const Type *Base = nullptr;
6479     uint64_t Members = 0;
6480     if (isHomogeneousAggregate(Ty, Base, Members))
6481       return classifyHomogeneousAggregate(Ty, Base, Members);
6482   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6483     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6484     // this convention even for a variadic function: the backend will use GPRs
6485     // if needed.
6486     const Type *Base = nullptr;
6487     uint64_t Members = 0;
6488     if (isHomogeneousAggregate(Ty, Base, Members)) {
6489       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6490       llvm::Type *Ty =
6491         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6492       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6493     }
6494   }
6495 
6496   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6497       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6498     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6499     // bigger than 128-bits, they get placed in space allocated by the caller,
6500     // and a pointer is passed.
6501     return ABIArgInfo::getIndirect(
6502         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6503   }
6504 
6505   // Support byval for ARM.
6506   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6507   // most 8-byte. We realign the indirect argument if type alignment is bigger
6508   // than ABI alignment.
6509   uint64_t ABIAlign = 4;
6510   uint64_t TyAlign;
6511   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6512       getABIKind() == ARMABIInfo::AAPCS) {
6513     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6514     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6515   } else {
6516     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6517   }
6518   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6519     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6520     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6521                                    /*ByVal=*/true,
6522                                    /*Realign=*/TyAlign > ABIAlign);
6523   }
6524 
6525   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6526   // same size and alignment.
6527   if (getTarget().isRenderScriptTarget()) {
6528     return coerceToIntArray(Ty, getContext(), getVMContext());
6529   }
6530 
6531   // Otherwise, pass by coercing to a structure of the appropriate size.
6532   llvm::Type* ElemTy;
6533   unsigned SizeRegs;
6534   // FIXME: Try to match the types of the arguments more accurately where
6535   // we can.
6536   if (TyAlign <= 4) {
6537     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6538     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6539   } else {
6540     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6541     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6542   }
6543 
6544   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6545 }
6546 
6547 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6548                               llvm::LLVMContext &VMContext) {
6549   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6550   // is called integer-like if its size is less than or equal to one word, and
6551   // the offset of each of its addressable sub-fields is zero.
6552 
6553   uint64_t Size = Context.getTypeSize(Ty);
6554 
6555   // Check that the type fits in a word.
6556   if (Size > 32)
6557     return false;
6558 
6559   // FIXME: Handle vector types!
6560   if (Ty->isVectorType())
6561     return false;
6562 
6563   // Float types are never treated as "integer like".
6564   if (Ty->isRealFloatingType())
6565     return false;
6566 
6567   // If this is a builtin or pointer type then it is ok.
6568   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6569     return true;
6570 
6571   // Small complex integer types are "integer like".
6572   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6573     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6574 
6575   // Single element and zero sized arrays should be allowed, by the definition
6576   // above, but they are not.
6577 
6578   // Otherwise, it must be a record type.
6579   const RecordType *RT = Ty->getAs<RecordType>();
6580   if (!RT) return false;
6581 
6582   // Ignore records with flexible arrays.
6583   const RecordDecl *RD = RT->getDecl();
6584   if (RD->hasFlexibleArrayMember())
6585     return false;
6586 
6587   // Check that all sub-fields are at offset 0, and are themselves "integer
6588   // like".
6589   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6590 
6591   bool HadField = false;
6592   unsigned idx = 0;
6593   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6594        i != e; ++i, ++idx) {
6595     const FieldDecl *FD = *i;
6596 
6597     // Bit-fields are not addressable, we only need to verify they are "integer
6598     // like". We still have to disallow a subsequent non-bitfield, for example:
6599     //   struct { int : 0; int x }
6600     // is non-integer like according to gcc.
6601     if (FD->isBitField()) {
6602       if (!RD->isUnion())
6603         HadField = true;
6604 
6605       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6606         return false;
6607 
6608       continue;
6609     }
6610 
6611     // Check if this field is at offset 0.
6612     if (Layout.getFieldOffset(idx) != 0)
6613       return false;
6614 
6615     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6616       return false;
6617 
6618     // Only allow at most one field in a structure. This doesn't match the
6619     // wording above, but follows gcc in situations with a field following an
6620     // empty structure.
6621     if (!RD->isUnion()) {
6622       if (HadField)
6623         return false;
6624 
6625       HadField = true;
6626     }
6627   }
6628 
6629   return true;
6630 }
6631 
6632 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6633                                           unsigned functionCallConv) const {
6634 
6635   // Variadic functions should always marshal to the base standard.
6636   bool IsAAPCS_VFP =
6637       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6638 
6639   if (RetTy->isVoidType())
6640     return ABIArgInfo::getIgnore();
6641 
6642   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6643     // Large vector types should be returned via memory.
6644     if (getContext().getTypeSize(RetTy) > 128)
6645       return getNaturalAlignIndirect(RetTy);
6646     // TODO: FP16/BF16 vectors should be converted to integer vectors
6647     // This check is similar  to isIllegalVectorType - refactor?
6648     if ((!getTarget().hasLegalHalfType() &&
6649         (VT->getElementType()->isFloat16Type() ||
6650          VT->getElementType()->isHalfType())) ||
6651         (IsFloatABISoftFP &&
6652          VT->getElementType()->isBFloat16Type()))
6653       return coerceIllegalVector(RetTy);
6654   }
6655 
6656   if (!isAggregateTypeForABI(RetTy)) {
6657     // Treat an enum type as its underlying type.
6658     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6659       RetTy = EnumTy->getDecl()->getIntegerType();
6660 
6661     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6662       if (EIT->getNumBits() > 64)
6663         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6664 
6665     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6666                                                 : ABIArgInfo::getDirect();
6667   }
6668 
6669   // Are we following APCS?
6670   if (getABIKind() == APCS) {
6671     if (isEmptyRecord(getContext(), RetTy, false))
6672       return ABIArgInfo::getIgnore();
6673 
6674     // Complex types are all returned as packed integers.
6675     //
6676     // FIXME: Consider using 2 x vector types if the back end handles them
6677     // correctly.
6678     if (RetTy->isAnyComplexType())
6679       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6680           getVMContext(), getContext().getTypeSize(RetTy)));
6681 
6682     // Integer like structures are returned in r0.
6683     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6684       // Return in the smallest viable integer type.
6685       uint64_t Size = getContext().getTypeSize(RetTy);
6686       if (Size <= 8)
6687         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6688       if (Size <= 16)
6689         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6690       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6691     }
6692 
6693     // Otherwise return in memory.
6694     return getNaturalAlignIndirect(RetTy);
6695   }
6696 
6697   // Otherwise this is an AAPCS variant.
6698 
6699   if (isEmptyRecord(getContext(), RetTy, true))
6700     return ABIArgInfo::getIgnore();
6701 
6702   // Check for homogeneous aggregates with AAPCS-VFP.
6703   if (IsAAPCS_VFP) {
6704     const Type *Base = nullptr;
6705     uint64_t Members = 0;
6706     if (isHomogeneousAggregate(RetTy, Base, Members))
6707       return classifyHomogeneousAggregate(RetTy, Base, Members);
6708   }
6709 
6710   // Aggregates <= 4 bytes are returned in r0; other aggregates
6711   // are returned indirectly.
6712   uint64_t Size = getContext().getTypeSize(RetTy);
6713   if (Size <= 32) {
6714     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6715     // same size and alignment.
6716     if (getTarget().isRenderScriptTarget()) {
6717       return coerceToIntArray(RetTy, getContext(), getVMContext());
6718     }
6719     if (getDataLayout().isBigEndian())
6720       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6721       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6722 
6723     // Return in the smallest viable integer type.
6724     if (Size <= 8)
6725       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6726     if (Size <= 16)
6727       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6728     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6729   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6730     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6731     llvm::Type *CoerceTy =
6732         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6733     return ABIArgInfo::getDirect(CoerceTy);
6734   }
6735 
6736   return getNaturalAlignIndirect(RetTy);
6737 }
6738 
6739 /// isIllegalVector - check whether Ty is an illegal vector type.
6740 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6741   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6742     // On targets that don't support half, fp16 or bfloat, they are expanded
6743     // into float, and we don't want the ABI to depend on whether or not they
6744     // are supported in hardware. Thus return false to coerce vectors of these
6745     // types into integer vectors.
6746     // We do not depend on hasLegalHalfType for bfloat as it is a
6747     // separate IR type.
6748     if ((!getTarget().hasLegalHalfType() &&
6749         (VT->getElementType()->isFloat16Type() ||
6750          VT->getElementType()->isHalfType())) ||
6751         (IsFloatABISoftFP &&
6752          VT->getElementType()->isBFloat16Type()))
6753       return true;
6754     if (isAndroid()) {
6755       // Android shipped using Clang 3.1, which supported a slightly different
6756       // vector ABI. The primary differences were that 3-element vector types
6757       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6758       // accepts that legacy behavior for Android only.
6759       // Check whether VT is legal.
6760       unsigned NumElements = VT->getNumElements();
6761       // NumElements should be power of 2 or equal to 3.
6762       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6763         return true;
6764     } else {
6765       // Check whether VT is legal.
6766       unsigned NumElements = VT->getNumElements();
6767       uint64_t Size = getContext().getTypeSize(VT);
6768       // NumElements should be power of 2.
6769       if (!llvm::isPowerOf2_32(NumElements))
6770         return true;
6771       // Size should be greater than 32 bits.
6772       return Size <= 32;
6773     }
6774   }
6775   return false;
6776 }
6777 
6778 /// Return true if a type contains any 16-bit floating point vectors
6779 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6780   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6781     uint64_t NElements = AT->getSize().getZExtValue();
6782     if (NElements == 0)
6783       return false;
6784     return containsAnyFP16Vectors(AT->getElementType());
6785   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6786     const RecordDecl *RD = RT->getDecl();
6787 
6788     // If this is a C++ record, check the bases first.
6789     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6790       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6791             return containsAnyFP16Vectors(B.getType());
6792           }))
6793         return true;
6794 
6795     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6796           return FD && containsAnyFP16Vectors(FD->getType());
6797         }))
6798       return true;
6799 
6800     return false;
6801   } else {
6802     if (const VectorType *VT = Ty->getAs<VectorType>())
6803       return (VT->getElementType()->isFloat16Type() ||
6804               VT->getElementType()->isBFloat16Type() ||
6805               VT->getElementType()->isHalfType());
6806     return false;
6807   }
6808 }
6809 
6810 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6811                                            llvm::Type *eltTy,
6812                                            unsigned numElts) const {
6813   if (!llvm::isPowerOf2_32(numElts))
6814     return false;
6815   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6816   if (size > 64)
6817     return false;
6818   if (vectorSize.getQuantity() != 8 &&
6819       (vectorSize.getQuantity() != 16 || numElts == 1))
6820     return false;
6821   return true;
6822 }
6823 
6824 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6825   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6826   // double, or 64-bit or 128-bit vectors.
6827   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6828     if (BT->getKind() == BuiltinType::Float ||
6829         BT->getKind() == BuiltinType::Double ||
6830         BT->getKind() == BuiltinType::LongDouble)
6831       return true;
6832   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6833     unsigned VecSize = getContext().getTypeSize(VT);
6834     if (VecSize == 64 || VecSize == 128)
6835       return true;
6836   }
6837   return false;
6838 }
6839 
6840 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6841                                                    uint64_t Members) const {
6842   return Members <= 4;
6843 }
6844 
6845 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6846                                         bool acceptHalf) const {
6847   // Give precedence to user-specified calling conventions.
6848   if (callConvention != llvm::CallingConv::C)
6849     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6850   else
6851     return (getABIKind() == AAPCS_VFP) ||
6852            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6853 }
6854 
6855 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6856                               QualType Ty) const {
6857   CharUnits SlotSize = CharUnits::fromQuantity(4);
6858 
6859   // Empty records are ignored for parameter passing purposes.
6860   if (isEmptyRecord(getContext(), Ty, true)) {
6861     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6862     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6863     return Addr;
6864   }
6865 
6866   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6867   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6868 
6869   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6870   bool IsIndirect = false;
6871   const Type *Base = nullptr;
6872   uint64_t Members = 0;
6873   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6874     IsIndirect = true;
6875 
6876   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6877   // allocated by the caller.
6878   } else if (TySize > CharUnits::fromQuantity(16) &&
6879              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6880              !isHomogeneousAggregate(Ty, Base, Members)) {
6881     IsIndirect = true;
6882 
6883   // Otherwise, bound the type's ABI alignment.
6884   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6885   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6886   // Our callers should be prepared to handle an under-aligned address.
6887   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6888              getABIKind() == ARMABIInfo::AAPCS) {
6889     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6890     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6891   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6892     // ARMv7k allows type alignment up to 16 bytes.
6893     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6894     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6895   } else {
6896     TyAlignForABI = CharUnits::fromQuantity(4);
6897   }
6898 
6899   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6900   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6901                           SlotSize, /*AllowHigherAlign*/ true);
6902 }
6903 
6904 //===----------------------------------------------------------------------===//
6905 // NVPTX ABI Implementation
6906 //===----------------------------------------------------------------------===//
6907 
6908 namespace {
6909 
6910 class NVPTXTargetCodeGenInfo;
6911 
6912 class NVPTXABIInfo : public ABIInfo {
6913   NVPTXTargetCodeGenInfo &CGInfo;
6914 
6915 public:
6916   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6917       : ABIInfo(CGT), CGInfo(Info) {}
6918 
6919   ABIArgInfo classifyReturnType(QualType RetTy) const;
6920   ABIArgInfo classifyArgumentType(QualType Ty) const;
6921 
6922   void computeInfo(CGFunctionInfo &FI) const override;
6923   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6924                     QualType Ty) const override;
6925   bool isUnsupportedType(QualType T) const;
6926   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6927 };
6928 
6929 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6930 public:
6931   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6932       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6933 
6934   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6935                            CodeGen::CodeGenModule &M) const override;
6936   bool shouldEmitStaticExternCAliases() const override;
6937 
6938   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6939     // On the device side, surface reference is represented as an object handle
6940     // in 64-bit integer.
6941     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6942   }
6943 
6944   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6945     // On the device side, texture reference is represented as an object handle
6946     // in 64-bit integer.
6947     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6948   }
6949 
6950   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6951                                               LValue Src) const override {
6952     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6953     return true;
6954   }
6955 
6956   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6957                                               LValue Src) const override {
6958     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6959     return true;
6960   }
6961 
6962 private:
6963   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6964   // resulting MDNode to the nvvm.annotations MDNode.
6965   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6966                               int Operand);
6967 
6968   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6969                                            LValue Src) {
6970     llvm::Value *Handle = nullptr;
6971     llvm::Constant *C =
6972         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6973     // Lookup `addrspacecast` through the constant pointer if any.
6974     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6975       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6976     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6977       // Load the handle from the specific global variable using
6978       // `nvvm.texsurf.handle.internal` intrinsic.
6979       Handle = CGF.EmitRuntimeCall(
6980           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6981                                {GV->getType()}),
6982           {GV}, "texsurf_handle");
6983     } else
6984       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6985     CGF.EmitStoreOfScalar(Handle, Dst);
6986   }
6987 };
6988 
6989 /// Checks if the type is unsupported directly by the current target.
6990 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
6991   ASTContext &Context = getContext();
6992   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6993     return true;
6994   if (!Context.getTargetInfo().hasFloat128Type() &&
6995       (T->isFloat128Type() ||
6996        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6997     return true;
6998   if (const auto *EIT = T->getAs<ExtIntType>())
6999     return EIT->getNumBits() >
7000            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7001   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7002       Context.getTypeSize(T) > 64U)
7003     return true;
7004   if (const auto *AT = T->getAsArrayTypeUnsafe())
7005     return isUnsupportedType(AT->getElementType());
7006   const auto *RT = T->getAs<RecordType>();
7007   if (!RT)
7008     return false;
7009   const RecordDecl *RD = RT->getDecl();
7010 
7011   // If this is a C++ record, check the bases first.
7012   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7013     for (const CXXBaseSpecifier &I : CXXRD->bases())
7014       if (isUnsupportedType(I.getType()))
7015         return true;
7016 
7017   for (const FieldDecl *I : RD->fields())
7018     if (isUnsupportedType(I->getType()))
7019       return true;
7020   return false;
7021 }
7022 
7023 /// Coerce the given type into an array with maximum allowed size of elements.
7024 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7025                                                    unsigned MaxSize) const {
7026   // Alignment and Size are measured in bits.
7027   const uint64_t Size = getContext().getTypeSize(Ty);
7028   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7029   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7030   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7031   const uint64_t NumElements = (Size + Div - 1) / Div;
7032   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7033 }
7034 
7035 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7036   if (RetTy->isVoidType())
7037     return ABIArgInfo::getIgnore();
7038 
7039   if (getContext().getLangOpts().OpenMP &&
7040       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7041     return coerceToIntArrayWithLimit(RetTy, 64);
7042 
7043   // note: this is different from default ABI
7044   if (!RetTy->isScalarType())
7045     return ABIArgInfo::getDirect();
7046 
7047   // Treat an enum type as its underlying type.
7048   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7049     RetTy = EnumTy->getDecl()->getIntegerType();
7050 
7051   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7052                                                : ABIArgInfo::getDirect());
7053 }
7054 
7055 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7056   // Treat an enum type as its underlying type.
7057   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7058     Ty = EnumTy->getDecl()->getIntegerType();
7059 
7060   // Return aggregates type as indirect by value
7061   if (isAggregateTypeForABI(Ty)) {
7062     // Under CUDA device compilation, tex/surf builtin types are replaced with
7063     // object types and passed directly.
7064     if (getContext().getLangOpts().CUDAIsDevice) {
7065       if (Ty->isCUDADeviceBuiltinSurfaceType())
7066         return ABIArgInfo::getDirect(
7067             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7068       if (Ty->isCUDADeviceBuiltinTextureType())
7069         return ABIArgInfo::getDirect(
7070             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7071     }
7072     return getNaturalAlignIndirect(Ty, /* byval */ true);
7073   }
7074 
7075   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7076     if ((EIT->getNumBits() > 128) ||
7077         (!getContext().getTargetInfo().hasInt128Type() &&
7078          EIT->getNumBits() > 64))
7079       return getNaturalAlignIndirect(Ty, /* byval */ true);
7080   }
7081 
7082   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7083                                             : ABIArgInfo::getDirect());
7084 }
7085 
7086 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7087   if (!getCXXABI().classifyReturnType(FI))
7088     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7089   for (auto &I : FI.arguments())
7090     I.info = classifyArgumentType(I.type);
7091 
7092   // Always honor user-specified calling convention.
7093   if (FI.getCallingConvention() != llvm::CallingConv::C)
7094     return;
7095 
7096   FI.setEffectiveCallingConvention(getRuntimeCC());
7097 }
7098 
7099 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7100                                 QualType Ty) const {
7101   llvm_unreachable("NVPTX does not support varargs");
7102 }
7103 
7104 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7105     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7106   if (GV->isDeclaration())
7107     return;
7108   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7109   if (VD) {
7110     if (M.getLangOpts().CUDA) {
7111       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7112         addNVVMMetadata(GV, "surface", 1);
7113       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7114         addNVVMMetadata(GV, "texture", 1);
7115       return;
7116     }
7117   }
7118 
7119   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7120   if (!FD) return;
7121 
7122   llvm::Function *F = cast<llvm::Function>(GV);
7123 
7124   // Perform special handling in OpenCL mode
7125   if (M.getLangOpts().OpenCL) {
7126     // Use OpenCL function attributes to check for kernel functions
7127     // By default, all functions are device functions
7128     if (FD->hasAttr<OpenCLKernelAttr>()) {
7129       // OpenCL __kernel functions get kernel metadata
7130       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7131       addNVVMMetadata(F, "kernel", 1);
7132       // And kernel functions are not subject to inlining
7133       F->addFnAttr(llvm::Attribute::NoInline);
7134     }
7135   }
7136 
7137   // Perform special handling in CUDA mode.
7138   if (M.getLangOpts().CUDA) {
7139     // CUDA __global__ functions get a kernel metadata entry.  Since
7140     // __global__ functions cannot be called from the device, we do not
7141     // need to set the noinline attribute.
7142     if (FD->hasAttr<CUDAGlobalAttr>()) {
7143       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7144       addNVVMMetadata(F, "kernel", 1);
7145     }
7146     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7147       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7148       llvm::APSInt MaxThreads(32);
7149       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7150       if (MaxThreads > 0)
7151         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7152 
7153       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7154       // not specified in __launch_bounds__ or if the user specified a 0 value,
7155       // we don't have to add a PTX directive.
7156       if (Attr->getMinBlocks()) {
7157         llvm::APSInt MinBlocks(32);
7158         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7159         if (MinBlocks > 0)
7160           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7161           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7162       }
7163     }
7164   }
7165 }
7166 
7167 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7168                                              StringRef Name, int Operand) {
7169   llvm::Module *M = GV->getParent();
7170   llvm::LLVMContext &Ctx = M->getContext();
7171 
7172   // Get "nvvm.annotations" metadata node
7173   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7174 
7175   llvm::Metadata *MDVals[] = {
7176       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7177       llvm::ConstantAsMetadata::get(
7178           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7179   // Append metadata to nvvm.annotations
7180   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7181 }
7182 
7183 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7184   return false;
7185 }
7186 }
7187 
7188 //===----------------------------------------------------------------------===//
7189 // SystemZ ABI Implementation
7190 //===----------------------------------------------------------------------===//
7191 
7192 namespace {
7193 
7194 class SystemZABIInfo : public SwiftABIInfo {
7195   bool HasVector;
7196   bool IsSoftFloatABI;
7197 
7198 public:
7199   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7200     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7201 
7202   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7203   bool isCompoundType(QualType Ty) const;
7204   bool isVectorArgumentType(QualType Ty) const;
7205   bool isFPArgumentType(QualType Ty) const;
7206   QualType GetSingleElementType(QualType Ty) const;
7207 
7208   ABIArgInfo classifyReturnType(QualType RetTy) const;
7209   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7210 
7211   void computeInfo(CGFunctionInfo &FI) const override {
7212     if (!getCXXABI().classifyReturnType(FI))
7213       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7214     for (auto &I : FI.arguments())
7215       I.info = classifyArgumentType(I.type);
7216   }
7217 
7218   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7219                     QualType Ty) const override;
7220 
7221   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7222                                     bool asReturnValue) const override {
7223     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7224   }
7225   bool isSwiftErrorInRegister() const override {
7226     return false;
7227   }
7228 };
7229 
7230 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7231 public:
7232   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7233       : TargetCodeGenInfo(
7234             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7235 };
7236 
7237 }
7238 
7239 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7240   // Treat an enum type as its underlying type.
7241   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7242     Ty = EnumTy->getDecl()->getIntegerType();
7243 
7244   // Promotable integer types are required to be promoted by the ABI.
7245   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7246     return true;
7247 
7248   if (const auto *EIT = Ty->getAs<ExtIntType>())
7249     if (EIT->getNumBits() < 64)
7250       return true;
7251 
7252   // 32-bit values must also be promoted.
7253   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7254     switch (BT->getKind()) {
7255     case BuiltinType::Int:
7256     case BuiltinType::UInt:
7257       return true;
7258     default:
7259       return false;
7260     }
7261   return false;
7262 }
7263 
7264 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7265   return (Ty->isAnyComplexType() ||
7266           Ty->isVectorType() ||
7267           isAggregateTypeForABI(Ty));
7268 }
7269 
7270 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7271   return (HasVector &&
7272           Ty->isVectorType() &&
7273           getContext().getTypeSize(Ty) <= 128);
7274 }
7275 
7276 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7277   if (IsSoftFloatABI)
7278     return false;
7279 
7280   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7281     switch (BT->getKind()) {
7282     case BuiltinType::Float:
7283     case BuiltinType::Double:
7284       return true;
7285     default:
7286       return false;
7287     }
7288 
7289   return false;
7290 }
7291 
7292 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7293   const RecordType *RT = Ty->getAs<RecordType>();
7294 
7295   if (RT && RT->isStructureOrClassType()) {
7296     const RecordDecl *RD = RT->getDecl();
7297     QualType Found;
7298 
7299     // If this is a C++ record, check the bases first.
7300     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7301       for (const auto &I : CXXRD->bases()) {
7302         QualType Base = I.getType();
7303 
7304         // Empty bases don't affect things either way.
7305         if (isEmptyRecord(getContext(), Base, true))
7306           continue;
7307 
7308         if (!Found.isNull())
7309           return Ty;
7310         Found = GetSingleElementType(Base);
7311       }
7312 
7313     // Check the fields.
7314     for (const auto *FD : RD->fields()) {
7315       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7316       // Unlike isSingleElementStruct(), empty structure and array fields
7317       // do count.  So do anonymous bitfields that aren't zero-sized.
7318       if (getContext().getLangOpts().CPlusPlus &&
7319           FD->isZeroLengthBitField(getContext()))
7320         continue;
7321       // Like isSingleElementStruct(), ignore C++20 empty data members.
7322       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7323           isEmptyRecord(getContext(), FD->getType(), true))
7324         continue;
7325 
7326       // Unlike isSingleElementStruct(), arrays do not count.
7327       // Nested structures still do though.
7328       if (!Found.isNull())
7329         return Ty;
7330       Found = GetSingleElementType(FD->getType());
7331     }
7332 
7333     // Unlike isSingleElementStruct(), trailing padding is allowed.
7334     // An 8-byte aligned struct s { float f; } is passed as a double.
7335     if (!Found.isNull())
7336       return Found;
7337   }
7338 
7339   return Ty;
7340 }
7341 
7342 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7343                                   QualType Ty) const {
7344   // Assume that va_list type is correct; should be pointer to LLVM type:
7345   // struct {
7346   //   i64 __gpr;
7347   //   i64 __fpr;
7348   //   i8 *__overflow_arg_area;
7349   //   i8 *__reg_save_area;
7350   // };
7351 
7352   // Every non-vector argument occupies 8 bytes and is passed by preference
7353   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7354   // always passed on the stack.
7355   Ty = getContext().getCanonicalType(Ty);
7356   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7357   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7358   llvm::Type *DirectTy = ArgTy;
7359   ABIArgInfo AI = classifyArgumentType(Ty);
7360   bool IsIndirect = AI.isIndirect();
7361   bool InFPRs = false;
7362   bool IsVector = false;
7363   CharUnits UnpaddedSize;
7364   CharUnits DirectAlign;
7365   if (IsIndirect) {
7366     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7367     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7368   } else {
7369     if (AI.getCoerceToType())
7370       ArgTy = AI.getCoerceToType();
7371     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7372     IsVector = ArgTy->isVectorTy();
7373     UnpaddedSize = TyInfo.first;
7374     DirectAlign = TyInfo.second;
7375   }
7376   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7377   if (IsVector && UnpaddedSize > PaddedSize)
7378     PaddedSize = CharUnits::fromQuantity(16);
7379   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7380 
7381   CharUnits Padding = (PaddedSize - UnpaddedSize);
7382 
7383   llvm::Type *IndexTy = CGF.Int64Ty;
7384   llvm::Value *PaddedSizeV =
7385     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7386 
7387   if (IsVector) {
7388     // Work out the address of a vector argument on the stack.
7389     // Vector arguments are always passed in the high bits of a
7390     // single (8 byte) or double (16 byte) stack slot.
7391     Address OverflowArgAreaPtr =
7392         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7393     Address OverflowArgArea =
7394       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7395               TyInfo.second);
7396     Address MemAddr =
7397       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7398 
7399     // Update overflow_arg_area_ptr pointer
7400     llvm::Value *NewOverflowArgArea =
7401       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7402                             "overflow_arg_area");
7403     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7404 
7405     return MemAddr;
7406   }
7407 
7408   assert(PaddedSize.getQuantity() == 8);
7409 
7410   unsigned MaxRegs, RegCountField, RegSaveIndex;
7411   CharUnits RegPadding;
7412   if (InFPRs) {
7413     MaxRegs = 4; // Maximum of 4 FPR arguments
7414     RegCountField = 1; // __fpr
7415     RegSaveIndex = 16; // save offset for f0
7416     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7417   } else {
7418     MaxRegs = 5; // Maximum of 5 GPR arguments
7419     RegCountField = 0; // __gpr
7420     RegSaveIndex = 2; // save offset for r2
7421     RegPadding = Padding; // values are passed in the low bits of a GPR
7422   }
7423 
7424   Address RegCountPtr =
7425       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7426   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7427   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7428   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7429                                                  "fits_in_regs");
7430 
7431   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7432   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7433   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7434   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7435 
7436   // Emit code to load the value if it was passed in registers.
7437   CGF.EmitBlock(InRegBlock);
7438 
7439   // Work out the address of an argument register.
7440   llvm::Value *ScaledRegCount =
7441     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7442   llvm::Value *RegBase =
7443     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7444                                       + RegPadding.getQuantity());
7445   llvm::Value *RegOffset =
7446     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7447   Address RegSaveAreaPtr =
7448       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7449   llvm::Value *RegSaveArea =
7450     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7451   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7452                                            "raw_reg_addr"),
7453                      PaddedSize);
7454   Address RegAddr =
7455     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7456 
7457   // Update the register count
7458   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7459   llvm::Value *NewRegCount =
7460     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7461   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7462   CGF.EmitBranch(ContBlock);
7463 
7464   // Emit code to load the value if it was passed in memory.
7465   CGF.EmitBlock(InMemBlock);
7466 
7467   // Work out the address of a stack argument.
7468   Address OverflowArgAreaPtr =
7469       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7470   Address OverflowArgArea =
7471     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7472             PaddedSize);
7473   Address RawMemAddr =
7474     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7475   Address MemAddr =
7476     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7477 
7478   // Update overflow_arg_area_ptr pointer
7479   llvm::Value *NewOverflowArgArea =
7480     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7481                           "overflow_arg_area");
7482   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7483   CGF.EmitBranch(ContBlock);
7484 
7485   // Return the appropriate result.
7486   CGF.EmitBlock(ContBlock);
7487   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7488                                  MemAddr, InMemBlock, "va_arg.addr");
7489 
7490   if (IsIndirect)
7491     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7492                       TyInfo.second);
7493 
7494   return ResAddr;
7495 }
7496 
7497 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7498   if (RetTy->isVoidType())
7499     return ABIArgInfo::getIgnore();
7500   if (isVectorArgumentType(RetTy))
7501     return ABIArgInfo::getDirect();
7502   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7503     return getNaturalAlignIndirect(RetTy);
7504   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7505                                                : ABIArgInfo::getDirect());
7506 }
7507 
7508 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7509   // Handle the generic C++ ABI.
7510   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7511     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7512 
7513   // Integers and enums are extended to full register width.
7514   if (isPromotableIntegerTypeForABI(Ty))
7515     return ABIArgInfo::getExtend(Ty);
7516 
7517   // Handle vector types and vector-like structure types.  Note that
7518   // as opposed to float-like structure types, we do not allow any
7519   // padding for vector-like structures, so verify the sizes match.
7520   uint64_t Size = getContext().getTypeSize(Ty);
7521   QualType SingleElementTy = GetSingleElementType(Ty);
7522   if (isVectorArgumentType(SingleElementTy) &&
7523       getContext().getTypeSize(SingleElementTy) == Size)
7524     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7525 
7526   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7527   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7528     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7529 
7530   // Handle small structures.
7531   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7532     // Structures with flexible arrays have variable length, so really
7533     // fail the size test above.
7534     const RecordDecl *RD = RT->getDecl();
7535     if (RD->hasFlexibleArrayMember())
7536       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7537 
7538     // The structure is passed as an unextended integer, a float, or a double.
7539     llvm::Type *PassTy;
7540     if (isFPArgumentType(SingleElementTy)) {
7541       assert(Size == 32 || Size == 64);
7542       if (Size == 32)
7543         PassTy = llvm::Type::getFloatTy(getVMContext());
7544       else
7545         PassTy = llvm::Type::getDoubleTy(getVMContext());
7546     } else
7547       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7548     return ABIArgInfo::getDirect(PassTy);
7549   }
7550 
7551   // Non-structure compounds are passed indirectly.
7552   if (isCompoundType(Ty))
7553     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7554 
7555   return ABIArgInfo::getDirect(nullptr);
7556 }
7557 
7558 //===----------------------------------------------------------------------===//
7559 // MSP430 ABI Implementation
7560 //===----------------------------------------------------------------------===//
7561 
7562 namespace {
7563 
7564 class MSP430ABIInfo : public DefaultABIInfo {
7565   static ABIArgInfo complexArgInfo() {
7566     ABIArgInfo Info = ABIArgInfo::getDirect();
7567     Info.setCanBeFlattened(false);
7568     return Info;
7569   }
7570 
7571 public:
7572   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7573 
7574   ABIArgInfo classifyReturnType(QualType RetTy) const {
7575     if (RetTy->isAnyComplexType())
7576       return complexArgInfo();
7577 
7578     return DefaultABIInfo::classifyReturnType(RetTy);
7579   }
7580 
7581   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7582     if (RetTy->isAnyComplexType())
7583       return complexArgInfo();
7584 
7585     return DefaultABIInfo::classifyArgumentType(RetTy);
7586   }
7587 
7588   // Just copy the original implementations because
7589   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7590   void computeInfo(CGFunctionInfo &FI) const override {
7591     if (!getCXXABI().classifyReturnType(FI))
7592       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7593     for (auto &I : FI.arguments())
7594       I.info = classifyArgumentType(I.type);
7595   }
7596 
7597   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7598                     QualType Ty) const override {
7599     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7600   }
7601 };
7602 
7603 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7604 public:
7605   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7606       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7607   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7608                            CodeGen::CodeGenModule &M) const override;
7609 };
7610 
7611 }
7612 
7613 void MSP430TargetCodeGenInfo::setTargetAttributes(
7614     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7615   if (GV->isDeclaration())
7616     return;
7617   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7618     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7619     if (!InterruptAttr)
7620       return;
7621 
7622     // Handle 'interrupt' attribute:
7623     llvm::Function *F = cast<llvm::Function>(GV);
7624 
7625     // Step 1: Set ISR calling convention.
7626     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7627 
7628     // Step 2: Add attributes goodness.
7629     F->addFnAttr(llvm::Attribute::NoInline);
7630     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7631   }
7632 }
7633 
7634 //===----------------------------------------------------------------------===//
7635 // MIPS ABI Implementation.  This works for both little-endian and
7636 // big-endian variants.
7637 //===----------------------------------------------------------------------===//
7638 
7639 namespace {
7640 class MipsABIInfo : public ABIInfo {
7641   bool IsO32;
7642   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7643   void CoerceToIntArgs(uint64_t TySize,
7644                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7645   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7646   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7647   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7648 public:
7649   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7650     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7651     StackAlignInBytes(IsO32 ? 8 : 16) {}
7652 
7653   ABIArgInfo classifyReturnType(QualType RetTy) const;
7654   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7655   void computeInfo(CGFunctionInfo &FI) const override;
7656   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7657                     QualType Ty) const override;
7658   ABIArgInfo extendType(QualType Ty) const;
7659 };
7660 
7661 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7662   unsigned SizeOfUnwindException;
7663 public:
7664   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7665       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7666         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7667 
7668   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7669     return 29;
7670   }
7671 
7672   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7673                            CodeGen::CodeGenModule &CGM) const override {
7674     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7675     if (!FD) return;
7676     llvm::Function *Fn = cast<llvm::Function>(GV);
7677 
7678     if (FD->hasAttr<MipsLongCallAttr>())
7679       Fn->addFnAttr("long-call");
7680     else if (FD->hasAttr<MipsShortCallAttr>())
7681       Fn->addFnAttr("short-call");
7682 
7683     // Other attributes do not have a meaning for declarations.
7684     if (GV->isDeclaration())
7685       return;
7686 
7687     if (FD->hasAttr<Mips16Attr>()) {
7688       Fn->addFnAttr("mips16");
7689     }
7690     else if (FD->hasAttr<NoMips16Attr>()) {
7691       Fn->addFnAttr("nomips16");
7692     }
7693 
7694     if (FD->hasAttr<MicroMipsAttr>())
7695       Fn->addFnAttr("micromips");
7696     else if (FD->hasAttr<NoMicroMipsAttr>())
7697       Fn->addFnAttr("nomicromips");
7698 
7699     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7700     if (!Attr)
7701       return;
7702 
7703     const char *Kind;
7704     switch (Attr->getInterrupt()) {
7705     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7706     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7707     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7708     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7709     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7710     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7711     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7712     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7713     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7714     }
7715 
7716     Fn->addFnAttr("interrupt", Kind);
7717 
7718   }
7719 
7720   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7721                                llvm::Value *Address) const override;
7722 
7723   unsigned getSizeOfUnwindException() const override {
7724     return SizeOfUnwindException;
7725   }
7726 };
7727 }
7728 
7729 void MipsABIInfo::CoerceToIntArgs(
7730     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7731   llvm::IntegerType *IntTy =
7732     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7733 
7734   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7735   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7736     ArgList.push_back(IntTy);
7737 
7738   // If necessary, add one more integer type to ArgList.
7739   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7740 
7741   if (R)
7742     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7743 }
7744 
7745 // In N32/64, an aligned double precision floating point field is passed in
7746 // a register.
7747 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7748   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7749 
7750   if (IsO32) {
7751     CoerceToIntArgs(TySize, ArgList);
7752     return llvm::StructType::get(getVMContext(), ArgList);
7753   }
7754 
7755   if (Ty->isComplexType())
7756     return CGT.ConvertType(Ty);
7757 
7758   const RecordType *RT = Ty->getAs<RecordType>();
7759 
7760   // Unions/vectors are passed in integer registers.
7761   if (!RT || !RT->isStructureOrClassType()) {
7762     CoerceToIntArgs(TySize, ArgList);
7763     return llvm::StructType::get(getVMContext(), ArgList);
7764   }
7765 
7766   const RecordDecl *RD = RT->getDecl();
7767   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7768   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7769 
7770   uint64_t LastOffset = 0;
7771   unsigned idx = 0;
7772   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7773 
7774   // Iterate over fields in the struct/class and check if there are any aligned
7775   // double fields.
7776   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7777        i != e; ++i, ++idx) {
7778     const QualType Ty = i->getType();
7779     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7780 
7781     if (!BT || BT->getKind() != BuiltinType::Double)
7782       continue;
7783 
7784     uint64_t Offset = Layout.getFieldOffset(idx);
7785     if (Offset % 64) // Ignore doubles that are not aligned.
7786       continue;
7787 
7788     // Add ((Offset - LastOffset) / 64) args of type i64.
7789     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7790       ArgList.push_back(I64);
7791 
7792     // Add double type.
7793     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7794     LastOffset = Offset + 64;
7795   }
7796 
7797   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7798   ArgList.append(IntArgList.begin(), IntArgList.end());
7799 
7800   return llvm::StructType::get(getVMContext(), ArgList);
7801 }
7802 
7803 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7804                                         uint64_t Offset) const {
7805   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7806     return nullptr;
7807 
7808   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7809 }
7810 
7811 ABIArgInfo
7812 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7813   Ty = useFirstFieldIfTransparentUnion(Ty);
7814 
7815   uint64_t OrigOffset = Offset;
7816   uint64_t TySize = getContext().getTypeSize(Ty);
7817   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7818 
7819   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7820                    (uint64_t)StackAlignInBytes);
7821   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7822   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7823 
7824   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7825     // Ignore empty aggregates.
7826     if (TySize == 0)
7827       return ABIArgInfo::getIgnore();
7828 
7829     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7830       Offset = OrigOffset + MinABIStackAlignInBytes;
7831       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7832     }
7833 
7834     // If we have reached here, aggregates are passed directly by coercing to
7835     // another structure type. Padding is inserted if the offset of the
7836     // aggregate is unaligned.
7837     ABIArgInfo ArgInfo =
7838         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7839                               getPaddingType(OrigOffset, CurrOffset));
7840     ArgInfo.setInReg(true);
7841     return ArgInfo;
7842   }
7843 
7844   // Treat an enum type as its underlying type.
7845   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7846     Ty = EnumTy->getDecl()->getIntegerType();
7847 
7848   // Make sure we pass indirectly things that are too large.
7849   if (const auto *EIT = Ty->getAs<ExtIntType>())
7850     if (EIT->getNumBits() > 128 ||
7851         (EIT->getNumBits() > 64 &&
7852          !getContext().getTargetInfo().hasInt128Type()))
7853       return getNaturalAlignIndirect(Ty);
7854 
7855   // All integral types are promoted to the GPR width.
7856   if (Ty->isIntegralOrEnumerationType())
7857     return extendType(Ty);
7858 
7859   return ABIArgInfo::getDirect(
7860       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7861 }
7862 
7863 llvm::Type*
7864 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7865   const RecordType *RT = RetTy->getAs<RecordType>();
7866   SmallVector<llvm::Type*, 8> RTList;
7867 
7868   if (RT && RT->isStructureOrClassType()) {
7869     const RecordDecl *RD = RT->getDecl();
7870     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7871     unsigned FieldCnt = Layout.getFieldCount();
7872 
7873     // N32/64 returns struct/classes in floating point registers if the
7874     // following conditions are met:
7875     // 1. The size of the struct/class is no larger than 128-bit.
7876     // 2. The struct/class has one or two fields all of which are floating
7877     //    point types.
7878     // 3. The offset of the first field is zero (this follows what gcc does).
7879     //
7880     // Any other composite results are returned in integer registers.
7881     //
7882     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7883       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7884       for (; b != e; ++b) {
7885         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7886 
7887         if (!BT || !BT->isFloatingPoint())
7888           break;
7889 
7890         RTList.push_back(CGT.ConvertType(b->getType()));
7891       }
7892 
7893       if (b == e)
7894         return llvm::StructType::get(getVMContext(), RTList,
7895                                      RD->hasAttr<PackedAttr>());
7896 
7897       RTList.clear();
7898     }
7899   }
7900 
7901   CoerceToIntArgs(Size, RTList);
7902   return llvm::StructType::get(getVMContext(), RTList);
7903 }
7904 
7905 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7906   uint64_t Size = getContext().getTypeSize(RetTy);
7907 
7908   if (RetTy->isVoidType())
7909     return ABIArgInfo::getIgnore();
7910 
7911   // O32 doesn't treat zero-sized structs differently from other structs.
7912   // However, N32/N64 ignores zero sized return values.
7913   if (!IsO32 && Size == 0)
7914     return ABIArgInfo::getIgnore();
7915 
7916   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7917     if (Size <= 128) {
7918       if (RetTy->isAnyComplexType())
7919         return ABIArgInfo::getDirect();
7920 
7921       // O32 returns integer vectors in registers and N32/N64 returns all small
7922       // aggregates in registers.
7923       if (!IsO32 ||
7924           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7925         ABIArgInfo ArgInfo =
7926             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7927         ArgInfo.setInReg(true);
7928         return ArgInfo;
7929       }
7930     }
7931 
7932     return getNaturalAlignIndirect(RetTy);
7933   }
7934 
7935   // Treat an enum type as its underlying type.
7936   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7937     RetTy = EnumTy->getDecl()->getIntegerType();
7938 
7939   // Make sure we pass indirectly things that are too large.
7940   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7941     if (EIT->getNumBits() > 128 ||
7942         (EIT->getNumBits() > 64 &&
7943          !getContext().getTargetInfo().hasInt128Type()))
7944       return getNaturalAlignIndirect(RetTy);
7945 
7946   if (isPromotableIntegerTypeForABI(RetTy))
7947     return ABIArgInfo::getExtend(RetTy);
7948 
7949   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7950       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7951     return ABIArgInfo::getSignExtend(RetTy);
7952 
7953   return ABIArgInfo::getDirect();
7954 }
7955 
7956 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7957   ABIArgInfo &RetInfo = FI.getReturnInfo();
7958   if (!getCXXABI().classifyReturnType(FI))
7959     RetInfo = classifyReturnType(FI.getReturnType());
7960 
7961   // Check if a pointer to an aggregate is passed as a hidden argument.
7962   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7963 
7964   for (auto &I : FI.arguments())
7965     I.info = classifyArgumentType(I.type, Offset);
7966 }
7967 
7968 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7969                                QualType OrigTy) const {
7970   QualType Ty = OrigTy;
7971 
7972   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7973   // Pointers are also promoted in the same way but this only matters for N32.
7974   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7975   unsigned PtrWidth = getTarget().getPointerWidth(0);
7976   bool DidPromote = false;
7977   if ((Ty->isIntegerType() &&
7978           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7979       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7980     DidPromote = true;
7981     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7982                                             Ty->isSignedIntegerType());
7983   }
7984 
7985   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7986 
7987   // The alignment of things in the argument area is never larger than
7988   // StackAlignInBytes.
7989   TyInfo.second =
7990     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7991 
7992   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7993   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7994 
7995   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7996                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7997 
7998 
7999   // If there was a promotion, "unpromote" into a temporary.
8000   // TODO: can we just use a pointer into a subset of the original slot?
8001   if (DidPromote) {
8002     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8003     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8004 
8005     // Truncate down to the right width.
8006     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8007                                                  : CGF.IntPtrTy);
8008     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8009     if (OrigTy->isPointerType())
8010       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8011 
8012     CGF.Builder.CreateStore(V, Temp);
8013     Addr = Temp;
8014   }
8015 
8016   return Addr;
8017 }
8018 
8019 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8020   int TySize = getContext().getTypeSize(Ty);
8021 
8022   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8023   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8024     return ABIArgInfo::getSignExtend(Ty);
8025 
8026   return ABIArgInfo::getExtend(Ty);
8027 }
8028 
8029 bool
8030 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8031                                                llvm::Value *Address) const {
8032   // This information comes from gcc's implementation, which seems to
8033   // as canonical as it gets.
8034 
8035   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8036   // are aliased to pairs of single-precision FP registers.
8037   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8038 
8039   // 0-31 are the general purpose registers, $0 - $31.
8040   // 32-63 are the floating-point registers, $f0 - $f31.
8041   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8042   // 66 is the (notional, I think) register for signal-handler return.
8043   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8044 
8045   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8046   // They are one bit wide and ignored here.
8047 
8048   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8049   // (coprocessor 1 is the FP unit)
8050   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8051   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8052   // 176-181 are the DSP accumulator registers.
8053   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8054   return false;
8055 }
8056 
8057 //===----------------------------------------------------------------------===//
8058 // AVR ABI Implementation.
8059 //===----------------------------------------------------------------------===//
8060 
8061 namespace {
8062 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8063 public:
8064   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8065       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8066 
8067   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8068                            CodeGen::CodeGenModule &CGM) const override {
8069     if (GV->isDeclaration())
8070       return;
8071     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8072     if (!FD) return;
8073     auto *Fn = cast<llvm::Function>(GV);
8074 
8075     if (FD->getAttr<AVRInterruptAttr>())
8076       Fn->addFnAttr("interrupt");
8077 
8078     if (FD->getAttr<AVRSignalAttr>())
8079       Fn->addFnAttr("signal");
8080   }
8081 };
8082 }
8083 
8084 //===----------------------------------------------------------------------===//
8085 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8086 // Currently subclassed only to implement custom OpenCL C function attribute
8087 // handling.
8088 //===----------------------------------------------------------------------===//
8089 
8090 namespace {
8091 
8092 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8093 public:
8094   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8095     : DefaultTargetCodeGenInfo(CGT) {}
8096 
8097   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8098                            CodeGen::CodeGenModule &M) const override;
8099 };
8100 
8101 void TCETargetCodeGenInfo::setTargetAttributes(
8102     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8103   if (GV->isDeclaration())
8104     return;
8105   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8106   if (!FD) return;
8107 
8108   llvm::Function *F = cast<llvm::Function>(GV);
8109 
8110   if (M.getLangOpts().OpenCL) {
8111     if (FD->hasAttr<OpenCLKernelAttr>()) {
8112       // OpenCL C Kernel functions are not subject to inlining
8113       F->addFnAttr(llvm::Attribute::NoInline);
8114       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8115       if (Attr) {
8116         // Convert the reqd_work_group_size() attributes to metadata.
8117         llvm::LLVMContext &Context = F->getContext();
8118         llvm::NamedMDNode *OpenCLMetadata =
8119             M.getModule().getOrInsertNamedMetadata(
8120                 "opencl.kernel_wg_size_info");
8121 
8122         SmallVector<llvm::Metadata *, 5> Operands;
8123         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8124 
8125         Operands.push_back(
8126             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8127                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8128         Operands.push_back(
8129             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8130                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8131         Operands.push_back(
8132             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8133                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8134 
8135         // Add a boolean constant operand for "required" (true) or "hint"
8136         // (false) for implementing the work_group_size_hint attr later.
8137         // Currently always true as the hint is not yet implemented.
8138         Operands.push_back(
8139             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8140         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8141       }
8142     }
8143   }
8144 }
8145 
8146 }
8147 
8148 //===----------------------------------------------------------------------===//
8149 // Hexagon ABI Implementation
8150 //===----------------------------------------------------------------------===//
8151 
8152 namespace {
8153 
8154 class HexagonABIInfo : public DefaultABIInfo {
8155 public:
8156   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8157 
8158 private:
8159   ABIArgInfo classifyReturnType(QualType RetTy) const;
8160   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8161   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8162 
8163   void computeInfo(CGFunctionInfo &FI) const override;
8164 
8165   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8166                     QualType Ty) const override;
8167   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8168                               QualType Ty) const;
8169   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8170                               QualType Ty) const;
8171   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8172                                    QualType Ty) const;
8173 };
8174 
8175 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8176 public:
8177   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8178       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8179 
8180   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8181     return 29;
8182   }
8183 
8184   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8185                            CodeGen::CodeGenModule &GCM) const override {
8186     if (GV->isDeclaration())
8187       return;
8188     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8189     if (!FD)
8190       return;
8191   }
8192 };
8193 
8194 } // namespace
8195 
8196 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8197   unsigned RegsLeft = 6;
8198   if (!getCXXABI().classifyReturnType(FI))
8199     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8200   for (auto &I : FI.arguments())
8201     I.info = classifyArgumentType(I.type, &RegsLeft);
8202 }
8203 
8204 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8205   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8206                        " through registers");
8207 
8208   if (*RegsLeft == 0)
8209     return false;
8210 
8211   if (Size <= 32) {
8212     (*RegsLeft)--;
8213     return true;
8214   }
8215 
8216   if (2 <= (*RegsLeft & (~1U))) {
8217     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8218     return true;
8219   }
8220 
8221   // Next available register was r5 but candidate was greater than 32-bits so it
8222   // has to go on the stack. However we still consume r5
8223   if (*RegsLeft == 1)
8224     *RegsLeft = 0;
8225 
8226   return false;
8227 }
8228 
8229 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8230                                                 unsigned *RegsLeft) const {
8231   if (!isAggregateTypeForABI(Ty)) {
8232     // Treat an enum type as its underlying type.
8233     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8234       Ty = EnumTy->getDecl()->getIntegerType();
8235 
8236     uint64_t Size = getContext().getTypeSize(Ty);
8237     if (Size <= 64)
8238       HexagonAdjustRegsLeft(Size, RegsLeft);
8239 
8240     if (Size > 64 && Ty->isExtIntType())
8241       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8242 
8243     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8244                                              : ABIArgInfo::getDirect();
8245   }
8246 
8247   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8248     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8249 
8250   // Ignore empty records.
8251   if (isEmptyRecord(getContext(), Ty, true))
8252     return ABIArgInfo::getIgnore();
8253 
8254   uint64_t Size = getContext().getTypeSize(Ty);
8255   unsigned Align = getContext().getTypeAlign(Ty);
8256 
8257   if (Size > 64)
8258     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8259 
8260   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8261     Align = Size <= 32 ? 32 : 64;
8262   if (Size <= Align) {
8263     // Pass in the smallest viable integer type.
8264     if (!llvm::isPowerOf2_64(Size))
8265       Size = llvm::NextPowerOf2(Size);
8266     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8267   }
8268   return DefaultABIInfo::classifyArgumentType(Ty);
8269 }
8270 
8271 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8272   if (RetTy->isVoidType())
8273     return ABIArgInfo::getIgnore();
8274 
8275   const TargetInfo &T = CGT.getTarget();
8276   uint64_t Size = getContext().getTypeSize(RetTy);
8277 
8278   if (RetTy->getAs<VectorType>()) {
8279     // HVX vectors are returned in vector registers or register pairs.
8280     if (T.hasFeature("hvx")) {
8281       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8282       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8283       if (Size == VecSize || Size == 2*VecSize)
8284         return ABIArgInfo::getDirectInReg();
8285     }
8286     // Large vector types should be returned via memory.
8287     if (Size > 64)
8288       return getNaturalAlignIndirect(RetTy);
8289   }
8290 
8291   if (!isAggregateTypeForABI(RetTy)) {
8292     // Treat an enum type as its underlying type.
8293     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8294       RetTy = EnumTy->getDecl()->getIntegerType();
8295 
8296     if (Size > 64 && RetTy->isExtIntType())
8297       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8298 
8299     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8300                                                 : ABIArgInfo::getDirect();
8301   }
8302 
8303   if (isEmptyRecord(getContext(), RetTy, true))
8304     return ABIArgInfo::getIgnore();
8305 
8306   // Aggregates <= 8 bytes are returned in registers, other aggregates
8307   // are returned indirectly.
8308   if (Size <= 64) {
8309     // Return in the smallest viable integer type.
8310     if (!llvm::isPowerOf2_64(Size))
8311       Size = llvm::NextPowerOf2(Size);
8312     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8313   }
8314   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8315 }
8316 
8317 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8318                                             Address VAListAddr,
8319                                             QualType Ty) const {
8320   // Load the overflow area pointer.
8321   Address __overflow_area_pointer_p =
8322       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8323   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8324       __overflow_area_pointer_p, "__overflow_area_pointer");
8325 
8326   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8327   if (Align > 4) {
8328     // Alignment should be a power of 2.
8329     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8330 
8331     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8332     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8333 
8334     // Add offset to the current pointer to access the argument.
8335     __overflow_area_pointer =
8336         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8337     llvm::Value *AsInt =
8338         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8339 
8340     // Create a mask which should be "AND"ed
8341     // with (overflow_arg_area + align - 1)
8342     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8343     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8344         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8345         "__overflow_area_pointer.align");
8346   }
8347 
8348   // Get the type of the argument from memory and bitcast
8349   // overflow area pointer to the argument type.
8350   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8351   Address AddrTyped = CGF.Builder.CreateBitCast(
8352       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8353       llvm::PointerType::getUnqual(PTy));
8354 
8355   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8356   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8357 
8358   __overflow_area_pointer = CGF.Builder.CreateGEP(
8359       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8360       "__overflow_area_pointer.next");
8361   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8362 
8363   return AddrTyped;
8364 }
8365 
8366 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8367                                             Address VAListAddr,
8368                                             QualType Ty) const {
8369   // FIXME: Need to handle alignment
8370   llvm::Type *BP = CGF.Int8PtrTy;
8371   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8372   CGBuilderTy &Builder = CGF.Builder;
8373   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8374   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8375   // Handle address alignment for type alignment > 32 bits
8376   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8377   if (TyAlign > 4) {
8378     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8379     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8380     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8381     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8382     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8383   }
8384   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8385   Address AddrTyped = Builder.CreateBitCast(
8386       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8387 
8388   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8389   llvm::Value *NextAddr = Builder.CreateGEP(
8390       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8391   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8392 
8393   return AddrTyped;
8394 }
8395 
8396 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8397                                                  Address VAListAddr,
8398                                                  QualType Ty) const {
8399   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8400 
8401   if (ArgSize > 8)
8402     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8403 
8404   // Here we have check if the argument is in register area or
8405   // in overflow area.
8406   // If the saved register area pointer + argsize rounded up to alignment >
8407   // saved register area end pointer, argument is in overflow area.
8408   unsigned RegsLeft = 6;
8409   Ty = CGF.getContext().getCanonicalType(Ty);
8410   (void)classifyArgumentType(Ty, &RegsLeft);
8411 
8412   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8413   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8414   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8415   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8416 
8417   // Get rounded size of the argument.GCC does not allow vararg of
8418   // size < 4 bytes. We follow the same logic here.
8419   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8420   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8421 
8422   // Argument may be in saved register area
8423   CGF.EmitBlock(MaybeRegBlock);
8424 
8425   // Load the current saved register area pointer.
8426   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8427       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8428   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8429       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8430 
8431   // Load the saved register area end pointer.
8432   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8433       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8434   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8435       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8436 
8437   // If the size of argument is > 4 bytes, check if the stack
8438   // location is aligned to 8 bytes
8439   if (ArgAlign > 4) {
8440 
8441     llvm::Value *__current_saved_reg_area_pointer_int =
8442         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8443                                    CGF.Int32Ty);
8444 
8445     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8446         __current_saved_reg_area_pointer_int,
8447         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8448         "align_current_saved_reg_area_pointer");
8449 
8450     __current_saved_reg_area_pointer_int =
8451         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8452                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8453                               "align_current_saved_reg_area_pointer");
8454 
8455     __current_saved_reg_area_pointer =
8456         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8457                                    __current_saved_reg_area_pointer->getType(),
8458                                    "align_current_saved_reg_area_pointer");
8459   }
8460 
8461   llvm::Value *__new_saved_reg_area_pointer =
8462       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8463                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8464                             "__new_saved_reg_area_pointer");
8465 
8466   llvm::Value *UsingStack = 0;
8467   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8468                                          __saved_reg_area_end_pointer);
8469 
8470   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8471 
8472   // Argument in saved register area
8473   // Implement the block where argument is in register saved area
8474   CGF.EmitBlock(InRegBlock);
8475 
8476   llvm::Type *PTy = CGF.ConvertType(Ty);
8477   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8478       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8479 
8480   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8481                           __current_saved_reg_area_pointer_p);
8482 
8483   CGF.EmitBranch(ContBlock);
8484 
8485   // Argument in overflow area
8486   // Implement the block where the argument is in overflow area.
8487   CGF.EmitBlock(OnStackBlock);
8488 
8489   // Load the overflow area pointer
8490   Address __overflow_area_pointer_p =
8491       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8492   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8493       __overflow_area_pointer_p, "__overflow_area_pointer");
8494 
8495   // Align the overflow area pointer according to the alignment of the argument
8496   if (ArgAlign > 4) {
8497     llvm::Value *__overflow_area_pointer_int =
8498         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8499 
8500     __overflow_area_pointer_int =
8501         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8502                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8503                               "align_overflow_area_pointer");
8504 
8505     __overflow_area_pointer_int =
8506         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8507                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8508                               "align_overflow_area_pointer");
8509 
8510     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8511         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8512         "align_overflow_area_pointer");
8513   }
8514 
8515   // Get the pointer for next argument in overflow area and store it
8516   // to overflow area pointer.
8517   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8518       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8519       "__overflow_area_pointer.next");
8520 
8521   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8522                           __overflow_area_pointer_p);
8523 
8524   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8525                           __current_saved_reg_area_pointer_p);
8526 
8527   // Bitcast the overflow area pointer to the type of argument.
8528   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8529   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8530       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8531 
8532   CGF.EmitBranch(ContBlock);
8533 
8534   // Get the correct pointer to load the variable argument
8535   // Implement the ContBlock
8536   CGF.EmitBlock(ContBlock);
8537 
8538   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8539   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8540   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8541   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8542 
8543   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8544 }
8545 
8546 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8547                                   QualType Ty) const {
8548 
8549   if (getTarget().getTriple().isMusl())
8550     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8551 
8552   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8553 }
8554 
8555 //===----------------------------------------------------------------------===//
8556 // Lanai ABI Implementation
8557 //===----------------------------------------------------------------------===//
8558 
8559 namespace {
8560 class LanaiABIInfo : public DefaultABIInfo {
8561 public:
8562   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8563 
8564   bool shouldUseInReg(QualType Ty, CCState &State) const;
8565 
8566   void computeInfo(CGFunctionInfo &FI) const override {
8567     CCState State(FI);
8568     // Lanai uses 4 registers to pass arguments unless the function has the
8569     // regparm attribute set.
8570     if (FI.getHasRegParm()) {
8571       State.FreeRegs = FI.getRegParm();
8572     } else {
8573       State.FreeRegs = 4;
8574     }
8575 
8576     if (!getCXXABI().classifyReturnType(FI))
8577       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8578     for (auto &I : FI.arguments())
8579       I.info = classifyArgumentType(I.type, State);
8580   }
8581 
8582   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8583   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8584 };
8585 } // end anonymous namespace
8586 
8587 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8588   unsigned Size = getContext().getTypeSize(Ty);
8589   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8590 
8591   if (SizeInRegs == 0)
8592     return false;
8593 
8594   if (SizeInRegs > State.FreeRegs) {
8595     State.FreeRegs = 0;
8596     return false;
8597   }
8598 
8599   State.FreeRegs -= SizeInRegs;
8600 
8601   return true;
8602 }
8603 
8604 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8605                                            CCState &State) const {
8606   if (!ByVal) {
8607     if (State.FreeRegs) {
8608       --State.FreeRegs; // Non-byval indirects just use one pointer.
8609       return getNaturalAlignIndirectInReg(Ty);
8610     }
8611     return getNaturalAlignIndirect(Ty, false);
8612   }
8613 
8614   // Compute the byval alignment.
8615   const unsigned MinABIStackAlignInBytes = 4;
8616   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8617   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8618                                  /*Realign=*/TypeAlign >
8619                                      MinABIStackAlignInBytes);
8620 }
8621 
8622 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8623                                               CCState &State) const {
8624   // Check with the C++ ABI first.
8625   const RecordType *RT = Ty->getAs<RecordType>();
8626   if (RT) {
8627     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8628     if (RAA == CGCXXABI::RAA_Indirect) {
8629       return getIndirectResult(Ty, /*ByVal=*/false, State);
8630     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8631       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8632     }
8633   }
8634 
8635   if (isAggregateTypeForABI(Ty)) {
8636     // Structures with flexible arrays are always indirect.
8637     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8638       return getIndirectResult(Ty, /*ByVal=*/true, State);
8639 
8640     // Ignore empty structs/unions.
8641     if (isEmptyRecord(getContext(), Ty, true))
8642       return ABIArgInfo::getIgnore();
8643 
8644     llvm::LLVMContext &LLVMContext = getVMContext();
8645     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8646     if (SizeInRegs <= State.FreeRegs) {
8647       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8648       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8649       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8650       State.FreeRegs -= SizeInRegs;
8651       return ABIArgInfo::getDirectInReg(Result);
8652     } else {
8653       State.FreeRegs = 0;
8654     }
8655     return getIndirectResult(Ty, true, State);
8656   }
8657 
8658   // Treat an enum type as its underlying type.
8659   if (const auto *EnumTy = Ty->getAs<EnumType>())
8660     Ty = EnumTy->getDecl()->getIntegerType();
8661 
8662   bool InReg = shouldUseInReg(Ty, State);
8663 
8664   // Don't pass >64 bit integers in registers.
8665   if (const auto *EIT = Ty->getAs<ExtIntType>())
8666     if (EIT->getNumBits() > 64)
8667       return getIndirectResult(Ty, /*ByVal=*/true, State);
8668 
8669   if (isPromotableIntegerTypeForABI(Ty)) {
8670     if (InReg)
8671       return ABIArgInfo::getDirectInReg();
8672     return ABIArgInfo::getExtend(Ty);
8673   }
8674   if (InReg)
8675     return ABIArgInfo::getDirectInReg();
8676   return ABIArgInfo::getDirect();
8677 }
8678 
8679 namespace {
8680 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8681 public:
8682   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8683       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8684 };
8685 }
8686 
8687 //===----------------------------------------------------------------------===//
8688 // AMDGPU ABI Implementation
8689 //===----------------------------------------------------------------------===//
8690 
8691 namespace {
8692 
8693 class AMDGPUABIInfo final : public DefaultABIInfo {
8694 private:
8695   static const unsigned MaxNumRegsForArgsRet = 16;
8696 
8697   unsigned numRegsForType(QualType Ty) const;
8698 
8699   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8700   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8701                                          uint64_t Members) const override;
8702 
8703   // Coerce HIP pointer arguments from generic pointers to global ones.
8704   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8705                                        unsigned ToAS) const {
8706     // Structure types.
8707     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8708       SmallVector<llvm::Type *, 8> EltTys;
8709       bool Changed = false;
8710       for (auto T : STy->elements()) {
8711         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8712         EltTys.push_back(NT);
8713         Changed |= (NT != T);
8714       }
8715       // Skip if there is no change in element types.
8716       if (!Changed)
8717         return STy;
8718       if (STy->hasName())
8719         return llvm::StructType::create(
8720             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8721       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8722     }
8723     // Array types.
8724     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8725       auto T = ATy->getElementType();
8726       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8727       // Skip if there is no change in that element type.
8728       if (NT == T)
8729         return ATy;
8730       return llvm::ArrayType::get(NT, ATy->getNumElements());
8731     }
8732     // Single value types.
8733     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8734       return llvm::PointerType::get(
8735           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8736     return Ty;
8737   }
8738 
8739 public:
8740   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8741     DefaultABIInfo(CGT) {}
8742 
8743   ABIArgInfo classifyReturnType(QualType RetTy) const;
8744   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8745   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8746 
8747   void computeInfo(CGFunctionInfo &FI) const override;
8748   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8749                     QualType Ty) const override;
8750 };
8751 
8752 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8753   return true;
8754 }
8755 
8756 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8757   const Type *Base, uint64_t Members) const {
8758   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8759 
8760   // Homogeneous Aggregates may occupy at most 16 registers.
8761   return Members * NumRegs <= MaxNumRegsForArgsRet;
8762 }
8763 
8764 /// Estimate number of registers the type will use when passed in registers.
8765 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8766   unsigned NumRegs = 0;
8767 
8768   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8769     // Compute from the number of elements. The reported size is based on the
8770     // in-memory size, which includes the padding 4th element for 3-vectors.
8771     QualType EltTy = VT->getElementType();
8772     unsigned EltSize = getContext().getTypeSize(EltTy);
8773 
8774     // 16-bit element vectors should be passed as packed.
8775     if (EltSize == 16)
8776       return (VT->getNumElements() + 1) / 2;
8777 
8778     unsigned EltNumRegs = (EltSize + 31) / 32;
8779     return EltNumRegs * VT->getNumElements();
8780   }
8781 
8782   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8783     const RecordDecl *RD = RT->getDecl();
8784     assert(!RD->hasFlexibleArrayMember());
8785 
8786     for (const FieldDecl *Field : RD->fields()) {
8787       QualType FieldTy = Field->getType();
8788       NumRegs += numRegsForType(FieldTy);
8789     }
8790 
8791     return NumRegs;
8792   }
8793 
8794   return (getContext().getTypeSize(Ty) + 31) / 32;
8795 }
8796 
8797 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8798   llvm::CallingConv::ID CC = FI.getCallingConvention();
8799 
8800   if (!getCXXABI().classifyReturnType(FI))
8801     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8802 
8803   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8804   for (auto &Arg : FI.arguments()) {
8805     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8806       Arg.info = classifyKernelArgumentType(Arg.type);
8807     } else {
8808       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8809     }
8810   }
8811 }
8812 
8813 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8814                                  QualType Ty) const {
8815   llvm_unreachable("AMDGPU does not support varargs");
8816 }
8817 
8818 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8819   if (isAggregateTypeForABI(RetTy)) {
8820     // Records with non-trivial destructors/copy-constructors should not be
8821     // returned by value.
8822     if (!getRecordArgABI(RetTy, getCXXABI())) {
8823       // Ignore empty structs/unions.
8824       if (isEmptyRecord(getContext(), RetTy, true))
8825         return ABIArgInfo::getIgnore();
8826 
8827       // Lower single-element structs to just return a regular value.
8828       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8829         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8830 
8831       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8832         const RecordDecl *RD = RT->getDecl();
8833         if (RD->hasFlexibleArrayMember())
8834           return DefaultABIInfo::classifyReturnType(RetTy);
8835       }
8836 
8837       // Pack aggregates <= 4 bytes into single VGPR or pair.
8838       uint64_t Size = getContext().getTypeSize(RetTy);
8839       if (Size <= 16)
8840         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8841 
8842       if (Size <= 32)
8843         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8844 
8845       if (Size <= 64) {
8846         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8847         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8848       }
8849 
8850       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8851         return ABIArgInfo::getDirect();
8852     }
8853   }
8854 
8855   // Otherwise just do the default thing.
8856   return DefaultABIInfo::classifyReturnType(RetTy);
8857 }
8858 
8859 /// For kernels all parameters are really passed in a special buffer. It doesn't
8860 /// make sense to pass anything byval, so everything must be direct.
8861 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8862   Ty = useFirstFieldIfTransparentUnion(Ty);
8863 
8864   // TODO: Can we omit empty structs?
8865 
8866   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8867     Ty = QualType(SeltTy, 0);
8868 
8869   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
8870   llvm::Type *LTy = OrigLTy;
8871   if (getContext().getLangOpts().HIP) {
8872     LTy = coerceKernelArgumentType(
8873         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8874         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8875   }
8876 
8877   // FIXME: Should also use this for OpenCL, but it requires addressing the
8878   // problem of kernels being called.
8879   //
8880   // FIXME: This doesn't apply the optimization of coercing pointers in structs
8881   // to global address space when using byref. This would require implementing a
8882   // new kind of coercion of the in-memory type when for indirect arguments.
8883   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
8884       isAggregateTypeForABI(Ty)) {
8885     return ABIArgInfo::getIndirectAliased(
8886         getContext().getTypeAlignInChars(Ty),
8887         getContext().getTargetAddressSpace(LangAS::opencl_constant),
8888         false /*Realign*/, nullptr /*Padding*/);
8889   }
8890 
8891   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8892   // individual elements, which confuses the Clover OpenCL backend; therefore we
8893   // have to set it to false here. Other args of getDirect() are just defaults.
8894   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8895 }
8896 
8897 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8898                                                unsigned &NumRegsLeft) const {
8899   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8900 
8901   Ty = useFirstFieldIfTransparentUnion(Ty);
8902 
8903   if (isAggregateTypeForABI(Ty)) {
8904     // Records with non-trivial destructors/copy-constructors should not be
8905     // passed by value.
8906     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8907       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8908 
8909     // Ignore empty structs/unions.
8910     if (isEmptyRecord(getContext(), Ty, true))
8911       return ABIArgInfo::getIgnore();
8912 
8913     // Lower single-element structs to just pass a regular value. TODO: We
8914     // could do reasonable-size multiple-element structs too, using getExpand(),
8915     // though watch out for things like bitfields.
8916     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8917       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8918 
8919     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8920       const RecordDecl *RD = RT->getDecl();
8921       if (RD->hasFlexibleArrayMember())
8922         return DefaultABIInfo::classifyArgumentType(Ty);
8923     }
8924 
8925     // Pack aggregates <= 8 bytes into single VGPR or pair.
8926     uint64_t Size = getContext().getTypeSize(Ty);
8927     if (Size <= 64) {
8928       unsigned NumRegs = (Size + 31) / 32;
8929       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8930 
8931       if (Size <= 16)
8932         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8933 
8934       if (Size <= 32)
8935         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8936 
8937       // XXX: Should this be i64 instead, and should the limit increase?
8938       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8939       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8940     }
8941 
8942     if (NumRegsLeft > 0) {
8943       unsigned NumRegs = numRegsForType(Ty);
8944       if (NumRegsLeft >= NumRegs) {
8945         NumRegsLeft -= NumRegs;
8946         return ABIArgInfo::getDirect();
8947       }
8948     }
8949   }
8950 
8951   // Otherwise just do the default thing.
8952   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8953   if (!ArgInfo.isIndirect()) {
8954     unsigned NumRegs = numRegsForType(Ty);
8955     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8956   }
8957 
8958   return ArgInfo;
8959 }
8960 
8961 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8962 public:
8963   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8964       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8965   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8966                            CodeGen::CodeGenModule &M) const override;
8967   unsigned getOpenCLKernelCallingConv() const override;
8968 
8969   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8970       llvm::PointerType *T, QualType QT) const override;
8971 
8972   LangAS getASTAllocaAddressSpace() const override {
8973     return getLangASFromTargetAS(
8974         getABIInfo().getDataLayout().getAllocaAddrSpace());
8975   }
8976   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8977                                   const VarDecl *D) const override;
8978   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8979                                          SyncScope Scope,
8980                                          llvm::AtomicOrdering Ordering,
8981                                          llvm::LLVMContext &Ctx) const override;
8982   llvm::Function *
8983   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8984                             llvm::Function *BlockInvokeFunc,
8985                             llvm::Value *BlockLiteral) const override;
8986   bool shouldEmitStaticExternCAliases() const override;
8987   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8988 };
8989 }
8990 
8991 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8992                                               llvm::GlobalValue *GV) {
8993   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8994     return false;
8995 
8996   return D->hasAttr<OpenCLKernelAttr>() ||
8997          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8998          (isa<VarDecl>(D) &&
8999           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9000            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9001            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9002 }
9003 
9004 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9005     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9006   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9007     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9008     GV->setDSOLocal(true);
9009   }
9010 
9011   if (GV->isDeclaration())
9012     return;
9013   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9014   if (!FD)
9015     return;
9016 
9017   llvm::Function *F = cast<llvm::Function>(GV);
9018 
9019   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9020     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9021 
9022 
9023   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9024                               FD->hasAttr<OpenCLKernelAttr>();
9025   const bool IsHIPKernel = M.getLangOpts().HIP &&
9026                            FD->hasAttr<CUDAGlobalAttr>();
9027   if ((IsOpenCLKernel || IsHIPKernel) &&
9028       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9029     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9030 
9031   if (IsHIPKernel)
9032     F->addFnAttr("uniform-work-group-size", "true");
9033 
9034 
9035   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9036   if (ReqdWGS || FlatWGS) {
9037     unsigned Min = 0;
9038     unsigned Max = 0;
9039     if (FlatWGS) {
9040       Min = FlatWGS->getMin()
9041                 ->EvaluateKnownConstInt(M.getContext())
9042                 .getExtValue();
9043       Max = FlatWGS->getMax()
9044                 ->EvaluateKnownConstInt(M.getContext())
9045                 .getExtValue();
9046     }
9047     if (ReqdWGS && Min == 0 && Max == 0)
9048       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9049 
9050     if (Min != 0) {
9051       assert(Min <= Max && "Min must be less than or equal Max");
9052 
9053       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9054       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9055     } else
9056       assert(Max == 0 && "Max must be zero");
9057   } else if (IsOpenCLKernel || IsHIPKernel) {
9058     // By default, restrict the maximum size to a value specified by
9059     // --gpu-max-threads-per-block=n or its default value for HIP.
9060     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9061     const unsigned DefaultMaxWorkGroupSize =
9062         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9063                        : M.getLangOpts().GPUMaxThreadsPerBlock;
9064     std::string AttrVal =
9065         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9066     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9067   }
9068 
9069   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9070     unsigned Min =
9071         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9072     unsigned Max = Attr->getMax() ? Attr->getMax()
9073                                         ->EvaluateKnownConstInt(M.getContext())
9074                                         .getExtValue()
9075                                   : 0;
9076 
9077     if (Min != 0) {
9078       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9079 
9080       std::string AttrVal = llvm::utostr(Min);
9081       if (Max != 0)
9082         AttrVal = AttrVal + "," + llvm::utostr(Max);
9083       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9084     } else
9085       assert(Max == 0 && "Max must be zero");
9086   }
9087 
9088   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9089     unsigned NumSGPR = Attr->getNumSGPR();
9090 
9091     if (NumSGPR != 0)
9092       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9093   }
9094 
9095   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9096     uint32_t NumVGPR = Attr->getNumVGPR();
9097 
9098     if (NumVGPR != 0)
9099       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9100   }
9101 }
9102 
9103 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9104   return llvm::CallingConv::AMDGPU_KERNEL;
9105 }
9106 
9107 // Currently LLVM assumes null pointers always have value 0,
9108 // which results in incorrectly transformed IR. Therefore, instead of
9109 // emitting null pointers in private and local address spaces, a null
9110 // pointer in generic address space is emitted which is casted to a
9111 // pointer in local or private address space.
9112 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9113     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9114     QualType QT) const {
9115   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9116     return llvm::ConstantPointerNull::get(PT);
9117 
9118   auto &Ctx = CGM.getContext();
9119   auto NPT = llvm::PointerType::get(PT->getElementType(),
9120       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9121   return llvm::ConstantExpr::getAddrSpaceCast(
9122       llvm::ConstantPointerNull::get(NPT), PT);
9123 }
9124 
9125 LangAS
9126 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9127                                                   const VarDecl *D) const {
9128   assert(!CGM.getLangOpts().OpenCL &&
9129          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9130          "Address space agnostic languages only");
9131   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9132       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9133   if (!D)
9134     return DefaultGlobalAS;
9135 
9136   LangAS AddrSpace = D->getType().getAddressSpace();
9137   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9138   if (AddrSpace != LangAS::Default)
9139     return AddrSpace;
9140 
9141   if (CGM.isTypeConstant(D->getType(), false)) {
9142     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9143       return ConstAS.getValue();
9144   }
9145   return DefaultGlobalAS;
9146 }
9147 
9148 llvm::SyncScope::ID
9149 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9150                                             SyncScope Scope,
9151                                             llvm::AtomicOrdering Ordering,
9152                                             llvm::LLVMContext &Ctx) const {
9153   std::string Name;
9154   switch (Scope) {
9155   case SyncScope::OpenCLWorkGroup:
9156     Name = "workgroup";
9157     break;
9158   case SyncScope::OpenCLDevice:
9159     Name = "agent";
9160     break;
9161   case SyncScope::OpenCLAllSVMDevices:
9162     Name = "";
9163     break;
9164   case SyncScope::OpenCLSubGroup:
9165     Name = "wavefront";
9166   }
9167 
9168   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9169     if (!Name.empty())
9170       Name = Twine(Twine(Name) + Twine("-")).str();
9171 
9172     Name = Twine(Twine(Name) + Twine("one-as")).str();
9173   }
9174 
9175   return Ctx.getOrInsertSyncScopeID(Name);
9176 }
9177 
9178 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9179   return false;
9180 }
9181 
9182 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9183     const FunctionType *&FT) const {
9184   FT = getABIInfo().getContext().adjustFunctionType(
9185       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9186 }
9187 
9188 //===----------------------------------------------------------------------===//
9189 // SPARC v8 ABI Implementation.
9190 // Based on the SPARC Compliance Definition version 2.4.1.
9191 //
9192 // Ensures that complex values are passed in registers.
9193 //
9194 namespace {
9195 class SparcV8ABIInfo : public DefaultABIInfo {
9196 public:
9197   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9198 
9199 private:
9200   ABIArgInfo classifyReturnType(QualType RetTy) const;
9201   void computeInfo(CGFunctionInfo &FI) const override;
9202 };
9203 } // end anonymous namespace
9204 
9205 
9206 ABIArgInfo
9207 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9208   if (Ty->isAnyComplexType()) {
9209     return ABIArgInfo::getDirect();
9210   }
9211   else {
9212     return DefaultABIInfo::classifyReturnType(Ty);
9213   }
9214 }
9215 
9216 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9217 
9218   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9219   for (auto &Arg : FI.arguments())
9220     Arg.info = classifyArgumentType(Arg.type);
9221 }
9222 
9223 namespace {
9224 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9225 public:
9226   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9227       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9228 };
9229 } // end anonymous namespace
9230 
9231 //===----------------------------------------------------------------------===//
9232 // SPARC v9 ABI Implementation.
9233 // Based on the SPARC Compliance Definition version 2.4.1.
9234 //
9235 // Function arguments a mapped to a nominal "parameter array" and promoted to
9236 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9237 // the array, structs larger than 16 bytes are passed indirectly.
9238 //
9239 // One case requires special care:
9240 //
9241 //   struct mixed {
9242 //     int i;
9243 //     float f;
9244 //   };
9245 //
9246 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9247 // parameter array, but the int is passed in an integer register, and the float
9248 // is passed in a floating point register. This is represented as two arguments
9249 // with the LLVM IR inreg attribute:
9250 //
9251 //   declare void f(i32 inreg %i, float inreg %f)
9252 //
9253 // The code generator will only allocate 4 bytes from the parameter array for
9254 // the inreg arguments. All other arguments are allocated a multiple of 8
9255 // bytes.
9256 //
9257 namespace {
9258 class SparcV9ABIInfo : public ABIInfo {
9259 public:
9260   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9261 
9262 private:
9263   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9264   void computeInfo(CGFunctionInfo &FI) const override;
9265   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9266                     QualType Ty) const override;
9267 
9268   // Coercion type builder for structs passed in registers. The coercion type
9269   // serves two purposes:
9270   //
9271   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9272   //    in registers.
9273   // 2. Expose aligned floating point elements as first-level elements, so the
9274   //    code generator knows to pass them in floating point registers.
9275   //
9276   // We also compute the InReg flag which indicates that the struct contains
9277   // aligned 32-bit floats.
9278   //
9279   struct CoerceBuilder {
9280     llvm::LLVMContext &Context;
9281     const llvm::DataLayout &DL;
9282     SmallVector<llvm::Type*, 8> Elems;
9283     uint64_t Size;
9284     bool InReg;
9285 
9286     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9287       : Context(c), DL(dl), Size(0), InReg(false) {}
9288 
9289     // Pad Elems with integers until Size is ToSize.
9290     void pad(uint64_t ToSize) {
9291       assert(ToSize >= Size && "Cannot remove elements");
9292       if (ToSize == Size)
9293         return;
9294 
9295       // Finish the current 64-bit word.
9296       uint64_t Aligned = llvm::alignTo(Size, 64);
9297       if (Aligned > Size && Aligned <= ToSize) {
9298         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9299         Size = Aligned;
9300       }
9301 
9302       // Add whole 64-bit words.
9303       while (Size + 64 <= ToSize) {
9304         Elems.push_back(llvm::Type::getInt64Ty(Context));
9305         Size += 64;
9306       }
9307 
9308       // Final in-word padding.
9309       if (Size < ToSize) {
9310         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9311         Size = ToSize;
9312       }
9313     }
9314 
9315     // Add a floating point element at Offset.
9316     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9317       // Unaligned floats are treated as integers.
9318       if (Offset % Bits)
9319         return;
9320       // The InReg flag is only required if there are any floats < 64 bits.
9321       if (Bits < 64)
9322         InReg = true;
9323       pad(Offset);
9324       Elems.push_back(Ty);
9325       Size = Offset + Bits;
9326     }
9327 
9328     // Add a struct type to the coercion type, starting at Offset (in bits).
9329     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9330       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9331       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9332         llvm::Type *ElemTy = StrTy->getElementType(i);
9333         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9334         switch (ElemTy->getTypeID()) {
9335         case llvm::Type::StructTyID:
9336           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9337           break;
9338         case llvm::Type::FloatTyID:
9339           addFloat(ElemOffset, ElemTy, 32);
9340           break;
9341         case llvm::Type::DoubleTyID:
9342           addFloat(ElemOffset, ElemTy, 64);
9343           break;
9344         case llvm::Type::FP128TyID:
9345           addFloat(ElemOffset, ElemTy, 128);
9346           break;
9347         case llvm::Type::PointerTyID:
9348           if (ElemOffset % 64 == 0) {
9349             pad(ElemOffset);
9350             Elems.push_back(ElemTy);
9351             Size += 64;
9352           }
9353           break;
9354         default:
9355           break;
9356         }
9357       }
9358     }
9359 
9360     // Check if Ty is a usable substitute for the coercion type.
9361     bool isUsableType(llvm::StructType *Ty) const {
9362       return llvm::makeArrayRef(Elems) == Ty->elements();
9363     }
9364 
9365     // Get the coercion type as a literal struct type.
9366     llvm::Type *getType() const {
9367       if (Elems.size() == 1)
9368         return Elems.front();
9369       else
9370         return llvm::StructType::get(Context, Elems);
9371     }
9372   };
9373 };
9374 } // end anonymous namespace
9375 
9376 ABIArgInfo
9377 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9378   if (Ty->isVoidType())
9379     return ABIArgInfo::getIgnore();
9380 
9381   uint64_t Size = getContext().getTypeSize(Ty);
9382 
9383   // Anything too big to fit in registers is passed with an explicit indirect
9384   // pointer / sret pointer.
9385   if (Size > SizeLimit)
9386     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9387 
9388   // Treat an enum type as its underlying type.
9389   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9390     Ty = EnumTy->getDecl()->getIntegerType();
9391 
9392   // Integer types smaller than a register are extended.
9393   if (Size < 64 && Ty->isIntegerType())
9394     return ABIArgInfo::getExtend(Ty);
9395 
9396   if (const auto *EIT = Ty->getAs<ExtIntType>())
9397     if (EIT->getNumBits() < 64)
9398       return ABIArgInfo::getExtend(Ty);
9399 
9400   // Other non-aggregates go in registers.
9401   if (!isAggregateTypeForABI(Ty))
9402     return ABIArgInfo::getDirect();
9403 
9404   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9405   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9406   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9407     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9408 
9409   // This is a small aggregate type that should be passed in registers.
9410   // Build a coercion type from the LLVM struct type.
9411   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9412   if (!StrTy)
9413     return ABIArgInfo::getDirect();
9414 
9415   CoerceBuilder CB(getVMContext(), getDataLayout());
9416   CB.addStruct(0, StrTy);
9417   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9418 
9419   // Try to use the original type for coercion.
9420   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9421 
9422   if (CB.InReg)
9423     return ABIArgInfo::getDirectInReg(CoerceTy);
9424   else
9425     return ABIArgInfo::getDirect(CoerceTy);
9426 }
9427 
9428 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9429                                   QualType Ty) const {
9430   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9431   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9432   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9433     AI.setCoerceToType(ArgTy);
9434 
9435   CharUnits SlotSize = CharUnits::fromQuantity(8);
9436 
9437   CGBuilderTy &Builder = CGF.Builder;
9438   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9439   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9440 
9441   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9442 
9443   Address ArgAddr = Address::invalid();
9444   CharUnits Stride;
9445   switch (AI.getKind()) {
9446   case ABIArgInfo::Expand:
9447   case ABIArgInfo::CoerceAndExpand:
9448   case ABIArgInfo::InAlloca:
9449     llvm_unreachable("Unsupported ABI kind for va_arg");
9450 
9451   case ABIArgInfo::Extend: {
9452     Stride = SlotSize;
9453     CharUnits Offset = SlotSize - TypeInfo.first;
9454     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9455     break;
9456   }
9457 
9458   case ABIArgInfo::Direct: {
9459     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9460     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9461     ArgAddr = Addr;
9462     break;
9463   }
9464 
9465   case ABIArgInfo::Indirect:
9466   case ABIArgInfo::IndirectAliased:
9467     Stride = SlotSize;
9468     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9469     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9470                       TypeInfo.second);
9471     break;
9472 
9473   case ABIArgInfo::Ignore:
9474     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
9475   }
9476 
9477   // Update VAList.
9478   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9479   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9480 
9481   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9482 }
9483 
9484 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9485   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9486   for (auto &I : FI.arguments())
9487     I.info = classifyType(I.type, 16 * 8);
9488 }
9489 
9490 namespace {
9491 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9492 public:
9493   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9494       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9495 
9496   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9497     return 14;
9498   }
9499 
9500   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9501                                llvm::Value *Address) const override;
9502 };
9503 } // end anonymous namespace
9504 
9505 bool
9506 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9507                                                 llvm::Value *Address) const {
9508   // This is calculated from the LLVM and GCC tables and verified
9509   // against gcc output.  AFAIK all ABIs use the same encoding.
9510 
9511   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9512 
9513   llvm::IntegerType *i8 = CGF.Int8Ty;
9514   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9515   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9516 
9517   // 0-31: the 8-byte general-purpose registers
9518   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9519 
9520   // 32-63: f0-31, the 4-byte floating-point registers
9521   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9522 
9523   //   Y   = 64
9524   //   PSR = 65
9525   //   WIM = 66
9526   //   TBR = 67
9527   //   PC  = 68
9528   //   NPC = 69
9529   //   FSR = 70
9530   //   CSR = 71
9531   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9532 
9533   // 72-87: d0-15, the 8-byte floating-point registers
9534   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9535 
9536   return false;
9537 }
9538 
9539 // ARC ABI implementation.
9540 namespace {
9541 
9542 class ARCABIInfo : public DefaultABIInfo {
9543 public:
9544   using DefaultABIInfo::DefaultABIInfo;
9545 
9546 private:
9547   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9548                     QualType Ty) const override;
9549 
9550   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9551     if (!State.FreeRegs)
9552       return;
9553     if (Info.isIndirect() && Info.getInReg())
9554       State.FreeRegs--;
9555     else if (Info.isDirect() && Info.getInReg()) {
9556       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9557       if (sz < State.FreeRegs)
9558         State.FreeRegs -= sz;
9559       else
9560         State.FreeRegs = 0;
9561     }
9562   }
9563 
9564   void computeInfo(CGFunctionInfo &FI) const override {
9565     CCState State(FI);
9566     // ARC uses 8 registers to pass arguments.
9567     State.FreeRegs = 8;
9568 
9569     if (!getCXXABI().classifyReturnType(FI))
9570       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9571     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9572     for (auto &I : FI.arguments()) {
9573       I.info = classifyArgumentType(I.type, State.FreeRegs);
9574       updateState(I.info, I.type, State);
9575     }
9576   }
9577 
9578   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9579   ABIArgInfo getIndirectByValue(QualType Ty) const;
9580   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9581   ABIArgInfo classifyReturnType(QualType RetTy) const;
9582 };
9583 
9584 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9585 public:
9586   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9587       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9588 };
9589 
9590 
9591 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9592   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9593                        getNaturalAlignIndirect(Ty, false);
9594 }
9595 
9596 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9597   // Compute the byval alignment.
9598   const unsigned MinABIStackAlignInBytes = 4;
9599   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9600   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9601                                  TypeAlign > MinABIStackAlignInBytes);
9602 }
9603 
9604 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9605                               QualType Ty) const {
9606   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9607                           getContext().getTypeInfoInChars(Ty),
9608                           CharUnits::fromQuantity(4), true);
9609 }
9610 
9611 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9612                                             uint8_t FreeRegs) const {
9613   // Handle the generic C++ ABI.
9614   const RecordType *RT = Ty->getAs<RecordType>();
9615   if (RT) {
9616     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9617     if (RAA == CGCXXABI::RAA_Indirect)
9618       return getIndirectByRef(Ty, FreeRegs > 0);
9619 
9620     if (RAA == CGCXXABI::RAA_DirectInMemory)
9621       return getIndirectByValue(Ty);
9622   }
9623 
9624   // Treat an enum type as its underlying type.
9625   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9626     Ty = EnumTy->getDecl()->getIntegerType();
9627 
9628   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9629 
9630   if (isAggregateTypeForABI(Ty)) {
9631     // Structures with flexible arrays are always indirect.
9632     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9633       return getIndirectByValue(Ty);
9634 
9635     // Ignore empty structs/unions.
9636     if (isEmptyRecord(getContext(), Ty, true))
9637       return ABIArgInfo::getIgnore();
9638 
9639     llvm::LLVMContext &LLVMContext = getVMContext();
9640 
9641     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9642     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9643     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9644 
9645     return FreeRegs >= SizeInRegs ?
9646         ABIArgInfo::getDirectInReg(Result) :
9647         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9648   }
9649 
9650   if (const auto *EIT = Ty->getAs<ExtIntType>())
9651     if (EIT->getNumBits() > 64)
9652       return getIndirectByValue(Ty);
9653 
9654   return isPromotableIntegerTypeForABI(Ty)
9655              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9656                                        : ABIArgInfo::getExtend(Ty))
9657              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9658                                        : ABIArgInfo::getDirect());
9659 }
9660 
9661 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9662   if (RetTy->isAnyComplexType())
9663     return ABIArgInfo::getDirectInReg();
9664 
9665   // Arguments of size > 4 registers are indirect.
9666   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9667   if (RetSize > 4)
9668     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9669 
9670   return DefaultABIInfo::classifyReturnType(RetTy);
9671 }
9672 
9673 } // End anonymous namespace.
9674 
9675 //===----------------------------------------------------------------------===//
9676 // XCore ABI Implementation
9677 //===----------------------------------------------------------------------===//
9678 
9679 namespace {
9680 
9681 /// A SmallStringEnc instance is used to build up the TypeString by passing
9682 /// it by reference between functions that append to it.
9683 typedef llvm::SmallString<128> SmallStringEnc;
9684 
9685 /// TypeStringCache caches the meta encodings of Types.
9686 ///
9687 /// The reason for caching TypeStrings is two fold:
9688 ///   1. To cache a type's encoding for later uses;
9689 ///   2. As a means to break recursive member type inclusion.
9690 ///
9691 /// A cache Entry can have a Status of:
9692 ///   NonRecursive:   The type encoding is not recursive;
9693 ///   Recursive:      The type encoding is recursive;
9694 ///   Incomplete:     An incomplete TypeString;
9695 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9696 ///                   Recursive type encoding.
9697 ///
9698 /// A NonRecursive entry will have all of its sub-members expanded as fully
9699 /// as possible. Whilst it may contain types which are recursive, the type
9700 /// itself is not recursive and thus its encoding may be safely used whenever
9701 /// the type is encountered.
9702 ///
9703 /// A Recursive entry will have all of its sub-members expanded as fully as
9704 /// possible. The type itself is recursive and it may contain other types which
9705 /// are recursive. The Recursive encoding must not be used during the expansion
9706 /// of a recursive type's recursive branch. For simplicity the code uses
9707 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9708 ///
9709 /// An Incomplete entry is always a RecordType and only encodes its
9710 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9711 /// are placed into the cache during type expansion as a means to identify and
9712 /// handle recursive inclusion of types as sub-members. If there is recursion
9713 /// the entry becomes IncompleteUsed.
9714 ///
9715 /// During the expansion of a RecordType's members:
9716 ///
9717 ///   If the cache contains a NonRecursive encoding for the member type, the
9718 ///   cached encoding is used;
9719 ///
9720 ///   If the cache contains a Recursive encoding for the member type, the
9721 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9722 ///
9723 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9724 ///   cache to break potential recursive inclusion of itself as a sub-member;
9725 ///
9726 ///   Once a member RecordType has been expanded, its temporary incomplete
9727 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9728 ///   it is swapped back in;
9729 ///
9730 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9731 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9732 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9733 ///
9734 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9735 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9736 ///   Else the member is part of a recursive type and thus the recursion has
9737 ///   been exited too soon for the encoding to be correct for the member.
9738 ///
9739 class TypeStringCache {
9740   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9741   struct Entry {
9742     std::string Str;     // The encoded TypeString for the type.
9743     enum Status State;   // Information about the encoding in 'Str'.
9744     std::string Swapped; // A temporary place holder for a Recursive encoding
9745                          // during the expansion of RecordType's members.
9746   };
9747   std::map<const IdentifierInfo *, struct Entry> Map;
9748   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9749   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9750 public:
9751   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9752   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9753   bool removeIncomplete(const IdentifierInfo *ID);
9754   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9755                      bool IsRecursive);
9756   StringRef lookupStr(const IdentifierInfo *ID);
9757 };
9758 
9759 /// TypeString encodings for enum & union fields must be order.
9760 /// FieldEncoding is a helper for this ordering process.
9761 class FieldEncoding {
9762   bool HasName;
9763   std::string Enc;
9764 public:
9765   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9766   StringRef str() { return Enc; }
9767   bool operator<(const FieldEncoding &rhs) const {
9768     if (HasName != rhs.HasName) return HasName;
9769     return Enc < rhs.Enc;
9770   }
9771 };
9772 
9773 class XCoreABIInfo : public DefaultABIInfo {
9774 public:
9775   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9776   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9777                     QualType Ty) const override;
9778 };
9779 
9780 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9781   mutable TypeStringCache TSC;
9782   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9783                     const CodeGen::CodeGenModule &M) const;
9784 
9785 public:
9786   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9787       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9788   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9789                           const llvm::MapVector<GlobalDecl, StringRef>
9790                               &MangledDeclNames) const override;
9791 };
9792 
9793 } // End anonymous namespace.
9794 
9795 // TODO: this implementation is likely now redundant with the default
9796 // EmitVAArg.
9797 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9798                                 QualType Ty) const {
9799   CGBuilderTy &Builder = CGF.Builder;
9800 
9801   // Get the VAList.
9802   CharUnits SlotSize = CharUnits::fromQuantity(4);
9803   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9804 
9805   // Handle the argument.
9806   ABIArgInfo AI = classifyArgumentType(Ty);
9807   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9808   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9809   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9810     AI.setCoerceToType(ArgTy);
9811   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9812 
9813   Address Val = Address::invalid();
9814   CharUnits ArgSize = CharUnits::Zero();
9815   switch (AI.getKind()) {
9816   case ABIArgInfo::Expand:
9817   case ABIArgInfo::CoerceAndExpand:
9818   case ABIArgInfo::InAlloca:
9819     llvm_unreachable("Unsupported ABI kind for va_arg");
9820   case ABIArgInfo::Ignore:
9821     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9822     ArgSize = CharUnits::Zero();
9823     break;
9824   case ABIArgInfo::Extend:
9825   case ABIArgInfo::Direct:
9826     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9827     ArgSize = CharUnits::fromQuantity(
9828                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9829     ArgSize = ArgSize.alignTo(SlotSize);
9830     break;
9831   case ABIArgInfo::Indirect:
9832   case ABIArgInfo::IndirectAliased:
9833     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9834     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9835     ArgSize = SlotSize;
9836     break;
9837   }
9838 
9839   // Increment the VAList.
9840   if (!ArgSize.isZero()) {
9841     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9842     Builder.CreateStore(APN.getPointer(), VAListAddr);
9843   }
9844 
9845   return Val;
9846 }
9847 
9848 /// During the expansion of a RecordType, an incomplete TypeString is placed
9849 /// into the cache as a means to identify and break recursion.
9850 /// If there is a Recursive encoding in the cache, it is swapped out and will
9851 /// be reinserted by removeIncomplete().
9852 /// All other types of encoding should have been used rather than arriving here.
9853 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9854                                     std::string StubEnc) {
9855   if (!ID)
9856     return;
9857   Entry &E = Map[ID];
9858   assert( (E.Str.empty() || E.State == Recursive) &&
9859          "Incorrectly use of addIncomplete");
9860   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9861   E.Swapped.swap(E.Str); // swap out the Recursive
9862   E.Str.swap(StubEnc);
9863   E.State = Incomplete;
9864   ++IncompleteCount;
9865 }
9866 
9867 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9868 /// must be removed from the cache.
9869 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9870 /// Returns true if the RecordType was defined recursively.
9871 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9872   if (!ID)
9873     return false;
9874   auto I = Map.find(ID);
9875   assert(I != Map.end() && "Entry not present");
9876   Entry &E = I->second;
9877   assert( (E.State == Incomplete ||
9878            E.State == IncompleteUsed) &&
9879          "Entry must be an incomplete type");
9880   bool IsRecursive = false;
9881   if (E.State == IncompleteUsed) {
9882     // We made use of our Incomplete encoding, thus we are recursive.
9883     IsRecursive = true;
9884     --IncompleteUsedCount;
9885   }
9886   if (E.Swapped.empty())
9887     Map.erase(I);
9888   else {
9889     // Swap the Recursive back.
9890     E.Swapped.swap(E.Str);
9891     E.Swapped.clear();
9892     E.State = Recursive;
9893   }
9894   --IncompleteCount;
9895   return IsRecursive;
9896 }
9897 
9898 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9899 /// Recursive (viz: all sub-members were expanded as fully as possible).
9900 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9901                                     bool IsRecursive) {
9902   if (!ID || IncompleteUsedCount)
9903     return; // No key or it is is an incomplete sub-type so don't add.
9904   Entry &E = Map[ID];
9905   if (IsRecursive && !E.Str.empty()) {
9906     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9907            "This is not the same Recursive entry");
9908     // The parent container was not recursive after all, so we could have used
9909     // this Recursive sub-member entry after all, but we assumed the worse when
9910     // we started viz: IncompleteCount!=0.
9911     return;
9912   }
9913   assert(E.Str.empty() && "Entry already present");
9914   E.Str = Str.str();
9915   E.State = IsRecursive? Recursive : NonRecursive;
9916 }
9917 
9918 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9919 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9920 /// encoding is Recursive, return an empty StringRef.
9921 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9922   if (!ID)
9923     return StringRef();   // We have no key.
9924   auto I = Map.find(ID);
9925   if (I == Map.end())
9926     return StringRef();   // We have no encoding.
9927   Entry &E = I->second;
9928   if (E.State == Recursive && IncompleteCount)
9929     return StringRef();   // We don't use Recursive encodings for member types.
9930 
9931   if (E.State == Incomplete) {
9932     // The incomplete type is being used to break out of recursion.
9933     E.State = IncompleteUsed;
9934     ++IncompleteUsedCount;
9935   }
9936   return E.Str;
9937 }
9938 
9939 /// The XCore ABI includes a type information section that communicates symbol
9940 /// type information to the linker. The linker uses this information to verify
9941 /// safety/correctness of things such as array bound and pointers et al.
9942 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9943 /// This type information (TypeString) is emitted into meta data for all global
9944 /// symbols: definitions, declarations, functions & variables.
9945 ///
9946 /// The TypeString carries type, qualifier, name, size & value details.
9947 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9948 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9949 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9950 ///
9951 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9952                           const CodeGen::CodeGenModule &CGM,
9953                           TypeStringCache &TSC);
9954 
9955 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9956 void XCoreTargetCodeGenInfo::emitTargetMD(
9957     const Decl *D, llvm::GlobalValue *GV,
9958     const CodeGen::CodeGenModule &CGM) const {
9959   SmallStringEnc Enc;
9960   if (getTypeString(Enc, D, CGM, TSC)) {
9961     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9962     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9963                                 llvm::MDString::get(Ctx, Enc.str())};
9964     llvm::NamedMDNode *MD =
9965       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9966     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9967   }
9968 }
9969 
9970 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9971     CodeGen::CodeGenModule &CGM,
9972     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9973   // Warning, new MangledDeclNames may be appended within this loop.
9974   // We rely on MapVector insertions adding new elements to the end
9975   // of the container.
9976   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9977     auto Val = *(MangledDeclNames.begin() + I);
9978     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9979     if (GV) {
9980       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9981       emitTargetMD(D, GV, CGM);
9982     }
9983   }
9984 }
9985 //===----------------------------------------------------------------------===//
9986 // SPIR ABI Implementation
9987 //===----------------------------------------------------------------------===//
9988 
9989 namespace {
9990 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9991 public:
9992   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9993       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
9994   unsigned getOpenCLKernelCallingConv() const override;
9995 };
9996 
9997 } // End anonymous namespace.
9998 
9999 namespace clang {
10000 namespace CodeGen {
10001 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10002   DefaultABIInfo SPIRABI(CGM.getTypes());
10003   SPIRABI.computeInfo(FI);
10004 }
10005 }
10006 }
10007 
10008 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10009   return llvm::CallingConv::SPIR_KERNEL;
10010 }
10011 
10012 static bool appendType(SmallStringEnc &Enc, QualType QType,
10013                        const CodeGen::CodeGenModule &CGM,
10014                        TypeStringCache &TSC);
10015 
10016 /// Helper function for appendRecordType().
10017 /// Builds a SmallVector containing the encoded field types in declaration
10018 /// order.
10019 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10020                              const RecordDecl *RD,
10021                              const CodeGen::CodeGenModule &CGM,
10022                              TypeStringCache &TSC) {
10023   for (const auto *Field : RD->fields()) {
10024     SmallStringEnc Enc;
10025     Enc += "m(";
10026     Enc += Field->getName();
10027     Enc += "){";
10028     if (Field->isBitField()) {
10029       Enc += "b(";
10030       llvm::raw_svector_ostream OS(Enc);
10031       OS << Field->getBitWidthValue(CGM.getContext());
10032       Enc += ':';
10033     }
10034     if (!appendType(Enc, Field->getType(), CGM, TSC))
10035       return false;
10036     if (Field->isBitField())
10037       Enc += ')';
10038     Enc += '}';
10039     FE.emplace_back(!Field->getName().empty(), Enc);
10040   }
10041   return true;
10042 }
10043 
10044 /// Appends structure and union types to Enc and adds encoding to cache.
10045 /// Recursively calls appendType (via extractFieldType) for each field.
10046 /// Union types have their fields ordered according to the ABI.
10047 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10048                              const CodeGen::CodeGenModule &CGM,
10049                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10050   // Append the cached TypeString if we have one.
10051   StringRef TypeString = TSC.lookupStr(ID);
10052   if (!TypeString.empty()) {
10053     Enc += TypeString;
10054     return true;
10055   }
10056 
10057   // Start to emit an incomplete TypeString.
10058   size_t Start = Enc.size();
10059   Enc += (RT->isUnionType()? 'u' : 's');
10060   Enc += '(';
10061   if (ID)
10062     Enc += ID->getName();
10063   Enc += "){";
10064 
10065   // We collect all encoded fields and order as necessary.
10066   bool IsRecursive = false;
10067   const RecordDecl *RD = RT->getDecl()->getDefinition();
10068   if (RD && !RD->field_empty()) {
10069     // An incomplete TypeString stub is placed in the cache for this RecordType
10070     // so that recursive calls to this RecordType will use it whilst building a
10071     // complete TypeString for this RecordType.
10072     SmallVector<FieldEncoding, 16> FE;
10073     std::string StubEnc(Enc.substr(Start).str());
10074     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10075     TSC.addIncomplete(ID, std::move(StubEnc));
10076     if (!extractFieldType(FE, RD, CGM, TSC)) {
10077       (void) TSC.removeIncomplete(ID);
10078       return false;
10079     }
10080     IsRecursive = TSC.removeIncomplete(ID);
10081     // The ABI requires unions to be sorted but not structures.
10082     // See FieldEncoding::operator< for sort algorithm.
10083     if (RT->isUnionType())
10084       llvm::sort(FE);
10085     // We can now complete the TypeString.
10086     unsigned E = FE.size();
10087     for (unsigned I = 0; I != E; ++I) {
10088       if (I)
10089         Enc += ',';
10090       Enc += FE[I].str();
10091     }
10092   }
10093   Enc += '}';
10094   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10095   return true;
10096 }
10097 
10098 /// Appends enum types to Enc and adds the encoding to the cache.
10099 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10100                            TypeStringCache &TSC,
10101                            const IdentifierInfo *ID) {
10102   // Append the cached TypeString if we have one.
10103   StringRef TypeString = TSC.lookupStr(ID);
10104   if (!TypeString.empty()) {
10105     Enc += TypeString;
10106     return true;
10107   }
10108 
10109   size_t Start = Enc.size();
10110   Enc += "e(";
10111   if (ID)
10112     Enc += ID->getName();
10113   Enc += "){";
10114 
10115   // We collect all encoded enumerations and order them alphanumerically.
10116   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10117     SmallVector<FieldEncoding, 16> FE;
10118     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10119          ++I) {
10120       SmallStringEnc EnumEnc;
10121       EnumEnc += "m(";
10122       EnumEnc += I->getName();
10123       EnumEnc += "){";
10124       I->getInitVal().toString(EnumEnc);
10125       EnumEnc += '}';
10126       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10127     }
10128     llvm::sort(FE);
10129     unsigned E = FE.size();
10130     for (unsigned I = 0; I != E; ++I) {
10131       if (I)
10132         Enc += ',';
10133       Enc += FE[I].str();
10134     }
10135   }
10136   Enc += '}';
10137   TSC.addIfComplete(ID, Enc.substr(Start), false);
10138   return true;
10139 }
10140 
10141 /// Appends type's qualifier to Enc.
10142 /// This is done prior to appending the type's encoding.
10143 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10144   // Qualifiers are emitted in alphabetical order.
10145   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10146   int Lookup = 0;
10147   if (QT.isConstQualified())
10148     Lookup += 1<<0;
10149   if (QT.isRestrictQualified())
10150     Lookup += 1<<1;
10151   if (QT.isVolatileQualified())
10152     Lookup += 1<<2;
10153   Enc += Table[Lookup];
10154 }
10155 
10156 /// Appends built-in types to Enc.
10157 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10158   const char *EncType;
10159   switch (BT->getKind()) {
10160     case BuiltinType::Void:
10161       EncType = "0";
10162       break;
10163     case BuiltinType::Bool:
10164       EncType = "b";
10165       break;
10166     case BuiltinType::Char_U:
10167       EncType = "uc";
10168       break;
10169     case BuiltinType::UChar:
10170       EncType = "uc";
10171       break;
10172     case BuiltinType::SChar:
10173       EncType = "sc";
10174       break;
10175     case BuiltinType::UShort:
10176       EncType = "us";
10177       break;
10178     case BuiltinType::Short:
10179       EncType = "ss";
10180       break;
10181     case BuiltinType::UInt:
10182       EncType = "ui";
10183       break;
10184     case BuiltinType::Int:
10185       EncType = "si";
10186       break;
10187     case BuiltinType::ULong:
10188       EncType = "ul";
10189       break;
10190     case BuiltinType::Long:
10191       EncType = "sl";
10192       break;
10193     case BuiltinType::ULongLong:
10194       EncType = "ull";
10195       break;
10196     case BuiltinType::LongLong:
10197       EncType = "sll";
10198       break;
10199     case BuiltinType::Float:
10200       EncType = "ft";
10201       break;
10202     case BuiltinType::Double:
10203       EncType = "d";
10204       break;
10205     case BuiltinType::LongDouble:
10206       EncType = "ld";
10207       break;
10208     default:
10209       return false;
10210   }
10211   Enc += EncType;
10212   return true;
10213 }
10214 
10215 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10216 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10217                               const CodeGen::CodeGenModule &CGM,
10218                               TypeStringCache &TSC) {
10219   Enc += "p(";
10220   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10221     return false;
10222   Enc += ')';
10223   return true;
10224 }
10225 
10226 /// Appends array encoding to Enc before calling appendType for the element.
10227 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10228                             const ArrayType *AT,
10229                             const CodeGen::CodeGenModule &CGM,
10230                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10231   if (AT->getSizeModifier() != ArrayType::Normal)
10232     return false;
10233   Enc += "a(";
10234   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10235     CAT->getSize().toStringUnsigned(Enc);
10236   else
10237     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10238   Enc += ':';
10239   // The Qualifiers should be attached to the type rather than the array.
10240   appendQualifier(Enc, QT);
10241   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10242     return false;
10243   Enc += ')';
10244   return true;
10245 }
10246 
10247 /// Appends a function encoding to Enc, calling appendType for the return type
10248 /// and the arguments.
10249 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10250                              const CodeGen::CodeGenModule &CGM,
10251                              TypeStringCache &TSC) {
10252   Enc += "f{";
10253   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10254     return false;
10255   Enc += "}(";
10256   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10257     // N.B. we are only interested in the adjusted param types.
10258     auto I = FPT->param_type_begin();
10259     auto E = FPT->param_type_end();
10260     if (I != E) {
10261       do {
10262         if (!appendType(Enc, *I, CGM, TSC))
10263           return false;
10264         ++I;
10265         if (I != E)
10266           Enc += ',';
10267       } while (I != E);
10268       if (FPT->isVariadic())
10269         Enc += ",va";
10270     } else {
10271       if (FPT->isVariadic())
10272         Enc += "va";
10273       else
10274         Enc += '0';
10275     }
10276   }
10277   Enc += ')';
10278   return true;
10279 }
10280 
10281 /// Handles the type's qualifier before dispatching a call to handle specific
10282 /// type encodings.
10283 static bool appendType(SmallStringEnc &Enc, QualType QType,
10284                        const CodeGen::CodeGenModule &CGM,
10285                        TypeStringCache &TSC) {
10286 
10287   QualType QT = QType.getCanonicalType();
10288 
10289   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10290     // The Qualifiers should be attached to the type rather than the array.
10291     // Thus we don't call appendQualifier() here.
10292     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10293 
10294   appendQualifier(Enc, QT);
10295 
10296   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10297     return appendBuiltinType(Enc, BT);
10298 
10299   if (const PointerType *PT = QT->getAs<PointerType>())
10300     return appendPointerType(Enc, PT, CGM, TSC);
10301 
10302   if (const EnumType *ET = QT->getAs<EnumType>())
10303     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10304 
10305   if (const RecordType *RT = QT->getAsStructureType())
10306     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10307 
10308   if (const RecordType *RT = QT->getAsUnionType())
10309     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10310 
10311   if (const FunctionType *FT = QT->getAs<FunctionType>())
10312     return appendFunctionType(Enc, FT, CGM, TSC);
10313 
10314   return false;
10315 }
10316 
10317 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10318                           const CodeGen::CodeGenModule &CGM,
10319                           TypeStringCache &TSC) {
10320   if (!D)
10321     return false;
10322 
10323   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10324     if (FD->getLanguageLinkage() != CLanguageLinkage)
10325       return false;
10326     return appendType(Enc, FD->getType(), CGM, TSC);
10327   }
10328 
10329   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10330     if (VD->getLanguageLinkage() != CLanguageLinkage)
10331       return false;
10332     QualType QT = VD->getType().getCanonicalType();
10333     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10334       // Global ArrayTypes are given a size of '*' if the size is unknown.
10335       // The Qualifiers should be attached to the type rather than the array.
10336       // Thus we don't call appendQualifier() here.
10337       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10338     }
10339     return appendType(Enc, QT, CGM, TSC);
10340   }
10341   return false;
10342 }
10343 
10344 //===----------------------------------------------------------------------===//
10345 // RISCV ABI Implementation
10346 //===----------------------------------------------------------------------===//
10347 
10348 namespace {
10349 class RISCVABIInfo : public DefaultABIInfo {
10350 private:
10351   // Size of the integer ('x') registers in bits.
10352   unsigned XLen;
10353   // Size of the floating point ('f') registers in bits. Note that the target
10354   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10355   // with soft float ABI has FLen==0).
10356   unsigned FLen;
10357   static const int NumArgGPRs = 8;
10358   static const int NumArgFPRs = 8;
10359   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10360                                       llvm::Type *&Field1Ty,
10361                                       CharUnits &Field1Off,
10362                                       llvm::Type *&Field2Ty,
10363                                       CharUnits &Field2Off) const;
10364 
10365 public:
10366   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10367       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10368 
10369   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10370   // non-virtual, but computeInfo is virtual, so we overload it.
10371   void computeInfo(CGFunctionInfo &FI) const override;
10372 
10373   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10374                                   int &ArgFPRsLeft) const;
10375   ABIArgInfo classifyReturnType(QualType RetTy) const;
10376 
10377   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10378                     QualType Ty) const override;
10379 
10380   ABIArgInfo extendType(QualType Ty) const;
10381 
10382   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10383                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10384                                 CharUnits &Field2Off, int &NeededArgGPRs,
10385                                 int &NeededArgFPRs) const;
10386   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10387                                                CharUnits Field1Off,
10388                                                llvm::Type *Field2Ty,
10389                                                CharUnits Field2Off) const;
10390 };
10391 } // end anonymous namespace
10392 
10393 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10394   QualType RetTy = FI.getReturnType();
10395   if (!getCXXABI().classifyReturnType(FI))
10396     FI.getReturnInfo() = classifyReturnType(RetTy);
10397 
10398   // IsRetIndirect is true if classifyArgumentType indicated the value should
10399   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10400   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10401   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10402   // list and pass indirectly on RV32.
10403   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10404   if (!IsRetIndirect && RetTy->isScalarType() &&
10405       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10406     if (RetTy->isComplexType() && FLen) {
10407       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
10408       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10409     } else {
10410       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10411       IsRetIndirect = true;
10412     }
10413   }
10414 
10415   // We must track the number of GPRs used in order to conform to the RISC-V
10416   // ABI, as integer scalars passed in registers should have signext/zeroext
10417   // when promoted, but are anyext if passed on the stack. As GPR usage is
10418   // different for variadic arguments, we must also track whether we are
10419   // examining a vararg or not.
10420   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10421   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10422   int NumFixedArgs = FI.getNumRequiredArgs();
10423 
10424   int ArgNum = 0;
10425   for (auto &ArgInfo : FI.arguments()) {
10426     bool IsFixed = ArgNum < NumFixedArgs;
10427     ArgInfo.info =
10428         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10429     ArgNum++;
10430   }
10431 }
10432 
10433 // Returns true if the struct is a potential candidate for the floating point
10434 // calling convention. If this function returns true, the caller is
10435 // responsible for checking that if there is only a single field then that
10436 // field is a float.
10437 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10438                                                   llvm::Type *&Field1Ty,
10439                                                   CharUnits &Field1Off,
10440                                                   llvm::Type *&Field2Ty,
10441                                                   CharUnits &Field2Off) const {
10442   bool IsInt = Ty->isIntegralOrEnumerationType();
10443   bool IsFloat = Ty->isRealFloatingType();
10444 
10445   if (IsInt || IsFloat) {
10446     uint64_t Size = getContext().getTypeSize(Ty);
10447     if (IsInt && Size > XLen)
10448       return false;
10449     // Can't be eligible if larger than the FP registers. Half precision isn't
10450     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10451     // default to the integer ABI in that case.
10452     if (IsFloat && (Size > FLen || Size < 32))
10453       return false;
10454     // Can't be eligible if an integer type was already found (int+int pairs
10455     // are not eligible).
10456     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10457       return false;
10458     if (!Field1Ty) {
10459       Field1Ty = CGT.ConvertType(Ty);
10460       Field1Off = CurOff;
10461       return true;
10462     }
10463     if (!Field2Ty) {
10464       Field2Ty = CGT.ConvertType(Ty);
10465       Field2Off = CurOff;
10466       return true;
10467     }
10468     return false;
10469   }
10470 
10471   if (auto CTy = Ty->getAs<ComplexType>()) {
10472     if (Field1Ty)
10473       return false;
10474     QualType EltTy = CTy->getElementType();
10475     if (getContext().getTypeSize(EltTy) > FLen)
10476       return false;
10477     Field1Ty = CGT.ConvertType(EltTy);
10478     Field1Off = CurOff;
10479     assert(CurOff.isZero() && "Unexpected offset for first field");
10480     Field2Ty = Field1Ty;
10481     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10482     return true;
10483   }
10484 
10485   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10486     uint64_t ArraySize = ATy->getSize().getZExtValue();
10487     QualType EltTy = ATy->getElementType();
10488     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10489     for (uint64_t i = 0; i < ArraySize; ++i) {
10490       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10491                                                 Field1Off, Field2Ty, Field2Off);
10492       if (!Ret)
10493         return false;
10494       CurOff += EltSize;
10495     }
10496     return true;
10497   }
10498 
10499   if (const auto *RTy = Ty->getAs<RecordType>()) {
10500     // Structures with either a non-trivial destructor or a non-trivial
10501     // copy constructor are not eligible for the FP calling convention.
10502     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10503       return false;
10504     if (isEmptyRecord(getContext(), Ty, true))
10505       return true;
10506     const RecordDecl *RD = RTy->getDecl();
10507     // Unions aren't eligible unless they're empty (which is caught above).
10508     if (RD->isUnion())
10509       return false;
10510     int ZeroWidthBitFieldCount = 0;
10511     for (const FieldDecl *FD : RD->fields()) {
10512       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10513       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10514       QualType QTy = FD->getType();
10515       if (FD->isBitField()) {
10516         unsigned BitWidth = FD->getBitWidthValue(getContext());
10517         // Allow a bitfield with a type greater than XLen as long as the
10518         // bitwidth is XLen or less.
10519         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10520           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10521         if (BitWidth == 0) {
10522           ZeroWidthBitFieldCount++;
10523           continue;
10524         }
10525       }
10526 
10527       bool Ret = detectFPCCEligibleStructHelper(
10528           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10529           Field1Ty, Field1Off, Field2Ty, Field2Off);
10530       if (!Ret)
10531         return false;
10532 
10533       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10534       // or int+fp structs, but are ignored for a struct with an fp field and
10535       // any number of zero-width bitfields.
10536       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10537         return false;
10538     }
10539     return Field1Ty != nullptr;
10540   }
10541 
10542   return false;
10543 }
10544 
10545 // Determine if a struct is eligible for passing according to the floating
10546 // point calling convention (i.e., when flattened it contains a single fp
10547 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10548 // NeededArgGPRs are incremented appropriately.
10549 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10550                                             CharUnits &Field1Off,
10551                                             llvm::Type *&Field2Ty,
10552                                             CharUnits &Field2Off,
10553                                             int &NeededArgGPRs,
10554                                             int &NeededArgFPRs) const {
10555   Field1Ty = nullptr;
10556   Field2Ty = nullptr;
10557   NeededArgGPRs = 0;
10558   NeededArgFPRs = 0;
10559   bool IsCandidate = detectFPCCEligibleStructHelper(
10560       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10561   // Not really a candidate if we have a single int but no float.
10562   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10563     return false;
10564   if (!IsCandidate)
10565     return false;
10566   if (Field1Ty && Field1Ty->isFloatingPointTy())
10567     NeededArgFPRs++;
10568   else if (Field1Ty)
10569     NeededArgGPRs++;
10570   if (Field2Ty && Field2Ty->isFloatingPointTy())
10571     NeededArgFPRs++;
10572   else if (Field2Ty)
10573     NeededArgGPRs++;
10574   return IsCandidate;
10575 }
10576 
10577 // Call getCoerceAndExpand for the two-element flattened struct described by
10578 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10579 // appropriate coerceToType and unpaddedCoerceToType.
10580 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10581     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10582     CharUnits Field2Off) const {
10583   SmallVector<llvm::Type *, 3> CoerceElts;
10584   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10585   if (!Field1Off.isZero())
10586     CoerceElts.push_back(llvm::ArrayType::get(
10587         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10588 
10589   CoerceElts.push_back(Field1Ty);
10590   UnpaddedCoerceElts.push_back(Field1Ty);
10591 
10592   if (!Field2Ty) {
10593     return ABIArgInfo::getCoerceAndExpand(
10594         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10595         UnpaddedCoerceElts[0]);
10596   }
10597 
10598   CharUnits Field2Align =
10599       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10600   CharUnits Field1Size =
10601       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10602   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
10603 
10604   CharUnits Padding = CharUnits::Zero();
10605   if (Field2Off > Field2OffNoPadNoPack)
10606     Padding = Field2Off - Field2OffNoPadNoPack;
10607   else if (Field2Off != Field2Align && Field2Off > Field1Size)
10608     Padding = Field2Off - Field1Size;
10609 
10610   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10611 
10612   if (!Padding.isZero())
10613     CoerceElts.push_back(llvm::ArrayType::get(
10614         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10615 
10616   CoerceElts.push_back(Field2Ty);
10617   UnpaddedCoerceElts.push_back(Field2Ty);
10618 
10619   auto CoerceToType =
10620       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10621   auto UnpaddedCoerceToType =
10622       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10623 
10624   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10625 }
10626 
10627 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10628                                               int &ArgGPRsLeft,
10629                                               int &ArgFPRsLeft) const {
10630   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10631   Ty = useFirstFieldIfTransparentUnion(Ty);
10632 
10633   // Structures with either a non-trivial destructor or a non-trivial
10634   // copy constructor are always passed indirectly.
10635   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10636     if (ArgGPRsLeft)
10637       ArgGPRsLeft -= 1;
10638     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10639                                            CGCXXABI::RAA_DirectInMemory);
10640   }
10641 
10642   // Ignore empty structs/unions.
10643   if (isEmptyRecord(getContext(), Ty, true))
10644     return ABIArgInfo::getIgnore();
10645 
10646   uint64_t Size = getContext().getTypeSize(Ty);
10647 
10648   // Pass floating point values via FPRs if possible.
10649   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10650       FLen >= Size && ArgFPRsLeft) {
10651     ArgFPRsLeft--;
10652     return ABIArgInfo::getDirect();
10653   }
10654 
10655   // Complex types for the hard float ABI must be passed direct rather than
10656   // using CoerceAndExpand.
10657   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10658     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10659     if (getContext().getTypeSize(EltTy) <= FLen) {
10660       ArgFPRsLeft -= 2;
10661       return ABIArgInfo::getDirect();
10662     }
10663   }
10664 
10665   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10666     llvm::Type *Field1Ty = nullptr;
10667     llvm::Type *Field2Ty = nullptr;
10668     CharUnits Field1Off = CharUnits::Zero();
10669     CharUnits Field2Off = CharUnits::Zero();
10670     int NeededArgGPRs;
10671     int NeededArgFPRs;
10672     bool IsCandidate =
10673         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10674                                  NeededArgGPRs, NeededArgFPRs);
10675     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10676         NeededArgFPRs <= ArgFPRsLeft) {
10677       ArgGPRsLeft -= NeededArgGPRs;
10678       ArgFPRsLeft -= NeededArgFPRs;
10679       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10680                                                Field2Off);
10681     }
10682   }
10683 
10684   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10685   bool MustUseStack = false;
10686   // Determine the number of GPRs needed to pass the current argument
10687   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10688   // register pairs, so may consume 3 registers.
10689   int NeededArgGPRs = 1;
10690   if (!IsFixed && NeededAlign == 2 * XLen)
10691     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10692   else if (Size > XLen && Size <= 2 * XLen)
10693     NeededArgGPRs = 2;
10694 
10695   if (NeededArgGPRs > ArgGPRsLeft) {
10696     MustUseStack = true;
10697     NeededArgGPRs = ArgGPRsLeft;
10698   }
10699 
10700   ArgGPRsLeft -= NeededArgGPRs;
10701 
10702   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10703     // Treat an enum type as its underlying type.
10704     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10705       Ty = EnumTy->getDecl()->getIntegerType();
10706 
10707     // All integral types are promoted to XLen width, unless passed on the
10708     // stack.
10709     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10710       return extendType(Ty);
10711     }
10712 
10713     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10714       if (EIT->getNumBits() < XLen && !MustUseStack)
10715         return extendType(Ty);
10716       if (EIT->getNumBits() > 128 ||
10717           (!getContext().getTargetInfo().hasInt128Type() &&
10718            EIT->getNumBits() > 64))
10719         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10720     }
10721 
10722     return ABIArgInfo::getDirect();
10723   }
10724 
10725   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10726   // so coerce to integers.
10727   if (Size <= 2 * XLen) {
10728     unsigned Alignment = getContext().getTypeAlign(Ty);
10729 
10730     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10731     // required, and a 2-element XLen array if only XLen alignment is required.
10732     if (Size <= XLen) {
10733       return ABIArgInfo::getDirect(
10734           llvm::IntegerType::get(getVMContext(), XLen));
10735     } else if (Alignment == 2 * XLen) {
10736       return ABIArgInfo::getDirect(
10737           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10738     } else {
10739       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10740           llvm::IntegerType::get(getVMContext(), XLen), 2));
10741     }
10742   }
10743   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10744 }
10745 
10746 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10747   if (RetTy->isVoidType())
10748     return ABIArgInfo::getIgnore();
10749 
10750   int ArgGPRsLeft = 2;
10751   int ArgFPRsLeft = FLen ? 2 : 0;
10752 
10753   // The rules for return and argument types are the same, so defer to
10754   // classifyArgumentType.
10755   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10756                               ArgFPRsLeft);
10757 }
10758 
10759 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10760                                 QualType Ty) const {
10761   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10762 
10763   // Empty records are ignored for parameter passing purposes.
10764   if (isEmptyRecord(getContext(), Ty, true)) {
10765     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10766     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10767     return Addr;
10768   }
10769 
10770   std::pair<CharUnits, CharUnits> SizeAndAlign =
10771       getContext().getTypeInfoInChars(Ty);
10772 
10773   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10774   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10775 
10776   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10777                           SlotSize, /*AllowHigherAlign=*/true);
10778 }
10779 
10780 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10781   int TySize = getContext().getTypeSize(Ty);
10782   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10783   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10784     return ABIArgInfo::getSignExtend(Ty);
10785   return ABIArgInfo::getExtend(Ty);
10786 }
10787 
10788 namespace {
10789 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10790 public:
10791   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10792                          unsigned FLen)
10793       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10794 
10795   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10796                            CodeGen::CodeGenModule &CGM) const override {
10797     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10798     if (!FD) return;
10799 
10800     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10801     if (!Attr)
10802       return;
10803 
10804     const char *Kind;
10805     switch (Attr->getInterrupt()) {
10806     case RISCVInterruptAttr::user: Kind = "user"; break;
10807     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10808     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10809     }
10810 
10811     auto *Fn = cast<llvm::Function>(GV);
10812 
10813     Fn->addFnAttr("interrupt", Kind);
10814   }
10815 };
10816 } // namespace
10817 
10818 //===----------------------------------------------------------------------===//
10819 // VE ABI Implementation.
10820 //
10821 namespace {
10822 class VEABIInfo : public DefaultABIInfo {
10823 public:
10824   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10825 
10826 private:
10827   ABIArgInfo classifyReturnType(QualType RetTy) const;
10828   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10829   void computeInfo(CGFunctionInfo &FI) const override;
10830 };
10831 } // end anonymous namespace
10832 
10833 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10834   if (Ty->isAnyComplexType())
10835     return ABIArgInfo::getDirect();
10836   uint64_t Size = getContext().getTypeSize(Ty);
10837   if (Size < 64 && Ty->isIntegerType())
10838     return ABIArgInfo::getExtend(Ty);
10839   return DefaultABIInfo::classifyReturnType(Ty);
10840 }
10841 
10842 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10843   if (Ty->isAnyComplexType())
10844     return ABIArgInfo::getDirect();
10845   uint64_t Size = getContext().getTypeSize(Ty);
10846   if (Size < 64 && Ty->isIntegerType())
10847     return ABIArgInfo::getExtend(Ty);
10848   return DefaultABIInfo::classifyArgumentType(Ty);
10849 }
10850 
10851 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10852   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10853   for (auto &Arg : FI.arguments())
10854     Arg.info = classifyArgumentType(Arg.type);
10855 }
10856 
10857 namespace {
10858 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10859 public:
10860   VETargetCodeGenInfo(CodeGenTypes &CGT)
10861       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10862   // VE ABI requires the arguments of variadic and prototype-less functions
10863   // are passed in both registers and memory.
10864   bool isNoProtoCallVariadic(const CallArgList &args,
10865                              const FunctionNoProtoType *fnType) const override {
10866     return true;
10867   }
10868 };
10869 } // end anonymous namespace
10870 
10871 //===----------------------------------------------------------------------===//
10872 // Driver code
10873 //===----------------------------------------------------------------------===//
10874 
10875 bool CodeGenModule::supportsCOMDAT() const {
10876   return getTriple().supportsCOMDAT();
10877 }
10878 
10879 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10880   if (TheTargetCodeGenInfo)
10881     return *TheTargetCodeGenInfo;
10882 
10883   // Helper to set the unique_ptr while still keeping the return value.
10884   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10885     this->TheTargetCodeGenInfo.reset(P);
10886     return *P;
10887   };
10888 
10889   const llvm::Triple &Triple = getTarget().getTriple();
10890   switch (Triple.getArch()) {
10891   default:
10892     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10893 
10894   case llvm::Triple::le32:
10895     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10896   case llvm::Triple::mips:
10897   case llvm::Triple::mipsel:
10898     if (Triple.getOS() == llvm::Triple::NaCl)
10899       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10900     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10901 
10902   case llvm::Triple::mips64:
10903   case llvm::Triple::mips64el:
10904     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10905 
10906   case llvm::Triple::avr:
10907     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10908 
10909   case llvm::Triple::aarch64:
10910   case llvm::Triple::aarch64_32:
10911   case llvm::Triple::aarch64_be: {
10912     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10913     if (getTarget().getABI() == "darwinpcs")
10914       Kind = AArch64ABIInfo::DarwinPCS;
10915     else if (Triple.isOSWindows())
10916       return SetCGInfo(
10917           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10918 
10919     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10920   }
10921 
10922   case llvm::Triple::wasm32:
10923   case llvm::Triple::wasm64: {
10924     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10925     if (getTarget().getABI() == "experimental-mv")
10926       Kind = WebAssemblyABIInfo::ExperimentalMV;
10927     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10928   }
10929 
10930   case llvm::Triple::arm:
10931   case llvm::Triple::armeb:
10932   case llvm::Triple::thumb:
10933   case llvm::Triple::thumbeb: {
10934     if (Triple.getOS() == llvm::Triple::Win32) {
10935       return SetCGInfo(
10936           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10937     }
10938 
10939     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10940     StringRef ABIStr = getTarget().getABI();
10941     if (ABIStr == "apcs-gnu")
10942       Kind = ARMABIInfo::APCS;
10943     else if (ABIStr == "aapcs16")
10944       Kind = ARMABIInfo::AAPCS16_VFP;
10945     else if (CodeGenOpts.FloatABI == "hard" ||
10946              (CodeGenOpts.FloatABI != "soft" &&
10947               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10948                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10949                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10950       Kind = ARMABIInfo::AAPCS_VFP;
10951 
10952     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10953   }
10954 
10955   case llvm::Triple::ppc: {
10956     if (Triple.isOSAIX())
10957       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10958 
10959     bool IsSoftFloat =
10960         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10961     bool RetSmallStructInRegABI =
10962         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10963     return SetCGInfo(
10964         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10965   }
10966   case llvm::Triple::ppc64:
10967     if (Triple.isOSAIX())
10968       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10969 
10970     if (Triple.isOSBinFormatELF()) {
10971       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10972       if (getTarget().getABI() == "elfv2")
10973         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10974       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10975       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10976 
10977       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10978                                                         IsSoftFloat));
10979     }
10980     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10981   case llvm::Triple::ppc64le: {
10982     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10983     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10984     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10985       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10986     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10987     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10988 
10989     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10990                                                       IsSoftFloat));
10991   }
10992 
10993   case llvm::Triple::nvptx:
10994   case llvm::Triple::nvptx64:
10995     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10996 
10997   case llvm::Triple::msp430:
10998     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10999 
11000   case llvm::Triple::riscv32:
11001   case llvm::Triple::riscv64: {
11002     StringRef ABIStr = getTarget().getABI();
11003     unsigned XLen = getTarget().getPointerWidth(0);
11004     unsigned ABIFLen = 0;
11005     if (ABIStr.endswith("f"))
11006       ABIFLen = 32;
11007     else if (ABIStr.endswith("d"))
11008       ABIFLen = 64;
11009     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11010   }
11011 
11012   case llvm::Triple::systemz: {
11013     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11014     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11015     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11016   }
11017 
11018   case llvm::Triple::tce:
11019   case llvm::Triple::tcele:
11020     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11021 
11022   case llvm::Triple::x86: {
11023     bool IsDarwinVectorABI = Triple.isOSDarwin();
11024     bool RetSmallStructInRegABI =
11025         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11026     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11027 
11028     if (Triple.getOS() == llvm::Triple::Win32) {
11029       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11030           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11031           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11032     } else {
11033       return SetCGInfo(new X86_32TargetCodeGenInfo(
11034           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11035           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11036           CodeGenOpts.FloatABI == "soft"));
11037     }
11038   }
11039 
11040   case llvm::Triple::x86_64: {
11041     StringRef ABI = getTarget().getABI();
11042     X86AVXABILevel AVXLevel =
11043         (ABI == "avx512"
11044              ? X86AVXABILevel::AVX512
11045              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11046 
11047     switch (Triple.getOS()) {
11048     case llvm::Triple::Win32:
11049       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11050     default:
11051       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11052     }
11053   }
11054   case llvm::Triple::hexagon:
11055     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11056   case llvm::Triple::lanai:
11057     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11058   case llvm::Triple::r600:
11059     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11060   case llvm::Triple::amdgcn:
11061     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11062   case llvm::Triple::sparc:
11063     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11064   case llvm::Triple::sparcv9:
11065     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11066   case llvm::Triple::xcore:
11067     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11068   case llvm::Triple::arc:
11069     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11070   case llvm::Triple::spir:
11071   case llvm::Triple::spir64:
11072     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11073   case llvm::Triple::ve:
11074     return SetCGInfo(new VETargetCodeGenInfo(Types));
11075   }
11076 }
11077 
11078 /// Create an OpenCL kernel for an enqueued block.
11079 ///
11080 /// The kernel has the same function type as the block invoke function. Its
11081 /// name is the name of the block invoke function postfixed with "_kernel".
11082 /// It simply calls the block invoke function then returns.
11083 llvm::Function *
11084 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11085                                              llvm::Function *Invoke,
11086                                              llvm::Value *BlockLiteral) const {
11087   auto *InvokeFT = Invoke->getFunctionType();
11088   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11089   for (auto &P : InvokeFT->params())
11090     ArgTys.push_back(P);
11091   auto &C = CGF.getLLVMContext();
11092   std::string Name = Invoke->getName().str() + "_kernel";
11093   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11094   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11095                                    &CGF.CGM.getModule());
11096   auto IP = CGF.Builder.saveIP();
11097   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11098   auto &Builder = CGF.Builder;
11099   Builder.SetInsertPoint(BB);
11100   llvm::SmallVector<llvm::Value *, 2> Args;
11101   for (auto &A : F->args())
11102     Args.push_back(&A);
11103   Builder.CreateCall(Invoke, Args);
11104   Builder.CreateRetVoid();
11105   Builder.restoreIP(IP);
11106   return F;
11107 }
11108 
11109 /// Create an OpenCL kernel for an enqueued block.
11110 ///
11111 /// The type of the first argument (the block literal) is the struct type
11112 /// of the block literal instead of a pointer type. The first argument
11113 /// (block literal) is passed directly by value to the kernel. The kernel
11114 /// allocates the same type of struct on stack and stores the block literal
11115 /// to it and passes its pointer to the block invoke function. The kernel
11116 /// has "enqueued-block" function attribute and kernel argument metadata.
11117 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11118     CodeGenFunction &CGF, llvm::Function *Invoke,
11119     llvm::Value *BlockLiteral) const {
11120   auto &Builder = CGF.Builder;
11121   auto &C = CGF.getLLVMContext();
11122 
11123   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11124   auto *InvokeFT = Invoke->getFunctionType();
11125   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11126   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11127   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11128   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11129   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11130   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11131   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11132 
11133   ArgTys.push_back(BlockTy);
11134   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11135   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11136   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11137   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11138   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11139   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11140   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11141     ArgTys.push_back(InvokeFT->getParamType(I));
11142     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11143     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11144     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11145     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11146     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11147     ArgNames.push_back(
11148         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11149   }
11150   std::string Name = Invoke->getName().str() + "_kernel";
11151   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11152   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11153                                    &CGF.CGM.getModule());
11154   F->addFnAttr("enqueued-block");
11155   auto IP = CGF.Builder.saveIP();
11156   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11157   Builder.SetInsertPoint(BB);
11158   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11159   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11160   BlockPtr->setAlignment(BlockAlign);
11161   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11162   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11163   llvm::SmallVector<llvm::Value *, 2> Args;
11164   Args.push_back(Cast);
11165   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11166     Args.push_back(I);
11167   Builder.CreateCall(Invoke, Args);
11168   Builder.CreateRetVoid();
11169   Builder.restoreIP(IP);
11170 
11171   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11172   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11173   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11174   F->setMetadata("kernel_arg_base_type",
11175                  llvm::MDNode::get(C, ArgBaseTypeNames));
11176   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11177   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11178     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11179 
11180   return F;
11181 }
11182