1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/DataLayout.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::DataLayout &ABIInfo::getDataLayout() const {
55   return CGT.getDataLayout();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
101 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                      const FunctionNoProtoType *fnType) const {
103   // The following conventions are known to require this to be false:
104   //   x86_stdcall
105   //   MIPS
106   // For everything else, we just prefer false unless we opt out.
107   return false;
108 }
109 
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111 
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                          bool AllowArrays) {
116   if (FD->isUnnamedBitfield())
117     return true;
118 
119   QualType FT = FD->getType();
120 
121   // Constant arrays of empty records count as empty, strip them off.
122   // Constant arrays of zero length always count as empty.
123   if (AllowArrays)
124     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125       if (AT->getSize() == 0)
126         return true;
127       FT = AT->getElementType();
128     }
129 
130   const RecordType *RT = FT->getAs<RecordType>();
131   if (!RT)
132     return false;
133 
134   // C++ record fields are never empty, at least in the Itanium ABI.
135   //
136   // FIXME: We should use a predicate for whether this behavior is true in the
137   // current ABI.
138   if (isa<CXXRecordDecl>(RT->getDecl()))
139     return false;
140 
141   return isEmptyRecord(Context, FT, AllowArrays);
142 }
143 
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148   const RecordType *RT = T->getAs<RecordType>();
149   if (!RT)
150     return 0;
151   const RecordDecl *RD = RT->getDecl();
152   if (RD->hasFlexibleArrayMember())
153     return false;
154 
155   // If this is a C++ record, check the bases first.
156   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158            e = CXXRD->bases_end(); i != e; ++i)
159       if (!isEmptyRecord(Context, i->getType(), true))
160         return false;
161 
162   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163          i != e; ++i)
164     if (!isEmptyField(Context, *i, AllowArrays))
165       return false;
166   return true;
167 }
168 
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173   if (!RD)
174     return false;
175 
176   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178 
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183   const RecordType *RT = T->getAs<RecordType>();
184   if (!RT)
185     return false;
186 
187   return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189 
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199   const RecordType *RT = T->getAsStructureType();
200   if (!RT)
201     return 0;
202 
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return 0;
206 
207   const Type *Found = 0;
208 
209   // If this is a C++ record, check the bases first.
210   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212            e = CXXRD->bases_end(); i != e; ++i) {
213       // Ignore empty records.
214       if (isEmptyRecord(Context, i->getType(), true))
215         continue;
216 
217       // If we already found an element then this isn't a single-element struct.
218       if (Found)
219         return 0;
220 
221       // If this is non-empty and not a single element struct, the composite
222       // cannot be a single element struct.
223       Found = isSingleElementStruct(i->getType(), Context);
224       if (!Found)
225         return 0;
226     }
227   }
228 
229   // Check for single element.
230   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231          i != e; ++i) {
232     const FieldDecl *FD = *i;
233     QualType FT = FD->getType();
234 
235     // Ignore empty fields.
236     if (isEmptyField(Context, FD, true))
237       continue;
238 
239     // If we already found an element then this isn't a single-element
240     // struct.
241     if (Found)
242       return 0;
243 
244     // Treat single element arrays as the element.
245     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246       if (AT->getSize().getZExtValue() != 1)
247         break;
248       FT = AT->getElementType();
249     }
250 
251     if (!isAggregateTypeForABI(FT)) {
252       Found = FT.getTypePtr();
253     } else {
254       Found = isSingleElementStruct(FT, Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // We don't consider a struct a single-element struct if it has
261   // padding beyond the element type.
262   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263     return 0;
264 
265   return Found;
266 }
267 
268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271       !Ty->isBlockPointerType())
272     return false;
273 
274   uint64_t Size = Context.getTypeSize(Ty);
275   return Size == 32 || Size == 64;
276 }
277 
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288   // We can only expand structure types.
289   const RecordType *RT = Ty->getAs<RecordType>();
290   if (!RT)
291     return false;
292 
293   // We can only expand (C) structures.
294   //
295   // FIXME: This needs to be generalized to handle classes as well.
296   const RecordDecl *RD = RT->getDecl();
297   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298     return false;
299 
300   uint64_t Size = 0;
301 
302   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303          i != e; ++i) {
304     const FieldDecl *FD = *i;
305 
306     if (!is32Or64BitBasicType(FD->getType(), Context))
307       return false;
308 
309     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310     // how to expand them yet, and the predicate for telling if a bitfield still
311     // counts as "basic" is more complicated than what we were doing previously.
312     if (FD->isBitField())
313       return false;
314 
315     Size += Context.getTypeSize(FD->getType());
316   }
317 
318   // Make sure there are not any holes in the struct.
319   if (Size != Context.getTypeSize(Ty))
320     return false;
321 
322   return true;
323 }
324 
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
332   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333 
334   ABIArgInfo classifyReturnType(QualType RetTy) const;
335   ABIArgInfo classifyArgumentType(QualType RetTy) const;
336 
337   virtual void computeInfo(CGFunctionInfo &FI) const {
338     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340          it != ie; ++it)
341       it->info = classifyArgumentType(it->type);
342   }
343 
344   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                  CodeGenFunction &CGF) const;
346 };
347 
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
350   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353 
354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                        CodeGenFunction &CGF) const {
356   return 0;
357 }
358 
359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360   if (isAggregateTypeForABI(Ty)) {
361     // Records with non trivial destructors/constructors should not be passed
362     // by value.
363     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365 
366     return ABIArgInfo::getIndirect(0);
367   }
368 
369   // Treat an enum type as its underlying type.
370   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371     Ty = EnumTy->getDecl()->getIntegerType();
372 
373   return (Ty->isPromotableIntegerType() ?
374           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376 
377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378   if (RetTy->isVoidType())
379     return ABIArgInfo::getIgnore();
380 
381   if (isAggregateTypeForABI(RetTy))
382     return ABIArgInfo::getIndirect(0);
383 
384   // Treat an enum type as its underlying type.
385   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386     RetTy = EnumTy->getDecl()->getIntegerType();
387 
388   return (RetTy->isPromotableIntegerType() ?
389           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391 
392 //===----------------------------------------------------------------------===//
393 // le32/PNaCl bitcode ABI Implementation
394 //===----------------------------------------------------------------------===//
395 
396 class PNaClABIInfo : public ABIInfo {
397  public:
398   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
399 
400   ABIArgInfo classifyReturnType(QualType RetTy) const;
401   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
402 
403   virtual void computeInfo(CGFunctionInfo &FI) const;
404   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
405                                  CodeGenFunction &CGF) const;
406 };
407 
408 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
409  public:
410   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
411     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
412 };
413 
414 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
415     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
416 
417     unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
418 
419     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
420          it != ie; ++it)
421       it->info = classifyArgumentType(it->type, FreeRegs);
422   }
423 
424 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
425                                        CodeGenFunction &CGF) const {
426   return 0;
427 }
428 
429 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
430                                               unsigned &FreeRegs) const {
431   if (isAggregateTypeForABI(Ty)) {
432     // Records with non trivial destructors/constructors should not be passed
433     // by value.
434     FreeRegs = 0;
435     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
436       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
437 
438     return ABIArgInfo::getIndirect(0);
439   }
440 
441   // Treat an enum type as its underlying type.
442   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
443     Ty = EnumTy->getDecl()->getIntegerType();
444 
445   ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
446           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
447 
448   // Regparm regs hold 32 bits.
449   unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
450   if (SizeInRegs == 0) return BaseInfo;
451   if (SizeInRegs > FreeRegs) {
452     FreeRegs = 0;
453     return BaseInfo;
454   }
455   FreeRegs -= SizeInRegs;
456   return BaseInfo.isDirect() ?
457       ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
458       ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
459 }
460 
461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462   if (RetTy->isVoidType())
463     return ABIArgInfo::getIgnore();
464 
465   if (isAggregateTypeForABI(RetTy))
466     return ABIArgInfo::getIndirect(0);
467 
468   // Treat an enum type as its underlying type.
469   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
470     RetTy = EnumTy->getDecl()->getIntegerType();
471 
472   return (RetTy->isPromotableIntegerType() ?
473           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
474 }
475 
476 /// UseX86_MMXType - Return true if this is an MMX type that should use the
477 /// special x86_mmx type.
478 bool UseX86_MMXType(llvm::Type *IRType) {
479   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
480   // special x86_mmx type.
481   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483     IRType->getScalarSizeInBits() != 64;
484 }
485 
486 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487                                           StringRef Constraint,
488                                           llvm::Type* Ty) {
489   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
490     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
491   return Ty;
492 }
493 
494 //===----------------------------------------------------------------------===//
495 // X86-32 ABI Implementation
496 //===----------------------------------------------------------------------===//
497 
498 /// X86_32ABIInfo - The X86-32 ABI information.
499 class X86_32ABIInfo : public ABIInfo {
500   enum Class {
501     Integer,
502     Float
503   };
504 
505   static const unsigned MinABIStackAlignInBytes = 4;
506 
507   bool IsDarwinVectorABI;
508   bool IsSmallStructInRegABI;
509   bool IsMMXDisabled;
510   bool IsWin32FloatStructABI;
511   unsigned DefaultNumRegisterParameters;
512 
513   static bool isRegisterSize(unsigned Size) {
514     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
515   }
516 
517   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
518                                           unsigned callingConvention);
519 
520   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
521   /// such that the argument will be passed in memory.
522   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
523                                unsigned &FreeRegs) const;
524 
525   /// \brief Return the alignment to use for the given type on the stack.
526   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
527 
528   Class classify(QualType Ty) const;
529   ABIArgInfo classifyReturnType(QualType RetTy,
530                                 unsigned callingConvention) const;
531   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
532                                   bool IsFastCall) const;
533   bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
534                       bool IsFastCall, bool &NeedsPadding) const;
535 
536 public:
537 
538   virtual void computeInfo(CGFunctionInfo &FI) const;
539   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
540                                  CodeGenFunction &CGF) const;
541 
542   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
543                 unsigned r)
544     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
545       IsMMXDisabled(m), IsWin32FloatStructABI(w),
546       DefaultNumRegisterParameters(r) {}
547 };
548 
549 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
550 public:
551   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
552       bool d, bool p, bool m, bool w, unsigned r)
553     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
554 
555   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
556                            CodeGen::CodeGenModule &CGM) const;
557 
558   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
559     // Darwin uses different dwarf register numbers for EH.
560     if (CGM.isTargetDarwin()) return 5;
561 
562     return 4;
563   }
564 
565   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
566                                llvm::Value *Address) const;
567 
568   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
569                                   StringRef Constraint,
570                                   llvm::Type* Ty) const {
571     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
572   }
573 
574 };
575 
576 }
577 
578 /// shouldReturnTypeInRegister - Determine if the given type should be
579 /// passed in a register (for the Darwin ABI).
580 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
581                                                ASTContext &Context,
582                                                unsigned callingConvention) {
583   uint64_t Size = Context.getTypeSize(Ty);
584 
585   // Type must be register sized.
586   if (!isRegisterSize(Size))
587     return false;
588 
589   if (Ty->isVectorType()) {
590     // 64- and 128- bit vectors inside structures are not returned in
591     // registers.
592     if (Size == 64 || Size == 128)
593       return false;
594 
595     return true;
596   }
597 
598   // If this is a builtin, pointer, enum, complex type, member pointer, or
599   // member function pointer it is ok.
600   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
601       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
602       Ty->isBlockPointerType() || Ty->isMemberPointerType())
603     return true;
604 
605   // Arrays are treated like records.
606   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
607     return shouldReturnTypeInRegister(AT->getElementType(), Context,
608                                       callingConvention);
609 
610   // Otherwise, it must be a record type.
611   const RecordType *RT = Ty->getAs<RecordType>();
612   if (!RT) return false;
613 
614   // FIXME: Traverse bases here too.
615 
616   // For thiscall conventions, structures will never be returned in
617   // a register.  This is for compatibility with the MSVC ABI
618   if (callingConvention == llvm::CallingConv::X86_ThisCall &&
619       RT->isStructureType()) {
620     return false;
621   }
622 
623   // Structure types are passed in register if all fields would be
624   // passed in a register.
625   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
626          e = RT->getDecl()->field_end(); i != e; ++i) {
627     const FieldDecl *FD = *i;
628 
629     // Empty fields are ignored.
630     if (isEmptyField(Context, FD, true))
631       continue;
632 
633     // Check fields recursively.
634     if (!shouldReturnTypeInRegister(FD->getType(), Context,
635                                     callingConvention))
636       return false;
637   }
638   return true;
639 }
640 
641 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
642                                             unsigned callingConvention) const {
643   if (RetTy->isVoidType())
644     return ABIArgInfo::getIgnore();
645 
646   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
647     // On Darwin, some vectors are returned in registers.
648     if (IsDarwinVectorABI) {
649       uint64_t Size = getContext().getTypeSize(RetTy);
650 
651       // 128-bit vectors are a special case; they are returned in
652       // registers and we need to make sure to pick a type the LLVM
653       // backend will like.
654       if (Size == 128)
655         return ABIArgInfo::getDirect(llvm::VectorType::get(
656                   llvm::Type::getInt64Ty(getVMContext()), 2));
657 
658       // Always return in register if it fits in a general purpose
659       // register, or if it is 64 bits and has a single element.
660       if ((Size == 8 || Size == 16 || Size == 32) ||
661           (Size == 64 && VT->getNumElements() == 1))
662         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
663                                                             Size));
664 
665       return ABIArgInfo::getIndirect(0);
666     }
667 
668     return ABIArgInfo::getDirect();
669   }
670 
671   if (isAggregateTypeForABI(RetTy)) {
672     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
673       // Structures with either a non-trivial destructor or a non-trivial
674       // copy constructor are always indirect.
675       if (hasNonTrivialDestructorOrCopyConstructor(RT))
676         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
677 
678       // Structures with flexible arrays are always indirect.
679       if (RT->getDecl()->hasFlexibleArrayMember())
680         return ABIArgInfo::getIndirect(0);
681     }
682 
683     // If specified, structs and unions are always indirect.
684     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
685       return ABIArgInfo::getIndirect(0);
686 
687     // Small structures which are register sized are generally returned
688     // in a register.
689     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
690                                                   callingConvention)) {
691       uint64_t Size = getContext().getTypeSize(RetTy);
692 
693       // As a special-case, if the struct is a "single-element" struct, and
694       // the field is of type "float" or "double", return it in a
695       // floating-point register. (MSVC does not apply this special case.)
696       // We apply a similar transformation for pointer types to improve the
697       // quality of the generated IR.
698       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
699         if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
700             || SeltTy->hasPointerRepresentation())
701           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
702 
703       // FIXME: We should be able to narrow this integer in cases with dead
704       // padding.
705       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
706     }
707 
708     return ABIArgInfo::getIndirect(0);
709   }
710 
711   // Treat an enum type as its underlying type.
712   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
713     RetTy = EnumTy->getDecl()->getIntegerType();
714 
715   return (RetTy->isPromotableIntegerType() ?
716           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
717 }
718 
719 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
720   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
721 }
722 
723 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
724   const RecordType *RT = Ty->getAs<RecordType>();
725   if (!RT)
726     return 0;
727   const RecordDecl *RD = RT->getDecl();
728 
729   // If this is a C++ record, check the bases first.
730   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
731     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
732            e = CXXRD->bases_end(); i != e; ++i)
733       if (!isRecordWithSSEVectorType(Context, i->getType()))
734         return false;
735 
736   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
737        i != e; ++i) {
738     QualType FT = i->getType();
739 
740     if (isSSEVectorType(Context, FT))
741       return true;
742 
743     if (isRecordWithSSEVectorType(Context, FT))
744       return true;
745   }
746 
747   return false;
748 }
749 
750 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
751                                                  unsigned Align) const {
752   // Otherwise, if the alignment is less than or equal to the minimum ABI
753   // alignment, just use the default; the backend will handle this.
754   if (Align <= MinABIStackAlignInBytes)
755     return 0; // Use default alignment.
756 
757   // On non-Darwin, the stack type alignment is always 4.
758   if (!IsDarwinVectorABI) {
759     // Set explicit alignment, since we may need to realign the top.
760     return MinABIStackAlignInBytes;
761   }
762 
763   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
764   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
765                       isRecordWithSSEVectorType(getContext(), Ty)))
766     return 16;
767 
768   return MinABIStackAlignInBytes;
769 }
770 
771 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
772                                             unsigned &FreeRegs) const {
773   if (!ByVal) {
774     if (FreeRegs) {
775       --FreeRegs; // Non byval indirects just use one pointer.
776       return ABIArgInfo::getIndirectInReg(0, false);
777     }
778     return ABIArgInfo::getIndirect(0, false);
779   }
780 
781   // Compute the byval alignment.
782   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
783   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
784   if (StackAlign == 0)
785     return ABIArgInfo::getIndirect(4);
786 
787   // If the stack alignment is less than the type alignment, realign the
788   // argument.
789   if (StackAlign < TypeAlign)
790     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
791                                    /*Realign=*/true);
792 
793   return ABIArgInfo::getIndirect(StackAlign);
794 }
795 
796 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
797   const Type *T = isSingleElementStruct(Ty, getContext());
798   if (!T)
799     T = Ty.getTypePtr();
800 
801   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
802     BuiltinType::Kind K = BT->getKind();
803     if (K == BuiltinType::Float || K == BuiltinType::Double)
804       return Float;
805   }
806   return Integer;
807 }
808 
809 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
810                                    bool IsFastCall, bool &NeedsPadding) const {
811   NeedsPadding = false;
812   Class C = classify(Ty);
813   if (C == Float)
814     return false;
815 
816   unsigned Size = getContext().getTypeSize(Ty);
817   unsigned SizeInRegs = (Size + 31) / 32;
818 
819   if (SizeInRegs == 0)
820     return false;
821 
822   if (SizeInRegs > FreeRegs) {
823     FreeRegs = 0;
824     return false;
825   }
826 
827   FreeRegs -= SizeInRegs;
828 
829   if (IsFastCall) {
830     if (Size > 32)
831       return false;
832 
833     if (Ty->isIntegralOrEnumerationType())
834       return true;
835 
836     if (Ty->isPointerType())
837       return true;
838 
839     if (Ty->isReferenceType())
840       return true;
841 
842     if (FreeRegs)
843       NeedsPadding = true;
844 
845     return false;
846   }
847 
848   return true;
849 }
850 
851 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
852                                                unsigned &FreeRegs,
853                                                bool IsFastCall) const {
854   // FIXME: Set alignment on indirect arguments.
855   if (isAggregateTypeForABI(Ty)) {
856     // Structures with flexible arrays are always indirect.
857     if (const RecordType *RT = Ty->getAs<RecordType>()) {
858       // Structures with either a non-trivial destructor or a non-trivial
859       // copy constructor are always indirect.
860       if (hasNonTrivialDestructorOrCopyConstructor(RT))
861         return getIndirectResult(Ty, false, FreeRegs);
862 
863       if (RT->getDecl()->hasFlexibleArrayMember())
864         return getIndirectResult(Ty, true, FreeRegs);
865     }
866 
867     // Ignore empty structs/unions.
868     if (isEmptyRecord(getContext(), Ty, true))
869       return ABIArgInfo::getIgnore();
870 
871     llvm::LLVMContext &LLVMContext = getVMContext();
872     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
873     bool NeedsPadding;
874     if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
875       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
876       SmallVector<llvm::Type*, 3> Elements;
877       for (unsigned I = 0; I < SizeInRegs; ++I)
878         Elements.push_back(Int32);
879       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
880       return ABIArgInfo::getDirectInReg(Result);
881     }
882     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
883 
884     // Expand small (<= 128-bit) record types when we know that the stack layout
885     // of those arguments will match the struct. This is important because the
886     // LLVM backend isn't smart enough to remove byval, which inhibits many
887     // optimizations.
888     if (getContext().getTypeSize(Ty) <= 4*32 &&
889         canExpandIndirectArgument(Ty, getContext()))
890       return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
891 
892     return getIndirectResult(Ty, true, FreeRegs);
893   }
894 
895   if (const VectorType *VT = Ty->getAs<VectorType>()) {
896     // On Darwin, some vectors are passed in memory, we handle this by passing
897     // it as an i8/i16/i32/i64.
898     if (IsDarwinVectorABI) {
899       uint64_t Size = getContext().getTypeSize(Ty);
900       if ((Size == 8 || Size == 16 || Size == 32) ||
901           (Size == 64 && VT->getNumElements() == 1))
902         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
903                                                             Size));
904     }
905 
906     llvm::Type *IRType = CGT.ConvertType(Ty);
907     if (UseX86_MMXType(IRType)) {
908       if (IsMMXDisabled)
909         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
910                                                             64));
911       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
912       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
913       return AAI;
914     }
915 
916     return ABIArgInfo::getDirect();
917   }
918 
919 
920   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
921     Ty = EnumTy->getDecl()->getIntegerType();
922 
923   bool NeedsPadding;
924   bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
925 
926   if (Ty->isPromotableIntegerType()) {
927     if (InReg)
928       return ABIArgInfo::getExtendInReg();
929     return ABIArgInfo::getExtend();
930   }
931   if (InReg)
932     return ABIArgInfo::getDirectInReg();
933   return ABIArgInfo::getDirect();
934 }
935 
936 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
937   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
938                                           FI.getCallingConvention());
939 
940   unsigned CC = FI.getCallingConvention();
941   bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
942   unsigned FreeRegs;
943   if (IsFastCall)
944     FreeRegs = 2;
945   else if (FI.getHasRegParm())
946     FreeRegs = FI.getRegParm();
947   else
948     FreeRegs = DefaultNumRegisterParameters;
949 
950   // If the return value is indirect, then the hidden argument is consuming one
951   // integer register.
952   if (FI.getReturnInfo().isIndirect() && FreeRegs) {
953     --FreeRegs;
954     ABIArgInfo &Old = FI.getReturnInfo();
955     Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
956                                        Old.getIndirectByVal(),
957                                        Old.getIndirectRealign());
958   }
959 
960   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
961        it != ie; ++it)
962     it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
963 }
964 
965 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
966                                       CodeGenFunction &CGF) const {
967   llvm::Type *BPP = CGF.Int8PtrPtrTy;
968 
969   CGBuilderTy &Builder = CGF.Builder;
970   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
971                                                        "ap");
972   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
973 
974   // Compute if the address needs to be aligned
975   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
976   Align = getTypeStackAlignInBytes(Ty, Align);
977   Align = std::max(Align, 4U);
978   if (Align > 4) {
979     // addr = (addr + align - 1) & -align;
980     llvm::Value *Offset =
981       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
982     Addr = CGF.Builder.CreateGEP(Addr, Offset);
983     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
984                                                     CGF.Int32Ty);
985     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
986     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
987                                       Addr->getType(),
988                                       "ap.cur.aligned");
989   }
990 
991   llvm::Type *PTy =
992     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
993   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
994 
995   uint64_t Offset =
996     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
997   llvm::Value *NextAddr =
998     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
999                       "ap.next");
1000   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1001 
1002   return AddrTyped;
1003 }
1004 
1005 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1006                                                   llvm::GlobalValue *GV,
1007                                             CodeGen::CodeGenModule &CGM) const {
1008   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1009     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1010       // Get the LLVM function.
1011       llvm::Function *Fn = cast<llvm::Function>(GV);
1012 
1013       // Now add the 'alignstack' attribute with a value of 16.
1014       llvm::AttrBuilder B;
1015       B.addStackAlignmentAttr(16);
1016       Fn->addAttribute(llvm::AttrListPtr::FunctionIndex,
1017                        llvm::Attributes::get(CGM.getLLVMContext(), B));
1018     }
1019   }
1020 }
1021 
1022 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1023                                                CodeGen::CodeGenFunction &CGF,
1024                                                llvm::Value *Address) const {
1025   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1026 
1027   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1028 
1029   // 0-7 are the eight integer registers;  the order is different
1030   //   on Darwin (for EH), but the range is the same.
1031   // 8 is %eip.
1032   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1033 
1034   if (CGF.CGM.isTargetDarwin()) {
1035     // 12-16 are st(0..4).  Not sure why we stop at 4.
1036     // These have size 16, which is sizeof(long double) on
1037     // platforms with 8-byte alignment for that type.
1038     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1039     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1040 
1041   } else {
1042     // 9 is %eflags, which doesn't get a size on Darwin for some
1043     // reason.
1044     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1045 
1046     // 11-16 are st(0..5).  Not sure why we stop at 5.
1047     // These have size 12, which is sizeof(long double) on
1048     // platforms with 4-byte alignment for that type.
1049     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1050     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1051   }
1052 
1053   return false;
1054 }
1055 
1056 //===----------------------------------------------------------------------===//
1057 // X86-64 ABI Implementation
1058 //===----------------------------------------------------------------------===//
1059 
1060 
1061 namespace {
1062 /// X86_64ABIInfo - The X86_64 ABI information.
1063 class X86_64ABIInfo : public ABIInfo {
1064   enum Class {
1065     Integer = 0,
1066     SSE,
1067     SSEUp,
1068     X87,
1069     X87Up,
1070     ComplexX87,
1071     NoClass,
1072     Memory
1073   };
1074 
1075   /// merge - Implement the X86_64 ABI merging algorithm.
1076   ///
1077   /// Merge an accumulating classification \arg Accum with a field
1078   /// classification \arg Field.
1079   ///
1080   /// \param Accum - The accumulating classification. This should
1081   /// always be either NoClass or the result of a previous merge
1082   /// call. In addition, this should never be Memory (the caller
1083   /// should just return Memory for the aggregate).
1084   static Class merge(Class Accum, Class Field);
1085 
1086   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1087   ///
1088   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1089   /// final MEMORY or SSE classes when necessary.
1090   ///
1091   /// \param AggregateSize - The size of the current aggregate in
1092   /// the classification process.
1093   ///
1094   /// \param Lo - The classification for the parts of the type
1095   /// residing in the low word of the containing object.
1096   ///
1097   /// \param Hi - The classification for the parts of the type
1098   /// residing in the higher words of the containing object.
1099   ///
1100   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1101 
1102   /// classify - Determine the x86_64 register classes in which the
1103   /// given type T should be passed.
1104   ///
1105   /// \param Lo - The classification for the parts of the type
1106   /// residing in the low word of the containing object.
1107   ///
1108   /// \param Hi - The classification for the parts of the type
1109   /// residing in the high word of the containing object.
1110   ///
1111   /// \param OffsetBase - The bit offset of this type in the
1112   /// containing object.  Some parameters are classified different
1113   /// depending on whether they straddle an eightbyte boundary.
1114   ///
1115   /// If a word is unused its result will be NoClass; if a type should
1116   /// be passed in Memory then at least the classification of \arg Lo
1117   /// will be Memory.
1118   ///
1119   /// The \arg Lo class will be NoClass iff the argument is ignored.
1120   ///
1121   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1122   /// also be ComplexX87.
1123   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1124 
1125   llvm::Type *GetByteVectorType(QualType Ty) const;
1126   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1127                                  unsigned IROffset, QualType SourceTy,
1128                                  unsigned SourceOffset) const;
1129   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1130                                      unsigned IROffset, QualType SourceTy,
1131                                      unsigned SourceOffset) const;
1132 
1133   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1134   /// such that the argument will be returned in memory.
1135   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1136 
1137   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1138   /// such that the argument will be passed in memory.
1139   ///
1140   /// \param freeIntRegs - The number of free integer registers remaining
1141   /// available.
1142   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1143 
1144   ABIArgInfo classifyReturnType(QualType RetTy) const;
1145 
1146   ABIArgInfo classifyArgumentType(QualType Ty,
1147                                   unsigned freeIntRegs,
1148                                   unsigned &neededInt,
1149                                   unsigned &neededSSE) const;
1150 
1151   bool IsIllegalVectorType(QualType Ty) const;
1152 
1153   /// The 0.98 ABI revision clarified a lot of ambiguities,
1154   /// unfortunately in ways that were not always consistent with
1155   /// certain previous compilers.  In particular, platforms which
1156   /// required strict binary compatibility with older versions of GCC
1157   /// may need to exempt themselves.
1158   bool honorsRevision0_98() const {
1159     return !getContext().getTargetInfo().getTriple().isOSDarwin();
1160   }
1161 
1162   bool HasAVX;
1163   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1164   // 64-bit hardware.
1165   bool Has64BitPointers;
1166 
1167 public:
1168   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1169       ABIInfo(CGT), HasAVX(hasavx),
1170       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1171   }
1172 
1173   bool isPassedUsingAVXType(QualType type) const {
1174     unsigned neededInt, neededSSE;
1175     // The freeIntRegs argument doesn't matter here.
1176     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1177     if (info.isDirect()) {
1178       llvm::Type *ty = info.getCoerceToType();
1179       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1180         return (vectorTy->getBitWidth() > 128);
1181     }
1182     return false;
1183   }
1184 
1185   virtual void computeInfo(CGFunctionInfo &FI) const;
1186 
1187   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1188                                  CodeGenFunction &CGF) const;
1189 };
1190 
1191 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1192 class WinX86_64ABIInfo : public ABIInfo {
1193 
1194   ABIArgInfo classify(QualType Ty) const;
1195 
1196 public:
1197   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1198 
1199   virtual void computeInfo(CGFunctionInfo &FI) const;
1200 
1201   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1202                                  CodeGenFunction &CGF) const;
1203 };
1204 
1205 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1206 public:
1207   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1208       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1209 
1210   const X86_64ABIInfo &getABIInfo() const {
1211     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1212   }
1213 
1214   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1215     return 7;
1216   }
1217 
1218   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1219                                llvm::Value *Address) const {
1220     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1221 
1222     // 0-15 are the 16 integer registers.
1223     // 16 is %rip.
1224     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1225     return false;
1226   }
1227 
1228   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1229                                   StringRef Constraint,
1230                                   llvm::Type* Ty) const {
1231     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1232   }
1233 
1234   bool isNoProtoCallVariadic(const CallArgList &args,
1235                              const FunctionNoProtoType *fnType) const {
1236     // The default CC on x86-64 sets %al to the number of SSA
1237     // registers used, and GCC sets this when calling an unprototyped
1238     // function, so we override the default behavior.  However, don't do
1239     // that when AVX types are involved: the ABI explicitly states it is
1240     // undefined, and it doesn't work in practice because of how the ABI
1241     // defines varargs anyway.
1242     if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1243       bool HasAVXType = false;
1244       for (CallArgList::const_iterator
1245              it = args.begin(), ie = args.end(); it != ie; ++it) {
1246         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1247           HasAVXType = true;
1248           break;
1249         }
1250       }
1251 
1252       if (!HasAVXType)
1253         return true;
1254     }
1255 
1256     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1257   }
1258 
1259 };
1260 
1261 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1262 public:
1263   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1264     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1265 
1266   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1267     return 7;
1268   }
1269 
1270   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1271                                llvm::Value *Address) const {
1272     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1273 
1274     // 0-15 are the 16 integer registers.
1275     // 16 is %rip.
1276     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1277     return false;
1278   }
1279 };
1280 
1281 }
1282 
1283 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1284                               Class &Hi) const {
1285   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1286   //
1287   // (a) If one of the classes is Memory, the whole argument is passed in
1288   //     memory.
1289   //
1290   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1291   //     memory.
1292   //
1293   // (c) If the size of the aggregate exceeds two eightbytes and the first
1294   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1295   //     argument is passed in memory. NOTE: This is necessary to keep the
1296   //     ABI working for processors that don't support the __m256 type.
1297   //
1298   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1299   //
1300   // Some of these are enforced by the merging logic.  Others can arise
1301   // only with unions; for example:
1302   //   union { _Complex double; unsigned; }
1303   //
1304   // Note that clauses (b) and (c) were added in 0.98.
1305   //
1306   if (Hi == Memory)
1307     Lo = Memory;
1308   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1309     Lo = Memory;
1310   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1311     Lo = Memory;
1312   if (Hi == SSEUp && Lo != SSE)
1313     Hi = SSE;
1314 }
1315 
1316 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1317   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1318   // classified recursively so that always two fields are
1319   // considered. The resulting class is calculated according to
1320   // the classes of the fields in the eightbyte:
1321   //
1322   // (a) If both classes are equal, this is the resulting class.
1323   //
1324   // (b) If one of the classes is NO_CLASS, the resulting class is
1325   // the other class.
1326   //
1327   // (c) If one of the classes is MEMORY, the result is the MEMORY
1328   // class.
1329   //
1330   // (d) If one of the classes is INTEGER, the result is the
1331   // INTEGER.
1332   //
1333   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1334   // MEMORY is used as class.
1335   //
1336   // (f) Otherwise class SSE is used.
1337 
1338   // Accum should never be memory (we should have returned) or
1339   // ComplexX87 (because this cannot be passed in a structure).
1340   assert((Accum != Memory && Accum != ComplexX87) &&
1341          "Invalid accumulated classification during merge.");
1342   if (Accum == Field || Field == NoClass)
1343     return Accum;
1344   if (Field == Memory)
1345     return Memory;
1346   if (Accum == NoClass)
1347     return Field;
1348   if (Accum == Integer || Field == Integer)
1349     return Integer;
1350   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1351       Accum == X87 || Accum == X87Up)
1352     return Memory;
1353   return SSE;
1354 }
1355 
1356 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1357                              Class &Lo, Class &Hi) const {
1358   // FIXME: This code can be simplified by introducing a simple value class for
1359   // Class pairs with appropriate constructor methods for the various
1360   // situations.
1361 
1362   // FIXME: Some of the split computations are wrong; unaligned vectors
1363   // shouldn't be passed in registers for example, so there is no chance they
1364   // can straddle an eightbyte. Verify & simplify.
1365 
1366   Lo = Hi = NoClass;
1367 
1368   Class &Current = OffsetBase < 64 ? Lo : Hi;
1369   Current = Memory;
1370 
1371   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1372     BuiltinType::Kind k = BT->getKind();
1373 
1374     if (k == BuiltinType::Void) {
1375       Current = NoClass;
1376     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1377       Lo = Integer;
1378       Hi = Integer;
1379     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1380       Current = Integer;
1381     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1382                (k == BuiltinType::LongDouble &&
1383                 getContext().getTargetInfo().getTriple().getOS() ==
1384                 llvm::Triple::NativeClient)) {
1385       Current = SSE;
1386     } else if (k == BuiltinType::LongDouble) {
1387       Lo = X87;
1388       Hi = X87Up;
1389     }
1390     // FIXME: _Decimal32 and _Decimal64 are SSE.
1391     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1392     return;
1393   }
1394 
1395   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1396     // Classify the underlying integer type.
1397     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1398     return;
1399   }
1400 
1401   if (Ty->hasPointerRepresentation()) {
1402     Current = Integer;
1403     return;
1404   }
1405 
1406   if (Ty->isMemberPointerType()) {
1407     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1408       Lo = Hi = Integer;
1409     else
1410       Current = Integer;
1411     return;
1412   }
1413 
1414   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1415     uint64_t Size = getContext().getTypeSize(VT);
1416     if (Size == 32) {
1417       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1418       // float> as integer.
1419       Current = Integer;
1420 
1421       // If this type crosses an eightbyte boundary, it should be
1422       // split.
1423       uint64_t EB_Real = (OffsetBase) / 64;
1424       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1425       if (EB_Real != EB_Imag)
1426         Hi = Lo;
1427     } else if (Size == 64) {
1428       // gcc passes <1 x double> in memory. :(
1429       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1430         return;
1431 
1432       // gcc passes <1 x long long> as INTEGER.
1433       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1434           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1435           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1436           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1437         Current = Integer;
1438       else
1439         Current = SSE;
1440 
1441       // If this type crosses an eightbyte boundary, it should be
1442       // split.
1443       if (OffsetBase && OffsetBase != 64)
1444         Hi = Lo;
1445     } else if (Size == 128 || (HasAVX && Size == 256)) {
1446       // Arguments of 256-bits are split into four eightbyte chunks. The
1447       // least significant one belongs to class SSE and all the others to class
1448       // SSEUP. The original Lo and Hi design considers that types can't be
1449       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1450       // This design isn't correct for 256-bits, but since there're no cases
1451       // where the upper parts would need to be inspected, avoid adding
1452       // complexity and just consider Hi to match the 64-256 part.
1453       Lo = SSE;
1454       Hi = SSEUp;
1455     }
1456     return;
1457   }
1458 
1459   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1460     QualType ET = getContext().getCanonicalType(CT->getElementType());
1461 
1462     uint64_t Size = getContext().getTypeSize(Ty);
1463     if (ET->isIntegralOrEnumerationType()) {
1464       if (Size <= 64)
1465         Current = Integer;
1466       else if (Size <= 128)
1467         Lo = Hi = Integer;
1468     } else if (ET == getContext().FloatTy)
1469       Current = SSE;
1470     else if (ET == getContext().DoubleTy ||
1471              (ET == getContext().LongDoubleTy &&
1472               getContext().getTargetInfo().getTriple().getOS() ==
1473               llvm::Triple::NativeClient))
1474       Lo = Hi = SSE;
1475     else if (ET == getContext().LongDoubleTy)
1476       Current = ComplexX87;
1477 
1478     // If this complex type crosses an eightbyte boundary then it
1479     // should be split.
1480     uint64_t EB_Real = (OffsetBase) / 64;
1481     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1482     if (Hi == NoClass && EB_Real != EB_Imag)
1483       Hi = Lo;
1484 
1485     return;
1486   }
1487 
1488   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1489     // Arrays are treated like structures.
1490 
1491     uint64_t Size = getContext().getTypeSize(Ty);
1492 
1493     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1494     // than four eightbytes, ..., it has class MEMORY.
1495     if (Size > 256)
1496       return;
1497 
1498     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1499     // fields, it has class MEMORY.
1500     //
1501     // Only need to check alignment of array base.
1502     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1503       return;
1504 
1505     // Otherwise implement simplified merge. We could be smarter about
1506     // this, but it isn't worth it and would be harder to verify.
1507     Current = NoClass;
1508     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1509     uint64_t ArraySize = AT->getSize().getZExtValue();
1510 
1511     // The only case a 256-bit wide vector could be used is when the array
1512     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1513     // to work for sizes wider than 128, early check and fallback to memory.
1514     if (Size > 128 && EltSize != 256)
1515       return;
1516 
1517     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1518       Class FieldLo, FieldHi;
1519       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1520       Lo = merge(Lo, FieldLo);
1521       Hi = merge(Hi, FieldHi);
1522       if (Lo == Memory || Hi == Memory)
1523         break;
1524     }
1525 
1526     postMerge(Size, Lo, Hi);
1527     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1528     return;
1529   }
1530 
1531   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1532     uint64_t Size = getContext().getTypeSize(Ty);
1533 
1534     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1535     // than four eightbytes, ..., it has class MEMORY.
1536     if (Size > 256)
1537       return;
1538 
1539     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1540     // copy constructor or a non-trivial destructor, it is passed by invisible
1541     // reference.
1542     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1543       return;
1544 
1545     const RecordDecl *RD = RT->getDecl();
1546 
1547     // Assume variable sized types are passed in memory.
1548     if (RD->hasFlexibleArrayMember())
1549       return;
1550 
1551     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1552 
1553     // Reset Lo class, this will be recomputed.
1554     Current = NoClass;
1555 
1556     // If this is a C++ record, classify the bases first.
1557     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1558       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1559              e = CXXRD->bases_end(); i != e; ++i) {
1560         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1561                "Unexpected base class!");
1562         const CXXRecordDecl *Base =
1563           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1564 
1565         // Classify this field.
1566         //
1567         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1568         // single eightbyte, each is classified separately. Each eightbyte gets
1569         // initialized to class NO_CLASS.
1570         Class FieldLo, FieldHi;
1571         uint64_t Offset =
1572           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1573         classify(i->getType(), Offset, FieldLo, FieldHi);
1574         Lo = merge(Lo, FieldLo);
1575         Hi = merge(Hi, FieldHi);
1576         if (Lo == Memory || Hi == Memory)
1577           break;
1578       }
1579     }
1580 
1581     // Classify the fields one at a time, merging the results.
1582     unsigned idx = 0;
1583     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1584            i != e; ++i, ++idx) {
1585       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1586       bool BitField = i->isBitField();
1587 
1588       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1589       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1590       //
1591       // The only case a 256-bit wide vector could be used is when the struct
1592       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1593       // to work for sizes wider than 128, early check and fallback to memory.
1594       //
1595       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1596         Lo = Memory;
1597         return;
1598       }
1599       // Note, skip this test for bit-fields, see below.
1600       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1601         Lo = Memory;
1602         return;
1603       }
1604 
1605       // Classify this field.
1606       //
1607       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1608       // exceeds a single eightbyte, each is classified
1609       // separately. Each eightbyte gets initialized to class
1610       // NO_CLASS.
1611       Class FieldLo, FieldHi;
1612 
1613       // Bit-fields require special handling, they do not force the
1614       // structure to be passed in memory even if unaligned, and
1615       // therefore they can straddle an eightbyte.
1616       if (BitField) {
1617         // Ignore padding bit-fields.
1618         if (i->isUnnamedBitfield())
1619           continue;
1620 
1621         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1622         uint64_t Size = i->getBitWidthValue(getContext());
1623 
1624         uint64_t EB_Lo = Offset / 64;
1625         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1626         FieldLo = FieldHi = NoClass;
1627         if (EB_Lo) {
1628           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1629           FieldLo = NoClass;
1630           FieldHi = Integer;
1631         } else {
1632           FieldLo = Integer;
1633           FieldHi = EB_Hi ? Integer : NoClass;
1634         }
1635       } else
1636         classify(i->getType(), Offset, FieldLo, FieldHi);
1637       Lo = merge(Lo, FieldLo);
1638       Hi = merge(Hi, FieldHi);
1639       if (Lo == Memory || Hi == Memory)
1640         break;
1641     }
1642 
1643     postMerge(Size, Lo, Hi);
1644   }
1645 }
1646 
1647 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1648   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1649   // place naturally.
1650   if (!isAggregateTypeForABI(Ty)) {
1651     // Treat an enum type as its underlying type.
1652     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1653       Ty = EnumTy->getDecl()->getIntegerType();
1654 
1655     return (Ty->isPromotableIntegerType() ?
1656             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1657   }
1658 
1659   return ABIArgInfo::getIndirect(0);
1660 }
1661 
1662 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1663   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1664     uint64_t Size = getContext().getTypeSize(VecTy);
1665     unsigned LargestVector = HasAVX ? 256 : 128;
1666     if (Size <= 64 || Size > LargestVector)
1667       return true;
1668   }
1669 
1670   return false;
1671 }
1672 
1673 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1674                                             unsigned freeIntRegs) const {
1675   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1676   // place naturally.
1677   //
1678   // This assumption is optimistic, as there could be free registers available
1679   // when we need to pass this argument in memory, and LLVM could try to pass
1680   // the argument in the free register. This does not seem to happen currently,
1681   // but this code would be much safer if we could mark the argument with
1682   // 'onstack'. See PR12193.
1683   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1684     // Treat an enum type as its underlying type.
1685     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1686       Ty = EnumTy->getDecl()->getIntegerType();
1687 
1688     return (Ty->isPromotableIntegerType() ?
1689             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1690   }
1691 
1692   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1693     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1694 
1695   // Compute the byval alignment. We specify the alignment of the byval in all
1696   // cases so that the mid-level optimizer knows the alignment of the byval.
1697   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1698 
1699   // Attempt to avoid passing indirect results using byval when possible. This
1700   // is important for good codegen.
1701   //
1702   // We do this by coercing the value into a scalar type which the backend can
1703   // handle naturally (i.e., without using byval).
1704   //
1705   // For simplicity, we currently only do this when we have exhausted all of the
1706   // free integer registers. Doing this when there are free integer registers
1707   // would require more care, as we would have to ensure that the coerced value
1708   // did not claim the unused register. That would require either reording the
1709   // arguments to the function (so that any subsequent inreg values came first),
1710   // or only doing this optimization when there were no following arguments that
1711   // might be inreg.
1712   //
1713   // We currently expect it to be rare (particularly in well written code) for
1714   // arguments to be passed on the stack when there are still free integer
1715   // registers available (this would typically imply large structs being passed
1716   // by value), so this seems like a fair tradeoff for now.
1717   //
1718   // We can revisit this if the backend grows support for 'onstack' parameter
1719   // attributes. See PR12193.
1720   if (freeIntRegs == 0) {
1721     uint64_t Size = getContext().getTypeSize(Ty);
1722 
1723     // If this type fits in an eightbyte, coerce it into the matching integral
1724     // type, which will end up on the stack (with alignment 8).
1725     if (Align == 8 && Size <= 64)
1726       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1727                                                           Size));
1728   }
1729 
1730   return ABIArgInfo::getIndirect(Align);
1731 }
1732 
1733 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1734 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1735 /// vector register.
1736 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1737   llvm::Type *IRType = CGT.ConvertType(Ty);
1738 
1739   // Wrapper structs that just contain vectors are passed just like vectors,
1740   // strip them off if present.
1741   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1742   while (STy && STy->getNumElements() == 1) {
1743     IRType = STy->getElementType(0);
1744     STy = dyn_cast<llvm::StructType>(IRType);
1745   }
1746 
1747   // If the preferred type is a 16-byte vector, prefer to pass it.
1748   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1749     llvm::Type *EltTy = VT->getElementType();
1750     unsigned BitWidth = VT->getBitWidth();
1751     if ((BitWidth >= 128 && BitWidth <= 256) &&
1752         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1753          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1754          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1755          EltTy->isIntegerTy(128)))
1756       return VT;
1757   }
1758 
1759   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1760 }
1761 
1762 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1763 /// is known to either be off the end of the specified type or being in
1764 /// alignment padding.  The user type specified is known to be at most 128 bits
1765 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1766 /// classification that put one of the two halves in the INTEGER class.
1767 ///
1768 /// It is conservatively correct to return false.
1769 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1770                                   unsigned EndBit, ASTContext &Context) {
1771   // If the bytes being queried are off the end of the type, there is no user
1772   // data hiding here.  This handles analysis of builtins, vectors and other
1773   // types that don't contain interesting padding.
1774   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1775   if (TySize <= StartBit)
1776     return true;
1777 
1778   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1779     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1780     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1781 
1782     // Check each element to see if the element overlaps with the queried range.
1783     for (unsigned i = 0; i != NumElts; ++i) {
1784       // If the element is after the span we care about, then we're done..
1785       unsigned EltOffset = i*EltSize;
1786       if (EltOffset >= EndBit) break;
1787 
1788       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1789       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1790                                  EndBit-EltOffset, Context))
1791         return false;
1792     }
1793     // If it overlaps no elements, then it is safe to process as padding.
1794     return true;
1795   }
1796 
1797   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1798     const RecordDecl *RD = RT->getDecl();
1799     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1800 
1801     // If this is a C++ record, check the bases first.
1802     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1803       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1804            e = CXXRD->bases_end(); i != e; ++i) {
1805         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1806                "Unexpected base class!");
1807         const CXXRecordDecl *Base =
1808           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1809 
1810         // If the base is after the span we care about, ignore it.
1811         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1812         if (BaseOffset >= EndBit) continue;
1813 
1814         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1815         if (!BitsContainNoUserData(i->getType(), BaseStart,
1816                                    EndBit-BaseOffset, Context))
1817           return false;
1818       }
1819     }
1820 
1821     // Verify that no field has data that overlaps the region of interest.  Yes
1822     // this could be sped up a lot by being smarter about queried fields,
1823     // however we're only looking at structs up to 16 bytes, so we don't care
1824     // much.
1825     unsigned idx = 0;
1826     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1827          i != e; ++i, ++idx) {
1828       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1829 
1830       // If we found a field after the region we care about, then we're done.
1831       if (FieldOffset >= EndBit) break;
1832 
1833       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1834       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1835                                  Context))
1836         return false;
1837     }
1838 
1839     // If nothing in this record overlapped the area of interest, then we're
1840     // clean.
1841     return true;
1842   }
1843 
1844   return false;
1845 }
1846 
1847 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1848 /// float member at the specified offset.  For example, {int,{float}} has a
1849 /// float at offset 4.  It is conservatively correct for this routine to return
1850 /// false.
1851 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1852                                   const llvm::DataLayout &TD) {
1853   // Base case if we find a float.
1854   if (IROffset == 0 && IRType->isFloatTy())
1855     return true;
1856 
1857   // If this is a struct, recurse into the field at the specified offset.
1858   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1859     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1860     unsigned Elt = SL->getElementContainingOffset(IROffset);
1861     IROffset -= SL->getElementOffset(Elt);
1862     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1863   }
1864 
1865   // If this is an array, recurse into the field at the specified offset.
1866   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1867     llvm::Type *EltTy = ATy->getElementType();
1868     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1869     IROffset -= IROffset/EltSize*EltSize;
1870     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1871   }
1872 
1873   return false;
1874 }
1875 
1876 
1877 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1878 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1879 llvm::Type *X86_64ABIInfo::
1880 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1881                    QualType SourceTy, unsigned SourceOffset) const {
1882   // The only three choices we have are either double, <2 x float>, or float. We
1883   // pass as float if the last 4 bytes is just padding.  This happens for
1884   // structs that contain 3 floats.
1885   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1886                             SourceOffset*8+64, getContext()))
1887     return llvm::Type::getFloatTy(getVMContext());
1888 
1889   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1890   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1891   // case.
1892   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1893       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1894     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1895 
1896   return llvm::Type::getDoubleTy(getVMContext());
1897 }
1898 
1899 
1900 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1901 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1902 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1903 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1904 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1905 /// etc).
1906 ///
1907 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1908 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1909 /// the 8-byte value references.  PrefType may be null.
1910 ///
1911 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1912 /// an offset into this that we're processing (which is always either 0 or 8).
1913 ///
1914 llvm::Type *X86_64ABIInfo::
1915 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1916                        QualType SourceTy, unsigned SourceOffset) const {
1917   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1918   // returning an 8-byte unit starting with it.  See if we can safely use it.
1919   if (IROffset == 0) {
1920     // Pointers and int64's always fill the 8-byte unit.
1921     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1922         IRType->isIntegerTy(64))
1923       return IRType;
1924 
1925     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1926     // goodness in the source type is just tail padding.  This is allowed to
1927     // kick in for struct {double,int} on the int, but not on
1928     // struct{double,int,int} because we wouldn't return the second int.  We
1929     // have to do this analysis on the source type because we can't depend on
1930     // unions being lowered a specific way etc.
1931     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1932         IRType->isIntegerTy(32) ||
1933         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
1934       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
1935           cast<llvm::IntegerType>(IRType)->getBitWidth();
1936 
1937       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1938                                 SourceOffset*8+64, getContext()))
1939         return IRType;
1940     }
1941   }
1942 
1943   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1944     // If this is a struct, recurse into the field at the specified offset.
1945     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
1946     if (IROffset < SL->getSizeInBytes()) {
1947       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1948       IROffset -= SL->getElementOffset(FieldIdx);
1949 
1950       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1951                                     SourceTy, SourceOffset);
1952     }
1953   }
1954 
1955   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1956     llvm::Type *EltTy = ATy->getElementType();
1957     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
1958     unsigned EltOffset = IROffset/EltSize*EltSize;
1959     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1960                                   SourceOffset);
1961   }
1962 
1963   // Okay, we don't have any better idea of what to pass, so we pass this in an
1964   // integer register that isn't too big to fit the rest of the struct.
1965   unsigned TySizeInBytes =
1966     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1967 
1968   assert(TySizeInBytes != SourceOffset && "Empty field?");
1969 
1970   // It is always safe to classify this as an integer type up to i64 that
1971   // isn't larger than the structure.
1972   return llvm::IntegerType::get(getVMContext(),
1973                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1974 }
1975 
1976 
1977 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1978 /// be used as elements of a two register pair to pass or return, return a
1979 /// first class aggregate to represent them.  For example, if the low part of
1980 /// a by-value argument should be passed as i32* and the high part as float,
1981 /// return {i32*, float}.
1982 static llvm::Type *
1983 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1984                            const llvm::DataLayout &TD) {
1985   // In order to correctly satisfy the ABI, we need to the high part to start
1986   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1987   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1988   // the second element at offset 8.  Check for this:
1989   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1990   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1991   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
1992   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1993 
1994   // To handle this, we have to increase the size of the low part so that the
1995   // second element will start at an 8 byte offset.  We can't increase the size
1996   // of the second element because it might make us access off the end of the
1997   // struct.
1998   if (HiStart != 8) {
1999     // There are only two sorts of types the ABI generation code can produce for
2000     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2001     // Promote these to a larger type.
2002     if (Lo->isFloatTy())
2003       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2004     else {
2005       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2006       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2007     }
2008   }
2009 
2010   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2011 
2012 
2013   // Verify that the second element is at an 8-byte offset.
2014   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2015          "Invalid x86-64 argument pair!");
2016   return Result;
2017 }
2018 
2019 ABIArgInfo X86_64ABIInfo::
2020 classifyReturnType(QualType RetTy) const {
2021   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2022   // classification algorithm.
2023   X86_64ABIInfo::Class Lo, Hi;
2024   classify(RetTy, 0, Lo, Hi);
2025 
2026   // Check some invariants.
2027   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2028   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2029 
2030   llvm::Type *ResType = 0;
2031   switch (Lo) {
2032   case NoClass:
2033     if (Hi == NoClass)
2034       return ABIArgInfo::getIgnore();
2035     // If the low part is just padding, it takes no register, leave ResType
2036     // null.
2037     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2038            "Unknown missing lo part");
2039     break;
2040 
2041   case SSEUp:
2042   case X87Up:
2043     llvm_unreachable("Invalid classification for lo word.");
2044 
2045     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2046     // hidden argument.
2047   case Memory:
2048     return getIndirectReturnResult(RetTy);
2049 
2050     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2051     // available register of the sequence %rax, %rdx is used.
2052   case Integer:
2053     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2054 
2055     // If we have a sign or zero extended integer, make sure to return Extend
2056     // so that the parameter gets the right LLVM IR attributes.
2057     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2058       // Treat an enum type as its underlying type.
2059       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2060         RetTy = EnumTy->getDecl()->getIntegerType();
2061 
2062       if (RetTy->isIntegralOrEnumerationType() &&
2063           RetTy->isPromotableIntegerType())
2064         return ABIArgInfo::getExtend();
2065     }
2066     break;
2067 
2068     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2069     // available SSE register of the sequence %xmm0, %xmm1 is used.
2070   case SSE:
2071     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2072     break;
2073 
2074     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2075     // returned on the X87 stack in %st0 as 80-bit x87 number.
2076   case X87:
2077     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2078     break;
2079 
2080     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2081     // part of the value is returned in %st0 and the imaginary part in
2082     // %st1.
2083   case ComplexX87:
2084     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2085     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2086                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2087                                     NULL);
2088     break;
2089   }
2090 
2091   llvm::Type *HighPart = 0;
2092   switch (Hi) {
2093     // Memory was handled previously and X87 should
2094     // never occur as a hi class.
2095   case Memory:
2096   case X87:
2097     llvm_unreachable("Invalid classification for hi word.");
2098 
2099   case ComplexX87: // Previously handled.
2100   case NoClass:
2101     break;
2102 
2103   case Integer:
2104     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2105     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2106       return ABIArgInfo::getDirect(HighPart, 8);
2107     break;
2108   case SSE:
2109     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2110     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2111       return ABIArgInfo::getDirect(HighPart, 8);
2112     break;
2113 
2114     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2115     // is passed in the next available eightbyte chunk if the last used
2116     // vector register.
2117     //
2118     // SSEUP should always be preceded by SSE, just widen.
2119   case SSEUp:
2120     assert(Lo == SSE && "Unexpected SSEUp classification.");
2121     ResType = GetByteVectorType(RetTy);
2122     break;
2123 
2124     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2125     // returned together with the previous X87 value in %st0.
2126   case X87Up:
2127     // If X87Up is preceded by X87, we don't need to do
2128     // anything. However, in some cases with unions it may not be
2129     // preceded by X87. In such situations we follow gcc and pass the
2130     // extra bits in an SSE reg.
2131     if (Lo != X87) {
2132       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2133       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2134         return ABIArgInfo::getDirect(HighPart, 8);
2135     }
2136     break;
2137   }
2138 
2139   // If a high part was specified, merge it together with the low part.  It is
2140   // known to pass in the high eightbyte of the result.  We do this by forming a
2141   // first class struct aggregate with the high and low part: {low, high}
2142   if (HighPart)
2143     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2144 
2145   return ABIArgInfo::getDirect(ResType);
2146 }
2147 
2148 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2149   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2150   const
2151 {
2152   X86_64ABIInfo::Class Lo, Hi;
2153   classify(Ty, 0, Lo, Hi);
2154 
2155   // Check some invariants.
2156   // FIXME: Enforce these by construction.
2157   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2158   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2159 
2160   neededInt = 0;
2161   neededSSE = 0;
2162   llvm::Type *ResType = 0;
2163   switch (Lo) {
2164   case NoClass:
2165     if (Hi == NoClass)
2166       return ABIArgInfo::getIgnore();
2167     // If the low part is just padding, it takes no register, leave ResType
2168     // null.
2169     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2170            "Unknown missing lo part");
2171     break;
2172 
2173     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2174     // on the stack.
2175   case Memory:
2176 
2177     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2178     // COMPLEX_X87, it is passed in memory.
2179   case X87:
2180   case ComplexX87:
2181     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2182       ++neededInt;
2183     return getIndirectResult(Ty, freeIntRegs);
2184 
2185   case SSEUp:
2186   case X87Up:
2187     llvm_unreachable("Invalid classification for lo word.");
2188 
2189     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2190     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2191     // and %r9 is used.
2192   case Integer:
2193     ++neededInt;
2194 
2195     // Pick an 8-byte type based on the preferred type.
2196     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2197 
2198     // If we have a sign or zero extended integer, make sure to return Extend
2199     // so that the parameter gets the right LLVM IR attributes.
2200     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2201       // Treat an enum type as its underlying type.
2202       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2203         Ty = EnumTy->getDecl()->getIntegerType();
2204 
2205       if (Ty->isIntegralOrEnumerationType() &&
2206           Ty->isPromotableIntegerType())
2207         return ABIArgInfo::getExtend();
2208     }
2209 
2210     break;
2211 
2212     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2213     // available SSE register is used, the registers are taken in the
2214     // order from %xmm0 to %xmm7.
2215   case SSE: {
2216     llvm::Type *IRType = CGT.ConvertType(Ty);
2217     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2218     ++neededSSE;
2219     break;
2220   }
2221   }
2222 
2223   llvm::Type *HighPart = 0;
2224   switch (Hi) {
2225     // Memory was handled previously, ComplexX87 and X87 should
2226     // never occur as hi classes, and X87Up must be preceded by X87,
2227     // which is passed in memory.
2228   case Memory:
2229   case X87:
2230   case ComplexX87:
2231     llvm_unreachable("Invalid classification for hi word.");
2232 
2233   case NoClass: break;
2234 
2235   case Integer:
2236     ++neededInt;
2237     // Pick an 8-byte type based on the preferred type.
2238     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2239 
2240     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2241       return ABIArgInfo::getDirect(HighPart, 8);
2242     break;
2243 
2244     // X87Up generally doesn't occur here (long double is passed in
2245     // memory), except in situations involving unions.
2246   case X87Up:
2247   case SSE:
2248     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2249 
2250     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2251       return ABIArgInfo::getDirect(HighPart, 8);
2252 
2253     ++neededSSE;
2254     break;
2255 
2256     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2257     // eightbyte is passed in the upper half of the last used SSE
2258     // register.  This only happens when 128-bit vectors are passed.
2259   case SSEUp:
2260     assert(Lo == SSE && "Unexpected SSEUp classification");
2261     ResType = GetByteVectorType(Ty);
2262     break;
2263   }
2264 
2265   // If a high part was specified, merge it together with the low part.  It is
2266   // known to pass in the high eightbyte of the result.  We do this by forming a
2267   // first class struct aggregate with the high and low part: {low, high}
2268   if (HighPart)
2269     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2270 
2271   return ABIArgInfo::getDirect(ResType);
2272 }
2273 
2274 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2275 
2276   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2277 
2278   // Keep track of the number of assigned registers.
2279   unsigned freeIntRegs = 6, freeSSERegs = 8;
2280 
2281   // If the return value is indirect, then the hidden argument is consuming one
2282   // integer register.
2283   if (FI.getReturnInfo().isIndirect())
2284     --freeIntRegs;
2285 
2286   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2287   // get assigned (in left-to-right order) for passing as follows...
2288   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2289        it != ie; ++it) {
2290     unsigned neededInt, neededSSE;
2291     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2292                                     neededSSE);
2293 
2294     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2295     // eightbyte of an argument, the whole argument is passed on the
2296     // stack. If registers have already been assigned for some
2297     // eightbytes of such an argument, the assignments get reverted.
2298     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2299       freeIntRegs -= neededInt;
2300       freeSSERegs -= neededSSE;
2301     } else {
2302       it->info = getIndirectResult(it->type, freeIntRegs);
2303     }
2304   }
2305 }
2306 
2307 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2308                                         QualType Ty,
2309                                         CodeGenFunction &CGF) {
2310   llvm::Value *overflow_arg_area_p =
2311     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2312   llvm::Value *overflow_arg_area =
2313     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2314 
2315   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2316   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2317   // It isn't stated explicitly in the standard, but in practice we use
2318   // alignment greater than 16 where necessary.
2319   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2320   if (Align > 8) {
2321     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2322     llvm::Value *Offset =
2323       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2324     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2325     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2326                                                     CGF.Int64Ty);
2327     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2328     overflow_arg_area =
2329       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2330                                  overflow_arg_area->getType(),
2331                                  "overflow_arg_area.align");
2332   }
2333 
2334   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2335   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2336   llvm::Value *Res =
2337     CGF.Builder.CreateBitCast(overflow_arg_area,
2338                               llvm::PointerType::getUnqual(LTy));
2339 
2340   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2341   // l->overflow_arg_area + sizeof(type).
2342   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2343   // an 8 byte boundary.
2344 
2345   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2346   llvm::Value *Offset =
2347       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2348   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2349                                             "overflow_arg_area.next");
2350   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2351 
2352   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2353   return Res;
2354 }
2355 
2356 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2357                                       CodeGenFunction &CGF) const {
2358   // Assume that va_list type is correct; should be pointer to LLVM type:
2359   // struct {
2360   //   i32 gp_offset;
2361   //   i32 fp_offset;
2362   //   i8* overflow_arg_area;
2363   //   i8* reg_save_area;
2364   // };
2365   unsigned neededInt, neededSSE;
2366 
2367   Ty = CGF.getContext().getCanonicalType(Ty);
2368   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2369 
2370   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2371   // in the registers. If not go to step 7.
2372   if (!neededInt && !neededSSE)
2373     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2374 
2375   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2376   // general purpose registers needed to pass type and num_fp to hold
2377   // the number of floating point registers needed.
2378 
2379   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2380   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2381   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2382   //
2383   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2384   // register save space).
2385 
2386   llvm::Value *InRegs = 0;
2387   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2388   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2389   if (neededInt) {
2390     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2391     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2392     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2393     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2394   }
2395 
2396   if (neededSSE) {
2397     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2398     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2399     llvm::Value *FitsInFP =
2400       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2401     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2402     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2403   }
2404 
2405   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2406   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2407   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2408   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2409 
2410   // Emit code to load the value if it was passed in registers.
2411 
2412   CGF.EmitBlock(InRegBlock);
2413 
2414   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2415   // an offset of l->gp_offset and/or l->fp_offset. This may require
2416   // copying to a temporary location in case the parameter is passed
2417   // in different register classes or requires an alignment greater
2418   // than 8 for general purpose registers and 16 for XMM registers.
2419   //
2420   // FIXME: This really results in shameful code when we end up needing to
2421   // collect arguments from different places; often what should result in a
2422   // simple assembling of a structure from scattered addresses has many more
2423   // loads than necessary. Can we clean this up?
2424   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2425   llvm::Value *RegAddr =
2426     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2427                            "reg_save_area");
2428   if (neededInt && neededSSE) {
2429     // FIXME: Cleanup.
2430     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2431     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2432     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2433     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2434     llvm::Type *TyLo = ST->getElementType(0);
2435     llvm::Type *TyHi = ST->getElementType(1);
2436     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2437            "Unexpected ABI info for mixed regs");
2438     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2439     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2440     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2441     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2442     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2443     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2444     llvm::Value *V =
2445       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2446     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2447     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2448     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2449 
2450     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2451                                         llvm::PointerType::getUnqual(LTy));
2452   } else if (neededInt) {
2453     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2454     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2455                                         llvm::PointerType::getUnqual(LTy));
2456   } else if (neededSSE == 1) {
2457     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2458     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2459                                         llvm::PointerType::getUnqual(LTy));
2460   } else {
2461     assert(neededSSE == 2 && "Invalid number of needed registers!");
2462     // SSE registers are spaced 16 bytes apart in the register save
2463     // area, we need to collect the two eightbytes together.
2464     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2465     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2466     llvm::Type *DoubleTy = CGF.DoubleTy;
2467     llvm::Type *DblPtrTy =
2468       llvm::PointerType::getUnqual(DoubleTy);
2469     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2470                                                        DoubleTy, NULL);
2471     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2472     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2473                                                          DblPtrTy));
2474     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2475     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2476                                                          DblPtrTy));
2477     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2478     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2479                                         llvm::PointerType::getUnqual(LTy));
2480   }
2481 
2482   // AMD64-ABI 3.5.7p5: Step 5. Set:
2483   // l->gp_offset = l->gp_offset + num_gp * 8
2484   // l->fp_offset = l->fp_offset + num_fp * 16.
2485   if (neededInt) {
2486     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2487     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2488                             gp_offset_p);
2489   }
2490   if (neededSSE) {
2491     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2492     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2493                             fp_offset_p);
2494   }
2495   CGF.EmitBranch(ContBlock);
2496 
2497   // Emit code to load the value if it was passed in memory.
2498 
2499   CGF.EmitBlock(InMemBlock);
2500   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2501 
2502   // Return the appropriate result.
2503 
2504   CGF.EmitBlock(ContBlock);
2505   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2506                                                  "vaarg.addr");
2507   ResAddr->addIncoming(RegAddr, InRegBlock);
2508   ResAddr->addIncoming(MemAddr, InMemBlock);
2509   return ResAddr;
2510 }
2511 
2512 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2513 
2514   if (Ty->isVoidType())
2515     return ABIArgInfo::getIgnore();
2516 
2517   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2518     Ty = EnumTy->getDecl()->getIntegerType();
2519 
2520   uint64_t Size = getContext().getTypeSize(Ty);
2521 
2522   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2523     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2524         RT->getDecl()->hasFlexibleArrayMember())
2525       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2526 
2527     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2528     if (Size == 128 &&
2529         getContext().getTargetInfo().getTriple().getOS()
2530           == llvm::Triple::MinGW32)
2531       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2532                                                           Size));
2533 
2534     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2535     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2536     if (Size <= 64 &&
2537         (Size & (Size - 1)) == 0)
2538       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2539                                                           Size));
2540 
2541     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2542   }
2543 
2544   if (Ty->isPromotableIntegerType())
2545     return ABIArgInfo::getExtend();
2546 
2547   return ABIArgInfo::getDirect();
2548 }
2549 
2550 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2551 
2552   QualType RetTy = FI.getReturnType();
2553   FI.getReturnInfo() = classify(RetTy);
2554 
2555   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2556        it != ie; ++it)
2557     it->info = classify(it->type);
2558 }
2559 
2560 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2561                                       CodeGenFunction &CGF) const {
2562   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2563 
2564   CGBuilderTy &Builder = CGF.Builder;
2565   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2566                                                        "ap");
2567   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2568   llvm::Type *PTy =
2569     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2570   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2571 
2572   uint64_t Offset =
2573     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2574   llvm::Value *NextAddr =
2575     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2576                       "ap.next");
2577   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2578 
2579   return AddrTyped;
2580 }
2581 
2582 namespace {
2583 
2584 class NaClX86_64ABIInfo : public ABIInfo {
2585  public:
2586   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2587       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2588   virtual void computeInfo(CGFunctionInfo &FI) const;
2589   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2590                                  CodeGenFunction &CGF) const;
2591  private:
2592   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2593   X86_64ABIInfo NInfo; // Used for everything else.
2594 };
2595 
2596 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2597  public:
2598   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2599       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2600 };
2601 
2602 }
2603 
2604 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2605   if (FI.getASTCallingConvention() == CC_PnaclCall)
2606     PInfo.computeInfo(FI);
2607   else
2608     NInfo.computeInfo(FI);
2609 }
2610 
2611 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2612                                           CodeGenFunction &CGF) const {
2613   // Always use the native convention; calling pnacl-style varargs functions
2614   // is unuspported.
2615   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2616 }
2617 
2618 
2619 // PowerPC-32
2620 
2621 namespace {
2622 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2623 public:
2624   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2625 
2626   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2627     // This is recovered from gcc output.
2628     return 1; // r1 is the dedicated stack pointer
2629   }
2630 
2631   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2632                                llvm::Value *Address) const;
2633 };
2634 
2635 }
2636 
2637 bool
2638 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2639                                                 llvm::Value *Address) const {
2640   // This is calculated from the LLVM and GCC tables and verified
2641   // against gcc output.  AFAIK all ABIs use the same encoding.
2642 
2643   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2644 
2645   llvm::IntegerType *i8 = CGF.Int8Ty;
2646   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2647   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2648   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2649 
2650   // 0-31: r0-31, the 4-byte general-purpose registers
2651   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2652 
2653   // 32-63: fp0-31, the 8-byte floating-point registers
2654   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2655 
2656   // 64-76 are various 4-byte special-purpose registers:
2657   // 64: mq
2658   // 65: lr
2659   // 66: ctr
2660   // 67: ap
2661   // 68-75 cr0-7
2662   // 76: xer
2663   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2664 
2665   // 77-108: v0-31, the 16-byte vector registers
2666   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2667 
2668   // 109: vrsave
2669   // 110: vscr
2670   // 111: spe_acc
2671   // 112: spefscr
2672   // 113: sfp
2673   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2674 
2675   return false;
2676 }
2677 
2678 // PowerPC-64
2679 
2680 namespace {
2681 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2682 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2683 
2684 public:
2685   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2686 
2687   // TODO: We can add more logic to computeInfo to improve performance.
2688   // Example: For aggregate arguments that fit in a register, we could
2689   // use getDirectInReg (as is done below for structs containing a single
2690   // floating-point value) to avoid pushing them to memory on function
2691   // entry.  This would require changing the logic in PPCISelLowering
2692   // when lowering the parameters in the caller and args in the callee.
2693   virtual void computeInfo(CGFunctionInfo &FI) const {
2694     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2695     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2696          it != ie; ++it) {
2697       // We rely on the default argument classification for the most part.
2698       // One exception:  An aggregate containing a single floating-point
2699       // item must be passed in a register if one is available.
2700       const Type *T = isSingleElementStruct(it->type, getContext());
2701       if (T) {
2702         const BuiltinType *BT = T->getAs<BuiltinType>();
2703         if (BT && BT->isFloatingPoint()) {
2704           QualType QT(T, 0);
2705           it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2706           continue;
2707         }
2708       }
2709       it->info = classifyArgumentType(it->type);
2710     }
2711   }
2712 
2713   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2714                                  QualType Ty,
2715                                  CodeGenFunction &CGF) const;
2716 };
2717 
2718 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2719 public:
2720   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2721     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2722 
2723   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2724     // This is recovered from gcc output.
2725     return 1; // r1 is the dedicated stack pointer
2726   }
2727 
2728   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2729                                llvm::Value *Address) const;
2730 };
2731 
2732 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2733 public:
2734   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2735 
2736   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2737     // This is recovered from gcc output.
2738     return 1; // r1 is the dedicated stack pointer
2739   }
2740 
2741   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2742                                llvm::Value *Address) const;
2743 };
2744 
2745 }
2746 
2747 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2748 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2749                                            QualType Ty,
2750                                            CodeGenFunction &CGF) const {
2751   llvm::Type *BP = CGF.Int8PtrTy;
2752   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2753 
2754   CGBuilderTy &Builder = CGF.Builder;
2755   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2756   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2757 
2758   // Update the va_list pointer.
2759   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2760   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2761   llvm::Value *NextAddr =
2762     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2763                       "ap.next");
2764   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2765 
2766   // If the argument is smaller than 8 bytes, it is right-adjusted in
2767   // its doubleword slot.  Adjust the pointer to pick it up from the
2768   // correct offset.
2769   if (SizeInBytes < 8) {
2770     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2771     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2772     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2773   }
2774 
2775   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2776   return Builder.CreateBitCast(Addr, PTy);
2777 }
2778 
2779 static bool
2780 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2781                               llvm::Value *Address) {
2782   // This is calculated from the LLVM and GCC tables and verified
2783   // against gcc output.  AFAIK all ABIs use the same encoding.
2784 
2785   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2786 
2787   llvm::IntegerType *i8 = CGF.Int8Ty;
2788   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2789   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2790   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2791 
2792   // 0-31: r0-31, the 8-byte general-purpose registers
2793   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2794 
2795   // 32-63: fp0-31, the 8-byte floating-point registers
2796   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2797 
2798   // 64-76 are various 4-byte special-purpose registers:
2799   // 64: mq
2800   // 65: lr
2801   // 66: ctr
2802   // 67: ap
2803   // 68-75 cr0-7
2804   // 76: xer
2805   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2806 
2807   // 77-108: v0-31, the 16-byte vector registers
2808   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2809 
2810   // 109: vrsave
2811   // 110: vscr
2812   // 111: spe_acc
2813   // 112: spefscr
2814   // 113: sfp
2815   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2816 
2817   return false;
2818 }
2819 
2820 bool
2821 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
2822   CodeGen::CodeGenFunction &CGF,
2823   llvm::Value *Address) const {
2824 
2825   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2826 }
2827 
2828 bool
2829 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2830                                                 llvm::Value *Address) const {
2831 
2832   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2833 }
2834 
2835 //===----------------------------------------------------------------------===//
2836 // ARM ABI Implementation
2837 //===----------------------------------------------------------------------===//
2838 
2839 namespace {
2840 
2841 class ARMABIInfo : public ABIInfo {
2842 public:
2843   enum ABIKind {
2844     APCS = 0,
2845     AAPCS = 1,
2846     AAPCS_VFP
2847   };
2848 
2849 private:
2850   ABIKind Kind;
2851 
2852 public:
2853   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2854 
2855   bool isEABI() const {
2856     StringRef Env =
2857       getContext().getTargetInfo().getTriple().getEnvironmentName();
2858     return (Env == "gnueabi" || Env == "eabi" ||
2859             Env == "android" || Env == "androideabi");
2860   }
2861 
2862 private:
2863   ABIKind getABIKind() const { return Kind; }
2864 
2865   ABIArgInfo classifyReturnType(QualType RetTy) const;
2866   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2867   bool isIllegalVectorType(QualType Ty) const;
2868 
2869   virtual void computeInfo(CGFunctionInfo &FI) const;
2870 
2871   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2872                                  CodeGenFunction &CGF) const;
2873 };
2874 
2875 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2876 public:
2877   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2878     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2879 
2880   const ARMABIInfo &getABIInfo() const {
2881     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2882   }
2883 
2884   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2885     return 13;
2886   }
2887 
2888   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2889     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2890   }
2891 
2892   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2893                                llvm::Value *Address) const {
2894     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2895 
2896     // 0-15 are the 16 integer registers.
2897     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2898     return false;
2899   }
2900 
2901   unsigned getSizeOfUnwindException() const {
2902     if (getABIInfo().isEABI()) return 88;
2903     return TargetCodeGenInfo::getSizeOfUnwindException();
2904   }
2905 };
2906 
2907 }
2908 
2909 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2910   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2911   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2912        it != ie; ++it)
2913     it->info = classifyArgumentType(it->type);
2914 
2915   // Always honor user-specified calling convention.
2916   if (FI.getCallingConvention() != llvm::CallingConv::C)
2917     return;
2918 
2919   // Calling convention as default by an ABI.
2920   llvm::CallingConv::ID DefaultCC;
2921   if (getContext().getTargetInfo().getTriple().getEnvironmentName()=="gnueabihf")
2922     DefaultCC = llvm::CallingConv::ARM_AAPCS_VFP;
2923   else if (isEABI())
2924     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2925   else
2926     DefaultCC = llvm::CallingConv::ARM_APCS;
2927 
2928   // If user did not ask for specific calling convention explicitly (e.g. via
2929   // pcs attribute), set effective calling convention if it's different than ABI
2930   // default.
2931   switch (getABIKind()) {
2932   case APCS:
2933     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2934       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2935     break;
2936   case AAPCS:
2937     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2938       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2939     break;
2940   case AAPCS_VFP:
2941     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2942       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2943     break;
2944   }
2945 }
2946 
2947 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2948 /// aggregate.  If HAMembers is non-null, the number of base elements
2949 /// contained in the type is returned through it; this is used for the
2950 /// recursive calls that check aggregate component types.
2951 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2952                                    ASTContext &Context,
2953                                    uint64_t *HAMembers = 0) {
2954   uint64_t Members = 0;
2955   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2956     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2957       return false;
2958     Members *= AT->getSize().getZExtValue();
2959   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2960     const RecordDecl *RD = RT->getDecl();
2961     if (RD->hasFlexibleArrayMember())
2962       return false;
2963 
2964     Members = 0;
2965     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2966          i != e; ++i) {
2967       const FieldDecl *FD = *i;
2968       uint64_t FldMembers;
2969       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2970         return false;
2971 
2972       Members = (RD->isUnion() ?
2973                  std::max(Members, FldMembers) : Members + FldMembers);
2974     }
2975   } else {
2976     Members = 1;
2977     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2978       Members = 2;
2979       Ty = CT->getElementType();
2980     }
2981 
2982     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2983     // double, or 64-bit or 128-bit vectors.
2984     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2985       if (BT->getKind() != BuiltinType::Float &&
2986           BT->getKind() != BuiltinType::Double &&
2987           BT->getKind() != BuiltinType::LongDouble)
2988         return false;
2989     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2990       unsigned VecSize = Context.getTypeSize(VT);
2991       if (VecSize != 64 && VecSize != 128)
2992         return false;
2993     } else {
2994       return false;
2995     }
2996 
2997     // The base type must be the same for all members.  Vector types of the
2998     // same total size are treated as being equivalent here.
2999     const Type *TyPtr = Ty.getTypePtr();
3000     if (!Base)
3001       Base = TyPtr;
3002     if (Base != TyPtr &&
3003         (!Base->isVectorType() || !TyPtr->isVectorType() ||
3004          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3005       return false;
3006   }
3007 
3008   // Homogeneous Aggregates can have at most 4 members of the base type.
3009   if (HAMembers)
3010     *HAMembers = Members;
3011 
3012   return (Members > 0 && Members <= 4);
3013 }
3014 
3015 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
3016   // Handle illegal vector types here.
3017   if (isIllegalVectorType(Ty)) {
3018     uint64_t Size = getContext().getTypeSize(Ty);
3019     if (Size <= 32) {
3020       llvm::Type *ResType =
3021           llvm::Type::getInt32Ty(getVMContext());
3022       return ABIArgInfo::getDirect(ResType);
3023     }
3024     if (Size == 64) {
3025       llvm::Type *ResType = llvm::VectorType::get(
3026           llvm::Type::getInt32Ty(getVMContext()), 2);
3027       return ABIArgInfo::getDirect(ResType);
3028     }
3029     if (Size == 128) {
3030       llvm::Type *ResType = llvm::VectorType::get(
3031           llvm::Type::getInt32Ty(getVMContext()), 4);
3032       return ABIArgInfo::getDirect(ResType);
3033     }
3034     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3035   }
3036 
3037   if (!isAggregateTypeForABI(Ty)) {
3038     // Treat an enum type as its underlying type.
3039     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3040       Ty = EnumTy->getDecl()->getIntegerType();
3041 
3042     return (Ty->isPromotableIntegerType() ?
3043             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3044   }
3045 
3046   // Ignore empty records.
3047   if (isEmptyRecord(getContext(), Ty, true))
3048     return ABIArgInfo::getIgnore();
3049 
3050   // Structures with either a non-trivial destructor or a non-trivial
3051   // copy constructor are always indirect.
3052   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3053     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3054 
3055   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3056     // Homogeneous Aggregates need to be expanded.
3057     const Type *Base = 0;
3058     if (isHomogeneousAggregate(Ty, Base, getContext())) {
3059       assert(Base && "Base class should be set for homogeneous aggregate");
3060       return ABIArgInfo::getExpand();
3061     }
3062   }
3063 
3064   // Support byval for ARM.
3065   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
3066       getContext().getTypeAlign(Ty) > 64) {
3067     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3068   }
3069 
3070   // Otherwise, pass by coercing to a structure of the appropriate size.
3071   llvm::Type* ElemTy;
3072   unsigned SizeRegs;
3073   // FIXME: Try to match the types of the arguments more accurately where
3074   // we can.
3075   if (getContext().getTypeAlign(Ty) <= 32) {
3076     ElemTy = llvm::Type::getInt32Ty(getVMContext());
3077     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3078   } else {
3079     ElemTy = llvm::Type::getInt64Ty(getVMContext());
3080     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3081   }
3082 
3083   llvm::Type *STy =
3084     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3085   return ABIArgInfo::getDirect(STy);
3086 }
3087 
3088 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3089                               llvm::LLVMContext &VMContext) {
3090   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3091   // is called integer-like if its size is less than or equal to one word, and
3092   // the offset of each of its addressable sub-fields is zero.
3093 
3094   uint64_t Size = Context.getTypeSize(Ty);
3095 
3096   // Check that the type fits in a word.
3097   if (Size > 32)
3098     return false;
3099 
3100   // FIXME: Handle vector types!
3101   if (Ty->isVectorType())
3102     return false;
3103 
3104   // Float types are never treated as "integer like".
3105   if (Ty->isRealFloatingType())
3106     return false;
3107 
3108   // If this is a builtin or pointer type then it is ok.
3109   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3110     return true;
3111 
3112   // Small complex integer types are "integer like".
3113   if (const ComplexType *CT = Ty->getAs<ComplexType>())
3114     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3115 
3116   // Single element and zero sized arrays should be allowed, by the definition
3117   // above, but they are not.
3118 
3119   // Otherwise, it must be a record type.
3120   const RecordType *RT = Ty->getAs<RecordType>();
3121   if (!RT) return false;
3122 
3123   // Ignore records with flexible arrays.
3124   const RecordDecl *RD = RT->getDecl();
3125   if (RD->hasFlexibleArrayMember())
3126     return false;
3127 
3128   // Check that all sub-fields are at offset 0, and are themselves "integer
3129   // like".
3130   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3131 
3132   bool HadField = false;
3133   unsigned idx = 0;
3134   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3135        i != e; ++i, ++idx) {
3136     const FieldDecl *FD = *i;
3137 
3138     // Bit-fields are not addressable, we only need to verify they are "integer
3139     // like". We still have to disallow a subsequent non-bitfield, for example:
3140     //   struct { int : 0; int x }
3141     // is non-integer like according to gcc.
3142     if (FD->isBitField()) {
3143       if (!RD->isUnion())
3144         HadField = true;
3145 
3146       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3147         return false;
3148 
3149       continue;
3150     }
3151 
3152     // Check if this field is at offset 0.
3153     if (Layout.getFieldOffset(idx) != 0)
3154       return false;
3155 
3156     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3157       return false;
3158 
3159     // Only allow at most one field in a structure. This doesn't match the
3160     // wording above, but follows gcc in situations with a field following an
3161     // empty structure.
3162     if (!RD->isUnion()) {
3163       if (HadField)
3164         return false;
3165 
3166       HadField = true;
3167     }
3168   }
3169 
3170   return true;
3171 }
3172 
3173 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3174   if (RetTy->isVoidType())
3175     return ABIArgInfo::getIgnore();
3176 
3177   // Large vector types should be returned via memory.
3178   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3179     return ABIArgInfo::getIndirect(0);
3180 
3181   if (!isAggregateTypeForABI(RetTy)) {
3182     // Treat an enum type as its underlying type.
3183     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3184       RetTy = EnumTy->getDecl()->getIntegerType();
3185 
3186     return (RetTy->isPromotableIntegerType() ?
3187             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3188   }
3189 
3190   // Structures with either a non-trivial destructor or a non-trivial
3191   // copy constructor are always indirect.
3192   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3193     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3194 
3195   // Are we following APCS?
3196   if (getABIKind() == APCS) {
3197     if (isEmptyRecord(getContext(), RetTy, false))
3198       return ABIArgInfo::getIgnore();
3199 
3200     // Complex types are all returned as packed integers.
3201     //
3202     // FIXME: Consider using 2 x vector types if the back end handles them
3203     // correctly.
3204     if (RetTy->isAnyComplexType())
3205       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3206                                               getContext().getTypeSize(RetTy)));
3207 
3208     // Integer like structures are returned in r0.
3209     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3210       // Return in the smallest viable integer type.
3211       uint64_t Size = getContext().getTypeSize(RetTy);
3212       if (Size <= 8)
3213         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3214       if (Size <= 16)
3215         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3216       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3217     }
3218 
3219     // Otherwise return in memory.
3220     return ABIArgInfo::getIndirect(0);
3221   }
3222 
3223   // Otherwise this is an AAPCS variant.
3224 
3225   if (isEmptyRecord(getContext(), RetTy, true))
3226     return ABIArgInfo::getIgnore();
3227 
3228   // Check for homogeneous aggregates with AAPCS-VFP.
3229   if (getABIKind() == AAPCS_VFP) {
3230     const Type *Base = 0;
3231     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3232       assert(Base && "Base class should be set for homogeneous aggregate");
3233       // Homogeneous Aggregates are returned directly.
3234       return ABIArgInfo::getDirect();
3235     }
3236   }
3237 
3238   // Aggregates <= 4 bytes are returned in r0; other aggregates
3239   // are returned indirectly.
3240   uint64_t Size = getContext().getTypeSize(RetTy);
3241   if (Size <= 32) {
3242     // Return in the smallest viable integer type.
3243     if (Size <= 8)
3244       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3245     if (Size <= 16)
3246       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3247     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3248   }
3249 
3250   return ABIArgInfo::getIndirect(0);
3251 }
3252 
3253 /// isIllegalVector - check whether Ty is an illegal vector type.
3254 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3255   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3256     // Check whether VT is legal.
3257     unsigned NumElements = VT->getNumElements();
3258     uint64_t Size = getContext().getTypeSize(VT);
3259     // NumElements should be power of 2.
3260     if ((NumElements & (NumElements - 1)) != 0)
3261       return true;
3262     // Size should be greater than 32 bits.
3263     return Size <= 32;
3264   }
3265   return false;
3266 }
3267 
3268 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3269                                    CodeGenFunction &CGF) const {
3270   llvm::Type *BP = CGF.Int8PtrTy;
3271   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3272 
3273   CGBuilderTy &Builder = CGF.Builder;
3274   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3275   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3276 
3277   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3278   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3279   bool IsIndirect = false;
3280 
3281   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3282   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3283   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3284       getABIKind() == ARMABIInfo::AAPCS)
3285     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3286   else
3287     TyAlign = 4;
3288   // Use indirect if size of the illegal vector is bigger than 16 bytes.
3289   if (isIllegalVectorType(Ty) && Size > 16) {
3290     IsIndirect = true;
3291     Size = 4;
3292     TyAlign = 4;
3293   }
3294 
3295   // Handle address alignment for ABI alignment > 4 bytes.
3296   if (TyAlign > 4) {
3297     assert((TyAlign & (TyAlign - 1)) == 0 &&
3298            "Alignment is not power of 2!");
3299     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3300     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3301     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3302     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3303   }
3304 
3305   uint64_t Offset =
3306     llvm::RoundUpToAlignment(Size, 4);
3307   llvm::Value *NextAddr =
3308     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3309                       "ap.next");
3310   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3311 
3312   if (IsIndirect)
3313     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3314   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3315     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3316     // may not be correctly aligned for the vector type. We create an aligned
3317     // temporary space and copy the content over from ap.cur to the temporary
3318     // space. This is necessary if the natural alignment of the type is greater
3319     // than the ABI alignment.
3320     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3321     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3322     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3323                                                     "var.align");
3324     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3325     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3326     Builder.CreateMemCpy(Dst, Src,
3327         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3328         TyAlign, false);
3329     Addr = AlignedTemp; //The content is in aligned location.
3330   }
3331   llvm::Type *PTy =
3332     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3333   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3334 
3335   return AddrTyped;
3336 }
3337 
3338 namespace {
3339 
3340 class NaClARMABIInfo : public ABIInfo {
3341  public:
3342   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3343       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3344   virtual void computeInfo(CGFunctionInfo &FI) const;
3345   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3346                                  CodeGenFunction &CGF) const;
3347  private:
3348   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3349   ARMABIInfo NInfo; // Used for everything else.
3350 };
3351 
3352 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3353  public:
3354   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3355       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3356 };
3357 
3358 }
3359 
3360 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3361   if (FI.getASTCallingConvention() == CC_PnaclCall)
3362     PInfo.computeInfo(FI);
3363   else
3364     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3365 }
3366 
3367 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3368                                        CodeGenFunction &CGF) const {
3369   // Always use the native convention; calling pnacl-style varargs functions
3370   // is unsupported.
3371   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3372 }
3373 
3374 //===----------------------------------------------------------------------===//
3375 // NVPTX ABI Implementation
3376 //===----------------------------------------------------------------------===//
3377 
3378 namespace {
3379 
3380 class NVPTXABIInfo : public ABIInfo {
3381 public:
3382   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3383 
3384   ABIArgInfo classifyReturnType(QualType RetTy) const;
3385   ABIArgInfo classifyArgumentType(QualType Ty) const;
3386 
3387   virtual void computeInfo(CGFunctionInfo &FI) const;
3388   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3389                                  CodeGenFunction &CFG) const;
3390 };
3391 
3392 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3393 public:
3394   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3395     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3396 
3397   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3398                                    CodeGen::CodeGenModule &M) const;
3399 };
3400 
3401 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3402   if (RetTy->isVoidType())
3403     return ABIArgInfo::getIgnore();
3404   if (isAggregateTypeForABI(RetTy))
3405     return ABIArgInfo::getIndirect(0);
3406   return ABIArgInfo::getDirect();
3407 }
3408 
3409 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3410   if (isAggregateTypeForABI(Ty))
3411     return ABIArgInfo::getIndirect(0);
3412 
3413   return ABIArgInfo::getDirect();
3414 }
3415 
3416 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3417   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3418   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3419        it != ie; ++it)
3420     it->info = classifyArgumentType(it->type);
3421 
3422   // Always honor user-specified calling convention.
3423   if (FI.getCallingConvention() != llvm::CallingConv::C)
3424     return;
3425 
3426   // Calling convention as default by an ABI.
3427   // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3428   // but we should switch to NVVM metadata later on.
3429   llvm::CallingConv::ID DefaultCC;
3430   const LangOptions &LangOpts = getContext().getLangOpts();
3431   if (LangOpts.OpenCL || LangOpts.CUDA) {
3432     // If we are in OpenCL or CUDA mode, then default to device functions
3433     DefaultCC = llvm::CallingConv::PTX_Device;
3434   } else {
3435     // If we are in standard C/C++ mode, use the triple to decide on the default
3436     StringRef Env =
3437       getContext().getTargetInfo().getTriple().getEnvironmentName();
3438     if (Env == "device")
3439       DefaultCC = llvm::CallingConv::PTX_Device;
3440     else
3441       DefaultCC = llvm::CallingConv::PTX_Kernel;
3442   }
3443   FI.setEffectiveCallingConvention(DefaultCC);
3444 
3445 }
3446 
3447 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3448                                      CodeGenFunction &CFG) const {
3449   llvm_unreachable("NVPTX does not support varargs");
3450 }
3451 
3452 void NVPTXTargetCodeGenInfo::
3453 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3454                     CodeGen::CodeGenModule &M) const{
3455   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3456   if (!FD) return;
3457 
3458   llvm::Function *F = cast<llvm::Function>(GV);
3459 
3460   // Perform special handling in OpenCL mode
3461   if (M.getLangOpts().OpenCL) {
3462     // Use OpenCL function attributes to set proper calling conventions
3463     // By default, all functions are device functions
3464     if (FD->hasAttr<OpenCLKernelAttr>()) {
3465       // OpenCL __kernel functions get a kernel calling convention
3466       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3467       // And kernel functions are not subject to inlining
3468       F->addFnAttr(llvm::Attributes::NoInline);
3469     }
3470   }
3471 
3472   // Perform special handling in CUDA mode.
3473   if (M.getLangOpts().CUDA) {
3474     // CUDA __global__ functions get a kernel calling convention.  Since
3475     // __global__ functions cannot be called from the device, we do not
3476     // need to set the noinline attribute.
3477     if (FD->getAttr<CUDAGlobalAttr>())
3478       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3479   }
3480 }
3481 
3482 }
3483 
3484 //===----------------------------------------------------------------------===//
3485 // MBlaze ABI Implementation
3486 //===----------------------------------------------------------------------===//
3487 
3488 namespace {
3489 
3490 class MBlazeABIInfo : public ABIInfo {
3491 public:
3492   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3493 
3494   bool isPromotableIntegerType(QualType Ty) const;
3495 
3496   ABIArgInfo classifyReturnType(QualType RetTy) const;
3497   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3498 
3499   virtual void computeInfo(CGFunctionInfo &FI) const {
3500     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3501     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3502          it != ie; ++it)
3503       it->info = classifyArgumentType(it->type);
3504   }
3505 
3506   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3507                                  CodeGenFunction &CGF) const;
3508 };
3509 
3510 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3511 public:
3512   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3513     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3514   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3515                            CodeGen::CodeGenModule &M) const;
3516 };
3517 
3518 }
3519 
3520 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3521   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3522   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3523     switch (BT->getKind()) {
3524     case BuiltinType::Bool:
3525     case BuiltinType::Char_S:
3526     case BuiltinType::Char_U:
3527     case BuiltinType::SChar:
3528     case BuiltinType::UChar:
3529     case BuiltinType::Short:
3530     case BuiltinType::UShort:
3531       return true;
3532     default:
3533       return false;
3534     }
3535   return false;
3536 }
3537 
3538 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3539                                       CodeGenFunction &CGF) const {
3540   // FIXME: Implement
3541   return 0;
3542 }
3543 
3544 
3545 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3546   if (RetTy->isVoidType())
3547     return ABIArgInfo::getIgnore();
3548   if (isAggregateTypeForABI(RetTy))
3549     return ABIArgInfo::getIndirect(0);
3550 
3551   return (isPromotableIntegerType(RetTy) ?
3552           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3553 }
3554 
3555 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3556   if (isAggregateTypeForABI(Ty))
3557     return ABIArgInfo::getIndirect(0);
3558 
3559   return (isPromotableIntegerType(Ty) ?
3560           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3561 }
3562 
3563 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3564                                                   llvm::GlobalValue *GV,
3565                                                   CodeGen::CodeGenModule &M)
3566                                                   const {
3567   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3568   if (!FD) return;
3569 
3570   llvm::CallingConv::ID CC = llvm::CallingConv::C;
3571   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3572     CC = llvm::CallingConv::MBLAZE_INTR;
3573   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3574     CC = llvm::CallingConv::MBLAZE_SVOL;
3575 
3576   if (CC != llvm::CallingConv::C) {
3577       // Handle 'interrupt_handler' attribute:
3578       llvm::Function *F = cast<llvm::Function>(GV);
3579 
3580       // Step 1: Set ISR calling convention.
3581       F->setCallingConv(CC);
3582 
3583       // Step 2: Add attributes goodness.
3584       F->addFnAttr(llvm::Attributes::NoInline);
3585   }
3586 
3587   // Step 3: Emit _interrupt_handler alias.
3588   if (CC == llvm::CallingConv::MBLAZE_INTR)
3589     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3590                           "_interrupt_handler", GV, &M.getModule());
3591 }
3592 
3593 
3594 //===----------------------------------------------------------------------===//
3595 // MSP430 ABI Implementation
3596 //===----------------------------------------------------------------------===//
3597 
3598 namespace {
3599 
3600 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3601 public:
3602   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3603     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3604   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3605                            CodeGen::CodeGenModule &M) const;
3606 };
3607 
3608 }
3609 
3610 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3611                                                   llvm::GlobalValue *GV,
3612                                              CodeGen::CodeGenModule &M) const {
3613   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3614     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3615       // Handle 'interrupt' attribute:
3616       llvm::Function *F = cast<llvm::Function>(GV);
3617 
3618       // Step 1: Set ISR calling convention.
3619       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3620 
3621       // Step 2: Add attributes goodness.
3622       F->addFnAttr(llvm::Attributes::NoInline);
3623 
3624       // Step 3: Emit ISR vector alias.
3625       unsigned Num = attr->getNumber() + 0xffe0;
3626       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3627                             "vector_" + Twine::utohexstr(Num),
3628                             GV, &M.getModule());
3629     }
3630   }
3631 }
3632 
3633 //===----------------------------------------------------------------------===//
3634 // MIPS ABI Implementation.  This works for both little-endian and
3635 // big-endian variants.
3636 //===----------------------------------------------------------------------===//
3637 
3638 namespace {
3639 class MipsABIInfo : public ABIInfo {
3640   bool IsO32;
3641   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3642   void CoerceToIntArgs(uint64_t TySize,
3643                        SmallVector<llvm::Type*, 8> &ArgList) const;
3644   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3645   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3646   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3647 public:
3648   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3649     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3650     StackAlignInBytes(IsO32 ? 8 : 16) {}
3651 
3652   ABIArgInfo classifyReturnType(QualType RetTy) const;
3653   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3654   virtual void computeInfo(CGFunctionInfo &FI) const;
3655   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3656                                  CodeGenFunction &CGF) const;
3657 };
3658 
3659 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3660   unsigned SizeOfUnwindException;
3661 public:
3662   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3663     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3664       SizeOfUnwindException(IsO32 ? 24 : 32) {}
3665 
3666   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3667     return 29;
3668   }
3669 
3670   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3671                                llvm::Value *Address) const;
3672 
3673   unsigned getSizeOfUnwindException() const {
3674     return SizeOfUnwindException;
3675   }
3676 };
3677 }
3678 
3679 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3680                                   SmallVector<llvm::Type*, 8> &ArgList) const {
3681   llvm::IntegerType *IntTy =
3682     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3683 
3684   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3685   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3686     ArgList.push_back(IntTy);
3687 
3688   // If necessary, add one more integer type to ArgList.
3689   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3690 
3691   if (R)
3692     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3693 }
3694 
3695 // In N32/64, an aligned double precision floating point field is passed in
3696 // a register.
3697 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3698   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3699 
3700   if (IsO32) {
3701     CoerceToIntArgs(TySize, ArgList);
3702     return llvm::StructType::get(getVMContext(), ArgList);
3703   }
3704 
3705   if (Ty->isComplexType())
3706     return CGT.ConvertType(Ty);
3707 
3708   const RecordType *RT = Ty->getAs<RecordType>();
3709 
3710   // Unions/vectors are passed in integer registers.
3711   if (!RT || !RT->isStructureOrClassType()) {
3712     CoerceToIntArgs(TySize, ArgList);
3713     return llvm::StructType::get(getVMContext(), ArgList);
3714   }
3715 
3716   const RecordDecl *RD = RT->getDecl();
3717   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3718   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3719 
3720   uint64_t LastOffset = 0;
3721   unsigned idx = 0;
3722   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3723 
3724   // Iterate over fields in the struct/class and check if there are any aligned
3725   // double fields.
3726   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3727        i != e; ++i, ++idx) {
3728     const QualType Ty = i->getType();
3729     const BuiltinType *BT = Ty->getAs<BuiltinType>();
3730 
3731     if (!BT || BT->getKind() != BuiltinType::Double)
3732       continue;
3733 
3734     uint64_t Offset = Layout.getFieldOffset(idx);
3735     if (Offset % 64) // Ignore doubles that are not aligned.
3736       continue;
3737 
3738     // Add ((Offset - LastOffset) / 64) args of type i64.
3739     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3740       ArgList.push_back(I64);
3741 
3742     // Add double type.
3743     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3744     LastOffset = Offset + 64;
3745   }
3746 
3747   CoerceToIntArgs(TySize - LastOffset, IntArgList);
3748   ArgList.append(IntArgList.begin(), IntArgList.end());
3749 
3750   return llvm::StructType::get(getVMContext(), ArgList);
3751 }
3752 
3753 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3754   assert((Offset % MinABIStackAlignInBytes) == 0);
3755 
3756   if ((Align - 1) & Offset)
3757     return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3758 
3759   return 0;
3760 }
3761 
3762 ABIArgInfo
3763 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3764   uint64_t OrigOffset = Offset;
3765   uint64_t TySize = getContext().getTypeSize(Ty);
3766   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3767 
3768   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3769                    (uint64_t)StackAlignInBytes);
3770   Offset = llvm::RoundUpToAlignment(Offset, Align);
3771   Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3772 
3773   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3774     // Ignore empty aggregates.
3775     if (TySize == 0)
3776       return ABIArgInfo::getIgnore();
3777 
3778     // Records with non trivial destructors/constructors should not be passed
3779     // by value.
3780     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3781       Offset = OrigOffset + MinABIStackAlignInBytes;
3782       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3783     }
3784 
3785     // If we have reached here, aggregates are passed directly by coercing to
3786     // another structure type. Padding is inserted if the offset of the
3787     // aggregate is unaligned.
3788     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3789                                  getPaddingType(Align, OrigOffset));
3790   }
3791 
3792   // Treat an enum type as its underlying type.
3793   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3794     Ty = EnumTy->getDecl()->getIntegerType();
3795 
3796   if (Ty->isPromotableIntegerType())
3797     return ABIArgInfo::getExtend();
3798 
3799   return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3800 }
3801 
3802 llvm::Type*
3803 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3804   const RecordType *RT = RetTy->getAs<RecordType>();
3805   SmallVector<llvm::Type*, 8> RTList;
3806 
3807   if (RT && RT->isStructureOrClassType()) {
3808     const RecordDecl *RD = RT->getDecl();
3809     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3810     unsigned FieldCnt = Layout.getFieldCount();
3811 
3812     // N32/64 returns struct/classes in floating point registers if the
3813     // following conditions are met:
3814     // 1. The size of the struct/class is no larger than 128-bit.
3815     // 2. The struct/class has one or two fields all of which are floating
3816     //    point types.
3817     // 3. The offset of the first field is zero (this follows what gcc does).
3818     //
3819     // Any other composite results are returned in integer registers.
3820     //
3821     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3822       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3823       for (; b != e; ++b) {
3824         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3825 
3826         if (!BT || !BT->isFloatingPoint())
3827           break;
3828 
3829         RTList.push_back(CGT.ConvertType(b->getType()));
3830       }
3831 
3832       if (b == e)
3833         return llvm::StructType::get(getVMContext(), RTList,
3834                                      RD->hasAttr<PackedAttr>());
3835 
3836       RTList.clear();
3837     }
3838   }
3839 
3840   CoerceToIntArgs(Size, RTList);
3841   return llvm::StructType::get(getVMContext(), RTList);
3842 }
3843 
3844 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3845   uint64_t Size = getContext().getTypeSize(RetTy);
3846 
3847   if (RetTy->isVoidType() || Size == 0)
3848     return ABIArgInfo::getIgnore();
3849 
3850   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
3851     if (Size <= 128) {
3852       if (RetTy->isAnyComplexType())
3853         return ABIArgInfo::getDirect();
3854 
3855       // O32 returns integer vectors in registers.
3856       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
3857         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3858 
3859       if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3860         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3861     }
3862 
3863     return ABIArgInfo::getIndirect(0);
3864   }
3865 
3866   // Treat an enum type as its underlying type.
3867   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3868     RetTy = EnumTy->getDecl()->getIntegerType();
3869 
3870   return (RetTy->isPromotableIntegerType() ?
3871           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3872 }
3873 
3874 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3875   ABIArgInfo &RetInfo = FI.getReturnInfo();
3876   RetInfo = classifyReturnType(FI.getReturnType());
3877 
3878   // Check if a pointer to an aggregate is passed as a hidden argument.
3879   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
3880 
3881   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3882        it != ie; ++it)
3883     it->info = classifyArgumentType(it->type, Offset);
3884 }
3885 
3886 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3887                                     CodeGenFunction &CGF) const {
3888   llvm::Type *BP = CGF.Int8PtrTy;
3889   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3890 
3891   CGBuilderTy &Builder = CGF.Builder;
3892   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3893   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3894   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3895   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3896   llvm::Value *AddrTyped;
3897   unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3898   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3899 
3900   if (TypeAlign > MinABIStackAlignInBytes) {
3901     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3902     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3903     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3904     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3905     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3906     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3907   }
3908   else
3909     AddrTyped = Builder.CreateBitCast(Addr, PTy);
3910 
3911   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3912   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3913   uint64_t Offset =
3914     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3915   llvm::Value *NextAddr =
3916     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3917                       "ap.next");
3918   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3919 
3920   return AddrTyped;
3921 }
3922 
3923 bool
3924 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3925                                                llvm::Value *Address) const {
3926   // This information comes from gcc's implementation, which seems to
3927   // as canonical as it gets.
3928 
3929   // Everything on MIPS is 4 bytes.  Double-precision FP registers
3930   // are aliased to pairs of single-precision FP registers.
3931   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3932 
3933   // 0-31 are the general purpose registers, $0 - $31.
3934   // 32-63 are the floating-point registers, $f0 - $f31.
3935   // 64 and 65 are the multiply/divide registers, $hi and $lo.
3936   // 66 is the (notional, I think) register for signal-handler return.
3937   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3938 
3939   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3940   // They are one bit wide and ignored here.
3941 
3942   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3943   // (coprocessor 1 is the FP unit)
3944   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3945   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3946   // 176-181 are the DSP accumulator registers.
3947   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3948   return false;
3949 }
3950 
3951 //===----------------------------------------------------------------------===//
3952 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3953 // Currently subclassed only to implement custom OpenCL C function attribute
3954 // handling.
3955 //===----------------------------------------------------------------------===//
3956 
3957 namespace {
3958 
3959 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3960 public:
3961   TCETargetCodeGenInfo(CodeGenTypes &CGT)
3962     : DefaultTargetCodeGenInfo(CGT) {}
3963 
3964   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3965                                    CodeGen::CodeGenModule &M) const;
3966 };
3967 
3968 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3969                                                llvm::GlobalValue *GV,
3970                                                CodeGen::CodeGenModule &M) const {
3971   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3972   if (!FD) return;
3973 
3974   llvm::Function *F = cast<llvm::Function>(GV);
3975 
3976   if (M.getLangOpts().OpenCL) {
3977     if (FD->hasAttr<OpenCLKernelAttr>()) {
3978       // OpenCL C Kernel functions are not subject to inlining
3979       F->addFnAttr(llvm::Attributes::NoInline);
3980 
3981       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3982 
3983         // Convert the reqd_work_group_size() attributes to metadata.
3984         llvm::LLVMContext &Context = F->getContext();
3985         llvm::NamedMDNode *OpenCLMetadata =
3986             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3987 
3988         SmallVector<llvm::Value*, 5> Operands;
3989         Operands.push_back(F);
3990 
3991         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3992                              llvm::APInt(32,
3993                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3994         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3995                              llvm::APInt(32,
3996                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3997         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3998                              llvm::APInt(32,
3999                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
4000 
4001         // Add a boolean constant operand for "required" (true) or "hint" (false)
4002         // for implementing the work_group_size_hint attr later. Currently
4003         // always true as the hint is not yet implemented.
4004         Operands.push_back(llvm::ConstantInt::getTrue(Context));
4005         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
4006       }
4007     }
4008   }
4009 }
4010 
4011 }
4012 
4013 //===----------------------------------------------------------------------===//
4014 // Hexagon ABI Implementation
4015 //===----------------------------------------------------------------------===//
4016 
4017 namespace {
4018 
4019 class HexagonABIInfo : public ABIInfo {
4020 
4021 
4022 public:
4023   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4024 
4025 private:
4026 
4027   ABIArgInfo classifyReturnType(QualType RetTy) const;
4028   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4029 
4030   virtual void computeInfo(CGFunctionInfo &FI) const;
4031 
4032   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4033                                  CodeGenFunction &CGF) const;
4034 };
4035 
4036 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
4037 public:
4038   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
4039     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
4040 
4041   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
4042     return 29;
4043   }
4044 };
4045 
4046 }
4047 
4048 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
4049   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4050   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4051        it != ie; ++it)
4052     it->info = classifyArgumentType(it->type);
4053 }
4054 
4055 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
4056   if (!isAggregateTypeForABI(Ty)) {
4057     // Treat an enum type as its underlying type.
4058     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4059       Ty = EnumTy->getDecl()->getIntegerType();
4060 
4061     return (Ty->isPromotableIntegerType() ?
4062             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4063   }
4064 
4065   // Ignore empty records.
4066   if (isEmptyRecord(getContext(), Ty, true))
4067     return ABIArgInfo::getIgnore();
4068 
4069   // Structures with either a non-trivial destructor or a non-trivial
4070   // copy constructor are always indirect.
4071   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
4072     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4073 
4074   uint64_t Size = getContext().getTypeSize(Ty);
4075   if (Size > 64)
4076     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4077     // Pass in the smallest viable integer type.
4078   else if (Size > 32)
4079       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4080   else if (Size > 16)
4081       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4082   else if (Size > 8)
4083       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4084   else
4085       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4086 }
4087 
4088 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
4089   if (RetTy->isVoidType())
4090     return ABIArgInfo::getIgnore();
4091 
4092   // Large vector types should be returned via memory.
4093   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
4094     return ABIArgInfo::getIndirect(0);
4095 
4096   if (!isAggregateTypeForABI(RetTy)) {
4097     // Treat an enum type as its underlying type.
4098     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4099       RetTy = EnumTy->getDecl()->getIntegerType();
4100 
4101     return (RetTy->isPromotableIntegerType() ?
4102             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4103   }
4104 
4105   // Structures with either a non-trivial destructor or a non-trivial
4106   // copy constructor are always indirect.
4107   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4108     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4109 
4110   if (isEmptyRecord(getContext(), RetTy, true))
4111     return ABIArgInfo::getIgnore();
4112 
4113   // Aggregates <= 8 bytes are returned in r0; other aggregates
4114   // are returned indirectly.
4115   uint64_t Size = getContext().getTypeSize(RetTy);
4116   if (Size <= 64) {
4117     // Return in the smallest viable integer type.
4118     if (Size <= 8)
4119       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4120     if (Size <= 16)
4121       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4122     if (Size <= 32)
4123       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4124     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4125   }
4126 
4127   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4128 }
4129 
4130 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4131                                        CodeGenFunction &CGF) const {
4132   // FIXME: Need to handle alignment
4133   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4134 
4135   CGBuilderTy &Builder = CGF.Builder;
4136   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
4137                                                        "ap");
4138   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4139   llvm::Type *PTy =
4140     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4141   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4142 
4143   uint64_t Offset =
4144     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
4145   llvm::Value *NextAddr =
4146     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4147                       "ap.next");
4148   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4149 
4150   return AddrTyped;
4151 }
4152 
4153 
4154 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
4155   if (TheTargetCodeGenInfo)
4156     return *TheTargetCodeGenInfo;
4157 
4158   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
4159   switch (Triple.getArch()) {
4160   default:
4161     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
4162 
4163   case llvm::Triple::le32:
4164     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
4165   case llvm::Triple::mips:
4166   case llvm::Triple::mipsel:
4167     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
4168 
4169   case llvm::Triple::mips64:
4170   case llvm::Triple::mips64el:
4171     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
4172 
4173   case llvm::Triple::arm:
4174   case llvm::Triple::thumb:
4175     {
4176       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
4177       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
4178         Kind = ARMABIInfo::APCS;
4179       else if (CodeGenOpts.FloatABI == "hard" ||
4180                (CodeGenOpts.FloatABI != "soft" && Triple.getEnvironment()==llvm::Triple::GNUEABIHF))
4181         Kind = ARMABIInfo::AAPCS_VFP;
4182 
4183       switch (Triple.getOS()) {
4184         case llvm::Triple::NativeClient:
4185           return *(TheTargetCodeGenInfo =
4186                    new NaClARMTargetCodeGenInfo(Types, Kind));
4187         default:
4188           return *(TheTargetCodeGenInfo =
4189                    new ARMTargetCodeGenInfo(Types, Kind));
4190       }
4191     }
4192 
4193   case llvm::Triple::ppc:
4194     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
4195   case llvm::Triple::ppc64:
4196     if (Triple.isOSBinFormatELF())
4197       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
4198     else
4199       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
4200 
4201   case llvm::Triple::nvptx:
4202   case llvm::Triple::nvptx64:
4203     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
4204 
4205   case llvm::Triple::mblaze:
4206     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
4207 
4208   case llvm::Triple::msp430:
4209     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
4210 
4211   case llvm::Triple::tce:
4212     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
4213 
4214   case llvm::Triple::x86: {
4215     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
4216 
4217     if (Triple.isOSDarwin())
4218       return *(TheTargetCodeGenInfo =
4219                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
4220                                            CodeGenOpts.NumRegisterParameters));
4221 
4222     switch (Triple.getOS()) {
4223     case llvm::Triple::Cygwin:
4224     case llvm::Triple::MinGW32:
4225     case llvm::Triple::AuroraUX:
4226     case llvm::Triple::DragonFly:
4227     case llvm::Triple::FreeBSD:
4228     case llvm::Triple::OpenBSD:
4229     case llvm::Triple::Bitrig:
4230       return *(TheTargetCodeGenInfo =
4231                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
4232                                            false,
4233                                            CodeGenOpts.NumRegisterParameters));
4234 
4235     case llvm::Triple::Win32:
4236       return *(TheTargetCodeGenInfo =
4237                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
4238                                            CodeGenOpts.NumRegisterParameters));
4239 
4240     default:
4241       return *(TheTargetCodeGenInfo =
4242                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
4243                                            false,
4244                                            CodeGenOpts.NumRegisterParameters));
4245     }
4246   }
4247 
4248   case llvm::Triple::x86_64: {
4249     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
4250 
4251     switch (Triple.getOS()) {
4252     case llvm::Triple::Win32:
4253     case llvm::Triple::MinGW32:
4254     case llvm::Triple::Cygwin:
4255       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
4256     case llvm::Triple::NativeClient:
4257       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
4258     default:
4259       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
4260                                                                   HasAVX));
4261     }
4262   }
4263   case llvm::Triple::hexagon:
4264     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
4265   }
4266 }
4267