1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Type.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
30                                llvm::Value *Array,
31                                llvm::Value *Value,
32                                unsigned FirstIndex,
33                                unsigned LastIndex) {
34   // Alternatively, we could emit this as a loop in the source.
35   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
36     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
37     Builder.CreateStore(Value, Cell);
38   }
39 }
40 
41 static bool isAggregateTypeForABI(QualType T) {
42   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
43          T->isMemberFunctionPointerType();
44 }
45 
46 ABIInfo::~ABIInfo() {}
47 
48 static bool isRecordReturnIndirect(const RecordType *RT,
49                                    CGCXXABI &CXXABI) {
50   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
51   if (!RD)
52     return false;
53   return CXXABI.isReturnTypeIndirect(RD);
54 }
55 
56 
57 static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
58   const RecordType *RT = T->getAs<RecordType>();
59   if (!RT)
60     return false;
61   return isRecordReturnIndirect(RT, CXXABI);
62 }
63 
64 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
65                                               CGCXXABI &CXXABI) {
66   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
67   if (!RD)
68     return CGCXXABI::RAA_Default;
69   return CXXABI.getRecordArgABI(RD);
70 }
71 
72 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
73                                               CGCXXABI &CXXABI) {
74   const RecordType *RT = T->getAs<RecordType>();
75   if (!RT)
76     return CGCXXABI::RAA_Default;
77   return getRecordArgABI(RT, CXXABI);
78 }
79 
80 CGCXXABI &ABIInfo::getCXXABI() const {
81   return CGT.getCXXABI();
82 }
83 
84 ASTContext &ABIInfo::getContext() const {
85   return CGT.getContext();
86 }
87 
88 llvm::LLVMContext &ABIInfo::getVMContext() const {
89   return CGT.getLLVMContext();
90 }
91 
92 const llvm::DataLayout &ABIInfo::getDataLayout() const {
93   return CGT.getDataLayout();
94 }
95 
96 const TargetInfo &ABIInfo::getTarget() const {
97   return CGT.getTarget();
98 }
99 
100 void ABIArgInfo::dump() const {
101   raw_ostream &OS = llvm::errs();
102   OS << "(ABIArgInfo Kind=";
103   switch (TheKind) {
104   case Direct:
105     OS << "Direct Type=";
106     if (llvm::Type *Ty = getCoerceToType())
107       Ty->print(OS);
108     else
109       OS << "null";
110     break;
111   case Extend:
112     OS << "Extend";
113     break;
114   case Ignore:
115     OS << "Ignore";
116     break;
117   case Indirect:
118     OS << "Indirect Align=" << getIndirectAlign()
119        << " ByVal=" << getIndirectByVal()
120        << " Realign=" << getIndirectRealign();
121     break;
122   case Expand:
123     OS << "Expand";
124     break;
125   }
126   OS << ")\n";
127 }
128 
129 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
130 
131 // If someone can figure out a general rule for this, that would be great.
132 // It's probably just doomed to be platform-dependent, though.
133 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
134   // Verified for:
135   //   x86-64     FreeBSD, Linux, Darwin
136   //   x86-32     FreeBSD, Linux, Darwin
137   //   PowerPC    Linux, Darwin
138   //   ARM        Darwin (*not* EABI)
139   //   AArch64    Linux
140   return 32;
141 }
142 
143 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
144                                      const FunctionNoProtoType *fnType) const {
145   // The following conventions are known to require this to be false:
146   //   x86_stdcall
147   //   MIPS
148   // For everything else, we just prefer false unless we opt out.
149   return false;
150 }
151 
152 void
153 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
154                                              llvm::SmallString<24> &Opt) const {
155   // This assumes the user is passing a library name like "rt" instead of a
156   // filename like "librt.a/so", and that they don't care whether it's static or
157   // dynamic.
158   Opt = "-l";
159   Opt += Lib;
160 }
161 
162 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
163 
164 /// isEmptyField - Return true iff a the field is "empty", that is it
165 /// is an unnamed bit-field or an (array of) empty record(s).
166 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
167                          bool AllowArrays) {
168   if (FD->isUnnamedBitfield())
169     return true;
170 
171   QualType FT = FD->getType();
172 
173   // Constant arrays of empty records count as empty, strip them off.
174   // Constant arrays of zero length always count as empty.
175   if (AllowArrays)
176     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
177       if (AT->getSize() == 0)
178         return true;
179       FT = AT->getElementType();
180     }
181 
182   const RecordType *RT = FT->getAs<RecordType>();
183   if (!RT)
184     return false;
185 
186   // C++ record fields are never empty, at least in the Itanium ABI.
187   //
188   // FIXME: We should use a predicate for whether this behavior is true in the
189   // current ABI.
190   if (isa<CXXRecordDecl>(RT->getDecl()))
191     return false;
192 
193   return isEmptyRecord(Context, FT, AllowArrays);
194 }
195 
196 /// isEmptyRecord - Return true iff a structure contains only empty
197 /// fields. Note that a structure with a flexible array member is not
198 /// considered empty.
199 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
200   const RecordType *RT = T->getAs<RecordType>();
201   if (!RT)
202     return 0;
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return false;
206 
207   // If this is a C++ record, check the bases first.
208   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
209     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
210            e = CXXRD->bases_end(); i != e; ++i)
211       if (!isEmptyRecord(Context, i->getType(), true))
212         return false;
213 
214   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
215          i != e; ++i)
216     if (!isEmptyField(Context, *i, AllowArrays))
217       return false;
218   return true;
219 }
220 
221 /// isSingleElementStruct - Determine if a structure is a "single
222 /// element struct", i.e. it has exactly one non-empty field or
223 /// exactly one field which is itself a single element
224 /// struct. Structures with flexible array members are never
225 /// considered single element structs.
226 ///
227 /// \return The field declaration for the single non-empty field, if
228 /// it exists.
229 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
230   const RecordType *RT = T->getAsStructureType();
231   if (!RT)
232     return 0;
233 
234   const RecordDecl *RD = RT->getDecl();
235   if (RD->hasFlexibleArrayMember())
236     return 0;
237 
238   const Type *Found = 0;
239 
240   // If this is a C++ record, check the bases first.
241   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
242     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
243            e = CXXRD->bases_end(); i != e; ++i) {
244       // Ignore empty records.
245       if (isEmptyRecord(Context, i->getType(), true))
246         continue;
247 
248       // If we already found an element then this isn't a single-element struct.
249       if (Found)
250         return 0;
251 
252       // If this is non-empty and not a single element struct, the composite
253       // cannot be a single element struct.
254       Found = isSingleElementStruct(i->getType(), Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // Check for single element.
261   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
262          i != e; ++i) {
263     const FieldDecl *FD = *i;
264     QualType FT = FD->getType();
265 
266     // Ignore empty fields.
267     if (isEmptyField(Context, FD, true))
268       continue;
269 
270     // If we already found an element then this isn't a single-element
271     // struct.
272     if (Found)
273       return 0;
274 
275     // Treat single element arrays as the element.
276     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
277       if (AT->getSize().getZExtValue() != 1)
278         break;
279       FT = AT->getElementType();
280     }
281 
282     if (!isAggregateTypeForABI(FT)) {
283       Found = FT.getTypePtr();
284     } else {
285       Found = isSingleElementStruct(FT, Context);
286       if (!Found)
287         return 0;
288     }
289   }
290 
291   // We don't consider a struct a single-element struct if it has
292   // padding beyond the element type.
293   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
294     return 0;
295 
296   return Found;
297 }
298 
299 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
300   // Treat complex types as the element type.
301   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
302     Ty = CTy->getElementType();
303 
304   // Check for a type which we know has a simple scalar argument-passing
305   // convention without any padding.  (We're specifically looking for 32
306   // and 64-bit integer and integer-equivalents, float, and double.)
307   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
308       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
309     return false;
310 
311   uint64_t Size = Context.getTypeSize(Ty);
312   return Size == 32 || Size == 64;
313 }
314 
315 /// canExpandIndirectArgument - Test whether an argument type which is to be
316 /// passed indirectly (on the stack) would have the equivalent layout if it was
317 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
318 /// inhibiting optimizations.
319 ///
320 // FIXME: This predicate is missing many cases, currently it just follows
321 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
322 // should probably make this smarter, or better yet make the LLVM backend
323 // capable of handling it.
324 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
325   // We can only expand structure types.
326   const RecordType *RT = Ty->getAs<RecordType>();
327   if (!RT)
328     return false;
329 
330   // We can only expand (C) structures.
331   //
332   // FIXME: This needs to be generalized to handle classes as well.
333   const RecordDecl *RD = RT->getDecl();
334   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
335     return false;
336 
337   uint64_t Size = 0;
338 
339   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
340          i != e; ++i) {
341     const FieldDecl *FD = *i;
342 
343     if (!is32Or64BitBasicType(FD->getType(), Context))
344       return false;
345 
346     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
347     // how to expand them yet, and the predicate for telling if a bitfield still
348     // counts as "basic" is more complicated than what we were doing previously.
349     if (FD->isBitField())
350       return false;
351 
352     Size += Context.getTypeSize(FD->getType());
353   }
354 
355   // Make sure there are not any holes in the struct.
356   if (Size != Context.getTypeSize(Ty))
357     return false;
358 
359   return true;
360 }
361 
362 namespace {
363 /// DefaultABIInfo - The default implementation for ABI specific
364 /// details. This implementation provides information which results in
365 /// self-consistent and sensible LLVM IR generation, but does not
366 /// conform to any particular ABI.
367 class DefaultABIInfo : public ABIInfo {
368 public:
369   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
370 
371   ABIArgInfo classifyReturnType(QualType RetTy) const;
372   ABIArgInfo classifyArgumentType(QualType RetTy) const;
373 
374   virtual void computeInfo(CGFunctionInfo &FI) const {
375     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
376     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
377          it != ie; ++it)
378       it->info = classifyArgumentType(it->type);
379   }
380 
381   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
382                                  CodeGenFunction &CGF) const;
383 };
384 
385 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
386 public:
387   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
388     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
389 };
390 
391 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
392                                        CodeGenFunction &CGF) const {
393   return 0;
394 }
395 
396 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
397   if (isAggregateTypeForABI(Ty)) {
398     // Records with non-trivial destructors/constructors should not be passed
399     // by value.
400     if (isRecordReturnIndirect(Ty, getCXXABI()))
401       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
402 
403     return ABIArgInfo::getIndirect(0);
404   }
405 
406   // Treat an enum type as its underlying type.
407   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
408     Ty = EnumTy->getDecl()->getIntegerType();
409 
410   return (Ty->isPromotableIntegerType() ?
411           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
412 }
413 
414 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
415   if (RetTy->isVoidType())
416     return ABIArgInfo::getIgnore();
417 
418   if (isAggregateTypeForABI(RetTy))
419     return ABIArgInfo::getIndirect(0);
420 
421   // Treat an enum type as its underlying type.
422   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
423     RetTy = EnumTy->getDecl()->getIntegerType();
424 
425   return (RetTy->isPromotableIntegerType() ?
426           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
427 }
428 
429 //===----------------------------------------------------------------------===//
430 // le32/PNaCl bitcode ABI Implementation
431 //
432 // This is a simplified version of the x86_32 ABI.  Arguments and return values
433 // are always passed on the stack.
434 //===----------------------------------------------------------------------===//
435 
436 class PNaClABIInfo : public ABIInfo {
437  public:
438   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
439 
440   ABIArgInfo classifyReturnType(QualType RetTy) const;
441   ABIArgInfo classifyArgumentType(QualType RetTy) const;
442 
443   virtual void computeInfo(CGFunctionInfo &FI) const;
444   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
445                                  CodeGenFunction &CGF) const;
446 };
447 
448 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
449  public:
450   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
451     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
452 };
453 
454 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
455     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456 
457     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
458          it != ie; ++it)
459       it->info = classifyArgumentType(it->type);
460   }
461 
462 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
463                                        CodeGenFunction &CGF) const {
464   return 0;
465 }
466 
467 /// \brief Classify argument of given type \p Ty.
468 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
469   if (isAggregateTypeForABI(Ty)) {
470     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
471       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
472     return ABIArgInfo::getIndirect(0);
473   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
474     // Treat an enum type as its underlying type.
475     Ty = EnumTy->getDecl()->getIntegerType();
476   } else if (Ty->isFloatingType()) {
477     // Floating-point types don't go inreg.
478     return ABIArgInfo::getDirect();
479   }
480 
481   return (Ty->isPromotableIntegerType() ?
482           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
483 }
484 
485 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
486   if (RetTy->isVoidType())
487     return ABIArgInfo::getIgnore();
488 
489   // In the PNaCl ABI we always return records/structures on the stack.
490   if (isAggregateTypeForABI(RetTy))
491     return ABIArgInfo::getIndirect(0);
492 
493   // Treat an enum type as its underlying type.
494   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
495     RetTy = EnumTy->getDecl()->getIntegerType();
496 
497   return (RetTy->isPromotableIntegerType() ?
498           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
499 }
500 
501 /// IsX86_MMXType - Return true if this is an MMX type.
502 bool IsX86_MMXType(llvm::Type *IRType) {
503   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
504   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
505     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
506     IRType->getScalarSizeInBits() != 64;
507 }
508 
509 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
510                                           StringRef Constraint,
511                                           llvm::Type* Ty) {
512   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
513     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
514       // Invalid MMX constraint
515       return 0;
516     }
517 
518     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
519   }
520 
521   // No operation needed
522   return Ty;
523 }
524 
525 //===----------------------------------------------------------------------===//
526 // X86-32 ABI Implementation
527 //===----------------------------------------------------------------------===//
528 
529 /// \brief Similar to llvm::CCState, but for Clang.
530 struct CCState {
531   CCState(unsigned CC) : CC(CC), FreeRegs(0) {}
532 
533   unsigned CC;
534   unsigned FreeRegs;
535 };
536 
537 /// X86_32ABIInfo - The X86-32 ABI information.
538 class X86_32ABIInfo : public ABIInfo {
539   enum Class {
540     Integer,
541     Float
542   };
543 
544   static const unsigned MinABIStackAlignInBytes = 4;
545 
546   bool IsDarwinVectorABI;
547   bool IsSmallStructInRegABI;
548   bool IsWin32StructABI;
549   unsigned DefaultNumRegisterParameters;
550 
551   static bool isRegisterSize(unsigned Size) {
552     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
553   }
554 
555   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
556                                           unsigned callingConvention);
557 
558   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
559   /// such that the argument will be passed in memory.
560   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
561 
562   ABIArgInfo getIndirectReturnResult(CCState &State) const;
563 
564   /// \brief Return the alignment to use for the given type on the stack.
565   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
566 
567   Class classify(QualType Ty) const;
568   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
569   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
570   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
571 
572 public:
573 
574   virtual void computeInfo(CGFunctionInfo &FI) const;
575   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
576                                  CodeGenFunction &CGF) const;
577 
578   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
579                 unsigned r)
580     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
581       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
582 };
583 
584 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
585 public:
586   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
587       bool d, bool p, bool w, unsigned r)
588     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
589 
590   static bool isStructReturnInRegABI(
591       const llvm::Triple &Triple, const CodeGenOptions &Opts);
592 
593   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
594                            CodeGen::CodeGenModule &CGM) const;
595 
596   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
597     // Darwin uses different dwarf register numbers for EH.
598     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
599     return 4;
600   }
601 
602   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
603                                llvm::Value *Address) const;
604 
605   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
606                                   StringRef Constraint,
607                                   llvm::Type* Ty) const {
608     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
609   }
610 
611   llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
612     unsigned Sig = (0xeb << 0) |  // jmp rel8
613                    (0x06 << 8) |  //           .+0x08
614                    ('F' << 16) |
615                    ('T' << 24);
616     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
617   }
618 
619 };
620 
621 }
622 
623 /// shouldReturnTypeInRegister - Determine if the given type should be
624 /// passed in a register (for the Darwin ABI).
625 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
626                                                ASTContext &Context,
627                                                unsigned callingConvention) {
628   uint64_t Size = Context.getTypeSize(Ty);
629 
630   // Type must be register sized.
631   if (!isRegisterSize(Size))
632     return false;
633 
634   if (Ty->isVectorType()) {
635     // 64- and 128- bit vectors inside structures are not returned in
636     // registers.
637     if (Size == 64 || Size == 128)
638       return false;
639 
640     return true;
641   }
642 
643   // If this is a builtin, pointer, enum, complex type, member pointer, or
644   // member function pointer it is ok.
645   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
646       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
647       Ty->isBlockPointerType() || Ty->isMemberPointerType())
648     return true;
649 
650   // Arrays are treated like records.
651   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
652     return shouldReturnTypeInRegister(AT->getElementType(), Context,
653                                       callingConvention);
654 
655   // Otherwise, it must be a record type.
656   const RecordType *RT = Ty->getAs<RecordType>();
657   if (!RT) return false;
658 
659   // FIXME: Traverse bases here too.
660 
661   // For thiscall conventions, structures will never be returned in
662   // a register.  This is for compatibility with the MSVC ABI
663   if (callingConvention == llvm::CallingConv::X86_ThisCall &&
664       RT->isStructureType()) {
665     return false;
666   }
667 
668   // Structure types are passed in register if all fields would be
669   // passed in a register.
670   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
671          e = RT->getDecl()->field_end(); i != e; ++i) {
672     const FieldDecl *FD = *i;
673 
674     // Empty fields are ignored.
675     if (isEmptyField(Context, FD, true))
676       continue;
677 
678     // Check fields recursively.
679     if (!shouldReturnTypeInRegister(FD->getType(), Context,
680                                     callingConvention))
681       return false;
682   }
683   return true;
684 }
685 
686 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
687   // If the return value is indirect, then the hidden argument is consuming one
688   // integer register.
689   if (State.FreeRegs) {
690     --State.FreeRegs;
691     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
692   }
693   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
694 }
695 
696 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
697                                              CCState &State) const {
698   if (RetTy->isVoidType())
699     return ABIArgInfo::getIgnore();
700 
701   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
702     // On Darwin, some vectors are returned in registers.
703     if (IsDarwinVectorABI) {
704       uint64_t Size = getContext().getTypeSize(RetTy);
705 
706       // 128-bit vectors are a special case; they are returned in
707       // registers and we need to make sure to pick a type the LLVM
708       // backend will like.
709       if (Size == 128)
710         return ABIArgInfo::getDirect(llvm::VectorType::get(
711                   llvm::Type::getInt64Ty(getVMContext()), 2));
712 
713       // Always return in register if it fits in a general purpose
714       // register, or if it is 64 bits and has a single element.
715       if ((Size == 8 || Size == 16 || Size == 32) ||
716           (Size == 64 && VT->getNumElements() == 1))
717         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
718                                                             Size));
719 
720       return getIndirectReturnResult(State);
721     }
722 
723     return ABIArgInfo::getDirect();
724   }
725 
726   if (isAggregateTypeForABI(RetTy)) {
727     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
728       if (isRecordReturnIndirect(RT, getCXXABI()))
729         return getIndirectReturnResult(State);
730 
731       // Structures with flexible arrays are always indirect.
732       if (RT->getDecl()->hasFlexibleArrayMember())
733         return getIndirectReturnResult(State);
734     }
735 
736     // If specified, structs and unions are always indirect.
737     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
738       return getIndirectReturnResult(State);
739 
740     // Small structures which are register sized are generally returned
741     // in a register.
742     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
743                                                   State.CC)) {
744       uint64_t Size = getContext().getTypeSize(RetTy);
745 
746       // As a special-case, if the struct is a "single-element" struct, and
747       // the field is of type "float" or "double", return it in a
748       // floating-point register. (MSVC does not apply this special case.)
749       // We apply a similar transformation for pointer types to improve the
750       // quality of the generated IR.
751       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
752         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
753             || SeltTy->hasPointerRepresentation())
754           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
755 
756       // FIXME: We should be able to narrow this integer in cases with dead
757       // padding.
758       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
759     }
760 
761     return getIndirectReturnResult(State);
762   }
763 
764   // Treat an enum type as its underlying type.
765   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
766     RetTy = EnumTy->getDecl()->getIntegerType();
767 
768   return (RetTy->isPromotableIntegerType() ?
769           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
770 }
771 
772 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
773   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
774 }
775 
776 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
777   const RecordType *RT = Ty->getAs<RecordType>();
778   if (!RT)
779     return 0;
780   const RecordDecl *RD = RT->getDecl();
781 
782   // If this is a C++ record, check the bases first.
783   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
784     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
785            e = CXXRD->bases_end(); i != e; ++i)
786       if (!isRecordWithSSEVectorType(Context, i->getType()))
787         return false;
788 
789   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
790        i != e; ++i) {
791     QualType FT = i->getType();
792 
793     if (isSSEVectorType(Context, FT))
794       return true;
795 
796     if (isRecordWithSSEVectorType(Context, FT))
797       return true;
798   }
799 
800   return false;
801 }
802 
803 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
804                                                  unsigned Align) const {
805   // Otherwise, if the alignment is less than or equal to the minimum ABI
806   // alignment, just use the default; the backend will handle this.
807   if (Align <= MinABIStackAlignInBytes)
808     return 0; // Use default alignment.
809 
810   // On non-Darwin, the stack type alignment is always 4.
811   if (!IsDarwinVectorABI) {
812     // Set explicit alignment, since we may need to realign the top.
813     return MinABIStackAlignInBytes;
814   }
815 
816   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
817   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
818                       isRecordWithSSEVectorType(getContext(), Ty)))
819     return 16;
820 
821   return MinABIStackAlignInBytes;
822 }
823 
824 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
825                                             CCState &State) const {
826   if (!ByVal) {
827     if (State.FreeRegs) {
828       --State.FreeRegs; // Non-byval indirects just use one pointer.
829       return ABIArgInfo::getIndirectInReg(0, false);
830     }
831     return ABIArgInfo::getIndirect(0, false);
832   }
833 
834   // Compute the byval alignment.
835   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
836   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
837   if (StackAlign == 0)
838     return ABIArgInfo::getIndirect(4);
839 
840   // If the stack alignment is less than the type alignment, realign the
841   // argument.
842   if (StackAlign < TypeAlign)
843     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
844                                    /*Realign=*/true);
845 
846   return ABIArgInfo::getIndirect(StackAlign);
847 }
848 
849 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
850   const Type *T = isSingleElementStruct(Ty, getContext());
851   if (!T)
852     T = Ty.getTypePtr();
853 
854   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
855     BuiltinType::Kind K = BT->getKind();
856     if (K == BuiltinType::Float || K == BuiltinType::Double)
857       return Float;
858   }
859   return Integer;
860 }
861 
862 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
863                                    bool &NeedsPadding) const {
864   NeedsPadding = false;
865   Class C = classify(Ty);
866   if (C == Float)
867     return false;
868 
869   unsigned Size = getContext().getTypeSize(Ty);
870   unsigned SizeInRegs = (Size + 31) / 32;
871 
872   if (SizeInRegs == 0)
873     return false;
874 
875   if (SizeInRegs > State.FreeRegs) {
876     State.FreeRegs = 0;
877     return false;
878   }
879 
880   State.FreeRegs -= SizeInRegs;
881 
882   if (State.CC == llvm::CallingConv::X86_FastCall) {
883     if (Size > 32)
884       return false;
885 
886     if (Ty->isIntegralOrEnumerationType())
887       return true;
888 
889     if (Ty->isPointerType())
890       return true;
891 
892     if (Ty->isReferenceType())
893       return true;
894 
895     if (State.FreeRegs)
896       NeedsPadding = true;
897 
898     return false;
899   }
900 
901   return true;
902 }
903 
904 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State) const {
905   // FIXME: Set alignment on indirect arguments.
906   if (isAggregateTypeForABI(Ty)) {
907     if (const RecordType *RT = Ty->getAs<RecordType>()) {
908       if (IsWin32StructABI)
909         return getIndirectResult(Ty, true, State);
910 
911       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
912         return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory,
913                                  State);
914 
915       // Structures with flexible arrays are always indirect.
916       if (RT->getDecl()->hasFlexibleArrayMember())
917         return getIndirectResult(Ty, true, State);
918     }
919 
920     // Ignore empty structs/unions.
921     if (isEmptyRecord(getContext(), Ty, true))
922       return ABIArgInfo::getIgnore();
923 
924     llvm::LLVMContext &LLVMContext = getVMContext();
925     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
926     bool NeedsPadding;
927     if (shouldUseInReg(Ty, State, NeedsPadding)) {
928       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
929       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
930       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
931       return ABIArgInfo::getDirectInReg(Result);
932     }
933     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
934 
935     // Expand small (<= 128-bit) record types when we know that the stack layout
936     // of those arguments will match the struct. This is important because the
937     // LLVM backend isn't smart enough to remove byval, which inhibits many
938     // optimizations.
939     if (getContext().getTypeSize(Ty) <= 4*32 &&
940         canExpandIndirectArgument(Ty, getContext()))
941       return ABIArgInfo::getExpandWithPadding(
942           State.CC == llvm::CallingConv::X86_FastCall, PaddingType);
943 
944     return getIndirectResult(Ty, true, State);
945   }
946 
947   if (const VectorType *VT = Ty->getAs<VectorType>()) {
948     // On Darwin, some vectors are passed in memory, we handle this by passing
949     // it as an i8/i16/i32/i64.
950     if (IsDarwinVectorABI) {
951       uint64_t Size = getContext().getTypeSize(Ty);
952       if ((Size == 8 || Size == 16 || Size == 32) ||
953           (Size == 64 && VT->getNumElements() == 1))
954         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
955                                                             Size));
956     }
957 
958     if (IsX86_MMXType(CGT.ConvertType(Ty)))
959       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
960 
961     return ABIArgInfo::getDirect();
962   }
963 
964 
965   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
966     Ty = EnumTy->getDecl()->getIntegerType();
967 
968   bool NeedsPadding;
969   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
970 
971   if (Ty->isPromotableIntegerType()) {
972     if (InReg)
973       return ABIArgInfo::getExtendInReg();
974     return ABIArgInfo::getExtend();
975   }
976   if (InReg)
977     return ABIArgInfo::getDirectInReg();
978   return ABIArgInfo::getDirect();
979 }
980 
981 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
982   CCState State(FI.getCallingConvention());
983   if (State.CC == llvm::CallingConv::X86_FastCall)
984     State.FreeRegs = 2;
985   else if (FI.getHasRegParm())
986     State.FreeRegs = FI.getRegParm();
987   else
988     State.FreeRegs = DefaultNumRegisterParameters;
989 
990   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
991 
992   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
993        it != ie; ++it)
994     it->info = classifyArgumentType(it->type, State);
995 }
996 
997 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
998                                       CodeGenFunction &CGF) const {
999   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1000 
1001   CGBuilderTy &Builder = CGF.Builder;
1002   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1003                                                        "ap");
1004   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1005 
1006   // Compute if the address needs to be aligned
1007   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1008   Align = getTypeStackAlignInBytes(Ty, Align);
1009   Align = std::max(Align, 4U);
1010   if (Align > 4) {
1011     // addr = (addr + align - 1) & -align;
1012     llvm::Value *Offset =
1013       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1014     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1015     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1016                                                     CGF.Int32Ty);
1017     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1018     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1019                                       Addr->getType(),
1020                                       "ap.cur.aligned");
1021   }
1022 
1023   llvm::Type *PTy =
1024     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1025   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1026 
1027   uint64_t Offset =
1028     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1029   llvm::Value *NextAddr =
1030     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1031                       "ap.next");
1032   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1033 
1034   return AddrTyped;
1035 }
1036 
1037 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1038                                                   llvm::GlobalValue *GV,
1039                                             CodeGen::CodeGenModule &CGM) const {
1040   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1041     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1042       // Get the LLVM function.
1043       llvm::Function *Fn = cast<llvm::Function>(GV);
1044 
1045       // Now add the 'alignstack' attribute with a value of 16.
1046       llvm::AttrBuilder B;
1047       B.addStackAlignmentAttr(16);
1048       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1049                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1050                                               llvm::AttributeSet::FunctionIndex,
1051                                               B));
1052     }
1053   }
1054 }
1055 
1056 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1057                                                CodeGen::CodeGenFunction &CGF,
1058                                                llvm::Value *Address) const {
1059   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1060 
1061   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1062 
1063   // 0-7 are the eight integer registers;  the order is different
1064   //   on Darwin (for EH), but the range is the same.
1065   // 8 is %eip.
1066   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1067 
1068   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1069     // 12-16 are st(0..4).  Not sure why we stop at 4.
1070     // These have size 16, which is sizeof(long double) on
1071     // platforms with 8-byte alignment for that type.
1072     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1073     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1074 
1075   } else {
1076     // 9 is %eflags, which doesn't get a size on Darwin for some
1077     // reason.
1078     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1079 
1080     // 11-16 are st(0..5).  Not sure why we stop at 5.
1081     // These have size 12, which is sizeof(long double) on
1082     // platforms with 4-byte alignment for that type.
1083     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1084     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1085   }
1086 
1087   return false;
1088 }
1089 
1090 //===----------------------------------------------------------------------===//
1091 // X86-64 ABI Implementation
1092 //===----------------------------------------------------------------------===//
1093 
1094 
1095 namespace {
1096 /// X86_64ABIInfo - The X86_64 ABI information.
1097 class X86_64ABIInfo : public ABIInfo {
1098   enum Class {
1099     Integer = 0,
1100     SSE,
1101     SSEUp,
1102     X87,
1103     X87Up,
1104     ComplexX87,
1105     NoClass,
1106     Memory
1107   };
1108 
1109   /// merge - Implement the X86_64 ABI merging algorithm.
1110   ///
1111   /// Merge an accumulating classification \arg Accum with a field
1112   /// classification \arg Field.
1113   ///
1114   /// \param Accum - The accumulating classification. This should
1115   /// always be either NoClass or the result of a previous merge
1116   /// call. In addition, this should never be Memory (the caller
1117   /// should just return Memory for the aggregate).
1118   static Class merge(Class Accum, Class Field);
1119 
1120   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1121   ///
1122   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1123   /// final MEMORY or SSE classes when necessary.
1124   ///
1125   /// \param AggregateSize - The size of the current aggregate in
1126   /// the classification process.
1127   ///
1128   /// \param Lo - The classification for the parts of the type
1129   /// residing in the low word of the containing object.
1130   ///
1131   /// \param Hi - The classification for the parts of the type
1132   /// residing in the higher words of the containing object.
1133   ///
1134   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1135 
1136   /// classify - Determine the x86_64 register classes in which the
1137   /// given type T should be passed.
1138   ///
1139   /// \param Lo - The classification for the parts of the type
1140   /// residing in the low word of the containing object.
1141   ///
1142   /// \param Hi - The classification for the parts of the type
1143   /// residing in the high word of the containing object.
1144   ///
1145   /// \param OffsetBase - The bit offset of this type in the
1146   /// containing object.  Some parameters are classified different
1147   /// depending on whether they straddle an eightbyte boundary.
1148   ///
1149   /// \param isNamedArg - Whether the argument in question is a "named"
1150   /// argument, as used in AMD64-ABI 3.5.7.
1151   ///
1152   /// If a word is unused its result will be NoClass; if a type should
1153   /// be passed in Memory then at least the classification of \arg Lo
1154   /// will be Memory.
1155   ///
1156   /// The \arg Lo class will be NoClass iff the argument is ignored.
1157   ///
1158   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1159   /// also be ComplexX87.
1160   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1161                 bool isNamedArg) const;
1162 
1163   llvm::Type *GetByteVectorType(QualType Ty) const;
1164   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1165                                  unsigned IROffset, QualType SourceTy,
1166                                  unsigned SourceOffset) const;
1167   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1168                                      unsigned IROffset, QualType SourceTy,
1169                                      unsigned SourceOffset) const;
1170 
1171   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1172   /// such that the argument will be returned in memory.
1173   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1174 
1175   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1176   /// such that the argument will be passed in memory.
1177   ///
1178   /// \param freeIntRegs - The number of free integer registers remaining
1179   /// available.
1180   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1181 
1182   ABIArgInfo classifyReturnType(QualType RetTy) const;
1183 
1184   ABIArgInfo classifyArgumentType(QualType Ty,
1185                                   unsigned freeIntRegs,
1186                                   unsigned &neededInt,
1187                                   unsigned &neededSSE,
1188                                   bool isNamedArg) const;
1189 
1190   bool IsIllegalVectorType(QualType Ty) const;
1191 
1192   /// The 0.98 ABI revision clarified a lot of ambiguities,
1193   /// unfortunately in ways that were not always consistent with
1194   /// certain previous compilers.  In particular, platforms which
1195   /// required strict binary compatibility with older versions of GCC
1196   /// may need to exempt themselves.
1197   bool honorsRevision0_98() const {
1198     return !getTarget().getTriple().isOSDarwin();
1199   }
1200 
1201   bool HasAVX;
1202   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1203   // 64-bit hardware.
1204   bool Has64BitPointers;
1205 
1206 public:
1207   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1208       ABIInfo(CGT), HasAVX(hasavx),
1209       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1210   }
1211 
1212   bool isPassedUsingAVXType(QualType type) const {
1213     unsigned neededInt, neededSSE;
1214     // The freeIntRegs argument doesn't matter here.
1215     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1216                                            /*isNamedArg*/true);
1217     if (info.isDirect()) {
1218       llvm::Type *ty = info.getCoerceToType();
1219       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1220         return (vectorTy->getBitWidth() > 128);
1221     }
1222     return false;
1223   }
1224 
1225   virtual void computeInfo(CGFunctionInfo &FI) const;
1226 
1227   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1228                                  CodeGenFunction &CGF) const;
1229 };
1230 
1231 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1232 class WinX86_64ABIInfo : public ABIInfo {
1233 
1234   ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1235 
1236 public:
1237   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1238 
1239   virtual void computeInfo(CGFunctionInfo &FI) const;
1240 
1241   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1242                                  CodeGenFunction &CGF) const;
1243 };
1244 
1245 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1246 public:
1247   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1248       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1249 
1250   const X86_64ABIInfo &getABIInfo() const {
1251     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1252   }
1253 
1254   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1255     return 7;
1256   }
1257 
1258   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1259                                llvm::Value *Address) const {
1260     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1261 
1262     // 0-15 are the 16 integer registers.
1263     // 16 is %rip.
1264     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1265     return false;
1266   }
1267 
1268   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1269                                   StringRef Constraint,
1270                                   llvm::Type* Ty) const {
1271     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1272   }
1273 
1274   bool isNoProtoCallVariadic(const CallArgList &args,
1275                              const FunctionNoProtoType *fnType) const {
1276     // The default CC on x86-64 sets %al to the number of SSA
1277     // registers used, and GCC sets this when calling an unprototyped
1278     // function, so we override the default behavior.  However, don't do
1279     // that when AVX types are involved: the ABI explicitly states it is
1280     // undefined, and it doesn't work in practice because of how the ABI
1281     // defines varargs anyway.
1282     if (fnType->getCallConv() == CC_C) {
1283       bool HasAVXType = false;
1284       for (CallArgList::const_iterator
1285              it = args.begin(), ie = args.end(); it != ie; ++it) {
1286         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1287           HasAVXType = true;
1288           break;
1289         }
1290       }
1291 
1292       if (!HasAVXType)
1293         return true;
1294     }
1295 
1296     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1297   }
1298 
1299   llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
1300     unsigned Sig = (0xeb << 0) |  // jmp rel8
1301                    (0x0a << 8) |  //           .+0x0c
1302                    ('F' << 16) |
1303                    ('T' << 24);
1304     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1305   }
1306 
1307 };
1308 
1309 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1310   // If the argument does not end in .lib, automatically add the suffix. This
1311   // matches the behavior of MSVC.
1312   std::string ArgStr = Lib;
1313   if (!Lib.endswith_lower(".lib"))
1314     ArgStr += ".lib";
1315   return ArgStr;
1316 }
1317 
1318 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1319 public:
1320   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1321         bool d, bool p, bool w, unsigned RegParms)
1322     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1323 
1324   void getDependentLibraryOption(llvm::StringRef Lib,
1325                                  llvm::SmallString<24> &Opt) const {
1326     Opt = "/DEFAULTLIB:";
1327     Opt += qualifyWindowsLibrary(Lib);
1328   }
1329 
1330   void getDetectMismatchOption(llvm::StringRef Name,
1331                                llvm::StringRef Value,
1332                                llvm::SmallString<32> &Opt) const {
1333     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1334   }
1335 };
1336 
1337 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1338 public:
1339   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1340     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1341 
1342   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1343     return 7;
1344   }
1345 
1346   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1347                                llvm::Value *Address) const {
1348     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1349 
1350     // 0-15 are the 16 integer registers.
1351     // 16 is %rip.
1352     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1353     return false;
1354   }
1355 
1356   void getDependentLibraryOption(llvm::StringRef Lib,
1357                                  llvm::SmallString<24> &Opt) const {
1358     Opt = "/DEFAULTLIB:";
1359     Opt += qualifyWindowsLibrary(Lib);
1360   }
1361 
1362   void getDetectMismatchOption(llvm::StringRef Name,
1363                                llvm::StringRef Value,
1364                                llvm::SmallString<32> &Opt) const {
1365     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1366   }
1367 };
1368 
1369 }
1370 
1371 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1372                               Class &Hi) const {
1373   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1374   //
1375   // (a) If one of the classes is Memory, the whole argument is passed in
1376   //     memory.
1377   //
1378   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1379   //     memory.
1380   //
1381   // (c) If the size of the aggregate exceeds two eightbytes and the first
1382   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1383   //     argument is passed in memory. NOTE: This is necessary to keep the
1384   //     ABI working for processors that don't support the __m256 type.
1385   //
1386   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1387   //
1388   // Some of these are enforced by the merging logic.  Others can arise
1389   // only with unions; for example:
1390   //   union { _Complex double; unsigned; }
1391   //
1392   // Note that clauses (b) and (c) were added in 0.98.
1393   //
1394   if (Hi == Memory)
1395     Lo = Memory;
1396   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1397     Lo = Memory;
1398   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1399     Lo = Memory;
1400   if (Hi == SSEUp && Lo != SSE)
1401     Hi = SSE;
1402 }
1403 
1404 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1405   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1406   // classified recursively so that always two fields are
1407   // considered. The resulting class is calculated according to
1408   // the classes of the fields in the eightbyte:
1409   //
1410   // (a) If both classes are equal, this is the resulting class.
1411   //
1412   // (b) If one of the classes is NO_CLASS, the resulting class is
1413   // the other class.
1414   //
1415   // (c) If one of the classes is MEMORY, the result is the MEMORY
1416   // class.
1417   //
1418   // (d) If one of the classes is INTEGER, the result is the
1419   // INTEGER.
1420   //
1421   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1422   // MEMORY is used as class.
1423   //
1424   // (f) Otherwise class SSE is used.
1425 
1426   // Accum should never be memory (we should have returned) or
1427   // ComplexX87 (because this cannot be passed in a structure).
1428   assert((Accum != Memory && Accum != ComplexX87) &&
1429          "Invalid accumulated classification during merge.");
1430   if (Accum == Field || Field == NoClass)
1431     return Accum;
1432   if (Field == Memory)
1433     return Memory;
1434   if (Accum == NoClass)
1435     return Field;
1436   if (Accum == Integer || Field == Integer)
1437     return Integer;
1438   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1439       Accum == X87 || Accum == X87Up)
1440     return Memory;
1441   return SSE;
1442 }
1443 
1444 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1445                              Class &Lo, Class &Hi, bool isNamedArg) const {
1446   // FIXME: This code can be simplified by introducing a simple value class for
1447   // Class pairs with appropriate constructor methods for the various
1448   // situations.
1449 
1450   // FIXME: Some of the split computations are wrong; unaligned vectors
1451   // shouldn't be passed in registers for example, so there is no chance they
1452   // can straddle an eightbyte. Verify & simplify.
1453 
1454   Lo = Hi = NoClass;
1455 
1456   Class &Current = OffsetBase < 64 ? Lo : Hi;
1457   Current = Memory;
1458 
1459   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1460     BuiltinType::Kind k = BT->getKind();
1461 
1462     if (k == BuiltinType::Void) {
1463       Current = NoClass;
1464     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1465       Lo = Integer;
1466       Hi = Integer;
1467     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1468       Current = Integer;
1469     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1470                (k == BuiltinType::LongDouble &&
1471                 getTarget().getTriple().isOSNaCl())) {
1472       Current = SSE;
1473     } else if (k == BuiltinType::LongDouble) {
1474       Lo = X87;
1475       Hi = X87Up;
1476     }
1477     // FIXME: _Decimal32 and _Decimal64 are SSE.
1478     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1479     return;
1480   }
1481 
1482   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1483     // Classify the underlying integer type.
1484     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1485     return;
1486   }
1487 
1488   if (Ty->hasPointerRepresentation()) {
1489     Current = Integer;
1490     return;
1491   }
1492 
1493   if (Ty->isMemberPointerType()) {
1494     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1495       Lo = Hi = Integer;
1496     else
1497       Current = Integer;
1498     return;
1499   }
1500 
1501   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1502     uint64_t Size = getContext().getTypeSize(VT);
1503     if (Size == 32) {
1504       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1505       // float> as integer.
1506       Current = Integer;
1507 
1508       // If this type crosses an eightbyte boundary, it should be
1509       // split.
1510       uint64_t EB_Real = (OffsetBase) / 64;
1511       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1512       if (EB_Real != EB_Imag)
1513         Hi = Lo;
1514     } else if (Size == 64) {
1515       // gcc passes <1 x double> in memory. :(
1516       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1517         return;
1518 
1519       // gcc passes <1 x long long> as INTEGER.
1520       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1521           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1522           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1523           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1524         Current = Integer;
1525       else
1526         Current = SSE;
1527 
1528       // If this type crosses an eightbyte boundary, it should be
1529       // split.
1530       if (OffsetBase && OffsetBase != 64)
1531         Hi = Lo;
1532     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1533       // Arguments of 256-bits are split into four eightbyte chunks. The
1534       // least significant one belongs to class SSE and all the others to class
1535       // SSEUP. The original Lo and Hi design considers that types can't be
1536       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1537       // This design isn't correct for 256-bits, but since there're no cases
1538       // where the upper parts would need to be inspected, avoid adding
1539       // complexity and just consider Hi to match the 64-256 part.
1540       //
1541       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1542       // registers if they are "named", i.e. not part of the "..." of a
1543       // variadic function.
1544       Lo = SSE;
1545       Hi = SSEUp;
1546     }
1547     return;
1548   }
1549 
1550   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1551     QualType ET = getContext().getCanonicalType(CT->getElementType());
1552 
1553     uint64_t Size = getContext().getTypeSize(Ty);
1554     if (ET->isIntegralOrEnumerationType()) {
1555       if (Size <= 64)
1556         Current = Integer;
1557       else if (Size <= 128)
1558         Lo = Hi = Integer;
1559     } else if (ET == getContext().FloatTy)
1560       Current = SSE;
1561     else if (ET == getContext().DoubleTy ||
1562              (ET == getContext().LongDoubleTy &&
1563               getTarget().getTriple().isOSNaCl()))
1564       Lo = Hi = SSE;
1565     else if (ET == getContext().LongDoubleTy)
1566       Current = ComplexX87;
1567 
1568     // If this complex type crosses an eightbyte boundary then it
1569     // should be split.
1570     uint64_t EB_Real = (OffsetBase) / 64;
1571     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1572     if (Hi == NoClass && EB_Real != EB_Imag)
1573       Hi = Lo;
1574 
1575     return;
1576   }
1577 
1578   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1579     // Arrays are treated like structures.
1580 
1581     uint64_t Size = getContext().getTypeSize(Ty);
1582 
1583     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1584     // than four eightbytes, ..., it has class MEMORY.
1585     if (Size > 256)
1586       return;
1587 
1588     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1589     // fields, it has class MEMORY.
1590     //
1591     // Only need to check alignment of array base.
1592     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1593       return;
1594 
1595     // Otherwise implement simplified merge. We could be smarter about
1596     // this, but it isn't worth it and would be harder to verify.
1597     Current = NoClass;
1598     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1599     uint64_t ArraySize = AT->getSize().getZExtValue();
1600 
1601     // The only case a 256-bit wide vector could be used is when the array
1602     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1603     // to work for sizes wider than 128, early check and fallback to memory.
1604     if (Size > 128 && EltSize != 256)
1605       return;
1606 
1607     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1608       Class FieldLo, FieldHi;
1609       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1610       Lo = merge(Lo, FieldLo);
1611       Hi = merge(Hi, FieldHi);
1612       if (Lo == Memory || Hi == Memory)
1613         break;
1614     }
1615 
1616     postMerge(Size, Lo, Hi);
1617     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1618     return;
1619   }
1620 
1621   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1622     uint64_t Size = getContext().getTypeSize(Ty);
1623 
1624     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1625     // than four eightbytes, ..., it has class MEMORY.
1626     if (Size > 256)
1627       return;
1628 
1629     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1630     // copy constructor or a non-trivial destructor, it is passed by invisible
1631     // reference.
1632     if (getRecordArgABI(RT, getCXXABI()))
1633       return;
1634 
1635     const RecordDecl *RD = RT->getDecl();
1636 
1637     // Assume variable sized types are passed in memory.
1638     if (RD->hasFlexibleArrayMember())
1639       return;
1640 
1641     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1642 
1643     // Reset Lo class, this will be recomputed.
1644     Current = NoClass;
1645 
1646     // If this is a C++ record, classify the bases first.
1647     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1648       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1649              e = CXXRD->bases_end(); i != e; ++i) {
1650         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1651                "Unexpected base class!");
1652         const CXXRecordDecl *Base =
1653           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1654 
1655         // Classify this field.
1656         //
1657         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1658         // single eightbyte, each is classified separately. Each eightbyte gets
1659         // initialized to class NO_CLASS.
1660         Class FieldLo, FieldHi;
1661         uint64_t Offset =
1662           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1663         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1664         Lo = merge(Lo, FieldLo);
1665         Hi = merge(Hi, FieldHi);
1666         if (Lo == Memory || Hi == Memory)
1667           break;
1668       }
1669     }
1670 
1671     // Classify the fields one at a time, merging the results.
1672     unsigned idx = 0;
1673     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1674            i != e; ++i, ++idx) {
1675       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1676       bool BitField = i->isBitField();
1677 
1678       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1679       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1680       //
1681       // The only case a 256-bit wide vector could be used is when the struct
1682       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1683       // to work for sizes wider than 128, early check and fallback to memory.
1684       //
1685       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1686         Lo = Memory;
1687         return;
1688       }
1689       // Note, skip this test for bit-fields, see below.
1690       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1691         Lo = Memory;
1692         return;
1693       }
1694 
1695       // Classify this field.
1696       //
1697       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1698       // exceeds a single eightbyte, each is classified
1699       // separately. Each eightbyte gets initialized to class
1700       // NO_CLASS.
1701       Class FieldLo, FieldHi;
1702 
1703       // Bit-fields require special handling, they do not force the
1704       // structure to be passed in memory even if unaligned, and
1705       // therefore they can straddle an eightbyte.
1706       if (BitField) {
1707         // Ignore padding bit-fields.
1708         if (i->isUnnamedBitfield())
1709           continue;
1710 
1711         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1712         uint64_t Size = i->getBitWidthValue(getContext());
1713 
1714         uint64_t EB_Lo = Offset / 64;
1715         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1716 
1717         if (EB_Lo) {
1718           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1719           FieldLo = NoClass;
1720           FieldHi = Integer;
1721         } else {
1722           FieldLo = Integer;
1723           FieldHi = EB_Hi ? Integer : NoClass;
1724         }
1725       } else
1726         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1727       Lo = merge(Lo, FieldLo);
1728       Hi = merge(Hi, FieldHi);
1729       if (Lo == Memory || Hi == Memory)
1730         break;
1731     }
1732 
1733     postMerge(Size, Lo, Hi);
1734   }
1735 }
1736 
1737 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1738   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1739   // place naturally.
1740   if (!isAggregateTypeForABI(Ty)) {
1741     // Treat an enum type as its underlying type.
1742     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1743       Ty = EnumTy->getDecl()->getIntegerType();
1744 
1745     return (Ty->isPromotableIntegerType() ?
1746             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1747   }
1748 
1749   return ABIArgInfo::getIndirect(0);
1750 }
1751 
1752 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1753   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1754     uint64_t Size = getContext().getTypeSize(VecTy);
1755     unsigned LargestVector = HasAVX ? 256 : 128;
1756     if (Size <= 64 || Size > LargestVector)
1757       return true;
1758   }
1759 
1760   return false;
1761 }
1762 
1763 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1764                                             unsigned freeIntRegs) const {
1765   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1766   // place naturally.
1767   //
1768   // This assumption is optimistic, as there could be free registers available
1769   // when we need to pass this argument in memory, and LLVM could try to pass
1770   // the argument in the free register. This does not seem to happen currently,
1771   // but this code would be much safer if we could mark the argument with
1772   // 'onstack'. See PR12193.
1773   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1774     // Treat an enum type as its underlying type.
1775     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1776       Ty = EnumTy->getDecl()->getIntegerType();
1777 
1778     return (Ty->isPromotableIntegerType() ?
1779             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1780   }
1781 
1782   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1783     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1784 
1785   // Compute the byval alignment. We specify the alignment of the byval in all
1786   // cases so that the mid-level optimizer knows the alignment of the byval.
1787   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1788 
1789   // Attempt to avoid passing indirect results using byval when possible. This
1790   // is important for good codegen.
1791   //
1792   // We do this by coercing the value into a scalar type which the backend can
1793   // handle naturally (i.e., without using byval).
1794   //
1795   // For simplicity, we currently only do this when we have exhausted all of the
1796   // free integer registers. Doing this when there are free integer registers
1797   // would require more care, as we would have to ensure that the coerced value
1798   // did not claim the unused register. That would require either reording the
1799   // arguments to the function (so that any subsequent inreg values came first),
1800   // or only doing this optimization when there were no following arguments that
1801   // might be inreg.
1802   //
1803   // We currently expect it to be rare (particularly in well written code) for
1804   // arguments to be passed on the stack when there are still free integer
1805   // registers available (this would typically imply large structs being passed
1806   // by value), so this seems like a fair tradeoff for now.
1807   //
1808   // We can revisit this if the backend grows support for 'onstack' parameter
1809   // attributes. See PR12193.
1810   if (freeIntRegs == 0) {
1811     uint64_t Size = getContext().getTypeSize(Ty);
1812 
1813     // If this type fits in an eightbyte, coerce it into the matching integral
1814     // type, which will end up on the stack (with alignment 8).
1815     if (Align == 8 && Size <= 64)
1816       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1817                                                           Size));
1818   }
1819 
1820   return ABIArgInfo::getIndirect(Align);
1821 }
1822 
1823 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1824 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1825 /// vector register.
1826 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1827   llvm::Type *IRType = CGT.ConvertType(Ty);
1828 
1829   // Wrapper structs that just contain vectors are passed just like vectors,
1830   // strip them off if present.
1831   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1832   while (STy && STy->getNumElements() == 1) {
1833     IRType = STy->getElementType(0);
1834     STy = dyn_cast<llvm::StructType>(IRType);
1835   }
1836 
1837   // If the preferred type is a 16-byte vector, prefer to pass it.
1838   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1839     llvm::Type *EltTy = VT->getElementType();
1840     unsigned BitWidth = VT->getBitWidth();
1841     if ((BitWidth >= 128 && BitWidth <= 256) &&
1842         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1843          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1844          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1845          EltTy->isIntegerTy(128)))
1846       return VT;
1847   }
1848 
1849   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1850 }
1851 
1852 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1853 /// is known to either be off the end of the specified type or being in
1854 /// alignment padding.  The user type specified is known to be at most 128 bits
1855 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1856 /// classification that put one of the two halves in the INTEGER class.
1857 ///
1858 /// It is conservatively correct to return false.
1859 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1860                                   unsigned EndBit, ASTContext &Context) {
1861   // If the bytes being queried are off the end of the type, there is no user
1862   // data hiding here.  This handles analysis of builtins, vectors and other
1863   // types that don't contain interesting padding.
1864   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1865   if (TySize <= StartBit)
1866     return true;
1867 
1868   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1869     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1870     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1871 
1872     // Check each element to see if the element overlaps with the queried range.
1873     for (unsigned i = 0; i != NumElts; ++i) {
1874       // If the element is after the span we care about, then we're done..
1875       unsigned EltOffset = i*EltSize;
1876       if (EltOffset >= EndBit) break;
1877 
1878       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1879       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1880                                  EndBit-EltOffset, Context))
1881         return false;
1882     }
1883     // If it overlaps no elements, then it is safe to process as padding.
1884     return true;
1885   }
1886 
1887   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1888     const RecordDecl *RD = RT->getDecl();
1889     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1890 
1891     // If this is a C++ record, check the bases first.
1892     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1893       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1894            e = CXXRD->bases_end(); i != e; ++i) {
1895         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1896                "Unexpected base class!");
1897         const CXXRecordDecl *Base =
1898           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1899 
1900         // If the base is after the span we care about, ignore it.
1901         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1902         if (BaseOffset >= EndBit) continue;
1903 
1904         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1905         if (!BitsContainNoUserData(i->getType(), BaseStart,
1906                                    EndBit-BaseOffset, Context))
1907           return false;
1908       }
1909     }
1910 
1911     // Verify that no field has data that overlaps the region of interest.  Yes
1912     // this could be sped up a lot by being smarter about queried fields,
1913     // however we're only looking at structs up to 16 bytes, so we don't care
1914     // much.
1915     unsigned idx = 0;
1916     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1917          i != e; ++i, ++idx) {
1918       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1919 
1920       // If we found a field after the region we care about, then we're done.
1921       if (FieldOffset >= EndBit) break;
1922 
1923       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1924       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1925                                  Context))
1926         return false;
1927     }
1928 
1929     // If nothing in this record overlapped the area of interest, then we're
1930     // clean.
1931     return true;
1932   }
1933 
1934   return false;
1935 }
1936 
1937 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1938 /// float member at the specified offset.  For example, {int,{float}} has a
1939 /// float at offset 4.  It is conservatively correct for this routine to return
1940 /// false.
1941 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1942                                   const llvm::DataLayout &TD) {
1943   // Base case if we find a float.
1944   if (IROffset == 0 && IRType->isFloatTy())
1945     return true;
1946 
1947   // If this is a struct, recurse into the field at the specified offset.
1948   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1949     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1950     unsigned Elt = SL->getElementContainingOffset(IROffset);
1951     IROffset -= SL->getElementOffset(Elt);
1952     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1953   }
1954 
1955   // If this is an array, recurse into the field at the specified offset.
1956   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1957     llvm::Type *EltTy = ATy->getElementType();
1958     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1959     IROffset -= IROffset/EltSize*EltSize;
1960     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1961   }
1962 
1963   return false;
1964 }
1965 
1966 
1967 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1968 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1969 llvm::Type *X86_64ABIInfo::
1970 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1971                    QualType SourceTy, unsigned SourceOffset) const {
1972   // The only three choices we have are either double, <2 x float>, or float. We
1973   // pass as float if the last 4 bytes is just padding.  This happens for
1974   // structs that contain 3 floats.
1975   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1976                             SourceOffset*8+64, getContext()))
1977     return llvm::Type::getFloatTy(getVMContext());
1978 
1979   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1980   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1981   // case.
1982   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1983       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1984     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1985 
1986   return llvm::Type::getDoubleTy(getVMContext());
1987 }
1988 
1989 
1990 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1991 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1992 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1993 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1994 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1995 /// etc).
1996 ///
1997 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1998 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1999 /// the 8-byte value references.  PrefType may be null.
2000 ///
2001 /// SourceTy is the source level type for the entire argument.  SourceOffset is
2002 /// an offset into this that we're processing (which is always either 0 or 8).
2003 ///
2004 llvm::Type *X86_64ABIInfo::
2005 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2006                        QualType SourceTy, unsigned SourceOffset) const {
2007   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2008   // returning an 8-byte unit starting with it.  See if we can safely use it.
2009   if (IROffset == 0) {
2010     // Pointers and int64's always fill the 8-byte unit.
2011     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2012         IRType->isIntegerTy(64))
2013       return IRType;
2014 
2015     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2016     // goodness in the source type is just tail padding.  This is allowed to
2017     // kick in for struct {double,int} on the int, but not on
2018     // struct{double,int,int} because we wouldn't return the second int.  We
2019     // have to do this analysis on the source type because we can't depend on
2020     // unions being lowered a specific way etc.
2021     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2022         IRType->isIntegerTy(32) ||
2023         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2024       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2025           cast<llvm::IntegerType>(IRType)->getBitWidth();
2026 
2027       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2028                                 SourceOffset*8+64, getContext()))
2029         return IRType;
2030     }
2031   }
2032 
2033   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2034     // If this is a struct, recurse into the field at the specified offset.
2035     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2036     if (IROffset < SL->getSizeInBytes()) {
2037       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2038       IROffset -= SL->getElementOffset(FieldIdx);
2039 
2040       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2041                                     SourceTy, SourceOffset);
2042     }
2043   }
2044 
2045   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2046     llvm::Type *EltTy = ATy->getElementType();
2047     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2048     unsigned EltOffset = IROffset/EltSize*EltSize;
2049     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2050                                   SourceOffset);
2051   }
2052 
2053   // Okay, we don't have any better idea of what to pass, so we pass this in an
2054   // integer register that isn't too big to fit the rest of the struct.
2055   unsigned TySizeInBytes =
2056     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2057 
2058   assert(TySizeInBytes != SourceOffset && "Empty field?");
2059 
2060   // It is always safe to classify this as an integer type up to i64 that
2061   // isn't larger than the structure.
2062   return llvm::IntegerType::get(getVMContext(),
2063                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2064 }
2065 
2066 
2067 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2068 /// be used as elements of a two register pair to pass or return, return a
2069 /// first class aggregate to represent them.  For example, if the low part of
2070 /// a by-value argument should be passed as i32* and the high part as float,
2071 /// return {i32*, float}.
2072 static llvm::Type *
2073 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2074                            const llvm::DataLayout &TD) {
2075   // In order to correctly satisfy the ABI, we need to the high part to start
2076   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2077   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2078   // the second element at offset 8.  Check for this:
2079   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2080   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2081   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2082   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2083 
2084   // To handle this, we have to increase the size of the low part so that the
2085   // second element will start at an 8 byte offset.  We can't increase the size
2086   // of the second element because it might make us access off the end of the
2087   // struct.
2088   if (HiStart != 8) {
2089     // There are only two sorts of types the ABI generation code can produce for
2090     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2091     // Promote these to a larger type.
2092     if (Lo->isFloatTy())
2093       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2094     else {
2095       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2096       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2097     }
2098   }
2099 
2100   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2101 
2102 
2103   // Verify that the second element is at an 8-byte offset.
2104   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2105          "Invalid x86-64 argument pair!");
2106   return Result;
2107 }
2108 
2109 ABIArgInfo X86_64ABIInfo::
2110 classifyReturnType(QualType RetTy) const {
2111   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2112   // classification algorithm.
2113   X86_64ABIInfo::Class Lo, Hi;
2114   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2115 
2116   // Check some invariants.
2117   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2118   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2119 
2120   llvm::Type *ResType = 0;
2121   switch (Lo) {
2122   case NoClass:
2123     if (Hi == NoClass)
2124       return ABIArgInfo::getIgnore();
2125     // If the low part is just padding, it takes no register, leave ResType
2126     // null.
2127     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2128            "Unknown missing lo part");
2129     break;
2130 
2131   case SSEUp:
2132   case X87Up:
2133     llvm_unreachable("Invalid classification for lo word.");
2134 
2135     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2136     // hidden argument.
2137   case Memory:
2138     return getIndirectReturnResult(RetTy);
2139 
2140     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2141     // available register of the sequence %rax, %rdx is used.
2142   case Integer:
2143     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2144 
2145     // If we have a sign or zero extended integer, make sure to return Extend
2146     // so that the parameter gets the right LLVM IR attributes.
2147     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2148       // Treat an enum type as its underlying type.
2149       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2150         RetTy = EnumTy->getDecl()->getIntegerType();
2151 
2152       if (RetTy->isIntegralOrEnumerationType() &&
2153           RetTy->isPromotableIntegerType())
2154         return ABIArgInfo::getExtend();
2155     }
2156     break;
2157 
2158     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2159     // available SSE register of the sequence %xmm0, %xmm1 is used.
2160   case SSE:
2161     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2162     break;
2163 
2164     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2165     // returned on the X87 stack in %st0 as 80-bit x87 number.
2166   case X87:
2167     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2168     break;
2169 
2170     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2171     // part of the value is returned in %st0 and the imaginary part in
2172     // %st1.
2173   case ComplexX87:
2174     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2175     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2176                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2177                                     NULL);
2178     break;
2179   }
2180 
2181   llvm::Type *HighPart = 0;
2182   switch (Hi) {
2183     // Memory was handled previously and X87 should
2184     // never occur as a hi class.
2185   case Memory:
2186   case X87:
2187     llvm_unreachable("Invalid classification for hi word.");
2188 
2189   case ComplexX87: // Previously handled.
2190   case NoClass:
2191     break;
2192 
2193   case Integer:
2194     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2195     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2196       return ABIArgInfo::getDirect(HighPart, 8);
2197     break;
2198   case SSE:
2199     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2200     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2201       return ABIArgInfo::getDirect(HighPart, 8);
2202     break;
2203 
2204     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2205     // is passed in the next available eightbyte chunk if the last used
2206     // vector register.
2207     //
2208     // SSEUP should always be preceded by SSE, just widen.
2209   case SSEUp:
2210     assert(Lo == SSE && "Unexpected SSEUp classification.");
2211     ResType = GetByteVectorType(RetTy);
2212     break;
2213 
2214     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2215     // returned together with the previous X87 value in %st0.
2216   case X87Up:
2217     // If X87Up is preceded by X87, we don't need to do
2218     // anything. However, in some cases with unions it may not be
2219     // preceded by X87. In such situations we follow gcc and pass the
2220     // extra bits in an SSE reg.
2221     if (Lo != X87) {
2222       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2223       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2224         return ABIArgInfo::getDirect(HighPart, 8);
2225     }
2226     break;
2227   }
2228 
2229   // If a high part was specified, merge it together with the low part.  It is
2230   // known to pass in the high eightbyte of the result.  We do this by forming a
2231   // first class struct aggregate with the high and low part: {low, high}
2232   if (HighPart)
2233     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2234 
2235   return ABIArgInfo::getDirect(ResType);
2236 }
2237 
2238 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2239   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2240   bool isNamedArg)
2241   const
2242 {
2243   X86_64ABIInfo::Class Lo, Hi;
2244   classify(Ty, 0, Lo, Hi, isNamedArg);
2245 
2246   // Check some invariants.
2247   // FIXME: Enforce these by construction.
2248   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2249   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2250 
2251   neededInt = 0;
2252   neededSSE = 0;
2253   llvm::Type *ResType = 0;
2254   switch (Lo) {
2255   case NoClass:
2256     if (Hi == NoClass)
2257       return ABIArgInfo::getIgnore();
2258     // If the low part is just padding, it takes no register, leave ResType
2259     // null.
2260     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2261            "Unknown missing lo part");
2262     break;
2263 
2264     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2265     // on the stack.
2266   case Memory:
2267 
2268     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2269     // COMPLEX_X87, it is passed in memory.
2270   case X87:
2271   case ComplexX87:
2272     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2273       ++neededInt;
2274     return getIndirectResult(Ty, freeIntRegs);
2275 
2276   case SSEUp:
2277   case X87Up:
2278     llvm_unreachable("Invalid classification for lo word.");
2279 
2280     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2281     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2282     // and %r9 is used.
2283   case Integer:
2284     ++neededInt;
2285 
2286     // Pick an 8-byte type based on the preferred type.
2287     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2288 
2289     // If we have a sign or zero extended integer, make sure to return Extend
2290     // so that the parameter gets the right LLVM IR attributes.
2291     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2292       // Treat an enum type as its underlying type.
2293       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2294         Ty = EnumTy->getDecl()->getIntegerType();
2295 
2296       if (Ty->isIntegralOrEnumerationType() &&
2297           Ty->isPromotableIntegerType())
2298         return ABIArgInfo::getExtend();
2299     }
2300 
2301     break;
2302 
2303     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2304     // available SSE register is used, the registers are taken in the
2305     // order from %xmm0 to %xmm7.
2306   case SSE: {
2307     llvm::Type *IRType = CGT.ConvertType(Ty);
2308     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2309     ++neededSSE;
2310     break;
2311   }
2312   }
2313 
2314   llvm::Type *HighPart = 0;
2315   switch (Hi) {
2316     // Memory was handled previously, ComplexX87 and X87 should
2317     // never occur as hi classes, and X87Up must be preceded by X87,
2318     // which is passed in memory.
2319   case Memory:
2320   case X87:
2321   case ComplexX87:
2322     llvm_unreachable("Invalid classification for hi word.");
2323 
2324   case NoClass: break;
2325 
2326   case Integer:
2327     ++neededInt;
2328     // Pick an 8-byte type based on the preferred type.
2329     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2330 
2331     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2332       return ABIArgInfo::getDirect(HighPart, 8);
2333     break;
2334 
2335     // X87Up generally doesn't occur here (long double is passed in
2336     // memory), except in situations involving unions.
2337   case X87Up:
2338   case SSE:
2339     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2340 
2341     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2342       return ABIArgInfo::getDirect(HighPart, 8);
2343 
2344     ++neededSSE;
2345     break;
2346 
2347     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2348     // eightbyte is passed in the upper half of the last used SSE
2349     // register.  This only happens when 128-bit vectors are passed.
2350   case SSEUp:
2351     assert(Lo == SSE && "Unexpected SSEUp classification");
2352     ResType = GetByteVectorType(Ty);
2353     break;
2354   }
2355 
2356   // If a high part was specified, merge it together with the low part.  It is
2357   // known to pass in the high eightbyte of the result.  We do this by forming a
2358   // first class struct aggregate with the high and low part: {low, high}
2359   if (HighPart)
2360     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2361 
2362   return ABIArgInfo::getDirect(ResType);
2363 }
2364 
2365 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2366 
2367   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2368 
2369   // Keep track of the number of assigned registers.
2370   unsigned freeIntRegs = 6, freeSSERegs = 8;
2371 
2372   // If the return value is indirect, then the hidden argument is consuming one
2373   // integer register.
2374   if (FI.getReturnInfo().isIndirect())
2375     --freeIntRegs;
2376 
2377   bool isVariadic = FI.isVariadic();
2378   unsigned numRequiredArgs = 0;
2379   if (isVariadic)
2380     numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2381 
2382   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2383   // get assigned (in left-to-right order) for passing as follows...
2384   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2385        it != ie; ++it) {
2386     bool isNamedArg = true;
2387     if (isVariadic)
2388       isNamedArg = (it - FI.arg_begin()) <
2389                     static_cast<signed>(numRequiredArgs);
2390 
2391     unsigned neededInt, neededSSE;
2392     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2393                                     neededSSE, isNamedArg);
2394 
2395     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2396     // eightbyte of an argument, the whole argument is passed on the
2397     // stack. If registers have already been assigned for some
2398     // eightbytes of such an argument, the assignments get reverted.
2399     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2400       freeIntRegs -= neededInt;
2401       freeSSERegs -= neededSSE;
2402     } else {
2403       it->info = getIndirectResult(it->type, freeIntRegs);
2404     }
2405   }
2406 }
2407 
2408 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2409                                         QualType Ty,
2410                                         CodeGenFunction &CGF) {
2411   llvm::Value *overflow_arg_area_p =
2412     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2413   llvm::Value *overflow_arg_area =
2414     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2415 
2416   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2417   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2418   // It isn't stated explicitly in the standard, but in practice we use
2419   // alignment greater than 16 where necessary.
2420   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2421   if (Align > 8) {
2422     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2423     llvm::Value *Offset =
2424       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2425     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2426     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2427                                                     CGF.Int64Ty);
2428     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2429     overflow_arg_area =
2430       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2431                                  overflow_arg_area->getType(),
2432                                  "overflow_arg_area.align");
2433   }
2434 
2435   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2436   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2437   llvm::Value *Res =
2438     CGF.Builder.CreateBitCast(overflow_arg_area,
2439                               llvm::PointerType::getUnqual(LTy));
2440 
2441   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2442   // l->overflow_arg_area + sizeof(type).
2443   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2444   // an 8 byte boundary.
2445 
2446   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2447   llvm::Value *Offset =
2448       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2449   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2450                                             "overflow_arg_area.next");
2451   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2452 
2453   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2454   return Res;
2455 }
2456 
2457 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2458                                       CodeGenFunction &CGF) const {
2459   // Assume that va_list type is correct; should be pointer to LLVM type:
2460   // struct {
2461   //   i32 gp_offset;
2462   //   i32 fp_offset;
2463   //   i8* overflow_arg_area;
2464   //   i8* reg_save_area;
2465   // };
2466   unsigned neededInt, neededSSE;
2467 
2468   Ty = CGF.getContext().getCanonicalType(Ty);
2469   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2470                                        /*isNamedArg*/false);
2471 
2472   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2473   // in the registers. If not go to step 7.
2474   if (!neededInt && !neededSSE)
2475     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2476 
2477   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2478   // general purpose registers needed to pass type and num_fp to hold
2479   // the number of floating point registers needed.
2480 
2481   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2482   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2483   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2484   //
2485   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2486   // register save space).
2487 
2488   llvm::Value *InRegs = 0;
2489   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2490   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2491   if (neededInt) {
2492     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2493     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2494     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2495     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2496   }
2497 
2498   if (neededSSE) {
2499     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2500     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2501     llvm::Value *FitsInFP =
2502       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2503     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2504     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2505   }
2506 
2507   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2508   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2509   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2510   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2511 
2512   // Emit code to load the value if it was passed in registers.
2513 
2514   CGF.EmitBlock(InRegBlock);
2515 
2516   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2517   // an offset of l->gp_offset and/or l->fp_offset. This may require
2518   // copying to a temporary location in case the parameter is passed
2519   // in different register classes or requires an alignment greater
2520   // than 8 for general purpose registers and 16 for XMM registers.
2521   //
2522   // FIXME: This really results in shameful code when we end up needing to
2523   // collect arguments from different places; often what should result in a
2524   // simple assembling of a structure from scattered addresses has many more
2525   // loads than necessary. Can we clean this up?
2526   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2527   llvm::Value *RegAddr =
2528     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2529                            "reg_save_area");
2530   if (neededInt && neededSSE) {
2531     // FIXME: Cleanup.
2532     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2533     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2534     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2535     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2536     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2537     llvm::Type *TyLo = ST->getElementType(0);
2538     llvm::Type *TyHi = ST->getElementType(1);
2539     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2540            "Unexpected ABI info for mixed regs");
2541     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2542     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2543     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2544     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2545     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2546     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2547     llvm::Value *V =
2548       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2549     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2550     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2551     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2552 
2553     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2554                                         llvm::PointerType::getUnqual(LTy));
2555   } else if (neededInt) {
2556     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2557     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2558                                         llvm::PointerType::getUnqual(LTy));
2559 
2560     // Copy to a temporary if necessary to ensure the appropriate alignment.
2561     std::pair<CharUnits, CharUnits> SizeAlign =
2562         CGF.getContext().getTypeInfoInChars(Ty);
2563     uint64_t TySize = SizeAlign.first.getQuantity();
2564     unsigned TyAlign = SizeAlign.second.getQuantity();
2565     if (TyAlign > 8) {
2566       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2567       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2568       RegAddr = Tmp;
2569     }
2570   } else if (neededSSE == 1) {
2571     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2572     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2573                                         llvm::PointerType::getUnqual(LTy));
2574   } else {
2575     assert(neededSSE == 2 && "Invalid number of needed registers!");
2576     // SSE registers are spaced 16 bytes apart in the register save
2577     // area, we need to collect the two eightbytes together.
2578     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2579     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2580     llvm::Type *DoubleTy = CGF.DoubleTy;
2581     llvm::Type *DblPtrTy =
2582       llvm::PointerType::getUnqual(DoubleTy);
2583     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2584     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2585     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2586     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2587                                                          DblPtrTy));
2588     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2589     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2590                                                          DblPtrTy));
2591     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2592     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2593                                         llvm::PointerType::getUnqual(LTy));
2594   }
2595 
2596   // AMD64-ABI 3.5.7p5: Step 5. Set:
2597   // l->gp_offset = l->gp_offset + num_gp * 8
2598   // l->fp_offset = l->fp_offset + num_fp * 16.
2599   if (neededInt) {
2600     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2601     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2602                             gp_offset_p);
2603   }
2604   if (neededSSE) {
2605     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2606     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2607                             fp_offset_p);
2608   }
2609   CGF.EmitBranch(ContBlock);
2610 
2611   // Emit code to load the value if it was passed in memory.
2612 
2613   CGF.EmitBlock(InMemBlock);
2614   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2615 
2616   // Return the appropriate result.
2617 
2618   CGF.EmitBlock(ContBlock);
2619   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2620                                                  "vaarg.addr");
2621   ResAddr->addIncoming(RegAddr, InRegBlock);
2622   ResAddr->addIncoming(MemAddr, InMemBlock);
2623   return ResAddr;
2624 }
2625 
2626 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2627 
2628   if (Ty->isVoidType())
2629     return ABIArgInfo::getIgnore();
2630 
2631   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2632     Ty = EnumTy->getDecl()->getIntegerType();
2633 
2634   uint64_t Size = getContext().getTypeSize(Ty);
2635 
2636   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2637     if (IsReturnType) {
2638       if (isRecordReturnIndirect(RT, getCXXABI()))
2639         return ABIArgInfo::getIndirect(0, false);
2640     } else {
2641       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2642         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2643     }
2644 
2645     if (RT->getDecl()->hasFlexibleArrayMember())
2646       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2647 
2648     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2649     if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2650       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2651                                                           Size));
2652 
2653     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2654     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2655     if (Size <= 64 &&
2656         (Size & (Size - 1)) == 0)
2657       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2658                                                           Size));
2659 
2660     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2661   }
2662 
2663   if (Ty->isPromotableIntegerType())
2664     return ABIArgInfo::getExtend();
2665 
2666   return ABIArgInfo::getDirect();
2667 }
2668 
2669 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2670 
2671   QualType RetTy = FI.getReturnType();
2672   FI.getReturnInfo() = classify(RetTy, true);
2673 
2674   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2675        it != ie; ++it)
2676     it->info = classify(it->type, false);
2677 }
2678 
2679 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2680                                       CodeGenFunction &CGF) const {
2681   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2682 
2683   CGBuilderTy &Builder = CGF.Builder;
2684   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2685                                                        "ap");
2686   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2687   llvm::Type *PTy =
2688     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2689   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2690 
2691   uint64_t Offset =
2692     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2693   llvm::Value *NextAddr =
2694     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2695                       "ap.next");
2696   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2697 
2698   return AddrTyped;
2699 }
2700 
2701 namespace {
2702 
2703 class NaClX86_64ABIInfo : public ABIInfo {
2704  public:
2705   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2706       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2707   virtual void computeInfo(CGFunctionInfo &FI) const;
2708   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2709                                  CodeGenFunction &CGF) const;
2710  private:
2711   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2712   X86_64ABIInfo NInfo; // Used for everything else.
2713 };
2714 
2715 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2716  public:
2717   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2718       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2719 };
2720 
2721 }
2722 
2723 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2724   if (FI.getASTCallingConvention() == CC_PnaclCall)
2725     PInfo.computeInfo(FI);
2726   else
2727     NInfo.computeInfo(FI);
2728 }
2729 
2730 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2731                                           CodeGenFunction &CGF) const {
2732   // Always use the native convention; calling pnacl-style varargs functions
2733   // is unuspported.
2734   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2735 }
2736 
2737 
2738 // PowerPC-32
2739 
2740 namespace {
2741 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2742 public:
2743   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2744 
2745   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2746     // This is recovered from gcc output.
2747     return 1; // r1 is the dedicated stack pointer
2748   }
2749 
2750   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2751                                llvm::Value *Address) const;
2752 };
2753 
2754 }
2755 
2756 bool
2757 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2758                                                 llvm::Value *Address) const {
2759   // This is calculated from the LLVM and GCC tables and verified
2760   // against gcc output.  AFAIK all ABIs use the same encoding.
2761 
2762   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2763 
2764   llvm::IntegerType *i8 = CGF.Int8Ty;
2765   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2766   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2767   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2768 
2769   // 0-31: r0-31, the 4-byte general-purpose registers
2770   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2771 
2772   // 32-63: fp0-31, the 8-byte floating-point registers
2773   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2774 
2775   // 64-76 are various 4-byte special-purpose registers:
2776   // 64: mq
2777   // 65: lr
2778   // 66: ctr
2779   // 67: ap
2780   // 68-75 cr0-7
2781   // 76: xer
2782   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2783 
2784   // 77-108: v0-31, the 16-byte vector registers
2785   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2786 
2787   // 109: vrsave
2788   // 110: vscr
2789   // 111: spe_acc
2790   // 112: spefscr
2791   // 113: sfp
2792   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2793 
2794   return false;
2795 }
2796 
2797 // PowerPC-64
2798 
2799 namespace {
2800 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2801 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2802 
2803 public:
2804   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2805 
2806   bool isPromotableTypeForABI(QualType Ty) const;
2807 
2808   ABIArgInfo classifyReturnType(QualType RetTy) const;
2809   ABIArgInfo classifyArgumentType(QualType Ty) const;
2810 
2811   // TODO: We can add more logic to computeInfo to improve performance.
2812   // Example: For aggregate arguments that fit in a register, we could
2813   // use getDirectInReg (as is done below for structs containing a single
2814   // floating-point value) to avoid pushing them to memory on function
2815   // entry.  This would require changing the logic in PPCISelLowering
2816   // when lowering the parameters in the caller and args in the callee.
2817   virtual void computeInfo(CGFunctionInfo &FI) const {
2818     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2819     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2820          it != ie; ++it) {
2821       // We rely on the default argument classification for the most part.
2822       // One exception:  An aggregate containing a single floating-point
2823       // or vector item must be passed in a register if one is available.
2824       const Type *T = isSingleElementStruct(it->type, getContext());
2825       if (T) {
2826         const BuiltinType *BT = T->getAs<BuiltinType>();
2827         if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2828           QualType QT(T, 0);
2829           it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2830           continue;
2831         }
2832       }
2833       it->info = classifyArgumentType(it->type);
2834     }
2835   }
2836 
2837   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2838                                  QualType Ty,
2839                                  CodeGenFunction &CGF) const;
2840 };
2841 
2842 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2843 public:
2844   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2845     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2846 
2847   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2848     // This is recovered from gcc output.
2849     return 1; // r1 is the dedicated stack pointer
2850   }
2851 
2852   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2853                                llvm::Value *Address) const;
2854 };
2855 
2856 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2857 public:
2858   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2859 
2860   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2861     // This is recovered from gcc output.
2862     return 1; // r1 is the dedicated stack pointer
2863   }
2864 
2865   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2866                                llvm::Value *Address) const;
2867 };
2868 
2869 }
2870 
2871 // Return true if the ABI requires Ty to be passed sign- or zero-
2872 // extended to 64 bits.
2873 bool
2874 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2875   // Treat an enum type as its underlying type.
2876   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2877     Ty = EnumTy->getDecl()->getIntegerType();
2878 
2879   // Promotable integer types are required to be promoted by the ABI.
2880   if (Ty->isPromotableIntegerType())
2881     return true;
2882 
2883   // In addition to the usual promotable integer types, we also need to
2884   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2885   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2886     switch (BT->getKind()) {
2887     case BuiltinType::Int:
2888     case BuiltinType::UInt:
2889       return true;
2890     default:
2891       break;
2892     }
2893 
2894   return false;
2895 }
2896 
2897 ABIArgInfo
2898 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2899   if (Ty->isAnyComplexType())
2900     return ABIArgInfo::getDirect();
2901 
2902   if (isAggregateTypeForABI(Ty)) {
2903     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2904       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2905 
2906     return ABIArgInfo::getIndirect(0);
2907   }
2908 
2909   return (isPromotableTypeForABI(Ty) ?
2910           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2911 }
2912 
2913 ABIArgInfo
2914 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2915   if (RetTy->isVoidType())
2916     return ABIArgInfo::getIgnore();
2917 
2918   if (RetTy->isAnyComplexType())
2919     return ABIArgInfo::getDirect();
2920 
2921   if (isAggregateTypeForABI(RetTy))
2922     return ABIArgInfo::getIndirect(0);
2923 
2924   return (isPromotableTypeForABI(RetTy) ?
2925           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2926 }
2927 
2928 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2929 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2930                                            QualType Ty,
2931                                            CodeGenFunction &CGF) const {
2932   llvm::Type *BP = CGF.Int8PtrTy;
2933   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2934 
2935   CGBuilderTy &Builder = CGF.Builder;
2936   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2937   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2938 
2939   // Update the va_list pointer.  The pointer should be bumped by the
2940   // size of the object.  We can trust getTypeSize() except for a complex
2941   // type whose base type is smaller than a doubleword.  For these, the
2942   // size of the object is 16 bytes; see below for further explanation.
2943   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2944   QualType BaseTy;
2945   unsigned CplxBaseSize = 0;
2946 
2947   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2948     BaseTy = CTy->getElementType();
2949     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2950     if (CplxBaseSize < 8)
2951       SizeInBytes = 16;
2952   }
2953 
2954   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2955   llvm::Value *NextAddr =
2956     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2957                       "ap.next");
2958   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2959 
2960   // If we have a complex type and the base type is smaller than 8 bytes,
2961   // the ABI calls for the real and imaginary parts to be right-adjusted
2962   // in separate doublewords.  However, Clang expects us to produce a
2963   // pointer to a structure with the two parts packed tightly.  So generate
2964   // loads of the real and imaginary parts relative to the va_list pointer,
2965   // and store them to a temporary structure.
2966   if (CplxBaseSize && CplxBaseSize < 8) {
2967     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2968     llvm::Value *ImagAddr = RealAddr;
2969     RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2970     ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2971     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2972     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2973     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2974     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2975     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2976     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2977                                             "vacplx");
2978     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2979     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2980     Builder.CreateStore(Real, RealPtr, false);
2981     Builder.CreateStore(Imag, ImagPtr, false);
2982     return Ptr;
2983   }
2984 
2985   // If the argument is smaller than 8 bytes, it is right-adjusted in
2986   // its doubleword slot.  Adjust the pointer to pick it up from the
2987   // correct offset.
2988   if (SizeInBytes < 8) {
2989     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2990     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2991     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2992   }
2993 
2994   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2995   return Builder.CreateBitCast(Addr, PTy);
2996 }
2997 
2998 static bool
2999 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3000                               llvm::Value *Address) {
3001   // This is calculated from the LLVM and GCC tables and verified
3002   // against gcc output.  AFAIK all ABIs use the same encoding.
3003 
3004   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3005 
3006   llvm::IntegerType *i8 = CGF.Int8Ty;
3007   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3008   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3009   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3010 
3011   // 0-31: r0-31, the 8-byte general-purpose registers
3012   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3013 
3014   // 32-63: fp0-31, the 8-byte floating-point registers
3015   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3016 
3017   // 64-76 are various 4-byte special-purpose registers:
3018   // 64: mq
3019   // 65: lr
3020   // 66: ctr
3021   // 67: ap
3022   // 68-75 cr0-7
3023   // 76: xer
3024   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3025 
3026   // 77-108: v0-31, the 16-byte vector registers
3027   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3028 
3029   // 109: vrsave
3030   // 110: vscr
3031   // 111: spe_acc
3032   // 112: spefscr
3033   // 113: sfp
3034   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3035 
3036   return false;
3037 }
3038 
3039 bool
3040 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3041   CodeGen::CodeGenFunction &CGF,
3042   llvm::Value *Address) const {
3043 
3044   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3045 }
3046 
3047 bool
3048 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3049                                                 llvm::Value *Address) const {
3050 
3051   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3052 }
3053 
3054 //===----------------------------------------------------------------------===//
3055 // ARM ABI Implementation
3056 //===----------------------------------------------------------------------===//
3057 
3058 namespace {
3059 
3060 class ARMABIInfo : public ABIInfo {
3061 public:
3062   enum ABIKind {
3063     APCS = 0,
3064     AAPCS = 1,
3065     AAPCS_VFP
3066   };
3067 
3068 private:
3069   ABIKind Kind;
3070 
3071 public:
3072   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3073     setRuntimeCC();
3074   }
3075 
3076   bool isEABI() const {
3077     switch (getTarget().getTriple().getEnvironment()) {
3078     case llvm::Triple::Android:
3079     case llvm::Triple::EABI:
3080     case llvm::Triple::EABIHF:
3081     case llvm::Triple::GNUEABI:
3082     case llvm::Triple::GNUEABIHF:
3083       return true;
3084     default:
3085       return false;
3086     }
3087   }
3088 
3089   bool isEABIHF() const {
3090     switch (getTarget().getTriple().getEnvironment()) {
3091     case llvm::Triple::EABIHF:
3092     case llvm::Triple::GNUEABIHF:
3093       return true;
3094     default:
3095       return false;
3096     }
3097   }
3098 
3099   ABIKind getABIKind() const { return Kind; }
3100 
3101 private:
3102   ABIArgInfo classifyReturnType(QualType RetTy) const;
3103   ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3104                                   unsigned &AllocatedVFP,
3105                                   bool &IsHA) const;
3106   bool isIllegalVectorType(QualType Ty) const;
3107 
3108   virtual void computeInfo(CGFunctionInfo &FI) const;
3109 
3110   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3111                                  CodeGenFunction &CGF) const;
3112 
3113   llvm::CallingConv::ID getLLVMDefaultCC() const;
3114   llvm::CallingConv::ID getABIDefaultCC() const;
3115   void setRuntimeCC();
3116 };
3117 
3118 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3119 public:
3120   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3121     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3122 
3123   const ARMABIInfo &getABIInfo() const {
3124     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3125   }
3126 
3127   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3128     return 13;
3129   }
3130 
3131   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3132     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3133   }
3134 
3135   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3136                                llvm::Value *Address) const {
3137     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3138 
3139     // 0-15 are the 16 integer registers.
3140     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3141     return false;
3142   }
3143 
3144   unsigned getSizeOfUnwindException() const {
3145     if (getABIInfo().isEABI()) return 88;
3146     return TargetCodeGenInfo::getSizeOfUnwindException();
3147   }
3148 
3149   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3150                            CodeGen::CodeGenModule &CGM) const {
3151     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3152     if (!FD)
3153       return;
3154 
3155     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3156     if (!Attr)
3157       return;
3158 
3159     const char *Kind;
3160     switch (Attr->getInterrupt()) {
3161     case ARMInterruptAttr::Generic: Kind = ""; break;
3162     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3163     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3164     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3165     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3166     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3167     }
3168 
3169     llvm::Function *Fn = cast<llvm::Function>(GV);
3170 
3171     Fn->addFnAttr("interrupt", Kind);
3172 
3173     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3174       return;
3175 
3176     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3177     // however this is not necessarily true on taking any interrupt. Instruct
3178     // the backend to perform a realignment as part of the function prologue.
3179     llvm::AttrBuilder B;
3180     B.addStackAlignmentAttr(8);
3181     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3182                       llvm::AttributeSet::get(CGM.getLLVMContext(),
3183                                               llvm::AttributeSet::FunctionIndex,
3184                                               B));
3185   }
3186 
3187 };
3188 
3189 }
3190 
3191 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3192   // To correctly handle Homogeneous Aggregate, we need to keep track of the
3193   // VFP registers allocated so far.
3194   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3195   // VFP registers of the appropriate type unallocated then the argument is
3196   // allocated to the lowest-numbered sequence of such registers.
3197   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3198   // unallocated are marked as unavailable.
3199   unsigned AllocatedVFP = 0;
3200   int VFPRegs[16] = { 0 };
3201   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3202   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3203        it != ie; ++it) {
3204     unsigned PreAllocation = AllocatedVFP;
3205     bool IsHA = false;
3206     // 6.1.2.3 There is one VFP co-processor register class using registers
3207     // s0-s15 (d0-d7) for passing arguments.
3208     const unsigned NumVFPs = 16;
3209     it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3210     // If we do not have enough VFP registers for the HA, any VFP registers
3211     // that are unallocated are marked as unavailable. To achieve this, we add
3212     // padding of (NumVFPs - PreAllocation) floats.
3213     if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3214       llvm::Type *PaddingTy = llvm::ArrayType::get(
3215           llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3216       it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3217     }
3218   }
3219 
3220   // Always honor user-specified calling convention.
3221   if (FI.getCallingConvention() != llvm::CallingConv::C)
3222     return;
3223 
3224   llvm::CallingConv::ID cc = getRuntimeCC();
3225   if (cc != llvm::CallingConv::C)
3226     FI.setEffectiveCallingConvention(cc);
3227 }
3228 
3229 /// Return the default calling convention that LLVM will use.
3230 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3231   // The default calling convention that LLVM will infer.
3232   if (isEABIHF())
3233     return llvm::CallingConv::ARM_AAPCS_VFP;
3234   else if (isEABI())
3235     return llvm::CallingConv::ARM_AAPCS;
3236   else
3237     return llvm::CallingConv::ARM_APCS;
3238 }
3239 
3240 /// Return the calling convention that our ABI would like us to use
3241 /// as the C calling convention.
3242 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3243   switch (getABIKind()) {
3244   case APCS: return llvm::CallingConv::ARM_APCS;
3245   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3246   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3247   }
3248   llvm_unreachable("bad ABI kind");
3249 }
3250 
3251 void ARMABIInfo::setRuntimeCC() {
3252   assert(getRuntimeCC() == llvm::CallingConv::C);
3253 
3254   // Don't muddy up the IR with a ton of explicit annotations if
3255   // they'd just match what LLVM will infer from the triple.
3256   llvm::CallingConv::ID abiCC = getABIDefaultCC();
3257   if (abiCC != getLLVMDefaultCC())
3258     RuntimeCC = abiCC;
3259 }
3260 
3261 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3262 /// aggregate.  If HAMembers is non-null, the number of base elements
3263 /// contained in the type is returned through it; this is used for the
3264 /// recursive calls that check aggregate component types.
3265 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3266                                    ASTContext &Context,
3267                                    uint64_t *HAMembers = 0) {
3268   uint64_t Members = 0;
3269   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3270     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3271       return false;
3272     Members *= AT->getSize().getZExtValue();
3273   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3274     const RecordDecl *RD = RT->getDecl();
3275     if (RD->hasFlexibleArrayMember())
3276       return false;
3277 
3278     Members = 0;
3279     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3280          i != e; ++i) {
3281       const FieldDecl *FD = *i;
3282       uint64_t FldMembers;
3283       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3284         return false;
3285 
3286       Members = (RD->isUnion() ?
3287                  std::max(Members, FldMembers) : Members + FldMembers);
3288     }
3289   } else {
3290     Members = 1;
3291     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3292       Members = 2;
3293       Ty = CT->getElementType();
3294     }
3295 
3296     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3297     // double, or 64-bit or 128-bit vectors.
3298     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3299       if (BT->getKind() != BuiltinType::Float &&
3300           BT->getKind() != BuiltinType::Double &&
3301           BT->getKind() != BuiltinType::LongDouble)
3302         return false;
3303     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3304       unsigned VecSize = Context.getTypeSize(VT);
3305       if (VecSize != 64 && VecSize != 128)
3306         return false;
3307     } else {
3308       return false;
3309     }
3310 
3311     // The base type must be the same for all members.  Vector types of the
3312     // same total size are treated as being equivalent here.
3313     const Type *TyPtr = Ty.getTypePtr();
3314     if (!Base)
3315       Base = TyPtr;
3316     if (Base != TyPtr &&
3317         (!Base->isVectorType() || !TyPtr->isVectorType() ||
3318          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3319       return false;
3320   }
3321 
3322   // Homogeneous Aggregates can have at most 4 members of the base type.
3323   if (HAMembers)
3324     *HAMembers = Members;
3325 
3326   return (Members > 0 && Members <= 4);
3327 }
3328 
3329 /// markAllocatedVFPs - update VFPRegs according to the alignment and
3330 /// number of VFP registers (unit is S register) requested.
3331 static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3332                               unsigned Alignment,
3333                               unsigned NumRequired) {
3334   // Early Exit.
3335   if (AllocatedVFP >= 16)
3336     return;
3337   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3338   // VFP registers of the appropriate type unallocated then the argument is
3339   // allocated to the lowest-numbered sequence of such registers.
3340   for (unsigned I = 0; I < 16; I += Alignment) {
3341     bool FoundSlot = true;
3342     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3343       if (J >= 16 || VFPRegs[J]) {
3344          FoundSlot = false;
3345          break;
3346       }
3347     if (FoundSlot) {
3348       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3349         VFPRegs[J] = 1;
3350       AllocatedVFP += NumRequired;
3351       return;
3352     }
3353   }
3354   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3355   // unallocated are marked as unavailable.
3356   for (unsigned I = 0; I < 16; I++)
3357     VFPRegs[I] = 1;
3358   AllocatedVFP = 17; // We do not have enough VFP registers.
3359 }
3360 
3361 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3362                                             unsigned &AllocatedVFP,
3363                                             bool &IsHA) const {
3364   // We update number of allocated VFPs according to
3365   // 6.1.2.1 The following argument types are VFP CPRCs:
3366   //   A single-precision floating-point type (including promoted
3367   //   half-precision types); A double-precision floating-point type;
3368   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3369   //   with a Base Type of a single- or double-precision floating-point type,
3370   //   64-bit containerized vectors or 128-bit containerized vectors with one
3371   //   to four Elements.
3372 
3373   // Handle illegal vector types here.
3374   if (isIllegalVectorType(Ty)) {
3375     uint64_t Size = getContext().getTypeSize(Ty);
3376     if (Size <= 32) {
3377       llvm::Type *ResType =
3378           llvm::Type::getInt32Ty(getVMContext());
3379       return ABIArgInfo::getDirect(ResType);
3380     }
3381     if (Size == 64) {
3382       llvm::Type *ResType = llvm::VectorType::get(
3383           llvm::Type::getInt32Ty(getVMContext()), 2);
3384       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3385       return ABIArgInfo::getDirect(ResType);
3386     }
3387     if (Size == 128) {
3388       llvm::Type *ResType = llvm::VectorType::get(
3389           llvm::Type::getInt32Ty(getVMContext()), 4);
3390       markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3391       return ABIArgInfo::getDirect(ResType);
3392     }
3393     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3394   }
3395   // Update VFPRegs for legal vector types.
3396   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3397     uint64_t Size = getContext().getTypeSize(VT);
3398     // Size of a legal vector should be power of 2 and above 64.
3399     markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3400   }
3401   // Update VFPRegs for floating point types.
3402   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3403     if (BT->getKind() == BuiltinType::Half ||
3404         BT->getKind() == BuiltinType::Float)
3405       markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3406     if (BT->getKind() == BuiltinType::Double ||
3407         BT->getKind() == BuiltinType::LongDouble)
3408       markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3409   }
3410 
3411   if (!isAggregateTypeForABI(Ty)) {
3412     // Treat an enum type as its underlying type.
3413     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3414       Ty = EnumTy->getDecl()->getIntegerType();
3415 
3416     return (Ty->isPromotableIntegerType() ?
3417             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3418   }
3419 
3420   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3421     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3422 
3423   // Ignore empty records.
3424   if (isEmptyRecord(getContext(), Ty, true))
3425     return ABIArgInfo::getIgnore();
3426 
3427   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3428     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3429     // into VFP registers.
3430     const Type *Base = 0;
3431     uint64_t Members = 0;
3432     if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3433       assert(Base && "Base class should be set for homogeneous aggregate");
3434       // Base can be a floating-point or a vector.
3435       if (Base->isVectorType()) {
3436         // ElementSize is in number of floats.
3437         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3438         markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3439                           Members * ElementSize);
3440       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3441         markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3442       else {
3443         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3444                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3445         markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3446       }
3447       IsHA = true;
3448       return ABIArgInfo::getExpand();
3449     }
3450   }
3451 
3452   // Support byval for ARM.
3453   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3454   // most 8-byte. We realign the indirect argument if type alignment is bigger
3455   // than ABI alignment.
3456   uint64_t ABIAlign = 4;
3457   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3458   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3459       getABIKind() == ARMABIInfo::AAPCS)
3460     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3461   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3462     return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3463            /*Realign=*/TyAlign > ABIAlign);
3464   }
3465 
3466   // Otherwise, pass by coercing to a structure of the appropriate size.
3467   llvm::Type* ElemTy;
3468   unsigned SizeRegs;
3469   // FIXME: Try to match the types of the arguments more accurately where
3470   // we can.
3471   if (getContext().getTypeAlign(Ty) <= 32) {
3472     ElemTy = llvm::Type::getInt32Ty(getVMContext());
3473     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3474   } else {
3475     ElemTy = llvm::Type::getInt64Ty(getVMContext());
3476     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3477   }
3478 
3479   llvm::Type *STy =
3480     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3481   return ABIArgInfo::getDirect(STy);
3482 }
3483 
3484 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3485                               llvm::LLVMContext &VMContext) {
3486   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3487   // is called integer-like if its size is less than or equal to one word, and
3488   // the offset of each of its addressable sub-fields is zero.
3489 
3490   uint64_t Size = Context.getTypeSize(Ty);
3491 
3492   // Check that the type fits in a word.
3493   if (Size > 32)
3494     return false;
3495 
3496   // FIXME: Handle vector types!
3497   if (Ty->isVectorType())
3498     return false;
3499 
3500   // Float types are never treated as "integer like".
3501   if (Ty->isRealFloatingType())
3502     return false;
3503 
3504   // If this is a builtin or pointer type then it is ok.
3505   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3506     return true;
3507 
3508   // Small complex integer types are "integer like".
3509   if (const ComplexType *CT = Ty->getAs<ComplexType>())
3510     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3511 
3512   // Single element and zero sized arrays should be allowed, by the definition
3513   // above, but they are not.
3514 
3515   // Otherwise, it must be a record type.
3516   const RecordType *RT = Ty->getAs<RecordType>();
3517   if (!RT) return false;
3518 
3519   // Ignore records with flexible arrays.
3520   const RecordDecl *RD = RT->getDecl();
3521   if (RD->hasFlexibleArrayMember())
3522     return false;
3523 
3524   // Check that all sub-fields are at offset 0, and are themselves "integer
3525   // like".
3526   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3527 
3528   bool HadField = false;
3529   unsigned idx = 0;
3530   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3531        i != e; ++i, ++idx) {
3532     const FieldDecl *FD = *i;
3533 
3534     // Bit-fields are not addressable, we only need to verify they are "integer
3535     // like". We still have to disallow a subsequent non-bitfield, for example:
3536     //   struct { int : 0; int x }
3537     // is non-integer like according to gcc.
3538     if (FD->isBitField()) {
3539       if (!RD->isUnion())
3540         HadField = true;
3541 
3542       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3543         return false;
3544 
3545       continue;
3546     }
3547 
3548     // Check if this field is at offset 0.
3549     if (Layout.getFieldOffset(idx) != 0)
3550       return false;
3551 
3552     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3553       return false;
3554 
3555     // Only allow at most one field in a structure. This doesn't match the
3556     // wording above, but follows gcc in situations with a field following an
3557     // empty structure.
3558     if (!RD->isUnion()) {
3559       if (HadField)
3560         return false;
3561 
3562       HadField = true;
3563     }
3564   }
3565 
3566   return true;
3567 }
3568 
3569 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3570   if (RetTy->isVoidType())
3571     return ABIArgInfo::getIgnore();
3572 
3573   // Large vector types should be returned via memory.
3574   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3575     return ABIArgInfo::getIndirect(0);
3576 
3577   if (!isAggregateTypeForABI(RetTy)) {
3578     // Treat an enum type as its underlying type.
3579     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3580       RetTy = EnumTy->getDecl()->getIntegerType();
3581 
3582     return (RetTy->isPromotableIntegerType() ?
3583             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3584   }
3585 
3586   // Structures with either a non-trivial destructor or a non-trivial
3587   // copy constructor are always indirect.
3588   if (isRecordReturnIndirect(RetTy, getCXXABI()))
3589     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3590 
3591   // Are we following APCS?
3592   if (getABIKind() == APCS) {
3593     if (isEmptyRecord(getContext(), RetTy, false))
3594       return ABIArgInfo::getIgnore();
3595 
3596     // Complex types are all returned as packed integers.
3597     //
3598     // FIXME: Consider using 2 x vector types if the back end handles them
3599     // correctly.
3600     if (RetTy->isAnyComplexType())
3601       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3602                                               getContext().getTypeSize(RetTy)));
3603 
3604     // Integer like structures are returned in r0.
3605     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3606       // Return in the smallest viable integer type.
3607       uint64_t Size = getContext().getTypeSize(RetTy);
3608       if (Size <= 8)
3609         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3610       if (Size <= 16)
3611         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3612       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3613     }
3614 
3615     // Otherwise return in memory.
3616     return ABIArgInfo::getIndirect(0);
3617   }
3618 
3619   // Otherwise this is an AAPCS variant.
3620 
3621   if (isEmptyRecord(getContext(), RetTy, true))
3622     return ABIArgInfo::getIgnore();
3623 
3624   // Check for homogeneous aggregates with AAPCS-VFP.
3625   if (getABIKind() == AAPCS_VFP) {
3626     const Type *Base = 0;
3627     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3628       assert(Base && "Base class should be set for homogeneous aggregate");
3629       // Homogeneous Aggregates are returned directly.
3630       return ABIArgInfo::getDirect();
3631     }
3632   }
3633 
3634   // Aggregates <= 4 bytes are returned in r0; other aggregates
3635   // are returned indirectly.
3636   uint64_t Size = getContext().getTypeSize(RetTy);
3637   if (Size <= 32) {
3638     // Return in the smallest viable integer type.
3639     if (Size <= 8)
3640       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3641     if (Size <= 16)
3642       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3643     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3644   }
3645 
3646   return ABIArgInfo::getIndirect(0);
3647 }
3648 
3649 /// isIllegalVector - check whether Ty is an illegal vector type.
3650 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3651   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3652     // Check whether VT is legal.
3653     unsigned NumElements = VT->getNumElements();
3654     uint64_t Size = getContext().getTypeSize(VT);
3655     // NumElements should be power of 2.
3656     if ((NumElements & (NumElements - 1)) != 0)
3657       return true;
3658     // Size should be greater than 32 bits.
3659     return Size <= 32;
3660   }
3661   return false;
3662 }
3663 
3664 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3665                                    CodeGenFunction &CGF) const {
3666   llvm::Type *BP = CGF.Int8PtrTy;
3667   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3668 
3669   CGBuilderTy &Builder = CGF.Builder;
3670   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3671   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3672 
3673   if (isEmptyRecord(getContext(), Ty, true)) {
3674     // These are ignored for parameter passing purposes.
3675     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3676     return Builder.CreateBitCast(Addr, PTy);
3677   }
3678 
3679   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3680   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3681   bool IsIndirect = false;
3682 
3683   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3684   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3685   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3686       getABIKind() == ARMABIInfo::AAPCS)
3687     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3688   else
3689     TyAlign = 4;
3690   // Use indirect if size of the illegal vector is bigger than 16 bytes.
3691   if (isIllegalVectorType(Ty) && Size > 16) {
3692     IsIndirect = true;
3693     Size = 4;
3694     TyAlign = 4;
3695   }
3696 
3697   // Handle address alignment for ABI alignment > 4 bytes.
3698   if (TyAlign > 4) {
3699     assert((TyAlign & (TyAlign - 1)) == 0 &&
3700            "Alignment is not power of 2!");
3701     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3702     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3703     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3704     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3705   }
3706 
3707   uint64_t Offset =
3708     llvm::RoundUpToAlignment(Size, 4);
3709   llvm::Value *NextAddr =
3710     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3711                       "ap.next");
3712   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3713 
3714   if (IsIndirect)
3715     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3716   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3717     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3718     // may not be correctly aligned for the vector type. We create an aligned
3719     // temporary space and copy the content over from ap.cur to the temporary
3720     // space. This is necessary if the natural alignment of the type is greater
3721     // than the ABI alignment.
3722     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3723     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3724     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3725                                                     "var.align");
3726     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3727     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3728     Builder.CreateMemCpy(Dst, Src,
3729         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3730         TyAlign, false);
3731     Addr = AlignedTemp; //The content is in aligned location.
3732   }
3733   llvm::Type *PTy =
3734     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3735   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3736 
3737   return AddrTyped;
3738 }
3739 
3740 namespace {
3741 
3742 class NaClARMABIInfo : public ABIInfo {
3743  public:
3744   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3745       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3746   virtual void computeInfo(CGFunctionInfo &FI) const;
3747   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3748                                  CodeGenFunction &CGF) const;
3749  private:
3750   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3751   ARMABIInfo NInfo; // Used for everything else.
3752 };
3753 
3754 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3755  public:
3756   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3757       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3758 };
3759 
3760 }
3761 
3762 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3763   if (FI.getASTCallingConvention() == CC_PnaclCall)
3764     PInfo.computeInfo(FI);
3765   else
3766     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3767 }
3768 
3769 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3770                                        CodeGenFunction &CGF) const {
3771   // Always use the native convention; calling pnacl-style varargs functions
3772   // is unsupported.
3773   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3774 }
3775 
3776 //===----------------------------------------------------------------------===//
3777 // AArch64 ABI Implementation
3778 //===----------------------------------------------------------------------===//
3779 
3780 namespace {
3781 
3782 class AArch64ABIInfo : public ABIInfo {
3783 public:
3784   AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3785 
3786 private:
3787   // The AArch64 PCS is explicit about return types and argument types being
3788   // handled identically, so we don't need to draw a distinction between
3789   // Argument and Return classification.
3790   ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3791                                  int &FreeVFPRegs) const;
3792 
3793   ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3794                         llvm::Type *DirectTy = 0) const;
3795 
3796   virtual void computeInfo(CGFunctionInfo &FI) const;
3797 
3798   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3799                                  CodeGenFunction &CGF) const;
3800 };
3801 
3802 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3803 public:
3804   AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3805     :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3806 
3807   const AArch64ABIInfo &getABIInfo() const {
3808     return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3809   }
3810 
3811   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3812     return 31;
3813   }
3814 
3815   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3816                                llvm::Value *Address) const {
3817     // 0-31 are x0-x30 and sp: 8 bytes each
3818     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3819     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3820 
3821     // 64-95 are v0-v31: 16 bytes each
3822     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3823     AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3824 
3825     return false;
3826   }
3827 
3828 };
3829 
3830 }
3831 
3832 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3833   int FreeIntRegs = 8, FreeVFPRegs = 8;
3834 
3835   FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3836                                            FreeIntRegs, FreeVFPRegs);
3837 
3838   FreeIntRegs = FreeVFPRegs = 8;
3839   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3840        it != ie; ++it) {
3841     it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3842 
3843   }
3844 }
3845 
3846 ABIArgInfo
3847 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3848                            bool IsInt, llvm::Type *DirectTy) const {
3849   if (FreeRegs >= RegsNeeded) {
3850     FreeRegs -= RegsNeeded;
3851     return ABIArgInfo::getDirect(DirectTy);
3852   }
3853 
3854   llvm::Type *Padding = 0;
3855 
3856   // We need padding so that later arguments don't get filled in anyway. That
3857   // wouldn't happen if only ByVal arguments followed in the same category, but
3858   // a large structure will simply seem to be a pointer as far as LLVM is
3859   // concerned.
3860   if (FreeRegs > 0) {
3861     if (IsInt)
3862       Padding = llvm::Type::getInt64Ty(getVMContext());
3863     else
3864       Padding = llvm::Type::getFloatTy(getVMContext());
3865 
3866     // Either [N x i64] or [N x float].
3867     Padding = llvm::ArrayType::get(Padding, FreeRegs);
3868     FreeRegs = 0;
3869   }
3870 
3871   return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3872                                  /*IsByVal=*/ true, /*Realign=*/ false,
3873                                  Padding);
3874 }
3875 
3876 
3877 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3878                                                int &FreeIntRegs,
3879                                                int &FreeVFPRegs) const {
3880   // Can only occurs for return, but harmless otherwise.
3881   if (Ty->isVoidType())
3882     return ABIArgInfo::getIgnore();
3883 
3884   // Large vector types should be returned via memory. There's no such concept
3885   // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3886   // classified they'd go into memory (see B.3).
3887   if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3888     if (FreeIntRegs > 0)
3889       --FreeIntRegs;
3890     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3891   }
3892 
3893   // All non-aggregate LLVM types have a concrete ABI representation so they can
3894   // be passed directly. After this block we're guaranteed to be in a
3895   // complicated case.
3896   if (!isAggregateTypeForABI(Ty)) {
3897     // Treat an enum type as its underlying type.
3898     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3899       Ty = EnumTy->getDecl()->getIntegerType();
3900 
3901     if (Ty->isFloatingType() || Ty->isVectorType())
3902       return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3903 
3904     assert(getContext().getTypeSize(Ty) <= 128 &&
3905            "unexpectedly large scalar type");
3906 
3907     int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3908 
3909     // If the type may need padding registers to ensure "alignment", we must be
3910     // careful when this is accounted for. Increasing the effective size covers
3911     // all cases.
3912     if (getContext().getTypeAlign(Ty) == 128)
3913       RegsNeeded += FreeIntRegs % 2 != 0;
3914 
3915     return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3916   }
3917 
3918   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3919     if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3920       --FreeIntRegs;
3921     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3922   }
3923 
3924   if (isEmptyRecord(getContext(), Ty, true)) {
3925     if (!getContext().getLangOpts().CPlusPlus) {
3926       // Empty structs outside C++ mode are a GNU extension, so no ABI can
3927       // possibly tell us what to do. It turns out (I believe) that GCC ignores
3928       // the object for parameter-passsing purposes.
3929       return ABIArgInfo::getIgnore();
3930     }
3931 
3932     // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
3933     // description of va_arg in the PCS require that an empty struct does
3934     // actually occupy space for parameter-passing. I'm hoping for a
3935     // clarification giving an explicit paragraph to point to in future.
3936     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
3937                       llvm::Type::getInt8Ty(getVMContext()));
3938   }
3939 
3940   // Homogeneous vector aggregates get passed in registers or on the stack.
3941   const Type *Base = 0;
3942   uint64_t NumMembers = 0;
3943   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
3944     assert(Base && "Base class should be set for homogeneous aggregate");
3945     // Homogeneous aggregates are passed and returned directly.
3946     return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
3947                       /*IsInt=*/ false);
3948   }
3949 
3950   uint64_t Size = getContext().getTypeSize(Ty);
3951   if (Size <= 128) {
3952     // Small structs can use the same direct type whether they're in registers
3953     // or on the stack.
3954     llvm::Type *BaseTy;
3955     unsigned NumBases;
3956     int SizeInRegs = (Size + 63) / 64;
3957 
3958     if (getContext().getTypeAlign(Ty) == 128) {
3959       BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
3960       NumBases = 1;
3961 
3962       // If the type may need padding registers to ensure "alignment", we must
3963       // be careful when this is accounted for. Increasing the effective size
3964       // covers all cases.
3965       SizeInRegs += FreeIntRegs % 2 != 0;
3966     } else {
3967       BaseTy = llvm::Type::getInt64Ty(getVMContext());
3968       NumBases = SizeInRegs;
3969     }
3970     llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
3971 
3972     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
3973                       /*IsInt=*/ true, DirectTy);
3974   }
3975 
3976   // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
3977   // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
3978   --FreeIntRegs;
3979   return ABIArgInfo::getIndirect(0, /* byVal = */ false);
3980 }
3981 
3982 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3983                                        CodeGenFunction &CGF) const {
3984   // The AArch64 va_list type and handling is specified in the Procedure Call
3985   // Standard, section B.4:
3986   //
3987   // struct {
3988   //   void *__stack;
3989   //   void *__gr_top;
3990   //   void *__vr_top;
3991   //   int __gr_offs;
3992   //   int __vr_offs;
3993   // };
3994 
3995   assert(!CGF.CGM.getDataLayout().isBigEndian()
3996          && "va_arg not implemented for big-endian AArch64");
3997 
3998   int FreeIntRegs = 8, FreeVFPRegs = 8;
3999   Ty = CGF.getContext().getCanonicalType(Ty);
4000   ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
4001 
4002   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4003   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4004   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4005   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4006 
4007   llvm::Value *reg_offs_p = 0, *reg_offs = 0;
4008   int reg_top_index;
4009   int RegSize;
4010   if (FreeIntRegs < 8) {
4011     assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
4012     // 3 is the field number of __gr_offs
4013     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4014     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4015     reg_top_index = 1; // field number for __gr_top
4016     RegSize = 8 * (8 - FreeIntRegs);
4017   } else {
4018     assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
4019     // 4 is the field number of __vr_offs.
4020     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4021     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4022     reg_top_index = 2; // field number for __vr_top
4023     RegSize = 16 * (8 - FreeVFPRegs);
4024   }
4025 
4026   //=======================================
4027   // Find out where argument was passed
4028   //=======================================
4029 
4030   // If reg_offs >= 0 we're already using the stack for this type of
4031   // argument. We don't want to keep updating reg_offs (in case it overflows,
4032   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4033   // whatever they get).
4034   llvm::Value *UsingStack = 0;
4035   UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4036                                          llvm::ConstantInt::get(CGF.Int32Ty, 0));
4037 
4038   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4039 
4040   // Otherwise, at least some kind of argument could go in these registers, the
4041   // quesiton is whether this particular type is too big.
4042   CGF.EmitBlock(MaybeRegBlock);
4043 
4044   // Integer arguments may need to correct register alignment (for example a
4045   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4046   // align __gr_offs to calculate the potential address.
4047   if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4048     int Align = getContext().getTypeAlign(Ty) / 8;
4049 
4050     reg_offs = CGF.Builder.CreateAdd(reg_offs,
4051                                  llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4052                                  "align_regoffs");
4053     reg_offs = CGF.Builder.CreateAnd(reg_offs,
4054                                     llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4055                                     "aligned_regoffs");
4056   }
4057 
4058   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4059   llvm::Value *NewOffset = 0;
4060   NewOffset = CGF.Builder.CreateAdd(reg_offs,
4061                                     llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4062                                     "new_reg_offs");
4063   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4064 
4065   // Now we're in a position to decide whether this argument really was in
4066   // registers or not.
4067   llvm::Value *InRegs = 0;
4068   InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4069                                      llvm::ConstantInt::get(CGF.Int32Ty, 0),
4070                                      "inreg");
4071 
4072   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4073 
4074   //=======================================
4075   // Argument was in registers
4076   //=======================================
4077 
4078   // Now we emit the code for if the argument was originally passed in
4079   // registers. First start the appropriate block:
4080   CGF.EmitBlock(InRegBlock);
4081 
4082   llvm::Value *reg_top_p = 0, *reg_top = 0;
4083   reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4084   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4085   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4086   llvm::Value *RegAddr = 0;
4087   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4088 
4089   if (!AI.isDirect()) {
4090     // If it's been passed indirectly (actually a struct), whatever we find from
4091     // stored registers or on the stack will actually be a struct **.
4092     MemTy = llvm::PointerType::getUnqual(MemTy);
4093   }
4094 
4095   const Type *Base = 0;
4096   uint64_t NumMembers;
4097   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4098       && NumMembers > 1) {
4099     // Homogeneous aggregates passed in registers will have their elements split
4100     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4101     // qN+1, ...). We reload and store into a temporary local variable
4102     // contiguously.
4103     assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4104     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4105     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4106     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4107 
4108     for (unsigned i = 0; i < NumMembers; ++i) {
4109       llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4110       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4111       LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4112                                            llvm::PointerType::getUnqual(BaseTy));
4113       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4114 
4115       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4116       CGF.Builder.CreateStore(Elem, StoreAddr);
4117     }
4118 
4119     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4120   } else {
4121     // Otherwise the object is contiguous in memory
4122     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4123   }
4124 
4125   CGF.EmitBranch(ContBlock);
4126 
4127   //=======================================
4128   // Argument was on the stack
4129   //=======================================
4130   CGF.EmitBlock(OnStackBlock);
4131 
4132   llvm::Value *stack_p = 0, *OnStackAddr = 0;
4133   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4134   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4135 
4136   // Again, stack arguments may need realigmnent. In this case both integer and
4137   // floating-point ones might be affected.
4138   if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4139     int Align = getContext().getTypeAlign(Ty) / 8;
4140 
4141     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4142 
4143     OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4144                                  llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4145                                  "align_stack");
4146     OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4147                                     llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4148                                     "align_stack");
4149 
4150     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4151   }
4152 
4153   uint64_t StackSize;
4154   if (AI.isDirect())
4155     StackSize = getContext().getTypeSize(Ty) / 8;
4156   else
4157     StackSize = 8;
4158 
4159   // All stack slots are 8 bytes
4160   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4161 
4162   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4163   llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4164                                                 "new_stack");
4165 
4166   // Write the new value of __stack for the next call to va_arg
4167   CGF.Builder.CreateStore(NewStack, stack_p);
4168 
4169   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4170 
4171   CGF.EmitBranch(ContBlock);
4172 
4173   //=======================================
4174   // Tidy up
4175   //=======================================
4176   CGF.EmitBlock(ContBlock);
4177 
4178   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4179   ResAddr->addIncoming(RegAddr, InRegBlock);
4180   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4181 
4182   if (AI.isDirect())
4183     return ResAddr;
4184 
4185   return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4186 }
4187 
4188 //===----------------------------------------------------------------------===//
4189 // NVPTX ABI Implementation
4190 //===----------------------------------------------------------------------===//
4191 
4192 namespace {
4193 
4194 class NVPTXABIInfo : public ABIInfo {
4195 public:
4196   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4197 
4198   ABIArgInfo classifyReturnType(QualType RetTy) const;
4199   ABIArgInfo classifyArgumentType(QualType Ty) const;
4200 
4201   virtual void computeInfo(CGFunctionInfo &FI) const;
4202   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4203                                  CodeGenFunction &CFG) const;
4204 };
4205 
4206 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4207 public:
4208   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4209     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4210 
4211   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4212                                    CodeGen::CodeGenModule &M) const;
4213 private:
4214   static void addKernelMetadata(llvm::Function *F);
4215 };
4216 
4217 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4218   if (RetTy->isVoidType())
4219     return ABIArgInfo::getIgnore();
4220 
4221   // note: this is different from default ABI
4222   if (!RetTy->isScalarType())
4223     return ABIArgInfo::getDirect();
4224 
4225   // Treat an enum type as its underlying type.
4226   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4227     RetTy = EnumTy->getDecl()->getIntegerType();
4228 
4229   return (RetTy->isPromotableIntegerType() ?
4230           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4231 }
4232 
4233 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4234   // Treat an enum type as its underlying type.
4235   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4236     Ty = EnumTy->getDecl()->getIntegerType();
4237 
4238   return (Ty->isPromotableIntegerType() ?
4239           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4240 }
4241 
4242 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4243   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4244   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4245        it != ie; ++it)
4246     it->info = classifyArgumentType(it->type);
4247 
4248   // Always honor user-specified calling convention.
4249   if (FI.getCallingConvention() != llvm::CallingConv::C)
4250     return;
4251 
4252   FI.setEffectiveCallingConvention(getRuntimeCC());
4253 }
4254 
4255 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4256                                      CodeGenFunction &CFG) const {
4257   llvm_unreachable("NVPTX does not support varargs");
4258 }
4259 
4260 void NVPTXTargetCodeGenInfo::
4261 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4262                     CodeGen::CodeGenModule &M) const{
4263   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4264   if (!FD) return;
4265 
4266   llvm::Function *F = cast<llvm::Function>(GV);
4267 
4268   // Perform special handling in OpenCL mode
4269   if (M.getLangOpts().OpenCL) {
4270     // Use OpenCL function attributes to check for kernel functions
4271     // By default, all functions are device functions
4272     if (FD->hasAttr<OpenCLKernelAttr>()) {
4273       // OpenCL __kernel functions get kernel metadata
4274       addKernelMetadata(F);
4275       // And kernel functions are not subject to inlining
4276       F->addFnAttr(llvm::Attribute::NoInline);
4277     }
4278   }
4279 
4280   // Perform special handling in CUDA mode.
4281   if (M.getLangOpts().CUDA) {
4282     // CUDA __global__ functions get a kernel metadata entry.  Since
4283     // __global__ functions cannot be called from the device, we do not
4284     // need to set the noinline attribute.
4285     if (FD->hasAttr<CUDAGlobalAttr>())
4286       addKernelMetadata(F);
4287   }
4288 }
4289 
4290 void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4291   llvm::Module *M = F->getParent();
4292   llvm::LLVMContext &Ctx = M->getContext();
4293 
4294   // Get "nvvm.annotations" metadata node
4295   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4296 
4297   // Create !{<func-ref>, metadata !"kernel", i32 1} node
4298   llvm::SmallVector<llvm::Value *, 3> MDVals;
4299   MDVals.push_back(F);
4300   MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4301   MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4302 
4303   // Append metadata to nvvm.annotations
4304   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4305 }
4306 
4307 }
4308 
4309 //===----------------------------------------------------------------------===//
4310 // SystemZ ABI Implementation
4311 //===----------------------------------------------------------------------===//
4312 
4313 namespace {
4314 
4315 class SystemZABIInfo : public ABIInfo {
4316 public:
4317   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4318 
4319   bool isPromotableIntegerType(QualType Ty) const;
4320   bool isCompoundType(QualType Ty) const;
4321   bool isFPArgumentType(QualType Ty) const;
4322 
4323   ABIArgInfo classifyReturnType(QualType RetTy) const;
4324   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4325 
4326   virtual void computeInfo(CGFunctionInfo &FI) const {
4327     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4328     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4329          it != ie; ++it)
4330       it->info = classifyArgumentType(it->type);
4331   }
4332 
4333   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4334                                  CodeGenFunction &CGF) const;
4335 };
4336 
4337 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4338 public:
4339   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4340     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4341 };
4342 
4343 }
4344 
4345 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4346   // Treat an enum type as its underlying type.
4347   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4348     Ty = EnumTy->getDecl()->getIntegerType();
4349 
4350   // Promotable integer types are required to be promoted by the ABI.
4351   if (Ty->isPromotableIntegerType())
4352     return true;
4353 
4354   // 32-bit values must also be promoted.
4355   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4356     switch (BT->getKind()) {
4357     case BuiltinType::Int:
4358     case BuiltinType::UInt:
4359       return true;
4360     default:
4361       return false;
4362     }
4363   return false;
4364 }
4365 
4366 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4367   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4368 }
4369 
4370 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4371   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4372     switch (BT->getKind()) {
4373     case BuiltinType::Float:
4374     case BuiltinType::Double:
4375       return true;
4376     default:
4377       return false;
4378     }
4379 
4380   if (const RecordType *RT = Ty->getAsStructureType()) {
4381     const RecordDecl *RD = RT->getDecl();
4382     bool Found = false;
4383 
4384     // If this is a C++ record, check the bases first.
4385     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4386       for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4387              E = CXXRD->bases_end(); I != E; ++I) {
4388         QualType Base = I->getType();
4389 
4390         // Empty bases don't affect things either way.
4391         if (isEmptyRecord(getContext(), Base, true))
4392           continue;
4393 
4394         if (Found)
4395           return false;
4396         Found = isFPArgumentType(Base);
4397         if (!Found)
4398           return false;
4399       }
4400 
4401     // Check the fields.
4402     for (RecordDecl::field_iterator I = RD->field_begin(),
4403            E = RD->field_end(); I != E; ++I) {
4404       const FieldDecl *FD = *I;
4405 
4406       // Empty bitfields don't affect things either way.
4407       // Unlike isSingleElementStruct(), empty structure and array fields
4408       // do count.  So do anonymous bitfields that aren't zero-sized.
4409       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4410         return true;
4411 
4412       // Unlike isSingleElementStruct(), arrays do not count.
4413       // Nested isFPArgumentType structures still do though.
4414       if (Found)
4415         return false;
4416       Found = isFPArgumentType(FD->getType());
4417       if (!Found)
4418         return false;
4419     }
4420 
4421     // Unlike isSingleElementStruct(), trailing padding is allowed.
4422     // An 8-byte aligned struct s { float f; } is passed as a double.
4423     return Found;
4424   }
4425 
4426   return false;
4427 }
4428 
4429 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4430                                        CodeGenFunction &CGF) const {
4431   // Assume that va_list type is correct; should be pointer to LLVM type:
4432   // struct {
4433   //   i64 __gpr;
4434   //   i64 __fpr;
4435   //   i8 *__overflow_arg_area;
4436   //   i8 *__reg_save_area;
4437   // };
4438 
4439   // Every argument occupies 8 bytes and is passed by preference in either
4440   // GPRs or FPRs.
4441   Ty = CGF.getContext().getCanonicalType(Ty);
4442   ABIArgInfo AI = classifyArgumentType(Ty);
4443   bool InFPRs = isFPArgumentType(Ty);
4444 
4445   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4446   bool IsIndirect = AI.isIndirect();
4447   unsigned UnpaddedBitSize;
4448   if (IsIndirect) {
4449     APTy = llvm::PointerType::getUnqual(APTy);
4450     UnpaddedBitSize = 64;
4451   } else
4452     UnpaddedBitSize = getContext().getTypeSize(Ty);
4453   unsigned PaddedBitSize = 64;
4454   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4455 
4456   unsigned PaddedSize = PaddedBitSize / 8;
4457   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4458 
4459   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4460   if (InFPRs) {
4461     MaxRegs = 4; // Maximum of 4 FPR arguments
4462     RegCountField = 1; // __fpr
4463     RegSaveIndex = 16; // save offset for f0
4464     RegPadding = 0; // floats are passed in the high bits of an FPR
4465   } else {
4466     MaxRegs = 5; // Maximum of 5 GPR arguments
4467     RegCountField = 0; // __gpr
4468     RegSaveIndex = 2; // save offset for r2
4469     RegPadding = Padding; // values are passed in the low bits of a GPR
4470   }
4471 
4472   llvm::Value *RegCountPtr =
4473     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4474   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4475   llvm::Type *IndexTy = RegCount->getType();
4476   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4477   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4478 						  "fits_in_regs");
4479 
4480   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4481   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4482   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4483   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4484 
4485   // Emit code to load the value if it was passed in registers.
4486   CGF.EmitBlock(InRegBlock);
4487 
4488   // Work out the address of an argument register.
4489   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4490   llvm::Value *ScaledRegCount =
4491     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4492   llvm::Value *RegBase =
4493     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4494   llvm::Value *RegOffset =
4495     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4496   llvm::Value *RegSaveAreaPtr =
4497     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4498   llvm::Value *RegSaveArea =
4499     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4500   llvm::Value *RawRegAddr =
4501     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4502   llvm::Value *RegAddr =
4503     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4504 
4505   // Update the register count
4506   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4507   llvm::Value *NewRegCount =
4508     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4509   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4510   CGF.EmitBranch(ContBlock);
4511 
4512   // Emit code to load the value if it was passed in memory.
4513   CGF.EmitBlock(InMemBlock);
4514 
4515   // Work out the address of a stack argument.
4516   llvm::Value *OverflowArgAreaPtr =
4517     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4518   llvm::Value *OverflowArgArea =
4519     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4520   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4521   llvm::Value *RawMemAddr =
4522     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4523   llvm::Value *MemAddr =
4524     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4525 
4526   // Update overflow_arg_area_ptr pointer
4527   llvm::Value *NewOverflowArgArea =
4528     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4529   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4530   CGF.EmitBranch(ContBlock);
4531 
4532   // Return the appropriate result.
4533   CGF.EmitBlock(ContBlock);
4534   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4535   ResAddr->addIncoming(RegAddr, InRegBlock);
4536   ResAddr->addIncoming(MemAddr, InMemBlock);
4537 
4538   if (IsIndirect)
4539     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4540 
4541   return ResAddr;
4542 }
4543 
4544 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4545     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4546   assert(Triple.getArch() == llvm::Triple::x86);
4547 
4548   switch (Opts.getStructReturnConvention()) {
4549   case CodeGenOptions::SRCK_Default:
4550     break;
4551   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4552     return false;
4553   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4554     return true;
4555   }
4556 
4557   if (Triple.isOSDarwin())
4558     return true;
4559 
4560   switch (Triple.getOS()) {
4561   case llvm::Triple::Cygwin:
4562   case llvm::Triple::MinGW32:
4563   case llvm::Triple::AuroraUX:
4564   case llvm::Triple::DragonFly:
4565   case llvm::Triple::FreeBSD:
4566   case llvm::Triple::OpenBSD:
4567   case llvm::Triple::Bitrig:
4568   case llvm::Triple::Win32:
4569     return true;
4570   default:
4571     return false;
4572   }
4573 }
4574 
4575 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4576   if (RetTy->isVoidType())
4577     return ABIArgInfo::getIgnore();
4578   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4579     return ABIArgInfo::getIndirect(0);
4580   return (isPromotableIntegerType(RetTy) ?
4581           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4582 }
4583 
4584 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4585   // Handle the generic C++ ABI.
4586   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4587     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4588 
4589   // Integers and enums are extended to full register width.
4590   if (isPromotableIntegerType(Ty))
4591     return ABIArgInfo::getExtend();
4592 
4593   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4594   uint64_t Size = getContext().getTypeSize(Ty);
4595   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4596     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4597 
4598   // Handle small structures.
4599   if (const RecordType *RT = Ty->getAs<RecordType>()) {
4600     // Structures with flexible arrays have variable length, so really
4601     // fail the size test above.
4602     const RecordDecl *RD = RT->getDecl();
4603     if (RD->hasFlexibleArrayMember())
4604       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4605 
4606     // The structure is passed as an unextended integer, a float, or a double.
4607     llvm::Type *PassTy;
4608     if (isFPArgumentType(Ty)) {
4609       assert(Size == 32 || Size == 64);
4610       if (Size == 32)
4611         PassTy = llvm::Type::getFloatTy(getVMContext());
4612       else
4613         PassTy = llvm::Type::getDoubleTy(getVMContext());
4614     } else
4615       PassTy = llvm::IntegerType::get(getVMContext(), Size);
4616     return ABIArgInfo::getDirect(PassTy);
4617   }
4618 
4619   // Non-structure compounds are passed indirectly.
4620   if (isCompoundType(Ty))
4621     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4622 
4623   return ABIArgInfo::getDirect(0);
4624 }
4625 
4626 //===----------------------------------------------------------------------===//
4627 // MSP430 ABI Implementation
4628 //===----------------------------------------------------------------------===//
4629 
4630 namespace {
4631 
4632 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4633 public:
4634   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4635     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4636   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4637                            CodeGen::CodeGenModule &M) const;
4638 };
4639 
4640 }
4641 
4642 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4643                                                   llvm::GlobalValue *GV,
4644                                              CodeGen::CodeGenModule &M) const {
4645   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4646     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4647       // Handle 'interrupt' attribute:
4648       llvm::Function *F = cast<llvm::Function>(GV);
4649 
4650       // Step 1: Set ISR calling convention.
4651       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4652 
4653       // Step 2: Add attributes goodness.
4654       F->addFnAttr(llvm::Attribute::NoInline);
4655 
4656       // Step 3: Emit ISR vector alias.
4657       unsigned Num = attr->getNumber() / 2;
4658       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4659                             "__isr_" + Twine(Num),
4660                             GV, &M.getModule());
4661     }
4662   }
4663 }
4664 
4665 //===----------------------------------------------------------------------===//
4666 // MIPS ABI Implementation.  This works for both little-endian and
4667 // big-endian variants.
4668 //===----------------------------------------------------------------------===//
4669 
4670 namespace {
4671 class MipsABIInfo : public ABIInfo {
4672   bool IsO32;
4673   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4674   void CoerceToIntArgs(uint64_t TySize,
4675                        SmallVectorImpl<llvm::Type *> &ArgList) const;
4676   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4677   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4678   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4679 public:
4680   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4681     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4682     StackAlignInBytes(IsO32 ? 8 : 16) {}
4683 
4684   ABIArgInfo classifyReturnType(QualType RetTy) const;
4685   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4686   virtual void computeInfo(CGFunctionInfo &FI) const;
4687   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4688                                  CodeGenFunction &CGF) const;
4689 };
4690 
4691 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4692   unsigned SizeOfUnwindException;
4693 public:
4694   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4695     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4696       SizeOfUnwindException(IsO32 ? 24 : 32) {}
4697 
4698   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4699     return 29;
4700   }
4701 
4702   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4703                            CodeGen::CodeGenModule &CGM) const {
4704     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4705     if (!FD) return;
4706     llvm::Function *Fn = cast<llvm::Function>(GV);
4707     if (FD->hasAttr<Mips16Attr>()) {
4708       Fn->addFnAttr("mips16");
4709     }
4710     else if (FD->hasAttr<NoMips16Attr>()) {
4711       Fn->addFnAttr("nomips16");
4712     }
4713   }
4714 
4715   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4716                                llvm::Value *Address) const;
4717 
4718   unsigned getSizeOfUnwindException() const {
4719     return SizeOfUnwindException;
4720   }
4721 };
4722 }
4723 
4724 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4725                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
4726   llvm::IntegerType *IntTy =
4727     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4728 
4729   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4730   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4731     ArgList.push_back(IntTy);
4732 
4733   // If necessary, add one more integer type to ArgList.
4734   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4735 
4736   if (R)
4737     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4738 }
4739 
4740 // In N32/64, an aligned double precision floating point field is passed in
4741 // a register.
4742 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4743   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4744 
4745   if (IsO32) {
4746     CoerceToIntArgs(TySize, ArgList);
4747     return llvm::StructType::get(getVMContext(), ArgList);
4748   }
4749 
4750   if (Ty->isComplexType())
4751     return CGT.ConvertType(Ty);
4752 
4753   const RecordType *RT = Ty->getAs<RecordType>();
4754 
4755   // Unions/vectors are passed in integer registers.
4756   if (!RT || !RT->isStructureOrClassType()) {
4757     CoerceToIntArgs(TySize, ArgList);
4758     return llvm::StructType::get(getVMContext(), ArgList);
4759   }
4760 
4761   const RecordDecl *RD = RT->getDecl();
4762   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4763   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4764 
4765   uint64_t LastOffset = 0;
4766   unsigned idx = 0;
4767   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4768 
4769   // Iterate over fields in the struct/class and check if there are any aligned
4770   // double fields.
4771   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4772        i != e; ++i, ++idx) {
4773     const QualType Ty = i->getType();
4774     const BuiltinType *BT = Ty->getAs<BuiltinType>();
4775 
4776     if (!BT || BT->getKind() != BuiltinType::Double)
4777       continue;
4778 
4779     uint64_t Offset = Layout.getFieldOffset(idx);
4780     if (Offset % 64) // Ignore doubles that are not aligned.
4781       continue;
4782 
4783     // Add ((Offset - LastOffset) / 64) args of type i64.
4784     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4785       ArgList.push_back(I64);
4786 
4787     // Add double type.
4788     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4789     LastOffset = Offset + 64;
4790   }
4791 
4792   CoerceToIntArgs(TySize - LastOffset, IntArgList);
4793   ArgList.append(IntArgList.begin(), IntArgList.end());
4794 
4795   return llvm::StructType::get(getVMContext(), ArgList);
4796 }
4797 
4798 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
4799                                         uint64_t Offset) const {
4800   if (OrigOffset + MinABIStackAlignInBytes > Offset)
4801     return 0;
4802 
4803   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
4804 }
4805 
4806 ABIArgInfo
4807 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4808   uint64_t OrigOffset = Offset;
4809   uint64_t TySize = getContext().getTypeSize(Ty);
4810   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4811 
4812   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4813                    (uint64_t)StackAlignInBytes);
4814   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
4815   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4816 
4817   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4818     // Ignore empty aggregates.
4819     if (TySize == 0)
4820       return ABIArgInfo::getIgnore();
4821 
4822     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4823       Offset = OrigOffset + MinABIStackAlignInBytes;
4824       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4825     }
4826 
4827     // If we have reached here, aggregates are passed directly by coercing to
4828     // another structure type. Padding is inserted if the offset of the
4829     // aggregate is unaligned.
4830     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4831                                  getPaddingType(OrigOffset, CurrOffset));
4832   }
4833 
4834   // Treat an enum type as its underlying type.
4835   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4836     Ty = EnumTy->getDecl()->getIntegerType();
4837 
4838   if (Ty->isPromotableIntegerType())
4839     return ABIArgInfo::getExtend();
4840 
4841   return ABIArgInfo::getDirect(
4842       0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset));
4843 }
4844 
4845 llvm::Type*
4846 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4847   const RecordType *RT = RetTy->getAs<RecordType>();
4848   SmallVector<llvm::Type*, 8> RTList;
4849 
4850   if (RT && RT->isStructureOrClassType()) {
4851     const RecordDecl *RD = RT->getDecl();
4852     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4853     unsigned FieldCnt = Layout.getFieldCount();
4854 
4855     // N32/64 returns struct/classes in floating point registers if the
4856     // following conditions are met:
4857     // 1. The size of the struct/class is no larger than 128-bit.
4858     // 2. The struct/class has one or two fields all of which are floating
4859     //    point types.
4860     // 3. The offset of the first field is zero (this follows what gcc does).
4861     //
4862     // Any other composite results are returned in integer registers.
4863     //
4864     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4865       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4866       for (; b != e; ++b) {
4867         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4868 
4869         if (!BT || !BT->isFloatingPoint())
4870           break;
4871 
4872         RTList.push_back(CGT.ConvertType(b->getType()));
4873       }
4874 
4875       if (b == e)
4876         return llvm::StructType::get(getVMContext(), RTList,
4877                                      RD->hasAttr<PackedAttr>());
4878 
4879       RTList.clear();
4880     }
4881   }
4882 
4883   CoerceToIntArgs(Size, RTList);
4884   return llvm::StructType::get(getVMContext(), RTList);
4885 }
4886 
4887 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4888   uint64_t Size = getContext().getTypeSize(RetTy);
4889 
4890   if (RetTy->isVoidType() || Size == 0)
4891     return ABIArgInfo::getIgnore();
4892 
4893   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4894     if (isRecordReturnIndirect(RetTy, getCXXABI()))
4895       return ABIArgInfo::getIndirect(0);
4896 
4897     if (Size <= 128) {
4898       if (RetTy->isAnyComplexType())
4899         return ABIArgInfo::getDirect();
4900 
4901       // O32 returns integer vectors in registers.
4902       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4903         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4904 
4905       if (!IsO32)
4906         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4907     }
4908 
4909     return ABIArgInfo::getIndirect(0);
4910   }
4911 
4912   // Treat an enum type as its underlying type.
4913   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4914     RetTy = EnumTy->getDecl()->getIntegerType();
4915 
4916   return (RetTy->isPromotableIntegerType() ?
4917           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4918 }
4919 
4920 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4921   ABIArgInfo &RetInfo = FI.getReturnInfo();
4922   RetInfo = classifyReturnType(FI.getReturnType());
4923 
4924   // Check if a pointer to an aggregate is passed as a hidden argument.
4925   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4926 
4927   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4928        it != ie; ++it)
4929     it->info = classifyArgumentType(it->type, Offset);
4930 }
4931 
4932 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4933                                     CodeGenFunction &CGF) const {
4934   llvm::Type *BP = CGF.Int8PtrTy;
4935   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4936 
4937   CGBuilderTy &Builder = CGF.Builder;
4938   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4939   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4940   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4941   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4942   llvm::Value *AddrTyped;
4943   unsigned PtrWidth = getTarget().getPointerWidth(0);
4944   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4945 
4946   if (TypeAlign > MinABIStackAlignInBytes) {
4947     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4948     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4949     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4950     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4951     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4952     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4953   }
4954   else
4955     AddrTyped = Builder.CreateBitCast(Addr, PTy);
4956 
4957   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4958   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4959   uint64_t Offset =
4960     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4961   llvm::Value *NextAddr =
4962     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4963                       "ap.next");
4964   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4965 
4966   return AddrTyped;
4967 }
4968 
4969 bool
4970 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4971                                                llvm::Value *Address) const {
4972   // This information comes from gcc's implementation, which seems to
4973   // as canonical as it gets.
4974 
4975   // Everything on MIPS is 4 bytes.  Double-precision FP registers
4976   // are aliased to pairs of single-precision FP registers.
4977   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4978 
4979   // 0-31 are the general purpose registers, $0 - $31.
4980   // 32-63 are the floating-point registers, $f0 - $f31.
4981   // 64 and 65 are the multiply/divide registers, $hi and $lo.
4982   // 66 is the (notional, I think) register for signal-handler return.
4983   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4984 
4985   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4986   // They are one bit wide and ignored here.
4987 
4988   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4989   // (coprocessor 1 is the FP unit)
4990   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4991   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4992   // 176-181 are the DSP accumulator registers.
4993   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4994   return false;
4995 }
4996 
4997 //===----------------------------------------------------------------------===//
4998 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4999 // Currently subclassed only to implement custom OpenCL C function attribute
5000 // handling.
5001 //===----------------------------------------------------------------------===//
5002 
5003 namespace {
5004 
5005 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5006 public:
5007   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5008     : DefaultTargetCodeGenInfo(CGT) {}
5009 
5010   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5011                                    CodeGen::CodeGenModule &M) const;
5012 };
5013 
5014 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5015                                                llvm::GlobalValue *GV,
5016                                                CodeGen::CodeGenModule &M) const {
5017   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5018   if (!FD) return;
5019 
5020   llvm::Function *F = cast<llvm::Function>(GV);
5021 
5022   if (M.getLangOpts().OpenCL) {
5023     if (FD->hasAttr<OpenCLKernelAttr>()) {
5024       // OpenCL C Kernel functions are not subject to inlining
5025       F->addFnAttr(llvm::Attribute::NoInline);
5026       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5027       if (Attr) {
5028         // Convert the reqd_work_group_size() attributes to metadata.
5029         llvm::LLVMContext &Context = F->getContext();
5030         llvm::NamedMDNode *OpenCLMetadata =
5031             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5032 
5033         SmallVector<llvm::Value*, 5> Operands;
5034         Operands.push_back(F);
5035 
5036         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5037                              llvm::APInt(32, Attr->getXDim())));
5038         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5039                              llvm::APInt(32, Attr->getYDim())));
5040         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5041                              llvm::APInt(32, Attr->getZDim())));
5042 
5043         // Add a boolean constant operand for "required" (true) or "hint" (false)
5044         // for implementing the work_group_size_hint attr later. Currently
5045         // always true as the hint is not yet implemented.
5046         Operands.push_back(llvm::ConstantInt::getTrue(Context));
5047         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5048       }
5049     }
5050   }
5051 }
5052 
5053 }
5054 
5055 //===----------------------------------------------------------------------===//
5056 // Hexagon ABI Implementation
5057 //===----------------------------------------------------------------------===//
5058 
5059 namespace {
5060 
5061 class HexagonABIInfo : public ABIInfo {
5062 
5063 
5064 public:
5065   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5066 
5067 private:
5068 
5069   ABIArgInfo classifyReturnType(QualType RetTy) const;
5070   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5071 
5072   virtual void computeInfo(CGFunctionInfo &FI) const;
5073 
5074   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5075                                  CodeGenFunction &CGF) const;
5076 };
5077 
5078 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5079 public:
5080   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5081     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5082 
5083   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5084     return 29;
5085   }
5086 };
5087 
5088 }
5089 
5090 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5091   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5092   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5093        it != ie; ++it)
5094     it->info = classifyArgumentType(it->type);
5095 }
5096 
5097 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5098   if (!isAggregateTypeForABI(Ty)) {
5099     // Treat an enum type as its underlying type.
5100     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5101       Ty = EnumTy->getDecl()->getIntegerType();
5102 
5103     return (Ty->isPromotableIntegerType() ?
5104             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5105   }
5106 
5107   // Ignore empty records.
5108   if (isEmptyRecord(getContext(), Ty, true))
5109     return ABIArgInfo::getIgnore();
5110 
5111   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5112     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5113 
5114   uint64_t Size = getContext().getTypeSize(Ty);
5115   if (Size > 64)
5116     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5117     // Pass in the smallest viable integer type.
5118   else if (Size > 32)
5119       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5120   else if (Size > 16)
5121       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5122   else if (Size > 8)
5123       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5124   else
5125       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5126 }
5127 
5128 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5129   if (RetTy->isVoidType())
5130     return ABIArgInfo::getIgnore();
5131 
5132   // Large vector types should be returned via memory.
5133   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5134     return ABIArgInfo::getIndirect(0);
5135 
5136   if (!isAggregateTypeForABI(RetTy)) {
5137     // Treat an enum type as its underlying type.
5138     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5139       RetTy = EnumTy->getDecl()->getIntegerType();
5140 
5141     return (RetTy->isPromotableIntegerType() ?
5142             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5143   }
5144 
5145   // Structures with either a non-trivial destructor or a non-trivial
5146   // copy constructor are always indirect.
5147   if (isRecordReturnIndirect(RetTy, getCXXABI()))
5148     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5149 
5150   if (isEmptyRecord(getContext(), RetTy, true))
5151     return ABIArgInfo::getIgnore();
5152 
5153   // Aggregates <= 8 bytes are returned in r0; other aggregates
5154   // are returned indirectly.
5155   uint64_t Size = getContext().getTypeSize(RetTy);
5156   if (Size <= 64) {
5157     // Return in the smallest viable integer type.
5158     if (Size <= 8)
5159       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5160     if (Size <= 16)
5161       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5162     if (Size <= 32)
5163       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5164     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5165   }
5166 
5167   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5168 }
5169 
5170 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5171                                        CodeGenFunction &CGF) const {
5172   // FIXME: Need to handle alignment
5173   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5174 
5175   CGBuilderTy &Builder = CGF.Builder;
5176   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5177                                                        "ap");
5178   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5179   llvm::Type *PTy =
5180     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5181   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5182 
5183   uint64_t Offset =
5184     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5185   llvm::Value *NextAddr =
5186     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5187                       "ap.next");
5188   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5189 
5190   return AddrTyped;
5191 }
5192 
5193 
5194 //===----------------------------------------------------------------------===//
5195 // SPARC v9 ABI Implementation.
5196 // Based on the SPARC Compliance Definition version 2.4.1.
5197 //
5198 // Function arguments a mapped to a nominal "parameter array" and promoted to
5199 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5200 // the array, structs larger than 16 bytes are passed indirectly.
5201 //
5202 // One case requires special care:
5203 //
5204 //   struct mixed {
5205 //     int i;
5206 //     float f;
5207 //   };
5208 //
5209 // When a struct mixed is passed by value, it only occupies 8 bytes in the
5210 // parameter array, but the int is passed in an integer register, and the float
5211 // is passed in a floating point register. This is represented as two arguments
5212 // with the LLVM IR inreg attribute:
5213 //
5214 //   declare void f(i32 inreg %i, float inreg %f)
5215 //
5216 // The code generator will only allocate 4 bytes from the parameter array for
5217 // the inreg arguments. All other arguments are allocated a multiple of 8
5218 // bytes.
5219 //
5220 namespace {
5221 class SparcV9ABIInfo : public ABIInfo {
5222 public:
5223   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5224 
5225 private:
5226   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5227   virtual void computeInfo(CGFunctionInfo &FI) const;
5228   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5229                                  CodeGenFunction &CGF) const;
5230 
5231   // Coercion type builder for structs passed in registers. The coercion type
5232   // serves two purposes:
5233   //
5234   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5235   //    in registers.
5236   // 2. Expose aligned floating point elements as first-level elements, so the
5237   //    code generator knows to pass them in floating point registers.
5238   //
5239   // We also compute the InReg flag which indicates that the struct contains
5240   // aligned 32-bit floats.
5241   //
5242   struct CoerceBuilder {
5243     llvm::LLVMContext &Context;
5244     const llvm::DataLayout &DL;
5245     SmallVector<llvm::Type*, 8> Elems;
5246     uint64_t Size;
5247     bool InReg;
5248 
5249     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5250       : Context(c), DL(dl), Size(0), InReg(false) {}
5251 
5252     // Pad Elems with integers until Size is ToSize.
5253     void pad(uint64_t ToSize) {
5254       assert(ToSize >= Size && "Cannot remove elements");
5255       if (ToSize == Size)
5256         return;
5257 
5258       // Finish the current 64-bit word.
5259       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5260       if (Aligned > Size && Aligned <= ToSize) {
5261         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5262         Size = Aligned;
5263       }
5264 
5265       // Add whole 64-bit words.
5266       while (Size + 64 <= ToSize) {
5267         Elems.push_back(llvm::Type::getInt64Ty(Context));
5268         Size += 64;
5269       }
5270 
5271       // Final in-word padding.
5272       if (Size < ToSize) {
5273         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5274         Size = ToSize;
5275       }
5276     }
5277 
5278     // Add a floating point element at Offset.
5279     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5280       // Unaligned floats are treated as integers.
5281       if (Offset % Bits)
5282         return;
5283       // The InReg flag is only required if there are any floats < 64 bits.
5284       if (Bits < 64)
5285         InReg = true;
5286       pad(Offset);
5287       Elems.push_back(Ty);
5288       Size = Offset + Bits;
5289     }
5290 
5291     // Add a struct type to the coercion type, starting at Offset (in bits).
5292     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5293       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5294       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5295         llvm::Type *ElemTy = StrTy->getElementType(i);
5296         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5297         switch (ElemTy->getTypeID()) {
5298         case llvm::Type::StructTyID:
5299           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5300           break;
5301         case llvm::Type::FloatTyID:
5302           addFloat(ElemOffset, ElemTy, 32);
5303           break;
5304         case llvm::Type::DoubleTyID:
5305           addFloat(ElemOffset, ElemTy, 64);
5306           break;
5307         case llvm::Type::FP128TyID:
5308           addFloat(ElemOffset, ElemTy, 128);
5309           break;
5310         case llvm::Type::PointerTyID:
5311           if (ElemOffset % 64 == 0) {
5312             pad(ElemOffset);
5313             Elems.push_back(ElemTy);
5314             Size += 64;
5315           }
5316           break;
5317         default:
5318           break;
5319         }
5320       }
5321     }
5322 
5323     // Check if Ty is a usable substitute for the coercion type.
5324     bool isUsableType(llvm::StructType *Ty) const {
5325       if (Ty->getNumElements() != Elems.size())
5326         return false;
5327       for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5328         if (Elems[i] != Ty->getElementType(i))
5329           return false;
5330       return true;
5331     }
5332 
5333     // Get the coercion type as a literal struct type.
5334     llvm::Type *getType() const {
5335       if (Elems.size() == 1)
5336         return Elems.front();
5337       else
5338         return llvm::StructType::get(Context, Elems);
5339     }
5340   };
5341 };
5342 } // end anonymous namespace
5343 
5344 ABIArgInfo
5345 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5346   if (Ty->isVoidType())
5347     return ABIArgInfo::getIgnore();
5348 
5349   uint64_t Size = getContext().getTypeSize(Ty);
5350 
5351   // Anything too big to fit in registers is passed with an explicit indirect
5352   // pointer / sret pointer.
5353   if (Size > SizeLimit)
5354     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5355 
5356   // Treat an enum type as its underlying type.
5357   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5358     Ty = EnumTy->getDecl()->getIntegerType();
5359 
5360   // Integer types smaller than a register are extended.
5361   if (Size < 64 && Ty->isIntegerType())
5362     return ABIArgInfo::getExtend();
5363 
5364   // Other non-aggregates go in registers.
5365   if (!isAggregateTypeForABI(Ty))
5366     return ABIArgInfo::getDirect();
5367 
5368   // If a C++ object has either a non-trivial copy constructor or a non-trivial
5369   // destructor, it is passed with an explicit indirect pointer / sret pointer.
5370   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5371     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5372 
5373   // This is a small aggregate type that should be passed in registers.
5374   // Build a coercion type from the LLVM struct type.
5375   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5376   if (!StrTy)
5377     return ABIArgInfo::getDirect();
5378 
5379   CoerceBuilder CB(getVMContext(), getDataLayout());
5380   CB.addStruct(0, StrTy);
5381   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5382 
5383   // Try to use the original type for coercion.
5384   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5385 
5386   if (CB.InReg)
5387     return ABIArgInfo::getDirectInReg(CoerceTy);
5388   else
5389     return ABIArgInfo::getDirect(CoerceTy);
5390 }
5391 
5392 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5393                                        CodeGenFunction &CGF) const {
5394   ABIArgInfo AI = classifyType(Ty, 16 * 8);
5395   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5396   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5397     AI.setCoerceToType(ArgTy);
5398 
5399   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5400   CGBuilderTy &Builder = CGF.Builder;
5401   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5402   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5403   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5404   llvm::Value *ArgAddr;
5405   unsigned Stride;
5406 
5407   switch (AI.getKind()) {
5408   case ABIArgInfo::Expand:
5409     llvm_unreachable("Unsupported ABI kind for va_arg");
5410 
5411   case ABIArgInfo::Extend:
5412     Stride = 8;
5413     ArgAddr = Builder
5414       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5415                           "extend");
5416     break;
5417 
5418   case ABIArgInfo::Direct:
5419     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5420     ArgAddr = Addr;
5421     break;
5422 
5423   case ABIArgInfo::Indirect:
5424     Stride = 8;
5425     ArgAddr = Builder.CreateBitCast(Addr,
5426                                     llvm::PointerType::getUnqual(ArgPtrTy),
5427                                     "indirect");
5428     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5429     break;
5430 
5431   case ABIArgInfo::Ignore:
5432     return llvm::UndefValue::get(ArgPtrTy);
5433   }
5434 
5435   // Update VAList.
5436   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5437   Builder.CreateStore(Addr, VAListAddrAsBPP);
5438 
5439   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5440 }
5441 
5442 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5443   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5444   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5445        it != ie; ++it)
5446     it->info = classifyType(it->type, 16 * 8);
5447 }
5448 
5449 namespace {
5450 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5451 public:
5452   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5453     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5454 };
5455 } // end anonymous namespace
5456 
5457 
5458 //===----------------------------------------------------------------------===//
5459 // Xcore ABI Implementation
5460 //===----------------------------------------------------------------------===//
5461 namespace {
5462 class XCoreABIInfo : public DefaultABIInfo {
5463 public:
5464   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5465   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5466                                  CodeGenFunction &CGF) const;
5467 };
5468 
5469 class XcoreTargetCodeGenInfo : public TargetCodeGenInfo {
5470 public:
5471   XcoreTargetCodeGenInfo(CodeGenTypes &CGT)
5472     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5473 };
5474 } // End anonymous namespace.
5475 
5476 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5477                                      CodeGenFunction &CGF) const {
5478   CGBuilderTy &Builder = CGF.Builder;
5479 
5480   // Get the VAList.
5481   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5482                                                        CGF.Int8PtrPtrTy);
5483   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5484 
5485   // Handle the argument.
5486   ABIArgInfo AI = classifyArgumentType(Ty);
5487   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5488   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5489     AI.setCoerceToType(ArgTy);
5490   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5491   llvm::Value *Val;
5492   uint64_t ArgSize = 0;
5493   switch (AI.getKind()) {
5494   case ABIArgInfo::Expand:
5495     llvm_unreachable("Unsupported ABI kind for va_arg");
5496   case ABIArgInfo::Ignore:
5497     Val = llvm::UndefValue::get(ArgPtrTy);
5498     ArgSize = 0;
5499     break;
5500   case ABIArgInfo::Extend:
5501   case ABIArgInfo::Direct:
5502     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5503     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5504     if (ArgSize < 4)
5505       ArgSize = 4;
5506     break;
5507   case ABIArgInfo::Indirect:
5508     llvm::Value *ArgAddr;
5509     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5510     ArgAddr = Builder.CreateLoad(ArgAddr);
5511     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5512     ArgSize = 4;
5513     break;
5514   }
5515 
5516   // Increment the VAList.
5517   if (ArgSize) {
5518     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5519     Builder.CreateStore(APN, VAListAddrAsBPP);
5520   }
5521   return Val;
5522 }
5523 
5524 //===----------------------------------------------------------------------===//
5525 // Driver code
5526 //===----------------------------------------------------------------------===//
5527 
5528 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5529   if (TheTargetCodeGenInfo)
5530     return *TheTargetCodeGenInfo;
5531 
5532   const llvm::Triple &Triple = getTarget().getTriple();
5533   switch (Triple.getArch()) {
5534   default:
5535     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5536 
5537   case llvm::Triple::le32:
5538     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5539   case llvm::Triple::mips:
5540   case llvm::Triple::mipsel:
5541     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5542 
5543   case llvm::Triple::mips64:
5544   case llvm::Triple::mips64el:
5545     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5546 
5547   case llvm::Triple::aarch64:
5548     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5549 
5550   case llvm::Triple::arm:
5551   case llvm::Triple::thumb:
5552     {
5553       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5554       if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5555         Kind = ARMABIInfo::APCS;
5556       else if (CodeGenOpts.FloatABI == "hard" ||
5557                (CodeGenOpts.FloatABI != "soft" &&
5558                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5559         Kind = ARMABIInfo::AAPCS_VFP;
5560 
5561       switch (Triple.getOS()) {
5562         case llvm::Triple::NaCl:
5563           return *(TheTargetCodeGenInfo =
5564                    new NaClARMTargetCodeGenInfo(Types, Kind));
5565         default:
5566           return *(TheTargetCodeGenInfo =
5567                    new ARMTargetCodeGenInfo(Types, Kind));
5568       }
5569     }
5570 
5571   case llvm::Triple::ppc:
5572     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5573   case llvm::Triple::ppc64:
5574     if (Triple.isOSBinFormatELF())
5575       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5576     else
5577       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5578   case llvm::Triple::ppc64le:
5579     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5580     return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5581 
5582   case llvm::Triple::nvptx:
5583   case llvm::Triple::nvptx64:
5584     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5585 
5586   case llvm::Triple::msp430:
5587     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5588 
5589   case llvm::Triple::systemz:
5590     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5591 
5592   case llvm::Triple::tce:
5593     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5594 
5595   case llvm::Triple::x86: {
5596     bool IsDarwinVectorABI = Triple.isOSDarwin();
5597     bool IsSmallStructInRegABI =
5598         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5599     bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5600 
5601     if (Triple.getOS() == llvm::Triple::Win32) {
5602       return *(TheTargetCodeGenInfo =
5603                new WinX86_32TargetCodeGenInfo(Types,
5604                                               IsDarwinVectorABI, IsSmallStructInRegABI,
5605                                               IsWin32FloatStructABI,
5606                                               CodeGenOpts.NumRegisterParameters));
5607     } else {
5608       return *(TheTargetCodeGenInfo =
5609                new X86_32TargetCodeGenInfo(Types,
5610                                            IsDarwinVectorABI, IsSmallStructInRegABI,
5611                                            IsWin32FloatStructABI,
5612                                            CodeGenOpts.NumRegisterParameters));
5613     }
5614   }
5615 
5616   case llvm::Triple::x86_64: {
5617     bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5618 
5619     switch (Triple.getOS()) {
5620     case llvm::Triple::Win32:
5621     case llvm::Triple::MinGW32:
5622     case llvm::Triple::Cygwin:
5623       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5624     case llvm::Triple::NaCl:
5625       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5626                                                                       HasAVX));
5627     default:
5628       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5629                                                                   HasAVX));
5630     }
5631   }
5632   case llvm::Triple::hexagon:
5633     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5634   case llvm::Triple::sparcv9:
5635     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5636   case llvm::Triple::xcore:
5637     return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types));
5638 
5639   }
5640 }
5641