1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IntrinsicsNVPTX.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> // std::sort 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 // Helper for coercing an aggregate argument or return value into an integer 40 // array of the same size (including padding) and alignment. This alternate 41 // coercion happens only for the RenderScript ABI and can be removed after 42 // runtimes that rely on it are no longer supported. 43 // 44 // RenderScript assumes that the size of the argument / return value in the IR 45 // is the same as the size of the corresponding qualified type. This helper 46 // coerces the aggregate type into an array of the same size (including 47 // padding). This coercion is used in lieu of expansion of struct members or 48 // other canonical coercions that return a coerced-type of larger size. 49 // 50 // Ty - The argument / return value type 51 // Context - The associated ASTContext 52 // LLVMContext - The associated LLVMContext 53 static ABIArgInfo coerceToIntArray(QualType Ty, 54 ASTContext &Context, 55 llvm::LLVMContext &LLVMContext) { 56 // Alignment and Size are measured in bits. 57 const uint64_t Size = Context.getTypeSize(Ty); 58 const uint64_t Alignment = Context.getTypeAlign(Ty); 59 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 60 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 61 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 62 } 63 64 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 65 llvm::Value *Array, 66 llvm::Value *Value, 67 unsigned FirstIndex, 68 unsigned LastIndex) { 69 // Alternatively, we could emit this as a loop in the source. 70 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 71 llvm::Value *Cell = 72 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 73 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 74 } 75 } 76 77 static bool isAggregateTypeForABI(QualType T) { 78 return !CodeGenFunction::hasScalarEvaluationKind(T) || 79 T->isMemberFunctionPointerType(); 80 } 81 82 ABIArgInfo 83 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 84 llvm::Type *Padding) const { 85 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 86 ByRef, Realign, Padding); 87 } 88 89 ABIArgInfo 90 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 91 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 92 /*ByRef*/ false, Realign); 93 } 94 95 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 96 QualType Ty) const { 97 return Address::invalid(); 98 } 99 100 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 101 if (Ty->isPromotableIntegerType()) 102 return true; 103 104 if (const auto *EIT = Ty->getAs<ExtIntType>()) 105 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 106 return true; 107 108 return false; 109 } 110 111 ABIInfo::~ABIInfo() {} 112 113 /// Does the given lowering require more than the given number of 114 /// registers when expanded? 115 /// 116 /// This is intended to be the basis of a reasonable basic implementation 117 /// of should{Pass,Return}IndirectlyForSwift. 118 /// 119 /// For most targets, a limit of four total registers is reasonable; this 120 /// limits the amount of code required in order to move around the value 121 /// in case it wasn't produced immediately prior to the call by the caller 122 /// (or wasn't produced in exactly the right registers) or isn't used 123 /// immediately within the callee. But some targets may need to further 124 /// limit the register count due to an inability to support that many 125 /// return registers. 126 static bool occupiesMoreThan(CodeGenTypes &cgt, 127 ArrayRef<llvm::Type*> scalarTypes, 128 unsigned maxAllRegisters) { 129 unsigned intCount = 0, fpCount = 0; 130 for (llvm::Type *type : scalarTypes) { 131 if (type->isPointerTy()) { 132 intCount++; 133 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 134 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 135 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 136 } else { 137 assert(type->isVectorTy() || type->isFloatingPointTy()); 138 fpCount++; 139 } 140 } 141 142 return (intCount + fpCount > maxAllRegisters); 143 } 144 145 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 146 llvm::Type *eltTy, 147 unsigned numElts) const { 148 // The default implementation of this assumes that the target guarantees 149 // 128-bit SIMD support but nothing more. 150 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 151 } 152 153 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 154 CGCXXABI &CXXABI) { 155 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 156 if (!RD) { 157 if (!RT->getDecl()->canPassInRegisters()) 158 return CGCXXABI::RAA_Indirect; 159 return CGCXXABI::RAA_Default; 160 } 161 return CXXABI.getRecordArgABI(RD); 162 } 163 164 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 165 CGCXXABI &CXXABI) { 166 const RecordType *RT = T->getAs<RecordType>(); 167 if (!RT) 168 return CGCXXABI::RAA_Default; 169 return getRecordArgABI(RT, CXXABI); 170 } 171 172 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 173 const ABIInfo &Info) { 174 QualType Ty = FI.getReturnType(); 175 176 if (const auto *RT = Ty->getAs<RecordType>()) 177 if (!isa<CXXRecordDecl>(RT->getDecl()) && 178 !RT->getDecl()->canPassInRegisters()) { 179 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 180 return true; 181 } 182 183 return CXXABI.classifyReturnType(FI); 184 } 185 186 /// Pass transparent unions as if they were the type of the first element. Sema 187 /// should ensure that all elements of the union have the same "machine type". 188 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 189 if (const RecordType *UT = Ty->getAsUnionType()) { 190 const RecordDecl *UD = UT->getDecl(); 191 if (UD->hasAttr<TransparentUnionAttr>()) { 192 assert(!UD->field_empty() && "sema created an empty transparent union"); 193 return UD->field_begin()->getType(); 194 } 195 } 196 return Ty; 197 } 198 199 CGCXXABI &ABIInfo::getCXXABI() const { 200 return CGT.getCXXABI(); 201 } 202 203 ASTContext &ABIInfo::getContext() const { 204 return CGT.getContext(); 205 } 206 207 llvm::LLVMContext &ABIInfo::getVMContext() const { 208 return CGT.getLLVMContext(); 209 } 210 211 const llvm::DataLayout &ABIInfo::getDataLayout() const { 212 return CGT.getDataLayout(); 213 } 214 215 const TargetInfo &ABIInfo::getTarget() const { 216 return CGT.getTarget(); 217 } 218 219 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 220 return CGT.getCodeGenOpts(); 221 } 222 223 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 224 225 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 226 return false; 227 } 228 229 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 230 uint64_t Members) const { 231 return false; 232 } 233 234 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 235 raw_ostream &OS = llvm::errs(); 236 OS << "(ABIArgInfo Kind="; 237 switch (TheKind) { 238 case Direct: 239 OS << "Direct Type="; 240 if (llvm::Type *Ty = getCoerceToType()) 241 Ty->print(OS); 242 else 243 OS << "null"; 244 break; 245 case Extend: 246 OS << "Extend"; 247 break; 248 case Ignore: 249 OS << "Ignore"; 250 break; 251 case InAlloca: 252 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 253 break; 254 case Indirect: 255 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 256 << " ByVal=" << getIndirectByVal() 257 << " Realign=" << getIndirectRealign(); 258 break; 259 case Expand: 260 OS << "Expand"; 261 break; 262 case CoerceAndExpand: 263 OS << "CoerceAndExpand Type="; 264 getCoerceAndExpandType()->print(OS); 265 break; 266 } 267 OS << ")\n"; 268 } 269 270 // Dynamically round a pointer up to a multiple of the given alignment. 271 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 272 llvm::Value *Ptr, 273 CharUnits Align) { 274 llvm::Value *PtrAsInt = Ptr; 275 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 276 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 277 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 278 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 279 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 280 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 281 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 282 Ptr->getType(), 283 Ptr->getName() + ".aligned"); 284 return PtrAsInt; 285 } 286 287 /// Emit va_arg for a platform using the common void* representation, 288 /// where arguments are simply emitted in an array of slots on the stack. 289 /// 290 /// This version implements the core direct-value passing rules. 291 /// 292 /// \param SlotSize - The size and alignment of a stack slot. 293 /// Each argument will be allocated to a multiple of this number of 294 /// slots, and all the slots will be aligned to this value. 295 /// \param AllowHigherAlign - The slot alignment is not a cap; 296 /// an argument type with an alignment greater than the slot size 297 /// will be emitted on a higher-alignment address, potentially 298 /// leaving one or more empty slots behind as padding. If this 299 /// is false, the returned address might be less-aligned than 300 /// DirectAlign. 301 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 302 Address VAListAddr, 303 llvm::Type *DirectTy, 304 CharUnits DirectSize, 305 CharUnits DirectAlign, 306 CharUnits SlotSize, 307 bool AllowHigherAlign) { 308 // Cast the element type to i8* if necessary. Some platforms define 309 // va_list as a struct containing an i8* instead of just an i8*. 310 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 311 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 312 313 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 314 315 // If the CC aligns values higher than the slot size, do so if needed. 316 Address Addr = Address::invalid(); 317 if (AllowHigherAlign && DirectAlign > SlotSize) { 318 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 319 DirectAlign); 320 } else { 321 Addr = Address(Ptr, SlotSize); 322 } 323 324 // Advance the pointer past the argument, then store that back. 325 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 326 Address NextPtr = 327 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 328 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 329 330 // If the argument is smaller than a slot, and this is a big-endian 331 // target, the argument will be right-adjusted in its slot. 332 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 333 !DirectTy->isStructTy()) { 334 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 335 } 336 337 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 338 return Addr; 339 } 340 341 /// Emit va_arg for a platform using the common void* representation, 342 /// where arguments are simply emitted in an array of slots on the stack. 343 /// 344 /// \param IsIndirect - Values of this type are passed indirectly. 345 /// \param ValueInfo - The size and alignment of this type, generally 346 /// computed with getContext().getTypeInfoInChars(ValueTy). 347 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 348 /// Each argument will be allocated to a multiple of this number of 349 /// slots, and all the slots will be aligned to this value. 350 /// \param AllowHigherAlign - The slot alignment is not a cap; 351 /// an argument type with an alignment greater than the slot size 352 /// will be emitted on a higher-alignment address, potentially 353 /// leaving one or more empty slots behind as padding. 354 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 355 QualType ValueTy, bool IsIndirect, 356 std::pair<CharUnits, CharUnits> ValueInfo, 357 CharUnits SlotSizeAndAlign, 358 bool AllowHigherAlign) { 359 // The size and alignment of the value that was passed directly. 360 CharUnits DirectSize, DirectAlign; 361 if (IsIndirect) { 362 DirectSize = CGF.getPointerSize(); 363 DirectAlign = CGF.getPointerAlign(); 364 } else { 365 DirectSize = ValueInfo.first; 366 DirectAlign = ValueInfo.second; 367 } 368 369 // Cast the address we've calculated to the right type. 370 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 371 if (IsIndirect) 372 DirectTy = DirectTy->getPointerTo(0); 373 374 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 375 DirectSize, DirectAlign, 376 SlotSizeAndAlign, 377 AllowHigherAlign); 378 379 if (IsIndirect) { 380 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 381 } 382 383 return Addr; 384 385 } 386 387 static Address emitMergePHI(CodeGenFunction &CGF, 388 Address Addr1, llvm::BasicBlock *Block1, 389 Address Addr2, llvm::BasicBlock *Block2, 390 const llvm::Twine &Name = "") { 391 assert(Addr1.getType() == Addr2.getType()); 392 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 393 PHI->addIncoming(Addr1.getPointer(), Block1); 394 PHI->addIncoming(Addr2.getPointer(), Block2); 395 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 396 return Address(PHI, Align); 397 } 398 399 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 400 401 // If someone can figure out a general rule for this, that would be great. 402 // It's probably just doomed to be platform-dependent, though. 403 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 404 // Verified for: 405 // x86-64 FreeBSD, Linux, Darwin 406 // x86-32 FreeBSD, Linux, Darwin 407 // PowerPC Linux, Darwin 408 // ARM Darwin (*not* EABI) 409 // AArch64 Linux 410 return 32; 411 } 412 413 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 414 const FunctionNoProtoType *fnType) const { 415 // The following conventions are known to require this to be false: 416 // x86_stdcall 417 // MIPS 418 // For everything else, we just prefer false unless we opt out. 419 return false; 420 } 421 422 void 423 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 424 llvm::SmallString<24> &Opt) const { 425 // This assumes the user is passing a library name like "rt" instead of a 426 // filename like "librt.a/so", and that they don't care whether it's static or 427 // dynamic. 428 Opt = "-l"; 429 Opt += Lib; 430 } 431 432 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 433 // OpenCL kernels are called via an explicit runtime API with arguments 434 // set with clSetKernelArg(), not as normal sub-functions. 435 // Return SPIR_KERNEL by default as the kernel calling convention to 436 // ensure the fingerprint is fixed such way that each OpenCL argument 437 // gets one matching argument in the produced kernel function argument 438 // list to enable feasible implementation of clSetKernelArg() with 439 // aggregates etc. In case we would use the default C calling conv here, 440 // clSetKernelArg() might break depending on the target-specific 441 // conventions; different targets might split structs passed as values 442 // to multiple function arguments etc. 443 return llvm::CallingConv::SPIR_KERNEL; 444 } 445 446 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 447 llvm::PointerType *T, QualType QT) const { 448 return llvm::ConstantPointerNull::get(T); 449 } 450 451 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 452 const VarDecl *D) const { 453 assert(!CGM.getLangOpts().OpenCL && 454 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 455 "Address space agnostic languages only"); 456 return D ? D->getType().getAddressSpace() : LangAS::Default; 457 } 458 459 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 460 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 461 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 462 // Since target may map different address spaces in AST to the same address 463 // space, an address space conversion may end up as a bitcast. 464 if (auto *C = dyn_cast<llvm::Constant>(Src)) 465 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 466 // Try to preserve the source's name to make IR more readable. 467 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 468 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 469 } 470 471 llvm::Constant * 472 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 473 LangAS SrcAddr, LangAS DestAddr, 474 llvm::Type *DestTy) const { 475 // Since target may map different address spaces in AST to the same address 476 // space, an address space conversion may end up as a bitcast. 477 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 478 } 479 480 llvm::SyncScope::ID 481 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 482 SyncScope Scope, 483 llvm::AtomicOrdering Ordering, 484 llvm::LLVMContext &Ctx) const { 485 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 486 } 487 488 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 489 490 /// isEmptyField - Return true iff a the field is "empty", that is it 491 /// is an unnamed bit-field or an (array of) empty record(s). 492 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 493 bool AllowArrays) { 494 if (FD->isUnnamedBitfield()) 495 return true; 496 497 QualType FT = FD->getType(); 498 499 // Constant arrays of empty records count as empty, strip them off. 500 // Constant arrays of zero length always count as empty. 501 if (AllowArrays) 502 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 503 if (AT->getSize() == 0) 504 return true; 505 FT = AT->getElementType(); 506 } 507 508 const RecordType *RT = FT->getAs<RecordType>(); 509 if (!RT) 510 return false; 511 512 // C++ record fields are never empty, at least in the Itanium ABI. 513 // 514 // FIXME: We should use a predicate for whether this behavior is true in the 515 // current ABI. 516 if (isa<CXXRecordDecl>(RT->getDecl())) 517 return false; 518 519 return isEmptyRecord(Context, FT, AllowArrays); 520 } 521 522 /// isEmptyRecord - Return true iff a structure contains only empty 523 /// fields. Note that a structure with a flexible array member is not 524 /// considered empty. 525 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 526 const RecordType *RT = T->getAs<RecordType>(); 527 if (!RT) 528 return false; 529 const RecordDecl *RD = RT->getDecl(); 530 if (RD->hasFlexibleArrayMember()) 531 return false; 532 533 // If this is a C++ record, check the bases first. 534 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 535 for (const auto &I : CXXRD->bases()) 536 if (!isEmptyRecord(Context, I.getType(), true)) 537 return false; 538 539 for (const auto *I : RD->fields()) 540 if (!isEmptyField(Context, I, AllowArrays)) 541 return false; 542 return true; 543 } 544 545 /// isSingleElementStruct - Determine if a structure is a "single 546 /// element struct", i.e. it has exactly one non-empty field or 547 /// exactly one field which is itself a single element 548 /// struct. Structures with flexible array members are never 549 /// considered single element structs. 550 /// 551 /// \return The field declaration for the single non-empty field, if 552 /// it exists. 553 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 554 const RecordType *RT = T->getAs<RecordType>(); 555 if (!RT) 556 return nullptr; 557 558 const RecordDecl *RD = RT->getDecl(); 559 if (RD->hasFlexibleArrayMember()) 560 return nullptr; 561 562 const Type *Found = nullptr; 563 564 // If this is a C++ record, check the bases first. 565 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 566 for (const auto &I : CXXRD->bases()) { 567 // Ignore empty records. 568 if (isEmptyRecord(Context, I.getType(), true)) 569 continue; 570 571 // If we already found an element then this isn't a single-element struct. 572 if (Found) 573 return nullptr; 574 575 // If this is non-empty and not a single element struct, the composite 576 // cannot be a single element struct. 577 Found = isSingleElementStruct(I.getType(), Context); 578 if (!Found) 579 return nullptr; 580 } 581 } 582 583 // Check for single element. 584 for (const auto *FD : RD->fields()) { 585 QualType FT = FD->getType(); 586 587 // Ignore empty fields. 588 if (isEmptyField(Context, FD, true)) 589 continue; 590 591 // If we already found an element then this isn't a single-element 592 // struct. 593 if (Found) 594 return nullptr; 595 596 // Treat single element arrays as the element. 597 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 598 if (AT->getSize().getZExtValue() != 1) 599 break; 600 FT = AT->getElementType(); 601 } 602 603 if (!isAggregateTypeForABI(FT)) { 604 Found = FT.getTypePtr(); 605 } else { 606 Found = isSingleElementStruct(FT, Context); 607 if (!Found) 608 return nullptr; 609 } 610 } 611 612 // We don't consider a struct a single-element struct if it has 613 // padding beyond the element type. 614 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 615 return nullptr; 616 617 return Found; 618 } 619 620 namespace { 621 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 622 const ABIArgInfo &AI) { 623 // This default implementation defers to the llvm backend's va_arg 624 // instruction. It can handle only passing arguments directly 625 // (typically only handled in the backend for primitive types), or 626 // aggregates passed indirectly by pointer (NOTE: if the "byval" 627 // flag has ABI impact in the callee, this implementation cannot 628 // work.) 629 630 // Only a few cases are covered here at the moment -- those needed 631 // by the default abi. 632 llvm::Value *Val; 633 634 if (AI.isIndirect()) { 635 assert(!AI.getPaddingType() && 636 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 637 assert( 638 !AI.getIndirectRealign() && 639 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 640 641 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 642 CharUnits TyAlignForABI = TyInfo.second; 643 644 llvm::Type *BaseTy = 645 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 646 llvm::Value *Addr = 647 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 648 return Address(Addr, TyAlignForABI); 649 } else { 650 assert((AI.isDirect() || AI.isExtend()) && 651 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 652 653 assert(!AI.getInReg() && 654 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 655 assert(!AI.getPaddingType() && 656 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 657 assert(!AI.getDirectOffset() && 658 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 659 assert(!AI.getCoerceToType() && 660 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 661 662 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 663 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 664 CGF.Builder.CreateStore(Val, Temp); 665 return Temp; 666 } 667 } 668 669 /// DefaultABIInfo - The default implementation for ABI specific 670 /// details. This implementation provides information which results in 671 /// self-consistent and sensible LLVM IR generation, but does not 672 /// conform to any particular ABI. 673 class DefaultABIInfo : public ABIInfo { 674 public: 675 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 676 677 ABIArgInfo classifyReturnType(QualType RetTy) const; 678 ABIArgInfo classifyArgumentType(QualType RetTy) const; 679 680 void computeInfo(CGFunctionInfo &FI) const override { 681 if (!getCXXABI().classifyReturnType(FI)) 682 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 683 for (auto &I : FI.arguments()) 684 I.info = classifyArgumentType(I.type); 685 } 686 687 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 688 QualType Ty) const override { 689 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 690 } 691 }; 692 693 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 694 public: 695 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 696 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 697 }; 698 699 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 700 Ty = useFirstFieldIfTransparentUnion(Ty); 701 702 if (isAggregateTypeForABI(Ty)) { 703 // Records with non-trivial destructors/copy-constructors should not be 704 // passed by value. 705 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 706 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 707 708 return getNaturalAlignIndirect(Ty); 709 } 710 711 // Treat an enum type as its underlying type. 712 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 713 Ty = EnumTy->getDecl()->getIntegerType(); 714 715 ASTContext &Context = getContext(); 716 if (const auto *EIT = Ty->getAs<ExtIntType>()) 717 if (EIT->getNumBits() > 718 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 719 ? Context.Int128Ty 720 : Context.LongLongTy)) 721 return getNaturalAlignIndirect(Ty); 722 723 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 724 : ABIArgInfo::getDirect()); 725 } 726 727 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 728 if (RetTy->isVoidType()) 729 return ABIArgInfo::getIgnore(); 730 731 if (isAggregateTypeForABI(RetTy)) 732 return getNaturalAlignIndirect(RetTy); 733 734 // Treat an enum type as its underlying type. 735 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 736 RetTy = EnumTy->getDecl()->getIntegerType(); 737 738 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 739 if (EIT->getNumBits() > 740 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 741 ? getContext().Int128Ty 742 : getContext().LongLongTy)) 743 return getNaturalAlignIndirect(RetTy); 744 745 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 746 : ABIArgInfo::getDirect()); 747 } 748 749 //===----------------------------------------------------------------------===// 750 // WebAssembly ABI Implementation 751 // 752 // This is a very simple ABI that relies a lot on DefaultABIInfo. 753 //===----------------------------------------------------------------------===// 754 755 class WebAssemblyABIInfo final : public SwiftABIInfo { 756 public: 757 enum ABIKind { 758 MVP = 0, 759 ExperimentalMV = 1, 760 }; 761 762 private: 763 DefaultABIInfo defaultInfo; 764 ABIKind Kind; 765 766 public: 767 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 768 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 769 770 private: 771 ABIArgInfo classifyReturnType(QualType RetTy) const; 772 ABIArgInfo classifyArgumentType(QualType Ty) const; 773 774 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 775 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 776 // overload them. 777 void computeInfo(CGFunctionInfo &FI) const override { 778 if (!getCXXABI().classifyReturnType(FI)) 779 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 780 for (auto &Arg : FI.arguments()) 781 Arg.info = classifyArgumentType(Arg.type); 782 } 783 784 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 785 QualType Ty) const override; 786 787 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 788 bool asReturnValue) const override { 789 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 790 } 791 792 bool isSwiftErrorInRegister() const override { 793 return false; 794 } 795 }; 796 797 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 798 public: 799 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 800 WebAssemblyABIInfo::ABIKind K) 801 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 802 803 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 804 CodeGen::CodeGenModule &CGM) const override { 805 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 806 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 807 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 808 llvm::Function *Fn = cast<llvm::Function>(GV); 809 llvm::AttrBuilder B; 810 B.addAttribute("wasm-import-module", Attr->getImportModule()); 811 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 812 } 813 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 814 llvm::Function *Fn = cast<llvm::Function>(GV); 815 llvm::AttrBuilder B; 816 B.addAttribute("wasm-import-name", Attr->getImportName()); 817 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 818 } 819 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 820 llvm::Function *Fn = cast<llvm::Function>(GV); 821 llvm::AttrBuilder B; 822 B.addAttribute("wasm-export-name", Attr->getExportName()); 823 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 824 } 825 } 826 827 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 828 llvm::Function *Fn = cast<llvm::Function>(GV); 829 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 830 Fn->addFnAttr("no-prototype"); 831 } 832 } 833 }; 834 835 /// Classify argument of given type \p Ty. 836 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 837 Ty = useFirstFieldIfTransparentUnion(Ty); 838 839 if (isAggregateTypeForABI(Ty)) { 840 // Records with non-trivial destructors/copy-constructors should not be 841 // passed by value. 842 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 843 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 844 // Ignore empty structs/unions. 845 if (isEmptyRecord(getContext(), Ty, true)) 846 return ABIArgInfo::getIgnore(); 847 // Lower single-element structs to just pass a regular value. TODO: We 848 // could do reasonable-size multiple-element structs too, using getExpand(), 849 // though watch out for things like bitfields. 850 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 851 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 852 // For the experimental multivalue ABI, fully expand all other aggregates 853 if (Kind == ABIKind::ExperimentalMV) { 854 const RecordType *RT = Ty->getAs<RecordType>(); 855 assert(RT); 856 bool HasBitField = false; 857 for (auto *Field : RT->getDecl()->fields()) { 858 if (Field->isBitField()) { 859 HasBitField = true; 860 break; 861 } 862 } 863 if (!HasBitField) 864 return ABIArgInfo::getExpand(); 865 } 866 } 867 868 // Otherwise just do the default thing. 869 return defaultInfo.classifyArgumentType(Ty); 870 } 871 872 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 873 if (isAggregateTypeForABI(RetTy)) { 874 // Records with non-trivial destructors/copy-constructors should not be 875 // returned by value. 876 if (!getRecordArgABI(RetTy, getCXXABI())) { 877 // Ignore empty structs/unions. 878 if (isEmptyRecord(getContext(), RetTy, true)) 879 return ABIArgInfo::getIgnore(); 880 // Lower single-element structs to just return a regular value. TODO: We 881 // could do reasonable-size multiple-element structs too, using 882 // ABIArgInfo::getDirect(). 883 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 884 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 885 // For the experimental multivalue ABI, return all other aggregates 886 if (Kind == ABIKind::ExperimentalMV) 887 return ABIArgInfo::getDirect(); 888 } 889 } 890 891 // Otherwise just do the default thing. 892 return defaultInfo.classifyReturnType(RetTy); 893 } 894 895 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 896 QualType Ty) const { 897 bool IsIndirect = isAggregateTypeForABI(Ty) && 898 !isEmptyRecord(getContext(), Ty, true) && 899 !isSingleElementStruct(Ty, getContext()); 900 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 901 getContext().getTypeInfoInChars(Ty), 902 CharUnits::fromQuantity(4), 903 /*AllowHigherAlign=*/true); 904 } 905 906 //===----------------------------------------------------------------------===// 907 // le32/PNaCl bitcode ABI Implementation 908 // 909 // This is a simplified version of the x86_32 ABI. Arguments and return values 910 // are always passed on the stack. 911 //===----------------------------------------------------------------------===// 912 913 class PNaClABIInfo : public ABIInfo { 914 public: 915 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 916 917 ABIArgInfo classifyReturnType(QualType RetTy) const; 918 ABIArgInfo classifyArgumentType(QualType RetTy) const; 919 920 void computeInfo(CGFunctionInfo &FI) const override; 921 Address EmitVAArg(CodeGenFunction &CGF, 922 Address VAListAddr, QualType Ty) const override; 923 }; 924 925 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 926 public: 927 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 928 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 929 }; 930 931 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 932 if (!getCXXABI().classifyReturnType(FI)) 933 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 934 935 for (auto &I : FI.arguments()) 936 I.info = classifyArgumentType(I.type); 937 } 938 939 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 940 QualType Ty) const { 941 // The PNaCL ABI is a bit odd, in that varargs don't use normal 942 // function classification. Structs get passed directly for varargs 943 // functions, through a rewriting transform in 944 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 945 // this target to actually support a va_arg instructions with an 946 // aggregate type, unlike other targets. 947 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 948 } 949 950 /// Classify argument of given type \p Ty. 951 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 952 if (isAggregateTypeForABI(Ty)) { 953 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 954 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 955 return getNaturalAlignIndirect(Ty); 956 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 957 // Treat an enum type as its underlying type. 958 Ty = EnumTy->getDecl()->getIntegerType(); 959 } else if (Ty->isFloatingType()) { 960 // Floating-point types don't go inreg. 961 return ABIArgInfo::getDirect(); 962 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 963 // Treat extended integers as integers if <=64, otherwise pass indirectly. 964 if (EIT->getNumBits() > 64) 965 return getNaturalAlignIndirect(Ty); 966 return ABIArgInfo::getDirect(); 967 } 968 969 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 970 : ABIArgInfo::getDirect()); 971 } 972 973 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 974 if (RetTy->isVoidType()) 975 return ABIArgInfo::getIgnore(); 976 977 // In the PNaCl ABI we always return records/structures on the stack. 978 if (isAggregateTypeForABI(RetTy)) 979 return getNaturalAlignIndirect(RetTy); 980 981 // Treat extended integers as integers if <=64, otherwise pass indirectly. 982 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(RetTy); 985 return ABIArgInfo::getDirect(); 986 } 987 988 // Treat an enum type as its underlying type. 989 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 990 RetTy = EnumTy->getDecl()->getIntegerType(); 991 992 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 993 : ABIArgInfo::getDirect()); 994 } 995 996 /// IsX86_MMXType - Return true if this is an MMX type. 997 bool IsX86_MMXType(llvm::Type *IRType) { 998 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 999 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1000 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1001 IRType->getScalarSizeInBits() != 64; 1002 } 1003 1004 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1005 StringRef Constraint, 1006 llvm::Type* Ty) { 1007 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1008 .Cases("y", "&y", "^Ym", true) 1009 .Default(false); 1010 if (IsMMXCons && Ty->isVectorTy()) { 1011 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1012 64) { 1013 // Invalid MMX constraint 1014 return nullptr; 1015 } 1016 1017 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1018 } 1019 1020 // No operation needed 1021 return Ty; 1022 } 1023 1024 /// Returns true if this type can be passed in SSE registers with the 1025 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1026 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1027 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1028 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1029 if (BT->getKind() == BuiltinType::LongDouble) { 1030 if (&Context.getTargetInfo().getLongDoubleFormat() == 1031 &llvm::APFloat::x87DoubleExtended()) 1032 return false; 1033 } 1034 return true; 1035 } 1036 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1037 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1038 // registers specially. 1039 unsigned VecSize = Context.getTypeSize(VT); 1040 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 /// Returns true if this aggregate is small enough to be passed in SSE registers 1047 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1048 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1049 return NumMembers <= 4; 1050 } 1051 1052 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1053 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1054 auto AI = ABIArgInfo::getDirect(T); 1055 AI.setInReg(true); 1056 AI.setCanBeFlattened(false); 1057 return AI; 1058 } 1059 1060 //===----------------------------------------------------------------------===// 1061 // X86-32 ABI Implementation 1062 //===----------------------------------------------------------------------===// 1063 1064 /// Similar to llvm::CCState, but for Clang. 1065 struct CCState { 1066 CCState(CGFunctionInfo &FI) 1067 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1068 1069 llvm::SmallBitVector IsPreassigned; 1070 unsigned CC = CallingConv::CC_C; 1071 unsigned FreeRegs = 0; 1072 unsigned FreeSSERegs = 0; 1073 }; 1074 1075 enum { 1076 // Vectorcall only allows the first 6 parameters to be passed in registers. 1077 VectorcallMaxParamNumAsReg = 6 1078 }; 1079 1080 /// X86_32ABIInfo - The X86-32 ABI information. 1081 class X86_32ABIInfo : public SwiftABIInfo { 1082 enum Class { 1083 Integer, 1084 Float 1085 }; 1086 1087 static const unsigned MinABIStackAlignInBytes = 4; 1088 1089 bool IsDarwinVectorABI; 1090 bool IsRetSmallStructInRegABI; 1091 bool IsWin32StructABI; 1092 bool IsSoftFloatABI; 1093 bool IsMCUABI; 1094 unsigned DefaultNumRegisterParameters; 1095 1096 static bool isRegisterSize(unsigned Size) { 1097 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1098 } 1099 1100 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1101 // FIXME: Assumes vectorcall is in use. 1102 return isX86VectorTypeForVectorCall(getContext(), Ty); 1103 } 1104 1105 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1106 uint64_t NumMembers) const override { 1107 // FIXME: Assumes vectorcall is in use. 1108 return isX86VectorCallAggregateSmallEnough(NumMembers); 1109 } 1110 1111 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1112 1113 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1114 /// such that the argument will be passed in memory. 1115 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1116 1117 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1118 1119 /// Return the alignment to use for the given type on the stack. 1120 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1121 1122 Class classify(QualType Ty) const; 1123 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1124 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1125 1126 /// Updates the number of available free registers, returns 1127 /// true if any registers were allocated. 1128 bool updateFreeRegs(QualType Ty, CCState &State) const; 1129 1130 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1131 bool &NeedsPadding) const; 1132 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1133 1134 bool canExpandIndirectArgument(QualType Ty) const; 1135 1136 /// Rewrite the function info so that all memory arguments use 1137 /// inalloca. 1138 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1139 1140 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1141 CharUnits &StackOffset, ABIArgInfo &Info, 1142 QualType Type) const; 1143 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1144 1145 public: 1146 1147 void computeInfo(CGFunctionInfo &FI) const override; 1148 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1149 QualType Ty) const override; 1150 1151 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1152 bool RetSmallStructInRegABI, bool Win32StructABI, 1153 unsigned NumRegisterParameters, bool SoftFloatABI) 1154 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1155 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1156 IsWin32StructABI(Win32StructABI), 1157 IsSoftFloatABI(SoftFloatABI), 1158 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1159 DefaultNumRegisterParameters(NumRegisterParameters) {} 1160 1161 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1162 bool asReturnValue) const override { 1163 // LLVM's x86-32 lowering currently only assigns up to three 1164 // integer registers and three fp registers. Oddly, it'll use up to 1165 // four vector registers for vectors, but those can overlap with the 1166 // scalar registers. 1167 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1168 } 1169 1170 bool isSwiftErrorInRegister() const override { 1171 // x86-32 lowering does not support passing swifterror in a register. 1172 return false; 1173 } 1174 }; 1175 1176 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1177 public: 1178 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1179 bool RetSmallStructInRegABI, bool Win32StructABI, 1180 unsigned NumRegisterParameters, bool SoftFloatABI) 1181 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1182 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1183 NumRegisterParameters, SoftFloatABI)) {} 1184 1185 static bool isStructReturnInRegABI( 1186 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1187 1188 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1189 CodeGen::CodeGenModule &CGM) const override; 1190 1191 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1192 // Darwin uses different dwarf register numbers for EH. 1193 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1194 return 4; 1195 } 1196 1197 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1198 llvm::Value *Address) const override; 1199 1200 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1201 StringRef Constraint, 1202 llvm::Type* Ty) const override { 1203 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1204 } 1205 1206 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1207 std::string &Constraints, 1208 std::vector<llvm::Type *> &ResultRegTypes, 1209 std::vector<llvm::Type *> &ResultTruncRegTypes, 1210 std::vector<LValue> &ResultRegDests, 1211 std::string &AsmString, 1212 unsigned NumOutputs) const override; 1213 1214 llvm::Constant * 1215 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1216 unsigned Sig = (0xeb << 0) | // jmp rel8 1217 (0x06 << 8) | // .+0x08 1218 ('v' << 16) | 1219 ('2' << 24); 1220 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1221 } 1222 1223 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1224 return "movl\t%ebp, %ebp" 1225 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1226 } 1227 }; 1228 1229 } 1230 1231 /// Rewrite input constraint references after adding some output constraints. 1232 /// In the case where there is one output and one input and we add one output, 1233 /// we need to replace all operand references greater than or equal to 1: 1234 /// mov $0, $1 1235 /// mov eax, $1 1236 /// The result will be: 1237 /// mov $0, $2 1238 /// mov eax, $2 1239 static void rewriteInputConstraintReferences(unsigned FirstIn, 1240 unsigned NumNewOuts, 1241 std::string &AsmString) { 1242 std::string Buf; 1243 llvm::raw_string_ostream OS(Buf); 1244 size_t Pos = 0; 1245 while (Pos < AsmString.size()) { 1246 size_t DollarStart = AsmString.find('$', Pos); 1247 if (DollarStart == std::string::npos) 1248 DollarStart = AsmString.size(); 1249 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1250 if (DollarEnd == std::string::npos) 1251 DollarEnd = AsmString.size(); 1252 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1253 Pos = DollarEnd; 1254 size_t NumDollars = DollarEnd - DollarStart; 1255 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1256 // We have an operand reference. 1257 size_t DigitStart = Pos; 1258 if (AsmString[DigitStart] == '{') { 1259 OS << '{'; 1260 ++DigitStart; 1261 } 1262 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1263 if (DigitEnd == std::string::npos) 1264 DigitEnd = AsmString.size(); 1265 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1266 unsigned OperandIndex; 1267 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1268 if (OperandIndex >= FirstIn) 1269 OperandIndex += NumNewOuts; 1270 OS << OperandIndex; 1271 } else { 1272 OS << OperandStr; 1273 } 1274 Pos = DigitEnd; 1275 } 1276 } 1277 AsmString = std::move(OS.str()); 1278 } 1279 1280 /// Add output constraints for EAX:EDX because they are return registers. 1281 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1282 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1283 std::vector<llvm::Type *> &ResultRegTypes, 1284 std::vector<llvm::Type *> &ResultTruncRegTypes, 1285 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1286 unsigned NumOutputs) const { 1287 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1288 1289 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1290 // larger. 1291 if (!Constraints.empty()) 1292 Constraints += ','; 1293 if (RetWidth <= 32) { 1294 Constraints += "={eax}"; 1295 ResultRegTypes.push_back(CGF.Int32Ty); 1296 } else { 1297 // Use the 'A' constraint for EAX:EDX. 1298 Constraints += "=A"; 1299 ResultRegTypes.push_back(CGF.Int64Ty); 1300 } 1301 1302 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1303 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1304 ResultTruncRegTypes.push_back(CoerceTy); 1305 1306 // Coerce the integer by bitcasting the return slot pointer. 1307 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1308 CoerceTy->getPointerTo())); 1309 ResultRegDests.push_back(ReturnSlot); 1310 1311 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1312 } 1313 1314 /// shouldReturnTypeInRegister - Determine if the given type should be 1315 /// returned in a register (for the Darwin and MCU ABI). 1316 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1317 ASTContext &Context) const { 1318 uint64_t Size = Context.getTypeSize(Ty); 1319 1320 // For i386, type must be register sized. 1321 // For the MCU ABI, it only needs to be <= 8-byte 1322 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1323 return false; 1324 1325 if (Ty->isVectorType()) { 1326 // 64- and 128- bit vectors inside structures are not returned in 1327 // registers. 1328 if (Size == 64 || Size == 128) 1329 return false; 1330 1331 return true; 1332 } 1333 1334 // If this is a builtin, pointer, enum, complex type, member pointer, or 1335 // member function pointer it is ok. 1336 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1337 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1338 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1339 return true; 1340 1341 // Arrays are treated like records. 1342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1343 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1344 1345 // Otherwise, it must be a record type. 1346 const RecordType *RT = Ty->getAs<RecordType>(); 1347 if (!RT) return false; 1348 1349 // FIXME: Traverse bases here too. 1350 1351 // Structure types are passed in register if all fields would be 1352 // passed in a register. 1353 for (const auto *FD : RT->getDecl()->fields()) { 1354 // Empty fields are ignored. 1355 if (isEmptyField(Context, FD, true)) 1356 continue; 1357 1358 // Check fields recursively. 1359 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1360 return false; 1361 } 1362 return true; 1363 } 1364 1365 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1366 // Treat complex types as the element type. 1367 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1368 Ty = CTy->getElementType(); 1369 1370 // Check for a type which we know has a simple scalar argument-passing 1371 // convention without any padding. (We're specifically looking for 32 1372 // and 64-bit integer and integer-equivalents, float, and double.) 1373 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1374 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1375 return false; 1376 1377 uint64_t Size = Context.getTypeSize(Ty); 1378 return Size == 32 || Size == 64; 1379 } 1380 1381 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1382 uint64_t &Size) { 1383 for (const auto *FD : RD->fields()) { 1384 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1385 // argument is smaller than 32-bits, expanding the struct will create 1386 // alignment padding. 1387 if (!is32Or64BitBasicType(FD->getType(), Context)) 1388 return false; 1389 1390 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1391 // how to expand them yet, and the predicate for telling if a bitfield still 1392 // counts as "basic" is more complicated than what we were doing previously. 1393 if (FD->isBitField()) 1394 return false; 1395 1396 Size += Context.getTypeSize(FD->getType()); 1397 } 1398 return true; 1399 } 1400 1401 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1402 uint64_t &Size) { 1403 // Don't do this if there are any non-empty bases. 1404 for (const CXXBaseSpecifier &Base : RD->bases()) { 1405 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1406 Size)) 1407 return false; 1408 } 1409 if (!addFieldSizes(Context, RD, Size)) 1410 return false; 1411 return true; 1412 } 1413 1414 /// Test whether an argument type which is to be passed indirectly (on the 1415 /// stack) would have the equivalent layout if it was expanded into separate 1416 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1417 /// optimizations. 1418 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1419 // We can only expand structure types. 1420 const RecordType *RT = Ty->getAs<RecordType>(); 1421 if (!RT) 1422 return false; 1423 const RecordDecl *RD = RT->getDecl(); 1424 uint64_t Size = 0; 1425 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1426 if (!IsWin32StructABI) { 1427 // On non-Windows, we have to conservatively match our old bitcode 1428 // prototypes in order to be ABI-compatible at the bitcode level. 1429 if (!CXXRD->isCLike()) 1430 return false; 1431 } else { 1432 // Don't do this for dynamic classes. 1433 if (CXXRD->isDynamicClass()) 1434 return false; 1435 } 1436 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1437 return false; 1438 } else { 1439 if (!addFieldSizes(getContext(), RD, Size)) 1440 return false; 1441 } 1442 1443 // We can do this if there was no alignment padding. 1444 return Size == getContext().getTypeSize(Ty); 1445 } 1446 1447 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1448 // If the return value is indirect, then the hidden argument is consuming one 1449 // integer register. 1450 if (State.FreeRegs) { 1451 --State.FreeRegs; 1452 if (!IsMCUABI) 1453 return getNaturalAlignIndirectInReg(RetTy); 1454 } 1455 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1456 } 1457 1458 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1459 CCState &State) const { 1460 if (RetTy->isVoidType()) 1461 return ABIArgInfo::getIgnore(); 1462 1463 const Type *Base = nullptr; 1464 uint64_t NumElts = 0; 1465 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1466 State.CC == llvm::CallingConv::X86_RegCall) && 1467 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1468 // The LLVM struct type for such an aggregate should lower properly. 1469 return ABIArgInfo::getDirect(); 1470 } 1471 1472 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1473 // On Darwin, some vectors are returned in registers. 1474 if (IsDarwinVectorABI) { 1475 uint64_t Size = getContext().getTypeSize(RetTy); 1476 1477 // 128-bit vectors are a special case; they are returned in 1478 // registers and we need to make sure to pick a type the LLVM 1479 // backend will like. 1480 if (Size == 128) 1481 return ABIArgInfo::getDirect(llvm::VectorType::get( 1482 llvm::Type::getInt64Ty(getVMContext()), 2)); 1483 1484 // Always return in register if it fits in a general purpose 1485 // register, or if it is 64 bits and has a single element. 1486 if ((Size == 8 || Size == 16 || Size == 32) || 1487 (Size == 64 && VT->getNumElements() == 1)) 1488 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1489 Size)); 1490 1491 return getIndirectReturnResult(RetTy, State); 1492 } 1493 1494 return ABIArgInfo::getDirect(); 1495 } 1496 1497 if (isAggregateTypeForABI(RetTy)) { 1498 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1499 // Structures with flexible arrays are always indirect. 1500 if (RT->getDecl()->hasFlexibleArrayMember()) 1501 return getIndirectReturnResult(RetTy, State); 1502 } 1503 1504 // If specified, structs and unions are always indirect. 1505 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1506 return getIndirectReturnResult(RetTy, State); 1507 1508 // Ignore empty structs/unions. 1509 if (isEmptyRecord(getContext(), RetTy, true)) 1510 return ABIArgInfo::getIgnore(); 1511 1512 // Small structures which are register sized are generally returned 1513 // in a register. 1514 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1515 uint64_t Size = getContext().getTypeSize(RetTy); 1516 1517 // As a special-case, if the struct is a "single-element" struct, and 1518 // the field is of type "float" or "double", return it in a 1519 // floating-point register. (MSVC does not apply this special case.) 1520 // We apply a similar transformation for pointer types to improve the 1521 // quality of the generated IR. 1522 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1523 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1524 || SeltTy->hasPointerRepresentation()) 1525 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1526 1527 // FIXME: We should be able to narrow this integer in cases with dead 1528 // padding. 1529 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1530 } 1531 1532 return getIndirectReturnResult(RetTy, State); 1533 } 1534 1535 // Treat an enum type as its underlying type. 1536 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1537 RetTy = EnumTy->getDecl()->getIntegerType(); 1538 1539 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1540 if (EIT->getNumBits() > 64) 1541 return getIndirectReturnResult(RetTy, State); 1542 1543 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1544 : ABIArgInfo::getDirect()); 1545 } 1546 1547 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1548 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1549 } 1550 1551 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1552 const RecordType *RT = Ty->getAs<RecordType>(); 1553 if (!RT) 1554 return 0; 1555 const RecordDecl *RD = RT->getDecl(); 1556 1557 // If this is a C++ record, check the bases first. 1558 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1559 for (const auto &I : CXXRD->bases()) 1560 if (!isRecordWithSSEVectorType(Context, I.getType())) 1561 return false; 1562 1563 for (const auto *i : RD->fields()) { 1564 QualType FT = i->getType(); 1565 1566 if (isSSEVectorType(Context, FT)) 1567 return true; 1568 1569 if (isRecordWithSSEVectorType(Context, FT)) 1570 return true; 1571 } 1572 1573 return false; 1574 } 1575 1576 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1577 unsigned Align) const { 1578 // Otherwise, if the alignment is less than or equal to the minimum ABI 1579 // alignment, just use the default; the backend will handle this. 1580 if (Align <= MinABIStackAlignInBytes) 1581 return 0; // Use default alignment. 1582 1583 // On non-Darwin, the stack type alignment is always 4. 1584 if (!IsDarwinVectorABI) { 1585 // Set explicit alignment, since we may need to realign the top. 1586 return MinABIStackAlignInBytes; 1587 } 1588 1589 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1590 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1591 isRecordWithSSEVectorType(getContext(), Ty))) 1592 return 16; 1593 1594 return MinABIStackAlignInBytes; 1595 } 1596 1597 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1598 CCState &State) const { 1599 if (!ByVal) { 1600 if (State.FreeRegs) { 1601 --State.FreeRegs; // Non-byval indirects just use one pointer. 1602 if (!IsMCUABI) 1603 return getNaturalAlignIndirectInReg(Ty); 1604 } 1605 return getNaturalAlignIndirect(Ty, false); 1606 } 1607 1608 // Compute the byval alignment. 1609 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1610 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1611 if (StackAlign == 0) 1612 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1613 1614 // If the stack alignment is less than the type alignment, realign the 1615 // argument. 1616 bool Realign = TypeAlign > StackAlign; 1617 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1618 /*ByVal=*/true, Realign); 1619 } 1620 1621 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1622 const Type *T = isSingleElementStruct(Ty, getContext()); 1623 if (!T) 1624 T = Ty.getTypePtr(); 1625 1626 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1627 BuiltinType::Kind K = BT->getKind(); 1628 if (K == BuiltinType::Float || K == BuiltinType::Double) 1629 return Float; 1630 } 1631 return Integer; 1632 } 1633 1634 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1635 if (!IsSoftFloatABI) { 1636 Class C = classify(Ty); 1637 if (C == Float) 1638 return false; 1639 } 1640 1641 unsigned Size = getContext().getTypeSize(Ty); 1642 unsigned SizeInRegs = (Size + 31) / 32; 1643 1644 if (SizeInRegs == 0) 1645 return false; 1646 1647 if (!IsMCUABI) { 1648 if (SizeInRegs > State.FreeRegs) { 1649 State.FreeRegs = 0; 1650 return false; 1651 } 1652 } else { 1653 // The MCU psABI allows passing parameters in-reg even if there are 1654 // earlier parameters that are passed on the stack. Also, 1655 // it does not allow passing >8-byte structs in-register, 1656 // even if there are 3 free registers available. 1657 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1658 return false; 1659 } 1660 1661 State.FreeRegs -= SizeInRegs; 1662 return true; 1663 } 1664 1665 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1666 bool &InReg, 1667 bool &NeedsPadding) const { 1668 // On Windows, aggregates other than HFAs are never passed in registers, and 1669 // they do not consume register slots. Homogenous floating-point aggregates 1670 // (HFAs) have already been dealt with at this point. 1671 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1672 return false; 1673 1674 NeedsPadding = false; 1675 InReg = !IsMCUABI; 1676 1677 if (!updateFreeRegs(Ty, State)) 1678 return false; 1679 1680 if (IsMCUABI) 1681 return true; 1682 1683 if (State.CC == llvm::CallingConv::X86_FastCall || 1684 State.CC == llvm::CallingConv::X86_VectorCall || 1685 State.CC == llvm::CallingConv::X86_RegCall) { 1686 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1687 NeedsPadding = true; 1688 1689 return false; 1690 } 1691 1692 return true; 1693 } 1694 1695 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1696 if (!updateFreeRegs(Ty, State)) 1697 return false; 1698 1699 if (IsMCUABI) 1700 return false; 1701 1702 if (State.CC == llvm::CallingConv::X86_FastCall || 1703 State.CC == llvm::CallingConv::X86_VectorCall || 1704 State.CC == llvm::CallingConv::X86_RegCall) { 1705 if (getContext().getTypeSize(Ty) > 32) 1706 return false; 1707 1708 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1709 Ty->isReferenceType()); 1710 } 1711 1712 return true; 1713 } 1714 1715 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1716 // Vectorcall x86 works subtly different than in x64, so the format is 1717 // a bit different than the x64 version. First, all vector types (not HVAs) 1718 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1719 // This differs from the x64 implementation, where the first 6 by INDEX get 1720 // registers. 1721 // In the second pass over the arguments, HVAs are passed in the remaining 1722 // vector registers if possible, or indirectly by address. The address will be 1723 // passed in ECX/EDX if available. Any other arguments are passed according to 1724 // the usual fastcall rules. 1725 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1726 for (int I = 0, E = Args.size(); I < E; ++I) { 1727 const Type *Base = nullptr; 1728 uint64_t NumElts = 0; 1729 const QualType &Ty = Args[I].type; 1730 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1731 isHomogeneousAggregate(Ty, Base, NumElts)) { 1732 if (State.FreeSSERegs >= NumElts) { 1733 State.FreeSSERegs -= NumElts; 1734 Args[I].info = ABIArgInfo::getDirectInReg(); 1735 State.IsPreassigned.set(I); 1736 } 1737 } 1738 } 1739 } 1740 1741 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1742 CCState &State) const { 1743 // FIXME: Set alignment on indirect arguments. 1744 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1745 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1746 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1747 1748 Ty = useFirstFieldIfTransparentUnion(Ty); 1749 TypeInfo TI = getContext().getTypeInfo(Ty); 1750 1751 // Check with the C++ ABI first. 1752 const RecordType *RT = Ty->getAs<RecordType>(); 1753 if (RT) { 1754 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1755 if (RAA == CGCXXABI::RAA_Indirect) { 1756 return getIndirectResult(Ty, false, State); 1757 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1758 // The field index doesn't matter, we'll fix it up later. 1759 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1760 } 1761 } 1762 1763 // Regcall uses the concept of a homogenous vector aggregate, similar 1764 // to other targets. 1765 const Type *Base = nullptr; 1766 uint64_t NumElts = 0; 1767 if ((IsRegCall || IsVectorCall) && 1768 isHomogeneousAggregate(Ty, Base, NumElts)) { 1769 if (State.FreeSSERegs >= NumElts) { 1770 State.FreeSSERegs -= NumElts; 1771 1772 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1773 // does. 1774 if (IsVectorCall) 1775 return getDirectX86Hva(); 1776 1777 if (Ty->isBuiltinType() || Ty->isVectorType()) 1778 return ABIArgInfo::getDirect(); 1779 return ABIArgInfo::getExpand(); 1780 } 1781 return getIndirectResult(Ty, /*ByVal=*/false, State); 1782 } 1783 1784 if (isAggregateTypeForABI(Ty)) { 1785 // Structures with flexible arrays are always indirect. 1786 // FIXME: This should not be byval! 1787 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1788 return getIndirectResult(Ty, true, State); 1789 1790 // Ignore empty structs/unions on non-Windows. 1791 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1792 return ABIArgInfo::getIgnore(); 1793 1794 llvm::LLVMContext &LLVMContext = getVMContext(); 1795 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1796 bool NeedsPadding = false; 1797 bool InReg; 1798 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1799 unsigned SizeInRegs = (TI.Width + 31) / 32; 1800 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1801 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1802 if (InReg) 1803 return ABIArgInfo::getDirectInReg(Result); 1804 else 1805 return ABIArgInfo::getDirect(Result); 1806 } 1807 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1808 1809 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1810 // added in MSVC 2015. 1811 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1812 return getIndirectResult(Ty, /*ByVal=*/false, State); 1813 1814 // Expand small (<= 128-bit) record types when we know that the stack layout 1815 // of those arguments will match the struct. This is important because the 1816 // LLVM backend isn't smart enough to remove byval, which inhibits many 1817 // optimizations. 1818 // Don't do this for the MCU if there are still free integer registers 1819 // (see X86_64 ABI for full explanation). 1820 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1821 canExpandIndirectArgument(Ty)) 1822 return ABIArgInfo::getExpandWithPadding( 1823 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1824 1825 return getIndirectResult(Ty, true, State); 1826 } 1827 1828 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1829 // On Windows, vectors are passed directly if registers are available, or 1830 // indirectly if not. This avoids the need to align argument memory. Pass 1831 // user-defined vector types larger than 512 bits indirectly for simplicity. 1832 if (IsWin32StructABI) { 1833 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1834 --State.FreeSSERegs; 1835 return ABIArgInfo::getDirectInReg(); 1836 } 1837 return getIndirectResult(Ty, /*ByVal=*/false, State); 1838 } 1839 1840 // On Darwin, some vectors are passed in memory, we handle this by passing 1841 // it as an i8/i16/i32/i64. 1842 if (IsDarwinVectorABI) { 1843 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1844 (TI.Width == 64 && VT->getNumElements() == 1)) 1845 return ABIArgInfo::getDirect( 1846 llvm::IntegerType::get(getVMContext(), TI.Width)); 1847 } 1848 1849 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1850 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1851 1852 return ABIArgInfo::getDirect(); 1853 } 1854 1855 1856 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1857 Ty = EnumTy->getDecl()->getIntegerType(); 1858 1859 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1860 1861 if (isPromotableIntegerTypeForABI(Ty)) { 1862 if (InReg) 1863 return ABIArgInfo::getExtendInReg(Ty); 1864 return ABIArgInfo::getExtend(Ty); 1865 } 1866 1867 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1868 if (EIT->getNumBits() <= 64) { 1869 if (InReg) 1870 return ABIArgInfo::getDirectInReg(); 1871 return ABIArgInfo::getDirect(); 1872 } 1873 return getIndirectResult(Ty, /*ByVal=*/false, State); 1874 } 1875 1876 if (InReg) 1877 return ABIArgInfo::getDirectInReg(); 1878 return ABIArgInfo::getDirect(); 1879 } 1880 1881 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1882 CCState State(FI); 1883 if (IsMCUABI) 1884 State.FreeRegs = 3; 1885 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1886 State.FreeRegs = 2; 1887 State.FreeSSERegs = 3; 1888 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1889 State.FreeRegs = 2; 1890 State.FreeSSERegs = 6; 1891 } else if (FI.getHasRegParm()) 1892 State.FreeRegs = FI.getRegParm(); 1893 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1894 State.FreeRegs = 5; 1895 State.FreeSSERegs = 8; 1896 } else if (IsWin32StructABI) { 1897 // Since MSVC 2015, the first three SSE vectors have been passed in 1898 // registers. The rest are passed indirectly. 1899 State.FreeRegs = DefaultNumRegisterParameters; 1900 State.FreeSSERegs = 3; 1901 } else 1902 State.FreeRegs = DefaultNumRegisterParameters; 1903 1904 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1905 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1906 } else if (FI.getReturnInfo().isIndirect()) { 1907 // The C++ ABI is not aware of register usage, so we have to check if the 1908 // return value was sret and put it in a register ourselves if appropriate. 1909 if (State.FreeRegs) { 1910 --State.FreeRegs; // The sret parameter consumes a register. 1911 if (!IsMCUABI) 1912 FI.getReturnInfo().setInReg(true); 1913 } 1914 } 1915 1916 // The chain argument effectively gives us another free register. 1917 if (FI.isChainCall()) 1918 ++State.FreeRegs; 1919 1920 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1921 // arguments to XMM registers as available. 1922 if (State.CC == llvm::CallingConv::X86_VectorCall) 1923 runVectorCallFirstPass(FI, State); 1924 1925 bool UsedInAlloca = false; 1926 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1927 for (int I = 0, E = Args.size(); I < E; ++I) { 1928 // Skip arguments that have already been assigned. 1929 if (State.IsPreassigned.test(I)) 1930 continue; 1931 1932 Args[I].info = classifyArgumentType(Args[I].type, State); 1933 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1934 } 1935 1936 // If we needed to use inalloca for any argument, do a second pass and rewrite 1937 // all the memory arguments to use inalloca. 1938 if (UsedInAlloca) 1939 rewriteWithInAlloca(FI); 1940 } 1941 1942 void 1943 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1944 CharUnits &StackOffset, ABIArgInfo &Info, 1945 QualType Type) const { 1946 // Arguments are always 4-byte-aligned. 1947 CharUnits WordSize = CharUnits::fromQuantity(4); 1948 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1949 1950 // sret pointers and indirect things will require an extra pointer 1951 // indirection, unless they are byval. Most things are byval, and will not 1952 // require this indirection. 1953 bool IsIndirect = false; 1954 if (Info.isIndirect() && !Info.getIndirectByVal()) 1955 IsIndirect = true; 1956 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1957 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1958 if (IsIndirect) 1959 LLTy = LLTy->getPointerTo(0); 1960 FrameFields.push_back(LLTy); 1961 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1962 1963 // Insert padding bytes to respect alignment. 1964 CharUnits FieldEnd = StackOffset; 1965 StackOffset = FieldEnd.alignTo(WordSize); 1966 if (StackOffset != FieldEnd) { 1967 CharUnits NumBytes = StackOffset - FieldEnd; 1968 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1969 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1970 FrameFields.push_back(Ty); 1971 } 1972 } 1973 1974 static bool isArgInAlloca(const ABIArgInfo &Info) { 1975 // Leave ignored and inreg arguments alone. 1976 switch (Info.getKind()) { 1977 case ABIArgInfo::InAlloca: 1978 return true; 1979 case ABIArgInfo::Ignore: 1980 return false; 1981 case ABIArgInfo::Indirect: 1982 case ABIArgInfo::Direct: 1983 case ABIArgInfo::Extend: 1984 return !Info.getInReg(); 1985 case ABIArgInfo::Expand: 1986 case ABIArgInfo::CoerceAndExpand: 1987 // These are aggregate types which are never passed in registers when 1988 // inalloca is involved. 1989 return true; 1990 } 1991 llvm_unreachable("invalid enum"); 1992 } 1993 1994 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1995 assert(IsWin32StructABI && "inalloca only supported on win32"); 1996 1997 // Build a packed struct type for all of the arguments in memory. 1998 SmallVector<llvm::Type *, 6> FrameFields; 1999 2000 // The stack alignment is always 4. 2001 CharUnits StackAlign = CharUnits::fromQuantity(4); 2002 2003 CharUnits StackOffset; 2004 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2005 2006 // Put 'this' into the struct before 'sret', if necessary. 2007 bool IsThisCall = 2008 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2009 ABIArgInfo &Ret = FI.getReturnInfo(); 2010 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2011 isArgInAlloca(I->info)) { 2012 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2013 ++I; 2014 } 2015 2016 // Put the sret parameter into the inalloca struct if it's in memory. 2017 if (Ret.isIndirect() && !Ret.getInReg()) { 2018 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2019 // On Windows, the hidden sret parameter is always returned in eax. 2020 Ret.setInAllocaSRet(IsWin32StructABI); 2021 } 2022 2023 // Skip the 'this' parameter in ecx. 2024 if (IsThisCall) 2025 ++I; 2026 2027 // Put arguments passed in memory into the struct. 2028 for (; I != E; ++I) { 2029 if (isArgInAlloca(I->info)) 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 } 2032 2033 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2034 /*isPacked=*/true), 2035 StackAlign); 2036 } 2037 2038 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2039 Address VAListAddr, QualType Ty) const { 2040 2041 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2042 2043 // x86-32 changes the alignment of certain arguments on the stack. 2044 // 2045 // Just messing with TypeInfo like this works because we never pass 2046 // anything indirectly. 2047 TypeInfo.second = CharUnits::fromQuantity( 2048 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 2049 2050 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2051 TypeInfo, CharUnits::fromQuantity(4), 2052 /*AllowHigherAlign*/ true); 2053 } 2054 2055 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2056 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2057 assert(Triple.getArch() == llvm::Triple::x86); 2058 2059 switch (Opts.getStructReturnConvention()) { 2060 case CodeGenOptions::SRCK_Default: 2061 break; 2062 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2063 return false; 2064 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2065 return true; 2066 } 2067 2068 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2069 return true; 2070 2071 switch (Triple.getOS()) { 2072 case llvm::Triple::DragonFly: 2073 case llvm::Triple::FreeBSD: 2074 case llvm::Triple::OpenBSD: 2075 case llvm::Triple::Win32: 2076 return true; 2077 default: 2078 return false; 2079 } 2080 } 2081 2082 void X86_32TargetCodeGenInfo::setTargetAttributes( 2083 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2084 if (GV->isDeclaration()) 2085 return; 2086 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2087 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2088 llvm::Function *Fn = cast<llvm::Function>(GV); 2089 Fn->addFnAttr("stackrealign"); 2090 } 2091 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2092 llvm::Function *Fn = cast<llvm::Function>(GV); 2093 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2094 } 2095 } 2096 } 2097 2098 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2099 CodeGen::CodeGenFunction &CGF, 2100 llvm::Value *Address) const { 2101 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2102 2103 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2104 2105 // 0-7 are the eight integer registers; the order is different 2106 // on Darwin (for EH), but the range is the same. 2107 // 8 is %eip. 2108 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2109 2110 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2111 // 12-16 are st(0..4). Not sure why we stop at 4. 2112 // These have size 16, which is sizeof(long double) on 2113 // platforms with 8-byte alignment for that type. 2114 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2115 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2116 2117 } else { 2118 // 9 is %eflags, which doesn't get a size on Darwin for some 2119 // reason. 2120 Builder.CreateAlignedStore( 2121 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2122 CharUnits::One()); 2123 2124 // 11-16 are st(0..5). Not sure why we stop at 5. 2125 // These have size 12, which is sizeof(long double) on 2126 // platforms with 4-byte alignment for that type. 2127 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2128 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2129 } 2130 2131 return false; 2132 } 2133 2134 //===----------------------------------------------------------------------===// 2135 // X86-64 ABI Implementation 2136 //===----------------------------------------------------------------------===// 2137 2138 2139 namespace { 2140 /// The AVX ABI level for X86 targets. 2141 enum class X86AVXABILevel { 2142 None, 2143 AVX, 2144 AVX512 2145 }; 2146 2147 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2148 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2149 switch (AVXLevel) { 2150 case X86AVXABILevel::AVX512: 2151 return 512; 2152 case X86AVXABILevel::AVX: 2153 return 256; 2154 case X86AVXABILevel::None: 2155 return 128; 2156 } 2157 llvm_unreachable("Unknown AVXLevel"); 2158 } 2159 2160 /// X86_64ABIInfo - The X86_64 ABI information. 2161 class X86_64ABIInfo : public SwiftABIInfo { 2162 enum Class { 2163 Integer = 0, 2164 SSE, 2165 SSEUp, 2166 X87, 2167 X87Up, 2168 ComplexX87, 2169 NoClass, 2170 Memory 2171 }; 2172 2173 /// merge - Implement the X86_64 ABI merging algorithm. 2174 /// 2175 /// Merge an accumulating classification \arg Accum with a field 2176 /// classification \arg Field. 2177 /// 2178 /// \param Accum - The accumulating classification. This should 2179 /// always be either NoClass or the result of a previous merge 2180 /// call. In addition, this should never be Memory (the caller 2181 /// should just return Memory for the aggregate). 2182 static Class merge(Class Accum, Class Field); 2183 2184 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2185 /// 2186 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2187 /// final MEMORY or SSE classes when necessary. 2188 /// 2189 /// \param AggregateSize - The size of the current aggregate in 2190 /// the classification process. 2191 /// 2192 /// \param Lo - The classification for the parts of the type 2193 /// residing in the low word of the containing object. 2194 /// 2195 /// \param Hi - The classification for the parts of the type 2196 /// residing in the higher words of the containing object. 2197 /// 2198 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2199 2200 /// classify - Determine the x86_64 register classes in which the 2201 /// given type T should be passed. 2202 /// 2203 /// \param Lo - The classification for the parts of the type 2204 /// residing in the low word of the containing object. 2205 /// 2206 /// \param Hi - The classification for the parts of the type 2207 /// residing in the high word of the containing object. 2208 /// 2209 /// \param OffsetBase - The bit offset of this type in the 2210 /// containing object. Some parameters are classified different 2211 /// depending on whether they straddle an eightbyte boundary. 2212 /// 2213 /// \param isNamedArg - Whether the argument in question is a "named" 2214 /// argument, as used in AMD64-ABI 3.5.7. 2215 /// 2216 /// If a word is unused its result will be NoClass; if a type should 2217 /// be passed in Memory then at least the classification of \arg Lo 2218 /// will be Memory. 2219 /// 2220 /// The \arg Lo class will be NoClass iff the argument is ignored. 2221 /// 2222 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2223 /// also be ComplexX87. 2224 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2225 bool isNamedArg) const; 2226 2227 llvm::Type *GetByteVectorType(QualType Ty) const; 2228 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2229 unsigned IROffset, QualType SourceTy, 2230 unsigned SourceOffset) const; 2231 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2232 unsigned IROffset, QualType SourceTy, 2233 unsigned SourceOffset) const; 2234 2235 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2236 /// such that the argument will be returned in memory. 2237 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2238 2239 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2240 /// such that the argument will be passed in memory. 2241 /// 2242 /// \param freeIntRegs - The number of free integer registers remaining 2243 /// available. 2244 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2245 2246 ABIArgInfo classifyReturnType(QualType RetTy) const; 2247 2248 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2249 unsigned &neededInt, unsigned &neededSSE, 2250 bool isNamedArg) const; 2251 2252 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2253 unsigned &NeededSSE) const; 2254 2255 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2256 unsigned &NeededSSE) const; 2257 2258 bool IsIllegalVectorType(QualType Ty) const; 2259 2260 /// The 0.98 ABI revision clarified a lot of ambiguities, 2261 /// unfortunately in ways that were not always consistent with 2262 /// certain previous compilers. In particular, platforms which 2263 /// required strict binary compatibility with older versions of GCC 2264 /// may need to exempt themselves. 2265 bool honorsRevision0_98() const { 2266 return !getTarget().getTriple().isOSDarwin(); 2267 } 2268 2269 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2270 /// classify it as INTEGER (for compatibility with older clang compilers). 2271 bool classifyIntegerMMXAsSSE() const { 2272 // Clang <= 3.8 did not do this. 2273 if (getContext().getLangOpts().getClangABICompat() <= 2274 LangOptions::ClangABI::Ver3_8) 2275 return false; 2276 2277 const llvm::Triple &Triple = getTarget().getTriple(); 2278 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2279 return false; 2280 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2281 return false; 2282 return true; 2283 } 2284 2285 // GCC classifies vectors of __int128 as memory. 2286 bool passInt128VectorsInMem() const { 2287 // Clang <= 9.0 did not do this. 2288 if (getContext().getLangOpts().getClangABICompat() <= 2289 LangOptions::ClangABI::Ver9) 2290 return false; 2291 2292 const llvm::Triple &T = getTarget().getTriple(); 2293 return T.isOSLinux() || T.isOSNetBSD(); 2294 } 2295 2296 X86AVXABILevel AVXLevel; 2297 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2298 // 64-bit hardware. 2299 bool Has64BitPointers; 2300 2301 public: 2302 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2303 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2304 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2305 } 2306 2307 bool isPassedUsingAVXType(QualType type) const { 2308 unsigned neededInt, neededSSE; 2309 // The freeIntRegs argument doesn't matter here. 2310 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2311 /*isNamedArg*/true); 2312 if (info.isDirect()) { 2313 llvm::Type *ty = info.getCoerceToType(); 2314 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2315 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2316 } 2317 return false; 2318 } 2319 2320 void computeInfo(CGFunctionInfo &FI) const override; 2321 2322 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2323 QualType Ty) const override; 2324 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2325 QualType Ty) const override; 2326 2327 bool has64BitPointers() const { 2328 return Has64BitPointers; 2329 } 2330 2331 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2332 bool asReturnValue) const override { 2333 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2334 } 2335 bool isSwiftErrorInRegister() const override { 2336 return true; 2337 } 2338 }; 2339 2340 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2341 class WinX86_64ABIInfo : public SwiftABIInfo { 2342 public: 2343 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2344 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2345 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2346 2347 void computeInfo(CGFunctionInfo &FI) const override; 2348 2349 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2350 QualType Ty) const override; 2351 2352 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2353 // FIXME: Assumes vectorcall is in use. 2354 return isX86VectorTypeForVectorCall(getContext(), Ty); 2355 } 2356 2357 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2358 uint64_t NumMembers) const override { 2359 // FIXME: Assumes vectorcall is in use. 2360 return isX86VectorCallAggregateSmallEnough(NumMembers); 2361 } 2362 2363 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2364 bool asReturnValue) const override { 2365 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2366 } 2367 2368 bool isSwiftErrorInRegister() const override { 2369 return true; 2370 } 2371 2372 private: 2373 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2374 bool IsVectorCall, bool IsRegCall) const; 2375 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2376 const ABIArgInfo ¤t) const; 2377 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2378 bool IsVectorCall, bool IsRegCall) const; 2379 2380 X86AVXABILevel AVXLevel; 2381 2382 bool IsMingw64; 2383 }; 2384 2385 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2386 public: 2387 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2388 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2389 2390 const X86_64ABIInfo &getABIInfo() const { 2391 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2392 } 2393 2394 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2395 /// the autoreleaseRV/retainRV optimization. 2396 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2397 return true; 2398 } 2399 2400 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2401 return 7; 2402 } 2403 2404 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2405 llvm::Value *Address) const override { 2406 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2407 2408 // 0-15 are the 16 integer registers. 2409 // 16 is %rip. 2410 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2411 return false; 2412 } 2413 2414 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2415 StringRef Constraint, 2416 llvm::Type* Ty) const override { 2417 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2418 } 2419 2420 bool isNoProtoCallVariadic(const CallArgList &args, 2421 const FunctionNoProtoType *fnType) const override { 2422 // The default CC on x86-64 sets %al to the number of SSA 2423 // registers used, and GCC sets this when calling an unprototyped 2424 // function, so we override the default behavior. However, don't do 2425 // that when AVX types are involved: the ABI explicitly states it is 2426 // undefined, and it doesn't work in practice because of how the ABI 2427 // defines varargs anyway. 2428 if (fnType->getCallConv() == CC_C) { 2429 bool HasAVXType = false; 2430 for (CallArgList::const_iterator 2431 it = args.begin(), ie = args.end(); it != ie; ++it) { 2432 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2433 HasAVXType = true; 2434 break; 2435 } 2436 } 2437 2438 if (!HasAVXType) 2439 return true; 2440 } 2441 2442 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2443 } 2444 2445 llvm::Constant * 2446 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2447 unsigned Sig = (0xeb << 0) | // jmp rel8 2448 (0x06 << 8) | // .+0x08 2449 ('v' << 16) | 2450 ('2' << 24); 2451 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2452 } 2453 2454 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2455 CodeGen::CodeGenModule &CGM) const override { 2456 if (GV->isDeclaration()) 2457 return; 2458 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2459 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2460 llvm::Function *Fn = cast<llvm::Function>(GV); 2461 Fn->addFnAttr("stackrealign"); 2462 } 2463 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2464 llvm::Function *Fn = cast<llvm::Function>(GV); 2465 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2466 } 2467 } 2468 } 2469 }; 2470 2471 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2472 // If the argument does not end in .lib, automatically add the suffix. 2473 // If the argument contains a space, enclose it in quotes. 2474 // This matches the behavior of MSVC. 2475 bool Quote = (Lib.find(" ") != StringRef::npos); 2476 std::string ArgStr = Quote ? "\"" : ""; 2477 ArgStr += Lib; 2478 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2479 ArgStr += ".lib"; 2480 ArgStr += Quote ? "\"" : ""; 2481 return ArgStr; 2482 } 2483 2484 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2485 public: 2486 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2487 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2488 unsigned NumRegisterParameters) 2489 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2490 Win32StructABI, NumRegisterParameters, false) {} 2491 2492 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2493 CodeGen::CodeGenModule &CGM) const override; 2494 2495 void getDependentLibraryOption(llvm::StringRef Lib, 2496 llvm::SmallString<24> &Opt) const override { 2497 Opt = "/DEFAULTLIB:"; 2498 Opt += qualifyWindowsLibrary(Lib); 2499 } 2500 2501 void getDetectMismatchOption(llvm::StringRef Name, 2502 llvm::StringRef Value, 2503 llvm::SmallString<32> &Opt) const override { 2504 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2505 } 2506 }; 2507 2508 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2509 CodeGen::CodeGenModule &CGM) { 2510 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2511 2512 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2513 Fn->addFnAttr("stack-probe-size", 2514 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2515 if (CGM.getCodeGenOpts().NoStackArgProbe) 2516 Fn->addFnAttr("no-stack-arg-probe"); 2517 } 2518 } 2519 2520 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2521 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2522 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2523 if (GV->isDeclaration()) 2524 return; 2525 addStackProbeTargetAttributes(D, GV, CGM); 2526 } 2527 2528 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2529 public: 2530 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2531 X86AVXABILevel AVXLevel) 2532 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2533 2534 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2535 CodeGen::CodeGenModule &CGM) const override; 2536 2537 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2538 return 7; 2539 } 2540 2541 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2542 llvm::Value *Address) const override { 2543 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2544 2545 // 0-15 are the 16 integer registers. 2546 // 16 is %rip. 2547 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2548 return false; 2549 } 2550 2551 void getDependentLibraryOption(llvm::StringRef Lib, 2552 llvm::SmallString<24> &Opt) const override { 2553 Opt = "/DEFAULTLIB:"; 2554 Opt += qualifyWindowsLibrary(Lib); 2555 } 2556 2557 void getDetectMismatchOption(llvm::StringRef Name, 2558 llvm::StringRef Value, 2559 llvm::SmallString<32> &Opt) const override { 2560 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2561 } 2562 }; 2563 2564 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2565 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2566 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2567 if (GV->isDeclaration()) 2568 return; 2569 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2570 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2571 llvm::Function *Fn = cast<llvm::Function>(GV); 2572 Fn->addFnAttr("stackrealign"); 2573 } 2574 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2575 llvm::Function *Fn = cast<llvm::Function>(GV); 2576 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2577 } 2578 } 2579 2580 addStackProbeTargetAttributes(D, GV, CGM); 2581 } 2582 } 2583 2584 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2585 Class &Hi) const { 2586 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2587 // 2588 // (a) If one of the classes is Memory, the whole argument is passed in 2589 // memory. 2590 // 2591 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2592 // memory. 2593 // 2594 // (c) If the size of the aggregate exceeds two eightbytes and the first 2595 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2596 // argument is passed in memory. NOTE: This is necessary to keep the 2597 // ABI working for processors that don't support the __m256 type. 2598 // 2599 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2600 // 2601 // Some of these are enforced by the merging logic. Others can arise 2602 // only with unions; for example: 2603 // union { _Complex double; unsigned; } 2604 // 2605 // Note that clauses (b) and (c) were added in 0.98. 2606 // 2607 if (Hi == Memory) 2608 Lo = Memory; 2609 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2610 Lo = Memory; 2611 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2612 Lo = Memory; 2613 if (Hi == SSEUp && Lo != SSE) 2614 Hi = SSE; 2615 } 2616 2617 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2618 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2619 // classified recursively so that always two fields are 2620 // considered. The resulting class is calculated according to 2621 // the classes of the fields in the eightbyte: 2622 // 2623 // (a) If both classes are equal, this is the resulting class. 2624 // 2625 // (b) If one of the classes is NO_CLASS, the resulting class is 2626 // the other class. 2627 // 2628 // (c) If one of the classes is MEMORY, the result is the MEMORY 2629 // class. 2630 // 2631 // (d) If one of the classes is INTEGER, the result is the 2632 // INTEGER. 2633 // 2634 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2635 // MEMORY is used as class. 2636 // 2637 // (f) Otherwise class SSE is used. 2638 2639 // Accum should never be memory (we should have returned) or 2640 // ComplexX87 (because this cannot be passed in a structure). 2641 assert((Accum != Memory && Accum != ComplexX87) && 2642 "Invalid accumulated classification during merge."); 2643 if (Accum == Field || Field == NoClass) 2644 return Accum; 2645 if (Field == Memory) 2646 return Memory; 2647 if (Accum == NoClass) 2648 return Field; 2649 if (Accum == Integer || Field == Integer) 2650 return Integer; 2651 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2652 Accum == X87 || Accum == X87Up) 2653 return Memory; 2654 return SSE; 2655 } 2656 2657 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2658 Class &Lo, Class &Hi, bool isNamedArg) const { 2659 // FIXME: This code can be simplified by introducing a simple value class for 2660 // Class pairs with appropriate constructor methods for the various 2661 // situations. 2662 2663 // FIXME: Some of the split computations are wrong; unaligned vectors 2664 // shouldn't be passed in registers for example, so there is no chance they 2665 // can straddle an eightbyte. Verify & simplify. 2666 2667 Lo = Hi = NoClass; 2668 2669 Class &Current = OffsetBase < 64 ? Lo : Hi; 2670 Current = Memory; 2671 2672 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2673 BuiltinType::Kind k = BT->getKind(); 2674 2675 if (k == BuiltinType::Void) { 2676 Current = NoClass; 2677 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2678 Lo = Integer; 2679 Hi = Integer; 2680 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2681 Current = Integer; 2682 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2683 Current = SSE; 2684 } else if (k == BuiltinType::LongDouble) { 2685 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2686 if (LDF == &llvm::APFloat::IEEEquad()) { 2687 Lo = SSE; 2688 Hi = SSEUp; 2689 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2690 Lo = X87; 2691 Hi = X87Up; 2692 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2693 Current = SSE; 2694 } else 2695 llvm_unreachable("unexpected long double representation!"); 2696 } 2697 // FIXME: _Decimal32 and _Decimal64 are SSE. 2698 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2699 return; 2700 } 2701 2702 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2703 // Classify the underlying integer type. 2704 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2705 return; 2706 } 2707 2708 if (Ty->hasPointerRepresentation()) { 2709 Current = Integer; 2710 return; 2711 } 2712 2713 if (Ty->isMemberPointerType()) { 2714 if (Ty->isMemberFunctionPointerType()) { 2715 if (Has64BitPointers) { 2716 // If Has64BitPointers, this is an {i64, i64}, so classify both 2717 // Lo and Hi now. 2718 Lo = Hi = Integer; 2719 } else { 2720 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2721 // straddles an eightbyte boundary, Hi should be classified as well. 2722 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2723 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2724 if (EB_FuncPtr != EB_ThisAdj) { 2725 Lo = Hi = Integer; 2726 } else { 2727 Current = Integer; 2728 } 2729 } 2730 } else { 2731 Current = Integer; 2732 } 2733 return; 2734 } 2735 2736 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2737 uint64_t Size = getContext().getTypeSize(VT); 2738 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2739 // gcc passes the following as integer: 2740 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2741 // 2 bytes - <2 x char>, <1 x short> 2742 // 1 byte - <1 x char> 2743 Current = Integer; 2744 2745 // If this type crosses an eightbyte boundary, it should be 2746 // split. 2747 uint64_t EB_Lo = (OffsetBase) / 64; 2748 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2749 if (EB_Lo != EB_Hi) 2750 Hi = Lo; 2751 } else if (Size == 64) { 2752 QualType ElementType = VT->getElementType(); 2753 2754 // gcc passes <1 x double> in memory. :( 2755 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2756 return; 2757 2758 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2759 // pass them as integer. For platforms where clang is the de facto 2760 // platform compiler, we must continue to use integer. 2761 if (!classifyIntegerMMXAsSSE() && 2762 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2763 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2764 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2765 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2766 Current = Integer; 2767 else 2768 Current = SSE; 2769 2770 // If this type crosses an eightbyte boundary, it should be 2771 // split. 2772 if (OffsetBase && OffsetBase != 64) 2773 Hi = Lo; 2774 } else if (Size == 128 || 2775 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2776 QualType ElementType = VT->getElementType(); 2777 2778 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2779 if (passInt128VectorsInMem() && Size != 128 && 2780 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2781 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2782 return; 2783 2784 // Arguments of 256-bits are split into four eightbyte chunks. The 2785 // least significant one belongs to class SSE and all the others to class 2786 // SSEUP. The original Lo and Hi design considers that types can't be 2787 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2788 // This design isn't correct for 256-bits, but since there're no cases 2789 // where the upper parts would need to be inspected, avoid adding 2790 // complexity and just consider Hi to match the 64-256 part. 2791 // 2792 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2793 // registers if they are "named", i.e. not part of the "..." of a 2794 // variadic function. 2795 // 2796 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2797 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2798 Lo = SSE; 2799 Hi = SSEUp; 2800 } 2801 return; 2802 } 2803 2804 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2805 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2806 2807 uint64_t Size = getContext().getTypeSize(Ty); 2808 if (ET->isIntegralOrEnumerationType()) { 2809 if (Size <= 64) 2810 Current = Integer; 2811 else if (Size <= 128) 2812 Lo = Hi = Integer; 2813 } else if (ET == getContext().FloatTy) { 2814 Current = SSE; 2815 } else if (ET == getContext().DoubleTy) { 2816 Lo = Hi = SSE; 2817 } else if (ET == getContext().LongDoubleTy) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) 2820 Current = Memory; 2821 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2822 Current = ComplexX87; 2823 else if (LDF == &llvm::APFloat::IEEEdouble()) 2824 Lo = Hi = SSE; 2825 else 2826 llvm_unreachable("unexpected long double representation!"); 2827 } 2828 2829 // If this complex type crosses an eightbyte boundary then it 2830 // should be split. 2831 uint64_t EB_Real = (OffsetBase) / 64; 2832 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2833 if (Hi == NoClass && EB_Real != EB_Imag) 2834 Hi = Lo; 2835 2836 return; 2837 } 2838 2839 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2840 if (EITy->getNumBits() <= 64) 2841 Current = Integer; 2842 else if (EITy->getNumBits() <= 128) 2843 Lo = Hi = Integer; 2844 // Larger values need to get passed in memory. 2845 return; 2846 } 2847 2848 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2849 // Arrays are treated like structures. 2850 2851 uint64_t Size = getContext().getTypeSize(Ty); 2852 2853 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2854 // than eight eightbytes, ..., it has class MEMORY. 2855 if (Size > 512) 2856 return; 2857 2858 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2859 // fields, it has class MEMORY. 2860 // 2861 // Only need to check alignment of array base. 2862 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2863 return; 2864 2865 // Otherwise implement simplified merge. We could be smarter about 2866 // this, but it isn't worth it and would be harder to verify. 2867 Current = NoClass; 2868 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2869 uint64_t ArraySize = AT->getSize().getZExtValue(); 2870 2871 // The only case a 256-bit wide vector could be used is when the array 2872 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2873 // to work for sizes wider than 128, early check and fallback to memory. 2874 // 2875 if (Size > 128 && 2876 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2877 return; 2878 2879 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2880 Class FieldLo, FieldHi; 2881 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2882 Lo = merge(Lo, FieldLo); 2883 Hi = merge(Hi, FieldHi); 2884 if (Lo == Memory || Hi == Memory) 2885 break; 2886 } 2887 2888 postMerge(Size, Lo, Hi); 2889 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2890 return; 2891 } 2892 2893 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2894 uint64_t Size = getContext().getTypeSize(Ty); 2895 2896 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2897 // than eight eightbytes, ..., it has class MEMORY. 2898 if (Size > 512) 2899 return; 2900 2901 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2902 // copy constructor or a non-trivial destructor, it is passed by invisible 2903 // reference. 2904 if (getRecordArgABI(RT, getCXXABI())) 2905 return; 2906 2907 const RecordDecl *RD = RT->getDecl(); 2908 2909 // Assume variable sized types are passed in memory. 2910 if (RD->hasFlexibleArrayMember()) 2911 return; 2912 2913 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2914 2915 // Reset Lo class, this will be recomputed. 2916 Current = NoClass; 2917 2918 // If this is a C++ record, classify the bases first. 2919 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2920 for (const auto &I : CXXRD->bases()) { 2921 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2922 "Unexpected base class!"); 2923 const auto *Base = 2924 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2925 2926 // Classify this field. 2927 // 2928 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2929 // single eightbyte, each is classified separately. Each eightbyte gets 2930 // initialized to class NO_CLASS. 2931 Class FieldLo, FieldHi; 2932 uint64_t Offset = 2933 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2934 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2935 Lo = merge(Lo, FieldLo); 2936 Hi = merge(Hi, FieldHi); 2937 if (Lo == Memory || Hi == Memory) { 2938 postMerge(Size, Lo, Hi); 2939 return; 2940 } 2941 } 2942 } 2943 2944 // Classify the fields one at a time, merging the results. 2945 unsigned idx = 0; 2946 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2947 i != e; ++i, ++idx) { 2948 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2949 bool BitField = i->isBitField(); 2950 2951 // Ignore padding bit-fields. 2952 if (BitField && i->isUnnamedBitfield()) 2953 continue; 2954 2955 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2956 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2957 // 2958 // The only case a 256-bit wide vector could be used is when the struct 2959 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2960 // to work for sizes wider than 128, early check and fallback to memory. 2961 // 2962 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2963 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2964 Lo = Memory; 2965 postMerge(Size, Lo, Hi); 2966 return; 2967 } 2968 // Note, skip this test for bit-fields, see below. 2969 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2970 Lo = Memory; 2971 postMerge(Size, Lo, Hi); 2972 return; 2973 } 2974 2975 // Classify this field. 2976 // 2977 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2978 // exceeds a single eightbyte, each is classified 2979 // separately. Each eightbyte gets initialized to class 2980 // NO_CLASS. 2981 Class FieldLo, FieldHi; 2982 2983 // Bit-fields require special handling, they do not force the 2984 // structure to be passed in memory even if unaligned, and 2985 // therefore they can straddle an eightbyte. 2986 if (BitField) { 2987 assert(!i->isUnnamedBitfield()); 2988 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2989 uint64_t Size = i->getBitWidthValue(getContext()); 2990 2991 uint64_t EB_Lo = Offset / 64; 2992 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2993 2994 if (EB_Lo) { 2995 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2996 FieldLo = NoClass; 2997 FieldHi = Integer; 2998 } else { 2999 FieldLo = Integer; 3000 FieldHi = EB_Hi ? Integer : NoClass; 3001 } 3002 } else 3003 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3004 Lo = merge(Lo, FieldLo); 3005 Hi = merge(Hi, FieldHi); 3006 if (Lo == Memory || Hi == Memory) 3007 break; 3008 } 3009 3010 postMerge(Size, Lo, Hi); 3011 } 3012 } 3013 3014 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3015 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3016 // place naturally. 3017 if (!isAggregateTypeForABI(Ty)) { 3018 // Treat an enum type as its underlying type. 3019 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3020 Ty = EnumTy->getDecl()->getIntegerType(); 3021 3022 if (Ty->isExtIntType()) 3023 return getNaturalAlignIndirect(Ty); 3024 3025 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3026 : ABIArgInfo::getDirect()); 3027 } 3028 3029 return getNaturalAlignIndirect(Ty); 3030 } 3031 3032 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3033 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3034 uint64_t Size = getContext().getTypeSize(VecTy); 3035 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3036 if (Size <= 64 || Size > LargestVector) 3037 return true; 3038 QualType EltTy = VecTy->getElementType(); 3039 if (passInt128VectorsInMem() && 3040 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3041 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3042 return true; 3043 } 3044 3045 return false; 3046 } 3047 3048 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3049 unsigned freeIntRegs) const { 3050 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3051 // place naturally. 3052 // 3053 // This assumption is optimistic, as there could be free registers available 3054 // when we need to pass this argument in memory, and LLVM could try to pass 3055 // the argument in the free register. This does not seem to happen currently, 3056 // but this code would be much safer if we could mark the argument with 3057 // 'onstack'. See PR12193. 3058 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3059 !Ty->isExtIntType()) { 3060 // Treat an enum type as its underlying type. 3061 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3062 Ty = EnumTy->getDecl()->getIntegerType(); 3063 3064 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3065 : ABIArgInfo::getDirect()); 3066 } 3067 3068 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3069 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3070 3071 // Compute the byval alignment. We specify the alignment of the byval in all 3072 // cases so that the mid-level optimizer knows the alignment of the byval. 3073 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3074 3075 // Attempt to avoid passing indirect results using byval when possible. This 3076 // is important for good codegen. 3077 // 3078 // We do this by coercing the value into a scalar type which the backend can 3079 // handle naturally (i.e., without using byval). 3080 // 3081 // For simplicity, we currently only do this when we have exhausted all of the 3082 // free integer registers. Doing this when there are free integer registers 3083 // would require more care, as we would have to ensure that the coerced value 3084 // did not claim the unused register. That would require either reording the 3085 // arguments to the function (so that any subsequent inreg values came first), 3086 // or only doing this optimization when there were no following arguments that 3087 // might be inreg. 3088 // 3089 // We currently expect it to be rare (particularly in well written code) for 3090 // arguments to be passed on the stack when there are still free integer 3091 // registers available (this would typically imply large structs being passed 3092 // by value), so this seems like a fair tradeoff for now. 3093 // 3094 // We can revisit this if the backend grows support for 'onstack' parameter 3095 // attributes. See PR12193. 3096 if (freeIntRegs == 0) { 3097 uint64_t Size = getContext().getTypeSize(Ty); 3098 3099 // If this type fits in an eightbyte, coerce it into the matching integral 3100 // type, which will end up on the stack (with alignment 8). 3101 if (Align == 8 && Size <= 64) 3102 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3103 Size)); 3104 } 3105 3106 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3107 } 3108 3109 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3110 /// register. Pick an LLVM IR type that will be passed as a vector register. 3111 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3112 // Wrapper structs/arrays that only contain vectors are passed just like 3113 // vectors; strip them off if present. 3114 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3115 Ty = QualType(InnerTy, 0); 3116 3117 llvm::Type *IRType = CGT.ConvertType(Ty); 3118 if (isa<llvm::VectorType>(IRType)) { 3119 // Don't pass vXi128 vectors in their native type, the backend can't 3120 // legalize them. 3121 if (passInt128VectorsInMem() && 3122 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3123 // Use a vXi64 vector. 3124 uint64_t Size = getContext().getTypeSize(Ty); 3125 return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3126 Size / 64); 3127 } 3128 3129 return IRType; 3130 } 3131 3132 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3133 return IRType; 3134 3135 // We couldn't find the preferred IR vector type for 'Ty'. 3136 uint64_t Size = getContext().getTypeSize(Ty); 3137 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3138 3139 3140 // Return a LLVM IR vector type based on the size of 'Ty'. 3141 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3142 Size / 64); 3143 } 3144 3145 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3146 /// is known to either be off the end of the specified type or being in 3147 /// alignment padding. The user type specified is known to be at most 128 bits 3148 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3149 /// classification that put one of the two halves in the INTEGER class. 3150 /// 3151 /// It is conservatively correct to return false. 3152 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3153 unsigned EndBit, ASTContext &Context) { 3154 // If the bytes being queried are off the end of the type, there is no user 3155 // data hiding here. This handles analysis of builtins, vectors and other 3156 // types that don't contain interesting padding. 3157 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3158 if (TySize <= StartBit) 3159 return true; 3160 3161 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3162 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3163 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3164 3165 // Check each element to see if the element overlaps with the queried range. 3166 for (unsigned i = 0; i != NumElts; ++i) { 3167 // If the element is after the span we care about, then we're done.. 3168 unsigned EltOffset = i*EltSize; 3169 if (EltOffset >= EndBit) break; 3170 3171 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3172 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3173 EndBit-EltOffset, Context)) 3174 return false; 3175 } 3176 // If it overlaps no elements, then it is safe to process as padding. 3177 return true; 3178 } 3179 3180 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3181 const RecordDecl *RD = RT->getDecl(); 3182 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3183 3184 // If this is a C++ record, check the bases first. 3185 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3186 for (const auto &I : CXXRD->bases()) { 3187 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3188 "Unexpected base class!"); 3189 const auto *Base = 3190 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3191 3192 // If the base is after the span we care about, ignore it. 3193 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3194 if (BaseOffset >= EndBit) continue; 3195 3196 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3197 if (!BitsContainNoUserData(I.getType(), BaseStart, 3198 EndBit-BaseOffset, Context)) 3199 return false; 3200 } 3201 } 3202 3203 // Verify that no field has data that overlaps the region of interest. Yes 3204 // this could be sped up a lot by being smarter about queried fields, 3205 // however we're only looking at structs up to 16 bytes, so we don't care 3206 // much. 3207 unsigned idx = 0; 3208 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3209 i != e; ++i, ++idx) { 3210 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3211 3212 // If we found a field after the region we care about, then we're done. 3213 if (FieldOffset >= EndBit) break; 3214 3215 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3216 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3217 Context)) 3218 return false; 3219 } 3220 3221 // If nothing in this record overlapped the area of interest, then we're 3222 // clean. 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3230 /// float member at the specified offset. For example, {int,{float}} has a 3231 /// float at offset 4. It is conservatively correct for this routine to return 3232 /// false. 3233 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3234 const llvm::DataLayout &TD) { 3235 // Base case if we find a float. 3236 if (IROffset == 0 && IRType->isFloatTy()) 3237 return true; 3238 3239 // If this is a struct, recurse into the field at the specified offset. 3240 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3241 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3242 unsigned Elt = SL->getElementContainingOffset(IROffset); 3243 IROffset -= SL->getElementOffset(Elt); 3244 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3245 } 3246 3247 // If this is an array, recurse into the field at the specified offset. 3248 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3249 llvm::Type *EltTy = ATy->getElementType(); 3250 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3251 IROffset -= IROffset/EltSize*EltSize; 3252 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3253 } 3254 3255 return false; 3256 } 3257 3258 3259 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3260 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3261 llvm::Type *X86_64ABIInfo:: 3262 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3263 QualType SourceTy, unsigned SourceOffset) const { 3264 // The only three choices we have are either double, <2 x float>, or float. We 3265 // pass as float if the last 4 bytes is just padding. This happens for 3266 // structs that contain 3 floats. 3267 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3268 SourceOffset*8+64, getContext())) 3269 return llvm::Type::getFloatTy(getVMContext()); 3270 3271 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3272 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3273 // case. 3274 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3275 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3276 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3277 3278 return llvm::Type::getDoubleTy(getVMContext()); 3279 } 3280 3281 3282 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3283 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3284 /// about the high or low part of an up-to-16-byte struct. This routine picks 3285 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3286 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3287 /// etc). 3288 /// 3289 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3290 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3291 /// the 8-byte value references. PrefType may be null. 3292 /// 3293 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3294 /// an offset into this that we're processing (which is always either 0 or 8). 3295 /// 3296 llvm::Type *X86_64ABIInfo:: 3297 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3298 QualType SourceTy, unsigned SourceOffset) const { 3299 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3300 // returning an 8-byte unit starting with it. See if we can safely use it. 3301 if (IROffset == 0) { 3302 // Pointers and int64's always fill the 8-byte unit. 3303 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3304 IRType->isIntegerTy(64)) 3305 return IRType; 3306 3307 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3308 // goodness in the source type is just tail padding. This is allowed to 3309 // kick in for struct {double,int} on the int, but not on 3310 // struct{double,int,int} because we wouldn't return the second int. We 3311 // have to do this analysis on the source type because we can't depend on 3312 // unions being lowered a specific way etc. 3313 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3314 IRType->isIntegerTy(32) || 3315 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3316 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3317 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3318 3319 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3320 SourceOffset*8+64, getContext())) 3321 return IRType; 3322 } 3323 } 3324 3325 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3326 // If this is a struct, recurse into the field at the specified offset. 3327 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3328 if (IROffset < SL->getSizeInBytes()) { 3329 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3330 IROffset -= SL->getElementOffset(FieldIdx); 3331 3332 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3333 SourceTy, SourceOffset); 3334 } 3335 } 3336 3337 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3338 llvm::Type *EltTy = ATy->getElementType(); 3339 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3340 unsigned EltOffset = IROffset/EltSize*EltSize; 3341 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3342 SourceOffset); 3343 } 3344 3345 // Okay, we don't have any better idea of what to pass, so we pass this in an 3346 // integer register that isn't too big to fit the rest of the struct. 3347 unsigned TySizeInBytes = 3348 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3349 3350 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3351 3352 // It is always safe to classify this as an integer type up to i64 that 3353 // isn't larger than the structure. 3354 return llvm::IntegerType::get(getVMContext(), 3355 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3356 } 3357 3358 3359 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3360 /// be used as elements of a two register pair to pass or return, return a 3361 /// first class aggregate to represent them. For example, if the low part of 3362 /// a by-value argument should be passed as i32* and the high part as float, 3363 /// return {i32*, float}. 3364 static llvm::Type * 3365 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3366 const llvm::DataLayout &TD) { 3367 // In order to correctly satisfy the ABI, we need to the high part to start 3368 // at offset 8. If the high and low parts we inferred are both 4-byte types 3369 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3370 // the second element at offset 8. Check for this: 3371 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3372 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3373 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3374 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3375 3376 // To handle this, we have to increase the size of the low part so that the 3377 // second element will start at an 8 byte offset. We can't increase the size 3378 // of the second element because it might make us access off the end of the 3379 // struct. 3380 if (HiStart != 8) { 3381 // There are usually two sorts of types the ABI generation code can produce 3382 // for the low part of a pair that aren't 8 bytes in size: float or 3383 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3384 // NaCl). 3385 // Promote these to a larger type. 3386 if (Lo->isFloatTy()) 3387 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3388 else { 3389 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3390 && "Invalid/unknown lo type"); 3391 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3392 } 3393 } 3394 3395 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3396 3397 // Verify that the second element is at an 8-byte offset. 3398 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3399 "Invalid x86-64 argument pair!"); 3400 return Result; 3401 } 3402 3403 ABIArgInfo X86_64ABIInfo:: 3404 classifyReturnType(QualType RetTy) const { 3405 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3406 // classification algorithm. 3407 X86_64ABIInfo::Class Lo, Hi; 3408 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3409 3410 // Check some invariants. 3411 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3412 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3413 3414 llvm::Type *ResType = nullptr; 3415 switch (Lo) { 3416 case NoClass: 3417 if (Hi == NoClass) 3418 return ABIArgInfo::getIgnore(); 3419 // If the low part is just padding, it takes no register, leave ResType 3420 // null. 3421 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3422 "Unknown missing lo part"); 3423 break; 3424 3425 case SSEUp: 3426 case X87Up: 3427 llvm_unreachable("Invalid classification for lo word."); 3428 3429 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3430 // hidden argument. 3431 case Memory: 3432 return getIndirectReturnResult(RetTy); 3433 3434 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3435 // available register of the sequence %rax, %rdx is used. 3436 case Integer: 3437 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3438 3439 // If we have a sign or zero extended integer, make sure to return Extend 3440 // so that the parameter gets the right LLVM IR attributes. 3441 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3442 // Treat an enum type as its underlying type. 3443 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3444 RetTy = EnumTy->getDecl()->getIntegerType(); 3445 3446 if (RetTy->isIntegralOrEnumerationType() && 3447 isPromotableIntegerTypeForABI(RetTy)) 3448 return ABIArgInfo::getExtend(RetTy); 3449 } 3450 break; 3451 3452 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3453 // available SSE register of the sequence %xmm0, %xmm1 is used. 3454 case SSE: 3455 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3456 break; 3457 3458 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3459 // returned on the X87 stack in %st0 as 80-bit x87 number. 3460 case X87: 3461 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3462 break; 3463 3464 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3465 // part of the value is returned in %st0 and the imaginary part in 3466 // %st1. 3467 case ComplexX87: 3468 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3469 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3470 llvm::Type::getX86_FP80Ty(getVMContext())); 3471 break; 3472 } 3473 3474 llvm::Type *HighPart = nullptr; 3475 switch (Hi) { 3476 // Memory was handled previously and X87 should 3477 // never occur as a hi class. 3478 case Memory: 3479 case X87: 3480 llvm_unreachable("Invalid classification for hi word."); 3481 3482 case ComplexX87: // Previously handled. 3483 case NoClass: 3484 break; 3485 3486 case Integer: 3487 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3488 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3489 return ABIArgInfo::getDirect(HighPart, 8); 3490 break; 3491 case SSE: 3492 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3493 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3494 return ABIArgInfo::getDirect(HighPart, 8); 3495 break; 3496 3497 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3498 // is passed in the next available eightbyte chunk if the last used 3499 // vector register. 3500 // 3501 // SSEUP should always be preceded by SSE, just widen. 3502 case SSEUp: 3503 assert(Lo == SSE && "Unexpected SSEUp classification."); 3504 ResType = GetByteVectorType(RetTy); 3505 break; 3506 3507 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3508 // returned together with the previous X87 value in %st0. 3509 case X87Up: 3510 // If X87Up is preceded by X87, we don't need to do 3511 // anything. However, in some cases with unions it may not be 3512 // preceded by X87. In such situations we follow gcc and pass the 3513 // extra bits in an SSE reg. 3514 if (Lo != X87) { 3515 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3516 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3517 return ABIArgInfo::getDirect(HighPart, 8); 3518 } 3519 break; 3520 } 3521 3522 // If a high part was specified, merge it together with the low part. It is 3523 // known to pass in the high eightbyte of the result. We do this by forming a 3524 // first class struct aggregate with the high and low part: {low, high} 3525 if (HighPart) 3526 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3527 3528 return ABIArgInfo::getDirect(ResType); 3529 } 3530 3531 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3532 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3533 bool isNamedArg) 3534 const 3535 { 3536 Ty = useFirstFieldIfTransparentUnion(Ty); 3537 3538 X86_64ABIInfo::Class Lo, Hi; 3539 classify(Ty, 0, Lo, Hi, isNamedArg); 3540 3541 // Check some invariants. 3542 // FIXME: Enforce these by construction. 3543 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3544 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3545 3546 neededInt = 0; 3547 neededSSE = 0; 3548 llvm::Type *ResType = nullptr; 3549 switch (Lo) { 3550 case NoClass: 3551 if (Hi == NoClass) 3552 return ABIArgInfo::getIgnore(); 3553 // If the low part is just padding, it takes no register, leave ResType 3554 // null. 3555 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3556 "Unknown missing lo part"); 3557 break; 3558 3559 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3560 // on the stack. 3561 case Memory: 3562 3563 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3564 // COMPLEX_X87, it is passed in memory. 3565 case X87: 3566 case ComplexX87: 3567 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3568 ++neededInt; 3569 return getIndirectResult(Ty, freeIntRegs); 3570 3571 case SSEUp: 3572 case X87Up: 3573 llvm_unreachable("Invalid classification for lo word."); 3574 3575 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3576 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3577 // and %r9 is used. 3578 case Integer: 3579 ++neededInt; 3580 3581 // Pick an 8-byte type based on the preferred type. 3582 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3583 3584 // If we have a sign or zero extended integer, make sure to return Extend 3585 // so that the parameter gets the right LLVM IR attributes. 3586 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3587 // Treat an enum type as its underlying type. 3588 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3589 Ty = EnumTy->getDecl()->getIntegerType(); 3590 3591 if (Ty->isIntegralOrEnumerationType() && 3592 isPromotableIntegerTypeForABI(Ty)) 3593 return ABIArgInfo::getExtend(Ty); 3594 } 3595 3596 break; 3597 3598 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3599 // available SSE register is used, the registers are taken in the 3600 // order from %xmm0 to %xmm7. 3601 case SSE: { 3602 llvm::Type *IRType = CGT.ConvertType(Ty); 3603 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3604 ++neededSSE; 3605 break; 3606 } 3607 } 3608 3609 llvm::Type *HighPart = nullptr; 3610 switch (Hi) { 3611 // Memory was handled previously, ComplexX87 and X87 should 3612 // never occur as hi classes, and X87Up must be preceded by X87, 3613 // which is passed in memory. 3614 case Memory: 3615 case X87: 3616 case ComplexX87: 3617 llvm_unreachable("Invalid classification for hi word."); 3618 3619 case NoClass: break; 3620 3621 case Integer: 3622 ++neededInt; 3623 // Pick an 8-byte type based on the preferred type. 3624 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3625 3626 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3627 return ABIArgInfo::getDirect(HighPart, 8); 3628 break; 3629 3630 // X87Up generally doesn't occur here (long double is passed in 3631 // memory), except in situations involving unions. 3632 case X87Up: 3633 case SSE: 3634 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3635 3636 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3637 return ABIArgInfo::getDirect(HighPart, 8); 3638 3639 ++neededSSE; 3640 break; 3641 3642 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3643 // eightbyte is passed in the upper half of the last used SSE 3644 // register. This only happens when 128-bit vectors are passed. 3645 case SSEUp: 3646 assert(Lo == SSE && "Unexpected SSEUp classification"); 3647 ResType = GetByteVectorType(Ty); 3648 break; 3649 } 3650 3651 // If a high part was specified, merge it together with the low part. It is 3652 // known to pass in the high eightbyte of the result. We do this by forming a 3653 // first class struct aggregate with the high and low part: {low, high} 3654 if (HighPart) 3655 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3656 3657 return ABIArgInfo::getDirect(ResType); 3658 } 3659 3660 ABIArgInfo 3661 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3662 unsigned &NeededSSE) const { 3663 auto RT = Ty->getAs<RecordType>(); 3664 assert(RT && "classifyRegCallStructType only valid with struct types"); 3665 3666 if (RT->getDecl()->hasFlexibleArrayMember()) 3667 return getIndirectReturnResult(Ty); 3668 3669 // Sum up bases 3670 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3671 if (CXXRD->isDynamicClass()) { 3672 NeededInt = NeededSSE = 0; 3673 return getIndirectReturnResult(Ty); 3674 } 3675 3676 for (const auto &I : CXXRD->bases()) 3677 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3678 .isIndirect()) { 3679 NeededInt = NeededSSE = 0; 3680 return getIndirectReturnResult(Ty); 3681 } 3682 } 3683 3684 // Sum up members 3685 for (const auto *FD : RT->getDecl()->fields()) { 3686 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3687 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3688 .isIndirect()) { 3689 NeededInt = NeededSSE = 0; 3690 return getIndirectReturnResult(Ty); 3691 } 3692 } else { 3693 unsigned LocalNeededInt, LocalNeededSSE; 3694 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3695 LocalNeededSSE, true) 3696 .isIndirect()) { 3697 NeededInt = NeededSSE = 0; 3698 return getIndirectReturnResult(Ty); 3699 } 3700 NeededInt += LocalNeededInt; 3701 NeededSSE += LocalNeededSSE; 3702 } 3703 } 3704 3705 return ABIArgInfo::getDirect(); 3706 } 3707 3708 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3709 unsigned &NeededInt, 3710 unsigned &NeededSSE) const { 3711 3712 NeededInt = 0; 3713 NeededSSE = 0; 3714 3715 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3716 } 3717 3718 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3719 3720 const unsigned CallingConv = FI.getCallingConvention(); 3721 // It is possible to force Win64 calling convention on any x86_64 target by 3722 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3723 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3724 if (CallingConv == llvm::CallingConv::Win64) { 3725 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3726 Win64ABIInfo.computeInfo(FI); 3727 return; 3728 } 3729 3730 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3731 3732 // Keep track of the number of assigned registers. 3733 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3734 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3735 unsigned NeededInt, NeededSSE; 3736 3737 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3738 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3739 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3740 FI.getReturnInfo() = 3741 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3742 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3743 FreeIntRegs -= NeededInt; 3744 FreeSSERegs -= NeededSSE; 3745 } else { 3746 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3747 } 3748 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3749 // Complex Long Double Type is passed in Memory when Regcall 3750 // calling convention is used. 3751 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3752 if (getContext().getCanonicalType(CT->getElementType()) == 3753 getContext().LongDoubleTy) 3754 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3755 } else 3756 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3757 } 3758 3759 // If the return value is indirect, then the hidden argument is consuming one 3760 // integer register. 3761 if (FI.getReturnInfo().isIndirect()) 3762 --FreeIntRegs; 3763 3764 // The chain argument effectively gives us another free register. 3765 if (FI.isChainCall()) 3766 ++FreeIntRegs; 3767 3768 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3769 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3770 // get assigned (in left-to-right order) for passing as follows... 3771 unsigned ArgNo = 0; 3772 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3773 it != ie; ++it, ++ArgNo) { 3774 bool IsNamedArg = ArgNo < NumRequiredArgs; 3775 3776 if (IsRegCall && it->type->isStructureOrClassType()) 3777 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3778 else 3779 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3780 NeededSSE, IsNamedArg); 3781 3782 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3783 // eightbyte of an argument, the whole argument is passed on the 3784 // stack. If registers have already been assigned for some 3785 // eightbytes of such an argument, the assignments get reverted. 3786 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3787 FreeIntRegs -= NeededInt; 3788 FreeSSERegs -= NeededSSE; 3789 } else { 3790 it->info = getIndirectResult(it->type, FreeIntRegs); 3791 } 3792 } 3793 } 3794 3795 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3796 Address VAListAddr, QualType Ty) { 3797 Address overflow_arg_area_p = 3798 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3799 llvm::Value *overflow_arg_area = 3800 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3801 3802 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3803 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3804 // It isn't stated explicitly in the standard, but in practice we use 3805 // alignment greater than 16 where necessary. 3806 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3807 if (Align > CharUnits::fromQuantity(8)) { 3808 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3809 Align); 3810 } 3811 3812 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3813 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3814 llvm::Value *Res = 3815 CGF.Builder.CreateBitCast(overflow_arg_area, 3816 llvm::PointerType::getUnqual(LTy)); 3817 3818 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3819 // l->overflow_arg_area + sizeof(type). 3820 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3821 // an 8 byte boundary. 3822 3823 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3824 llvm::Value *Offset = 3825 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3826 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3827 "overflow_arg_area.next"); 3828 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3829 3830 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3831 return Address(Res, Align); 3832 } 3833 3834 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3835 QualType Ty) const { 3836 // Assume that va_list type is correct; should be pointer to LLVM type: 3837 // struct { 3838 // i32 gp_offset; 3839 // i32 fp_offset; 3840 // i8* overflow_arg_area; 3841 // i8* reg_save_area; 3842 // }; 3843 unsigned neededInt, neededSSE; 3844 3845 Ty = getContext().getCanonicalType(Ty); 3846 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3847 /*isNamedArg*/false); 3848 3849 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3850 // in the registers. If not go to step 7. 3851 if (!neededInt && !neededSSE) 3852 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3853 3854 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3855 // general purpose registers needed to pass type and num_fp to hold 3856 // the number of floating point registers needed. 3857 3858 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3859 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3860 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3861 // 3862 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3863 // register save space). 3864 3865 llvm::Value *InRegs = nullptr; 3866 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3867 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3868 if (neededInt) { 3869 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3870 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3871 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3872 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3873 } 3874 3875 if (neededSSE) { 3876 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3877 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3878 llvm::Value *FitsInFP = 3879 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3880 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3881 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3882 } 3883 3884 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3885 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3886 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3887 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3888 3889 // Emit code to load the value if it was passed in registers. 3890 3891 CGF.EmitBlock(InRegBlock); 3892 3893 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3894 // an offset of l->gp_offset and/or l->fp_offset. This may require 3895 // copying to a temporary location in case the parameter is passed 3896 // in different register classes or requires an alignment greater 3897 // than 8 for general purpose registers and 16 for XMM registers. 3898 // 3899 // FIXME: This really results in shameful code when we end up needing to 3900 // collect arguments from different places; often what should result in a 3901 // simple assembling of a structure from scattered addresses has many more 3902 // loads than necessary. Can we clean this up? 3903 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3904 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3905 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3906 3907 Address RegAddr = Address::invalid(); 3908 if (neededInt && neededSSE) { 3909 // FIXME: Cleanup. 3910 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3911 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3912 Address Tmp = CGF.CreateMemTemp(Ty); 3913 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3914 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3915 llvm::Type *TyLo = ST->getElementType(0); 3916 llvm::Type *TyHi = ST->getElementType(1); 3917 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3918 "Unexpected ABI info for mixed regs"); 3919 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3920 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3921 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3922 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3923 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3924 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3925 3926 // Copy the first element. 3927 // FIXME: Our choice of alignment here and below is probably pessimistic. 3928 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3929 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3930 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3931 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3932 3933 // Copy the second element. 3934 V = CGF.Builder.CreateAlignedLoad( 3935 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3936 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3937 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3938 3939 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3940 } else if (neededInt) { 3941 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3942 CharUnits::fromQuantity(8)); 3943 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3944 3945 // Copy to a temporary if necessary to ensure the appropriate alignment. 3946 std::pair<CharUnits, CharUnits> SizeAlign = 3947 getContext().getTypeInfoInChars(Ty); 3948 uint64_t TySize = SizeAlign.first.getQuantity(); 3949 CharUnits TyAlign = SizeAlign.second; 3950 3951 // Copy into a temporary if the type is more aligned than the 3952 // register save area. 3953 if (TyAlign.getQuantity() > 8) { 3954 Address Tmp = CGF.CreateMemTemp(Ty); 3955 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3956 RegAddr = Tmp; 3957 } 3958 3959 } else if (neededSSE == 1) { 3960 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3961 CharUnits::fromQuantity(16)); 3962 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3963 } else { 3964 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3965 // SSE registers are spaced 16 bytes apart in the register save 3966 // area, we need to collect the two eightbytes together. 3967 // The ABI isn't explicit about this, but it seems reasonable 3968 // to assume that the slots are 16-byte aligned, since the stack is 3969 // naturally 16-byte aligned and the prologue is expected to store 3970 // all the SSE registers to the RSA. 3971 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3972 CharUnits::fromQuantity(16)); 3973 Address RegAddrHi = 3974 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3975 CharUnits::fromQuantity(16)); 3976 llvm::Type *ST = AI.canHaveCoerceToType() 3977 ? AI.getCoerceToType() 3978 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3979 llvm::Value *V; 3980 Address Tmp = CGF.CreateMemTemp(Ty); 3981 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3982 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3983 RegAddrLo, ST->getStructElementType(0))); 3984 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3985 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3986 RegAddrHi, ST->getStructElementType(1))); 3987 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3988 3989 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3990 } 3991 3992 // AMD64-ABI 3.5.7p5: Step 5. Set: 3993 // l->gp_offset = l->gp_offset + num_gp * 8 3994 // l->fp_offset = l->fp_offset + num_fp * 16. 3995 if (neededInt) { 3996 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3997 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3998 gp_offset_p); 3999 } 4000 if (neededSSE) { 4001 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4002 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4003 fp_offset_p); 4004 } 4005 CGF.EmitBranch(ContBlock); 4006 4007 // Emit code to load the value if it was passed in memory. 4008 4009 CGF.EmitBlock(InMemBlock); 4010 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4011 4012 // Return the appropriate result. 4013 4014 CGF.EmitBlock(ContBlock); 4015 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4016 "vaarg.addr"); 4017 return ResAddr; 4018 } 4019 4020 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4021 QualType Ty) const { 4022 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4023 CGF.getContext().getTypeInfoInChars(Ty), 4024 CharUnits::fromQuantity(8), 4025 /*allowHigherAlign*/ false); 4026 } 4027 4028 ABIArgInfo 4029 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4030 const ABIArgInfo ¤t) const { 4031 // Assumes vectorCall calling convention. 4032 const Type *Base = nullptr; 4033 uint64_t NumElts = 0; 4034 4035 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4036 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4037 FreeSSERegs -= NumElts; 4038 return getDirectX86Hva(); 4039 } 4040 return current; 4041 } 4042 4043 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4044 bool IsReturnType, bool IsVectorCall, 4045 bool IsRegCall) const { 4046 4047 if (Ty->isVoidType()) 4048 return ABIArgInfo::getIgnore(); 4049 4050 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4051 Ty = EnumTy->getDecl()->getIntegerType(); 4052 4053 TypeInfo Info = getContext().getTypeInfo(Ty); 4054 uint64_t Width = Info.Width; 4055 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4056 4057 const RecordType *RT = Ty->getAs<RecordType>(); 4058 if (RT) { 4059 if (!IsReturnType) { 4060 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4061 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4062 } 4063 4064 if (RT->getDecl()->hasFlexibleArrayMember()) 4065 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4066 4067 } 4068 4069 const Type *Base = nullptr; 4070 uint64_t NumElts = 0; 4071 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4072 // other targets. 4073 if ((IsVectorCall || IsRegCall) && 4074 isHomogeneousAggregate(Ty, Base, NumElts)) { 4075 if (IsRegCall) { 4076 if (FreeSSERegs >= NumElts) { 4077 FreeSSERegs -= NumElts; 4078 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4079 return ABIArgInfo::getDirect(); 4080 return ABIArgInfo::getExpand(); 4081 } 4082 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4083 } else if (IsVectorCall) { 4084 if (FreeSSERegs >= NumElts && 4085 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4086 FreeSSERegs -= NumElts; 4087 return ABIArgInfo::getDirect(); 4088 } else if (IsReturnType) { 4089 return ABIArgInfo::getExpand(); 4090 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4091 // HVAs are delayed and reclassified in the 2nd step. 4092 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4093 } 4094 } 4095 } 4096 4097 if (Ty->isMemberPointerType()) { 4098 // If the member pointer is represented by an LLVM int or ptr, pass it 4099 // directly. 4100 llvm::Type *LLTy = CGT.ConvertType(Ty); 4101 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4102 return ABIArgInfo::getDirect(); 4103 } 4104 4105 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4106 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4107 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4108 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4109 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4110 4111 // Otherwise, coerce it to a small integer. 4112 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4113 } 4114 4115 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4116 switch (BT->getKind()) { 4117 case BuiltinType::Bool: 4118 // Bool type is always extended to the ABI, other builtin types are not 4119 // extended. 4120 return ABIArgInfo::getExtend(Ty); 4121 4122 case BuiltinType::LongDouble: 4123 // Mingw64 GCC uses the old 80 bit extended precision floating point 4124 // unit. It passes them indirectly through memory. 4125 if (IsMingw64) { 4126 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4127 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4128 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4129 } 4130 break; 4131 4132 case BuiltinType::Int128: 4133 case BuiltinType::UInt128: 4134 // If it's a parameter type, the normal ABI rule is that arguments larger 4135 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4136 // even though it isn't particularly efficient. 4137 if (!IsReturnType) 4138 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4139 4140 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4141 // Clang matches them for compatibility. 4142 return ABIArgInfo::getDirect( 4143 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4144 4145 default: 4146 break; 4147 } 4148 } 4149 4150 if (Ty->isExtIntType()) { 4151 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4152 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4153 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4154 // anyway as long is it fits in them, so we don't have to check the power of 4155 // 2. 4156 if (Width <= 64) 4157 return ABIArgInfo::getDirect(); 4158 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4159 } 4160 4161 return ABIArgInfo::getDirect(); 4162 } 4163 4164 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4165 unsigned FreeSSERegs, 4166 bool IsVectorCall, 4167 bool IsRegCall) const { 4168 unsigned Count = 0; 4169 for (auto &I : FI.arguments()) { 4170 // Vectorcall in x64 only permits the first 6 arguments to be passed 4171 // as XMM/YMM registers. 4172 if (Count < VectorcallMaxParamNumAsReg) 4173 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4174 else { 4175 // Since these cannot be passed in registers, pretend no registers 4176 // are left. 4177 unsigned ZeroSSERegsAvail = 0; 4178 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4179 IsVectorCall, IsRegCall); 4180 } 4181 ++Count; 4182 } 4183 4184 for (auto &I : FI.arguments()) { 4185 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4186 } 4187 } 4188 4189 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4190 const unsigned CC = FI.getCallingConvention(); 4191 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4192 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4193 4194 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4195 // classification rules. 4196 if (CC == llvm::CallingConv::X86_64_SysV) { 4197 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4198 SysVABIInfo.computeInfo(FI); 4199 return; 4200 } 4201 4202 unsigned FreeSSERegs = 0; 4203 if (IsVectorCall) { 4204 // We can use up to 4 SSE return registers with vectorcall. 4205 FreeSSERegs = 4; 4206 } else if (IsRegCall) { 4207 // RegCall gives us 16 SSE registers. 4208 FreeSSERegs = 16; 4209 } 4210 4211 if (!getCXXABI().classifyReturnType(FI)) 4212 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4213 IsVectorCall, IsRegCall); 4214 4215 if (IsVectorCall) { 4216 // We can use up to 6 SSE register parameters with vectorcall. 4217 FreeSSERegs = 6; 4218 } else if (IsRegCall) { 4219 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4220 FreeSSERegs = 16; 4221 } 4222 4223 if (IsVectorCall) { 4224 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4225 } else { 4226 for (auto &I : FI.arguments()) 4227 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4228 } 4229 4230 } 4231 4232 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4233 QualType Ty) const { 4234 4235 bool IsIndirect = false; 4236 4237 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4238 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4239 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4240 uint64_t Width = getContext().getTypeSize(Ty); 4241 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4242 } 4243 4244 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4245 CGF.getContext().getTypeInfoInChars(Ty), 4246 CharUnits::fromQuantity(8), 4247 /*allowHigherAlign*/ false); 4248 } 4249 4250 // PowerPC-32 4251 namespace { 4252 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4253 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4254 bool IsSoftFloatABI; 4255 bool IsRetSmallStructInRegABI; 4256 4257 CharUnits getParamTypeAlignment(QualType Ty) const; 4258 4259 public: 4260 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4261 bool RetSmallStructInRegABI) 4262 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4263 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4264 4265 ABIArgInfo classifyReturnType(QualType RetTy) const; 4266 4267 void computeInfo(CGFunctionInfo &FI) const override { 4268 if (!getCXXABI().classifyReturnType(FI)) 4269 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4270 for (auto &I : FI.arguments()) 4271 I.info = classifyArgumentType(I.type); 4272 } 4273 4274 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4275 QualType Ty) const override; 4276 }; 4277 4278 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4279 public: 4280 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4281 bool RetSmallStructInRegABI) 4282 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4283 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4284 4285 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4286 const CodeGenOptions &Opts); 4287 4288 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4289 // This is recovered from gcc output. 4290 return 1; // r1 is the dedicated stack pointer 4291 } 4292 4293 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4294 llvm::Value *Address) const override; 4295 }; 4296 } 4297 4298 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4299 // Complex types are passed just like their elements. 4300 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4301 Ty = CTy->getElementType(); 4302 4303 if (Ty->isVectorType()) 4304 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4305 : 4); 4306 4307 // For single-element float/vector structs, we consider the whole type 4308 // to have the same alignment requirements as its single element. 4309 const Type *AlignTy = nullptr; 4310 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4311 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4312 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4313 (BT && BT->isFloatingPoint())) 4314 AlignTy = EltType; 4315 } 4316 4317 if (AlignTy) 4318 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4319 return CharUnits::fromQuantity(4); 4320 } 4321 4322 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4323 uint64_t Size; 4324 4325 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4326 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4327 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4328 // System V ABI (1995), page 3-22, specified: 4329 // > A structure or union whose size is less than or equal to 8 bytes 4330 // > shall be returned in r3 and r4, as if it were first stored in the 4331 // > 8-byte aligned memory area and then the low addressed word were 4332 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4333 // > the last member of the structure or union are not defined. 4334 // 4335 // GCC for big-endian PPC32 inserts the pad before the first member, 4336 // not "beyond the last member" of the struct. To stay compatible 4337 // with GCC, we coerce the struct to an integer of the same size. 4338 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4339 if (Size == 0) 4340 return ABIArgInfo::getIgnore(); 4341 else { 4342 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4343 return ABIArgInfo::getDirect(CoerceTy); 4344 } 4345 } 4346 4347 return DefaultABIInfo::classifyReturnType(RetTy); 4348 } 4349 4350 // TODO: this implementation is now likely redundant with 4351 // DefaultABIInfo::EmitVAArg. 4352 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4353 QualType Ty) const { 4354 if (getTarget().getTriple().isOSDarwin()) { 4355 auto TI = getContext().getTypeInfoInChars(Ty); 4356 TI.second = getParamTypeAlignment(Ty); 4357 4358 CharUnits SlotSize = CharUnits::fromQuantity(4); 4359 return emitVoidPtrVAArg(CGF, VAList, Ty, 4360 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4361 /*AllowHigherAlign=*/true); 4362 } 4363 4364 const unsigned OverflowLimit = 8; 4365 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4366 // TODO: Implement this. For now ignore. 4367 (void)CTy; 4368 return Address::invalid(); // FIXME? 4369 } 4370 4371 // struct __va_list_tag { 4372 // unsigned char gpr; 4373 // unsigned char fpr; 4374 // unsigned short reserved; 4375 // void *overflow_arg_area; 4376 // void *reg_save_area; 4377 // }; 4378 4379 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4380 bool isInt = 4381 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4382 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4383 4384 // All aggregates are passed indirectly? That doesn't seem consistent 4385 // with the argument-lowering code. 4386 bool isIndirect = Ty->isAggregateType(); 4387 4388 CGBuilderTy &Builder = CGF.Builder; 4389 4390 // The calling convention either uses 1-2 GPRs or 1 FPR. 4391 Address NumRegsAddr = Address::invalid(); 4392 if (isInt || IsSoftFloatABI) { 4393 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4394 } else { 4395 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4396 } 4397 4398 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4399 4400 // "Align" the register count when TY is i64. 4401 if (isI64 || (isF64 && IsSoftFloatABI)) { 4402 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4403 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4404 } 4405 4406 llvm::Value *CC = 4407 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4408 4409 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4410 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4411 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4412 4413 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4414 4415 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4416 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4417 4418 // Case 1: consume registers. 4419 Address RegAddr = Address::invalid(); 4420 { 4421 CGF.EmitBlock(UsingRegs); 4422 4423 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4424 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4425 CharUnits::fromQuantity(8)); 4426 assert(RegAddr.getElementType() == CGF.Int8Ty); 4427 4428 // Floating-point registers start after the general-purpose registers. 4429 if (!(isInt || IsSoftFloatABI)) { 4430 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4431 CharUnits::fromQuantity(32)); 4432 } 4433 4434 // Get the address of the saved value by scaling the number of 4435 // registers we've used by the number of 4436 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4437 llvm::Value *RegOffset = 4438 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4439 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4440 RegAddr.getPointer(), RegOffset), 4441 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4442 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4443 4444 // Increase the used-register count. 4445 NumRegs = 4446 Builder.CreateAdd(NumRegs, 4447 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4448 Builder.CreateStore(NumRegs, NumRegsAddr); 4449 4450 CGF.EmitBranch(Cont); 4451 } 4452 4453 // Case 2: consume space in the overflow area. 4454 Address MemAddr = Address::invalid(); 4455 { 4456 CGF.EmitBlock(UsingOverflow); 4457 4458 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4459 4460 // Everything in the overflow area is rounded up to a size of at least 4. 4461 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4462 4463 CharUnits Size; 4464 if (!isIndirect) { 4465 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4466 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4467 } else { 4468 Size = CGF.getPointerSize(); 4469 } 4470 4471 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4472 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4473 OverflowAreaAlign); 4474 // Round up address of argument to alignment 4475 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4476 if (Align > OverflowAreaAlign) { 4477 llvm::Value *Ptr = OverflowArea.getPointer(); 4478 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4479 Align); 4480 } 4481 4482 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4483 4484 // Increase the overflow area. 4485 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4486 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4487 CGF.EmitBranch(Cont); 4488 } 4489 4490 CGF.EmitBlock(Cont); 4491 4492 // Merge the cases with a phi. 4493 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4494 "vaarg.addr"); 4495 4496 // Load the pointer if the argument was passed indirectly. 4497 if (isIndirect) { 4498 Result = Address(Builder.CreateLoad(Result, "aggr"), 4499 getContext().getTypeAlignInChars(Ty)); 4500 } 4501 4502 return Result; 4503 } 4504 4505 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4506 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4507 assert(Triple.getArch() == llvm::Triple::ppc); 4508 4509 switch (Opts.getStructReturnConvention()) { 4510 case CodeGenOptions::SRCK_Default: 4511 break; 4512 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4513 return false; 4514 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4515 return true; 4516 } 4517 4518 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4519 return true; 4520 4521 return false; 4522 } 4523 4524 bool 4525 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4526 llvm::Value *Address) const { 4527 // This is calculated from the LLVM and GCC tables and verified 4528 // against gcc output. AFAIK all ABIs use the same encoding. 4529 4530 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4531 4532 llvm::IntegerType *i8 = CGF.Int8Ty; 4533 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4534 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4535 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4536 4537 // 0-31: r0-31, the 4-byte general-purpose registers 4538 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4539 4540 // 32-63: fp0-31, the 8-byte floating-point registers 4541 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4542 4543 // 64-76 are various 4-byte special-purpose registers: 4544 // 64: mq 4545 // 65: lr 4546 // 66: ctr 4547 // 67: ap 4548 // 68-75 cr0-7 4549 // 76: xer 4550 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4551 4552 // 77-108: v0-31, the 16-byte vector registers 4553 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4554 4555 // 109: vrsave 4556 // 110: vscr 4557 // 111: spe_acc 4558 // 112: spefscr 4559 // 113: sfp 4560 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4561 4562 return false; 4563 } 4564 4565 // PowerPC-64 4566 4567 namespace { 4568 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4569 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4570 public: 4571 enum ABIKind { 4572 ELFv1 = 0, 4573 ELFv2 4574 }; 4575 4576 private: 4577 static const unsigned GPRBits = 64; 4578 ABIKind Kind; 4579 bool HasQPX; 4580 bool IsSoftFloatABI; 4581 4582 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4583 // will be passed in a QPX register. 4584 bool IsQPXVectorTy(const Type *Ty) const { 4585 if (!HasQPX) 4586 return false; 4587 4588 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4589 unsigned NumElements = VT->getNumElements(); 4590 if (NumElements == 1) 4591 return false; 4592 4593 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4594 if (getContext().getTypeSize(Ty) <= 256) 4595 return true; 4596 } else if (VT->getElementType()-> 4597 isSpecificBuiltinType(BuiltinType::Float)) { 4598 if (getContext().getTypeSize(Ty) <= 128) 4599 return true; 4600 } 4601 } 4602 4603 return false; 4604 } 4605 4606 bool IsQPXVectorTy(QualType Ty) const { 4607 return IsQPXVectorTy(Ty.getTypePtr()); 4608 } 4609 4610 public: 4611 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4612 bool SoftFloatABI) 4613 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4614 IsSoftFloatABI(SoftFloatABI) {} 4615 4616 bool isPromotableTypeForABI(QualType Ty) const; 4617 CharUnits getParamTypeAlignment(QualType Ty) const; 4618 4619 ABIArgInfo classifyReturnType(QualType RetTy) const; 4620 ABIArgInfo classifyArgumentType(QualType Ty) const; 4621 4622 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4623 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4624 uint64_t Members) const override; 4625 4626 // TODO: We can add more logic to computeInfo to improve performance. 4627 // Example: For aggregate arguments that fit in a register, we could 4628 // use getDirectInReg (as is done below for structs containing a single 4629 // floating-point value) to avoid pushing them to memory on function 4630 // entry. This would require changing the logic in PPCISelLowering 4631 // when lowering the parameters in the caller and args in the callee. 4632 void computeInfo(CGFunctionInfo &FI) const override { 4633 if (!getCXXABI().classifyReturnType(FI)) 4634 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4635 for (auto &I : FI.arguments()) { 4636 // We rely on the default argument classification for the most part. 4637 // One exception: An aggregate containing a single floating-point 4638 // or vector item must be passed in a register if one is available. 4639 const Type *T = isSingleElementStruct(I.type, getContext()); 4640 if (T) { 4641 const BuiltinType *BT = T->getAs<BuiltinType>(); 4642 if (IsQPXVectorTy(T) || 4643 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4644 (BT && BT->isFloatingPoint())) { 4645 QualType QT(T, 0); 4646 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4647 continue; 4648 } 4649 } 4650 I.info = classifyArgumentType(I.type); 4651 } 4652 } 4653 4654 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4655 QualType Ty) const override; 4656 4657 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4658 bool asReturnValue) const override { 4659 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4660 } 4661 4662 bool isSwiftErrorInRegister() const override { 4663 return false; 4664 } 4665 }; 4666 4667 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4668 4669 public: 4670 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4671 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4672 bool SoftFloatABI) 4673 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4674 CGT, Kind, HasQPX, SoftFloatABI)) {} 4675 4676 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4677 // This is recovered from gcc output. 4678 return 1; // r1 is the dedicated stack pointer 4679 } 4680 4681 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4682 llvm::Value *Address) const override; 4683 }; 4684 4685 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4686 public: 4687 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4688 4689 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4690 // This is recovered from gcc output. 4691 return 1; // r1 is the dedicated stack pointer 4692 } 4693 4694 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4695 llvm::Value *Address) const override; 4696 }; 4697 4698 } 4699 4700 // Return true if the ABI requires Ty to be passed sign- or zero- 4701 // extended to 64 bits. 4702 bool 4703 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4704 // Treat an enum type as its underlying type. 4705 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4706 Ty = EnumTy->getDecl()->getIntegerType(); 4707 4708 // Promotable integer types are required to be promoted by the ABI. 4709 if (isPromotableIntegerTypeForABI(Ty)) 4710 return true; 4711 4712 // In addition to the usual promotable integer types, we also need to 4713 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4714 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4715 switch (BT->getKind()) { 4716 case BuiltinType::Int: 4717 case BuiltinType::UInt: 4718 return true; 4719 default: 4720 break; 4721 } 4722 4723 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4724 if (EIT->getNumBits() < 64) 4725 return true; 4726 4727 return false; 4728 } 4729 4730 /// isAlignedParamType - Determine whether a type requires 16-byte or 4731 /// higher alignment in the parameter area. Always returns at least 8. 4732 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4733 // Complex types are passed just like their elements. 4734 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4735 Ty = CTy->getElementType(); 4736 4737 // Only vector types of size 16 bytes need alignment (larger types are 4738 // passed via reference, smaller types are not aligned). 4739 if (IsQPXVectorTy(Ty)) { 4740 if (getContext().getTypeSize(Ty) > 128) 4741 return CharUnits::fromQuantity(32); 4742 4743 return CharUnits::fromQuantity(16); 4744 } else if (Ty->isVectorType()) { 4745 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4746 } 4747 4748 // For single-element float/vector structs, we consider the whole type 4749 // to have the same alignment requirements as its single element. 4750 const Type *AlignAsType = nullptr; 4751 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4752 if (EltType) { 4753 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4754 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4755 getContext().getTypeSize(EltType) == 128) || 4756 (BT && BT->isFloatingPoint())) 4757 AlignAsType = EltType; 4758 } 4759 4760 // Likewise for ELFv2 homogeneous aggregates. 4761 const Type *Base = nullptr; 4762 uint64_t Members = 0; 4763 if (!AlignAsType && Kind == ELFv2 && 4764 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4765 AlignAsType = Base; 4766 4767 // With special case aggregates, only vector base types need alignment. 4768 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4769 if (getContext().getTypeSize(AlignAsType) > 128) 4770 return CharUnits::fromQuantity(32); 4771 4772 return CharUnits::fromQuantity(16); 4773 } else if (AlignAsType) { 4774 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4775 } 4776 4777 // Otherwise, we only need alignment for any aggregate type that 4778 // has an alignment requirement of >= 16 bytes. 4779 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4780 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4781 return CharUnits::fromQuantity(32); 4782 return CharUnits::fromQuantity(16); 4783 } 4784 4785 return CharUnits::fromQuantity(8); 4786 } 4787 4788 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4789 /// aggregate. Base is set to the base element type, and Members is set 4790 /// to the number of base elements. 4791 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4792 uint64_t &Members) const { 4793 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4794 uint64_t NElements = AT->getSize().getZExtValue(); 4795 if (NElements == 0) 4796 return false; 4797 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4798 return false; 4799 Members *= NElements; 4800 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4801 const RecordDecl *RD = RT->getDecl(); 4802 if (RD->hasFlexibleArrayMember()) 4803 return false; 4804 4805 Members = 0; 4806 4807 // If this is a C++ record, check the bases first. 4808 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4809 for (const auto &I : CXXRD->bases()) { 4810 // Ignore empty records. 4811 if (isEmptyRecord(getContext(), I.getType(), true)) 4812 continue; 4813 4814 uint64_t FldMembers; 4815 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4816 return false; 4817 4818 Members += FldMembers; 4819 } 4820 } 4821 4822 for (const auto *FD : RD->fields()) { 4823 // Ignore (non-zero arrays of) empty records. 4824 QualType FT = FD->getType(); 4825 while (const ConstantArrayType *AT = 4826 getContext().getAsConstantArrayType(FT)) { 4827 if (AT->getSize().getZExtValue() == 0) 4828 return false; 4829 FT = AT->getElementType(); 4830 } 4831 if (isEmptyRecord(getContext(), FT, true)) 4832 continue; 4833 4834 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4835 if (getContext().getLangOpts().CPlusPlus && 4836 FD->isZeroLengthBitField(getContext())) 4837 continue; 4838 4839 uint64_t FldMembers; 4840 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4841 return false; 4842 4843 Members = (RD->isUnion() ? 4844 std::max(Members, FldMembers) : Members + FldMembers); 4845 } 4846 4847 if (!Base) 4848 return false; 4849 4850 // Ensure there is no padding. 4851 if (getContext().getTypeSize(Base) * Members != 4852 getContext().getTypeSize(Ty)) 4853 return false; 4854 } else { 4855 Members = 1; 4856 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4857 Members = 2; 4858 Ty = CT->getElementType(); 4859 } 4860 4861 // Most ABIs only support float, double, and some vector type widths. 4862 if (!isHomogeneousAggregateBaseType(Ty)) 4863 return false; 4864 4865 // The base type must be the same for all members. Types that 4866 // agree in both total size and mode (float vs. vector) are 4867 // treated as being equivalent here. 4868 const Type *TyPtr = Ty.getTypePtr(); 4869 if (!Base) { 4870 Base = TyPtr; 4871 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4872 // so make sure to widen it explicitly. 4873 if (const VectorType *VT = Base->getAs<VectorType>()) { 4874 QualType EltTy = VT->getElementType(); 4875 unsigned NumElements = 4876 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4877 Base = getContext() 4878 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4879 .getTypePtr(); 4880 } 4881 } 4882 4883 if (Base->isVectorType() != TyPtr->isVectorType() || 4884 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4885 return false; 4886 } 4887 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4888 } 4889 4890 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4891 // Homogeneous aggregates for ELFv2 must have base types of float, 4892 // double, long double, or 128-bit vectors. 4893 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4894 if (BT->getKind() == BuiltinType::Float || 4895 BT->getKind() == BuiltinType::Double || 4896 BT->getKind() == BuiltinType::LongDouble || 4897 (getContext().getTargetInfo().hasFloat128Type() && 4898 (BT->getKind() == BuiltinType::Float128))) { 4899 if (IsSoftFloatABI) 4900 return false; 4901 return true; 4902 } 4903 } 4904 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4905 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4906 return true; 4907 } 4908 return false; 4909 } 4910 4911 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4912 const Type *Base, uint64_t Members) const { 4913 // Vector and fp128 types require one register, other floating point types 4914 // require one or two registers depending on their size. 4915 uint32_t NumRegs = 4916 ((getContext().getTargetInfo().hasFloat128Type() && 4917 Base->isFloat128Type()) || 4918 Base->isVectorType()) ? 1 4919 : (getContext().getTypeSize(Base) + 63) / 64; 4920 4921 // Homogeneous Aggregates may occupy at most 8 registers. 4922 return Members * NumRegs <= 8; 4923 } 4924 4925 ABIArgInfo 4926 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4927 Ty = useFirstFieldIfTransparentUnion(Ty); 4928 4929 if (Ty->isAnyComplexType()) 4930 return ABIArgInfo::getDirect(); 4931 4932 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4933 // or via reference (larger than 16 bytes). 4934 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4935 uint64_t Size = getContext().getTypeSize(Ty); 4936 if (Size > 128) 4937 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4938 else if (Size < 128) { 4939 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4940 return ABIArgInfo::getDirect(CoerceTy); 4941 } 4942 } 4943 4944 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4945 if (EIT->getNumBits() > 128) 4946 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 4947 4948 if (isAggregateTypeForABI(Ty)) { 4949 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4950 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4951 4952 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4953 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4954 4955 // ELFv2 homogeneous aggregates are passed as array types. 4956 const Type *Base = nullptr; 4957 uint64_t Members = 0; 4958 if (Kind == ELFv2 && 4959 isHomogeneousAggregate(Ty, Base, Members)) { 4960 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4961 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4962 return ABIArgInfo::getDirect(CoerceTy); 4963 } 4964 4965 // If an aggregate may end up fully in registers, we do not 4966 // use the ByVal method, but pass the aggregate as array. 4967 // This is usually beneficial since we avoid forcing the 4968 // back-end to store the argument to memory. 4969 uint64_t Bits = getContext().getTypeSize(Ty); 4970 if (Bits > 0 && Bits <= 8 * GPRBits) { 4971 llvm::Type *CoerceTy; 4972 4973 // Types up to 8 bytes are passed as integer type (which will be 4974 // properly aligned in the argument save area doubleword). 4975 if (Bits <= GPRBits) 4976 CoerceTy = 4977 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4978 // Larger types are passed as arrays, with the base type selected 4979 // according to the required alignment in the save area. 4980 else { 4981 uint64_t RegBits = ABIAlign * 8; 4982 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4983 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4984 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4985 } 4986 4987 return ABIArgInfo::getDirect(CoerceTy); 4988 } 4989 4990 // All other aggregates are passed ByVal. 4991 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4992 /*ByVal=*/true, 4993 /*Realign=*/TyAlign > ABIAlign); 4994 } 4995 4996 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4997 : ABIArgInfo::getDirect()); 4998 } 4999 5000 ABIArgInfo 5001 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5002 if (RetTy->isVoidType()) 5003 return ABIArgInfo::getIgnore(); 5004 5005 if (RetTy->isAnyComplexType()) 5006 return ABIArgInfo::getDirect(); 5007 5008 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5009 // or via reference (larger than 16 bytes). 5010 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5011 uint64_t Size = getContext().getTypeSize(RetTy); 5012 if (Size > 128) 5013 return getNaturalAlignIndirect(RetTy); 5014 else if (Size < 128) { 5015 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5016 return ABIArgInfo::getDirect(CoerceTy); 5017 } 5018 } 5019 5020 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5021 if (EIT->getNumBits() > 128) 5022 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5023 5024 if (isAggregateTypeForABI(RetTy)) { 5025 // ELFv2 homogeneous aggregates are returned as array types. 5026 const Type *Base = nullptr; 5027 uint64_t Members = 0; 5028 if (Kind == ELFv2 && 5029 isHomogeneousAggregate(RetTy, Base, Members)) { 5030 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5031 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5032 return ABIArgInfo::getDirect(CoerceTy); 5033 } 5034 5035 // ELFv2 small aggregates are returned in up to two registers. 5036 uint64_t Bits = getContext().getTypeSize(RetTy); 5037 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5038 if (Bits == 0) 5039 return ABIArgInfo::getIgnore(); 5040 5041 llvm::Type *CoerceTy; 5042 if (Bits > GPRBits) { 5043 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5044 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5045 } else 5046 CoerceTy = 5047 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5048 return ABIArgInfo::getDirect(CoerceTy); 5049 } 5050 5051 // All other aggregates are returned indirectly. 5052 return getNaturalAlignIndirect(RetTy); 5053 } 5054 5055 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5056 : ABIArgInfo::getDirect()); 5057 } 5058 5059 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5060 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5061 QualType Ty) const { 5062 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5063 TypeInfo.second = getParamTypeAlignment(Ty); 5064 5065 CharUnits SlotSize = CharUnits::fromQuantity(8); 5066 5067 // If we have a complex type and the base type is smaller than 8 bytes, 5068 // the ABI calls for the real and imaginary parts to be right-adjusted 5069 // in separate doublewords. However, Clang expects us to produce a 5070 // pointer to a structure with the two parts packed tightly. So generate 5071 // loads of the real and imaginary parts relative to the va_list pointer, 5072 // and store them to a temporary structure. 5073 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5074 CharUnits EltSize = TypeInfo.first / 2; 5075 if (EltSize < SlotSize) { 5076 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5077 SlotSize * 2, SlotSize, 5078 SlotSize, /*AllowHigher*/ true); 5079 5080 Address RealAddr = Addr; 5081 Address ImagAddr = RealAddr; 5082 if (CGF.CGM.getDataLayout().isBigEndian()) { 5083 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5084 SlotSize - EltSize); 5085 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5086 2 * SlotSize - EltSize); 5087 } else { 5088 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5089 } 5090 5091 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5092 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5093 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5094 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5095 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5096 5097 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5098 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5099 /*init*/ true); 5100 return Temp; 5101 } 5102 } 5103 5104 // Otherwise, just use the general rule. 5105 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5106 TypeInfo, SlotSize, /*AllowHigher*/ true); 5107 } 5108 5109 static bool 5110 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5111 llvm::Value *Address) { 5112 // This is calculated from the LLVM and GCC tables and verified 5113 // against gcc output. AFAIK all ABIs use the same encoding. 5114 5115 CodeGen::CGBuilderTy &Builder = CGF.Builder; 5116 5117 llvm::IntegerType *i8 = CGF.Int8Ty; 5118 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 5119 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 5120 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 5121 5122 // 0-31: r0-31, the 8-byte general-purpose registers 5123 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 5124 5125 // 32-63: fp0-31, the 8-byte floating-point registers 5126 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 5127 5128 // 64-67 are various 8-byte special-purpose registers: 5129 // 64: mq 5130 // 65: lr 5131 // 66: ctr 5132 // 67: ap 5133 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 5134 5135 // 68-76 are various 4-byte special-purpose registers: 5136 // 68-75 cr0-7 5137 // 76: xer 5138 AssignToArrayRange(Builder, Address, Four8, 68, 76); 5139 5140 // 77-108: v0-31, the 16-byte vector registers 5141 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 5142 5143 // 109: vrsave 5144 // 110: vscr 5145 // 111: spe_acc 5146 // 112: spefscr 5147 // 113: sfp 5148 // 114: tfhar 5149 // 115: tfiar 5150 // 116: texasr 5151 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 5152 5153 return false; 5154 } 5155 5156 bool 5157 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5158 CodeGen::CodeGenFunction &CGF, 5159 llvm::Value *Address) const { 5160 5161 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 5162 } 5163 5164 bool 5165 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5166 llvm::Value *Address) const { 5167 5168 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 5169 } 5170 5171 //===----------------------------------------------------------------------===// 5172 // AArch64 ABI Implementation 5173 //===----------------------------------------------------------------------===// 5174 5175 namespace { 5176 5177 class AArch64ABIInfo : public SwiftABIInfo { 5178 public: 5179 enum ABIKind { 5180 AAPCS = 0, 5181 DarwinPCS, 5182 Win64 5183 }; 5184 5185 private: 5186 ABIKind Kind; 5187 5188 public: 5189 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5190 : SwiftABIInfo(CGT), Kind(Kind) {} 5191 5192 private: 5193 ABIKind getABIKind() const { return Kind; } 5194 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5195 5196 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5197 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5198 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5199 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5200 uint64_t Members) const override; 5201 5202 bool isIllegalVectorType(QualType Ty) const; 5203 5204 void computeInfo(CGFunctionInfo &FI) const override { 5205 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5206 FI.getReturnInfo() = 5207 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5208 5209 for (auto &it : FI.arguments()) 5210 it.info = classifyArgumentType(it.type); 5211 } 5212 5213 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5214 CodeGenFunction &CGF) const; 5215 5216 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5217 CodeGenFunction &CGF) const; 5218 5219 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5220 QualType Ty) const override { 5221 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5222 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5223 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5224 } 5225 5226 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5227 QualType Ty) const override; 5228 5229 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5230 bool asReturnValue) const override { 5231 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5232 } 5233 bool isSwiftErrorInRegister() const override { 5234 return true; 5235 } 5236 5237 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5238 unsigned elts) const override; 5239 }; 5240 5241 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5242 public: 5243 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5244 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5245 5246 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5247 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5248 } 5249 5250 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5251 return 31; 5252 } 5253 5254 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5255 5256 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5257 CodeGen::CodeGenModule &CGM) const override { 5258 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5259 if (!FD) 5260 return; 5261 5262 LangOptions::SignReturnAddressScopeKind Scope = 5263 CGM.getLangOpts().getSignReturnAddressScope(); 5264 LangOptions::SignReturnAddressKeyKind Key = 5265 CGM.getLangOpts().getSignReturnAddressKey(); 5266 bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement; 5267 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5268 ParsedTargetAttr Attr = TA->parse(); 5269 if (!Attr.BranchProtection.empty()) { 5270 TargetInfo::BranchProtectionInfo BPI; 5271 StringRef Error; 5272 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5273 BPI, Error); 5274 assert(Error.empty()); 5275 Scope = BPI.SignReturnAddr; 5276 Key = BPI.SignKey; 5277 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5278 } 5279 } 5280 5281 auto *Fn = cast<llvm::Function>(GV); 5282 if (Scope != LangOptions::SignReturnAddressScopeKind::None) { 5283 Fn->addFnAttr("sign-return-address", 5284 Scope == LangOptions::SignReturnAddressScopeKind::All 5285 ? "all" 5286 : "non-leaf"); 5287 5288 Fn->addFnAttr("sign-return-address-key", 5289 Key == LangOptions::SignReturnAddressKeyKind::AKey 5290 ? "a_key" 5291 : "b_key"); 5292 } 5293 5294 if (BranchTargetEnforcement) 5295 Fn->addFnAttr("branch-target-enforcement"); 5296 } 5297 }; 5298 5299 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5300 public: 5301 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5302 : AArch64TargetCodeGenInfo(CGT, K) {} 5303 5304 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5305 CodeGen::CodeGenModule &CGM) const override; 5306 5307 void getDependentLibraryOption(llvm::StringRef Lib, 5308 llvm::SmallString<24> &Opt) const override { 5309 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5310 } 5311 5312 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5313 llvm::SmallString<32> &Opt) const override { 5314 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5315 } 5316 }; 5317 5318 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5319 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5320 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5321 if (GV->isDeclaration()) 5322 return; 5323 addStackProbeTargetAttributes(D, GV, CGM); 5324 } 5325 } 5326 5327 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5328 Ty = useFirstFieldIfTransparentUnion(Ty); 5329 5330 // Handle illegal vector types here. 5331 if (isIllegalVectorType(Ty)) { 5332 uint64_t Size = getContext().getTypeSize(Ty); 5333 // Android promotes <2 x i8> to i16, not i32 5334 if (isAndroid() && (Size <= 16)) { 5335 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5336 return ABIArgInfo::getDirect(ResType); 5337 } 5338 if (Size <= 32) { 5339 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5340 return ABIArgInfo::getDirect(ResType); 5341 } 5342 if (Size == 64) { 5343 llvm::Type *ResType = 5344 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5345 return ABIArgInfo::getDirect(ResType); 5346 } 5347 if (Size == 128) { 5348 llvm::Type *ResType = 5349 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5350 return ABIArgInfo::getDirect(ResType); 5351 } 5352 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5353 } 5354 5355 if (!isAggregateTypeForABI(Ty)) { 5356 // Treat an enum type as its underlying type. 5357 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5358 Ty = EnumTy->getDecl()->getIntegerType(); 5359 5360 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5361 if (EIT->getNumBits() > 128) 5362 return getNaturalAlignIndirect(Ty); 5363 5364 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5365 ? ABIArgInfo::getExtend(Ty) 5366 : ABIArgInfo::getDirect()); 5367 } 5368 5369 // Structures with either a non-trivial destructor or a non-trivial 5370 // copy constructor are always indirect. 5371 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5372 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5373 CGCXXABI::RAA_DirectInMemory); 5374 } 5375 5376 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5377 // elsewhere for GNU compatibility. 5378 uint64_t Size = getContext().getTypeSize(Ty); 5379 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5380 if (IsEmpty || Size == 0) { 5381 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5382 return ABIArgInfo::getIgnore(); 5383 5384 // GNU C mode. The only argument that gets ignored is an empty one with size 5385 // 0. 5386 if (IsEmpty && Size == 0) 5387 return ABIArgInfo::getIgnore(); 5388 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5389 } 5390 5391 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5392 const Type *Base = nullptr; 5393 uint64_t Members = 0; 5394 if (isHomogeneousAggregate(Ty, Base, Members)) { 5395 return ABIArgInfo::getDirect( 5396 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5397 } 5398 5399 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5400 if (Size <= 128) { 5401 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5402 // same size and alignment. 5403 if (getTarget().isRenderScriptTarget()) { 5404 return coerceToIntArray(Ty, getContext(), getVMContext()); 5405 } 5406 unsigned Alignment; 5407 if (Kind == AArch64ABIInfo::AAPCS) { 5408 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5409 Alignment = Alignment < 128 ? 64 : 128; 5410 } else { 5411 Alignment = std::max(getContext().getTypeAlign(Ty), 5412 (unsigned)getTarget().getPointerWidth(0)); 5413 } 5414 Size = llvm::alignTo(Size, Alignment); 5415 5416 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5417 // For aggregates with 16-byte alignment, we use i128. 5418 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5419 return ABIArgInfo::getDirect( 5420 Size == Alignment ? BaseTy 5421 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5422 } 5423 5424 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5425 } 5426 5427 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5428 bool IsVariadic) const { 5429 if (RetTy->isVoidType()) 5430 return ABIArgInfo::getIgnore(); 5431 5432 // Large vector types should be returned via memory. 5433 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5434 return getNaturalAlignIndirect(RetTy); 5435 5436 if (!isAggregateTypeForABI(RetTy)) { 5437 // Treat an enum type as its underlying type. 5438 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5439 RetTy = EnumTy->getDecl()->getIntegerType(); 5440 5441 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5442 if (EIT->getNumBits() > 128) 5443 return getNaturalAlignIndirect(RetTy); 5444 5445 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5446 ? ABIArgInfo::getExtend(RetTy) 5447 : ABIArgInfo::getDirect()); 5448 } 5449 5450 uint64_t Size = getContext().getTypeSize(RetTy); 5451 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5452 return ABIArgInfo::getIgnore(); 5453 5454 const Type *Base = nullptr; 5455 uint64_t Members = 0; 5456 if (isHomogeneousAggregate(RetTy, Base, Members) && 5457 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5458 IsVariadic)) 5459 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5460 return ABIArgInfo::getDirect(); 5461 5462 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5463 if (Size <= 128) { 5464 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5465 // same size and alignment. 5466 if (getTarget().isRenderScriptTarget()) { 5467 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5468 } 5469 unsigned Alignment = getContext().getTypeAlign(RetTy); 5470 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5471 5472 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5473 // For aggregates with 16-byte alignment, we use i128. 5474 if (Alignment < 128 && Size == 128) { 5475 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5476 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5477 } 5478 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5479 } 5480 5481 return getNaturalAlignIndirect(RetTy); 5482 } 5483 5484 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5485 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5486 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5487 // Check whether VT is legal. 5488 unsigned NumElements = VT->getNumElements(); 5489 uint64_t Size = getContext().getTypeSize(VT); 5490 // NumElements should be power of 2. 5491 if (!llvm::isPowerOf2_32(NumElements)) 5492 return true; 5493 5494 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5495 // vectors for some reason. 5496 llvm::Triple Triple = getTarget().getTriple(); 5497 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5498 Triple.isOSBinFormatMachO()) 5499 return Size <= 32; 5500 5501 return Size != 64 && (Size != 128 || NumElements == 1); 5502 } 5503 return false; 5504 } 5505 5506 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5507 llvm::Type *eltTy, 5508 unsigned elts) const { 5509 if (!llvm::isPowerOf2_32(elts)) 5510 return false; 5511 if (totalSize.getQuantity() != 8 && 5512 (totalSize.getQuantity() != 16 || elts == 1)) 5513 return false; 5514 return true; 5515 } 5516 5517 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5518 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5519 // point type or a short-vector type. This is the same as the 32-bit ABI, 5520 // but with the difference that any floating-point type is allowed, 5521 // including __fp16. 5522 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5523 if (BT->isFloatingPoint()) 5524 return true; 5525 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5526 unsigned VecSize = getContext().getTypeSize(VT); 5527 if (VecSize == 64 || VecSize == 128) 5528 return true; 5529 } 5530 return false; 5531 } 5532 5533 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5534 uint64_t Members) const { 5535 return Members <= 4; 5536 } 5537 5538 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5539 QualType Ty, 5540 CodeGenFunction &CGF) const { 5541 ABIArgInfo AI = classifyArgumentType(Ty); 5542 bool IsIndirect = AI.isIndirect(); 5543 5544 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5545 if (IsIndirect) 5546 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5547 else if (AI.getCoerceToType()) 5548 BaseTy = AI.getCoerceToType(); 5549 5550 unsigned NumRegs = 1; 5551 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5552 BaseTy = ArrTy->getElementType(); 5553 NumRegs = ArrTy->getNumElements(); 5554 } 5555 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5556 5557 // The AArch64 va_list type and handling is specified in the Procedure Call 5558 // Standard, section B.4: 5559 // 5560 // struct { 5561 // void *__stack; 5562 // void *__gr_top; 5563 // void *__vr_top; 5564 // int __gr_offs; 5565 // int __vr_offs; 5566 // }; 5567 5568 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5569 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5570 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5571 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5572 5573 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5574 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5575 5576 Address reg_offs_p = Address::invalid(); 5577 llvm::Value *reg_offs = nullptr; 5578 int reg_top_index; 5579 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5580 if (!IsFPR) { 5581 // 3 is the field number of __gr_offs 5582 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5583 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5584 reg_top_index = 1; // field number for __gr_top 5585 RegSize = llvm::alignTo(RegSize, 8); 5586 } else { 5587 // 4 is the field number of __vr_offs. 5588 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5589 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5590 reg_top_index = 2; // field number for __vr_top 5591 RegSize = 16 * NumRegs; 5592 } 5593 5594 //======================================= 5595 // Find out where argument was passed 5596 //======================================= 5597 5598 // If reg_offs >= 0 we're already using the stack for this type of 5599 // argument. We don't want to keep updating reg_offs (in case it overflows, 5600 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5601 // whatever they get). 5602 llvm::Value *UsingStack = nullptr; 5603 UsingStack = CGF.Builder.CreateICmpSGE( 5604 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5605 5606 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5607 5608 // Otherwise, at least some kind of argument could go in these registers, the 5609 // question is whether this particular type is too big. 5610 CGF.EmitBlock(MaybeRegBlock); 5611 5612 // Integer arguments may need to correct register alignment (for example a 5613 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5614 // align __gr_offs to calculate the potential address. 5615 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5616 int Align = TyAlign.getQuantity(); 5617 5618 reg_offs = CGF.Builder.CreateAdd( 5619 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5620 "align_regoffs"); 5621 reg_offs = CGF.Builder.CreateAnd( 5622 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5623 "aligned_regoffs"); 5624 } 5625 5626 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5627 // The fact that this is done unconditionally reflects the fact that 5628 // allocating an argument to the stack also uses up all the remaining 5629 // registers of the appropriate kind. 5630 llvm::Value *NewOffset = nullptr; 5631 NewOffset = CGF.Builder.CreateAdd( 5632 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5633 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5634 5635 // Now we're in a position to decide whether this argument really was in 5636 // registers or not. 5637 llvm::Value *InRegs = nullptr; 5638 InRegs = CGF.Builder.CreateICmpSLE( 5639 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5640 5641 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5642 5643 //======================================= 5644 // Argument was in registers 5645 //======================================= 5646 5647 // Now we emit the code for if the argument was originally passed in 5648 // registers. First start the appropriate block: 5649 CGF.EmitBlock(InRegBlock); 5650 5651 llvm::Value *reg_top = nullptr; 5652 Address reg_top_p = 5653 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5654 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5655 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5656 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5657 Address RegAddr = Address::invalid(); 5658 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5659 5660 if (IsIndirect) { 5661 // If it's been passed indirectly (actually a struct), whatever we find from 5662 // stored registers or on the stack will actually be a struct **. 5663 MemTy = llvm::PointerType::getUnqual(MemTy); 5664 } 5665 5666 const Type *Base = nullptr; 5667 uint64_t NumMembers = 0; 5668 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5669 if (IsHFA && NumMembers > 1) { 5670 // Homogeneous aggregates passed in registers will have their elements split 5671 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5672 // qN+1, ...). We reload and store into a temporary local variable 5673 // contiguously. 5674 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5675 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5676 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5677 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5678 Address Tmp = CGF.CreateTempAlloca(HFATy, 5679 std::max(TyAlign, BaseTyInfo.second)); 5680 5681 // On big-endian platforms, the value will be right-aligned in its slot. 5682 int Offset = 0; 5683 if (CGF.CGM.getDataLayout().isBigEndian() && 5684 BaseTyInfo.first.getQuantity() < 16) 5685 Offset = 16 - BaseTyInfo.first.getQuantity(); 5686 5687 for (unsigned i = 0; i < NumMembers; ++i) { 5688 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5689 Address LoadAddr = 5690 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5691 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5692 5693 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5694 5695 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5696 CGF.Builder.CreateStore(Elem, StoreAddr); 5697 } 5698 5699 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5700 } else { 5701 // Otherwise the object is contiguous in memory. 5702 5703 // It might be right-aligned in its slot. 5704 CharUnits SlotSize = BaseAddr.getAlignment(); 5705 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5706 (IsHFA || !isAggregateTypeForABI(Ty)) && 5707 TySize < SlotSize) { 5708 CharUnits Offset = SlotSize - TySize; 5709 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5710 } 5711 5712 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5713 } 5714 5715 CGF.EmitBranch(ContBlock); 5716 5717 //======================================= 5718 // Argument was on the stack 5719 //======================================= 5720 CGF.EmitBlock(OnStackBlock); 5721 5722 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5723 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5724 5725 // Again, stack arguments may need realignment. In this case both integer and 5726 // floating-point ones might be affected. 5727 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5728 int Align = TyAlign.getQuantity(); 5729 5730 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5731 5732 OnStackPtr = CGF.Builder.CreateAdd( 5733 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5734 "align_stack"); 5735 OnStackPtr = CGF.Builder.CreateAnd( 5736 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5737 "align_stack"); 5738 5739 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5740 } 5741 Address OnStackAddr(OnStackPtr, 5742 std::max(CharUnits::fromQuantity(8), TyAlign)); 5743 5744 // All stack slots are multiples of 8 bytes. 5745 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5746 CharUnits StackSize; 5747 if (IsIndirect) 5748 StackSize = StackSlotSize; 5749 else 5750 StackSize = TySize.alignTo(StackSlotSize); 5751 5752 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5753 llvm::Value *NewStack = 5754 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5755 5756 // Write the new value of __stack for the next call to va_arg 5757 CGF.Builder.CreateStore(NewStack, stack_p); 5758 5759 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5760 TySize < StackSlotSize) { 5761 CharUnits Offset = StackSlotSize - TySize; 5762 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5763 } 5764 5765 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5766 5767 CGF.EmitBranch(ContBlock); 5768 5769 //======================================= 5770 // Tidy up 5771 //======================================= 5772 CGF.EmitBlock(ContBlock); 5773 5774 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5775 OnStackAddr, OnStackBlock, "vaargs.addr"); 5776 5777 if (IsIndirect) 5778 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5779 TyAlign); 5780 5781 return ResAddr; 5782 } 5783 5784 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5785 CodeGenFunction &CGF) const { 5786 // The backend's lowering doesn't support va_arg for aggregates or 5787 // illegal vector types. Lower VAArg here for these cases and use 5788 // the LLVM va_arg instruction for everything else. 5789 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5790 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5791 5792 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5793 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5794 5795 // Empty records are ignored for parameter passing purposes. 5796 if (isEmptyRecord(getContext(), Ty, true)) { 5797 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5798 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5799 return Addr; 5800 } 5801 5802 // The size of the actual thing passed, which might end up just 5803 // being a pointer for indirect types. 5804 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5805 5806 // Arguments bigger than 16 bytes which aren't homogeneous 5807 // aggregates should be passed indirectly. 5808 bool IsIndirect = false; 5809 if (TyInfo.first.getQuantity() > 16) { 5810 const Type *Base = nullptr; 5811 uint64_t Members = 0; 5812 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5813 } 5814 5815 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5816 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5817 } 5818 5819 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5820 QualType Ty) const { 5821 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5822 CGF.getContext().getTypeInfoInChars(Ty), 5823 CharUnits::fromQuantity(8), 5824 /*allowHigherAlign*/ false); 5825 } 5826 5827 //===----------------------------------------------------------------------===// 5828 // ARM ABI Implementation 5829 //===----------------------------------------------------------------------===// 5830 5831 namespace { 5832 5833 class ARMABIInfo : public SwiftABIInfo { 5834 public: 5835 enum ABIKind { 5836 APCS = 0, 5837 AAPCS = 1, 5838 AAPCS_VFP = 2, 5839 AAPCS16_VFP = 3, 5840 }; 5841 5842 private: 5843 ABIKind Kind; 5844 5845 public: 5846 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5847 : SwiftABIInfo(CGT), Kind(_Kind) { 5848 setCCs(); 5849 } 5850 5851 bool isEABI() const { 5852 switch (getTarget().getTriple().getEnvironment()) { 5853 case llvm::Triple::Android: 5854 case llvm::Triple::EABI: 5855 case llvm::Triple::EABIHF: 5856 case llvm::Triple::GNUEABI: 5857 case llvm::Triple::GNUEABIHF: 5858 case llvm::Triple::MuslEABI: 5859 case llvm::Triple::MuslEABIHF: 5860 return true; 5861 default: 5862 return false; 5863 } 5864 } 5865 5866 bool isEABIHF() const { 5867 switch (getTarget().getTriple().getEnvironment()) { 5868 case llvm::Triple::EABIHF: 5869 case llvm::Triple::GNUEABIHF: 5870 case llvm::Triple::MuslEABIHF: 5871 return true; 5872 default: 5873 return false; 5874 } 5875 } 5876 5877 ABIKind getABIKind() const { return Kind; } 5878 5879 private: 5880 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5881 unsigned functionCallConv) const; 5882 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5883 unsigned functionCallConv) const; 5884 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5885 uint64_t Members) const; 5886 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5887 bool isIllegalVectorType(QualType Ty) const; 5888 bool containsAnyFP16Vectors(QualType Ty) const; 5889 5890 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5891 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5892 uint64_t Members) const override; 5893 5894 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5895 5896 void computeInfo(CGFunctionInfo &FI) const override; 5897 5898 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5899 QualType Ty) const override; 5900 5901 llvm::CallingConv::ID getLLVMDefaultCC() const; 5902 llvm::CallingConv::ID getABIDefaultCC() const; 5903 void setCCs(); 5904 5905 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5906 bool asReturnValue) const override { 5907 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5908 } 5909 bool isSwiftErrorInRegister() const override { 5910 return true; 5911 } 5912 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5913 unsigned elts) const override; 5914 }; 5915 5916 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5917 public: 5918 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5919 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 5920 5921 const ARMABIInfo &getABIInfo() const { 5922 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5923 } 5924 5925 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5926 return 13; 5927 } 5928 5929 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5930 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5931 } 5932 5933 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5934 llvm::Value *Address) const override { 5935 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5936 5937 // 0-15 are the 16 integer registers. 5938 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5939 return false; 5940 } 5941 5942 unsigned getSizeOfUnwindException() const override { 5943 if (getABIInfo().isEABI()) return 88; 5944 return TargetCodeGenInfo::getSizeOfUnwindException(); 5945 } 5946 5947 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5948 CodeGen::CodeGenModule &CGM) const override { 5949 if (GV->isDeclaration()) 5950 return; 5951 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5952 if (!FD) 5953 return; 5954 5955 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5956 if (!Attr) 5957 return; 5958 5959 const char *Kind; 5960 switch (Attr->getInterrupt()) { 5961 case ARMInterruptAttr::Generic: Kind = ""; break; 5962 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5963 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5964 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5965 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5966 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5967 } 5968 5969 llvm::Function *Fn = cast<llvm::Function>(GV); 5970 5971 Fn->addFnAttr("interrupt", Kind); 5972 5973 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5974 if (ABI == ARMABIInfo::APCS) 5975 return; 5976 5977 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5978 // however this is not necessarily true on taking any interrupt. Instruct 5979 // the backend to perform a realignment as part of the function prologue. 5980 llvm::AttrBuilder B; 5981 B.addStackAlignmentAttr(8); 5982 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5983 } 5984 }; 5985 5986 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5987 public: 5988 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5989 : ARMTargetCodeGenInfo(CGT, K) {} 5990 5991 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5992 CodeGen::CodeGenModule &CGM) const override; 5993 5994 void getDependentLibraryOption(llvm::StringRef Lib, 5995 llvm::SmallString<24> &Opt) const override { 5996 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5997 } 5998 5999 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6000 llvm::SmallString<32> &Opt) const override { 6001 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6002 } 6003 }; 6004 6005 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6006 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6007 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6008 if (GV->isDeclaration()) 6009 return; 6010 addStackProbeTargetAttributes(D, GV, CGM); 6011 } 6012 } 6013 6014 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6015 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6016 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6017 FI.getCallingConvention()); 6018 6019 for (auto &I : FI.arguments()) 6020 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6021 FI.getCallingConvention()); 6022 6023 6024 // Always honor user-specified calling convention. 6025 if (FI.getCallingConvention() != llvm::CallingConv::C) 6026 return; 6027 6028 llvm::CallingConv::ID cc = getRuntimeCC(); 6029 if (cc != llvm::CallingConv::C) 6030 FI.setEffectiveCallingConvention(cc); 6031 } 6032 6033 /// Return the default calling convention that LLVM will use. 6034 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6035 // The default calling convention that LLVM will infer. 6036 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6037 return llvm::CallingConv::ARM_AAPCS_VFP; 6038 else if (isEABI()) 6039 return llvm::CallingConv::ARM_AAPCS; 6040 else 6041 return llvm::CallingConv::ARM_APCS; 6042 } 6043 6044 /// Return the calling convention that our ABI would like us to use 6045 /// as the C calling convention. 6046 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6047 switch (getABIKind()) { 6048 case APCS: return llvm::CallingConv::ARM_APCS; 6049 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6050 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6051 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6052 } 6053 llvm_unreachable("bad ABI kind"); 6054 } 6055 6056 void ARMABIInfo::setCCs() { 6057 assert(getRuntimeCC() == llvm::CallingConv::C); 6058 6059 // Don't muddy up the IR with a ton of explicit annotations if 6060 // they'd just match what LLVM will infer from the triple. 6061 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6062 if (abiCC != getLLVMDefaultCC()) 6063 RuntimeCC = abiCC; 6064 } 6065 6066 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6067 uint64_t Size = getContext().getTypeSize(Ty); 6068 if (Size <= 32) { 6069 llvm::Type *ResType = 6070 llvm::Type::getInt32Ty(getVMContext()); 6071 return ABIArgInfo::getDirect(ResType); 6072 } 6073 if (Size == 64 || Size == 128) { 6074 llvm::Type *ResType = llvm::VectorType::get( 6075 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6076 return ABIArgInfo::getDirect(ResType); 6077 } 6078 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6079 } 6080 6081 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6082 const Type *Base, 6083 uint64_t Members) const { 6084 assert(Base && "Base class should be set for homogeneous aggregate"); 6085 // Base can be a floating-point or a vector. 6086 if (const VectorType *VT = Base->getAs<VectorType>()) { 6087 // FP16 vectors should be converted to integer vectors 6088 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6089 uint64_t Size = getContext().getTypeSize(VT); 6090 llvm::Type *NewVecTy = llvm::VectorType::get( 6091 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6092 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6093 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6094 } 6095 } 6096 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6097 } 6098 6099 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6100 unsigned functionCallConv) const { 6101 // 6.1.2.1 The following argument types are VFP CPRCs: 6102 // A single-precision floating-point type (including promoted 6103 // half-precision types); A double-precision floating-point type; 6104 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6105 // with a Base Type of a single- or double-precision floating-point type, 6106 // 64-bit containerized vectors or 128-bit containerized vectors with one 6107 // to four Elements. 6108 // Variadic functions should always marshal to the base standard. 6109 bool IsAAPCS_VFP = 6110 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6111 6112 Ty = useFirstFieldIfTransparentUnion(Ty); 6113 6114 // Handle illegal vector types here. 6115 if (isIllegalVectorType(Ty)) 6116 return coerceIllegalVector(Ty); 6117 6118 // _Float16 and __fp16 get passed as if it were an int or float, but with 6119 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6120 // half type natively, and does not need to interwork with AAPCS code. 6121 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 6122 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6123 llvm::Type *ResType = IsAAPCS_VFP ? 6124 llvm::Type::getFloatTy(getVMContext()) : 6125 llvm::Type::getInt32Ty(getVMContext()); 6126 return ABIArgInfo::getDirect(ResType); 6127 } 6128 6129 if (!isAggregateTypeForABI(Ty)) { 6130 // Treat an enum type as its underlying type. 6131 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6132 Ty = EnumTy->getDecl()->getIntegerType(); 6133 } 6134 6135 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6136 if (EIT->getNumBits() > 64) 6137 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6138 6139 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6140 : ABIArgInfo::getDirect()); 6141 } 6142 6143 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6144 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6145 } 6146 6147 // Ignore empty records. 6148 if (isEmptyRecord(getContext(), Ty, true)) 6149 return ABIArgInfo::getIgnore(); 6150 6151 if (IsAAPCS_VFP) { 6152 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6153 // into VFP registers. 6154 const Type *Base = nullptr; 6155 uint64_t Members = 0; 6156 if (isHomogeneousAggregate(Ty, Base, Members)) 6157 return classifyHomogeneousAggregate(Ty, Base, Members); 6158 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6159 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6160 // this convention even for a variadic function: the backend will use GPRs 6161 // if needed. 6162 const Type *Base = nullptr; 6163 uint64_t Members = 0; 6164 if (isHomogeneousAggregate(Ty, Base, Members)) { 6165 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6166 llvm::Type *Ty = 6167 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6168 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6169 } 6170 } 6171 6172 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6173 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6174 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6175 // bigger than 128-bits, they get placed in space allocated by the caller, 6176 // and a pointer is passed. 6177 return ABIArgInfo::getIndirect( 6178 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6179 } 6180 6181 // Support byval for ARM. 6182 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6183 // most 8-byte. We realign the indirect argument if type alignment is bigger 6184 // than ABI alignment. 6185 uint64_t ABIAlign = 4; 6186 uint64_t TyAlign; 6187 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6188 getABIKind() == ARMABIInfo::AAPCS) { 6189 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6190 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6191 } else { 6192 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6193 } 6194 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6195 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6196 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6197 /*ByVal=*/true, 6198 /*Realign=*/TyAlign > ABIAlign); 6199 } 6200 6201 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6202 // same size and alignment. 6203 if (getTarget().isRenderScriptTarget()) { 6204 return coerceToIntArray(Ty, getContext(), getVMContext()); 6205 } 6206 6207 // Otherwise, pass by coercing to a structure of the appropriate size. 6208 llvm::Type* ElemTy; 6209 unsigned SizeRegs; 6210 // FIXME: Try to match the types of the arguments more accurately where 6211 // we can. 6212 if (TyAlign <= 4) { 6213 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6214 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6215 } else { 6216 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6217 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6218 } 6219 6220 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6221 } 6222 6223 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6224 llvm::LLVMContext &VMContext) { 6225 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6226 // is called integer-like if its size is less than or equal to one word, and 6227 // the offset of each of its addressable sub-fields is zero. 6228 6229 uint64_t Size = Context.getTypeSize(Ty); 6230 6231 // Check that the type fits in a word. 6232 if (Size > 32) 6233 return false; 6234 6235 // FIXME: Handle vector types! 6236 if (Ty->isVectorType()) 6237 return false; 6238 6239 // Float types are never treated as "integer like". 6240 if (Ty->isRealFloatingType()) 6241 return false; 6242 6243 // If this is a builtin or pointer type then it is ok. 6244 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6245 return true; 6246 6247 // Small complex integer types are "integer like". 6248 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6249 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6250 6251 // Single element and zero sized arrays should be allowed, by the definition 6252 // above, but they are not. 6253 6254 // Otherwise, it must be a record type. 6255 const RecordType *RT = Ty->getAs<RecordType>(); 6256 if (!RT) return false; 6257 6258 // Ignore records with flexible arrays. 6259 const RecordDecl *RD = RT->getDecl(); 6260 if (RD->hasFlexibleArrayMember()) 6261 return false; 6262 6263 // Check that all sub-fields are at offset 0, and are themselves "integer 6264 // like". 6265 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6266 6267 bool HadField = false; 6268 unsigned idx = 0; 6269 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6270 i != e; ++i, ++idx) { 6271 const FieldDecl *FD = *i; 6272 6273 // Bit-fields are not addressable, we only need to verify they are "integer 6274 // like". We still have to disallow a subsequent non-bitfield, for example: 6275 // struct { int : 0; int x } 6276 // is non-integer like according to gcc. 6277 if (FD->isBitField()) { 6278 if (!RD->isUnion()) 6279 HadField = true; 6280 6281 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6282 return false; 6283 6284 continue; 6285 } 6286 6287 // Check if this field is at offset 0. 6288 if (Layout.getFieldOffset(idx) != 0) 6289 return false; 6290 6291 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6292 return false; 6293 6294 // Only allow at most one field in a structure. This doesn't match the 6295 // wording above, but follows gcc in situations with a field following an 6296 // empty structure. 6297 if (!RD->isUnion()) { 6298 if (HadField) 6299 return false; 6300 6301 HadField = true; 6302 } 6303 } 6304 6305 return true; 6306 } 6307 6308 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6309 unsigned functionCallConv) const { 6310 6311 // Variadic functions should always marshal to the base standard. 6312 bool IsAAPCS_VFP = 6313 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6314 6315 if (RetTy->isVoidType()) 6316 return ABIArgInfo::getIgnore(); 6317 6318 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6319 // Large vector types should be returned via memory. 6320 if (getContext().getTypeSize(RetTy) > 128) 6321 return getNaturalAlignIndirect(RetTy); 6322 // FP16 vectors should be converted to integer vectors 6323 if (!getTarget().hasLegalHalfType() && 6324 (VT->getElementType()->isFloat16Type() || 6325 VT->getElementType()->isHalfType())) 6326 return coerceIllegalVector(RetTy); 6327 } 6328 6329 // _Float16 and __fp16 get returned as if it were an int or float, but with 6330 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6331 // half type natively, and does not need to interwork with AAPCS code. 6332 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6333 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6334 llvm::Type *ResType = IsAAPCS_VFP ? 6335 llvm::Type::getFloatTy(getVMContext()) : 6336 llvm::Type::getInt32Ty(getVMContext()); 6337 return ABIArgInfo::getDirect(ResType); 6338 } 6339 6340 if (!isAggregateTypeForABI(RetTy)) { 6341 // Treat an enum type as its underlying type. 6342 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6343 RetTy = EnumTy->getDecl()->getIntegerType(); 6344 6345 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6346 if (EIT->getNumBits() > 64) 6347 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6348 6349 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6350 : ABIArgInfo::getDirect(); 6351 } 6352 6353 // Are we following APCS? 6354 if (getABIKind() == APCS) { 6355 if (isEmptyRecord(getContext(), RetTy, false)) 6356 return ABIArgInfo::getIgnore(); 6357 6358 // Complex types are all returned as packed integers. 6359 // 6360 // FIXME: Consider using 2 x vector types if the back end handles them 6361 // correctly. 6362 if (RetTy->isAnyComplexType()) 6363 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6364 getVMContext(), getContext().getTypeSize(RetTy))); 6365 6366 // Integer like structures are returned in r0. 6367 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6368 // Return in the smallest viable integer type. 6369 uint64_t Size = getContext().getTypeSize(RetTy); 6370 if (Size <= 8) 6371 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6372 if (Size <= 16) 6373 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6374 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6375 } 6376 6377 // Otherwise return in memory. 6378 return getNaturalAlignIndirect(RetTy); 6379 } 6380 6381 // Otherwise this is an AAPCS variant. 6382 6383 if (isEmptyRecord(getContext(), RetTy, true)) 6384 return ABIArgInfo::getIgnore(); 6385 6386 // Check for homogeneous aggregates with AAPCS-VFP. 6387 if (IsAAPCS_VFP) { 6388 const Type *Base = nullptr; 6389 uint64_t Members = 0; 6390 if (isHomogeneousAggregate(RetTy, Base, Members)) 6391 return classifyHomogeneousAggregate(RetTy, Base, Members); 6392 } 6393 6394 // Aggregates <= 4 bytes are returned in r0; other aggregates 6395 // are returned indirectly. 6396 uint64_t Size = getContext().getTypeSize(RetTy); 6397 if (Size <= 32) { 6398 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6399 // same size and alignment. 6400 if (getTarget().isRenderScriptTarget()) { 6401 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6402 } 6403 if (getDataLayout().isBigEndian()) 6404 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6405 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6406 6407 // Return in the smallest viable integer type. 6408 if (Size <= 8) 6409 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6410 if (Size <= 16) 6411 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6412 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6413 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6414 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6415 llvm::Type *CoerceTy = 6416 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6417 return ABIArgInfo::getDirect(CoerceTy); 6418 } 6419 6420 return getNaturalAlignIndirect(RetTy); 6421 } 6422 6423 /// isIllegalVector - check whether Ty is an illegal vector type. 6424 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6425 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6426 // On targets that don't support FP16, FP16 is expanded into float, and we 6427 // don't want the ABI to depend on whether or not FP16 is supported in 6428 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6429 if (!getTarget().hasLegalHalfType() && 6430 (VT->getElementType()->isFloat16Type() || 6431 VT->getElementType()->isHalfType())) 6432 return true; 6433 if (isAndroid()) { 6434 // Android shipped using Clang 3.1, which supported a slightly different 6435 // vector ABI. The primary differences were that 3-element vector types 6436 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6437 // accepts that legacy behavior for Android only. 6438 // Check whether VT is legal. 6439 unsigned NumElements = VT->getNumElements(); 6440 // NumElements should be power of 2 or equal to 3. 6441 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6442 return true; 6443 } else { 6444 // Check whether VT is legal. 6445 unsigned NumElements = VT->getNumElements(); 6446 uint64_t Size = getContext().getTypeSize(VT); 6447 // NumElements should be power of 2. 6448 if (!llvm::isPowerOf2_32(NumElements)) 6449 return true; 6450 // Size should be greater than 32 bits. 6451 return Size <= 32; 6452 } 6453 } 6454 return false; 6455 } 6456 6457 /// Return true if a type contains any 16-bit floating point vectors 6458 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6459 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6460 uint64_t NElements = AT->getSize().getZExtValue(); 6461 if (NElements == 0) 6462 return false; 6463 return containsAnyFP16Vectors(AT->getElementType()); 6464 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6465 const RecordDecl *RD = RT->getDecl(); 6466 6467 // If this is a C++ record, check the bases first. 6468 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6469 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6470 return containsAnyFP16Vectors(B.getType()); 6471 })) 6472 return true; 6473 6474 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6475 return FD && containsAnyFP16Vectors(FD->getType()); 6476 })) 6477 return true; 6478 6479 return false; 6480 } else { 6481 if (const VectorType *VT = Ty->getAs<VectorType>()) 6482 return (VT->getElementType()->isFloat16Type() || 6483 VT->getElementType()->isHalfType()); 6484 return false; 6485 } 6486 } 6487 6488 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6489 llvm::Type *eltTy, 6490 unsigned numElts) const { 6491 if (!llvm::isPowerOf2_32(numElts)) 6492 return false; 6493 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6494 if (size > 64) 6495 return false; 6496 if (vectorSize.getQuantity() != 8 && 6497 (vectorSize.getQuantity() != 16 || numElts == 1)) 6498 return false; 6499 return true; 6500 } 6501 6502 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6503 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6504 // double, or 64-bit or 128-bit vectors. 6505 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6506 if (BT->getKind() == BuiltinType::Float || 6507 BT->getKind() == BuiltinType::Double || 6508 BT->getKind() == BuiltinType::LongDouble) 6509 return true; 6510 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6511 unsigned VecSize = getContext().getTypeSize(VT); 6512 if (VecSize == 64 || VecSize == 128) 6513 return true; 6514 } 6515 return false; 6516 } 6517 6518 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6519 uint64_t Members) const { 6520 return Members <= 4; 6521 } 6522 6523 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6524 bool acceptHalf) const { 6525 // Give precedence to user-specified calling conventions. 6526 if (callConvention != llvm::CallingConv::C) 6527 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6528 else 6529 return (getABIKind() == AAPCS_VFP) || 6530 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6531 } 6532 6533 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6534 QualType Ty) const { 6535 CharUnits SlotSize = CharUnits::fromQuantity(4); 6536 6537 // Empty records are ignored for parameter passing purposes. 6538 if (isEmptyRecord(getContext(), Ty, true)) { 6539 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6540 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6541 return Addr; 6542 } 6543 6544 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6545 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6546 6547 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6548 bool IsIndirect = false; 6549 const Type *Base = nullptr; 6550 uint64_t Members = 0; 6551 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6552 IsIndirect = true; 6553 6554 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6555 // allocated by the caller. 6556 } else if (TySize > CharUnits::fromQuantity(16) && 6557 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6558 !isHomogeneousAggregate(Ty, Base, Members)) { 6559 IsIndirect = true; 6560 6561 // Otherwise, bound the type's ABI alignment. 6562 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6563 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6564 // Our callers should be prepared to handle an under-aligned address. 6565 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6566 getABIKind() == ARMABIInfo::AAPCS) { 6567 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6568 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6569 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6570 // ARMv7k allows type alignment up to 16 bytes. 6571 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6572 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6573 } else { 6574 TyAlignForABI = CharUnits::fromQuantity(4); 6575 } 6576 6577 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6578 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6579 SlotSize, /*AllowHigherAlign*/ true); 6580 } 6581 6582 //===----------------------------------------------------------------------===// 6583 // NVPTX ABI Implementation 6584 //===----------------------------------------------------------------------===// 6585 6586 namespace { 6587 6588 class NVPTXTargetCodeGenInfo; 6589 6590 class NVPTXABIInfo : public ABIInfo { 6591 NVPTXTargetCodeGenInfo &CGInfo; 6592 6593 public: 6594 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6595 : ABIInfo(CGT), CGInfo(Info) {} 6596 6597 ABIArgInfo classifyReturnType(QualType RetTy) const; 6598 ABIArgInfo classifyArgumentType(QualType Ty) const; 6599 6600 void computeInfo(CGFunctionInfo &FI) const override; 6601 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6602 QualType Ty) const override; 6603 bool isUnsupportedType(QualType T) const; 6604 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6605 }; 6606 6607 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6608 public: 6609 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6610 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6611 6612 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6613 CodeGen::CodeGenModule &M) const override; 6614 bool shouldEmitStaticExternCAliases() const override; 6615 6616 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6617 // On the device side, surface reference is represented as an object handle 6618 // in 64-bit integer. 6619 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6620 } 6621 6622 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6623 // On the device side, texture reference is represented as an object handle 6624 // in 64-bit integer. 6625 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6626 } 6627 6628 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6629 LValue Src) const override { 6630 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6631 return true; 6632 } 6633 6634 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6635 LValue Src) const override { 6636 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6637 return true; 6638 } 6639 6640 private: 6641 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6642 // resulting MDNode to the nvvm.annotations MDNode. 6643 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6644 int Operand); 6645 6646 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6647 LValue Src) { 6648 llvm::Value *Handle = nullptr; 6649 llvm::Constant *C = 6650 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6651 // Lookup `addrspacecast` through the constant pointer if any. 6652 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6653 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6654 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6655 // Load the handle from the specific global variable using 6656 // `nvvm.texsurf.handle.internal` intrinsic. 6657 Handle = CGF.EmitRuntimeCall( 6658 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6659 {GV->getType()}), 6660 {GV}, "texsurf_handle"); 6661 } else 6662 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6663 CGF.EmitStoreOfScalar(Handle, Dst); 6664 } 6665 }; 6666 6667 /// Checks if the type is unsupported directly by the current target. 6668 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6669 ASTContext &Context = getContext(); 6670 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6671 return true; 6672 if (!Context.getTargetInfo().hasFloat128Type() && 6673 (T->isFloat128Type() || 6674 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6675 return true; 6676 if (const auto *EIT = T->getAs<ExtIntType>()) 6677 return EIT->getNumBits() > 6678 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6679 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6680 Context.getTypeSize(T) > 64U) 6681 return true; 6682 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6683 return isUnsupportedType(AT->getElementType()); 6684 const auto *RT = T->getAs<RecordType>(); 6685 if (!RT) 6686 return false; 6687 const RecordDecl *RD = RT->getDecl(); 6688 6689 // If this is a C++ record, check the bases first. 6690 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6691 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6692 if (isUnsupportedType(I.getType())) 6693 return true; 6694 6695 for (const FieldDecl *I : RD->fields()) 6696 if (isUnsupportedType(I->getType())) 6697 return true; 6698 return false; 6699 } 6700 6701 /// Coerce the given type into an array with maximum allowed size of elements. 6702 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 6703 unsigned MaxSize) const { 6704 // Alignment and Size are measured in bits. 6705 const uint64_t Size = getContext().getTypeSize(Ty); 6706 const uint64_t Alignment = getContext().getTypeAlign(Ty); 6707 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6708 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 6709 const uint64_t NumElements = (Size + Div - 1) / Div; 6710 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6711 } 6712 6713 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6714 if (RetTy->isVoidType()) 6715 return ABIArgInfo::getIgnore(); 6716 6717 if (getContext().getLangOpts().OpenMP && 6718 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 6719 return coerceToIntArrayWithLimit(RetTy, 64); 6720 6721 // note: this is different from default ABI 6722 if (!RetTy->isScalarType()) 6723 return ABIArgInfo::getDirect(); 6724 6725 // Treat an enum type as its underlying type. 6726 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6727 RetTy = EnumTy->getDecl()->getIntegerType(); 6728 6729 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6730 : ABIArgInfo::getDirect()); 6731 } 6732 6733 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6734 // Treat an enum type as its underlying type. 6735 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6736 Ty = EnumTy->getDecl()->getIntegerType(); 6737 6738 // Return aggregates type as indirect by value 6739 if (isAggregateTypeForABI(Ty)) { 6740 // Under CUDA device compilation, tex/surf builtin types are replaced with 6741 // object types and passed directly. 6742 if (getContext().getLangOpts().CUDAIsDevice) { 6743 if (Ty->isCUDADeviceBuiltinSurfaceType()) 6744 return ABIArgInfo::getDirect( 6745 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 6746 if (Ty->isCUDADeviceBuiltinTextureType()) 6747 return ABIArgInfo::getDirect( 6748 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 6749 } 6750 return getNaturalAlignIndirect(Ty, /* byval */ true); 6751 } 6752 6753 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 6754 if ((EIT->getNumBits() > 128) || 6755 (!getContext().getTargetInfo().hasInt128Type() && 6756 EIT->getNumBits() > 64)) 6757 return getNaturalAlignIndirect(Ty, /* byval */ true); 6758 } 6759 6760 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6761 : ABIArgInfo::getDirect()); 6762 } 6763 6764 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6765 if (!getCXXABI().classifyReturnType(FI)) 6766 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6767 for (auto &I : FI.arguments()) 6768 I.info = classifyArgumentType(I.type); 6769 6770 // Always honor user-specified calling convention. 6771 if (FI.getCallingConvention() != llvm::CallingConv::C) 6772 return; 6773 6774 FI.setEffectiveCallingConvention(getRuntimeCC()); 6775 } 6776 6777 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6778 QualType Ty) const { 6779 llvm_unreachable("NVPTX does not support varargs"); 6780 } 6781 6782 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6783 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6784 if (GV->isDeclaration()) 6785 return; 6786 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 6787 if (VD) { 6788 if (M.getLangOpts().CUDA) { 6789 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 6790 addNVVMMetadata(GV, "surface", 1); 6791 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 6792 addNVVMMetadata(GV, "texture", 1); 6793 return; 6794 } 6795 } 6796 6797 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6798 if (!FD) return; 6799 6800 llvm::Function *F = cast<llvm::Function>(GV); 6801 6802 // Perform special handling in OpenCL mode 6803 if (M.getLangOpts().OpenCL) { 6804 // Use OpenCL function attributes to check for kernel functions 6805 // By default, all functions are device functions 6806 if (FD->hasAttr<OpenCLKernelAttr>()) { 6807 // OpenCL __kernel functions get kernel metadata 6808 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6809 addNVVMMetadata(F, "kernel", 1); 6810 // And kernel functions are not subject to inlining 6811 F->addFnAttr(llvm::Attribute::NoInline); 6812 } 6813 } 6814 6815 // Perform special handling in CUDA mode. 6816 if (M.getLangOpts().CUDA) { 6817 // CUDA __global__ functions get a kernel metadata entry. Since 6818 // __global__ functions cannot be called from the device, we do not 6819 // need to set the noinline attribute. 6820 if (FD->hasAttr<CUDAGlobalAttr>()) { 6821 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6822 addNVVMMetadata(F, "kernel", 1); 6823 } 6824 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6825 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6826 llvm::APSInt MaxThreads(32); 6827 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6828 if (MaxThreads > 0) 6829 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6830 6831 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6832 // not specified in __launch_bounds__ or if the user specified a 0 value, 6833 // we don't have to add a PTX directive. 6834 if (Attr->getMinBlocks()) { 6835 llvm::APSInt MinBlocks(32); 6836 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6837 if (MinBlocks > 0) 6838 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6839 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6840 } 6841 } 6842 } 6843 } 6844 6845 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 6846 StringRef Name, int Operand) { 6847 llvm::Module *M = GV->getParent(); 6848 llvm::LLVMContext &Ctx = M->getContext(); 6849 6850 // Get "nvvm.annotations" metadata node 6851 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6852 6853 llvm::Metadata *MDVals[] = { 6854 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 6855 llvm::ConstantAsMetadata::get( 6856 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6857 // Append metadata to nvvm.annotations 6858 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6859 } 6860 6861 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6862 return false; 6863 } 6864 } 6865 6866 //===----------------------------------------------------------------------===// 6867 // SystemZ ABI Implementation 6868 //===----------------------------------------------------------------------===// 6869 6870 namespace { 6871 6872 class SystemZABIInfo : public SwiftABIInfo { 6873 bool HasVector; 6874 bool IsSoftFloatABI; 6875 6876 public: 6877 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 6878 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 6879 6880 bool isPromotableIntegerTypeForABI(QualType Ty) const; 6881 bool isCompoundType(QualType Ty) const; 6882 bool isVectorArgumentType(QualType Ty) const; 6883 bool isFPArgumentType(QualType Ty) const; 6884 QualType GetSingleElementType(QualType Ty) const; 6885 6886 ABIArgInfo classifyReturnType(QualType RetTy) const; 6887 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6888 6889 void computeInfo(CGFunctionInfo &FI) const override { 6890 if (!getCXXABI().classifyReturnType(FI)) 6891 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6892 for (auto &I : FI.arguments()) 6893 I.info = classifyArgumentType(I.type); 6894 } 6895 6896 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6897 QualType Ty) const override; 6898 6899 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6900 bool asReturnValue) const override { 6901 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6902 } 6903 bool isSwiftErrorInRegister() const override { 6904 return false; 6905 } 6906 }; 6907 6908 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6909 public: 6910 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 6911 : TargetCodeGenInfo( 6912 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 6913 }; 6914 6915 } 6916 6917 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 6918 // Treat an enum type as its underlying type. 6919 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6920 Ty = EnumTy->getDecl()->getIntegerType(); 6921 6922 // Promotable integer types are required to be promoted by the ABI. 6923 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 6924 return true; 6925 6926 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6927 if (EIT->getNumBits() < 64) 6928 return true; 6929 6930 // 32-bit values must also be promoted. 6931 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6932 switch (BT->getKind()) { 6933 case BuiltinType::Int: 6934 case BuiltinType::UInt: 6935 return true; 6936 default: 6937 return false; 6938 } 6939 return false; 6940 } 6941 6942 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6943 return (Ty->isAnyComplexType() || 6944 Ty->isVectorType() || 6945 isAggregateTypeForABI(Ty)); 6946 } 6947 6948 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6949 return (HasVector && 6950 Ty->isVectorType() && 6951 getContext().getTypeSize(Ty) <= 128); 6952 } 6953 6954 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6955 if (IsSoftFloatABI) 6956 return false; 6957 6958 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6959 switch (BT->getKind()) { 6960 case BuiltinType::Float: 6961 case BuiltinType::Double: 6962 return true; 6963 default: 6964 return false; 6965 } 6966 6967 return false; 6968 } 6969 6970 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6971 if (const RecordType *RT = Ty->getAsStructureType()) { 6972 const RecordDecl *RD = RT->getDecl(); 6973 QualType Found; 6974 6975 // If this is a C++ record, check the bases first. 6976 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6977 for (const auto &I : CXXRD->bases()) { 6978 QualType Base = I.getType(); 6979 6980 // Empty bases don't affect things either way. 6981 if (isEmptyRecord(getContext(), Base, true)) 6982 continue; 6983 6984 if (!Found.isNull()) 6985 return Ty; 6986 Found = GetSingleElementType(Base); 6987 } 6988 6989 // Check the fields. 6990 for (const auto *FD : RD->fields()) { 6991 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6992 // Unlike isSingleElementStruct(), empty structure and array fields 6993 // do count. So do anonymous bitfields that aren't zero-sized. 6994 if (getContext().getLangOpts().CPlusPlus && 6995 FD->isZeroLengthBitField(getContext())) 6996 continue; 6997 6998 // Unlike isSingleElementStruct(), arrays do not count. 6999 // Nested structures still do though. 7000 if (!Found.isNull()) 7001 return Ty; 7002 Found = GetSingleElementType(FD->getType()); 7003 } 7004 7005 // Unlike isSingleElementStruct(), trailing padding is allowed. 7006 // An 8-byte aligned struct s { float f; } is passed as a double. 7007 if (!Found.isNull()) 7008 return Found; 7009 } 7010 7011 return Ty; 7012 } 7013 7014 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7015 QualType Ty) const { 7016 // Assume that va_list type is correct; should be pointer to LLVM type: 7017 // struct { 7018 // i64 __gpr; 7019 // i64 __fpr; 7020 // i8 *__overflow_arg_area; 7021 // i8 *__reg_save_area; 7022 // }; 7023 7024 // Every non-vector argument occupies 8 bytes and is passed by preference 7025 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7026 // always passed on the stack. 7027 Ty = getContext().getCanonicalType(Ty); 7028 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7029 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7030 llvm::Type *DirectTy = ArgTy; 7031 ABIArgInfo AI = classifyArgumentType(Ty); 7032 bool IsIndirect = AI.isIndirect(); 7033 bool InFPRs = false; 7034 bool IsVector = false; 7035 CharUnits UnpaddedSize; 7036 CharUnits DirectAlign; 7037 if (IsIndirect) { 7038 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7039 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7040 } else { 7041 if (AI.getCoerceToType()) 7042 ArgTy = AI.getCoerceToType(); 7043 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7044 IsVector = ArgTy->isVectorTy(); 7045 UnpaddedSize = TyInfo.first; 7046 DirectAlign = TyInfo.second; 7047 } 7048 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7049 if (IsVector && UnpaddedSize > PaddedSize) 7050 PaddedSize = CharUnits::fromQuantity(16); 7051 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7052 7053 CharUnits Padding = (PaddedSize - UnpaddedSize); 7054 7055 llvm::Type *IndexTy = CGF.Int64Ty; 7056 llvm::Value *PaddedSizeV = 7057 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7058 7059 if (IsVector) { 7060 // Work out the address of a vector argument on the stack. 7061 // Vector arguments are always passed in the high bits of a 7062 // single (8 byte) or double (16 byte) stack slot. 7063 Address OverflowArgAreaPtr = 7064 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7065 Address OverflowArgArea = 7066 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7067 TyInfo.second); 7068 Address MemAddr = 7069 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7070 7071 // Update overflow_arg_area_ptr pointer 7072 llvm::Value *NewOverflowArgArea = 7073 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7074 "overflow_arg_area"); 7075 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7076 7077 return MemAddr; 7078 } 7079 7080 assert(PaddedSize.getQuantity() == 8); 7081 7082 unsigned MaxRegs, RegCountField, RegSaveIndex; 7083 CharUnits RegPadding; 7084 if (InFPRs) { 7085 MaxRegs = 4; // Maximum of 4 FPR arguments 7086 RegCountField = 1; // __fpr 7087 RegSaveIndex = 16; // save offset for f0 7088 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7089 } else { 7090 MaxRegs = 5; // Maximum of 5 GPR arguments 7091 RegCountField = 0; // __gpr 7092 RegSaveIndex = 2; // save offset for r2 7093 RegPadding = Padding; // values are passed in the low bits of a GPR 7094 } 7095 7096 Address RegCountPtr = 7097 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7098 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7099 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7100 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7101 "fits_in_regs"); 7102 7103 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7104 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7105 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7106 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7107 7108 // Emit code to load the value if it was passed in registers. 7109 CGF.EmitBlock(InRegBlock); 7110 7111 // Work out the address of an argument register. 7112 llvm::Value *ScaledRegCount = 7113 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7114 llvm::Value *RegBase = 7115 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7116 + RegPadding.getQuantity()); 7117 llvm::Value *RegOffset = 7118 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7119 Address RegSaveAreaPtr = 7120 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7121 llvm::Value *RegSaveArea = 7122 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7123 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7124 "raw_reg_addr"), 7125 PaddedSize); 7126 Address RegAddr = 7127 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7128 7129 // Update the register count 7130 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7131 llvm::Value *NewRegCount = 7132 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7133 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7134 CGF.EmitBranch(ContBlock); 7135 7136 // Emit code to load the value if it was passed in memory. 7137 CGF.EmitBlock(InMemBlock); 7138 7139 // Work out the address of a stack argument. 7140 Address OverflowArgAreaPtr = 7141 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7142 Address OverflowArgArea = 7143 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7144 PaddedSize); 7145 Address RawMemAddr = 7146 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7147 Address MemAddr = 7148 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7149 7150 // Update overflow_arg_area_ptr pointer 7151 llvm::Value *NewOverflowArgArea = 7152 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7153 "overflow_arg_area"); 7154 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7155 CGF.EmitBranch(ContBlock); 7156 7157 // Return the appropriate result. 7158 CGF.EmitBlock(ContBlock); 7159 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7160 MemAddr, InMemBlock, "va_arg.addr"); 7161 7162 if (IsIndirect) 7163 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7164 TyInfo.second); 7165 7166 return ResAddr; 7167 } 7168 7169 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7170 if (RetTy->isVoidType()) 7171 return ABIArgInfo::getIgnore(); 7172 if (isVectorArgumentType(RetTy)) 7173 return ABIArgInfo::getDirect(); 7174 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7175 return getNaturalAlignIndirect(RetTy); 7176 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7177 : ABIArgInfo::getDirect()); 7178 } 7179 7180 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7181 // Handle the generic C++ ABI. 7182 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7183 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7184 7185 // Integers and enums are extended to full register width. 7186 if (isPromotableIntegerTypeForABI(Ty)) 7187 return ABIArgInfo::getExtend(Ty); 7188 7189 // Handle vector types and vector-like structure types. Note that 7190 // as opposed to float-like structure types, we do not allow any 7191 // padding for vector-like structures, so verify the sizes match. 7192 uint64_t Size = getContext().getTypeSize(Ty); 7193 QualType SingleElementTy = GetSingleElementType(Ty); 7194 if (isVectorArgumentType(SingleElementTy) && 7195 getContext().getTypeSize(SingleElementTy) == Size) 7196 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7197 7198 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7199 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7200 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7201 7202 // Handle small structures. 7203 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7204 // Structures with flexible arrays have variable length, so really 7205 // fail the size test above. 7206 const RecordDecl *RD = RT->getDecl(); 7207 if (RD->hasFlexibleArrayMember()) 7208 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7209 7210 // The structure is passed as an unextended integer, a float, or a double. 7211 llvm::Type *PassTy; 7212 if (isFPArgumentType(SingleElementTy)) { 7213 assert(Size == 32 || Size == 64); 7214 if (Size == 32) 7215 PassTy = llvm::Type::getFloatTy(getVMContext()); 7216 else 7217 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7218 } else 7219 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7220 return ABIArgInfo::getDirect(PassTy); 7221 } 7222 7223 // Non-structure compounds are passed indirectly. 7224 if (isCompoundType(Ty)) 7225 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7226 7227 return ABIArgInfo::getDirect(nullptr); 7228 } 7229 7230 //===----------------------------------------------------------------------===// 7231 // MSP430 ABI Implementation 7232 //===----------------------------------------------------------------------===// 7233 7234 namespace { 7235 7236 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7237 public: 7238 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7239 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7240 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7241 CodeGen::CodeGenModule &M) const override; 7242 }; 7243 7244 } 7245 7246 void MSP430TargetCodeGenInfo::setTargetAttributes( 7247 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7248 if (GV->isDeclaration()) 7249 return; 7250 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7251 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7252 if (!InterruptAttr) 7253 return; 7254 7255 // Handle 'interrupt' attribute: 7256 llvm::Function *F = cast<llvm::Function>(GV); 7257 7258 // Step 1: Set ISR calling convention. 7259 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7260 7261 // Step 2: Add attributes goodness. 7262 F->addFnAttr(llvm::Attribute::NoInline); 7263 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7264 } 7265 } 7266 7267 //===----------------------------------------------------------------------===// 7268 // MIPS ABI Implementation. This works for both little-endian and 7269 // big-endian variants. 7270 //===----------------------------------------------------------------------===// 7271 7272 namespace { 7273 class MipsABIInfo : public ABIInfo { 7274 bool IsO32; 7275 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7276 void CoerceToIntArgs(uint64_t TySize, 7277 SmallVectorImpl<llvm::Type *> &ArgList) const; 7278 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7279 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7280 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7281 public: 7282 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7283 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7284 StackAlignInBytes(IsO32 ? 8 : 16) {} 7285 7286 ABIArgInfo classifyReturnType(QualType RetTy) const; 7287 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7288 void computeInfo(CGFunctionInfo &FI) const override; 7289 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7290 QualType Ty) const override; 7291 ABIArgInfo extendType(QualType Ty) const; 7292 }; 7293 7294 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7295 unsigned SizeOfUnwindException; 7296 public: 7297 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7298 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7299 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7300 7301 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7302 return 29; 7303 } 7304 7305 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7306 CodeGen::CodeGenModule &CGM) const override { 7307 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7308 if (!FD) return; 7309 llvm::Function *Fn = cast<llvm::Function>(GV); 7310 7311 if (FD->hasAttr<MipsLongCallAttr>()) 7312 Fn->addFnAttr("long-call"); 7313 else if (FD->hasAttr<MipsShortCallAttr>()) 7314 Fn->addFnAttr("short-call"); 7315 7316 // Other attributes do not have a meaning for declarations. 7317 if (GV->isDeclaration()) 7318 return; 7319 7320 if (FD->hasAttr<Mips16Attr>()) { 7321 Fn->addFnAttr("mips16"); 7322 } 7323 else if (FD->hasAttr<NoMips16Attr>()) { 7324 Fn->addFnAttr("nomips16"); 7325 } 7326 7327 if (FD->hasAttr<MicroMipsAttr>()) 7328 Fn->addFnAttr("micromips"); 7329 else if (FD->hasAttr<NoMicroMipsAttr>()) 7330 Fn->addFnAttr("nomicromips"); 7331 7332 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7333 if (!Attr) 7334 return; 7335 7336 const char *Kind; 7337 switch (Attr->getInterrupt()) { 7338 case MipsInterruptAttr::eic: Kind = "eic"; break; 7339 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7340 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7341 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7342 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7343 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7344 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7345 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7346 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7347 } 7348 7349 Fn->addFnAttr("interrupt", Kind); 7350 7351 } 7352 7353 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7354 llvm::Value *Address) const override; 7355 7356 unsigned getSizeOfUnwindException() const override { 7357 return SizeOfUnwindException; 7358 } 7359 }; 7360 } 7361 7362 void MipsABIInfo::CoerceToIntArgs( 7363 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7364 llvm::IntegerType *IntTy = 7365 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7366 7367 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7368 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7369 ArgList.push_back(IntTy); 7370 7371 // If necessary, add one more integer type to ArgList. 7372 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7373 7374 if (R) 7375 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7376 } 7377 7378 // In N32/64, an aligned double precision floating point field is passed in 7379 // a register. 7380 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7381 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7382 7383 if (IsO32) { 7384 CoerceToIntArgs(TySize, ArgList); 7385 return llvm::StructType::get(getVMContext(), ArgList); 7386 } 7387 7388 if (Ty->isComplexType()) 7389 return CGT.ConvertType(Ty); 7390 7391 const RecordType *RT = Ty->getAs<RecordType>(); 7392 7393 // Unions/vectors are passed in integer registers. 7394 if (!RT || !RT->isStructureOrClassType()) { 7395 CoerceToIntArgs(TySize, ArgList); 7396 return llvm::StructType::get(getVMContext(), ArgList); 7397 } 7398 7399 const RecordDecl *RD = RT->getDecl(); 7400 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7401 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7402 7403 uint64_t LastOffset = 0; 7404 unsigned idx = 0; 7405 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7406 7407 // Iterate over fields in the struct/class and check if there are any aligned 7408 // double fields. 7409 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7410 i != e; ++i, ++idx) { 7411 const QualType Ty = i->getType(); 7412 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7413 7414 if (!BT || BT->getKind() != BuiltinType::Double) 7415 continue; 7416 7417 uint64_t Offset = Layout.getFieldOffset(idx); 7418 if (Offset % 64) // Ignore doubles that are not aligned. 7419 continue; 7420 7421 // Add ((Offset - LastOffset) / 64) args of type i64. 7422 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7423 ArgList.push_back(I64); 7424 7425 // Add double type. 7426 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7427 LastOffset = Offset + 64; 7428 } 7429 7430 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7431 ArgList.append(IntArgList.begin(), IntArgList.end()); 7432 7433 return llvm::StructType::get(getVMContext(), ArgList); 7434 } 7435 7436 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7437 uint64_t Offset) const { 7438 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7439 return nullptr; 7440 7441 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7442 } 7443 7444 ABIArgInfo 7445 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7446 Ty = useFirstFieldIfTransparentUnion(Ty); 7447 7448 uint64_t OrigOffset = Offset; 7449 uint64_t TySize = getContext().getTypeSize(Ty); 7450 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7451 7452 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7453 (uint64_t)StackAlignInBytes); 7454 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7455 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7456 7457 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7458 // Ignore empty aggregates. 7459 if (TySize == 0) 7460 return ABIArgInfo::getIgnore(); 7461 7462 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7463 Offset = OrigOffset + MinABIStackAlignInBytes; 7464 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7465 } 7466 7467 // If we have reached here, aggregates are passed directly by coercing to 7468 // another structure type. Padding is inserted if the offset of the 7469 // aggregate is unaligned. 7470 ABIArgInfo ArgInfo = 7471 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7472 getPaddingType(OrigOffset, CurrOffset)); 7473 ArgInfo.setInReg(true); 7474 return ArgInfo; 7475 } 7476 7477 // Treat an enum type as its underlying type. 7478 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7479 Ty = EnumTy->getDecl()->getIntegerType(); 7480 7481 // Make sure we pass indirectly things that are too large. 7482 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7483 if (EIT->getNumBits() > 128 || 7484 (EIT->getNumBits() > 64 && 7485 !getContext().getTargetInfo().hasInt128Type())) 7486 return getNaturalAlignIndirect(Ty); 7487 7488 // All integral types are promoted to the GPR width. 7489 if (Ty->isIntegralOrEnumerationType()) 7490 return extendType(Ty); 7491 7492 return ABIArgInfo::getDirect( 7493 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7494 } 7495 7496 llvm::Type* 7497 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7498 const RecordType *RT = RetTy->getAs<RecordType>(); 7499 SmallVector<llvm::Type*, 8> RTList; 7500 7501 if (RT && RT->isStructureOrClassType()) { 7502 const RecordDecl *RD = RT->getDecl(); 7503 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7504 unsigned FieldCnt = Layout.getFieldCount(); 7505 7506 // N32/64 returns struct/classes in floating point registers if the 7507 // following conditions are met: 7508 // 1. The size of the struct/class is no larger than 128-bit. 7509 // 2. The struct/class has one or two fields all of which are floating 7510 // point types. 7511 // 3. The offset of the first field is zero (this follows what gcc does). 7512 // 7513 // Any other composite results are returned in integer registers. 7514 // 7515 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7516 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7517 for (; b != e; ++b) { 7518 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7519 7520 if (!BT || !BT->isFloatingPoint()) 7521 break; 7522 7523 RTList.push_back(CGT.ConvertType(b->getType())); 7524 } 7525 7526 if (b == e) 7527 return llvm::StructType::get(getVMContext(), RTList, 7528 RD->hasAttr<PackedAttr>()); 7529 7530 RTList.clear(); 7531 } 7532 } 7533 7534 CoerceToIntArgs(Size, RTList); 7535 return llvm::StructType::get(getVMContext(), RTList); 7536 } 7537 7538 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7539 uint64_t Size = getContext().getTypeSize(RetTy); 7540 7541 if (RetTy->isVoidType()) 7542 return ABIArgInfo::getIgnore(); 7543 7544 // O32 doesn't treat zero-sized structs differently from other structs. 7545 // However, N32/N64 ignores zero sized return values. 7546 if (!IsO32 && Size == 0) 7547 return ABIArgInfo::getIgnore(); 7548 7549 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7550 if (Size <= 128) { 7551 if (RetTy->isAnyComplexType()) 7552 return ABIArgInfo::getDirect(); 7553 7554 // O32 returns integer vectors in registers and N32/N64 returns all small 7555 // aggregates in registers. 7556 if (!IsO32 || 7557 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7558 ABIArgInfo ArgInfo = 7559 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7560 ArgInfo.setInReg(true); 7561 return ArgInfo; 7562 } 7563 } 7564 7565 return getNaturalAlignIndirect(RetTy); 7566 } 7567 7568 // Treat an enum type as its underlying type. 7569 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7570 RetTy = EnumTy->getDecl()->getIntegerType(); 7571 7572 // Make sure we pass indirectly things that are too large. 7573 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7574 if (EIT->getNumBits() > 128 || 7575 (EIT->getNumBits() > 64 && 7576 !getContext().getTargetInfo().hasInt128Type())) 7577 return getNaturalAlignIndirect(RetTy); 7578 7579 if (isPromotableIntegerTypeForABI(RetTy)) 7580 return ABIArgInfo::getExtend(RetTy); 7581 7582 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7583 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7584 return ABIArgInfo::getSignExtend(RetTy); 7585 7586 return ABIArgInfo::getDirect(); 7587 } 7588 7589 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7590 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7591 if (!getCXXABI().classifyReturnType(FI)) 7592 RetInfo = classifyReturnType(FI.getReturnType()); 7593 7594 // Check if a pointer to an aggregate is passed as a hidden argument. 7595 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7596 7597 for (auto &I : FI.arguments()) 7598 I.info = classifyArgumentType(I.type, Offset); 7599 } 7600 7601 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7602 QualType OrigTy) const { 7603 QualType Ty = OrigTy; 7604 7605 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7606 // Pointers are also promoted in the same way but this only matters for N32. 7607 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7608 unsigned PtrWidth = getTarget().getPointerWidth(0); 7609 bool DidPromote = false; 7610 if ((Ty->isIntegerType() && 7611 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7612 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7613 DidPromote = true; 7614 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7615 Ty->isSignedIntegerType()); 7616 } 7617 7618 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7619 7620 // The alignment of things in the argument area is never larger than 7621 // StackAlignInBytes. 7622 TyInfo.second = 7623 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7624 7625 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7626 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7627 7628 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7629 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7630 7631 7632 // If there was a promotion, "unpromote" into a temporary. 7633 // TODO: can we just use a pointer into a subset of the original slot? 7634 if (DidPromote) { 7635 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7636 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7637 7638 // Truncate down to the right width. 7639 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7640 : CGF.IntPtrTy); 7641 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7642 if (OrigTy->isPointerType()) 7643 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7644 7645 CGF.Builder.CreateStore(V, Temp); 7646 Addr = Temp; 7647 } 7648 7649 return Addr; 7650 } 7651 7652 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7653 int TySize = getContext().getTypeSize(Ty); 7654 7655 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7656 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7657 return ABIArgInfo::getSignExtend(Ty); 7658 7659 return ABIArgInfo::getExtend(Ty); 7660 } 7661 7662 bool 7663 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7664 llvm::Value *Address) const { 7665 // This information comes from gcc's implementation, which seems to 7666 // as canonical as it gets. 7667 7668 // Everything on MIPS is 4 bytes. Double-precision FP registers 7669 // are aliased to pairs of single-precision FP registers. 7670 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7671 7672 // 0-31 are the general purpose registers, $0 - $31. 7673 // 32-63 are the floating-point registers, $f0 - $f31. 7674 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7675 // 66 is the (notional, I think) register for signal-handler return. 7676 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7677 7678 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7679 // They are one bit wide and ignored here. 7680 7681 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7682 // (coprocessor 1 is the FP unit) 7683 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7684 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7685 // 176-181 are the DSP accumulator registers. 7686 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7687 return false; 7688 } 7689 7690 //===----------------------------------------------------------------------===// 7691 // AVR ABI Implementation. 7692 //===----------------------------------------------------------------------===// 7693 7694 namespace { 7695 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7696 public: 7697 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7698 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7699 7700 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7701 CodeGen::CodeGenModule &CGM) const override { 7702 if (GV->isDeclaration()) 7703 return; 7704 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7705 if (!FD) return; 7706 auto *Fn = cast<llvm::Function>(GV); 7707 7708 if (FD->getAttr<AVRInterruptAttr>()) 7709 Fn->addFnAttr("interrupt"); 7710 7711 if (FD->getAttr<AVRSignalAttr>()) 7712 Fn->addFnAttr("signal"); 7713 } 7714 }; 7715 } 7716 7717 //===----------------------------------------------------------------------===// 7718 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7719 // Currently subclassed only to implement custom OpenCL C function attribute 7720 // handling. 7721 //===----------------------------------------------------------------------===// 7722 7723 namespace { 7724 7725 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7726 public: 7727 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7728 : DefaultTargetCodeGenInfo(CGT) {} 7729 7730 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7731 CodeGen::CodeGenModule &M) const override; 7732 }; 7733 7734 void TCETargetCodeGenInfo::setTargetAttributes( 7735 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7736 if (GV->isDeclaration()) 7737 return; 7738 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7739 if (!FD) return; 7740 7741 llvm::Function *F = cast<llvm::Function>(GV); 7742 7743 if (M.getLangOpts().OpenCL) { 7744 if (FD->hasAttr<OpenCLKernelAttr>()) { 7745 // OpenCL C Kernel functions are not subject to inlining 7746 F->addFnAttr(llvm::Attribute::NoInline); 7747 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7748 if (Attr) { 7749 // Convert the reqd_work_group_size() attributes to metadata. 7750 llvm::LLVMContext &Context = F->getContext(); 7751 llvm::NamedMDNode *OpenCLMetadata = 7752 M.getModule().getOrInsertNamedMetadata( 7753 "opencl.kernel_wg_size_info"); 7754 7755 SmallVector<llvm::Metadata *, 5> Operands; 7756 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7757 7758 Operands.push_back( 7759 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7760 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7761 Operands.push_back( 7762 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7763 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7764 Operands.push_back( 7765 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7766 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7767 7768 // Add a boolean constant operand for "required" (true) or "hint" 7769 // (false) for implementing the work_group_size_hint attr later. 7770 // Currently always true as the hint is not yet implemented. 7771 Operands.push_back( 7772 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7773 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7774 } 7775 } 7776 } 7777 } 7778 7779 } 7780 7781 //===----------------------------------------------------------------------===// 7782 // Hexagon ABI Implementation 7783 //===----------------------------------------------------------------------===// 7784 7785 namespace { 7786 7787 class HexagonABIInfo : public DefaultABIInfo { 7788 public: 7789 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7790 7791 private: 7792 ABIArgInfo classifyReturnType(QualType RetTy) const; 7793 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7794 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 7795 7796 void computeInfo(CGFunctionInfo &FI) const override; 7797 7798 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7799 QualType Ty) const override; 7800 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 7801 QualType Ty) const; 7802 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 7803 QualType Ty) const; 7804 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 7805 QualType Ty) const; 7806 }; 7807 7808 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7809 public: 7810 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7811 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 7812 7813 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7814 return 29; 7815 } 7816 7817 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7818 CodeGen::CodeGenModule &GCM) const override { 7819 if (GV->isDeclaration()) 7820 return; 7821 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7822 if (!FD) 7823 return; 7824 } 7825 }; 7826 7827 } // namespace 7828 7829 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7830 unsigned RegsLeft = 6; 7831 if (!getCXXABI().classifyReturnType(FI)) 7832 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7833 for (auto &I : FI.arguments()) 7834 I.info = classifyArgumentType(I.type, &RegsLeft); 7835 } 7836 7837 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 7838 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 7839 " through registers"); 7840 7841 if (*RegsLeft == 0) 7842 return false; 7843 7844 if (Size <= 32) { 7845 (*RegsLeft)--; 7846 return true; 7847 } 7848 7849 if (2 <= (*RegsLeft & (~1U))) { 7850 *RegsLeft = (*RegsLeft & (~1U)) - 2; 7851 return true; 7852 } 7853 7854 // Next available register was r5 but candidate was greater than 32-bits so it 7855 // has to go on the stack. However we still consume r5 7856 if (*RegsLeft == 1) 7857 *RegsLeft = 0; 7858 7859 return false; 7860 } 7861 7862 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 7863 unsigned *RegsLeft) const { 7864 if (!isAggregateTypeForABI(Ty)) { 7865 // Treat an enum type as its underlying type. 7866 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7867 Ty = EnumTy->getDecl()->getIntegerType(); 7868 7869 uint64_t Size = getContext().getTypeSize(Ty); 7870 if (Size <= 64) 7871 HexagonAdjustRegsLeft(Size, RegsLeft); 7872 7873 if (Size > 64 && Ty->isExtIntType()) 7874 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7875 7876 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7877 : ABIArgInfo::getDirect(); 7878 } 7879 7880 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7881 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7882 7883 // Ignore empty records. 7884 if (isEmptyRecord(getContext(), Ty, true)) 7885 return ABIArgInfo::getIgnore(); 7886 7887 uint64_t Size = getContext().getTypeSize(Ty); 7888 unsigned Align = getContext().getTypeAlign(Ty); 7889 7890 if (Size > 64) 7891 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7892 7893 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 7894 Align = Size <= 32 ? 32 : 64; 7895 if (Size <= Align) { 7896 // Pass in the smallest viable integer type. 7897 if (!llvm::isPowerOf2_64(Size)) 7898 Size = llvm::NextPowerOf2(Size); 7899 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 7900 } 7901 return DefaultABIInfo::classifyArgumentType(Ty); 7902 } 7903 7904 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7905 if (RetTy->isVoidType()) 7906 return ABIArgInfo::getIgnore(); 7907 7908 const TargetInfo &T = CGT.getTarget(); 7909 uint64_t Size = getContext().getTypeSize(RetTy); 7910 7911 if (RetTy->getAs<VectorType>()) { 7912 // HVX vectors are returned in vector registers or register pairs. 7913 if (T.hasFeature("hvx")) { 7914 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 7915 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 7916 if (Size == VecSize || Size == 2*VecSize) 7917 return ABIArgInfo::getDirectInReg(); 7918 } 7919 // Large vector types should be returned via memory. 7920 if (Size > 64) 7921 return getNaturalAlignIndirect(RetTy); 7922 } 7923 7924 if (!isAggregateTypeForABI(RetTy)) { 7925 // Treat an enum type as its underlying type. 7926 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7927 RetTy = EnumTy->getDecl()->getIntegerType(); 7928 7929 if (Size > 64 && RetTy->isExtIntType()) 7930 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 7931 7932 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7933 : ABIArgInfo::getDirect(); 7934 } 7935 7936 if (isEmptyRecord(getContext(), RetTy, true)) 7937 return ABIArgInfo::getIgnore(); 7938 7939 // Aggregates <= 8 bytes are returned in registers, other aggregates 7940 // are returned indirectly. 7941 if (Size <= 64) { 7942 // Return in the smallest viable integer type. 7943 if (!llvm::isPowerOf2_64(Size)) 7944 Size = llvm::NextPowerOf2(Size); 7945 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 7946 } 7947 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7948 } 7949 7950 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 7951 Address VAListAddr, 7952 QualType Ty) const { 7953 // Load the overflow area pointer. 7954 Address __overflow_area_pointer_p = 7955 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 7956 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 7957 __overflow_area_pointer_p, "__overflow_area_pointer"); 7958 7959 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 7960 if (Align > 4) { 7961 // Alignment should be a power of 2. 7962 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 7963 7964 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 7965 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 7966 7967 // Add offset to the current pointer to access the argument. 7968 __overflow_area_pointer = 7969 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 7970 llvm::Value *AsInt = 7971 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 7972 7973 // Create a mask which should be "AND"ed 7974 // with (overflow_arg_area + align - 1) 7975 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 7976 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 7977 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 7978 "__overflow_area_pointer.align"); 7979 } 7980 7981 // Get the type of the argument from memory and bitcast 7982 // overflow area pointer to the argument type. 7983 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 7984 Address AddrTyped = CGF.Builder.CreateBitCast( 7985 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 7986 llvm::PointerType::getUnqual(PTy)); 7987 7988 // Round up to the minimum stack alignment for varargs which is 4 bytes. 7989 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 7990 7991 __overflow_area_pointer = CGF.Builder.CreateGEP( 7992 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 7993 "__overflow_area_pointer.next"); 7994 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 7995 7996 return AddrTyped; 7997 } 7998 7999 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8000 Address VAListAddr, 8001 QualType Ty) const { 8002 // FIXME: Need to handle alignment 8003 llvm::Type *BP = CGF.Int8PtrTy; 8004 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8005 CGBuilderTy &Builder = CGF.Builder; 8006 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8007 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8008 // Handle address alignment for type alignment > 32 bits 8009 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8010 if (TyAlign > 4) { 8011 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8012 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8013 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8014 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8015 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8016 } 8017 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8018 Address AddrTyped = Builder.CreateBitCast( 8019 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8020 8021 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8022 llvm::Value *NextAddr = Builder.CreateGEP( 8023 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8024 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8025 8026 return AddrTyped; 8027 } 8028 8029 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8030 Address VAListAddr, 8031 QualType Ty) const { 8032 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8033 8034 if (ArgSize > 8) 8035 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8036 8037 // Here we have check if the argument is in register area or 8038 // in overflow area. 8039 // If the saved register area pointer + argsize rounded up to alignment > 8040 // saved register area end pointer, argument is in overflow area. 8041 unsigned RegsLeft = 6; 8042 Ty = CGF.getContext().getCanonicalType(Ty); 8043 (void)classifyArgumentType(Ty, &RegsLeft); 8044 8045 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8046 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8047 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8048 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8049 8050 // Get rounded size of the argument.GCC does not allow vararg of 8051 // size < 4 bytes. We follow the same logic here. 8052 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8053 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8054 8055 // Argument may be in saved register area 8056 CGF.EmitBlock(MaybeRegBlock); 8057 8058 // Load the current saved register area pointer. 8059 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8060 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8061 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8062 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8063 8064 // Load the saved register area end pointer. 8065 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8066 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8067 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8068 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8069 8070 // If the size of argument is > 4 bytes, check if the stack 8071 // location is aligned to 8 bytes 8072 if (ArgAlign > 4) { 8073 8074 llvm::Value *__current_saved_reg_area_pointer_int = 8075 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8076 CGF.Int32Ty); 8077 8078 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8079 __current_saved_reg_area_pointer_int, 8080 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8081 "align_current_saved_reg_area_pointer"); 8082 8083 __current_saved_reg_area_pointer_int = 8084 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8085 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8086 "align_current_saved_reg_area_pointer"); 8087 8088 __current_saved_reg_area_pointer = 8089 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8090 __current_saved_reg_area_pointer->getType(), 8091 "align_current_saved_reg_area_pointer"); 8092 } 8093 8094 llvm::Value *__new_saved_reg_area_pointer = 8095 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8096 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8097 "__new_saved_reg_area_pointer"); 8098 8099 llvm::Value *UsingStack = 0; 8100 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8101 __saved_reg_area_end_pointer); 8102 8103 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8104 8105 // Argument in saved register area 8106 // Implement the block where argument is in register saved area 8107 CGF.EmitBlock(InRegBlock); 8108 8109 llvm::Type *PTy = CGF.ConvertType(Ty); 8110 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8111 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8112 8113 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8114 __current_saved_reg_area_pointer_p); 8115 8116 CGF.EmitBranch(ContBlock); 8117 8118 // Argument in overflow area 8119 // Implement the block where the argument is in overflow area. 8120 CGF.EmitBlock(OnStackBlock); 8121 8122 // Load the overflow area pointer 8123 Address __overflow_area_pointer_p = 8124 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8125 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8126 __overflow_area_pointer_p, "__overflow_area_pointer"); 8127 8128 // Align the overflow area pointer according to the alignment of the argument 8129 if (ArgAlign > 4) { 8130 llvm::Value *__overflow_area_pointer_int = 8131 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8132 8133 __overflow_area_pointer_int = 8134 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8135 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8136 "align_overflow_area_pointer"); 8137 8138 __overflow_area_pointer_int = 8139 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8140 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8141 "align_overflow_area_pointer"); 8142 8143 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8144 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8145 "align_overflow_area_pointer"); 8146 } 8147 8148 // Get the pointer for next argument in overflow area and store it 8149 // to overflow area pointer. 8150 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8151 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8152 "__overflow_area_pointer.next"); 8153 8154 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8155 __overflow_area_pointer_p); 8156 8157 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8158 __current_saved_reg_area_pointer_p); 8159 8160 // Bitcast the overflow area pointer to the type of argument. 8161 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8162 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8163 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8164 8165 CGF.EmitBranch(ContBlock); 8166 8167 // Get the correct pointer to load the variable argument 8168 // Implement the ContBlock 8169 CGF.EmitBlock(ContBlock); 8170 8171 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8172 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8173 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8174 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8175 8176 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8177 } 8178 8179 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8180 QualType Ty) const { 8181 8182 if (getTarget().getTriple().isMusl()) 8183 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8184 8185 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8186 } 8187 8188 //===----------------------------------------------------------------------===// 8189 // Lanai ABI Implementation 8190 //===----------------------------------------------------------------------===// 8191 8192 namespace { 8193 class LanaiABIInfo : public DefaultABIInfo { 8194 public: 8195 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8196 8197 bool shouldUseInReg(QualType Ty, CCState &State) const; 8198 8199 void computeInfo(CGFunctionInfo &FI) const override { 8200 CCState State(FI); 8201 // Lanai uses 4 registers to pass arguments unless the function has the 8202 // regparm attribute set. 8203 if (FI.getHasRegParm()) { 8204 State.FreeRegs = FI.getRegParm(); 8205 } else { 8206 State.FreeRegs = 4; 8207 } 8208 8209 if (!getCXXABI().classifyReturnType(FI)) 8210 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8211 for (auto &I : FI.arguments()) 8212 I.info = classifyArgumentType(I.type, State); 8213 } 8214 8215 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8216 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8217 }; 8218 } // end anonymous namespace 8219 8220 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8221 unsigned Size = getContext().getTypeSize(Ty); 8222 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8223 8224 if (SizeInRegs == 0) 8225 return false; 8226 8227 if (SizeInRegs > State.FreeRegs) { 8228 State.FreeRegs = 0; 8229 return false; 8230 } 8231 8232 State.FreeRegs -= SizeInRegs; 8233 8234 return true; 8235 } 8236 8237 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8238 CCState &State) const { 8239 if (!ByVal) { 8240 if (State.FreeRegs) { 8241 --State.FreeRegs; // Non-byval indirects just use one pointer. 8242 return getNaturalAlignIndirectInReg(Ty); 8243 } 8244 return getNaturalAlignIndirect(Ty, false); 8245 } 8246 8247 // Compute the byval alignment. 8248 const unsigned MinABIStackAlignInBytes = 4; 8249 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8250 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8251 /*Realign=*/TypeAlign > 8252 MinABIStackAlignInBytes); 8253 } 8254 8255 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8256 CCState &State) const { 8257 // Check with the C++ ABI first. 8258 const RecordType *RT = Ty->getAs<RecordType>(); 8259 if (RT) { 8260 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8261 if (RAA == CGCXXABI::RAA_Indirect) { 8262 return getIndirectResult(Ty, /*ByVal=*/false, State); 8263 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8264 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 8265 } 8266 } 8267 8268 if (isAggregateTypeForABI(Ty)) { 8269 // Structures with flexible arrays are always indirect. 8270 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8271 return getIndirectResult(Ty, /*ByVal=*/true, State); 8272 8273 // Ignore empty structs/unions. 8274 if (isEmptyRecord(getContext(), Ty, true)) 8275 return ABIArgInfo::getIgnore(); 8276 8277 llvm::LLVMContext &LLVMContext = getVMContext(); 8278 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8279 if (SizeInRegs <= State.FreeRegs) { 8280 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8281 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8282 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8283 State.FreeRegs -= SizeInRegs; 8284 return ABIArgInfo::getDirectInReg(Result); 8285 } else { 8286 State.FreeRegs = 0; 8287 } 8288 return getIndirectResult(Ty, true, State); 8289 } 8290 8291 // Treat an enum type as its underlying type. 8292 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8293 Ty = EnumTy->getDecl()->getIntegerType(); 8294 8295 bool InReg = shouldUseInReg(Ty, State); 8296 8297 // Don't pass >64 bit integers in registers. 8298 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8299 if (EIT->getNumBits() > 64) 8300 return getIndirectResult(Ty, /*ByVal=*/true, State); 8301 8302 if (isPromotableIntegerTypeForABI(Ty)) { 8303 if (InReg) 8304 return ABIArgInfo::getDirectInReg(); 8305 return ABIArgInfo::getExtend(Ty); 8306 } 8307 if (InReg) 8308 return ABIArgInfo::getDirectInReg(); 8309 return ABIArgInfo::getDirect(); 8310 } 8311 8312 namespace { 8313 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8314 public: 8315 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8316 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8317 }; 8318 } 8319 8320 //===----------------------------------------------------------------------===// 8321 // AMDGPU ABI Implementation 8322 //===----------------------------------------------------------------------===// 8323 8324 namespace { 8325 8326 class AMDGPUABIInfo final : public DefaultABIInfo { 8327 private: 8328 static const unsigned MaxNumRegsForArgsRet = 16; 8329 8330 unsigned numRegsForType(QualType Ty) const; 8331 8332 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8333 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8334 uint64_t Members) const override; 8335 8336 // Coerce HIP pointer arguments from generic pointers to global ones. 8337 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8338 unsigned ToAS) const { 8339 // Structure types. 8340 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8341 SmallVector<llvm::Type *, 8> EltTys; 8342 bool Changed = false; 8343 for (auto T : STy->elements()) { 8344 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8345 EltTys.push_back(NT); 8346 Changed |= (NT != T); 8347 } 8348 // Skip if there is no change in element types. 8349 if (!Changed) 8350 return STy; 8351 if (STy->hasName()) 8352 return llvm::StructType::create( 8353 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8354 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8355 } 8356 // Array types. 8357 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8358 auto T = ATy->getElementType(); 8359 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8360 // Skip if there is no change in that element type. 8361 if (NT == T) 8362 return ATy; 8363 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8364 } 8365 // Single value types. 8366 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8367 return llvm::PointerType::get( 8368 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8369 return Ty; 8370 } 8371 8372 public: 8373 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8374 DefaultABIInfo(CGT) {} 8375 8376 ABIArgInfo classifyReturnType(QualType RetTy) const; 8377 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8378 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8379 8380 void computeInfo(CGFunctionInfo &FI) const override; 8381 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8382 QualType Ty) const override; 8383 }; 8384 8385 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8386 return true; 8387 } 8388 8389 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8390 const Type *Base, uint64_t Members) const { 8391 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8392 8393 // Homogeneous Aggregates may occupy at most 16 registers. 8394 return Members * NumRegs <= MaxNumRegsForArgsRet; 8395 } 8396 8397 /// Estimate number of registers the type will use when passed in registers. 8398 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8399 unsigned NumRegs = 0; 8400 8401 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8402 // Compute from the number of elements. The reported size is based on the 8403 // in-memory size, which includes the padding 4th element for 3-vectors. 8404 QualType EltTy = VT->getElementType(); 8405 unsigned EltSize = getContext().getTypeSize(EltTy); 8406 8407 // 16-bit element vectors should be passed as packed. 8408 if (EltSize == 16) 8409 return (VT->getNumElements() + 1) / 2; 8410 8411 unsigned EltNumRegs = (EltSize + 31) / 32; 8412 return EltNumRegs * VT->getNumElements(); 8413 } 8414 8415 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8416 const RecordDecl *RD = RT->getDecl(); 8417 assert(!RD->hasFlexibleArrayMember()); 8418 8419 for (const FieldDecl *Field : RD->fields()) { 8420 QualType FieldTy = Field->getType(); 8421 NumRegs += numRegsForType(FieldTy); 8422 } 8423 8424 return NumRegs; 8425 } 8426 8427 return (getContext().getTypeSize(Ty) + 31) / 32; 8428 } 8429 8430 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8431 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8432 8433 if (!getCXXABI().classifyReturnType(FI)) 8434 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8435 8436 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8437 for (auto &Arg : FI.arguments()) { 8438 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8439 Arg.info = classifyKernelArgumentType(Arg.type); 8440 } else { 8441 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8442 } 8443 } 8444 } 8445 8446 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8447 QualType Ty) const { 8448 llvm_unreachable("AMDGPU does not support varargs"); 8449 } 8450 8451 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8452 if (isAggregateTypeForABI(RetTy)) { 8453 // Records with non-trivial destructors/copy-constructors should not be 8454 // returned by value. 8455 if (!getRecordArgABI(RetTy, getCXXABI())) { 8456 // Ignore empty structs/unions. 8457 if (isEmptyRecord(getContext(), RetTy, true)) 8458 return ABIArgInfo::getIgnore(); 8459 8460 // Lower single-element structs to just return a regular value. 8461 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8462 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8463 8464 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8465 const RecordDecl *RD = RT->getDecl(); 8466 if (RD->hasFlexibleArrayMember()) 8467 return DefaultABIInfo::classifyReturnType(RetTy); 8468 } 8469 8470 // Pack aggregates <= 4 bytes into single VGPR or pair. 8471 uint64_t Size = getContext().getTypeSize(RetTy); 8472 if (Size <= 16) 8473 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8474 8475 if (Size <= 32) 8476 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8477 8478 if (Size <= 64) { 8479 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8480 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8481 } 8482 8483 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8484 return ABIArgInfo::getDirect(); 8485 } 8486 } 8487 8488 // Otherwise just do the default thing. 8489 return DefaultABIInfo::classifyReturnType(RetTy); 8490 } 8491 8492 /// For kernels all parameters are really passed in a special buffer. It doesn't 8493 /// make sense to pass anything byval, so everything must be direct. 8494 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8495 Ty = useFirstFieldIfTransparentUnion(Ty); 8496 8497 // TODO: Can we omit empty structs? 8498 8499 llvm::Type *LTy = nullptr; 8500 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8501 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 8502 8503 if (getContext().getLangOpts().HIP) { 8504 if (!LTy) 8505 LTy = CGT.ConvertType(Ty); 8506 LTy = coerceKernelArgumentType( 8507 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8508 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8509 } 8510 8511 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8512 // individual elements, which confuses the Clover OpenCL backend; therefore we 8513 // have to set it to false here. Other args of getDirect() are just defaults. 8514 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8515 } 8516 8517 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8518 unsigned &NumRegsLeft) const { 8519 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8520 8521 Ty = useFirstFieldIfTransparentUnion(Ty); 8522 8523 if (isAggregateTypeForABI(Ty)) { 8524 // Records with non-trivial destructors/copy-constructors should not be 8525 // passed by value. 8526 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8527 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8528 8529 // Ignore empty structs/unions. 8530 if (isEmptyRecord(getContext(), Ty, true)) 8531 return ABIArgInfo::getIgnore(); 8532 8533 // Lower single-element structs to just pass a regular value. TODO: We 8534 // could do reasonable-size multiple-element structs too, using getExpand(), 8535 // though watch out for things like bitfields. 8536 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8537 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8538 8539 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8540 const RecordDecl *RD = RT->getDecl(); 8541 if (RD->hasFlexibleArrayMember()) 8542 return DefaultABIInfo::classifyArgumentType(Ty); 8543 } 8544 8545 // Pack aggregates <= 8 bytes into single VGPR or pair. 8546 uint64_t Size = getContext().getTypeSize(Ty); 8547 if (Size <= 64) { 8548 unsigned NumRegs = (Size + 31) / 32; 8549 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8550 8551 if (Size <= 16) 8552 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8553 8554 if (Size <= 32) 8555 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8556 8557 // XXX: Should this be i64 instead, and should the limit increase? 8558 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8559 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8560 } 8561 8562 if (NumRegsLeft > 0) { 8563 unsigned NumRegs = numRegsForType(Ty); 8564 if (NumRegsLeft >= NumRegs) { 8565 NumRegsLeft -= NumRegs; 8566 return ABIArgInfo::getDirect(); 8567 } 8568 } 8569 } 8570 8571 // Otherwise just do the default thing. 8572 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8573 if (!ArgInfo.isIndirect()) { 8574 unsigned NumRegs = numRegsForType(Ty); 8575 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8576 } 8577 8578 return ArgInfo; 8579 } 8580 8581 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8582 public: 8583 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8584 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8585 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8586 CodeGen::CodeGenModule &M) const override; 8587 unsigned getOpenCLKernelCallingConv() const override; 8588 8589 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8590 llvm::PointerType *T, QualType QT) const override; 8591 8592 LangAS getASTAllocaAddressSpace() const override { 8593 return getLangASFromTargetAS( 8594 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8595 } 8596 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8597 const VarDecl *D) const override; 8598 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8599 SyncScope Scope, 8600 llvm::AtomicOrdering Ordering, 8601 llvm::LLVMContext &Ctx) const override; 8602 llvm::Function * 8603 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8604 llvm::Function *BlockInvokeFunc, 8605 llvm::Value *BlockLiteral) const override; 8606 bool shouldEmitStaticExternCAliases() const override; 8607 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8608 }; 8609 } 8610 8611 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8612 llvm::GlobalValue *GV) { 8613 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8614 return false; 8615 8616 return D->hasAttr<OpenCLKernelAttr>() || 8617 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8618 (isa<VarDecl>(D) && 8619 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8620 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8621 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8622 } 8623 8624 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8625 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8626 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8627 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8628 GV->setDSOLocal(true); 8629 } 8630 8631 if (GV->isDeclaration()) 8632 return; 8633 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8634 if (!FD) 8635 return; 8636 8637 llvm::Function *F = cast<llvm::Function>(GV); 8638 8639 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8640 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8641 8642 8643 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8644 FD->hasAttr<OpenCLKernelAttr>(); 8645 const bool IsHIPKernel = M.getLangOpts().HIP && 8646 FD->hasAttr<CUDAGlobalAttr>(); 8647 if ((IsOpenCLKernel || IsHIPKernel) && 8648 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8649 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8650 8651 if (IsHIPKernel) 8652 F->addFnAttr("uniform-work-group-size", "true"); 8653 8654 8655 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8656 if (ReqdWGS || FlatWGS) { 8657 unsigned Min = 0; 8658 unsigned Max = 0; 8659 if (FlatWGS) { 8660 Min = FlatWGS->getMin() 8661 ->EvaluateKnownConstInt(M.getContext()) 8662 .getExtValue(); 8663 Max = FlatWGS->getMax() 8664 ->EvaluateKnownConstInt(M.getContext()) 8665 .getExtValue(); 8666 } 8667 if (ReqdWGS && Min == 0 && Max == 0) 8668 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8669 8670 if (Min != 0) { 8671 assert(Min <= Max && "Min must be less than or equal Max"); 8672 8673 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8674 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8675 } else 8676 assert(Max == 0 && "Max must be zero"); 8677 } else if (IsOpenCLKernel || IsHIPKernel) { 8678 // By default, restrict the maximum size to a value specified by 8679 // --gpu-max-threads-per-block=n or its default value. 8680 std::string AttrVal = 8681 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 8682 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8683 } 8684 8685 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8686 unsigned Min = 8687 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8688 unsigned Max = Attr->getMax() ? Attr->getMax() 8689 ->EvaluateKnownConstInt(M.getContext()) 8690 .getExtValue() 8691 : 0; 8692 8693 if (Min != 0) { 8694 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8695 8696 std::string AttrVal = llvm::utostr(Min); 8697 if (Max != 0) 8698 AttrVal = AttrVal + "," + llvm::utostr(Max); 8699 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8700 } else 8701 assert(Max == 0 && "Max must be zero"); 8702 } 8703 8704 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8705 unsigned NumSGPR = Attr->getNumSGPR(); 8706 8707 if (NumSGPR != 0) 8708 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8709 } 8710 8711 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8712 uint32_t NumVGPR = Attr->getNumVGPR(); 8713 8714 if (NumVGPR != 0) 8715 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8716 } 8717 } 8718 8719 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8720 return llvm::CallingConv::AMDGPU_KERNEL; 8721 } 8722 8723 // Currently LLVM assumes null pointers always have value 0, 8724 // which results in incorrectly transformed IR. Therefore, instead of 8725 // emitting null pointers in private and local address spaces, a null 8726 // pointer in generic address space is emitted which is casted to a 8727 // pointer in local or private address space. 8728 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8729 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8730 QualType QT) const { 8731 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8732 return llvm::ConstantPointerNull::get(PT); 8733 8734 auto &Ctx = CGM.getContext(); 8735 auto NPT = llvm::PointerType::get(PT->getElementType(), 8736 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8737 return llvm::ConstantExpr::getAddrSpaceCast( 8738 llvm::ConstantPointerNull::get(NPT), PT); 8739 } 8740 8741 LangAS 8742 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8743 const VarDecl *D) const { 8744 assert(!CGM.getLangOpts().OpenCL && 8745 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8746 "Address space agnostic languages only"); 8747 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8748 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8749 if (!D) 8750 return DefaultGlobalAS; 8751 8752 LangAS AddrSpace = D->getType().getAddressSpace(); 8753 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8754 if (AddrSpace != LangAS::Default) 8755 return AddrSpace; 8756 8757 if (CGM.isTypeConstant(D->getType(), false)) { 8758 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8759 return ConstAS.getValue(); 8760 } 8761 return DefaultGlobalAS; 8762 } 8763 8764 llvm::SyncScope::ID 8765 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8766 SyncScope Scope, 8767 llvm::AtomicOrdering Ordering, 8768 llvm::LLVMContext &Ctx) const { 8769 std::string Name; 8770 switch (Scope) { 8771 case SyncScope::OpenCLWorkGroup: 8772 Name = "workgroup"; 8773 break; 8774 case SyncScope::OpenCLDevice: 8775 Name = "agent"; 8776 break; 8777 case SyncScope::OpenCLAllSVMDevices: 8778 Name = ""; 8779 break; 8780 case SyncScope::OpenCLSubGroup: 8781 Name = "wavefront"; 8782 } 8783 8784 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8785 if (!Name.empty()) 8786 Name = Twine(Twine(Name) + Twine("-")).str(); 8787 8788 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8789 } 8790 8791 return Ctx.getOrInsertSyncScopeID(Name); 8792 } 8793 8794 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8795 return false; 8796 } 8797 8798 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8799 const FunctionType *&FT) const { 8800 FT = getABIInfo().getContext().adjustFunctionType( 8801 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8802 } 8803 8804 //===----------------------------------------------------------------------===// 8805 // SPARC v8 ABI Implementation. 8806 // Based on the SPARC Compliance Definition version 2.4.1. 8807 // 8808 // Ensures that complex values are passed in registers. 8809 // 8810 namespace { 8811 class SparcV8ABIInfo : public DefaultABIInfo { 8812 public: 8813 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8814 8815 private: 8816 ABIArgInfo classifyReturnType(QualType RetTy) const; 8817 void computeInfo(CGFunctionInfo &FI) const override; 8818 }; 8819 } // end anonymous namespace 8820 8821 8822 ABIArgInfo 8823 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8824 if (Ty->isAnyComplexType()) { 8825 return ABIArgInfo::getDirect(); 8826 } 8827 else { 8828 return DefaultABIInfo::classifyReturnType(Ty); 8829 } 8830 } 8831 8832 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8833 8834 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8835 for (auto &Arg : FI.arguments()) 8836 Arg.info = classifyArgumentType(Arg.type); 8837 } 8838 8839 namespace { 8840 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8841 public: 8842 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8843 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 8844 }; 8845 } // end anonymous namespace 8846 8847 //===----------------------------------------------------------------------===// 8848 // SPARC v9 ABI Implementation. 8849 // Based on the SPARC Compliance Definition version 2.4.1. 8850 // 8851 // Function arguments a mapped to a nominal "parameter array" and promoted to 8852 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8853 // the array, structs larger than 16 bytes are passed indirectly. 8854 // 8855 // One case requires special care: 8856 // 8857 // struct mixed { 8858 // int i; 8859 // float f; 8860 // }; 8861 // 8862 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8863 // parameter array, but the int is passed in an integer register, and the float 8864 // is passed in a floating point register. This is represented as two arguments 8865 // with the LLVM IR inreg attribute: 8866 // 8867 // declare void f(i32 inreg %i, float inreg %f) 8868 // 8869 // The code generator will only allocate 4 bytes from the parameter array for 8870 // the inreg arguments. All other arguments are allocated a multiple of 8 8871 // bytes. 8872 // 8873 namespace { 8874 class SparcV9ABIInfo : public ABIInfo { 8875 public: 8876 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8877 8878 private: 8879 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8880 void computeInfo(CGFunctionInfo &FI) const override; 8881 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8882 QualType Ty) const override; 8883 8884 // Coercion type builder for structs passed in registers. The coercion type 8885 // serves two purposes: 8886 // 8887 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8888 // in registers. 8889 // 2. Expose aligned floating point elements as first-level elements, so the 8890 // code generator knows to pass them in floating point registers. 8891 // 8892 // We also compute the InReg flag which indicates that the struct contains 8893 // aligned 32-bit floats. 8894 // 8895 struct CoerceBuilder { 8896 llvm::LLVMContext &Context; 8897 const llvm::DataLayout &DL; 8898 SmallVector<llvm::Type*, 8> Elems; 8899 uint64_t Size; 8900 bool InReg; 8901 8902 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8903 : Context(c), DL(dl), Size(0), InReg(false) {} 8904 8905 // Pad Elems with integers until Size is ToSize. 8906 void pad(uint64_t ToSize) { 8907 assert(ToSize >= Size && "Cannot remove elements"); 8908 if (ToSize == Size) 8909 return; 8910 8911 // Finish the current 64-bit word. 8912 uint64_t Aligned = llvm::alignTo(Size, 64); 8913 if (Aligned > Size && Aligned <= ToSize) { 8914 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8915 Size = Aligned; 8916 } 8917 8918 // Add whole 64-bit words. 8919 while (Size + 64 <= ToSize) { 8920 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8921 Size += 64; 8922 } 8923 8924 // Final in-word padding. 8925 if (Size < ToSize) { 8926 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8927 Size = ToSize; 8928 } 8929 } 8930 8931 // Add a floating point element at Offset. 8932 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8933 // Unaligned floats are treated as integers. 8934 if (Offset % Bits) 8935 return; 8936 // The InReg flag is only required if there are any floats < 64 bits. 8937 if (Bits < 64) 8938 InReg = true; 8939 pad(Offset); 8940 Elems.push_back(Ty); 8941 Size = Offset + Bits; 8942 } 8943 8944 // Add a struct type to the coercion type, starting at Offset (in bits). 8945 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8946 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8947 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8948 llvm::Type *ElemTy = StrTy->getElementType(i); 8949 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8950 switch (ElemTy->getTypeID()) { 8951 case llvm::Type::StructTyID: 8952 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8953 break; 8954 case llvm::Type::FloatTyID: 8955 addFloat(ElemOffset, ElemTy, 32); 8956 break; 8957 case llvm::Type::DoubleTyID: 8958 addFloat(ElemOffset, ElemTy, 64); 8959 break; 8960 case llvm::Type::FP128TyID: 8961 addFloat(ElemOffset, ElemTy, 128); 8962 break; 8963 case llvm::Type::PointerTyID: 8964 if (ElemOffset % 64 == 0) { 8965 pad(ElemOffset); 8966 Elems.push_back(ElemTy); 8967 Size += 64; 8968 } 8969 break; 8970 default: 8971 break; 8972 } 8973 } 8974 } 8975 8976 // Check if Ty is a usable substitute for the coercion type. 8977 bool isUsableType(llvm::StructType *Ty) const { 8978 return llvm::makeArrayRef(Elems) == Ty->elements(); 8979 } 8980 8981 // Get the coercion type as a literal struct type. 8982 llvm::Type *getType() const { 8983 if (Elems.size() == 1) 8984 return Elems.front(); 8985 else 8986 return llvm::StructType::get(Context, Elems); 8987 } 8988 }; 8989 }; 8990 } // end anonymous namespace 8991 8992 ABIArgInfo 8993 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8994 if (Ty->isVoidType()) 8995 return ABIArgInfo::getIgnore(); 8996 8997 uint64_t Size = getContext().getTypeSize(Ty); 8998 8999 // Anything too big to fit in registers is passed with an explicit indirect 9000 // pointer / sret pointer. 9001 if (Size > SizeLimit) 9002 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9003 9004 // Treat an enum type as its underlying type. 9005 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9006 Ty = EnumTy->getDecl()->getIntegerType(); 9007 9008 // Integer types smaller than a register are extended. 9009 if (Size < 64 && Ty->isIntegerType()) 9010 return ABIArgInfo::getExtend(Ty); 9011 9012 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9013 if (EIT->getNumBits() < 64) 9014 return ABIArgInfo::getExtend(Ty); 9015 9016 // Other non-aggregates go in registers. 9017 if (!isAggregateTypeForABI(Ty)) 9018 return ABIArgInfo::getDirect(); 9019 9020 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9021 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9022 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9023 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9024 9025 // This is a small aggregate type that should be passed in registers. 9026 // Build a coercion type from the LLVM struct type. 9027 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9028 if (!StrTy) 9029 return ABIArgInfo::getDirect(); 9030 9031 CoerceBuilder CB(getVMContext(), getDataLayout()); 9032 CB.addStruct(0, StrTy); 9033 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9034 9035 // Try to use the original type for coercion. 9036 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9037 9038 if (CB.InReg) 9039 return ABIArgInfo::getDirectInReg(CoerceTy); 9040 else 9041 return ABIArgInfo::getDirect(CoerceTy); 9042 } 9043 9044 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9045 QualType Ty) const { 9046 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9047 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9048 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9049 AI.setCoerceToType(ArgTy); 9050 9051 CharUnits SlotSize = CharUnits::fromQuantity(8); 9052 9053 CGBuilderTy &Builder = CGF.Builder; 9054 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9055 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9056 9057 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9058 9059 Address ArgAddr = Address::invalid(); 9060 CharUnits Stride; 9061 switch (AI.getKind()) { 9062 case ABIArgInfo::Expand: 9063 case ABIArgInfo::CoerceAndExpand: 9064 case ABIArgInfo::InAlloca: 9065 llvm_unreachable("Unsupported ABI kind for va_arg"); 9066 9067 case ABIArgInfo::Extend: { 9068 Stride = SlotSize; 9069 CharUnits Offset = SlotSize - TypeInfo.first; 9070 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9071 break; 9072 } 9073 9074 case ABIArgInfo::Direct: { 9075 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9076 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9077 ArgAddr = Addr; 9078 break; 9079 } 9080 9081 case ABIArgInfo::Indirect: 9082 Stride = SlotSize; 9083 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9084 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9085 TypeInfo.second); 9086 break; 9087 9088 case ABIArgInfo::Ignore: 9089 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 9090 } 9091 9092 // Update VAList. 9093 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9094 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9095 9096 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9097 } 9098 9099 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9100 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9101 for (auto &I : FI.arguments()) 9102 I.info = classifyType(I.type, 16 * 8); 9103 } 9104 9105 namespace { 9106 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9107 public: 9108 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9109 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9110 9111 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9112 return 14; 9113 } 9114 9115 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9116 llvm::Value *Address) const override; 9117 }; 9118 } // end anonymous namespace 9119 9120 bool 9121 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9122 llvm::Value *Address) const { 9123 // This is calculated from the LLVM and GCC tables and verified 9124 // against gcc output. AFAIK all ABIs use the same encoding. 9125 9126 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9127 9128 llvm::IntegerType *i8 = CGF.Int8Ty; 9129 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9130 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9131 9132 // 0-31: the 8-byte general-purpose registers 9133 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9134 9135 // 32-63: f0-31, the 4-byte floating-point registers 9136 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9137 9138 // Y = 64 9139 // PSR = 65 9140 // WIM = 66 9141 // TBR = 67 9142 // PC = 68 9143 // NPC = 69 9144 // FSR = 70 9145 // CSR = 71 9146 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9147 9148 // 72-87: d0-15, the 8-byte floating-point registers 9149 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9150 9151 return false; 9152 } 9153 9154 // ARC ABI implementation. 9155 namespace { 9156 9157 class ARCABIInfo : public DefaultABIInfo { 9158 public: 9159 using DefaultABIInfo::DefaultABIInfo; 9160 9161 private: 9162 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9163 QualType Ty) const override; 9164 9165 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9166 if (!State.FreeRegs) 9167 return; 9168 if (Info.isIndirect() && Info.getInReg()) 9169 State.FreeRegs--; 9170 else if (Info.isDirect() && Info.getInReg()) { 9171 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9172 if (sz < State.FreeRegs) 9173 State.FreeRegs -= sz; 9174 else 9175 State.FreeRegs = 0; 9176 } 9177 } 9178 9179 void computeInfo(CGFunctionInfo &FI) const override { 9180 CCState State(FI); 9181 // ARC uses 8 registers to pass arguments. 9182 State.FreeRegs = 8; 9183 9184 if (!getCXXABI().classifyReturnType(FI)) 9185 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9186 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9187 for (auto &I : FI.arguments()) { 9188 I.info = classifyArgumentType(I.type, State.FreeRegs); 9189 updateState(I.info, I.type, State); 9190 } 9191 } 9192 9193 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9194 ABIArgInfo getIndirectByValue(QualType Ty) const; 9195 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9196 ABIArgInfo classifyReturnType(QualType RetTy) const; 9197 }; 9198 9199 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9200 public: 9201 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9202 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9203 }; 9204 9205 9206 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9207 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9208 getNaturalAlignIndirect(Ty, false); 9209 } 9210 9211 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9212 // Compute the byval alignment. 9213 const unsigned MinABIStackAlignInBytes = 4; 9214 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9215 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9216 TypeAlign > MinABIStackAlignInBytes); 9217 } 9218 9219 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9220 QualType Ty) const { 9221 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9222 getContext().getTypeInfoInChars(Ty), 9223 CharUnits::fromQuantity(4), true); 9224 } 9225 9226 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9227 uint8_t FreeRegs) const { 9228 // Handle the generic C++ ABI. 9229 const RecordType *RT = Ty->getAs<RecordType>(); 9230 if (RT) { 9231 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9232 if (RAA == CGCXXABI::RAA_Indirect) 9233 return getIndirectByRef(Ty, FreeRegs > 0); 9234 9235 if (RAA == CGCXXABI::RAA_DirectInMemory) 9236 return getIndirectByValue(Ty); 9237 } 9238 9239 // Treat an enum type as its underlying type. 9240 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9241 Ty = EnumTy->getDecl()->getIntegerType(); 9242 9243 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9244 9245 if (isAggregateTypeForABI(Ty)) { 9246 // Structures with flexible arrays are always indirect. 9247 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9248 return getIndirectByValue(Ty); 9249 9250 // Ignore empty structs/unions. 9251 if (isEmptyRecord(getContext(), Ty, true)) 9252 return ABIArgInfo::getIgnore(); 9253 9254 llvm::LLVMContext &LLVMContext = getVMContext(); 9255 9256 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9257 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9258 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9259 9260 return FreeRegs >= SizeInRegs ? 9261 ABIArgInfo::getDirectInReg(Result) : 9262 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9263 } 9264 9265 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9266 if (EIT->getNumBits() > 64) 9267 return getIndirectByValue(Ty); 9268 9269 return isPromotableIntegerTypeForABI(Ty) 9270 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9271 : ABIArgInfo::getExtend(Ty)) 9272 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9273 : ABIArgInfo::getDirect()); 9274 } 9275 9276 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9277 if (RetTy->isAnyComplexType()) 9278 return ABIArgInfo::getDirectInReg(); 9279 9280 // Arguments of size > 4 registers are indirect. 9281 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9282 if (RetSize > 4) 9283 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9284 9285 return DefaultABIInfo::classifyReturnType(RetTy); 9286 } 9287 9288 } // End anonymous namespace. 9289 9290 //===----------------------------------------------------------------------===// 9291 // XCore ABI Implementation 9292 //===----------------------------------------------------------------------===// 9293 9294 namespace { 9295 9296 /// A SmallStringEnc instance is used to build up the TypeString by passing 9297 /// it by reference between functions that append to it. 9298 typedef llvm::SmallString<128> SmallStringEnc; 9299 9300 /// TypeStringCache caches the meta encodings of Types. 9301 /// 9302 /// The reason for caching TypeStrings is two fold: 9303 /// 1. To cache a type's encoding for later uses; 9304 /// 2. As a means to break recursive member type inclusion. 9305 /// 9306 /// A cache Entry can have a Status of: 9307 /// NonRecursive: The type encoding is not recursive; 9308 /// Recursive: The type encoding is recursive; 9309 /// Incomplete: An incomplete TypeString; 9310 /// IncompleteUsed: An incomplete TypeString that has been used in a 9311 /// Recursive type encoding. 9312 /// 9313 /// A NonRecursive entry will have all of its sub-members expanded as fully 9314 /// as possible. Whilst it may contain types which are recursive, the type 9315 /// itself is not recursive and thus its encoding may be safely used whenever 9316 /// the type is encountered. 9317 /// 9318 /// A Recursive entry will have all of its sub-members expanded as fully as 9319 /// possible. The type itself is recursive and it may contain other types which 9320 /// are recursive. The Recursive encoding must not be used during the expansion 9321 /// of a recursive type's recursive branch. For simplicity the code uses 9322 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9323 /// 9324 /// An Incomplete entry is always a RecordType and only encodes its 9325 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9326 /// are placed into the cache during type expansion as a means to identify and 9327 /// handle recursive inclusion of types as sub-members. If there is recursion 9328 /// the entry becomes IncompleteUsed. 9329 /// 9330 /// During the expansion of a RecordType's members: 9331 /// 9332 /// If the cache contains a NonRecursive encoding for the member type, the 9333 /// cached encoding is used; 9334 /// 9335 /// If the cache contains a Recursive encoding for the member type, the 9336 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9337 /// 9338 /// If the member is a RecordType, an Incomplete encoding is placed into the 9339 /// cache to break potential recursive inclusion of itself as a sub-member; 9340 /// 9341 /// Once a member RecordType has been expanded, its temporary incomplete 9342 /// entry is removed from the cache. If a Recursive encoding was swapped out 9343 /// it is swapped back in; 9344 /// 9345 /// If an incomplete entry is used to expand a sub-member, the incomplete 9346 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9347 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9348 /// 9349 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9350 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9351 /// Else the member is part of a recursive type and thus the recursion has 9352 /// been exited too soon for the encoding to be correct for the member. 9353 /// 9354 class TypeStringCache { 9355 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9356 struct Entry { 9357 std::string Str; // The encoded TypeString for the type. 9358 enum Status State; // Information about the encoding in 'Str'. 9359 std::string Swapped; // A temporary place holder for a Recursive encoding 9360 // during the expansion of RecordType's members. 9361 }; 9362 std::map<const IdentifierInfo *, struct Entry> Map; 9363 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9364 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9365 public: 9366 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9367 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9368 bool removeIncomplete(const IdentifierInfo *ID); 9369 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9370 bool IsRecursive); 9371 StringRef lookupStr(const IdentifierInfo *ID); 9372 }; 9373 9374 /// TypeString encodings for enum & union fields must be order. 9375 /// FieldEncoding is a helper for this ordering process. 9376 class FieldEncoding { 9377 bool HasName; 9378 std::string Enc; 9379 public: 9380 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9381 StringRef str() { return Enc; } 9382 bool operator<(const FieldEncoding &rhs) const { 9383 if (HasName != rhs.HasName) return HasName; 9384 return Enc < rhs.Enc; 9385 } 9386 }; 9387 9388 class XCoreABIInfo : public DefaultABIInfo { 9389 public: 9390 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9391 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9392 QualType Ty) const override; 9393 }; 9394 9395 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9396 mutable TypeStringCache TSC; 9397 public: 9398 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9399 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9400 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9401 CodeGen::CodeGenModule &M) const override; 9402 }; 9403 9404 } // End anonymous namespace. 9405 9406 // TODO: this implementation is likely now redundant with the default 9407 // EmitVAArg. 9408 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9409 QualType Ty) const { 9410 CGBuilderTy &Builder = CGF.Builder; 9411 9412 // Get the VAList. 9413 CharUnits SlotSize = CharUnits::fromQuantity(4); 9414 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9415 9416 // Handle the argument. 9417 ABIArgInfo AI = classifyArgumentType(Ty); 9418 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9419 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9420 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9421 AI.setCoerceToType(ArgTy); 9422 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9423 9424 Address Val = Address::invalid(); 9425 CharUnits ArgSize = CharUnits::Zero(); 9426 switch (AI.getKind()) { 9427 case ABIArgInfo::Expand: 9428 case ABIArgInfo::CoerceAndExpand: 9429 case ABIArgInfo::InAlloca: 9430 llvm_unreachable("Unsupported ABI kind for va_arg"); 9431 case ABIArgInfo::Ignore: 9432 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9433 ArgSize = CharUnits::Zero(); 9434 break; 9435 case ABIArgInfo::Extend: 9436 case ABIArgInfo::Direct: 9437 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9438 ArgSize = CharUnits::fromQuantity( 9439 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9440 ArgSize = ArgSize.alignTo(SlotSize); 9441 break; 9442 case ABIArgInfo::Indirect: 9443 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9444 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9445 ArgSize = SlotSize; 9446 break; 9447 } 9448 9449 // Increment the VAList. 9450 if (!ArgSize.isZero()) { 9451 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9452 Builder.CreateStore(APN.getPointer(), VAListAddr); 9453 } 9454 9455 return Val; 9456 } 9457 9458 /// During the expansion of a RecordType, an incomplete TypeString is placed 9459 /// into the cache as a means to identify and break recursion. 9460 /// If there is a Recursive encoding in the cache, it is swapped out and will 9461 /// be reinserted by removeIncomplete(). 9462 /// All other types of encoding should have been used rather than arriving here. 9463 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9464 std::string StubEnc) { 9465 if (!ID) 9466 return; 9467 Entry &E = Map[ID]; 9468 assert( (E.Str.empty() || E.State == Recursive) && 9469 "Incorrectly use of addIncomplete"); 9470 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9471 E.Swapped.swap(E.Str); // swap out the Recursive 9472 E.Str.swap(StubEnc); 9473 E.State = Incomplete; 9474 ++IncompleteCount; 9475 } 9476 9477 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9478 /// must be removed from the cache. 9479 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9480 /// Returns true if the RecordType was defined recursively. 9481 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9482 if (!ID) 9483 return false; 9484 auto I = Map.find(ID); 9485 assert(I != Map.end() && "Entry not present"); 9486 Entry &E = I->second; 9487 assert( (E.State == Incomplete || 9488 E.State == IncompleteUsed) && 9489 "Entry must be an incomplete type"); 9490 bool IsRecursive = false; 9491 if (E.State == IncompleteUsed) { 9492 // We made use of our Incomplete encoding, thus we are recursive. 9493 IsRecursive = true; 9494 --IncompleteUsedCount; 9495 } 9496 if (E.Swapped.empty()) 9497 Map.erase(I); 9498 else { 9499 // Swap the Recursive back. 9500 E.Swapped.swap(E.Str); 9501 E.Swapped.clear(); 9502 E.State = Recursive; 9503 } 9504 --IncompleteCount; 9505 return IsRecursive; 9506 } 9507 9508 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9509 /// Recursive (viz: all sub-members were expanded as fully as possible). 9510 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9511 bool IsRecursive) { 9512 if (!ID || IncompleteUsedCount) 9513 return; // No key or it is is an incomplete sub-type so don't add. 9514 Entry &E = Map[ID]; 9515 if (IsRecursive && !E.Str.empty()) { 9516 assert(E.State==Recursive && E.Str.size() == Str.size() && 9517 "This is not the same Recursive entry"); 9518 // The parent container was not recursive after all, so we could have used 9519 // this Recursive sub-member entry after all, but we assumed the worse when 9520 // we started viz: IncompleteCount!=0. 9521 return; 9522 } 9523 assert(E.Str.empty() && "Entry already present"); 9524 E.Str = Str.str(); 9525 E.State = IsRecursive? Recursive : NonRecursive; 9526 } 9527 9528 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9529 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9530 /// encoding is Recursive, return an empty StringRef. 9531 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9532 if (!ID) 9533 return StringRef(); // We have no key. 9534 auto I = Map.find(ID); 9535 if (I == Map.end()) 9536 return StringRef(); // We have no encoding. 9537 Entry &E = I->second; 9538 if (E.State == Recursive && IncompleteCount) 9539 return StringRef(); // We don't use Recursive encodings for member types. 9540 9541 if (E.State == Incomplete) { 9542 // The incomplete type is being used to break out of recursion. 9543 E.State = IncompleteUsed; 9544 ++IncompleteUsedCount; 9545 } 9546 return E.Str; 9547 } 9548 9549 /// The XCore ABI includes a type information section that communicates symbol 9550 /// type information to the linker. The linker uses this information to verify 9551 /// safety/correctness of things such as array bound and pointers et al. 9552 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9553 /// This type information (TypeString) is emitted into meta data for all global 9554 /// symbols: definitions, declarations, functions & variables. 9555 /// 9556 /// The TypeString carries type, qualifier, name, size & value details. 9557 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9558 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9559 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9560 /// 9561 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9562 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 9563 9564 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9565 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9566 CodeGen::CodeGenModule &CGM) const { 9567 SmallStringEnc Enc; 9568 if (getTypeString(Enc, D, CGM, TSC)) { 9569 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9570 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9571 llvm::MDString::get(Ctx, Enc.str())}; 9572 llvm::NamedMDNode *MD = 9573 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9574 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9575 } 9576 } 9577 9578 //===----------------------------------------------------------------------===// 9579 // SPIR ABI Implementation 9580 //===----------------------------------------------------------------------===// 9581 9582 namespace { 9583 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9584 public: 9585 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9586 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9587 unsigned getOpenCLKernelCallingConv() const override; 9588 }; 9589 9590 } // End anonymous namespace. 9591 9592 namespace clang { 9593 namespace CodeGen { 9594 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9595 DefaultABIInfo SPIRABI(CGM.getTypes()); 9596 SPIRABI.computeInfo(FI); 9597 } 9598 } 9599 } 9600 9601 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9602 return llvm::CallingConv::SPIR_KERNEL; 9603 } 9604 9605 static bool appendType(SmallStringEnc &Enc, QualType QType, 9606 const CodeGen::CodeGenModule &CGM, 9607 TypeStringCache &TSC); 9608 9609 /// Helper function for appendRecordType(). 9610 /// Builds a SmallVector containing the encoded field types in declaration 9611 /// order. 9612 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9613 const RecordDecl *RD, 9614 const CodeGen::CodeGenModule &CGM, 9615 TypeStringCache &TSC) { 9616 for (const auto *Field : RD->fields()) { 9617 SmallStringEnc Enc; 9618 Enc += "m("; 9619 Enc += Field->getName(); 9620 Enc += "){"; 9621 if (Field->isBitField()) { 9622 Enc += "b("; 9623 llvm::raw_svector_ostream OS(Enc); 9624 OS << Field->getBitWidthValue(CGM.getContext()); 9625 Enc += ':'; 9626 } 9627 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9628 return false; 9629 if (Field->isBitField()) 9630 Enc += ')'; 9631 Enc += '}'; 9632 FE.emplace_back(!Field->getName().empty(), Enc); 9633 } 9634 return true; 9635 } 9636 9637 /// Appends structure and union types to Enc and adds encoding to cache. 9638 /// Recursively calls appendType (via extractFieldType) for each field. 9639 /// Union types have their fields ordered according to the ABI. 9640 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9641 const CodeGen::CodeGenModule &CGM, 9642 TypeStringCache &TSC, const IdentifierInfo *ID) { 9643 // Append the cached TypeString if we have one. 9644 StringRef TypeString = TSC.lookupStr(ID); 9645 if (!TypeString.empty()) { 9646 Enc += TypeString; 9647 return true; 9648 } 9649 9650 // Start to emit an incomplete TypeString. 9651 size_t Start = Enc.size(); 9652 Enc += (RT->isUnionType()? 'u' : 's'); 9653 Enc += '('; 9654 if (ID) 9655 Enc += ID->getName(); 9656 Enc += "){"; 9657 9658 // We collect all encoded fields and order as necessary. 9659 bool IsRecursive = false; 9660 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9661 if (RD && !RD->field_empty()) { 9662 // An incomplete TypeString stub is placed in the cache for this RecordType 9663 // so that recursive calls to this RecordType will use it whilst building a 9664 // complete TypeString for this RecordType. 9665 SmallVector<FieldEncoding, 16> FE; 9666 std::string StubEnc(Enc.substr(Start).str()); 9667 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9668 TSC.addIncomplete(ID, std::move(StubEnc)); 9669 if (!extractFieldType(FE, RD, CGM, TSC)) { 9670 (void) TSC.removeIncomplete(ID); 9671 return false; 9672 } 9673 IsRecursive = TSC.removeIncomplete(ID); 9674 // The ABI requires unions to be sorted but not structures. 9675 // See FieldEncoding::operator< for sort algorithm. 9676 if (RT->isUnionType()) 9677 llvm::sort(FE); 9678 // We can now complete the TypeString. 9679 unsigned E = FE.size(); 9680 for (unsigned I = 0; I != E; ++I) { 9681 if (I) 9682 Enc += ','; 9683 Enc += FE[I].str(); 9684 } 9685 } 9686 Enc += '}'; 9687 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9688 return true; 9689 } 9690 9691 /// Appends enum types to Enc and adds the encoding to the cache. 9692 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9693 TypeStringCache &TSC, 9694 const IdentifierInfo *ID) { 9695 // Append the cached TypeString if we have one. 9696 StringRef TypeString = TSC.lookupStr(ID); 9697 if (!TypeString.empty()) { 9698 Enc += TypeString; 9699 return true; 9700 } 9701 9702 size_t Start = Enc.size(); 9703 Enc += "e("; 9704 if (ID) 9705 Enc += ID->getName(); 9706 Enc += "){"; 9707 9708 // We collect all encoded enumerations and order them alphanumerically. 9709 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9710 SmallVector<FieldEncoding, 16> FE; 9711 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9712 ++I) { 9713 SmallStringEnc EnumEnc; 9714 EnumEnc += "m("; 9715 EnumEnc += I->getName(); 9716 EnumEnc += "){"; 9717 I->getInitVal().toString(EnumEnc); 9718 EnumEnc += '}'; 9719 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9720 } 9721 llvm::sort(FE); 9722 unsigned E = FE.size(); 9723 for (unsigned I = 0; I != E; ++I) { 9724 if (I) 9725 Enc += ','; 9726 Enc += FE[I].str(); 9727 } 9728 } 9729 Enc += '}'; 9730 TSC.addIfComplete(ID, Enc.substr(Start), false); 9731 return true; 9732 } 9733 9734 /// Appends type's qualifier to Enc. 9735 /// This is done prior to appending the type's encoding. 9736 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9737 // Qualifiers are emitted in alphabetical order. 9738 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9739 int Lookup = 0; 9740 if (QT.isConstQualified()) 9741 Lookup += 1<<0; 9742 if (QT.isRestrictQualified()) 9743 Lookup += 1<<1; 9744 if (QT.isVolatileQualified()) 9745 Lookup += 1<<2; 9746 Enc += Table[Lookup]; 9747 } 9748 9749 /// Appends built-in types to Enc. 9750 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9751 const char *EncType; 9752 switch (BT->getKind()) { 9753 case BuiltinType::Void: 9754 EncType = "0"; 9755 break; 9756 case BuiltinType::Bool: 9757 EncType = "b"; 9758 break; 9759 case BuiltinType::Char_U: 9760 EncType = "uc"; 9761 break; 9762 case BuiltinType::UChar: 9763 EncType = "uc"; 9764 break; 9765 case BuiltinType::SChar: 9766 EncType = "sc"; 9767 break; 9768 case BuiltinType::UShort: 9769 EncType = "us"; 9770 break; 9771 case BuiltinType::Short: 9772 EncType = "ss"; 9773 break; 9774 case BuiltinType::UInt: 9775 EncType = "ui"; 9776 break; 9777 case BuiltinType::Int: 9778 EncType = "si"; 9779 break; 9780 case BuiltinType::ULong: 9781 EncType = "ul"; 9782 break; 9783 case BuiltinType::Long: 9784 EncType = "sl"; 9785 break; 9786 case BuiltinType::ULongLong: 9787 EncType = "ull"; 9788 break; 9789 case BuiltinType::LongLong: 9790 EncType = "sll"; 9791 break; 9792 case BuiltinType::Float: 9793 EncType = "ft"; 9794 break; 9795 case BuiltinType::Double: 9796 EncType = "d"; 9797 break; 9798 case BuiltinType::LongDouble: 9799 EncType = "ld"; 9800 break; 9801 default: 9802 return false; 9803 } 9804 Enc += EncType; 9805 return true; 9806 } 9807 9808 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9809 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9810 const CodeGen::CodeGenModule &CGM, 9811 TypeStringCache &TSC) { 9812 Enc += "p("; 9813 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9814 return false; 9815 Enc += ')'; 9816 return true; 9817 } 9818 9819 /// Appends array encoding to Enc before calling appendType for the element. 9820 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9821 const ArrayType *AT, 9822 const CodeGen::CodeGenModule &CGM, 9823 TypeStringCache &TSC, StringRef NoSizeEnc) { 9824 if (AT->getSizeModifier() != ArrayType::Normal) 9825 return false; 9826 Enc += "a("; 9827 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9828 CAT->getSize().toStringUnsigned(Enc); 9829 else 9830 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9831 Enc += ':'; 9832 // The Qualifiers should be attached to the type rather than the array. 9833 appendQualifier(Enc, QT); 9834 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9835 return false; 9836 Enc += ')'; 9837 return true; 9838 } 9839 9840 /// Appends a function encoding to Enc, calling appendType for the return type 9841 /// and the arguments. 9842 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9843 const CodeGen::CodeGenModule &CGM, 9844 TypeStringCache &TSC) { 9845 Enc += "f{"; 9846 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9847 return false; 9848 Enc += "}("; 9849 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9850 // N.B. we are only interested in the adjusted param types. 9851 auto I = FPT->param_type_begin(); 9852 auto E = FPT->param_type_end(); 9853 if (I != E) { 9854 do { 9855 if (!appendType(Enc, *I, CGM, TSC)) 9856 return false; 9857 ++I; 9858 if (I != E) 9859 Enc += ','; 9860 } while (I != E); 9861 if (FPT->isVariadic()) 9862 Enc += ",va"; 9863 } else { 9864 if (FPT->isVariadic()) 9865 Enc += "va"; 9866 else 9867 Enc += '0'; 9868 } 9869 } 9870 Enc += ')'; 9871 return true; 9872 } 9873 9874 /// Handles the type's qualifier before dispatching a call to handle specific 9875 /// type encodings. 9876 static bool appendType(SmallStringEnc &Enc, QualType QType, 9877 const CodeGen::CodeGenModule &CGM, 9878 TypeStringCache &TSC) { 9879 9880 QualType QT = QType.getCanonicalType(); 9881 9882 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9883 // The Qualifiers should be attached to the type rather than the array. 9884 // Thus we don't call appendQualifier() here. 9885 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9886 9887 appendQualifier(Enc, QT); 9888 9889 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9890 return appendBuiltinType(Enc, BT); 9891 9892 if (const PointerType *PT = QT->getAs<PointerType>()) 9893 return appendPointerType(Enc, PT, CGM, TSC); 9894 9895 if (const EnumType *ET = QT->getAs<EnumType>()) 9896 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9897 9898 if (const RecordType *RT = QT->getAsStructureType()) 9899 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9900 9901 if (const RecordType *RT = QT->getAsUnionType()) 9902 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9903 9904 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9905 return appendFunctionType(Enc, FT, CGM, TSC); 9906 9907 return false; 9908 } 9909 9910 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9911 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9912 if (!D) 9913 return false; 9914 9915 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9916 if (FD->getLanguageLinkage() != CLanguageLinkage) 9917 return false; 9918 return appendType(Enc, FD->getType(), CGM, TSC); 9919 } 9920 9921 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9922 if (VD->getLanguageLinkage() != CLanguageLinkage) 9923 return false; 9924 QualType QT = VD->getType().getCanonicalType(); 9925 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9926 // Global ArrayTypes are given a size of '*' if the size is unknown. 9927 // The Qualifiers should be attached to the type rather than the array. 9928 // Thus we don't call appendQualifier() here. 9929 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9930 } 9931 return appendType(Enc, QT, CGM, TSC); 9932 } 9933 return false; 9934 } 9935 9936 //===----------------------------------------------------------------------===// 9937 // RISCV ABI Implementation 9938 //===----------------------------------------------------------------------===// 9939 9940 namespace { 9941 class RISCVABIInfo : public DefaultABIInfo { 9942 private: 9943 // Size of the integer ('x') registers in bits. 9944 unsigned XLen; 9945 // Size of the floating point ('f') registers in bits. Note that the target 9946 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 9947 // with soft float ABI has FLen==0). 9948 unsigned FLen; 9949 static const int NumArgGPRs = 8; 9950 static const int NumArgFPRs = 8; 9951 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9952 llvm::Type *&Field1Ty, 9953 CharUnits &Field1Off, 9954 llvm::Type *&Field2Ty, 9955 CharUnits &Field2Off) const; 9956 9957 public: 9958 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 9959 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 9960 9961 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9962 // non-virtual, but computeInfo is virtual, so we overload it. 9963 void computeInfo(CGFunctionInfo &FI) const override; 9964 9965 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 9966 int &ArgFPRsLeft) const; 9967 ABIArgInfo classifyReturnType(QualType RetTy) const; 9968 9969 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9970 QualType Ty) const override; 9971 9972 ABIArgInfo extendType(QualType Ty) const; 9973 9974 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9975 CharUnits &Field1Off, llvm::Type *&Field2Ty, 9976 CharUnits &Field2Off, int &NeededArgGPRs, 9977 int &NeededArgFPRs) const; 9978 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 9979 CharUnits Field1Off, 9980 llvm::Type *Field2Ty, 9981 CharUnits Field2Off) const; 9982 }; 9983 } // end anonymous namespace 9984 9985 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9986 QualType RetTy = FI.getReturnType(); 9987 if (!getCXXABI().classifyReturnType(FI)) 9988 FI.getReturnInfo() = classifyReturnType(RetTy); 9989 9990 // IsRetIndirect is true if classifyArgumentType indicated the value should 9991 // be passed indirect, or if the type size is a scalar greater than 2*XLen 9992 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 9993 // in LLVM IR, relying on the backend lowering code to rewrite the argument 9994 // list and pass indirectly on RV32. 9995 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 9996 if (!IsRetIndirect && RetTy->isScalarType() && 9997 getContext().getTypeSize(RetTy) > (2 * XLen)) { 9998 if (RetTy->isComplexType() && FLen) { 9999 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10000 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10001 } else { 10002 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10003 IsRetIndirect = true; 10004 } 10005 } 10006 10007 // We must track the number of GPRs used in order to conform to the RISC-V 10008 // ABI, as integer scalars passed in registers should have signext/zeroext 10009 // when promoted, but are anyext if passed on the stack. As GPR usage is 10010 // different for variadic arguments, we must also track whether we are 10011 // examining a vararg or not. 10012 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10013 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10014 int NumFixedArgs = FI.getNumRequiredArgs(); 10015 10016 int ArgNum = 0; 10017 for (auto &ArgInfo : FI.arguments()) { 10018 bool IsFixed = ArgNum < NumFixedArgs; 10019 ArgInfo.info = 10020 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10021 ArgNum++; 10022 } 10023 } 10024 10025 // Returns true if the struct is a potential candidate for the floating point 10026 // calling convention. If this function returns true, the caller is 10027 // responsible for checking that if there is only a single field then that 10028 // field is a float. 10029 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10030 llvm::Type *&Field1Ty, 10031 CharUnits &Field1Off, 10032 llvm::Type *&Field2Ty, 10033 CharUnits &Field2Off) const { 10034 bool IsInt = Ty->isIntegralOrEnumerationType(); 10035 bool IsFloat = Ty->isRealFloatingType(); 10036 10037 if (IsInt || IsFloat) { 10038 uint64_t Size = getContext().getTypeSize(Ty); 10039 if (IsInt && Size > XLen) 10040 return false; 10041 // Can't be eligible if larger than the FP registers. Half precision isn't 10042 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10043 // default to the integer ABI in that case. 10044 if (IsFloat && (Size > FLen || Size < 32)) 10045 return false; 10046 // Can't be eligible if an integer type was already found (int+int pairs 10047 // are not eligible). 10048 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10049 return false; 10050 if (!Field1Ty) { 10051 Field1Ty = CGT.ConvertType(Ty); 10052 Field1Off = CurOff; 10053 return true; 10054 } 10055 if (!Field2Ty) { 10056 Field2Ty = CGT.ConvertType(Ty); 10057 Field2Off = CurOff; 10058 return true; 10059 } 10060 return false; 10061 } 10062 10063 if (auto CTy = Ty->getAs<ComplexType>()) { 10064 if (Field1Ty) 10065 return false; 10066 QualType EltTy = CTy->getElementType(); 10067 if (getContext().getTypeSize(EltTy) > FLen) 10068 return false; 10069 Field1Ty = CGT.ConvertType(EltTy); 10070 Field1Off = CurOff; 10071 assert(CurOff.isZero() && "Unexpected offset for first field"); 10072 Field2Ty = Field1Ty; 10073 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10074 return true; 10075 } 10076 10077 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10078 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10079 QualType EltTy = ATy->getElementType(); 10080 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10081 for (uint64_t i = 0; i < ArraySize; ++i) { 10082 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10083 Field1Off, Field2Ty, Field2Off); 10084 if (!Ret) 10085 return false; 10086 CurOff += EltSize; 10087 } 10088 return true; 10089 } 10090 10091 if (const auto *RTy = Ty->getAs<RecordType>()) { 10092 // Structures with either a non-trivial destructor or a non-trivial 10093 // copy constructor are not eligible for the FP calling convention. 10094 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10095 return false; 10096 if (isEmptyRecord(getContext(), Ty, true)) 10097 return true; 10098 const RecordDecl *RD = RTy->getDecl(); 10099 // Unions aren't eligible unless they're empty (which is caught above). 10100 if (RD->isUnion()) 10101 return false; 10102 int ZeroWidthBitFieldCount = 0; 10103 for (const FieldDecl *FD : RD->fields()) { 10104 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10105 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10106 QualType QTy = FD->getType(); 10107 if (FD->isBitField()) { 10108 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10109 // Allow a bitfield with a type greater than XLen as long as the 10110 // bitwidth is XLen or less. 10111 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10112 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10113 if (BitWidth == 0) { 10114 ZeroWidthBitFieldCount++; 10115 continue; 10116 } 10117 } 10118 10119 bool Ret = detectFPCCEligibleStructHelper( 10120 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10121 Field1Ty, Field1Off, Field2Ty, Field2Off); 10122 if (!Ret) 10123 return false; 10124 10125 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10126 // or int+fp structs, but are ignored for a struct with an fp field and 10127 // any number of zero-width bitfields. 10128 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10129 return false; 10130 } 10131 return Field1Ty != nullptr; 10132 } 10133 10134 return false; 10135 } 10136 10137 // Determine if a struct is eligible for passing according to the floating 10138 // point calling convention (i.e., when flattened it contains a single fp 10139 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10140 // NeededArgGPRs are incremented appropriately. 10141 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10142 CharUnits &Field1Off, 10143 llvm::Type *&Field2Ty, 10144 CharUnits &Field2Off, 10145 int &NeededArgGPRs, 10146 int &NeededArgFPRs) const { 10147 Field1Ty = nullptr; 10148 Field2Ty = nullptr; 10149 NeededArgGPRs = 0; 10150 NeededArgFPRs = 0; 10151 bool IsCandidate = detectFPCCEligibleStructHelper( 10152 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10153 // Not really a candidate if we have a single int but no float. 10154 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10155 return false; 10156 if (!IsCandidate) 10157 return false; 10158 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10159 NeededArgFPRs++; 10160 else if (Field1Ty) 10161 NeededArgGPRs++; 10162 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10163 NeededArgFPRs++; 10164 else if (Field2Ty) 10165 NeededArgGPRs++; 10166 return IsCandidate; 10167 } 10168 10169 // Call getCoerceAndExpand for the two-element flattened struct described by 10170 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10171 // appropriate coerceToType and unpaddedCoerceToType. 10172 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10173 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10174 CharUnits Field2Off) const { 10175 SmallVector<llvm::Type *, 3> CoerceElts; 10176 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10177 if (!Field1Off.isZero()) 10178 CoerceElts.push_back(llvm::ArrayType::get( 10179 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10180 10181 CoerceElts.push_back(Field1Ty); 10182 UnpaddedCoerceElts.push_back(Field1Ty); 10183 10184 if (!Field2Ty) { 10185 return ABIArgInfo::getCoerceAndExpand( 10186 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10187 UnpaddedCoerceElts[0]); 10188 } 10189 10190 CharUnits Field2Align = 10191 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10192 CharUnits Field1Size = 10193 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10194 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 10195 10196 CharUnits Padding = CharUnits::Zero(); 10197 if (Field2Off > Field2OffNoPadNoPack) 10198 Padding = Field2Off - Field2OffNoPadNoPack; 10199 else if (Field2Off != Field2Align && Field2Off > Field1Size) 10200 Padding = Field2Off - Field1Size; 10201 10202 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10203 10204 if (!Padding.isZero()) 10205 CoerceElts.push_back(llvm::ArrayType::get( 10206 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10207 10208 CoerceElts.push_back(Field2Ty); 10209 UnpaddedCoerceElts.push_back(Field2Ty); 10210 10211 auto CoerceToType = 10212 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10213 auto UnpaddedCoerceToType = 10214 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10215 10216 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10217 } 10218 10219 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10220 int &ArgGPRsLeft, 10221 int &ArgFPRsLeft) const { 10222 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10223 Ty = useFirstFieldIfTransparentUnion(Ty); 10224 10225 // Structures with either a non-trivial destructor or a non-trivial 10226 // copy constructor are always passed indirectly. 10227 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10228 if (ArgGPRsLeft) 10229 ArgGPRsLeft -= 1; 10230 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10231 CGCXXABI::RAA_DirectInMemory); 10232 } 10233 10234 // Ignore empty structs/unions. 10235 if (isEmptyRecord(getContext(), Ty, true)) 10236 return ABIArgInfo::getIgnore(); 10237 10238 uint64_t Size = getContext().getTypeSize(Ty); 10239 10240 // Pass floating point values via FPRs if possible. 10241 if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) { 10242 ArgFPRsLeft--; 10243 return ABIArgInfo::getDirect(); 10244 } 10245 10246 // Complex types for the hard float ABI must be passed direct rather than 10247 // using CoerceAndExpand. 10248 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10249 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10250 if (getContext().getTypeSize(EltTy) <= FLen) { 10251 ArgFPRsLeft -= 2; 10252 return ABIArgInfo::getDirect(); 10253 } 10254 } 10255 10256 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10257 llvm::Type *Field1Ty = nullptr; 10258 llvm::Type *Field2Ty = nullptr; 10259 CharUnits Field1Off = CharUnits::Zero(); 10260 CharUnits Field2Off = CharUnits::Zero(); 10261 int NeededArgGPRs; 10262 int NeededArgFPRs; 10263 bool IsCandidate = 10264 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10265 NeededArgGPRs, NeededArgFPRs); 10266 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10267 NeededArgFPRs <= ArgFPRsLeft) { 10268 ArgGPRsLeft -= NeededArgGPRs; 10269 ArgFPRsLeft -= NeededArgFPRs; 10270 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10271 Field2Off); 10272 } 10273 } 10274 10275 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10276 bool MustUseStack = false; 10277 // Determine the number of GPRs needed to pass the current argument 10278 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10279 // register pairs, so may consume 3 registers. 10280 int NeededArgGPRs = 1; 10281 if (!IsFixed && NeededAlign == 2 * XLen) 10282 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10283 else if (Size > XLen && Size <= 2 * XLen) 10284 NeededArgGPRs = 2; 10285 10286 if (NeededArgGPRs > ArgGPRsLeft) { 10287 MustUseStack = true; 10288 NeededArgGPRs = ArgGPRsLeft; 10289 } 10290 10291 ArgGPRsLeft -= NeededArgGPRs; 10292 10293 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10294 // Treat an enum type as its underlying type. 10295 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10296 Ty = EnumTy->getDecl()->getIntegerType(); 10297 10298 // All integral types are promoted to XLen width, unless passed on the 10299 // stack. 10300 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10301 return extendType(Ty); 10302 } 10303 10304 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10305 if (EIT->getNumBits() < XLen && !MustUseStack) 10306 return extendType(Ty); 10307 if (EIT->getNumBits() > 128 || 10308 (!getContext().getTargetInfo().hasInt128Type() && 10309 EIT->getNumBits() > 64)) 10310 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10311 } 10312 10313 return ABIArgInfo::getDirect(); 10314 } 10315 10316 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10317 // so coerce to integers. 10318 if (Size <= 2 * XLen) { 10319 unsigned Alignment = getContext().getTypeAlign(Ty); 10320 10321 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10322 // required, and a 2-element XLen array if only XLen alignment is required. 10323 if (Size <= XLen) { 10324 return ABIArgInfo::getDirect( 10325 llvm::IntegerType::get(getVMContext(), XLen)); 10326 } else if (Alignment == 2 * XLen) { 10327 return ABIArgInfo::getDirect( 10328 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10329 } else { 10330 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10331 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10332 } 10333 } 10334 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10335 } 10336 10337 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10338 if (RetTy->isVoidType()) 10339 return ABIArgInfo::getIgnore(); 10340 10341 int ArgGPRsLeft = 2; 10342 int ArgFPRsLeft = FLen ? 2 : 0; 10343 10344 // The rules for return and argument types are the same, so defer to 10345 // classifyArgumentType. 10346 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10347 ArgFPRsLeft); 10348 } 10349 10350 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10351 QualType Ty) const { 10352 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10353 10354 // Empty records are ignored for parameter passing purposes. 10355 if (isEmptyRecord(getContext(), Ty, true)) { 10356 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10357 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10358 return Addr; 10359 } 10360 10361 std::pair<CharUnits, CharUnits> SizeAndAlign = 10362 getContext().getTypeInfoInChars(Ty); 10363 10364 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10365 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 10366 10367 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 10368 SlotSize, /*AllowHigherAlign=*/true); 10369 } 10370 10371 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10372 int TySize = getContext().getTypeSize(Ty); 10373 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10374 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10375 return ABIArgInfo::getSignExtend(Ty); 10376 return ABIArgInfo::getExtend(Ty); 10377 } 10378 10379 namespace { 10380 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10381 public: 10382 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10383 unsigned FLen) 10384 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10385 10386 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10387 CodeGen::CodeGenModule &CGM) const override { 10388 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10389 if (!FD) return; 10390 10391 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10392 if (!Attr) 10393 return; 10394 10395 const char *Kind; 10396 switch (Attr->getInterrupt()) { 10397 case RISCVInterruptAttr::user: Kind = "user"; break; 10398 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10399 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10400 } 10401 10402 auto *Fn = cast<llvm::Function>(GV); 10403 10404 Fn->addFnAttr("interrupt", Kind); 10405 } 10406 }; 10407 } // namespace 10408 10409 //===----------------------------------------------------------------------===// 10410 // Driver code 10411 //===----------------------------------------------------------------------===// 10412 10413 bool CodeGenModule::supportsCOMDAT() const { 10414 return getTriple().supportsCOMDAT(); 10415 } 10416 10417 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10418 if (TheTargetCodeGenInfo) 10419 return *TheTargetCodeGenInfo; 10420 10421 // Helper to set the unique_ptr while still keeping the return value. 10422 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10423 this->TheTargetCodeGenInfo.reset(P); 10424 return *P; 10425 }; 10426 10427 const llvm::Triple &Triple = getTarget().getTriple(); 10428 switch (Triple.getArch()) { 10429 default: 10430 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10431 10432 case llvm::Triple::le32: 10433 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10434 case llvm::Triple::mips: 10435 case llvm::Triple::mipsel: 10436 if (Triple.getOS() == llvm::Triple::NaCl) 10437 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10438 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10439 10440 case llvm::Triple::mips64: 10441 case llvm::Triple::mips64el: 10442 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10443 10444 case llvm::Triple::avr: 10445 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10446 10447 case llvm::Triple::aarch64: 10448 case llvm::Triple::aarch64_32: 10449 case llvm::Triple::aarch64_be: { 10450 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10451 if (getTarget().getABI() == "darwinpcs") 10452 Kind = AArch64ABIInfo::DarwinPCS; 10453 else if (Triple.isOSWindows()) 10454 return SetCGInfo( 10455 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10456 10457 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10458 } 10459 10460 case llvm::Triple::wasm32: 10461 case llvm::Triple::wasm64: { 10462 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10463 if (getTarget().getABI() == "experimental-mv") 10464 Kind = WebAssemblyABIInfo::ExperimentalMV; 10465 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10466 } 10467 10468 case llvm::Triple::arm: 10469 case llvm::Triple::armeb: 10470 case llvm::Triple::thumb: 10471 case llvm::Triple::thumbeb: { 10472 if (Triple.getOS() == llvm::Triple::Win32) { 10473 return SetCGInfo( 10474 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10475 } 10476 10477 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10478 StringRef ABIStr = getTarget().getABI(); 10479 if (ABIStr == "apcs-gnu") 10480 Kind = ARMABIInfo::APCS; 10481 else if (ABIStr == "aapcs16") 10482 Kind = ARMABIInfo::AAPCS16_VFP; 10483 else if (CodeGenOpts.FloatABI == "hard" || 10484 (CodeGenOpts.FloatABI != "soft" && 10485 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10486 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10487 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10488 Kind = ARMABIInfo::AAPCS_VFP; 10489 10490 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10491 } 10492 10493 case llvm::Triple::ppc: { 10494 bool IsSoftFloat = 10495 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10496 bool RetSmallStructInRegABI = 10497 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10498 return SetCGInfo( 10499 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10500 } 10501 case llvm::Triple::ppc64: 10502 if (Triple.isOSBinFormatELF()) { 10503 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10504 if (getTarget().getABI() == "elfv2") 10505 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10506 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10507 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10508 10509 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10510 IsSoftFloat)); 10511 } else 10512 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10513 case llvm::Triple::ppc64le: { 10514 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10515 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10516 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10517 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10518 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10519 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10520 10521 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10522 IsSoftFloat)); 10523 } 10524 10525 case llvm::Triple::nvptx: 10526 case llvm::Triple::nvptx64: 10527 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10528 10529 case llvm::Triple::msp430: 10530 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10531 10532 case llvm::Triple::riscv32: 10533 case llvm::Triple::riscv64: { 10534 StringRef ABIStr = getTarget().getABI(); 10535 unsigned XLen = getTarget().getPointerWidth(0); 10536 unsigned ABIFLen = 0; 10537 if (ABIStr.endswith("f")) 10538 ABIFLen = 32; 10539 else if (ABIStr.endswith("d")) 10540 ABIFLen = 64; 10541 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10542 } 10543 10544 case llvm::Triple::systemz: { 10545 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10546 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10547 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10548 } 10549 10550 case llvm::Triple::tce: 10551 case llvm::Triple::tcele: 10552 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10553 10554 case llvm::Triple::x86: { 10555 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10556 bool RetSmallStructInRegABI = 10557 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10558 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10559 10560 if (Triple.getOS() == llvm::Triple::Win32) { 10561 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10562 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10563 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10564 } else { 10565 return SetCGInfo(new X86_32TargetCodeGenInfo( 10566 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10567 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10568 CodeGenOpts.FloatABI == "soft")); 10569 } 10570 } 10571 10572 case llvm::Triple::x86_64: { 10573 StringRef ABI = getTarget().getABI(); 10574 X86AVXABILevel AVXLevel = 10575 (ABI == "avx512" 10576 ? X86AVXABILevel::AVX512 10577 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10578 10579 switch (Triple.getOS()) { 10580 case llvm::Triple::Win32: 10581 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10582 default: 10583 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10584 } 10585 } 10586 case llvm::Triple::hexagon: 10587 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 10588 case llvm::Triple::lanai: 10589 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 10590 case llvm::Triple::r600: 10591 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10592 case llvm::Triple::amdgcn: 10593 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10594 case llvm::Triple::sparc: 10595 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 10596 case llvm::Triple::sparcv9: 10597 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 10598 case llvm::Triple::xcore: 10599 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 10600 case llvm::Triple::arc: 10601 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 10602 case llvm::Triple::spir: 10603 case llvm::Triple::spir64: 10604 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 10605 } 10606 } 10607 10608 /// Create an OpenCL kernel for an enqueued block. 10609 /// 10610 /// The kernel has the same function type as the block invoke function. Its 10611 /// name is the name of the block invoke function postfixed with "_kernel". 10612 /// It simply calls the block invoke function then returns. 10613 llvm::Function * 10614 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 10615 llvm::Function *Invoke, 10616 llvm::Value *BlockLiteral) const { 10617 auto *InvokeFT = Invoke->getFunctionType(); 10618 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10619 for (auto &P : InvokeFT->params()) 10620 ArgTys.push_back(P); 10621 auto &C = CGF.getLLVMContext(); 10622 std::string Name = Invoke->getName().str() + "_kernel"; 10623 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10624 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10625 &CGF.CGM.getModule()); 10626 auto IP = CGF.Builder.saveIP(); 10627 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10628 auto &Builder = CGF.Builder; 10629 Builder.SetInsertPoint(BB); 10630 llvm::SmallVector<llvm::Value *, 2> Args; 10631 for (auto &A : F->args()) 10632 Args.push_back(&A); 10633 Builder.CreateCall(Invoke, Args); 10634 Builder.CreateRetVoid(); 10635 Builder.restoreIP(IP); 10636 return F; 10637 } 10638 10639 /// Create an OpenCL kernel for an enqueued block. 10640 /// 10641 /// The type of the first argument (the block literal) is the struct type 10642 /// of the block literal instead of a pointer type. The first argument 10643 /// (block literal) is passed directly by value to the kernel. The kernel 10644 /// allocates the same type of struct on stack and stores the block literal 10645 /// to it and passes its pointer to the block invoke function. The kernel 10646 /// has "enqueued-block" function attribute and kernel argument metadata. 10647 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10648 CodeGenFunction &CGF, llvm::Function *Invoke, 10649 llvm::Value *BlockLiteral) const { 10650 auto &Builder = CGF.Builder; 10651 auto &C = CGF.getLLVMContext(); 10652 10653 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10654 auto *InvokeFT = Invoke->getFunctionType(); 10655 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10656 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10657 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10658 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10659 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10660 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10661 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10662 10663 ArgTys.push_back(BlockTy); 10664 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10665 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10666 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10667 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10668 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10669 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10670 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10671 ArgTys.push_back(InvokeFT->getParamType(I)); 10672 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10673 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10674 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10675 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10676 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10677 ArgNames.push_back( 10678 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10679 } 10680 std::string Name = Invoke->getName().str() + "_kernel"; 10681 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10682 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10683 &CGF.CGM.getModule()); 10684 F->addFnAttr("enqueued-block"); 10685 auto IP = CGF.Builder.saveIP(); 10686 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10687 Builder.SetInsertPoint(BB); 10688 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 10689 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10690 BlockPtr->setAlignment(BlockAlign); 10691 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10692 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10693 llvm::SmallVector<llvm::Value *, 2> Args; 10694 Args.push_back(Cast); 10695 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10696 Args.push_back(I); 10697 Builder.CreateCall(Invoke, Args); 10698 Builder.CreateRetVoid(); 10699 Builder.restoreIP(IP); 10700 10701 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10702 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10703 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10704 F->setMetadata("kernel_arg_base_type", 10705 llvm::MDNode::get(C, ArgBaseTypeNames)); 10706 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10707 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10708 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10709 10710 return F; 10711 } 10712