1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IntrinsicsNVPTX.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> // std::sort 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 // Helper for coercing an aggregate argument or return value into an integer 40 // array of the same size (including padding) and alignment. This alternate 41 // coercion happens only for the RenderScript ABI and can be removed after 42 // runtimes that rely on it are no longer supported. 43 // 44 // RenderScript assumes that the size of the argument / return value in the IR 45 // is the same as the size of the corresponding qualified type. This helper 46 // coerces the aggregate type into an array of the same size (including 47 // padding). This coercion is used in lieu of expansion of struct members or 48 // other canonical coercions that return a coerced-type of larger size. 49 // 50 // Ty - The argument / return value type 51 // Context - The associated ASTContext 52 // LLVMContext - The associated LLVMContext 53 static ABIArgInfo coerceToIntArray(QualType Ty, 54 ASTContext &Context, 55 llvm::LLVMContext &LLVMContext) { 56 // Alignment and Size are measured in bits. 57 const uint64_t Size = Context.getTypeSize(Ty); 58 const uint64_t Alignment = Context.getTypeAlign(Ty); 59 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 60 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 61 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 62 } 63 64 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 65 llvm::Value *Array, 66 llvm::Value *Value, 67 unsigned FirstIndex, 68 unsigned LastIndex) { 69 // Alternatively, we could emit this as a loop in the source. 70 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 71 llvm::Value *Cell = 72 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 73 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 74 } 75 } 76 77 static bool isAggregateTypeForABI(QualType T) { 78 return !CodeGenFunction::hasScalarEvaluationKind(T) || 79 T->isMemberFunctionPointerType(); 80 } 81 82 ABIArgInfo 83 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 84 llvm::Type *Padding) const { 85 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 86 ByRef, Realign, Padding); 87 } 88 89 ABIArgInfo 90 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 91 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 92 /*ByRef*/ false, Realign); 93 } 94 95 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 96 QualType Ty) const { 97 return Address::invalid(); 98 } 99 100 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 101 if (Ty->isPromotableIntegerType()) 102 return true; 103 104 if (const auto *EIT = Ty->getAs<ExtIntType>()) 105 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 106 return true; 107 108 return false; 109 } 110 111 ABIInfo::~ABIInfo() {} 112 113 /// Does the given lowering require more than the given number of 114 /// registers when expanded? 115 /// 116 /// This is intended to be the basis of a reasonable basic implementation 117 /// of should{Pass,Return}IndirectlyForSwift. 118 /// 119 /// For most targets, a limit of four total registers is reasonable; this 120 /// limits the amount of code required in order to move around the value 121 /// in case it wasn't produced immediately prior to the call by the caller 122 /// (or wasn't produced in exactly the right registers) or isn't used 123 /// immediately within the callee. But some targets may need to further 124 /// limit the register count due to an inability to support that many 125 /// return registers. 126 static bool occupiesMoreThan(CodeGenTypes &cgt, 127 ArrayRef<llvm::Type*> scalarTypes, 128 unsigned maxAllRegisters) { 129 unsigned intCount = 0, fpCount = 0; 130 for (llvm::Type *type : scalarTypes) { 131 if (type->isPointerTy()) { 132 intCount++; 133 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 134 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 135 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 136 } else { 137 assert(type->isVectorTy() || type->isFloatingPointTy()); 138 fpCount++; 139 } 140 } 141 142 return (intCount + fpCount > maxAllRegisters); 143 } 144 145 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 146 llvm::Type *eltTy, 147 unsigned numElts) const { 148 // The default implementation of this assumes that the target guarantees 149 // 128-bit SIMD support but nothing more. 150 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 151 } 152 153 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 154 CGCXXABI &CXXABI) { 155 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 156 if (!RD) { 157 if (!RT->getDecl()->canPassInRegisters()) 158 return CGCXXABI::RAA_Indirect; 159 return CGCXXABI::RAA_Default; 160 } 161 return CXXABI.getRecordArgABI(RD); 162 } 163 164 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 165 CGCXXABI &CXXABI) { 166 const RecordType *RT = T->getAs<RecordType>(); 167 if (!RT) 168 return CGCXXABI::RAA_Default; 169 return getRecordArgABI(RT, CXXABI); 170 } 171 172 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 173 const ABIInfo &Info) { 174 QualType Ty = FI.getReturnType(); 175 176 if (const auto *RT = Ty->getAs<RecordType>()) 177 if (!isa<CXXRecordDecl>(RT->getDecl()) && 178 !RT->getDecl()->canPassInRegisters()) { 179 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 180 return true; 181 } 182 183 return CXXABI.classifyReturnType(FI); 184 } 185 186 /// Pass transparent unions as if they were the type of the first element. Sema 187 /// should ensure that all elements of the union have the same "machine type". 188 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 189 if (const RecordType *UT = Ty->getAsUnionType()) { 190 const RecordDecl *UD = UT->getDecl(); 191 if (UD->hasAttr<TransparentUnionAttr>()) { 192 assert(!UD->field_empty() && "sema created an empty transparent union"); 193 return UD->field_begin()->getType(); 194 } 195 } 196 return Ty; 197 } 198 199 CGCXXABI &ABIInfo::getCXXABI() const { 200 return CGT.getCXXABI(); 201 } 202 203 ASTContext &ABIInfo::getContext() const { 204 return CGT.getContext(); 205 } 206 207 llvm::LLVMContext &ABIInfo::getVMContext() const { 208 return CGT.getLLVMContext(); 209 } 210 211 const llvm::DataLayout &ABIInfo::getDataLayout() const { 212 return CGT.getDataLayout(); 213 } 214 215 const TargetInfo &ABIInfo::getTarget() const { 216 return CGT.getTarget(); 217 } 218 219 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 220 return CGT.getCodeGenOpts(); 221 } 222 223 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 224 225 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 226 return false; 227 } 228 229 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 230 uint64_t Members) const { 231 return false; 232 } 233 234 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 235 raw_ostream &OS = llvm::errs(); 236 OS << "(ABIArgInfo Kind="; 237 switch (TheKind) { 238 case Direct: 239 OS << "Direct Type="; 240 if (llvm::Type *Ty = getCoerceToType()) 241 Ty->print(OS); 242 else 243 OS << "null"; 244 break; 245 case Extend: 246 OS << "Extend"; 247 break; 248 case Ignore: 249 OS << "Ignore"; 250 break; 251 case InAlloca: 252 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 253 break; 254 case Indirect: 255 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 256 << " ByVal=" << getIndirectByVal() 257 << " Realign=" << getIndirectRealign(); 258 break; 259 case Expand: 260 OS << "Expand"; 261 break; 262 case CoerceAndExpand: 263 OS << "CoerceAndExpand Type="; 264 getCoerceAndExpandType()->print(OS); 265 break; 266 } 267 OS << ")\n"; 268 } 269 270 // Dynamically round a pointer up to a multiple of the given alignment. 271 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 272 llvm::Value *Ptr, 273 CharUnits Align) { 274 llvm::Value *PtrAsInt = Ptr; 275 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 276 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 277 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 278 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 279 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 280 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 281 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 282 Ptr->getType(), 283 Ptr->getName() + ".aligned"); 284 return PtrAsInt; 285 } 286 287 /// Emit va_arg for a platform using the common void* representation, 288 /// where arguments are simply emitted in an array of slots on the stack. 289 /// 290 /// This version implements the core direct-value passing rules. 291 /// 292 /// \param SlotSize - The size and alignment of a stack slot. 293 /// Each argument will be allocated to a multiple of this number of 294 /// slots, and all the slots will be aligned to this value. 295 /// \param AllowHigherAlign - The slot alignment is not a cap; 296 /// an argument type with an alignment greater than the slot size 297 /// will be emitted on a higher-alignment address, potentially 298 /// leaving one or more empty slots behind as padding. If this 299 /// is false, the returned address might be less-aligned than 300 /// DirectAlign. 301 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 302 Address VAListAddr, 303 llvm::Type *DirectTy, 304 CharUnits DirectSize, 305 CharUnits DirectAlign, 306 CharUnits SlotSize, 307 bool AllowHigherAlign) { 308 // Cast the element type to i8* if necessary. Some platforms define 309 // va_list as a struct containing an i8* instead of just an i8*. 310 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 311 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 312 313 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 314 315 // If the CC aligns values higher than the slot size, do so if needed. 316 Address Addr = Address::invalid(); 317 if (AllowHigherAlign && DirectAlign > SlotSize) { 318 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 319 DirectAlign); 320 } else { 321 Addr = Address(Ptr, SlotSize); 322 } 323 324 // Advance the pointer past the argument, then store that back. 325 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 326 Address NextPtr = 327 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 328 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 329 330 // If the argument is smaller than a slot, and this is a big-endian 331 // target, the argument will be right-adjusted in its slot. 332 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 333 !DirectTy->isStructTy()) { 334 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 335 } 336 337 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 338 return Addr; 339 } 340 341 /// Emit va_arg for a platform using the common void* representation, 342 /// where arguments are simply emitted in an array of slots on the stack. 343 /// 344 /// \param IsIndirect - Values of this type are passed indirectly. 345 /// \param ValueInfo - The size and alignment of this type, generally 346 /// computed with getContext().getTypeInfoInChars(ValueTy). 347 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 348 /// Each argument will be allocated to a multiple of this number of 349 /// slots, and all the slots will be aligned to this value. 350 /// \param AllowHigherAlign - The slot alignment is not a cap; 351 /// an argument type with an alignment greater than the slot size 352 /// will be emitted on a higher-alignment address, potentially 353 /// leaving one or more empty slots behind as padding. 354 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 355 QualType ValueTy, bool IsIndirect, 356 std::pair<CharUnits, CharUnits> ValueInfo, 357 CharUnits SlotSizeAndAlign, 358 bool AllowHigherAlign) { 359 // The size and alignment of the value that was passed directly. 360 CharUnits DirectSize, DirectAlign; 361 if (IsIndirect) { 362 DirectSize = CGF.getPointerSize(); 363 DirectAlign = CGF.getPointerAlign(); 364 } else { 365 DirectSize = ValueInfo.first; 366 DirectAlign = ValueInfo.second; 367 } 368 369 // Cast the address we've calculated to the right type. 370 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 371 if (IsIndirect) 372 DirectTy = DirectTy->getPointerTo(0); 373 374 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 375 DirectSize, DirectAlign, 376 SlotSizeAndAlign, 377 AllowHigherAlign); 378 379 if (IsIndirect) { 380 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 381 } 382 383 return Addr; 384 385 } 386 387 static Address emitMergePHI(CodeGenFunction &CGF, 388 Address Addr1, llvm::BasicBlock *Block1, 389 Address Addr2, llvm::BasicBlock *Block2, 390 const llvm::Twine &Name = "") { 391 assert(Addr1.getType() == Addr2.getType()); 392 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 393 PHI->addIncoming(Addr1.getPointer(), Block1); 394 PHI->addIncoming(Addr2.getPointer(), Block2); 395 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 396 return Address(PHI, Align); 397 } 398 399 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 400 401 // If someone can figure out a general rule for this, that would be great. 402 // It's probably just doomed to be platform-dependent, though. 403 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 404 // Verified for: 405 // x86-64 FreeBSD, Linux, Darwin 406 // x86-32 FreeBSD, Linux, Darwin 407 // PowerPC Linux, Darwin 408 // ARM Darwin (*not* EABI) 409 // AArch64 Linux 410 return 32; 411 } 412 413 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 414 const FunctionNoProtoType *fnType) const { 415 // The following conventions are known to require this to be false: 416 // x86_stdcall 417 // MIPS 418 // For everything else, we just prefer false unless we opt out. 419 return false; 420 } 421 422 void 423 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 424 llvm::SmallString<24> &Opt) const { 425 // This assumes the user is passing a library name like "rt" instead of a 426 // filename like "librt.a/so", and that they don't care whether it's static or 427 // dynamic. 428 Opt = "-l"; 429 Opt += Lib; 430 } 431 432 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 433 // OpenCL kernels are called via an explicit runtime API with arguments 434 // set with clSetKernelArg(), not as normal sub-functions. 435 // Return SPIR_KERNEL by default as the kernel calling convention to 436 // ensure the fingerprint is fixed such way that each OpenCL argument 437 // gets one matching argument in the produced kernel function argument 438 // list to enable feasible implementation of clSetKernelArg() with 439 // aggregates etc. In case we would use the default C calling conv here, 440 // clSetKernelArg() might break depending on the target-specific 441 // conventions; different targets might split structs passed as values 442 // to multiple function arguments etc. 443 return llvm::CallingConv::SPIR_KERNEL; 444 } 445 446 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 447 llvm::PointerType *T, QualType QT) const { 448 return llvm::ConstantPointerNull::get(T); 449 } 450 451 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 452 const VarDecl *D) const { 453 assert(!CGM.getLangOpts().OpenCL && 454 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 455 "Address space agnostic languages only"); 456 return D ? D->getType().getAddressSpace() : LangAS::Default; 457 } 458 459 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 460 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 461 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 462 // Since target may map different address spaces in AST to the same address 463 // space, an address space conversion may end up as a bitcast. 464 if (auto *C = dyn_cast<llvm::Constant>(Src)) 465 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 466 // Try to preserve the source's name to make IR more readable. 467 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 468 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 469 } 470 471 llvm::Constant * 472 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 473 LangAS SrcAddr, LangAS DestAddr, 474 llvm::Type *DestTy) const { 475 // Since target may map different address spaces in AST to the same address 476 // space, an address space conversion may end up as a bitcast. 477 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 478 } 479 480 llvm::SyncScope::ID 481 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 482 SyncScope Scope, 483 llvm::AtomicOrdering Ordering, 484 llvm::LLVMContext &Ctx) const { 485 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 486 } 487 488 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 489 490 /// isEmptyField - Return true iff a the field is "empty", that is it 491 /// is an unnamed bit-field or an (array of) empty record(s). 492 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 493 bool AllowArrays) { 494 if (FD->isUnnamedBitfield()) 495 return true; 496 497 QualType FT = FD->getType(); 498 499 // Constant arrays of empty records count as empty, strip them off. 500 // Constant arrays of zero length always count as empty. 501 if (AllowArrays) 502 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 503 if (AT->getSize() == 0) 504 return true; 505 FT = AT->getElementType(); 506 } 507 508 const RecordType *RT = FT->getAs<RecordType>(); 509 if (!RT) 510 return false; 511 512 // C++ record fields are never empty, at least in the Itanium ABI. 513 // 514 // FIXME: We should use a predicate for whether this behavior is true in the 515 // current ABI. 516 if (isa<CXXRecordDecl>(RT->getDecl())) 517 return false; 518 519 return isEmptyRecord(Context, FT, AllowArrays); 520 } 521 522 /// isEmptyRecord - Return true iff a structure contains only empty 523 /// fields. Note that a structure with a flexible array member is not 524 /// considered empty. 525 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 526 const RecordType *RT = T->getAs<RecordType>(); 527 if (!RT) 528 return false; 529 const RecordDecl *RD = RT->getDecl(); 530 if (RD->hasFlexibleArrayMember()) 531 return false; 532 533 // If this is a C++ record, check the bases first. 534 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 535 for (const auto &I : CXXRD->bases()) 536 if (!isEmptyRecord(Context, I.getType(), true)) 537 return false; 538 539 for (const auto *I : RD->fields()) 540 if (!isEmptyField(Context, I, AllowArrays)) 541 return false; 542 return true; 543 } 544 545 /// isSingleElementStruct - Determine if a structure is a "single 546 /// element struct", i.e. it has exactly one non-empty field or 547 /// exactly one field which is itself a single element 548 /// struct. Structures with flexible array members are never 549 /// considered single element structs. 550 /// 551 /// \return The field declaration for the single non-empty field, if 552 /// it exists. 553 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 554 const RecordType *RT = T->getAs<RecordType>(); 555 if (!RT) 556 return nullptr; 557 558 const RecordDecl *RD = RT->getDecl(); 559 if (RD->hasFlexibleArrayMember()) 560 return nullptr; 561 562 const Type *Found = nullptr; 563 564 // If this is a C++ record, check the bases first. 565 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 566 for (const auto &I : CXXRD->bases()) { 567 // Ignore empty records. 568 if (isEmptyRecord(Context, I.getType(), true)) 569 continue; 570 571 // If we already found an element then this isn't a single-element struct. 572 if (Found) 573 return nullptr; 574 575 // If this is non-empty and not a single element struct, the composite 576 // cannot be a single element struct. 577 Found = isSingleElementStruct(I.getType(), Context); 578 if (!Found) 579 return nullptr; 580 } 581 } 582 583 // Check for single element. 584 for (const auto *FD : RD->fields()) { 585 QualType FT = FD->getType(); 586 587 // Ignore empty fields. 588 if (isEmptyField(Context, FD, true)) 589 continue; 590 591 // If we already found an element then this isn't a single-element 592 // struct. 593 if (Found) 594 return nullptr; 595 596 // Treat single element arrays as the element. 597 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 598 if (AT->getSize().getZExtValue() != 1) 599 break; 600 FT = AT->getElementType(); 601 } 602 603 if (!isAggregateTypeForABI(FT)) { 604 Found = FT.getTypePtr(); 605 } else { 606 Found = isSingleElementStruct(FT, Context); 607 if (!Found) 608 return nullptr; 609 } 610 } 611 612 // We don't consider a struct a single-element struct if it has 613 // padding beyond the element type. 614 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 615 return nullptr; 616 617 return Found; 618 } 619 620 namespace { 621 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 622 const ABIArgInfo &AI) { 623 // This default implementation defers to the llvm backend's va_arg 624 // instruction. It can handle only passing arguments directly 625 // (typically only handled in the backend for primitive types), or 626 // aggregates passed indirectly by pointer (NOTE: if the "byval" 627 // flag has ABI impact in the callee, this implementation cannot 628 // work.) 629 630 // Only a few cases are covered here at the moment -- those needed 631 // by the default abi. 632 llvm::Value *Val; 633 634 if (AI.isIndirect()) { 635 assert(!AI.getPaddingType() && 636 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 637 assert( 638 !AI.getIndirectRealign() && 639 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 640 641 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 642 CharUnits TyAlignForABI = TyInfo.second; 643 644 llvm::Type *BaseTy = 645 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 646 llvm::Value *Addr = 647 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 648 return Address(Addr, TyAlignForABI); 649 } else { 650 assert((AI.isDirect() || AI.isExtend()) && 651 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 652 653 assert(!AI.getInReg() && 654 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 655 assert(!AI.getPaddingType() && 656 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 657 assert(!AI.getDirectOffset() && 658 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 659 assert(!AI.getCoerceToType() && 660 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 661 662 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 663 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 664 CGF.Builder.CreateStore(Val, Temp); 665 return Temp; 666 } 667 } 668 669 /// DefaultABIInfo - The default implementation for ABI specific 670 /// details. This implementation provides information which results in 671 /// self-consistent and sensible LLVM IR generation, but does not 672 /// conform to any particular ABI. 673 class DefaultABIInfo : public ABIInfo { 674 public: 675 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 676 677 ABIArgInfo classifyReturnType(QualType RetTy) const; 678 ABIArgInfo classifyArgumentType(QualType RetTy) const; 679 680 void computeInfo(CGFunctionInfo &FI) const override { 681 if (!getCXXABI().classifyReturnType(FI)) 682 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 683 for (auto &I : FI.arguments()) 684 I.info = classifyArgumentType(I.type); 685 } 686 687 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 688 QualType Ty) const override { 689 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 690 } 691 }; 692 693 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 694 public: 695 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 696 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 697 }; 698 699 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 700 Ty = useFirstFieldIfTransparentUnion(Ty); 701 702 if (isAggregateTypeForABI(Ty)) { 703 // Records with non-trivial destructors/copy-constructors should not be 704 // passed by value. 705 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 706 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 707 708 return getNaturalAlignIndirect(Ty); 709 } 710 711 // Treat an enum type as its underlying type. 712 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 713 Ty = EnumTy->getDecl()->getIntegerType(); 714 715 ASTContext &Context = getContext(); 716 if (const auto *EIT = Ty->getAs<ExtIntType>()) 717 if (EIT->getNumBits() > 718 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 719 ? Context.Int128Ty 720 : Context.LongLongTy)) 721 return getNaturalAlignIndirect(Ty); 722 723 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 724 : ABIArgInfo::getDirect()); 725 } 726 727 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 728 if (RetTy->isVoidType()) 729 return ABIArgInfo::getIgnore(); 730 731 if (isAggregateTypeForABI(RetTy)) 732 return getNaturalAlignIndirect(RetTy); 733 734 // Treat an enum type as its underlying type. 735 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 736 RetTy = EnumTy->getDecl()->getIntegerType(); 737 738 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 739 if (EIT->getNumBits() > 740 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 741 ? getContext().Int128Ty 742 : getContext().LongLongTy)) 743 return getNaturalAlignIndirect(RetTy); 744 745 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 746 : ABIArgInfo::getDirect()); 747 } 748 749 //===----------------------------------------------------------------------===// 750 // WebAssembly ABI Implementation 751 // 752 // This is a very simple ABI that relies a lot on DefaultABIInfo. 753 //===----------------------------------------------------------------------===// 754 755 class WebAssemblyABIInfo final : public SwiftABIInfo { 756 public: 757 enum ABIKind { 758 MVP = 0, 759 ExperimentalMV = 1, 760 }; 761 762 private: 763 DefaultABIInfo defaultInfo; 764 ABIKind Kind; 765 766 public: 767 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 768 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 769 770 private: 771 ABIArgInfo classifyReturnType(QualType RetTy) const; 772 ABIArgInfo classifyArgumentType(QualType Ty) const; 773 774 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 775 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 776 // overload them. 777 void computeInfo(CGFunctionInfo &FI) const override { 778 if (!getCXXABI().classifyReturnType(FI)) 779 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 780 for (auto &Arg : FI.arguments()) 781 Arg.info = classifyArgumentType(Arg.type); 782 } 783 784 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 785 QualType Ty) const override; 786 787 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 788 bool asReturnValue) const override { 789 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 790 } 791 792 bool isSwiftErrorInRegister() const override { 793 return false; 794 } 795 }; 796 797 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 798 public: 799 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 800 WebAssemblyABIInfo::ABIKind K) 801 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 802 803 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 804 CodeGen::CodeGenModule &CGM) const override { 805 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 806 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 807 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 808 llvm::Function *Fn = cast<llvm::Function>(GV); 809 llvm::AttrBuilder B; 810 B.addAttribute("wasm-import-module", Attr->getImportModule()); 811 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 812 } 813 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 814 llvm::Function *Fn = cast<llvm::Function>(GV); 815 llvm::AttrBuilder B; 816 B.addAttribute("wasm-import-name", Attr->getImportName()); 817 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 818 } 819 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 820 llvm::Function *Fn = cast<llvm::Function>(GV); 821 llvm::AttrBuilder B; 822 B.addAttribute("wasm-export-name", Attr->getExportName()); 823 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 824 } 825 } 826 827 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 828 llvm::Function *Fn = cast<llvm::Function>(GV); 829 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 830 Fn->addFnAttr("no-prototype"); 831 } 832 } 833 }; 834 835 /// Classify argument of given type \p Ty. 836 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 837 Ty = useFirstFieldIfTransparentUnion(Ty); 838 839 if (isAggregateTypeForABI(Ty)) { 840 // Records with non-trivial destructors/copy-constructors should not be 841 // passed by value. 842 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 843 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 844 // Ignore empty structs/unions. 845 if (isEmptyRecord(getContext(), Ty, true)) 846 return ABIArgInfo::getIgnore(); 847 // Lower single-element structs to just pass a regular value. TODO: We 848 // could do reasonable-size multiple-element structs too, using getExpand(), 849 // though watch out for things like bitfields. 850 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 851 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 852 // For the experimental multivalue ABI, fully expand all other aggregates 853 if (Kind == ABIKind::ExperimentalMV) { 854 const RecordType *RT = Ty->getAs<RecordType>(); 855 assert(RT); 856 bool HasBitField = false; 857 for (auto *Field : RT->getDecl()->fields()) { 858 if (Field->isBitField()) { 859 HasBitField = true; 860 break; 861 } 862 } 863 if (!HasBitField) 864 return ABIArgInfo::getExpand(); 865 } 866 } 867 868 // Otherwise just do the default thing. 869 return defaultInfo.classifyArgumentType(Ty); 870 } 871 872 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 873 if (isAggregateTypeForABI(RetTy)) { 874 // Records with non-trivial destructors/copy-constructors should not be 875 // returned by value. 876 if (!getRecordArgABI(RetTy, getCXXABI())) { 877 // Ignore empty structs/unions. 878 if (isEmptyRecord(getContext(), RetTy, true)) 879 return ABIArgInfo::getIgnore(); 880 // Lower single-element structs to just return a regular value. TODO: We 881 // could do reasonable-size multiple-element structs too, using 882 // ABIArgInfo::getDirect(). 883 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 884 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 885 // For the experimental multivalue ABI, return all other aggregates 886 if (Kind == ABIKind::ExperimentalMV) 887 return ABIArgInfo::getDirect(); 888 } 889 } 890 891 // Otherwise just do the default thing. 892 return defaultInfo.classifyReturnType(RetTy); 893 } 894 895 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 896 QualType Ty) const { 897 bool IsIndirect = isAggregateTypeForABI(Ty) && 898 !isEmptyRecord(getContext(), Ty, true) && 899 !isSingleElementStruct(Ty, getContext()); 900 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 901 getContext().getTypeInfoInChars(Ty), 902 CharUnits::fromQuantity(4), 903 /*AllowHigherAlign=*/true); 904 } 905 906 //===----------------------------------------------------------------------===// 907 // le32/PNaCl bitcode ABI Implementation 908 // 909 // This is a simplified version of the x86_32 ABI. Arguments and return values 910 // are always passed on the stack. 911 //===----------------------------------------------------------------------===// 912 913 class PNaClABIInfo : public ABIInfo { 914 public: 915 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 916 917 ABIArgInfo classifyReturnType(QualType RetTy) const; 918 ABIArgInfo classifyArgumentType(QualType RetTy) const; 919 920 void computeInfo(CGFunctionInfo &FI) const override; 921 Address EmitVAArg(CodeGenFunction &CGF, 922 Address VAListAddr, QualType Ty) const override; 923 }; 924 925 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 926 public: 927 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 928 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 929 }; 930 931 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 932 if (!getCXXABI().classifyReturnType(FI)) 933 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 934 935 for (auto &I : FI.arguments()) 936 I.info = classifyArgumentType(I.type); 937 } 938 939 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 940 QualType Ty) const { 941 // The PNaCL ABI is a bit odd, in that varargs don't use normal 942 // function classification. Structs get passed directly for varargs 943 // functions, through a rewriting transform in 944 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 945 // this target to actually support a va_arg instructions with an 946 // aggregate type, unlike other targets. 947 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 948 } 949 950 /// Classify argument of given type \p Ty. 951 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 952 if (isAggregateTypeForABI(Ty)) { 953 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 954 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 955 return getNaturalAlignIndirect(Ty); 956 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 957 // Treat an enum type as its underlying type. 958 Ty = EnumTy->getDecl()->getIntegerType(); 959 } else if (Ty->isFloatingType()) { 960 // Floating-point types don't go inreg. 961 return ABIArgInfo::getDirect(); 962 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 963 // Treat extended integers as integers if <=64, otherwise pass indirectly. 964 if (EIT->getNumBits() > 64) 965 return getNaturalAlignIndirect(Ty); 966 return ABIArgInfo::getDirect(); 967 } 968 969 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 970 : ABIArgInfo::getDirect()); 971 } 972 973 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 974 if (RetTy->isVoidType()) 975 return ABIArgInfo::getIgnore(); 976 977 // In the PNaCl ABI we always return records/structures on the stack. 978 if (isAggregateTypeForABI(RetTy)) 979 return getNaturalAlignIndirect(RetTy); 980 981 // Treat extended integers as integers if <=64, otherwise pass indirectly. 982 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(RetTy); 985 return ABIArgInfo::getDirect(); 986 } 987 988 // Treat an enum type as its underlying type. 989 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 990 RetTy = EnumTy->getDecl()->getIntegerType(); 991 992 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 993 : ABIArgInfo::getDirect()); 994 } 995 996 /// IsX86_MMXType - Return true if this is an MMX type. 997 bool IsX86_MMXType(llvm::Type *IRType) { 998 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 999 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1000 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1001 IRType->getScalarSizeInBits() != 64; 1002 } 1003 1004 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1005 StringRef Constraint, 1006 llvm::Type* Ty) { 1007 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1008 .Cases("y", "&y", "^Ym", true) 1009 .Default(false); 1010 if (IsMMXCons && Ty->isVectorTy()) { 1011 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1012 64) { 1013 // Invalid MMX constraint 1014 return nullptr; 1015 } 1016 1017 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1018 } 1019 1020 // No operation needed 1021 return Ty; 1022 } 1023 1024 /// Returns true if this type can be passed in SSE registers with the 1025 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1026 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1027 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1028 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1029 if (BT->getKind() == BuiltinType::LongDouble) { 1030 if (&Context.getTargetInfo().getLongDoubleFormat() == 1031 &llvm::APFloat::x87DoubleExtended()) 1032 return false; 1033 } 1034 return true; 1035 } 1036 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1037 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1038 // registers specially. 1039 unsigned VecSize = Context.getTypeSize(VT); 1040 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 /// Returns true if this aggregate is small enough to be passed in SSE registers 1047 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1048 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1049 return NumMembers <= 4; 1050 } 1051 1052 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1053 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1054 auto AI = ABIArgInfo::getDirect(T); 1055 AI.setInReg(true); 1056 AI.setCanBeFlattened(false); 1057 return AI; 1058 } 1059 1060 //===----------------------------------------------------------------------===// 1061 // X86-32 ABI Implementation 1062 //===----------------------------------------------------------------------===// 1063 1064 /// Similar to llvm::CCState, but for Clang. 1065 struct CCState { 1066 CCState(CGFunctionInfo &FI) 1067 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1068 1069 llvm::SmallBitVector IsPreassigned; 1070 unsigned CC = CallingConv::CC_C; 1071 unsigned FreeRegs = 0; 1072 unsigned FreeSSERegs = 0; 1073 }; 1074 1075 enum { 1076 // Vectorcall only allows the first 6 parameters to be passed in registers. 1077 VectorcallMaxParamNumAsReg = 6 1078 }; 1079 1080 /// X86_32ABIInfo - The X86-32 ABI information. 1081 class X86_32ABIInfo : public SwiftABIInfo { 1082 enum Class { 1083 Integer, 1084 Float 1085 }; 1086 1087 static const unsigned MinABIStackAlignInBytes = 4; 1088 1089 bool IsDarwinVectorABI; 1090 bool IsRetSmallStructInRegABI; 1091 bool IsWin32StructABI; 1092 bool IsSoftFloatABI; 1093 bool IsMCUABI; 1094 unsigned DefaultNumRegisterParameters; 1095 1096 static bool isRegisterSize(unsigned Size) { 1097 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1098 } 1099 1100 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1101 // FIXME: Assumes vectorcall is in use. 1102 return isX86VectorTypeForVectorCall(getContext(), Ty); 1103 } 1104 1105 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1106 uint64_t NumMembers) const override { 1107 // FIXME: Assumes vectorcall is in use. 1108 return isX86VectorCallAggregateSmallEnough(NumMembers); 1109 } 1110 1111 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1112 1113 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1114 /// such that the argument will be passed in memory. 1115 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1116 1117 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1118 1119 /// Return the alignment to use for the given type on the stack. 1120 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1121 1122 Class classify(QualType Ty) const; 1123 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1124 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1125 1126 /// Updates the number of available free registers, returns 1127 /// true if any registers were allocated. 1128 bool updateFreeRegs(QualType Ty, CCState &State) const; 1129 1130 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1131 bool &NeedsPadding) const; 1132 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1133 1134 bool canExpandIndirectArgument(QualType Ty) const; 1135 1136 /// Rewrite the function info so that all memory arguments use 1137 /// inalloca. 1138 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1139 1140 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1141 CharUnits &StackOffset, ABIArgInfo &Info, 1142 QualType Type) const; 1143 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1144 1145 public: 1146 1147 void computeInfo(CGFunctionInfo &FI) const override; 1148 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1149 QualType Ty) const override; 1150 1151 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1152 bool RetSmallStructInRegABI, bool Win32StructABI, 1153 unsigned NumRegisterParameters, bool SoftFloatABI) 1154 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1155 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1156 IsWin32StructABI(Win32StructABI), 1157 IsSoftFloatABI(SoftFloatABI), 1158 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1159 DefaultNumRegisterParameters(NumRegisterParameters) {} 1160 1161 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1162 bool asReturnValue) const override { 1163 // LLVM's x86-32 lowering currently only assigns up to three 1164 // integer registers and three fp registers. Oddly, it'll use up to 1165 // four vector registers for vectors, but those can overlap with the 1166 // scalar registers. 1167 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1168 } 1169 1170 bool isSwiftErrorInRegister() const override { 1171 // x86-32 lowering does not support passing swifterror in a register. 1172 return false; 1173 } 1174 }; 1175 1176 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1177 public: 1178 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1179 bool RetSmallStructInRegABI, bool Win32StructABI, 1180 unsigned NumRegisterParameters, bool SoftFloatABI) 1181 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1182 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1183 NumRegisterParameters, SoftFloatABI)) {} 1184 1185 static bool isStructReturnInRegABI( 1186 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1187 1188 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1189 CodeGen::CodeGenModule &CGM) const override; 1190 1191 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1192 // Darwin uses different dwarf register numbers for EH. 1193 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1194 return 4; 1195 } 1196 1197 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1198 llvm::Value *Address) const override; 1199 1200 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1201 StringRef Constraint, 1202 llvm::Type* Ty) const override { 1203 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1204 } 1205 1206 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1207 std::string &Constraints, 1208 std::vector<llvm::Type *> &ResultRegTypes, 1209 std::vector<llvm::Type *> &ResultTruncRegTypes, 1210 std::vector<LValue> &ResultRegDests, 1211 std::string &AsmString, 1212 unsigned NumOutputs) const override; 1213 1214 llvm::Constant * 1215 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1216 unsigned Sig = (0xeb << 0) | // jmp rel8 1217 (0x06 << 8) | // .+0x08 1218 ('v' << 16) | 1219 ('2' << 24); 1220 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1221 } 1222 1223 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1224 return "movl\t%ebp, %ebp" 1225 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1226 } 1227 }; 1228 1229 } 1230 1231 /// Rewrite input constraint references after adding some output constraints. 1232 /// In the case where there is one output and one input and we add one output, 1233 /// we need to replace all operand references greater than or equal to 1: 1234 /// mov $0, $1 1235 /// mov eax, $1 1236 /// The result will be: 1237 /// mov $0, $2 1238 /// mov eax, $2 1239 static void rewriteInputConstraintReferences(unsigned FirstIn, 1240 unsigned NumNewOuts, 1241 std::string &AsmString) { 1242 std::string Buf; 1243 llvm::raw_string_ostream OS(Buf); 1244 size_t Pos = 0; 1245 while (Pos < AsmString.size()) { 1246 size_t DollarStart = AsmString.find('$', Pos); 1247 if (DollarStart == std::string::npos) 1248 DollarStart = AsmString.size(); 1249 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1250 if (DollarEnd == std::string::npos) 1251 DollarEnd = AsmString.size(); 1252 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1253 Pos = DollarEnd; 1254 size_t NumDollars = DollarEnd - DollarStart; 1255 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1256 // We have an operand reference. 1257 size_t DigitStart = Pos; 1258 if (AsmString[DigitStart] == '{') { 1259 OS << '{'; 1260 ++DigitStart; 1261 } 1262 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1263 if (DigitEnd == std::string::npos) 1264 DigitEnd = AsmString.size(); 1265 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1266 unsigned OperandIndex; 1267 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1268 if (OperandIndex >= FirstIn) 1269 OperandIndex += NumNewOuts; 1270 OS << OperandIndex; 1271 } else { 1272 OS << OperandStr; 1273 } 1274 Pos = DigitEnd; 1275 } 1276 } 1277 AsmString = std::move(OS.str()); 1278 } 1279 1280 /// Add output constraints for EAX:EDX because they are return registers. 1281 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1282 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1283 std::vector<llvm::Type *> &ResultRegTypes, 1284 std::vector<llvm::Type *> &ResultTruncRegTypes, 1285 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1286 unsigned NumOutputs) const { 1287 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1288 1289 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1290 // larger. 1291 if (!Constraints.empty()) 1292 Constraints += ','; 1293 if (RetWidth <= 32) { 1294 Constraints += "={eax}"; 1295 ResultRegTypes.push_back(CGF.Int32Ty); 1296 } else { 1297 // Use the 'A' constraint for EAX:EDX. 1298 Constraints += "=A"; 1299 ResultRegTypes.push_back(CGF.Int64Ty); 1300 } 1301 1302 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1303 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1304 ResultTruncRegTypes.push_back(CoerceTy); 1305 1306 // Coerce the integer by bitcasting the return slot pointer. 1307 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1308 CoerceTy->getPointerTo())); 1309 ResultRegDests.push_back(ReturnSlot); 1310 1311 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1312 } 1313 1314 /// shouldReturnTypeInRegister - Determine if the given type should be 1315 /// returned in a register (for the Darwin and MCU ABI). 1316 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1317 ASTContext &Context) const { 1318 uint64_t Size = Context.getTypeSize(Ty); 1319 1320 // For i386, type must be register sized. 1321 // For the MCU ABI, it only needs to be <= 8-byte 1322 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1323 return false; 1324 1325 if (Ty->isVectorType()) { 1326 // 64- and 128- bit vectors inside structures are not returned in 1327 // registers. 1328 if (Size == 64 || Size == 128) 1329 return false; 1330 1331 return true; 1332 } 1333 1334 // If this is a builtin, pointer, enum, complex type, member pointer, or 1335 // member function pointer it is ok. 1336 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1337 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1338 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1339 return true; 1340 1341 // Arrays are treated like records. 1342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1343 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1344 1345 // Otherwise, it must be a record type. 1346 const RecordType *RT = Ty->getAs<RecordType>(); 1347 if (!RT) return false; 1348 1349 // FIXME: Traverse bases here too. 1350 1351 // Structure types are passed in register if all fields would be 1352 // passed in a register. 1353 for (const auto *FD : RT->getDecl()->fields()) { 1354 // Empty fields are ignored. 1355 if (isEmptyField(Context, FD, true)) 1356 continue; 1357 1358 // Check fields recursively. 1359 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1360 return false; 1361 } 1362 return true; 1363 } 1364 1365 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1366 // Treat complex types as the element type. 1367 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1368 Ty = CTy->getElementType(); 1369 1370 // Check for a type which we know has a simple scalar argument-passing 1371 // convention without any padding. (We're specifically looking for 32 1372 // and 64-bit integer and integer-equivalents, float, and double.) 1373 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1374 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1375 return false; 1376 1377 uint64_t Size = Context.getTypeSize(Ty); 1378 return Size == 32 || Size == 64; 1379 } 1380 1381 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1382 uint64_t &Size) { 1383 for (const auto *FD : RD->fields()) { 1384 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1385 // argument is smaller than 32-bits, expanding the struct will create 1386 // alignment padding. 1387 if (!is32Or64BitBasicType(FD->getType(), Context)) 1388 return false; 1389 1390 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1391 // how to expand them yet, and the predicate for telling if a bitfield still 1392 // counts as "basic" is more complicated than what we were doing previously. 1393 if (FD->isBitField()) 1394 return false; 1395 1396 Size += Context.getTypeSize(FD->getType()); 1397 } 1398 return true; 1399 } 1400 1401 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1402 uint64_t &Size) { 1403 // Don't do this if there are any non-empty bases. 1404 for (const CXXBaseSpecifier &Base : RD->bases()) { 1405 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1406 Size)) 1407 return false; 1408 } 1409 if (!addFieldSizes(Context, RD, Size)) 1410 return false; 1411 return true; 1412 } 1413 1414 /// Test whether an argument type which is to be passed indirectly (on the 1415 /// stack) would have the equivalent layout if it was expanded into separate 1416 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1417 /// optimizations. 1418 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1419 // We can only expand structure types. 1420 const RecordType *RT = Ty->getAs<RecordType>(); 1421 if (!RT) 1422 return false; 1423 const RecordDecl *RD = RT->getDecl(); 1424 uint64_t Size = 0; 1425 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1426 if (!IsWin32StructABI) { 1427 // On non-Windows, we have to conservatively match our old bitcode 1428 // prototypes in order to be ABI-compatible at the bitcode level. 1429 if (!CXXRD->isCLike()) 1430 return false; 1431 } else { 1432 // Don't do this for dynamic classes. 1433 if (CXXRD->isDynamicClass()) 1434 return false; 1435 } 1436 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1437 return false; 1438 } else { 1439 if (!addFieldSizes(getContext(), RD, Size)) 1440 return false; 1441 } 1442 1443 // We can do this if there was no alignment padding. 1444 return Size == getContext().getTypeSize(Ty); 1445 } 1446 1447 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1448 // If the return value is indirect, then the hidden argument is consuming one 1449 // integer register. 1450 if (State.FreeRegs) { 1451 --State.FreeRegs; 1452 if (!IsMCUABI) 1453 return getNaturalAlignIndirectInReg(RetTy); 1454 } 1455 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1456 } 1457 1458 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1459 CCState &State) const { 1460 if (RetTy->isVoidType()) 1461 return ABIArgInfo::getIgnore(); 1462 1463 const Type *Base = nullptr; 1464 uint64_t NumElts = 0; 1465 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1466 State.CC == llvm::CallingConv::X86_RegCall) && 1467 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1468 // The LLVM struct type for such an aggregate should lower properly. 1469 return ABIArgInfo::getDirect(); 1470 } 1471 1472 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1473 // On Darwin, some vectors are returned in registers. 1474 if (IsDarwinVectorABI) { 1475 uint64_t Size = getContext().getTypeSize(RetTy); 1476 1477 // 128-bit vectors are a special case; they are returned in 1478 // registers and we need to make sure to pick a type the LLVM 1479 // backend will like. 1480 if (Size == 128) 1481 return ABIArgInfo::getDirect(llvm::VectorType::get( 1482 llvm::Type::getInt64Ty(getVMContext()), 2)); 1483 1484 // Always return in register if it fits in a general purpose 1485 // register, or if it is 64 bits and has a single element. 1486 if ((Size == 8 || Size == 16 || Size == 32) || 1487 (Size == 64 && VT->getNumElements() == 1)) 1488 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1489 Size)); 1490 1491 return getIndirectReturnResult(RetTy, State); 1492 } 1493 1494 return ABIArgInfo::getDirect(); 1495 } 1496 1497 if (isAggregateTypeForABI(RetTy)) { 1498 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1499 // Structures with flexible arrays are always indirect. 1500 if (RT->getDecl()->hasFlexibleArrayMember()) 1501 return getIndirectReturnResult(RetTy, State); 1502 } 1503 1504 // If specified, structs and unions are always indirect. 1505 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1506 return getIndirectReturnResult(RetTy, State); 1507 1508 // Ignore empty structs/unions. 1509 if (isEmptyRecord(getContext(), RetTy, true)) 1510 return ABIArgInfo::getIgnore(); 1511 1512 // Small structures which are register sized are generally returned 1513 // in a register. 1514 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1515 uint64_t Size = getContext().getTypeSize(RetTy); 1516 1517 // As a special-case, if the struct is a "single-element" struct, and 1518 // the field is of type "float" or "double", return it in a 1519 // floating-point register. (MSVC does not apply this special case.) 1520 // We apply a similar transformation for pointer types to improve the 1521 // quality of the generated IR. 1522 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1523 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1524 || SeltTy->hasPointerRepresentation()) 1525 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1526 1527 // FIXME: We should be able to narrow this integer in cases with dead 1528 // padding. 1529 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1530 } 1531 1532 return getIndirectReturnResult(RetTy, State); 1533 } 1534 1535 // Treat an enum type as its underlying type. 1536 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1537 RetTy = EnumTy->getDecl()->getIntegerType(); 1538 1539 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1540 if (EIT->getNumBits() > 64) 1541 return getIndirectReturnResult(RetTy, State); 1542 1543 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1544 : ABIArgInfo::getDirect()); 1545 } 1546 1547 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1548 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1549 } 1550 1551 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1552 const RecordType *RT = Ty->getAs<RecordType>(); 1553 if (!RT) 1554 return 0; 1555 const RecordDecl *RD = RT->getDecl(); 1556 1557 // If this is a C++ record, check the bases first. 1558 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1559 for (const auto &I : CXXRD->bases()) 1560 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1561 return false; 1562 1563 for (const auto *i : RD->fields()) { 1564 QualType FT = i->getType(); 1565 1566 if (isSIMDVectorType(Context, FT)) 1567 return true; 1568 1569 if (isRecordWithSIMDVectorType(Context, FT)) 1570 return true; 1571 } 1572 1573 return false; 1574 } 1575 1576 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1577 unsigned Align) const { 1578 // Otherwise, if the alignment is less than or equal to the minimum ABI 1579 // alignment, just use the default; the backend will handle this. 1580 if (Align <= MinABIStackAlignInBytes) 1581 return 0; // Use default alignment. 1582 1583 // On non-Darwin, the stack type alignment is always 4. 1584 if (!IsDarwinVectorABI) { 1585 // Set explicit alignment, since we may need to realign the top. 1586 return MinABIStackAlignInBytes; 1587 } 1588 1589 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1590 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1591 isRecordWithSIMDVectorType(getContext(), Ty))) 1592 return 16; 1593 1594 return MinABIStackAlignInBytes; 1595 } 1596 1597 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1598 CCState &State) const { 1599 if (!ByVal) { 1600 if (State.FreeRegs) { 1601 --State.FreeRegs; // Non-byval indirects just use one pointer. 1602 if (!IsMCUABI) 1603 return getNaturalAlignIndirectInReg(Ty); 1604 } 1605 return getNaturalAlignIndirect(Ty, false); 1606 } 1607 1608 // Compute the byval alignment. 1609 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1610 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1611 if (StackAlign == 0) 1612 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1613 1614 // If the stack alignment is less than the type alignment, realign the 1615 // argument. 1616 bool Realign = TypeAlign > StackAlign; 1617 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1618 /*ByVal=*/true, Realign); 1619 } 1620 1621 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1622 const Type *T = isSingleElementStruct(Ty, getContext()); 1623 if (!T) 1624 T = Ty.getTypePtr(); 1625 1626 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1627 BuiltinType::Kind K = BT->getKind(); 1628 if (K == BuiltinType::Float || K == BuiltinType::Double) 1629 return Float; 1630 } 1631 return Integer; 1632 } 1633 1634 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1635 if (!IsSoftFloatABI) { 1636 Class C = classify(Ty); 1637 if (C == Float) 1638 return false; 1639 } 1640 1641 unsigned Size = getContext().getTypeSize(Ty); 1642 unsigned SizeInRegs = (Size + 31) / 32; 1643 1644 if (SizeInRegs == 0) 1645 return false; 1646 1647 if (!IsMCUABI) { 1648 if (SizeInRegs > State.FreeRegs) { 1649 State.FreeRegs = 0; 1650 return false; 1651 } 1652 } else { 1653 // The MCU psABI allows passing parameters in-reg even if there are 1654 // earlier parameters that are passed on the stack. Also, 1655 // it does not allow passing >8-byte structs in-register, 1656 // even if there are 3 free registers available. 1657 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1658 return false; 1659 } 1660 1661 State.FreeRegs -= SizeInRegs; 1662 return true; 1663 } 1664 1665 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1666 bool &InReg, 1667 bool &NeedsPadding) const { 1668 // On Windows, aggregates other than HFAs are never passed in registers, and 1669 // they do not consume register slots. Homogenous floating-point aggregates 1670 // (HFAs) have already been dealt with at this point. 1671 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1672 return false; 1673 1674 NeedsPadding = false; 1675 InReg = !IsMCUABI; 1676 1677 if (!updateFreeRegs(Ty, State)) 1678 return false; 1679 1680 if (IsMCUABI) 1681 return true; 1682 1683 if (State.CC == llvm::CallingConv::X86_FastCall || 1684 State.CC == llvm::CallingConv::X86_VectorCall || 1685 State.CC == llvm::CallingConv::X86_RegCall) { 1686 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1687 NeedsPadding = true; 1688 1689 return false; 1690 } 1691 1692 return true; 1693 } 1694 1695 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1696 if (!updateFreeRegs(Ty, State)) 1697 return false; 1698 1699 if (IsMCUABI) 1700 return false; 1701 1702 if (State.CC == llvm::CallingConv::X86_FastCall || 1703 State.CC == llvm::CallingConv::X86_VectorCall || 1704 State.CC == llvm::CallingConv::X86_RegCall) { 1705 if (getContext().getTypeSize(Ty) > 32) 1706 return false; 1707 1708 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1709 Ty->isReferenceType()); 1710 } 1711 1712 return true; 1713 } 1714 1715 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1716 // Vectorcall x86 works subtly different than in x64, so the format is 1717 // a bit different than the x64 version. First, all vector types (not HVAs) 1718 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1719 // This differs from the x64 implementation, where the first 6 by INDEX get 1720 // registers. 1721 // In the second pass over the arguments, HVAs are passed in the remaining 1722 // vector registers if possible, or indirectly by address. The address will be 1723 // passed in ECX/EDX if available. Any other arguments are passed according to 1724 // the usual fastcall rules. 1725 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1726 for (int I = 0, E = Args.size(); I < E; ++I) { 1727 const Type *Base = nullptr; 1728 uint64_t NumElts = 0; 1729 const QualType &Ty = Args[I].type; 1730 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1731 isHomogeneousAggregate(Ty, Base, NumElts)) { 1732 if (State.FreeSSERegs >= NumElts) { 1733 State.FreeSSERegs -= NumElts; 1734 Args[I].info = ABIArgInfo::getDirectInReg(); 1735 State.IsPreassigned.set(I); 1736 } 1737 } 1738 } 1739 } 1740 1741 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1742 CCState &State) const { 1743 // FIXME: Set alignment on indirect arguments. 1744 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1745 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1746 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1747 1748 Ty = useFirstFieldIfTransparentUnion(Ty); 1749 TypeInfo TI = getContext().getTypeInfo(Ty); 1750 1751 // Check with the C++ ABI first. 1752 const RecordType *RT = Ty->getAs<RecordType>(); 1753 if (RT) { 1754 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1755 if (RAA == CGCXXABI::RAA_Indirect) { 1756 return getIndirectResult(Ty, false, State); 1757 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1758 // The field index doesn't matter, we'll fix it up later. 1759 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1760 } 1761 } 1762 1763 // Regcall uses the concept of a homogenous vector aggregate, similar 1764 // to other targets. 1765 const Type *Base = nullptr; 1766 uint64_t NumElts = 0; 1767 if ((IsRegCall || IsVectorCall) && 1768 isHomogeneousAggregate(Ty, Base, NumElts)) { 1769 if (State.FreeSSERegs >= NumElts) { 1770 State.FreeSSERegs -= NumElts; 1771 1772 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1773 // does. 1774 if (IsVectorCall) 1775 return getDirectX86Hva(); 1776 1777 if (Ty->isBuiltinType() || Ty->isVectorType()) 1778 return ABIArgInfo::getDirect(); 1779 return ABIArgInfo::getExpand(); 1780 } 1781 return getIndirectResult(Ty, /*ByVal=*/false, State); 1782 } 1783 1784 if (isAggregateTypeForABI(Ty)) { 1785 // Structures with flexible arrays are always indirect. 1786 // FIXME: This should not be byval! 1787 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1788 return getIndirectResult(Ty, true, State); 1789 1790 // Ignore empty structs/unions on non-Windows. 1791 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1792 return ABIArgInfo::getIgnore(); 1793 1794 llvm::LLVMContext &LLVMContext = getVMContext(); 1795 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1796 bool NeedsPadding = false; 1797 bool InReg; 1798 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1799 unsigned SizeInRegs = (TI.Width + 31) / 32; 1800 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1801 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1802 if (InReg) 1803 return ABIArgInfo::getDirectInReg(Result); 1804 else 1805 return ABIArgInfo::getDirect(Result); 1806 } 1807 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1808 1809 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1810 // added in MSVC 2015. 1811 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1812 return getIndirectResult(Ty, /*ByVal=*/false, State); 1813 1814 // Expand small (<= 128-bit) record types when we know that the stack layout 1815 // of those arguments will match the struct. This is important because the 1816 // LLVM backend isn't smart enough to remove byval, which inhibits many 1817 // optimizations. 1818 // Don't do this for the MCU if there are still free integer registers 1819 // (see X86_64 ABI for full explanation). 1820 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1821 canExpandIndirectArgument(Ty)) 1822 return ABIArgInfo::getExpandWithPadding( 1823 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1824 1825 return getIndirectResult(Ty, true, State); 1826 } 1827 1828 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1829 // On Windows, vectors are passed directly if registers are available, or 1830 // indirectly if not. This avoids the need to align argument memory. Pass 1831 // user-defined vector types larger than 512 bits indirectly for simplicity. 1832 if (IsWin32StructABI) { 1833 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1834 --State.FreeSSERegs; 1835 return ABIArgInfo::getDirectInReg(); 1836 } 1837 return getIndirectResult(Ty, /*ByVal=*/false, State); 1838 } 1839 1840 // On Darwin, some vectors are passed in memory, we handle this by passing 1841 // it as an i8/i16/i32/i64. 1842 if (IsDarwinVectorABI) { 1843 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1844 (TI.Width == 64 && VT->getNumElements() == 1)) 1845 return ABIArgInfo::getDirect( 1846 llvm::IntegerType::get(getVMContext(), TI.Width)); 1847 } 1848 1849 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1850 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1851 1852 return ABIArgInfo::getDirect(); 1853 } 1854 1855 1856 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1857 Ty = EnumTy->getDecl()->getIntegerType(); 1858 1859 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1860 1861 if (isPromotableIntegerTypeForABI(Ty)) { 1862 if (InReg) 1863 return ABIArgInfo::getExtendInReg(Ty); 1864 return ABIArgInfo::getExtend(Ty); 1865 } 1866 1867 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1868 if (EIT->getNumBits() <= 64) { 1869 if (InReg) 1870 return ABIArgInfo::getDirectInReg(); 1871 return ABIArgInfo::getDirect(); 1872 } 1873 return getIndirectResult(Ty, /*ByVal=*/false, State); 1874 } 1875 1876 if (InReg) 1877 return ABIArgInfo::getDirectInReg(); 1878 return ABIArgInfo::getDirect(); 1879 } 1880 1881 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1882 CCState State(FI); 1883 if (IsMCUABI) 1884 State.FreeRegs = 3; 1885 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1886 State.FreeRegs = 2; 1887 State.FreeSSERegs = 3; 1888 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1889 State.FreeRegs = 2; 1890 State.FreeSSERegs = 6; 1891 } else if (FI.getHasRegParm()) 1892 State.FreeRegs = FI.getRegParm(); 1893 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1894 State.FreeRegs = 5; 1895 State.FreeSSERegs = 8; 1896 } else if (IsWin32StructABI) { 1897 // Since MSVC 2015, the first three SSE vectors have been passed in 1898 // registers. The rest are passed indirectly. 1899 State.FreeRegs = DefaultNumRegisterParameters; 1900 State.FreeSSERegs = 3; 1901 } else 1902 State.FreeRegs = DefaultNumRegisterParameters; 1903 1904 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1905 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1906 } else if (FI.getReturnInfo().isIndirect()) { 1907 // The C++ ABI is not aware of register usage, so we have to check if the 1908 // return value was sret and put it in a register ourselves if appropriate. 1909 if (State.FreeRegs) { 1910 --State.FreeRegs; // The sret parameter consumes a register. 1911 if (!IsMCUABI) 1912 FI.getReturnInfo().setInReg(true); 1913 } 1914 } 1915 1916 // The chain argument effectively gives us another free register. 1917 if (FI.isChainCall()) 1918 ++State.FreeRegs; 1919 1920 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1921 // arguments to XMM registers as available. 1922 if (State.CC == llvm::CallingConv::X86_VectorCall) 1923 runVectorCallFirstPass(FI, State); 1924 1925 bool UsedInAlloca = false; 1926 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1927 for (int I = 0, E = Args.size(); I < E; ++I) { 1928 // Skip arguments that have already been assigned. 1929 if (State.IsPreassigned.test(I)) 1930 continue; 1931 1932 Args[I].info = classifyArgumentType(Args[I].type, State); 1933 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1934 } 1935 1936 // If we needed to use inalloca for any argument, do a second pass and rewrite 1937 // all the memory arguments to use inalloca. 1938 if (UsedInAlloca) 1939 rewriteWithInAlloca(FI); 1940 } 1941 1942 void 1943 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1944 CharUnits &StackOffset, ABIArgInfo &Info, 1945 QualType Type) const { 1946 // Arguments are always 4-byte-aligned. 1947 CharUnits WordSize = CharUnits::fromQuantity(4); 1948 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1949 1950 // sret pointers and indirect things will require an extra pointer 1951 // indirection, unless they are byval. Most things are byval, and will not 1952 // require this indirection. 1953 bool IsIndirect = false; 1954 if (Info.isIndirect() && !Info.getIndirectByVal()) 1955 IsIndirect = true; 1956 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1957 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1958 if (IsIndirect) 1959 LLTy = LLTy->getPointerTo(0); 1960 FrameFields.push_back(LLTy); 1961 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1962 1963 // Insert padding bytes to respect alignment. 1964 CharUnits FieldEnd = StackOffset; 1965 StackOffset = FieldEnd.alignTo(WordSize); 1966 if (StackOffset != FieldEnd) { 1967 CharUnits NumBytes = StackOffset - FieldEnd; 1968 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1969 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1970 FrameFields.push_back(Ty); 1971 } 1972 } 1973 1974 static bool isArgInAlloca(const ABIArgInfo &Info) { 1975 // Leave ignored and inreg arguments alone. 1976 switch (Info.getKind()) { 1977 case ABIArgInfo::InAlloca: 1978 return true; 1979 case ABIArgInfo::Ignore: 1980 return false; 1981 case ABIArgInfo::Indirect: 1982 case ABIArgInfo::Direct: 1983 case ABIArgInfo::Extend: 1984 return !Info.getInReg(); 1985 case ABIArgInfo::Expand: 1986 case ABIArgInfo::CoerceAndExpand: 1987 // These are aggregate types which are never passed in registers when 1988 // inalloca is involved. 1989 return true; 1990 } 1991 llvm_unreachable("invalid enum"); 1992 } 1993 1994 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1995 assert(IsWin32StructABI && "inalloca only supported on win32"); 1996 1997 // Build a packed struct type for all of the arguments in memory. 1998 SmallVector<llvm::Type *, 6> FrameFields; 1999 2000 // The stack alignment is always 4. 2001 CharUnits StackAlign = CharUnits::fromQuantity(4); 2002 2003 CharUnits StackOffset; 2004 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2005 2006 // Put 'this' into the struct before 'sret', if necessary. 2007 bool IsThisCall = 2008 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2009 ABIArgInfo &Ret = FI.getReturnInfo(); 2010 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2011 isArgInAlloca(I->info)) { 2012 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2013 ++I; 2014 } 2015 2016 // Put the sret parameter into the inalloca struct if it's in memory. 2017 if (Ret.isIndirect() && !Ret.getInReg()) { 2018 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2019 // On Windows, the hidden sret parameter is always returned in eax. 2020 Ret.setInAllocaSRet(IsWin32StructABI); 2021 } 2022 2023 // Skip the 'this' parameter in ecx. 2024 if (IsThisCall) 2025 ++I; 2026 2027 // Put arguments passed in memory into the struct. 2028 for (; I != E; ++I) { 2029 if (isArgInAlloca(I->info)) 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 } 2032 2033 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2034 /*isPacked=*/true), 2035 StackAlign); 2036 } 2037 2038 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2039 Address VAListAddr, QualType Ty) const { 2040 2041 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2042 2043 // x86-32 changes the alignment of certain arguments on the stack. 2044 // 2045 // Just messing with TypeInfo like this works because we never pass 2046 // anything indirectly. 2047 TypeInfo.second = CharUnits::fromQuantity( 2048 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 2049 2050 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2051 TypeInfo, CharUnits::fromQuantity(4), 2052 /*AllowHigherAlign*/ true); 2053 } 2054 2055 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2056 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2057 assert(Triple.getArch() == llvm::Triple::x86); 2058 2059 switch (Opts.getStructReturnConvention()) { 2060 case CodeGenOptions::SRCK_Default: 2061 break; 2062 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2063 return false; 2064 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2065 return true; 2066 } 2067 2068 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2069 return true; 2070 2071 switch (Triple.getOS()) { 2072 case llvm::Triple::DragonFly: 2073 case llvm::Triple::FreeBSD: 2074 case llvm::Triple::OpenBSD: 2075 case llvm::Triple::Win32: 2076 return true; 2077 default: 2078 return false; 2079 } 2080 } 2081 2082 void X86_32TargetCodeGenInfo::setTargetAttributes( 2083 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2084 if (GV->isDeclaration()) 2085 return; 2086 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2087 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2088 llvm::Function *Fn = cast<llvm::Function>(GV); 2089 Fn->addFnAttr("stackrealign"); 2090 } 2091 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2092 llvm::Function *Fn = cast<llvm::Function>(GV); 2093 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2094 } 2095 } 2096 } 2097 2098 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2099 CodeGen::CodeGenFunction &CGF, 2100 llvm::Value *Address) const { 2101 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2102 2103 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2104 2105 // 0-7 are the eight integer registers; the order is different 2106 // on Darwin (for EH), but the range is the same. 2107 // 8 is %eip. 2108 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2109 2110 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2111 // 12-16 are st(0..4). Not sure why we stop at 4. 2112 // These have size 16, which is sizeof(long double) on 2113 // platforms with 8-byte alignment for that type. 2114 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2115 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2116 2117 } else { 2118 // 9 is %eflags, which doesn't get a size on Darwin for some 2119 // reason. 2120 Builder.CreateAlignedStore( 2121 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2122 CharUnits::One()); 2123 2124 // 11-16 are st(0..5). Not sure why we stop at 5. 2125 // These have size 12, which is sizeof(long double) on 2126 // platforms with 4-byte alignment for that type. 2127 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2128 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2129 } 2130 2131 return false; 2132 } 2133 2134 //===----------------------------------------------------------------------===// 2135 // X86-64 ABI Implementation 2136 //===----------------------------------------------------------------------===// 2137 2138 2139 namespace { 2140 /// The AVX ABI level for X86 targets. 2141 enum class X86AVXABILevel { 2142 None, 2143 AVX, 2144 AVX512 2145 }; 2146 2147 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2148 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2149 switch (AVXLevel) { 2150 case X86AVXABILevel::AVX512: 2151 return 512; 2152 case X86AVXABILevel::AVX: 2153 return 256; 2154 case X86AVXABILevel::None: 2155 return 128; 2156 } 2157 llvm_unreachable("Unknown AVXLevel"); 2158 } 2159 2160 /// X86_64ABIInfo - The X86_64 ABI information. 2161 class X86_64ABIInfo : public SwiftABIInfo { 2162 enum Class { 2163 Integer = 0, 2164 SSE, 2165 SSEUp, 2166 X87, 2167 X87Up, 2168 ComplexX87, 2169 NoClass, 2170 Memory 2171 }; 2172 2173 /// merge - Implement the X86_64 ABI merging algorithm. 2174 /// 2175 /// Merge an accumulating classification \arg Accum with a field 2176 /// classification \arg Field. 2177 /// 2178 /// \param Accum - The accumulating classification. This should 2179 /// always be either NoClass or the result of a previous merge 2180 /// call. In addition, this should never be Memory (the caller 2181 /// should just return Memory for the aggregate). 2182 static Class merge(Class Accum, Class Field); 2183 2184 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2185 /// 2186 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2187 /// final MEMORY or SSE classes when necessary. 2188 /// 2189 /// \param AggregateSize - The size of the current aggregate in 2190 /// the classification process. 2191 /// 2192 /// \param Lo - The classification for the parts of the type 2193 /// residing in the low word of the containing object. 2194 /// 2195 /// \param Hi - The classification for the parts of the type 2196 /// residing in the higher words of the containing object. 2197 /// 2198 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2199 2200 /// classify - Determine the x86_64 register classes in which the 2201 /// given type T should be passed. 2202 /// 2203 /// \param Lo - The classification for the parts of the type 2204 /// residing in the low word of the containing object. 2205 /// 2206 /// \param Hi - The classification for the parts of the type 2207 /// residing in the high word of the containing object. 2208 /// 2209 /// \param OffsetBase - The bit offset of this type in the 2210 /// containing object. Some parameters are classified different 2211 /// depending on whether they straddle an eightbyte boundary. 2212 /// 2213 /// \param isNamedArg - Whether the argument in question is a "named" 2214 /// argument, as used in AMD64-ABI 3.5.7. 2215 /// 2216 /// If a word is unused its result will be NoClass; if a type should 2217 /// be passed in Memory then at least the classification of \arg Lo 2218 /// will be Memory. 2219 /// 2220 /// The \arg Lo class will be NoClass iff the argument is ignored. 2221 /// 2222 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2223 /// also be ComplexX87. 2224 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2225 bool isNamedArg) const; 2226 2227 llvm::Type *GetByteVectorType(QualType Ty) const; 2228 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2229 unsigned IROffset, QualType SourceTy, 2230 unsigned SourceOffset) const; 2231 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2232 unsigned IROffset, QualType SourceTy, 2233 unsigned SourceOffset) const; 2234 2235 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2236 /// such that the argument will be returned in memory. 2237 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2238 2239 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2240 /// such that the argument will be passed in memory. 2241 /// 2242 /// \param freeIntRegs - The number of free integer registers remaining 2243 /// available. 2244 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2245 2246 ABIArgInfo classifyReturnType(QualType RetTy) const; 2247 2248 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2249 unsigned &neededInt, unsigned &neededSSE, 2250 bool isNamedArg) const; 2251 2252 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2253 unsigned &NeededSSE) const; 2254 2255 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2256 unsigned &NeededSSE) const; 2257 2258 bool IsIllegalVectorType(QualType Ty) const; 2259 2260 /// The 0.98 ABI revision clarified a lot of ambiguities, 2261 /// unfortunately in ways that were not always consistent with 2262 /// certain previous compilers. In particular, platforms which 2263 /// required strict binary compatibility with older versions of GCC 2264 /// may need to exempt themselves. 2265 bool honorsRevision0_98() const { 2266 return !getTarget().getTriple().isOSDarwin(); 2267 } 2268 2269 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2270 /// classify it as INTEGER (for compatibility with older clang compilers). 2271 bool classifyIntegerMMXAsSSE() const { 2272 // Clang <= 3.8 did not do this. 2273 if (getContext().getLangOpts().getClangABICompat() <= 2274 LangOptions::ClangABI::Ver3_8) 2275 return false; 2276 2277 const llvm::Triple &Triple = getTarget().getTriple(); 2278 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2279 return false; 2280 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2281 return false; 2282 return true; 2283 } 2284 2285 // GCC classifies vectors of __int128 as memory. 2286 bool passInt128VectorsInMem() const { 2287 // Clang <= 9.0 did not do this. 2288 if (getContext().getLangOpts().getClangABICompat() <= 2289 LangOptions::ClangABI::Ver9) 2290 return false; 2291 2292 const llvm::Triple &T = getTarget().getTriple(); 2293 return T.isOSLinux() || T.isOSNetBSD(); 2294 } 2295 2296 X86AVXABILevel AVXLevel; 2297 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2298 // 64-bit hardware. 2299 bool Has64BitPointers; 2300 2301 public: 2302 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2303 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2304 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2305 } 2306 2307 bool isPassedUsingAVXType(QualType type) const { 2308 unsigned neededInt, neededSSE; 2309 // The freeIntRegs argument doesn't matter here. 2310 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2311 /*isNamedArg*/true); 2312 if (info.isDirect()) { 2313 llvm::Type *ty = info.getCoerceToType(); 2314 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2315 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2316 } 2317 return false; 2318 } 2319 2320 void computeInfo(CGFunctionInfo &FI) const override; 2321 2322 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2323 QualType Ty) const override; 2324 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2325 QualType Ty) const override; 2326 2327 bool has64BitPointers() const { 2328 return Has64BitPointers; 2329 } 2330 2331 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2332 bool asReturnValue) const override { 2333 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2334 } 2335 bool isSwiftErrorInRegister() const override { 2336 return true; 2337 } 2338 }; 2339 2340 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2341 class WinX86_64ABIInfo : public SwiftABIInfo { 2342 public: 2343 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2344 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2345 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2346 2347 void computeInfo(CGFunctionInfo &FI) const override; 2348 2349 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2350 QualType Ty) const override; 2351 2352 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2353 // FIXME: Assumes vectorcall is in use. 2354 return isX86VectorTypeForVectorCall(getContext(), Ty); 2355 } 2356 2357 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2358 uint64_t NumMembers) const override { 2359 // FIXME: Assumes vectorcall is in use. 2360 return isX86VectorCallAggregateSmallEnough(NumMembers); 2361 } 2362 2363 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2364 bool asReturnValue) const override { 2365 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2366 } 2367 2368 bool isSwiftErrorInRegister() const override { 2369 return true; 2370 } 2371 2372 private: 2373 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2374 bool IsVectorCall, bool IsRegCall) const; 2375 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2376 const ABIArgInfo ¤t) const; 2377 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2378 bool IsVectorCall, bool IsRegCall) const; 2379 2380 X86AVXABILevel AVXLevel; 2381 2382 bool IsMingw64; 2383 }; 2384 2385 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2386 public: 2387 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2388 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2389 2390 const X86_64ABIInfo &getABIInfo() const { 2391 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2392 } 2393 2394 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2395 /// the autoreleaseRV/retainRV optimization. 2396 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2397 return true; 2398 } 2399 2400 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2401 return 7; 2402 } 2403 2404 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2405 llvm::Value *Address) const override { 2406 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2407 2408 // 0-15 are the 16 integer registers. 2409 // 16 is %rip. 2410 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2411 return false; 2412 } 2413 2414 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2415 StringRef Constraint, 2416 llvm::Type* Ty) const override { 2417 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2418 } 2419 2420 bool isNoProtoCallVariadic(const CallArgList &args, 2421 const FunctionNoProtoType *fnType) const override { 2422 // The default CC on x86-64 sets %al to the number of SSA 2423 // registers used, and GCC sets this when calling an unprototyped 2424 // function, so we override the default behavior. However, don't do 2425 // that when AVX types are involved: the ABI explicitly states it is 2426 // undefined, and it doesn't work in practice because of how the ABI 2427 // defines varargs anyway. 2428 if (fnType->getCallConv() == CC_C) { 2429 bool HasAVXType = false; 2430 for (CallArgList::const_iterator 2431 it = args.begin(), ie = args.end(); it != ie; ++it) { 2432 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2433 HasAVXType = true; 2434 break; 2435 } 2436 } 2437 2438 if (!HasAVXType) 2439 return true; 2440 } 2441 2442 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2443 } 2444 2445 llvm::Constant * 2446 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2447 unsigned Sig = (0xeb << 0) | // jmp rel8 2448 (0x06 << 8) | // .+0x08 2449 ('v' << 16) | 2450 ('2' << 24); 2451 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2452 } 2453 2454 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2455 CodeGen::CodeGenModule &CGM) const override { 2456 if (GV->isDeclaration()) 2457 return; 2458 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2459 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2460 llvm::Function *Fn = cast<llvm::Function>(GV); 2461 Fn->addFnAttr("stackrealign"); 2462 } 2463 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2464 llvm::Function *Fn = cast<llvm::Function>(GV); 2465 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2466 } 2467 } 2468 } 2469 }; 2470 2471 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2472 // If the argument does not end in .lib, automatically add the suffix. 2473 // If the argument contains a space, enclose it in quotes. 2474 // This matches the behavior of MSVC. 2475 bool Quote = (Lib.find(" ") != StringRef::npos); 2476 std::string ArgStr = Quote ? "\"" : ""; 2477 ArgStr += Lib; 2478 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2479 ArgStr += ".lib"; 2480 ArgStr += Quote ? "\"" : ""; 2481 return ArgStr; 2482 } 2483 2484 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2485 public: 2486 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2487 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2488 unsigned NumRegisterParameters) 2489 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2490 Win32StructABI, NumRegisterParameters, false) {} 2491 2492 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2493 CodeGen::CodeGenModule &CGM) const override; 2494 2495 void getDependentLibraryOption(llvm::StringRef Lib, 2496 llvm::SmallString<24> &Opt) const override { 2497 Opt = "/DEFAULTLIB:"; 2498 Opt += qualifyWindowsLibrary(Lib); 2499 } 2500 2501 void getDetectMismatchOption(llvm::StringRef Name, 2502 llvm::StringRef Value, 2503 llvm::SmallString<32> &Opt) const override { 2504 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2505 } 2506 }; 2507 2508 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2509 CodeGen::CodeGenModule &CGM) { 2510 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2511 2512 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2513 Fn->addFnAttr("stack-probe-size", 2514 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2515 if (CGM.getCodeGenOpts().NoStackArgProbe) 2516 Fn->addFnAttr("no-stack-arg-probe"); 2517 } 2518 } 2519 2520 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2521 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2522 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2523 if (GV->isDeclaration()) 2524 return; 2525 addStackProbeTargetAttributes(D, GV, CGM); 2526 } 2527 2528 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2529 public: 2530 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2531 X86AVXABILevel AVXLevel) 2532 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2533 2534 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2535 CodeGen::CodeGenModule &CGM) const override; 2536 2537 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2538 return 7; 2539 } 2540 2541 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2542 llvm::Value *Address) const override { 2543 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2544 2545 // 0-15 are the 16 integer registers. 2546 // 16 is %rip. 2547 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2548 return false; 2549 } 2550 2551 void getDependentLibraryOption(llvm::StringRef Lib, 2552 llvm::SmallString<24> &Opt) const override { 2553 Opt = "/DEFAULTLIB:"; 2554 Opt += qualifyWindowsLibrary(Lib); 2555 } 2556 2557 void getDetectMismatchOption(llvm::StringRef Name, 2558 llvm::StringRef Value, 2559 llvm::SmallString<32> &Opt) const override { 2560 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2561 } 2562 }; 2563 2564 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2565 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2566 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2567 if (GV->isDeclaration()) 2568 return; 2569 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2570 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2571 llvm::Function *Fn = cast<llvm::Function>(GV); 2572 Fn->addFnAttr("stackrealign"); 2573 } 2574 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2575 llvm::Function *Fn = cast<llvm::Function>(GV); 2576 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2577 } 2578 } 2579 2580 addStackProbeTargetAttributes(D, GV, CGM); 2581 } 2582 } 2583 2584 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2585 Class &Hi) const { 2586 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2587 // 2588 // (a) If one of the classes is Memory, the whole argument is passed in 2589 // memory. 2590 // 2591 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2592 // memory. 2593 // 2594 // (c) If the size of the aggregate exceeds two eightbytes and the first 2595 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2596 // argument is passed in memory. NOTE: This is necessary to keep the 2597 // ABI working for processors that don't support the __m256 type. 2598 // 2599 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2600 // 2601 // Some of these are enforced by the merging logic. Others can arise 2602 // only with unions; for example: 2603 // union { _Complex double; unsigned; } 2604 // 2605 // Note that clauses (b) and (c) were added in 0.98. 2606 // 2607 if (Hi == Memory) 2608 Lo = Memory; 2609 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2610 Lo = Memory; 2611 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2612 Lo = Memory; 2613 if (Hi == SSEUp && Lo != SSE) 2614 Hi = SSE; 2615 } 2616 2617 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2618 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2619 // classified recursively so that always two fields are 2620 // considered. The resulting class is calculated according to 2621 // the classes of the fields in the eightbyte: 2622 // 2623 // (a) If both classes are equal, this is the resulting class. 2624 // 2625 // (b) If one of the classes is NO_CLASS, the resulting class is 2626 // the other class. 2627 // 2628 // (c) If one of the classes is MEMORY, the result is the MEMORY 2629 // class. 2630 // 2631 // (d) If one of the classes is INTEGER, the result is the 2632 // INTEGER. 2633 // 2634 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2635 // MEMORY is used as class. 2636 // 2637 // (f) Otherwise class SSE is used. 2638 2639 // Accum should never be memory (we should have returned) or 2640 // ComplexX87 (because this cannot be passed in a structure). 2641 assert((Accum != Memory && Accum != ComplexX87) && 2642 "Invalid accumulated classification during merge."); 2643 if (Accum == Field || Field == NoClass) 2644 return Accum; 2645 if (Field == Memory) 2646 return Memory; 2647 if (Accum == NoClass) 2648 return Field; 2649 if (Accum == Integer || Field == Integer) 2650 return Integer; 2651 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2652 Accum == X87 || Accum == X87Up) 2653 return Memory; 2654 return SSE; 2655 } 2656 2657 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2658 Class &Lo, Class &Hi, bool isNamedArg) const { 2659 // FIXME: This code can be simplified by introducing a simple value class for 2660 // Class pairs with appropriate constructor methods for the various 2661 // situations. 2662 2663 // FIXME: Some of the split computations are wrong; unaligned vectors 2664 // shouldn't be passed in registers for example, so there is no chance they 2665 // can straddle an eightbyte. Verify & simplify. 2666 2667 Lo = Hi = NoClass; 2668 2669 Class &Current = OffsetBase < 64 ? Lo : Hi; 2670 Current = Memory; 2671 2672 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2673 BuiltinType::Kind k = BT->getKind(); 2674 2675 if (k == BuiltinType::Void) { 2676 Current = NoClass; 2677 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2678 Lo = Integer; 2679 Hi = Integer; 2680 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2681 Current = Integer; 2682 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2683 Current = SSE; 2684 } else if (k == BuiltinType::LongDouble) { 2685 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2686 if (LDF == &llvm::APFloat::IEEEquad()) { 2687 Lo = SSE; 2688 Hi = SSEUp; 2689 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2690 Lo = X87; 2691 Hi = X87Up; 2692 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2693 Current = SSE; 2694 } else 2695 llvm_unreachable("unexpected long double representation!"); 2696 } 2697 // FIXME: _Decimal32 and _Decimal64 are SSE. 2698 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2699 return; 2700 } 2701 2702 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2703 // Classify the underlying integer type. 2704 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2705 return; 2706 } 2707 2708 if (Ty->hasPointerRepresentation()) { 2709 Current = Integer; 2710 return; 2711 } 2712 2713 if (Ty->isMemberPointerType()) { 2714 if (Ty->isMemberFunctionPointerType()) { 2715 if (Has64BitPointers) { 2716 // If Has64BitPointers, this is an {i64, i64}, so classify both 2717 // Lo and Hi now. 2718 Lo = Hi = Integer; 2719 } else { 2720 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2721 // straddles an eightbyte boundary, Hi should be classified as well. 2722 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2723 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2724 if (EB_FuncPtr != EB_ThisAdj) { 2725 Lo = Hi = Integer; 2726 } else { 2727 Current = Integer; 2728 } 2729 } 2730 } else { 2731 Current = Integer; 2732 } 2733 return; 2734 } 2735 2736 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2737 uint64_t Size = getContext().getTypeSize(VT); 2738 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2739 // gcc passes the following as integer: 2740 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2741 // 2 bytes - <2 x char>, <1 x short> 2742 // 1 byte - <1 x char> 2743 Current = Integer; 2744 2745 // If this type crosses an eightbyte boundary, it should be 2746 // split. 2747 uint64_t EB_Lo = (OffsetBase) / 64; 2748 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2749 if (EB_Lo != EB_Hi) 2750 Hi = Lo; 2751 } else if (Size == 64) { 2752 QualType ElementType = VT->getElementType(); 2753 2754 // gcc passes <1 x double> in memory. :( 2755 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2756 return; 2757 2758 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2759 // pass them as integer. For platforms where clang is the de facto 2760 // platform compiler, we must continue to use integer. 2761 if (!classifyIntegerMMXAsSSE() && 2762 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2763 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2764 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2765 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2766 Current = Integer; 2767 else 2768 Current = SSE; 2769 2770 // If this type crosses an eightbyte boundary, it should be 2771 // split. 2772 if (OffsetBase && OffsetBase != 64) 2773 Hi = Lo; 2774 } else if (Size == 128 || 2775 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2776 QualType ElementType = VT->getElementType(); 2777 2778 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2779 if (passInt128VectorsInMem() && Size != 128 && 2780 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2781 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2782 return; 2783 2784 // Arguments of 256-bits are split into four eightbyte chunks. The 2785 // least significant one belongs to class SSE and all the others to class 2786 // SSEUP. The original Lo and Hi design considers that types can't be 2787 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2788 // This design isn't correct for 256-bits, but since there're no cases 2789 // where the upper parts would need to be inspected, avoid adding 2790 // complexity and just consider Hi to match the 64-256 part. 2791 // 2792 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2793 // registers if they are "named", i.e. not part of the "..." of a 2794 // variadic function. 2795 // 2796 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2797 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2798 Lo = SSE; 2799 Hi = SSEUp; 2800 } 2801 return; 2802 } 2803 2804 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2805 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2806 2807 uint64_t Size = getContext().getTypeSize(Ty); 2808 if (ET->isIntegralOrEnumerationType()) { 2809 if (Size <= 64) 2810 Current = Integer; 2811 else if (Size <= 128) 2812 Lo = Hi = Integer; 2813 } else if (ET == getContext().FloatTy) { 2814 Current = SSE; 2815 } else if (ET == getContext().DoubleTy) { 2816 Lo = Hi = SSE; 2817 } else if (ET == getContext().LongDoubleTy) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) 2820 Current = Memory; 2821 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2822 Current = ComplexX87; 2823 else if (LDF == &llvm::APFloat::IEEEdouble()) 2824 Lo = Hi = SSE; 2825 else 2826 llvm_unreachable("unexpected long double representation!"); 2827 } 2828 2829 // If this complex type crosses an eightbyte boundary then it 2830 // should be split. 2831 uint64_t EB_Real = (OffsetBase) / 64; 2832 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2833 if (Hi == NoClass && EB_Real != EB_Imag) 2834 Hi = Lo; 2835 2836 return; 2837 } 2838 2839 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2840 if (EITy->getNumBits() <= 64) 2841 Current = Integer; 2842 else if (EITy->getNumBits() <= 128) 2843 Lo = Hi = Integer; 2844 // Larger values need to get passed in memory. 2845 return; 2846 } 2847 2848 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2849 // Arrays are treated like structures. 2850 2851 uint64_t Size = getContext().getTypeSize(Ty); 2852 2853 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2854 // than eight eightbytes, ..., it has class MEMORY. 2855 if (Size > 512) 2856 return; 2857 2858 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2859 // fields, it has class MEMORY. 2860 // 2861 // Only need to check alignment of array base. 2862 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2863 return; 2864 2865 // Otherwise implement simplified merge. We could be smarter about 2866 // this, but it isn't worth it and would be harder to verify. 2867 Current = NoClass; 2868 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2869 uint64_t ArraySize = AT->getSize().getZExtValue(); 2870 2871 // The only case a 256-bit wide vector could be used is when the array 2872 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2873 // to work for sizes wider than 128, early check and fallback to memory. 2874 // 2875 if (Size > 128 && 2876 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2877 return; 2878 2879 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2880 Class FieldLo, FieldHi; 2881 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2882 Lo = merge(Lo, FieldLo); 2883 Hi = merge(Hi, FieldHi); 2884 if (Lo == Memory || Hi == Memory) 2885 break; 2886 } 2887 2888 postMerge(Size, Lo, Hi); 2889 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2890 return; 2891 } 2892 2893 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2894 uint64_t Size = getContext().getTypeSize(Ty); 2895 2896 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2897 // than eight eightbytes, ..., it has class MEMORY. 2898 if (Size > 512) 2899 return; 2900 2901 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2902 // copy constructor or a non-trivial destructor, it is passed by invisible 2903 // reference. 2904 if (getRecordArgABI(RT, getCXXABI())) 2905 return; 2906 2907 const RecordDecl *RD = RT->getDecl(); 2908 2909 // Assume variable sized types are passed in memory. 2910 if (RD->hasFlexibleArrayMember()) 2911 return; 2912 2913 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2914 2915 // Reset Lo class, this will be recomputed. 2916 Current = NoClass; 2917 2918 // If this is a C++ record, classify the bases first. 2919 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2920 for (const auto &I : CXXRD->bases()) { 2921 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2922 "Unexpected base class!"); 2923 const auto *Base = 2924 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2925 2926 // Classify this field. 2927 // 2928 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2929 // single eightbyte, each is classified separately. Each eightbyte gets 2930 // initialized to class NO_CLASS. 2931 Class FieldLo, FieldHi; 2932 uint64_t Offset = 2933 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2934 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2935 Lo = merge(Lo, FieldLo); 2936 Hi = merge(Hi, FieldHi); 2937 if (Lo == Memory || Hi == Memory) { 2938 postMerge(Size, Lo, Hi); 2939 return; 2940 } 2941 } 2942 } 2943 2944 // Classify the fields one at a time, merging the results. 2945 unsigned idx = 0; 2946 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2947 i != e; ++i, ++idx) { 2948 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2949 bool BitField = i->isBitField(); 2950 2951 // Ignore padding bit-fields. 2952 if (BitField && i->isUnnamedBitfield()) 2953 continue; 2954 2955 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2956 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2957 // 2958 // The only case a 256-bit wide vector could be used is when the struct 2959 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2960 // to work for sizes wider than 128, early check and fallback to memory. 2961 // 2962 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2963 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2964 Lo = Memory; 2965 postMerge(Size, Lo, Hi); 2966 return; 2967 } 2968 // Note, skip this test for bit-fields, see below. 2969 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2970 Lo = Memory; 2971 postMerge(Size, Lo, Hi); 2972 return; 2973 } 2974 2975 // Classify this field. 2976 // 2977 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2978 // exceeds a single eightbyte, each is classified 2979 // separately. Each eightbyte gets initialized to class 2980 // NO_CLASS. 2981 Class FieldLo, FieldHi; 2982 2983 // Bit-fields require special handling, they do not force the 2984 // structure to be passed in memory even if unaligned, and 2985 // therefore they can straddle an eightbyte. 2986 if (BitField) { 2987 assert(!i->isUnnamedBitfield()); 2988 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2989 uint64_t Size = i->getBitWidthValue(getContext()); 2990 2991 uint64_t EB_Lo = Offset / 64; 2992 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2993 2994 if (EB_Lo) { 2995 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2996 FieldLo = NoClass; 2997 FieldHi = Integer; 2998 } else { 2999 FieldLo = Integer; 3000 FieldHi = EB_Hi ? Integer : NoClass; 3001 } 3002 } else 3003 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3004 Lo = merge(Lo, FieldLo); 3005 Hi = merge(Hi, FieldHi); 3006 if (Lo == Memory || Hi == Memory) 3007 break; 3008 } 3009 3010 postMerge(Size, Lo, Hi); 3011 } 3012 } 3013 3014 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3015 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3016 // place naturally. 3017 if (!isAggregateTypeForABI(Ty)) { 3018 // Treat an enum type as its underlying type. 3019 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3020 Ty = EnumTy->getDecl()->getIntegerType(); 3021 3022 if (Ty->isExtIntType()) 3023 return getNaturalAlignIndirect(Ty); 3024 3025 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3026 : ABIArgInfo::getDirect()); 3027 } 3028 3029 return getNaturalAlignIndirect(Ty); 3030 } 3031 3032 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3033 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3034 uint64_t Size = getContext().getTypeSize(VecTy); 3035 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3036 if (Size <= 64 || Size > LargestVector) 3037 return true; 3038 QualType EltTy = VecTy->getElementType(); 3039 if (passInt128VectorsInMem() && 3040 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3041 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3042 return true; 3043 } 3044 3045 return false; 3046 } 3047 3048 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3049 unsigned freeIntRegs) const { 3050 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3051 // place naturally. 3052 // 3053 // This assumption is optimistic, as there could be free registers available 3054 // when we need to pass this argument in memory, and LLVM could try to pass 3055 // the argument in the free register. This does not seem to happen currently, 3056 // but this code would be much safer if we could mark the argument with 3057 // 'onstack'. See PR12193. 3058 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3059 !Ty->isExtIntType()) { 3060 // Treat an enum type as its underlying type. 3061 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3062 Ty = EnumTy->getDecl()->getIntegerType(); 3063 3064 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3065 : ABIArgInfo::getDirect()); 3066 } 3067 3068 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3069 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3070 3071 // Compute the byval alignment. We specify the alignment of the byval in all 3072 // cases so that the mid-level optimizer knows the alignment of the byval. 3073 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3074 3075 // Attempt to avoid passing indirect results using byval when possible. This 3076 // is important for good codegen. 3077 // 3078 // We do this by coercing the value into a scalar type which the backend can 3079 // handle naturally (i.e., without using byval). 3080 // 3081 // For simplicity, we currently only do this when we have exhausted all of the 3082 // free integer registers. Doing this when there are free integer registers 3083 // would require more care, as we would have to ensure that the coerced value 3084 // did not claim the unused register. That would require either reording the 3085 // arguments to the function (so that any subsequent inreg values came first), 3086 // or only doing this optimization when there were no following arguments that 3087 // might be inreg. 3088 // 3089 // We currently expect it to be rare (particularly in well written code) for 3090 // arguments to be passed on the stack when there are still free integer 3091 // registers available (this would typically imply large structs being passed 3092 // by value), so this seems like a fair tradeoff for now. 3093 // 3094 // We can revisit this if the backend grows support for 'onstack' parameter 3095 // attributes. See PR12193. 3096 if (freeIntRegs == 0) { 3097 uint64_t Size = getContext().getTypeSize(Ty); 3098 3099 // If this type fits in an eightbyte, coerce it into the matching integral 3100 // type, which will end up on the stack (with alignment 8). 3101 if (Align == 8 && Size <= 64) 3102 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3103 Size)); 3104 } 3105 3106 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3107 } 3108 3109 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3110 /// register. Pick an LLVM IR type that will be passed as a vector register. 3111 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3112 // Wrapper structs/arrays that only contain vectors are passed just like 3113 // vectors; strip them off if present. 3114 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3115 Ty = QualType(InnerTy, 0); 3116 3117 llvm::Type *IRType = CGT.ConvertType(Ty); 3118 if (isa<llvm::VectorType>(IRType)) { 3119 // Don't pass vXi128 vectors in their native type, the backend can't 3120 // legalize them. 3121 if (passInt128VectorsInMem() && 3122 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3123 // Use a vXi64 vector. 3124 uint64_t Size = getContext().getTypeSize(Ty); 3125 return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3126 Size / 64); 3127 } 3128 3129 return IRType; 3130 } 3131 3132 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3133 return IRType; 3134 3135 // We couldn't find the preferred IR vector type for 'Ty'. 3136 uint64_t Size = getContext().getTypeSize(Ty); 3137 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3138 3139 3140 // Return a LLVM IR vector type based on the size of 'Ty'. 3141 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3142 Size / 64); 3143 } 3144 3145 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3146 /// is known to either be off the end of the specified type or being in 3147 /// alignment padding. The user type specified is known to be at most 128 bits 3148 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3149 /// classification that put one of the two halves in the INTEGER class. 3150 /// 3151 /// It is conservatively correct to return false. 3152 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3153 unsigned EndBit, ASTContext &Context) { 3154 // If the bytes being queried are off the end of the type, there is no user 3155 // data hiding here. This handles analysis of builtins, vectors and other 3156 // types that don't contain interesting padding. 3157 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3158 if (TySize <= StartBit) 3159 return true; 3160 3161 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3162 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3163 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3164 3165 // Check each element to see if the element overlaps with the queried range. 3166 for (unsigned i = 0; i != NumElts; ++i) { 3167 // If the element is after the span we care about, then we're done.. 3168 unsigned EltOffset = i*EltSize; 3169 if (EltOffset >= EndBit) break; 3170 3171 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3172 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3173 EndBit-EltOffset, Context)) 3174 return false; 3175 } 3176 // If it overlaps no elements, then it is safe to process as padding. 3177 return true; 3178 } 3179 3180 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3181 const RecordDecl *RD = RT->getDecl(); 3182 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3183 3184 // If this is a C++ record, check the bases first. 3185 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3186 for (const auto &I : CXXRD->bases()) { 3187 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3188 "Unexpected base class!"); 3189 const auto *Base = 3190 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3191 3192 // If the base is after the span we care about, ignore it. 3193 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3194 if (BaseOffset >= EndBit) continue; 3195 3196 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3197 if (!BitsContainNoUserData(I.getType(), BaseStart, 3198 EndBit-BaseOffset, Context)) 3199 return false; 3200 } 3201 } 3202 3203 // Verify that no field has data that overlaps the region of interest. Yes 3204 // this could be sped up a lot by being smarter about queried fields, 3205 // however we're only looking at structs up to 16 bytes, so we don't care 3206 // much. 3207 unsigned idx = 0; 3208 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3209 i != e; ++i, ++idx) { 3210 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3211 3212 // If we found a field after the region we care about, then we're done. 3213 if (FieldOffset >= EndBit) break; 3214 3215 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3216 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3217 Context)) 3218 return false; 3219 } 3220 3221 // If nothing in this record overlapped the area of interest, then we're 3222 // clean. 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3230 /// float member at the specified offset. For example, {int,{float}} has a 3231 /// float at offset 4. It is conservatively correct for this routine to return 3232 /// false. 3233 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3234 const llvm::DataLayout &TD) { 3235 // Base case if we find a float. 3236 if (IROffset == 0 && IRType->isFloatTy()) 3237 return true; 3238 3239 // If this is a struct, recurse into the field at the specified offset. 3240 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3241 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3242 unsigned Elt = SL->getElementContainingOffset(IROffset); 3243 IROffset -= SL->getElementOffset(Elt); 3244 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3245 } 3246 3247 // If this is an array, recurse into the field at the specified offset. 3248 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3249 llvm::Type *EltTy = ATy->getElementType(); 3250 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3251 IROffset -= IROffset/EltSize*EltSize; 3252 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3253 } 3254 3255 return false; 3256 } 3257 3258 3259 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3260 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3261 llvm::Type *X86_64ABIInfo:: 3262 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3263 QualType SourceTy, unsigned SourceOffset) const { 3264 // The only three choices we have are either double, <2 x float>, or float. We 3265 // pass as float if the last 4 bytes is just padding. This happens for 3266 // structs that contain 3 floats. 3267 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3268 SourceOffset*8+64, getContext())) 3269 return llvm::Type::getFloatTy(getVMContext()); 3270 3271 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3272 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3273 // case. 3274 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3275 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3276 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3277 3278 return llvm::Type::getDoubleTy(getVMContext()); 3279 } 3280 3281 3282 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3283 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3284 /// about the high or low part of an up-to-16-byte struct. This routine picks 3285 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3286 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3287 /// etc). 3288 /// 3289 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3290 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3291 /// the 8-byte value references. PrefType may be null. 3292 /// 3293 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3294 /// an offset into this that we're processing (which is always either 0 or 8). 3295 /// 3296 llvm::Type *X86_64ABIInfo:: 3297 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3298 QualType SourceTy, unsigned SourceOffset) const { 3299 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3300 // returning an 8-byte unit starting with it. See if we can safely use it. 3301 if (IROffset == 0) { 3302 // Pointers and int64's always fill the 8-byte unit. 3303 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3304 IRType->isIntegerTy(64)) 3305 return IRType; 3306 3307 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3308 // goodness in the source type is just tail padding. This is allowed to 3309 // kick in for struct {double,int} on the int, but not on 3310 // struct{double,int,int} because we wouldn't return the second int. We 3311 // have to do this analysis on the source type because we can't depend on 3312 // unions being lowered a specific way etc. 3313 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3314 IRType->isIntegerTy(32) || 3315 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3316 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3317 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3318 3319 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3320 SourceOffset*8+64, getContext())) 3321 return IRType; 3322 } 3323 } 3324 3325 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3326 // If this is a struct, recurse into the field at the specified offset. 3327 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3328 if (IROffset < SL->getSizeInBytes()) { 3329 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3330 IROffset -= SL->getElementOffset(FieldIdx); 3331 3332 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3333 SourceTy, SourceOffset); 3334 } 3335 } 3336 3337 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3338 llvm::Type *EltTy = ATy->getElementType(); 3339 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3340 unsigned EltOffset = IROffset/EltSize*EltSize; 3341 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3342 SourceOffset); 3343 } 3344 3345 // Okay, we don't have any better idea of what to pass, so we pass this in an 3346 // integer register that isn't too big to fit the rest of the struct. 3347 unsigned TySizeInBytes = 3348 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3349 3350 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3351 3352 // It is always safe to classify this as an integer type up to i64 that 3353 // isn't larger than the structure. 3354 return llvm::IntegerType::get(getVMContext(), 3355 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3356 } 3357 3358 3359 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3360 /// be used as elements of a two register pair to pass or return, return a 3361 /// first class aggregate to represent them. For example, if the low part of 3362 /// a by-value argument should be passed as i32* and the high part as float, 3363 /// return {i32*, float}. 3364 static llvm::Type * 3365 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3366 const llvm::DataLayout &TD) { 3367 // In order to correctly satisfy the ABI, we need to the high part to start 3368 // at offset 8. If the high and low parts we inferred are both 4-byte types 3369 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3370 // the second element at offset 8. Check for this: 3371 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3372 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3373 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3374 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3375 3376 // To handle this, we have to increase the size of the low part so that the 3377 // second element will start at an 8 byte offset. We can't increase the size 3378 // of the second element because it might make us access off the end of the 3379 // struct. 3380 if (HiStart != 8) { 3381 // There are usually two sorts of types the ABI generation code can produce 3382 // for the low part of a pair that aren't 8 bytes in size: float or 3383 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3384 // NaCl). 3385 // Promote these to a larger type. 3386 if (Lo->isFloatTy()) 3387 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3388 else { 3389 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3390 && "Invalid/unknown lo type"); 3391 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3392 } 3393 } 3394 3395 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3396 3397 // Verify that the second element is at an 8-byte offset. 3398 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3399 "Invalid x86-64 argument pair!"); 3400 return Result; 3401 } 3402 3403 ABIArgInfo X86_64ABIInfo:: 3404 classifyReturnType(QualType RetTy) const { 3405 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3406 // classification algorithm. 3407 X86_64ABIInfo::Class Lo, Hi; 3408 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3409 3410 // Check some invariants. 3411 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3412 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3413 3414 llvm::Type *ResType = nullptr; 3415 switch (Lo) { 3416 case NoClass: 3417 if (Hi == NoClass) 3418 return ABIArgInfo::getIgnore(); 3419 // If the low part is just padding, it takes no register, leave ResType 3420 // null. 3421 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3422 "Unknown missing lo part"); 3423 break; 3424 3425 case SSEUp: 3426 case X87Up: 3427 llvm_unreachable("Invalid classification for lo word."); 3428 3429 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3430 // hidden argument. 3431 case Memory: 3432 return getIndirectReturnResult(RetTy); 3433 3434 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3435 // available register of the sequence %rax, %rdx is used. 3436 case Integer: 3437 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3438 3439 // If we have a sign or zero extended integer, make sure to return Extend 3440 // so that the parameter gets the right LLVM IR attributes. 3441 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3442 // Treat an enum type as its underlying type. 3443 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3444 RetTy = EnumTy->getDecl()->getIntegerType(); 3445 3446 if (RetTy->isIntegralOrEnumerationType() && 3447 isPromotableIntegerTypeForABI(RetTy)) 3448 return ABIArgInfo::getExtend(RetTy); 3449 } 3450 break; 3451 3452 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3453 // available SSE register of the sequence %xmm0, %xmm1 is used. 3454 case SSE: 3455 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3456 break; 3457 3458 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3459 // returned on the X87 stack in %st0 as 80-bit x87 number. 3460 case X87: 3461 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3462 break; 3463 3464 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3465 // part of the value is returned in %st0 and the imaginary part in 3466 // %st1. 3467 case ComplexX87: 3468 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3469 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3470 llvm::Type::getX86_FP80Ty(getVMContext())); 3471 break; 3472 } 3473 3474 llvm::Type *HighPart = nullptr; 3475 switch (Hi) { 3476 // Memory was handled previously and X87 should 3477 // never occur as a hi class. 3478 case Memory: 3479 case X87: 3480 llvm_unreachable("Invalid classification for hi word."); 3481 3482 case ComplexX87: // Previously handled. 3483 case NoClass: 3484 break; 3485 3486 case Integer: 3487 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3488 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3489 return ABIArgInfo::getDirect(HighPart, 8); 3490 break; 3491 case SSE: 3492 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3493 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3494 return ABIArgInfo::getDirect(HighPart, 8); 3495 break; 3496 3497 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3498 // is passed in the next available eightbyte chunk if the last used 3499 // vector register. 3500 // 3501 // SSEUP should always be preceded by SSE, just widen. 3502 case SSEUp: 3503 assert(Lo == SSE && "Unexpected SSEUp classification."); 3504 ResType = GetByteVectorType(RetTy); 3505 break; 3506 3507 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3508 // returned together with the previous X87 value in %st0. 3509 case X87Up: 3510 // If X87Up is preceded by X87, we don't need to do 3511 // anything. However, in some cases with unions it may not be 3512 // preceded by X87. In such situations we follow gcc and pass the 3513 // extra bits in an SSE reg. 3514 if (Lo != X87) { 3515 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3516 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3517 return ABIArgInfo::getDirect(HighPart, 8); 3518 } 3519 break; 3520 } 3521 3522 // If a high part was specified, merge it together with the low part. It is 3523 // known to pass in the high eightbyte of the result. We do this by forming a 3524 // first class struct aggregate with the high and low part: {low, high} 3525 if (HighPart) 3526 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3527 3528 return ABIArgInfo::getDirect(ResType); 3529 } 3530 3531 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3532 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3533 bool isNamedArg) 3534 const 3535 { 3536 Ty = useFirstFieldIfTransparentUnion(Ty); 3537 3538 X86_64ABIInfo::Class Lo, Hi; 3539 classify(Ty, 0, Lo, Hi, isNamedArg); 3540 3541 // Check some invariants. 3542 // FIXME: Enforce these by construction. 3543 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3544 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3545 3546 neededInt = 0; 3547 neededSSE = 0; 3548 llvm::Type *ResType = nullptr; 3549 switch (Lo) { 3550 case NoClass: 3551 if (Hi == NoClass) 3552 return ABIArgInfo::getIgnore(); 3553 // If the low part is just padding, it takes no register, leave ResType 3554 // null. 3555 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3556 "Unknown missing lo part"); 3557 break; 3558 3559 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3560 // on the stack. 3561 case Memory: 3562 3563 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3564 // COMPLEX_X87, it is passed in memory. 3565 case X87: 3566 case ComplexX87: 3567 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3568 ++neededInt; 3569 return getIndirectResult(Ty, freeIntRegs); 3570 3571 case SSEUp: 3572 case X87Up: 3573 llvm_unreachable("Invalid classification for lo word."); 3574 3575 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3576 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3577 // and %r9 is used. 3578 case Integer: 3579 ++neededInt; 3580 3581 // Pick an 8-byte type based on the preferred type. 3582 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3583 3584 // If we have a sign or zero extended integer, make sure to return Extend 3585 // so that the parameter gets the right LLVM IR attributes. 3586 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3587 // Treat an enum type as its underlying type. 3588 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3589 Ty = EnumTy->getDecl()->getIntegerType(); 3590 3591 if (Ty->isIntegralOrEnumerationType() && 3592 isPromotableIntegerTypeForABI(Ty)) 3593 return ABIArgInfo::getExtend(Ty); 3594 } 3595 3596 break; 3597 3598 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3599 // available SSE register is used, the registers are taken in the 3600 // order from %xmm0 to %xmm7. 3601 case SSE: { 3602 llvm::Type *IRType = CGT.ConvertType(Ty); 3603 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3604 ++neededSSE; 3605 break; 3606 } 3607 } 3608 3609 llvm::Type *HighPart = nullptr; 3610 switch (Hi) { 3611 // Memory was handled previously, ComplexX87 and X87 should 3612 // never occur as hi classes, and X87Up must be preceded by X87, 3613 // which is passed in memory. 3614 case Memory: 3615 case X87: 3616 case ComplexX87: 3617 llvm_unreachable("Invalid classification for hi word."); 3618 3619 case NoClass: break; 3620 3621 case Integer: 3622 ++neededInt; 3623 // Pick an 8-byte type based on the preferred type. 3624 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3625 3626 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3627 return ABIArgInfo::getDirect(HighPart, 8); 3628 break; 3629 3630 // X87Up generally doesn't occur here (long double is passed in 3631 // memory), except in situations involving unions. 3632 case X87Up: 3633 case SSE: 3634 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3635 3636 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3637 return ABIArgInfo::getDirect(HighPart, 8); 3638 3639 ++neededSSE; 3640 break; 3641 3642 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3643 // eightbyte is passed in the upper half of the last used SSE 3644 // register. This only happens when 128-bit vectors are passed. 3645 case SSEUp: 3646 assert(Lo == SSE && "Unexpected SSEUp classification"); 3647 ResType = GetByteVectorType(Ty); 3648 break; 3649 } 3650 3651 // If a high part was specified, merge it together with the low part. It is 3652 // known to pass in the high eightbyte of the result. We do this by forming a 3653 // first class struct aggregate with the high and low part: {low, high} 3654 if (HighPart) 3655 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3656 3657 return ABIArgInfo::getDirect(ResType); 3658 } 3659 3660 ABIArgInfo 3661 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3662 unsigned &NeededSSE) const { 3663 auto RT = Ty->getAs<RecordType>(); 3664 assert(RT && "classifyRegCallStructType only valid with struct types"); 3665 3666 if (RT->getDecl()->hasFlexibleArrayMember()) 3667 return getIndirectReturnResult(Ty); 3668 3669 // Sum up bases 3670 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3671 if (CXXRD->isDynamicClass()) { 3672 NeededInt = NeededSSE = 0; 3673 return getIndirectReturnResult(Ty); 3674 } 3675 3676 for (const auto &I : CXXRD->bases()) 3677 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3678 .isIndirect()) { 3679 NeededInt = NeededSSE = 0; 3680 return getIndirectReturnResult(Ty); 3681 } 3682 } 3683 3684 // Sum up members 3685 for (const auto *FD : RT->getDecl()->fields()) { 3686 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3687 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3688 .isIndirect()) { 3689 NeededInt = NeededSSE = 0; 3690 return getIndirectReturnResult(Ty); 3691 } 3692 } else { 3693 unsigned LocalNeededInt, LocalNeededSSE; 3694 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3695 LocalNeededSSE, true) 3696 .isIndirect()) { 3697 NeededInt = NeededSSE = 0; 3698 return getIndirectReturnResult(Ty); 3699 } 3700 NeededInt += LocalNeededInt; 3701 NeededSSE += LocalNeededSSE; 3702 } 3703 } 3704 3705 return ABIArgInfo::getDirect(); 3706 } 3707 3708 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3709 unsigned &NeededInt, 3710 unsigned &NeededSSE) const { 3711 3712 NeededInt = 0; 3713 NeededSSE = 0; 3714 3715 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3716 } 3717 3718 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3719 3720 const unsigned CallingConv = FI.getCallingConvention(); 3721 // It is possible to force Win64 calling convention on any x86_64 target by 3722 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3723 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3724 if (CallingConv == llvm::CallingConv::Win64) { 3725 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3726 Win64ABIInfo.computeInfo(FI); 3727 return; 3728 } 3729 3730 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3731 3732 // Keep track of the number of assigned registers. 3733 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3734 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3735 unsigned NeededInt, NeededSSE; 3736 3737 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3738 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3739 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3740 FI.getReturnInfo() = 3741 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3742 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3743 FreeIntRegs -= NeededInt; 3744 FreeSSERegs -= NeededSSE; 3745 } else { 3746 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3747 } 3748 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3749 getContext().getCanonicalType(FI.getReturnType() 3750 ->getAs<ComplexType>() 3751 ->getElementType()) == 3752 getContext().LongDoubleTy) 3753 // Complex Long Double Type is passed in Memory when Regcall 3754 // calling convention is used. 3755 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3756 else 3757 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3758 } 3759 3760 // If the return value is indirect, then the hidden argument is consuming one 3761 // integer register. 3762 if (FI.getReturnInfo().isIndirect()) 3763 --FreeIntRegs; 3764 3765 // The chain argument effectively gives us another free register. 3766 if (FI.isChainCall()) 3767 ++FreeIntRegs; 3768 3769 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3770 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3771 // get assigned (in left-to-right order) for passing as follows... 3772 unsigned ArgNo = 0; 3773 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3774 it != ie; ++it, ++ArgNo) { 3775 bool IsNamedArg = ArgNo < NumRequiredArgs; 3776 3777 if (IsRegCall && it->type->isStructureOrClassType()) 3778 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3779 else 3780 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3781 NeededSSE, IsNamedArg); 3782 3783 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3784 // eightbyte of an argument, the whole argument is passed on the 3785 // stack. If registers have already been assigned for some 3786 // eightbytes of such an argument, the assignments get reverted. 3787 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3788 FreeIntRegs -= NeededInt; 3789 FreeSSERegs -= NeededSSE; 3790 } else { 3791 it->info = getIndirectResult(it->type, FreeIntRegs); 3792 } 3793 } 3794 } 3795 3796 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3797 Address VAListAddr, QualType Ty) { 3798 Address overflow_arg_area_p = 3799 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3800 llvm::Value *overflow_arg_area = 3801 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3802 3803 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3804 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3805 // It isn't stated explicitly in the standard, but in practice we use 3806 // alignment greater than 16 where necessary. 3807 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3808 if (Align > CharUnits::fromQuantity(8)) { 3809 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3810 Align); 3811 } 3812 3813 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3814 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3815 llvm::Value *Res = 3816 CGF.Builder.CreateBitCast(overflow_arg_area, 3817 llvm::PointerType::getUnqual(LTy)); 3818 3819 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3820 // l->overflow_arg_area + sizeof(type). 3821 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3822 // an 8 byte boundary. 3823 3824 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3825 llvm::Value *Offset = 3826 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3827 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3828 "overflow_arg_area.next"); 3829 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3830 3831 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3832 return Address(Res, Align); 3833 } 3834 3835 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3836 QualType Ty) const { 3837 // Assume that va_list type is correct; should be pointer to LLVM type: 3838 // struct { 3839 // i32 gp_offset; 3840 // i32 fp_offset; 3841 // i8* overflow_arg_area; 3842 // i8* reg_save_area; 3843 // }; 3844 unsigned neededInt, neededSSE; 3845 3846 Ty = getContext().getCanonicalType(Ty); 3847 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3848 /*isNamedArg*/false); 3849 3850 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3851 // in the registers. If not go to step 7. 3852 if (!neededInt && !neededSSE) 3853 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3854 3855 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3856 // general purpose registers needed to pass type and num_fp to hold 3857 // the number of floating point registers needed. 3858 3859 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3860 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3861 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3862 // 3863 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3864 // register save space). 3865 3866 llvm::Value *InRegs = nullptr; 3867 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3868 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3869 if (neededInt) { 3870 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3871 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3872 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3873 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3874 } 3875 3876 if (neededSSE) { 3877 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3878 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3879 llvm::Value *FitsInFP = 3880 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3881 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3882 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3883 } 3884 3885 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3886 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3887 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3888 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3889 3890 // Emit code to load the value if it was passed in registers. 3891 3892 CGF.EmitBlock(InRegBlock); 3893 3894 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3895 // an offset of l->gp_offset and/or l->fp_offset. This may require 3896 // copying to a temporary location in case the parameter is passed 3897 // in different register classes or requires an alignment greater 3898 // than 8 for general purpose registers and 16 for XMM registers. 3899 // 3900 // FIXME: This really results in shameful code when we end up needing to 3901 // collect arguments from different places; often what should result in a 3902 // simple assembling of a structure from scattered addresses has many more 3903 // loads than necessary. Can we clean this up? 3904 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3905 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3906 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3907 3908 Address RegAddr = Address::invalid(); 3909 if (neededInt && neededSSE) { 3910 // FIXME: Cleanup. 3911 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3912 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3913 Address Tmp = CGF.CreateMemTemp(Ty); 3914 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3915 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3916 llvm::Type *TyLo = ST->getElementType(0); 3917 llvm::Type *TyHi = ST->getElementType(1); 3918 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3919 "Unexpected ABI info for mixed regs"); 3920 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3921 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3922 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3923 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3924 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3925 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3926 3927 // Copy the first element. 3928 // FIXME: Our choice of alignment here and below is probably pessimistic. 3929 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3930 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3931 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3932 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3933 3934 // Copy the second element. 3935 V = CGF.Builder.CreateAlignedLoad( 3936 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3937 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3938 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3939 3940 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3941 } else if (neededInt) { 3942 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3943 CharUnits::fromQuantity(8)); 3944 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3945 3946 // Copy to a temporary if necessary to ensure the appropriate alignment. 3947 std::pair<CharUnits, CharUnits> SizeAlign = 3948 getContext().getTypeInfoInChars(Ty); 3949 uint64_t TySize = SizeAlign.first.getQuantity(); 3950 CharUnits TyAlign = SizeAlign.second; 3951 3952 // Copy into a temporary if the type is more aligned than the 3953 // register save area. 3954 if (TyAlign.getQuantity() > 8) { 3955 Address Tmp = CGF.CreateMemTemp(Ty); 3956 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3957 RegAddr = Tmp; 3958 } 3959 3960 } else if (neededSSE == 1) { 3961 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3962 CharUnits::fromQuantity(16)); 3963 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3964 } else { 3965 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3966 // SSE registers are spaced 16 bytes apart in the register save 3967 // area, we need to collect the two eightbytes together. 3968 // The ABI isn't explicit about this, but it seems reasonable 3969 // to assume that the slots are 16-byte aligned, since the stack is 3970 // naturally 16-byte aligned and the prologue is expected to store 3971 // all the SSE registers to the RSA. 3972 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3973 CharUnits::fromQuantity(16)); 3974 Address RegAddrHi = 3975 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3976 CharUnits::fromQuantity(16)); 3977 llvm::Type *ST = AI.canHaveCoerceToType() 3978 ? AI.getCoerceToType() 3979 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3980 llvm::Value *V; 3981 Address Tmp = CGF.CreateMemTemp(Ty); 3982 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3983 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3984 RegAddrLo, ST->getStructElementType(0))); 3985 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3986 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3987 RegAddrHi, ST->getStructElementType(1))); 3988 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3989 3990 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3991 } 3992 3993 // AMD64-ABI 3.5.7p5: Step 5. Set: 3994 // l->gp_offset = l->gp_offset + num_gp * 8 3995 // l->fp_offset = l->fp_offset + num_fp * 16. 3996 if (neededInt) { 3997 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3998 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3999 gp_offset_p); 4000 } 4001 if (neededSSE) { 4002 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4003 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4004 fp_offset_p); 4005 } 4006 CGF.EmitBranch(ContBlock); 4007 4008 // Emit code to load the value if it was passed in memory. 4009 4010 CGF.EmitBlock(InMemBlock); 4011 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4012 4013 // Return the appropriate result. 4014 4015 CGF.EmitBlock(ContBlock); 4016 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4017 "vaarg.addr"); 4018 return ResAddr; 4019 } 4020 4021 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4022 QualType Ty) const { 4023 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4024 CGF.getContext().getTypeInfoInChars(Ty), 4025 CharUnits::fromQuantity(8), 4026 /*allowHigherAlign*/ false); 4027 } 4028 4029 ABIArgInfo 4030 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4031 const ABIArgInfo ¤t) const { 4032 // Assumes vectorCall calling convention. 4033 const Type *Base = nullptr; 4034 uint64_t NumElts = 0; 4035 4036 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4037 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4038 FreeSSERegs -= NumElts; 4039 return getDirectX86Hva(); 4040 } 4041 return current; 4042 } 4043 4044 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4045 bool IsReturnType, bool IsVectorCall, 4046 bool IsRegCall) const { 4047 4048 if (Ty->isVoidType()) 4049 return ABIArgInfo::getIgnore(); 4050 4051 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4052 Ty = EnumTy->getDecl()->getIntegerType(); 4053 4054 TypeInfo Info = getContext().getTypeInfo(Ty); 4055 uint64_t Width = Info.Width; 4056 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4057 4058 const RecordType *RT = Ty->getAs<RecordType>(); 4059 if (RT) { 4060 if (!IsReturnType) { 4061 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4062 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4063 } 4064 4065 if (RT->getDecl()->hasFlexibleArrayMember()) 4066 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4067 4068 } 4069 4070 const Type *Base = nullptr; 4071 uint64_t NumElts = 0; 4072 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4073 // other targets. 4074 if ((IsVectorCall || IsRegCall) && 4075 isHomogeneousAggregate(Ty, Base, NumElts)) { 4076 if (IsRegCall) { 4077 if (FreeSSERegs >= NumElts) { 4078 FreeSSERegs -= NumElts; 4079 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4080 return ABIArgInfo::getDirect(); 4081 return ABIArgInfo::getExpand(); 4082 } 4083 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4084 } else if (IsVectorCall) { 4085 if (FreeSSERegs >= NumElts && 4086 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4087 FreeSSERegs -= NumElts; 4088 return ABIArgInfo::getDirect(); 4089 } else if (IsReturnType) { 4090 return ABIArgInfo::getExpand(); 4091 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4092 // HVAs are delayed and reclassified in the 2nd step. 4093 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4094 } 4095 } 4096 } 4097 4098 if (Ty->isMemberPointerType()) { 4099 // If the member pointer is represented by an LLVM int or ptr, pass it 4100 // directly. 4101 llvm::Type *LLTy = CGT.ConvertType(Ty); 4102 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4103 return ABIArgInfo::getDirect(); 4104 } 4105 4106 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4107 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4108 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4109 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4110 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4111 4112 // Otherwise, coerce it to a small integer. 4113 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4114 } 4115 4116 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4117 switch (BT->getKind()) { 4118 case BuiltinType::Bool: 4119 // Bool type is always extended to the ABI, other builtin types are not 4120 // extended. 4121 return ABIArgInfo::getExtend(Ty); 4122 4123 case BuiltinType::LongDouble: 4124 // Mingw64 GCC uses the old 80 bit extended precision floating point 4125 // unit. It passes them indirectly through memory. 4126 if (IsMingw64) { 4127 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4128 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4129 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4130 } 4131 break; 4132 4133 case BuiltinType::Int128: 4134 case BuiltinType::UInt128: 4135 // If it's a parameter type, the normal ABI rule is that arguments larger 4136 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4137 // even though it isn't particularly efficient. 4138 if (!IsReturnType) 4139 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4140 4141 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4142 // Clang matches them for compatibility. 4143 return ABIArgInfo::getDirect( 4144 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4145 4146 default: 4147 break; 4148 } 4149 } 4150 4151 if (Ty->isExtIntType()) { 4152 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4153 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4154 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4155 // anyway as long is it fits in them, so we don't have to check the power of 4156 // 2. 4157 if (Width <= 64) 4158 return ABIArgInfo::getDirect(); 4159 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4160 } 4161 4162 return ABIArgInfo::getDirect(); 4163 } 4164 4165 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4166 unsigned FreeSSERegs, 4167 bool IsVectorCall, 4168 bool IsRegCall) const { 4169 unsigned Count = 0; 4170 for (auto &I : FI.arguments()) { 4171 // Vectorcall in x64 only permits the first 6 arguments to be passed 4172 // as XMM/YMM registers. 4173 if (Count < VectorcallMaxParamNumAsReg) 4174 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4175 else { 4176 // Since these cannot be passed in registers, pretend no registers 4177 // are left. 4178 unsigned ZeroSSERegsAvail = 0; 4179 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4180 IsVectorCall, IsRegCall); 4181 } 4182 ++Count; 4183 } 4184 4185 for (auto &I : FI.arguments()) { 4186 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4187 } 4188 } 4189 4190 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4191 const unsigned CC = FI.getCallingConvention(); 4192 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4193 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4194 4195 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4196 // classification rules. 4197 if (CC == llvm::CallingConv::X86_64_SysV) { 4198 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4199 SysVABIInfo.computeInfo(FI); 4200 return; 4201 } 4202 4203 unsigned FreeSSERegs = 0; 4204 if (IsVectorCall) { 4205 // We can use up to 4 SSE return registers with vectorcall. 4206 FreeSSERegs = 4; 4207 } else if (IsRegCall) { 4208 // RegCall gives us 16 SSE registers. 4209 FreeSSERegs = 16; 4210 } 4211 4212 if (!getCXXABI().classifyReturnType(FI)) 4213 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4214 IsVectorCall, IsRegCall); 4215 4216 if (IsVectorCall) { 4217 // We can use up to 6 SSE register parameters with vectorcall. 4218 FreeSSERegs = 6; 4219 } else if (IsRegCall) { 4220 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4221 FreeSSERegs = 16; 4222 } 4223 4224 if (IsVectorCall) { 4225 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4226 } else { 4227 for (auto &I : FI.arguments()) 4228 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4229 } 4230 4231 } 4232 4233 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4234 QualType Ty) const { 4235 4236 bool IsIndirect = false; 4237 4238 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4239 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4240 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4241 uint64_t Width = getContext().getTypeSize(Ty); 4242 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4243 } 4244 4245 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4246 CGF.getContext().getTypeInfoInChars(Ty), 4247 CharUnits::fromQuantity(8), 4248 /*allowHigherAlign*/ false); 4249 } 4250 4251 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4252 llvm::Value *Address, bool Is64Bit, 4253 bool IsAIX) { 4254 // This is calculated from the LLVM and GCC tables and verified 4255 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4256 4257 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4258 4259 llvm::IntegerType *i8 = CGF.Int8Ty; 4260 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4261 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4262 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4263 4264 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4265 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4266 4267 // 32-63: fp0-31, the 8-byte floating-point registers 4268 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4269 4270 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4271 // 64: mq 4272 // 65: lr 4273 // 66: ctr 4274 // 67: ap 4275 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4276 4277 // 68-76 are various 4-byte special-purpose registers: 4278 // 68-75 cr0-7 4279 // 76: xer 4280 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4281 4282 // 77-108: v0-31, the 16-byte vector registers 4283 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4284 4285 // 109: vrsave 4286 // 110: vscr 4287 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4288 4289 // AIX does not utilize the rest of the registers. 4290 if (IsAIX) 4291 return false; 4292 4293 // 111: spe_acc 4294 // 112: spefscr 4295 // 113: sfp 4296 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4297 4298 if (!Is64Bit) 4299 return false; 4300 4301 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4302 // or above CPU. 4303 // 64-bit only registers: 4304 // 114: tfhar 4305 // 115: tfiar 4306 // 116: texasr 4307 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4308 4309 return false; 4310 } 4311 4312 // AIX 4313 namespace { 4314 /// AIXABIInfo - The AIX XCOFF ABI information. 4315 class AIXABIInfo : public ABIInfo { 4316 const bool Is64Bit; 4317 const unsigned PtrByteSize; 4318 CharUnits getParamTypeAlignment(QualType Ty) const; 4319 4320 public: 4321 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4322 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4323 4324 bool isPromotableTypeForABI(QualType Ty) const; 4325 4326 ABIArgInfo classifyReturnType(QualType RetTy) const; 4327 ABIArgInfo classifyArgumentType(QualType Ty) const; 4328 4329 void computeInfo(CGFunctionInfo &FI) const override { 4330 if (!getCXXABI().classifyReturnType(FI)) 4331 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4332 4333 for (auto &I : FI.arguments()) 4334 I.info = classifyArgumentType(I.type); 4335 } 4336 4337 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4338 QualType Ty) const override; 4339 }; 4340 4341 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4342 const bool Is64Bit; 4343 4344 public: 4345 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4346 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4347 Is64Bit(Is64Bit) {} 4348 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4349 return 1; // r1 is the dedicated stack pointer 4350 } 4351 4352 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4353 llvm::Value *Address) const override; 4354 }; 4355 } // namespace 4356 4357 // Return true if the ABI requires Ty to be passed sign- or zero- 4358 // extended to 32/64 bits. 4359 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4360 // Treat an enum type as its underlying type. 4361 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4362 Ty = EnumTy->getDecl()->getIntegerType(); 4363 4364 // Promotable integer types are required to be promoted by the ABI. 4365 if (Ty->isPromotableIntegerType()) 4366 return true; 4367 4368 if (!Is64Bit) 4369 return false; 4370 4371 // For 64 bit mode, in addition to the usual promotable integer types, we also 4372 // need to extend all 32-bit types, since the ABI requires promotion to 64 4373 // bits. 4374 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4375 switch (BT->getKind()) { 4376 case BuiltinType::Int: 4377 case BuiltinType::UInt: 4378 return true; 4379 default: 4380 break; 4381 } 4382 4383 return false; 4384 } 4385 4386 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4387 if (RetTy->isAnyComplexType()) 4388 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4389 4390 if (RetTy->isVectorType()) 4391 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4392 4393 if (RetTy->isVoidType()) 4394 return ABIArgInfo::getIgnore(); 4395 4396 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4397 // alignment here. 4398 if (isAggregateTypeForABI(RetTy)) 4399 return getNaturalAlignIndirect(RetTy); 4400 4401 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4402 : ABIArgInfo::getDirect()); 4403 } 4404 4405 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4406 Ty = useFirstFieldIfTransparentUnion(Ty); 4407 4408 if (Ty->isAnyComplexType()) 4409 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4410 4411 if (Ty->isVectorType()) 4412 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4413 4414 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4415 // alignment here. 4416 if (isAggregateTypeForABI(Ty)) { 4417 // Records with non-trivial destructors/copy-constructors should not be 4418 // passed by value. 4419 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4420 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4421 4422 CharUnits CCAlign = getParamTypeAlignment(Ty); 4423 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4424 4425 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4426 /*Realign*/ TyAlign > CCAlign); 4427 } 4428 4429 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4430 : ABIArgInfo::getDirect()); 4431 } 4432 4433 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4434 if (Ty->isAnyComplexType()) 4435 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4436 4437 if (Ty->isVectorType()) 4438 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4439 4440 // If the structure contains a vector type, the alignment is 16. 4441 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4442 return CharUnits::fromQuantity(16); 4443 4444 return CharUnits::fromQuantity(PtrByteSize); 4445 } 4446 4447 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4448 QualType Ty) const { 4449 if (Ty->isAnyComplexType()) 4450 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4451 4452 if (Ty->isVectorType()) 4453 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4454 4455 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4456 TypeInfo.second = getParamTypeAlignment(Ty); 4457 4458 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4459 4460 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4461 SlotSize, /*AllowHigher*/ true); 4462 } 4463 4464 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4465 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4466 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4467 } 4468 4469 // PowerPC-32 4470 namespace { 4471 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4472 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4473 bool IsSoftFloatABI; 4474 bool IsRetSmallStructInRegABI; 4475 4476 CharUnits getParamTypeAlignment(QualType Ty) const; 4477 4478 public: 4479 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4480 bool RetSmallStructInRegABI) 4481 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4482 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4483 4484 ABIArgInfo classifyReturnType(QualType RetTy) const; 4485 4486 void computeInfo(CGFunctionInfo &FI) const override { 4487 if (!getCXXABI().classifyReturnType(FI)) 4488 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4489 for (auto &I : FI.arguments()) 4490 I.info = classifyArgumentType(I.type); 4491 } 4492 4493 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4494 QualType Ty) const override; 4495 }; 4496 4497 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4498 public: 4499 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4500 bool RetSmallStructInRegABI) 4501 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4502 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4503 4504 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4505 const CodeGenOptions &Opts); 4506 4507 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4508 // This is recovered from gcc output. 4509 return 1; // r1 is the dedicated stack pointer 4510 } 4511 4512 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4513 llvm::Value *Address) const override; 4514 }; 4515 } 4516 4517 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4518 // Complex types are passed just like their elements. 4519 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4520 Ty = CTy->getElementType(); 4521 4522 if (Ty->isVectorType()) 4523 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4524 : 4); 4525 4526 // For single-element float/vector structs, we consider the whole type 4527 // to have the same alignment requirements as its single element. 4528 const Type *AlignTy = nullptr; 4529 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4530 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4531 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4532 (BT && BT->isFloatingPoint())) 4533 AlignTy = EltType; 4534 } 4535 4536 if (AlignTy) 4537 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4538 return CharUnits::fromQuantity(4); 4539 } 4540 4541 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4542 uint64_t Size; 4543 4544 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4545 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4546 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4547 // System V ABI (1995), page 3-22, specified: 4548 // > A structure or union whose size is less than or equal to 8 bytes 4549 // > shall be returned in r3 and r4, as if it were first stored in the 4550 // > 8-byte aligned memory area and then the low addressed word were 4551 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4552 // > the last member of the structure or union are not defined. 4553 // 4554 // GCC for big-endian PPC32 inserts the pad before the first member, 4555 // not "beyond the last member" of the struct. To stay compatible 4556 // with GCC, we coerce the struct to an integer of the same size. 4557 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4558 if (Size == 0) 4559 return ABIArgInfo::getIgnore(); 4560 else { 4561 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4562 return ABIArgInfo::getDirect(CoerceTy); 4563 } 4564 } 4565 4566 return DefaultABIInfo::classifyReturnType(RetTy); 4567 } 4568 4569 // TODO: this implementation is now likely redundant with 4570 // DefaultABIInfo::EmitVAArg. 4571 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4572 QualType Ty) const { 4573 if (getTarget().getTriple().isOSDarwin()) { 4574 auto TI = getContext().getTypeInfoInChars(Ty); 4575 TI.second = getParamTypeAlignment(Ty); 4576 4577 CharUnits SlotSize = CharUnits::fromQuantity(4); 4578 return emitVoidPtrVAArg(CGF, VAList, Ty, 4579 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4580 /*AllowHigherAlign=*/true); 4581 } 4582 4583 const unsigned OverflowLimit = 8; 4584 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4585 // TODO: Implement this. For now ignore. 4586 (void)CTy; 4587 return Address::invalid(); // FIXME? 4588 } 4589 4590 // struct __va_list_tag { 4591 // unsigned char gpr; 4592 // unsigned char fpr; 4593 // unsigned short reserved; 4594 // void *overflow_arg_area; 4595 // void *reg_save_area; 4596 // }; 4597 4598 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4599 bool isInt = 4600 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4601 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4602 4603 // All aggregates are passed indirectly? That doesn't seem consistent 4604 // with the argument-lowering code. 4605 bool isIndirect = Ty->isAggregateType(); 4606 4607 CGBuilderTy &Builder = CGF.Builder; 4608 4609 // The calling convention either uses 1-2 GPRs or 1 FPR. 4610 Address NumRegsAddr = Address::invalid(); 4611 if (isInt || IsSoftFloatABI) { 4612 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4613 } else { 4614 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4615 } 4616 4617 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4618 4619 // "Align" the register count when TY is i64. 4620 if (isI64 || (isF64 && IsSoftFloatABI)) { 4621 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4622 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4623 } 4624 4625 llvm::Value *CC = 4626 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4627 4628 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4629 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4630 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4631 4632 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4633 4634 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4635 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4636 4637 // Case 1: consume registers. 4638 Address RegAddr = Address::invalid(); 4639 { 4640 CGF.EmitBlock(UsingRegs); 4641 4642 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4643 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4644 CharUnits::fromQuantity(8)); 4645 assert(RegAddr.getElementType() == CGF.Int8Ty); 4646 4647 // Floating-point registers start after the general-purpose registers. 4648 if (!(isInt || IsSoftFloatABI)) { 4649 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4650 CharUnits::fromQuantity(32)); 4651 } 4652 4653 // Get the address of the saved value by scaling the number of 4654 // registers we've used by the number of 4655 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4656 llvm::Value *RegOffset = 4657 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4658 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4659 RegAddr.getPointer(), RegOffset), 4660 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4661 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4662 4663 // Increase the used-register count. 4664 NumRegs = 4665 Builder.CreateAdd(NumRegs, 4666 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4667 Builder.CreateStore(NumRegs, NumRegsAddr); 4668 4669 CGF.EmitBranch(Cont); 4670 } 4671 4672 // Case 2: consume space in the overflow area. 4673 Address MemAddr = Address::invalid(); 4674 { 4675 CGF.EmitBlock(UsingOverflow); 4676 4677 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4678 4679 // Everything in the overflow area is rounded up to a size of at least 4. 4680 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4681 4682 CharUnits Size; 4683 if (!isIndirect) { 4684 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4685 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4686 } else { 4687 Size = CGF.getPointerSize(); 4688 } 4689 4690 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4691 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4692 OverflowAreaAlign); 4693 // Round up address of argument to alignment 4694 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4695 if (Align > OverflowAreaAlign) { 4696 llvm::Value *Ptr = OverflowArea.getPointer(); 4697 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4698 Align); 4699 } 4700 4701 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4702 4703 // Increase the overflow area. 4704 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4705 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4706 CGF.EmitBranch(Cont); 4707 } 4708 4709 CGF.EmitBlock(Cont); 4710 4711 // Merge the cases with a phi. 4712 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4713 "vaarg.addr"); 4714 4715 // Load the pointer if the argument was passed indirectly. 4716 if (isIndirect) { 4717 Result = Address(Builder.CreateLoad(Result, "aggr"), 4718 getContext().getTypeAlignInChars(Ty)); 4719 } 4720 4721 return Result; 4722 } 4723 4724 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4725 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4726 assert(Triple.getArch() == llvm::Triple::ppc); 4727 4728 switch (Opts.getStructReturnConvention()) { 4729 case CodeGenOptions::SRCK_Default: 4730 break; 4731 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4732 return false; 4733 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4734 return true; 4735 } 4736 4737 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4738 return true; 4739 4740 return false; 4741 } 4742 4743 bool 4744 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4745 llvm::Value *Address) const { 4746 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4747 /*IsAIX*/ false); 4748 } 4749 4750 // PowerPC-64 4751 4752 namespace { 4753 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4754 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4755 public: 4756 enum ABIKind { 4757 ELFv1 = 0, 4758 ELFv2 4759 }; 4760 4761 private: 4762 static const unsigned GPRBits = 64; 4763 ABIKind Kind; 4764 bool HasQPX; 4765 bool IsSoftFloatABI; 4766 4767 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4768 // will be passed in a QPX register. 4769 bool IsQPXVectorTy(const Type *Ty) const { 4770 if (!HasQPX) 4771 return false; 4772 4773 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4774 unsigned NumElements = VT->getNumElements(); 4775 if (NumElements == 1) 4776 return false; 4777 4778 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4779 if (getContext().getTypeSize(Ty) <= 256) 4780 return true; 4781 } else if (VT->getElementType()-> 4782 isSpecificBuiltinType(BuiltinType::Float)) { 4783 if (getContext().getTypeSize(Ty) <= 128) 4784 return true; 4785 } 4786 } 4787 4788 return false; 4789 } 4790 4791 bool IsQPXVectorTy(QualType Ty) const { 4792 return IsQPXVectorTy(Ty.getTypePtr()); 4793 } 4794 4795 public: 4796 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4797 bool SoftFloatABI) 4798 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4799 IsSoftFloatABI(SoftFloatABI) {} 4800 4801 bool isPromotableTypeForABI(QualType Ty) const; 4802 CharUnits getParamTypeAlignment(QualType Ty) const; 4803 4804 ABIArgInfo classifyReturnType(QualType RetTy) const; 4805 ABIArgInfo classifyArgumentType(QualType Ty) const; 4806 4807 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4808 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4809 uint64_t Members) const override; 4810 4811 // TODO: We can add more logic to computeInfo to improve performance. 4812 // Example: For aggregate arguments that fit in a register, we could 4813 // use getDirectInReg (as is done below for structs containing a single 4814 // floating-point value) to avoid pushing them to memory on function 4815 // entry. This would require changing the logic in PPCISelLowering 4816 // when lowering the parameters in the caller and args in the callee. 4817 void computeInfo(CGFunctionInfo &FI) const override { 4818 if (!getCXXABI().classifyReturnType(FI)) 4819 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4820 for (auto &I : FI.arguments()) { 4821 // We rely on the default argument classification for the most part. 4822 // One exception: An aggregate containing a single floating-point 4823 // or vector item must be passed in a register if one is available. 4824 const Type *T = isSingleElementStruct(I.type, getContext()); 4825 if (T) { 4826 const BuiltinType *BT = T->getAs<BuiltinType>(); 4827 if (IsQPXVectorTy(T) || 4828 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4829 (BT && BT->isFloatingPoint())) { 4830 QualType QT(T, 0); 4831 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4832 continue; 4833 } 4834 } 4835 I.info = classifyArgumentType(I.type); 4836 } 4837 } 4838 4839 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4840 QualType Ty) const override; 4841 4842 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4843 bool asReturnValue) const override { 4844 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4845 } 4846 4847 bool isSwiftErrorInRegister() const override { 4848 return false; 4849 } 4850 }; 4851 4852 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4853 4854 public: 4855 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4856 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4857 bool SoftFloatABI) 4858 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4859 CGT, Kind, HasQPX, SoftFloatABI)) {} 4860 4861 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4862 // This is recovered from gcc output. 4863 return 1; // r1 is the dedicated stack pointer 4864 } 4865 4866 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4867 llvm::Value *Address) const override; 4868 }; 4869 4870 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4871 public: 4872 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4873 4874 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4875 // This is recovered from gcc output. 4876 return 1; // r1 is the dedicated stack pointer 4877 } 4878 4879 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4880 llvm::Value *Address) const override; 4881 }; 4882 4883 } 4884 4885 // Return true if the ABI requires Ty to be passed sign- or zero- 4886 // extended to 64 bits. 4887 bool 4888 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4889 // Treat an enum type as its underlying type. 4890 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4891 Ty = EnumTy->getDecl()->getIntegerType(); 4892 4893 // Promotable integer types are required to be promoted by the ABI. 4894 if (isPromotableIntegerTypeForABI(Ty)) 4895 return true; 4896 4897 // In addition to the usual promotable integer types, we also need to 4898 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4899 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4900 switch (BT->getKind()) { 4901 case BuiltinType::Int: 4902 case BuiltinType::UInt: 4903 return true; 4904 default: 4905 break; 4906 } 4907 4908 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4909 if (EIT->getNumBits() < 64) 4910 return true; 4911 4912 return false; 4913 } 4914 4915 /// isAlignedParamType - Determine whether a type requires 16-byte or 4916 /// higher alignment in the parameter area. Always returns at least 8. 4917 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4918 // Complex types are passed just like their elements. 4919 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4920 Ty = CTy->getElementType(); 4921 4922 // Only vector types of size 16 bytes need alignment (larger types are 4923 // passed via reference, smaller types are not aligned). 4924 if (IsQPXVectorTy(Ty)) { 4925 if (getContext().getTypeSize(Ty) > 128) 4926 return CharUnits::fromQuantity(32); 4927 4928 return CharUnits::fromQuantity(16); 4929 } else if (Ty->isVectorType()) { 4930 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4931 } 4932 4933 // For single-element float/vector structs, we consider the whole type 4934 // to have the same alignment requirements as its single element. 4935 const Type *AlignAsType = nullptr; 4936 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4937 if (EltType) { 4938 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4939 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4940 getContext().getTypeSize(EltType) == 128) || 4941 (BT && BT->isFloatingPoint())) 4942 AlignAsType = EltType; 4943 } 4944 4945 // Likewise for ELFv2 homogeneous aggregates. 4946 const Type *Base = nullptr; 4947 uint64_t Members = 0; 4948 if (!AlignAsType && Kind == ELFv2 && 4949 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4950 AlignAsType = Base; 4951 4952 // With special case aggregates, only vector base types need alignment. 4953 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4954 if (getContext().getTypeSize(AlignAsType) > 128) 4955 return CharUnits::fromQuantity(32); 4956 4957 return CharUnits::fromQuantity(16); 4958 } else if (AlignAsType) { 4959 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4960 } 4961 4962 // Otherwise, we only need alignment for any aggregate type that 4963 // has an alignment requirement of >= 16 bytes. 4964 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4965 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4966 return CharUnits::fromQuantity(32); 4967 return CharUnits::fromQuantity(16); 4968 } 4969 4970 return CharUnits::fromQuantity(8); 4971 } 4972 4973 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4974 /// aggregate. Base is set to the base element type, and Members is set 4975 /// to the number of base elements. 4976 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4977 uint64_t &Members) const { 4978 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4979 uint64_t NElements = AT->getSize().getZExtValue(); 4980 if (NElements == 0) 4981 return false; 4982 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4983 return false; 4984 Members *= NElements; 4985 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4986 const RecordDecl *RD = RT->getDecl(); 4987 if (RD->hasFlexibleArrayMember()) 4988 return false; 4989 4990 Members = 0; 4991 4992 // If this is a C++ record, check the bases first. 4993 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4994 for (const auto &I : CXXRD->bases()) { 4995 // Ignore empty records. 4996 if (isEmptyRecord(getContext(), I.getType(), true)) 4997 continue; 4998 4999 uint64_t FldMembers; 5000 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5001 return false; 5002 5003 Members += FldMembers; 5004 } 5005 } 5006 5007 for (const auto *FD : RD->fields()) { 5008 // Ignore (non-zero arrays of) empty records. 5009 QualType FT = FD->getType(); 5010 while (const ConstantArrayType *AT = 5011 getContext().getAsConstantArrayType(FT)) { 5012 if (AT->getSize().getZExtValue() == 0) 5013 return false; 5014 FT = AT->getElementType(); 5015 } 5016 if (isEmptyRecord(getContext(), FT, true)) 5017 continue; 5018 5019 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5020 if (getContext().getLangOpts().CPlusPlus && 5021 FD->isZeroLengthBitField(getContext())) 5022 continue; 5023 5024 uint64_t FldMembers; 5025 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5026 return false; 5027 5028 Members = (RD->isUnion() ? 5029 std::max(Members, FldMembers) : Members + FldMembers); 5030 } 5031 5032 if (!Base) 5033 return false; 5034 5035 // Ensure there is no padding. 5036 if (getContext().getTypeSize(Base) * Members != 5037 getContext().getTypeSize(Ty)) 5038 return false; 5039 } else { 5040 Members = 1; 5041 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5042 Members = 2; 5043 Ty = CT->getElementType(); 5044 } 5045 5046 // Most ABIs only support float, double, and some vector type widths. 5047 if (!isHomogeneousAggregateBaseType(Ty)) 5048 return false; 5049 5050 // The base type must be the same for all members. Types that 5051 // agree in both total size and mode (float vs. vector) are 5052 // treated as being equivalent here. 5053 const Type *TyPtr = Ty.getTypePtr(); 5054 if (!Base) { 5055 Base = TyPtr; 5056 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5057 // so make sure to widen it explicitly. 5058 if (const VectorType *VT = Base->getAs<VectorType>()) { 5059 QualType EltTy = VT->getElementType(); 5060 unsigned NumElements = 5061 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5062 Base = getContext() 5063 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5064 .getTypePtr(); 5065 } 5066 } 5067 5068 if (Base->isVectorType() != TyPtr->isVectorType() || 5069 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5070 return false; 5071 } 5072 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5073 } 5074 5075 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5076 // Homogeneous aggregates for ELFv2 must have base types of float, 5077 // double, long double, or 128-bit vectors. 5078 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5079 if (BT->getKind() == BuiltinType::Float || 5080 BT->getKind() == BuiltinType::Double || 5081 BT->getKind() == BuiltinType::LongDouble || 5082 (getContext().getTargetInfo().hasFloat128Type() && 5083 (BT->getKind() == BuiltinType::Float128))) { 5084 if (IsSoftFloatABI) 5085 return false; 5086 return true; 5087 } 5088 } 5089 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5090 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5091 return true; 5092 } 5093 return false; 5094 } 5095 5096 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5097 const Type *Base, uint64_t Members) const { 5098 // Vector and fp128 types require one register, other floating point types 5099 // require one or two registers depending on their size. 5100 uint32_t NumRegs = 5101 ((getContext().getTargetInfo().hasFloat128Type() && 5102 Base->isFloat128Type()) || 5103 Base->isVectorType()) ? 1 5104 : (getContext().getTypeSize(Base) + 63) / 64; 5105 5106 // Homogeneous Aggregates may occupy at most 8 registers. 5107 return Members * NumRegs <= 8; 5108 } 5109 5110 ABIArgInfo 5111 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5112 Ty = useFirstFieldIfTransparentUnion(Ty); 5113 5114 if (Ty->isAnyComplexType()) 5115 return ABIArgInfo::getDirect(); 5116 5117 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5118 // or via reference (larger than 16 bytes). 5119 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5120 uint64_t Size = getContext().getTypeSize(Ty); 5121 if (Size > 128) 5122 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5123 else if (Size < 128) { 5124 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5125 return ABIArgInfo::getDirect(CoerceTy); 5126 } 5127 } 5128 5129 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5130 if (EIT->getNumBits() > 128) 5131 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5132 5133 if (isAggregateTypeForABI(Ty)) { 5134 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5135 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5136 5137 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5138 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5139 5140 // ELFv2 homogeneous aggregates are passed as array types. 5141 const Type *Base = nullptr; 5142 uint64_t Members = 0; 5143 if (Kind == ELFv2 && 5144 isHomogeneousAggregate(Ty, Base, Members)) { 5145 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5146 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5147 return ABIArgInfo::getDirect(CoerceTy); 5148 } 5149 5150 // If an aggregate may end up fully in registers, we do not 5151 // use the ByVal method, but pass the aggregate as array. 5152 // This is usually beneficial since we avoid forcing the 5153 // back-end to store the argument to memory. 5154 uint64_t Bits = getContext().getTypeSize(Ty); 5155 if (Bits > 0 && Bits <= 8 * GPRBits) { 5156 llvm::Type *CoerceTy; 5157 5158 // Types up to 8 bytes are passed as integer type (which will be 5159 // properly aligned in the argument save area doubleword). 5160 if (Bits <= GPRBits) 5161 CoerceTy = 5162 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5163 // Larger types are passed as arrays, with the base type selected 5164 // according to the required alignment in the save area. 5165 else { 5166 uint64_t RegBits = ABIAlign * 8; 5167 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5168 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5169 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5170 } 5171 5172 return ABIArgInfo::getDirect(CoerceTy); 5173 } 5174 5175 // All other aggregates are passed ByVal. 5176 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5177 /*ByVal=*/true, 5178 /*Realign=*/TyAlign > ABIAlign); 5179 } 5180 5181 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5182 : ABIArgInfo::getDirect()); 5183 } 5184 5185 ABIArgInfo 5186 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5187 if (RetTy->isVoidType()) 5188 return ABIArgInfo::getIgnore(); 5189 5190 if (RetTy->isAnyComplexType()) 5191 return ABIArgInfo::getDirect(); 5192 5193 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5194 // or via reference (larger than 16 bytes). 5195 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5196 uint64_t Size = getContext().getTypeSize(RetTy); 5197 if (Size > 128) 5198 return getNaturalAlignIndirect(RetTy); 5199 else if (Size < 128) { 5200 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5201 return ABIArgInfo::getDirect(CoerceTy); 5202 } 5203 } 5204 5205 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5206 if (EIT->getNumBits() > 128) 5207 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5208 5209 if (isAggregateTypeForABI(RetTy)) { 5210 // ELFv2 homogeneous aggregates are returned as array types. 5211 const Type *Base = nullptr; 5212 uint64_t Members = 0; 5213 if (Kind == ELFv2 && 5214 isHomogeneousAggregate(RetTy, Base, Members)) { 5215 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5216 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5217 return ABIArgInfo::getDirect(CoerceTy); 5218 } 5219 5220 // ELFv2 small aggregates are returned in up to two registers. 5221 uint64_t Bits = getContext().getTypeSize(RetTy); 5222 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5223 if (Bits == 0) 5224 return ABIArgInfo::getIgnore(); 5225 5226 llvm::Type *CoerceTy; 5227 if (Bits > GPRBits) { 5228 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5229 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5230 } else 5231 CoerceTy = 5232 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5233 return ABIArgInfo::getDirect(CoerceTy); 5234 } 5235 5236 // All other aggregates are returned indirectly. 5237 return getNaturalAlignIndirect(RetTy); 5238 } 5239 5240 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5241 : ABIArgInfo::getDirect()); 5242 } 5243 5244 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5245 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5246 QualType Ty) const { 5247 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5248 TypeInfo.second = getParamTypeAlignment(Ty); 5249 5250 CharUnits SlotSize = CharUnits::fromQuantity(8); 5251 5252 // If we have a complex type and the base type is smaller than 8 bytes, 5253 // the ABI calls for the real and imaginary parts to be right-adjusted 5254 // in separate doublewords. However, Clang expects us to produce a 5255 // pointer to a structure with the two parts packed tightly. So generate 5256 // loads of the real and imaginary parts relative to the va_list pointer, 5257 // and store them to a temporary structure. 5258 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5259 CharUnits EltSize = TypeInfo.first / 2; 5260 if (EltSize < SlotSize) { 5261 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5262 SlotSize * 2, SlotSize, 5263 SlotSize, /*AllowHigher*/ true); 5264 5265 Address RealAddr = Addr; 5266 Address ImagAddr = RealAddr; 5267 if (CGF.CGM.getDataLayout().isBigEndian()) { 5268 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5269 SlotSize - EltSize); 5270 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5271 2 * SlotSize - EltSize); 5272 } else { 5273 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5274 } 5275 5276 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5277 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5278 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5279 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5280 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5281 5282 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5283 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5284 /*init*/ true); 5285 return Temp; 5286 } 5287 } 5288 5289 // Otherwise, just use the general rule. 5290 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5291 TypeInfo, SlotSize, /*AllowHigher*/ true); 5292 } 5293 5294 bool 5295 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5296 CodeGen::CodeGenFunction &CGF, 5297 llvm::Value *Address) const { 5298 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5299 /*IsAIX*/ false); 5300 } 5301 5302 bool 5303 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5304 llvm::Value *Address) const { 5305 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5306 /*IsAIX*/ false); 5307 } 5308 5309 //===----------------------------------------------------------------------===// 5310 // AArch64 ABI Implementation 5311 //===----------------------------------------------------------------------===// 5312 5313 namespace { 5314 5315 class AArch64ABIInfo : public SwiftABIInfo { 5316 public: 5317 enum ABIKind { 5318 AAPCS = 0, 5319 DarwinPCS, 5320 Win64 5321 }; 5322 5323 private: 5324 ABIKind Kind; 5325 5326 public: 5327 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5328 : SwiftABIInfo(CGT), Kind(Kind) {} 5329 5330 private: 5331 ABIKind getABIKind() const { return Kind; } 5332 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5333 5334 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5335 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5336 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5337 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5338 uint64_t Members) const override; 5339 5340 bool isIllegalVectorType(QualType Ty) const; 5341 5342 void computeInfo(CGFunctionInfo &FI) const override { 5343 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5344 FI.getReturnInfo() = 5345 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5346 5347 for (auto &it : FI.arguments()) 5348 it.info = classifyArgumentType(it.type); 5349 } 5350 5351 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5352 CodeGenFunction &CGF) const; 5353 5354 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5355 CodeGenFunction &CGF) const; 5356 5357 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5358 QualType Ty) const override { 5359 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5360 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5361 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5362 } 5363 5364 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5365 QualType Ty) const override; 5366 5367 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5368 bool asReturnValue) const override { 5369 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5370 } 5371 bool isSwiftErrorInRegister() const override { 5372 return true; 5373 } 5374 5375 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5376 unsigned elts) const override; 5377 }; 5378 5379 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5380 public: 5381 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5382 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5383 5384 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5385 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5386 } 5387 5388 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5389 return 31; 5390 } 5391 5392 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5393 5394 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5395 CodeGen::CodeGenModule &CGM) const override { 5396 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5397 if (!FD) 5398 return; 5399 5400 LangOptions::SignReturnAddressScopeKind Scope = 5401 CGM.getLangOpts().getSignReturnAddressScope(); 5402 LangOptions::SignReturnAddressKeyKind Key = 5403 CGM.getLangOpts().getSignReturnAddressKey(); 5404 bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement; 5405 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5406 ParsedTargetAttr Attr = TA->parse(); 5407 if (!Attr.BranchProtection.empty()) { 5408 TargetInfo::BranchProtectionInfo BPI; 5409 StringRef Error; 5410 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5411 BPI, Error); 5412 assert(Error.empty()); 5413 Scope = BPI.SignReturnAddr; 5414 Key = BPI.SignKey; 5415 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5416 } 5417 } 5418 5419 auto *Fn = cast<llvm::Function>(GV); 5420 if (Scope != LangOptions::SignReturnAddressScopeKind::None) { 5421 Fn->addFnAttr("sign-return-address", 5422 Scope == LangOptions::SignReturnAddressScopeKind::All 5423 ? "all" 5424 : "non-leaf"); 5425 5426 Fn->addFnAttr("sign-return-address-key", 5427 Key == LangOptions::SignReturnAddressKeyKind::AKey 5428 ? "a_key" 5429 : "b_key"); 5430 } 5431 5432 if (BranchTargetEnforcement) 5433 Fn->addFnAttr("branch-target-enforcement"); 5434 } 5435 }; 5436 5437 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5438 public: 5439 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5440 : AArch64TargetCodeGenInfo(CGT, K) {} 5441 5442 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5443 CodeGen::CodeGenModule &CGM) const override; 5444 5445 void getDependentLibraryOption(llvm::StringRef Lib, 5446 llvm::SmallString<24> &Opt) const override { 5447 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5448 } 5449 5450 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5451 llvm::SmallString<32> &Opt) const override { 5452 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5453 } 5454 }; 5455 5456 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5457 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5458 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5459 if (GV->isDeclaration()) 5460 return; 5461 addStackProbeTargetAttributes(D, GV, CGM); 5462 } 5463 } 5464 5465 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5466 Ty = useFirstFieldIfTransparentUnion(Ty); 5467 5468 // Handle illegal vector types here. 5469 if (isIllegalVectorType(Ty)) { 5470 uint64_t Size = getContext().getTypeSize(Ty); 5471 // Android promotes <2 x i8> to i16, not i32 5472 if (isAndroid() && (Size <= 16)) { 5473 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5474 return ABIArgInfo::getDirect(ResType); 5475 } 5476 if (Size <= 32) { 5477 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5478 return ABIArgInfo::getDirect(ResType); 5479 } 5480 if (Size == 64) { 5481 llvm::Type *ResType = 5482 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5483 return ABIArgInfo::getDirect(ResType); 5484 } 5485 if (Size == 128) { 5486 llvm::Type *ResType = 5487 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5488 return ABIArgInfo::getDirect(ResType); 5489 } 5490 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5491 } 5492 5493 if (!isAggregateTypeForABI(Ty)) { 5494 // Treat an enum type as its underlying type. 5495 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5496 Ty = EnumTy->getDecl()->getIntegerType(); 5497 5498 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5499 if (EIT->getNumBits() > 128) 5500 return getNaturalAlignIndirect(Ty); 5501 5502 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5503 ? ABIArgInfo::getExtend(Ty) 5504 : ABIArgInfo::getDirect()); 5505 } 5506 5507 // Structures with either a non-trivial destructor or a non-trivial 5508 // copy constructor are always indirect. 5509 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5510 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5511 CGCXXABI::RAA_DirectInMemory); 5512 } 5513 5514 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5515 // elsewhere for GNU compatibility. 5516 uint64_t Size = getContext().getTypeSize(Ty); 5517 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5518 if (IsEmpty || Size == 0) { 5519 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5520 return ABIArgInfo::getIgnore(); 5521 5522 // GNU C mode. The only argument that gets ignored is an empty one with size 5523 // 0. 5524 if (IsEmpty && Size == 0) 5525 return ABIArgInfo::getIgnore(); 5526 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5527 } 5528 5529 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5530 const Type *Base = nullptr; 5531 uint64_t Members = 0; 5532 if (isHomogeneousAggregate(Ty, Base, Members)) { 5533 return ABIArgInfo::getDirect( 5534 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5535 } 5536 5537 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5538 if (Size <= 128) { 5539 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5540 // same size and alignment. 5541 if (getTarget().isRenderScriptTarget()) { 5542 return coerceToIntArray(Ty, getContext(), getVMContext()); 5543 } 5544 unsigned Alignment; 5545 if (Kind == AArch64ABIInfo::AAPCS) { 5546 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5547 Alignment = Alignment < 128 ? 64 : 128; 5548 } else { 5549 Alignment = std::max(getContext().getTypeAlign(Ty), 5550 (unsigned)getTarget().getPointerWidth(0)); 5551 } 5552 Size = llvm::alignTo(Size, Alignment); 5553 5554 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5555 // For aggregates with 16-byte alignment, we use i128. 5556 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5557 return ABIArgInfo::getDirect( 5558 Size == Alignment ? BaseTy 5559 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5560 } 5561 5562 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5563 } 5564 5565 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5566 bool IsVariadic) const { 5567 if (RetTy->isVoidType()) 5568 return ABIArgInfo::getIgnore(); 5569 5570 // Large vector types should be returned via memory. 5571 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5572 return getNaturalAlignIndirect(RetTy); 5573 5574 if (!isAggregateTypeForABI(RetTy)) { 5575 // Treat an enum type as its underlying type. 5576 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5577 RetTy = EnumTy->getDecl()->getIntegerType(); 5578 5579 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5580 if (EIT->getNumBits() > 128) 5581 return getNaturalAlignIndirect(RetTy); 5582 5583 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5584 ? ABIArgInfo::getExtend(RetTy) 5585 : ABIArgInfo::getDirect()); 5586 } 5587 5588 uint64_t Size = getContext().getTypeSize(RetTy); 5589 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5590 return ABIArgInfo::getIgnore(); 5591 5592 const Type *Base = nullptr; 5593 uint64_t Members = 0; 5594 if (isHomogeneousAggregate(RetTy, Base, Members) && 5595 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5596 IsVariadic)) 5597 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5598 return ABIArgInfo::getDirect(); 5599 5600 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5601 if (Size <= 128) { 5602 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5603 // same size and alignment. 5604 if (getTarget().isRenderScriptTarget()) { 5605 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5606 } 5607 unsigned Alignment = getContext().getTypeAlign(RetTy); 5608 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5609 5610 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5611 // For aggregates with 16-byte alignment, we use i128. 5612 if (Alignment < 128 && Size == 128) { 5613 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5614 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5615 } 5616 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5617 } 5618 5619 return getNaturalAlignIndirect(RetTy); 5620 } 5621 5622 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5623 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5624 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5625 // Check whether VT is legal. 5626 unsigned NumElements = VT->getNumElements(); 5627 uint64_t Size = getContext().getTypeSize(VT); 5628 // NumElements should be power of 2. 5629 if (!llvm::isPowerOf2_32(NumElements)) 5630 return true; 5631 5632 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5633 // vectors for some reason. 5634 llvm::Triple Triple = getTarget().getTriple(); 5635 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5636 Triple.isOSBinFormatMachO()) 5637 return Size <= 32; 5638 5639 return Size != 64 && (Size != 128 || NumElements == 1); 5640 } 5641 return false; 5642 } 5643 5644 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5645 llvm::Type *eltTy, 5646 unsigned elts) const { 5647 if (!llvm::isPowerOf2_32(elts)) 5648 return false; 5649 if (totalSize.getQuantity() != 8 && 5650 (totalSize.getQuantity() != 16 || elts == 1)) 5651 return false; 5652 return true; 5653 } 5654 5655 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5656 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5657 // point type or a short-vector type. This is the same as the 32-bit ABI, 5658 // but with the difference that any floating-point type is allowed, 5659 // including __fp16. 5660 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5661 if (BT->isFloatingPoint()) 5662 return true; 5663 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5664 unsigned VecSize = getContext().getTypeSize(VT); 5665 if (VecSize == 64 || VecSize == 128) 5666 return true; 5667 } 5668 return false; 5669 } 5670 5671 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5672 uint64_t Members) const { 5673 return Members <= 4; 5674 } 5675 5676 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5677 QualType Ty, 5678 CodeGenFunction &CGF) const { 5679 ABIArgInfo AI = classifyArgumentType(Ty); 5680 bool IsIndirect = AI.isIndirect(); 5681 5682 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5683 if (IsIndirect) 5684 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5685 else if (AI.getCoerceToType()) 5686 BaseTy = AI.getCoerceToType(); 5687 5688 unsigned NumRegs = 1; 5689 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5690 BaseTy = ArrTy->getElementType(); 5691 NumRegs = ArrTy->getNumElements(); 5692 } 5693 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5694 5695 // The AArch64 va_list type and handling is specified in the Procedure Call 5696 // Standard, section B.4: 5697 // 5698 // struct { 5699 // void *__stack; 5700 // void *__gr_top; 5701 // void *__vr_top; 5702 // int __gr_offs; 5703 // int __vr_offs; 5704 // }; 5705 5706 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5707 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5708 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5709 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5710 5711 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5712 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5713 5714 Address reg_offs_p = Address::invalid(); 5715 llvm::Value *reg_offs = nullptr; 5716 int reg_top_index; 5717 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5718 if (!IsFPR) { 5719 // 3 is the field number of __gr_offs 5720 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5721 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5722 reg_top_index = 1; // field number for __gr_top 5723 RegSize = llvm::alignTo(RegSize, 8); 5724 } else { 5725 // 4 is the field number of __vr_offs. 5726 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5727 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5728 reg_top_index = 2; // field number for __vr_top 5729 RegSize = 16 * NumRegs; 5730 } 5731 5732 //======================================= 5733 // Find out where argument was passed 5734 //======================================= 5735 5736 // If reg_offs >= 0 we're already using the stack for this type of 5737 // argument. We don't want to keep updating reg_offs (in case it overflows, 5738 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5739 // whatever they get). 5740 llvm::Value *UsingStack = nullptr; 5741 UsingStack = CGF.Builder.CreateICmpSGE( 5742 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5743 5744 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5745 5746 // Otherwise, at least some kind of argument could go in these registers, the 5747 // question is whether this particular type is too big. 5748 CGF.EmitBlock(MaybeRegBlock); 5749 5750 // Integer arguments may need to correct register alignment (for example a 5751 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5752 // align __gr_offs to calculate the potential address. 5753 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5754 int Align = TyAlign.getQuantity(); 5755 5756 reg_offs = CGF.Builder.CreateAdd( 5757 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5758 "align_regoffs"); 5759 reg_offs = CGF.Builder.CreateAnd( 5760 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5761 "aligned_regoffs"); 5762 } 5763 5764 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5765 // The fact that this is done unconditionally reflects the fact that 5766 // allocating an argument to the stack also uses up all the remaining 5767 // registers of the appropriate kind. 5768 llvm::Value *NewOffset = nullptr; 5769 NewOffset = CGF.Builder.CreateAdd( 5770 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5771 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5772 5773 // Now we're in a position to decide whether this argument really was in 5774 // registers or not. 5775 llvm::Value *InRegs = nullptr; 5776 InRegs = CGF.Builder.CreateICmpSLE( 5777 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5778 5779 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5780 5781 //======================================= 5782 // Argument was in registers 5783 //======================================= 5784 5785 // Now we emit the code for if the argument was originally passed in 5786 // registers. First start the appropriate block: 5787 CGF.EmitBlock(InRegBlock); 5788 5789 llvm::Value *reg_top = nullptr; 5790 Address reg_top_p = 5791 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5792 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5793 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5794 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5795 Address RegAddr = Address::invalid(); 5796 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5797 5798 if (IsIndirect) { 5799 // If it's been passed indirectly (actually a struct), whatever we find from 5800 // stored registers or on the stack will actually be a struct **. 5801 MemTy = llvm::PointerType::getUnqual(MemTy); 5802 } 5803 5804 const Type *Base = nullptr; 5805 uint64_t NumMembers = 0; 5806 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5807 if (IsHFA && NumMembers > 1) { 5808 // Homogeneous aggregates passed in registers will have their elements split 5809 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5810 // qN+1, ...). We reload and store into a temporary local variable 5811 // contiguously. 5812 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5813 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5814 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5815 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5816 Address Tmp = CGF.CreateTempAlloca(HFATy, 5817 std::max(TyAlign, BaseTyInfo.second)); 5818 5819 // On big-endian platforms, the value will be right-aligned in its slot. 5820 int Offset = 0; 5821 if (CGF.CGM.getDataLayout().isBigEndian() && 5822 BaseTyInfo.first.getQuantity() < 16) 5823 Offset = 16 - BaseTyInfo.first.getQuantity(); 5824 5825 for (unsigned i = 0; i < NumMembers; ++i) { 5826 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5827 Address LoadAddr = 5828 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5829 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5830 5831 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5832 5833 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5834 CGF.Builder.CreateStore(Elem, StoreAddr); 5835 } 5836 5837 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5838 } else { 5839 // Otherwise the object is contiguous in memory. 5840 5841 // It might be right-aligned in its slot. 5842 CharUnits SlotSize = BaseAddr.getAlignment(); 5843 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5844 (IsHFA || !isAggregateTypeForABI(Ty)) && 5845 TySize < SlotSize) { 5846 CharUnits Offset = SlotSize - TySize; 5847 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5848 } 5849 5850 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5851 } 5852 5853 CGF.EmitBranch(ContBlock); 5854 5855 //======================================= 5856 // Argument was on the stack 5857 //======================================= 5858 CGF.EmitBlock(OnStackBlock); 5859 5860 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5861 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5862 5863 // Again, stack arguments may need realignment. In this case both integer and 5864 // floating-point ones might be affected. 5865 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5866 int Align = TyAlign.getQuantity(); 5867 5868 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5869 5870 OnStackPtr = CGF.Builder.CreateAdd( 5871 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5872 "align_stack"); 5873 OnStackPtr = CGF.Builder.CreateAnd( 5874 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5875 "align_stack"); 5876 5877 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5878 } 5879 Address OnStackAddr(OnStackPtr, 5880 std::max(CharUnits::fromQuantity(8), TyAlign)); 5881 5882 // All stack slots are multiples of 8 bytes. 5883 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5884 CharUnits StackSize; 5885 if (IsIndirect) 5886 StackSize = StackSlotSize; 5887 else 5888 StackSize = TySize.alignTo(StackSlotSize); 5889 5890 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5891 llvm::Value *NewStack = 5892 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5893 5894 // Write the new value of __stack for the next call to va_arg 5895 CGF.Builder.CreateStore(NewStack, stack_p); 5896 5897 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5898 TySize < StackSlotSize) { 5899 CharUnits Offset = StackSlotSize - TySize; 5900 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5901 } 5902 5903 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5904 5905 CGF.EmitBranch(ContBlock); 5906 5907 //======================================= 5908 // Tidy up 5909 //======================================= 5910 CGF.EmitBlock(ContBlock); 5911 5912 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5913 OnStackAddr, OnStackBlock, "vaargs.addr"); 5914 5915 if (IsIndirect) 5916 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5917 TyAlign); 5918 5919 return ResAddr; 5920 } 5921 5922 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5923 CodeGenFunction &CGF) const { 5924 // The backend's lowering doesn't support va_arg for aggregates or 5925 // illegal vector types. Lower VAArg here for these cases and use 5926 // the LLVM va_arg instruction for everything else. 5927 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5928 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5929 5930 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5931 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5932 5933 // Empty records are ignored for parameter passing purposes. 5934 if (isEmptyRecord(getContext(), Ty, true)) { 5935 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5936 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5937 return Addr; 5938 } 5939 5940 // The size of the actual thing passed, which might end up just 5941 // being a pointer for indirect types. 5942 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5943 5944 // Arguments bigger than 16 bytes which aren't homogeneous 5945 // aggregates should be passed indirectly. 5946 bool IsIndirect = false; 5947 if (TyInfo.first.getQuantity() > 16) { 5948 const Type *Base = nullptr; 5949 uint64_t Members = 0; 5950 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5951 } 5952 5953 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5954 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5955 } 5956 5957 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5958 QualType Ty) const { 5959 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5960 CGF.getContext().getTypeInfoInChars(Ty), 5961 CharUnits::fromQuantity(8), 5962 /*allowHigherAlign*/ false); 5963 } 5964 5965 //===----------------------------------------------------------------------===// 5966 // ARM ABI Implementation 5967 //===----------------------------------------------------------------------===// 5968 5969 namespace { 5970 5971 class ARMABIInfo : public SwiftABIInfo { 5972 public: 5973 enum ABIKind { 5974 APCS = 0, 5975 AAPCS = 1, 5976 AAPCS_VFP = 2, 5977 AAPCS16_VFP = 3, 5978 }; 5979 5980 private: 5981 ABIKind Kind; 5982 5983 public: 5984 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5985 : SwiftABIInfo(CGT), Kind(_Kind) { 5986 setCCs(); 5987 } 5988 5989 bool isEABI() const { 5990 switch (getTarget().getTriple().getEnvironment()) { 5991 case llvm::Triple::Android: 5992 case llvm::Triple::EABI: 5993 case llvm::Triple::EABIHF: 5994 case llvm::Triple::GNUEABI: 5995 case llvm::Triple::GNUEABIHF: 5996 case llvm::Triple::MuslEABI: 5997 case llvm::Triple::MuslEABIHF: 5998 return true; 5999 default: 6000 return false; 6001 } 6002 } 6003 6004 bool isEABIHF() const { 6005 switch (getTarget().getTriple().getEnvironment()) { 6006 case llvm::Triple::EABIHF: 6007 case llvm::Triple::GNUEABIHF: 6008 case llvm::Triple::MuslEABIHF: 6009 return true; 6010 default: 6011 return false; 6012 } 6013 } 6014 6015 ABIKind getABIKind() const { return Kind; } 6016 6017 private: 6018 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6019 unsigned functionCallConv) const; 6020 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6021 unsigned functionCallConv) const; 6022 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6023 uint64_t Members) const; 6024 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6025 bool isIllegalVectorType(QualType Ty) const; 6026 bool containsAnyFP16Vectors(QualType Ty) const; 6027 6028 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6029 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6030 uint64_t Members) const override; 6031 6032 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6033 6034 void computeInfo(CGFunctionInfo &FI) const override; 6035 6036 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6037 QualType Ty) const override; 6038 6039 llvm::CallingConv::ID getLLVMDefaultCC() const; 6040 llvm::CallingConv::ID getABIDefaultCC() const; 6041 void setCCs(); 6042 6043 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6044 bool asReturnValue) const override { 6045 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6046 } 6047 bool isSwiftErrorInRegister() const override { 6048 return true; 6049 } 6050 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6051 unsigned elts) const override; 6052 }; 6053 6054 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6055 public: 6056 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6057 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6058 6059 const ARMABIInfo &getABIInfo() const { 6060 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6061 } 6062 6063 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6064 return 13; 6065 } 6066 6067 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6068 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6069 } 6070 6071 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6072 llvm::Value *Address) const override { 6073 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6074 6075 // 0-15 are the 16 integer registers. 6076 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6077 return false; 6078 } 6079 6080 unsigned getSizeOfUnwindException() const override { 6081 if (getABIInfo().isEABI()) return 88; 6082 return TargetCodeGenInfo::getSizeOfUnwindException(); 6083 } 6084 6085 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6086 CodeGen::CodeGenModule &CGM) const override { 6087 if (GV->isDeclaration()) 6088 return; 6089 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6090 if (!FD) 6091 return; 6092 6093 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6094 if (!Attr) 6095 return; 6096 6097 const char *Kind; 6098 switch (Attr->getInterrupt()) { 6099 case ARMInterruptAttr::Generic: Kind = ""; break; 6100 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6101 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6102 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6103 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6104 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6105 } 6106 6107 llvm::Function *Fn = cast<llvm::Function>(GV); 6108 6109 Fn->addFnAttr("interrupt", Kind); 6110 6111 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6112 if (ABI == ARMABIInfo::APCS) 6113 return; 6114 6115 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6116 // however this is not necessarily true on taking any interrupt. Instruct 6117 // the backend to perform a realignment as part of the function prologue. 6118 llvm::AttrBuilder B; 6119 B.addStackAlignmentAttr(8); 6120 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6121 } 6122 }; 6123 6124 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6125 public: 6126 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6127 : ARMTargetCodeGenInfo(CGT, K) {} 6128 6129 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6130 CodeGen::CodeGenModule &CGM) const override; 6131 6132 void getDependentLibraryOption(llvm::StringRef Lib, 6133 llvm::SmallString<24> &Opt) const override { 6134 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6135 } 6136 6137 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6138 llvm::SmallString<32> &Opt) const override { 6139 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6140 } 6141 }; 6142 6143 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6144 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6145 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6146 if (GV->isDeclaration()) 6147 return; 6148 addStackProbeTargetAttributes(D, GV, CGM); 6149 } 6150 } 6151 6152 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6153 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6154 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6155 FI.getCallingConvention()); 6156 6157 for (auto &I : FI.arguments()) 6158 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6159 FI.getCallingConvention()); 6160 6161 6162 // Always honor user-specified calling convention. 6163 if (FI.getCallingConvention() != llvm::CallingConv::C) 6164 return; 6165 6166 llvm::CallingConv::ID cc = getRuntimeCC(); 6167 if (cc != llvm::CallingConv::C) 6168 FI.setEffectiveCallingConvention(cc); 6169 } 6170 6171 /// Return the default calling convention that LLVM will use. 6172 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6173 // The default calling convention that LLVM will infer. 6174 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6175 return llvm::CallingConv::ARM_AAPCS_VFP; 6176 else if (isEABI()) 6177 return llvm::CallingConv::ARM_AAPCS; 6178 else 6179 return llvm::CallingConv::ARM_APCS; 6180 } 6181 6182 /// Return the calling convention that our ABI would like us to use 6183 /// as the C calling convention. 6184 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6185 switch (getABIKind()) { 6186 case APCS: return llvm::CallingConv::ARM_APCS; 6187 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6188 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6189 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6190 } 6191 llvm_unreachable("bad ABI kind"); 6192 } 6193 6194 void ARMABIInfo::setCCs() { 6195 assert(getRuntimeCC() == llvm::CallingConv::C); 6196 6197 // Don't muddy up the IR with a ton of explicit annotations if 6198 // they'd just match what LLVM will infer from the triple. 6199 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6200 if (abiCC != getLLVMDefaultCC()) 6201 RuntimeCC = abiCC; 6202 } 6203 6204 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6205 uint64_t Size = getContext().getTypeSize(Ty); 6206 if (Size <= 32) { 6207 llvm::Type *ResType = 6208 llvm::Type::getInt32Ty(getVMContext()); 6209 return ABIArgInfo::getDirect(ResType); 6210 } 6211 if (Size == 64 || Size == 128) { 6212 llvm::Type *ResType = llvm::VectorType::get( 6213 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6214 return ABIArgInfo::getDirect(ResType); 6215 } 6216 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6217 } 6218 6219 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6220 const Type *Base, 6221 uint64_t Members) const { 6222 assert(Base && "Base class should be set for homogeneous aggregate"); 6223 // Base can be a floating-point or a vector. 6224 if (const VectorType *VT = Base->getAs<VectorType>()) { 6225 // FP16 vectors should be converted to integer vectors 6226 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6227 uint64_t Size = getContext().getTypeSize(VT); 6228 llvm::Type *NewVecTy = llvm::VectorType::get( 6229 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6230 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6231 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6232 } 6233 } 6234 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6235 } 6236 6237 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6238 unsigned functionCallConv) const { 6239 // 6.1.2.1 The following argument types are VFP CPRCs: 6240 // A single-precision floating-point type (including promoted 6241 // half-precision types); A double-precision floating-point type; 6242 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6243 // with a Base Type of a single- or double-precision floating-point type, 6244 // 64-bit containerized vectors or 128-bit containerized vectors with one 6245 // to four Elements. 6246 // Variadic functions should always marshal to the base standard. 6247 bool IsAAPCS_VFP = 6248 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6249 6250 Ty = useFirstFieldIfTransparentUnion(Ty); 6251 6252 // Handle illegal vector types here. 6253 if (isIllegalVectorType(Ty)) 6254 return coerceIllegalVector(Ty); 6255 6256 // _Float16 and __fp16 get passed as if it were an int or float, but with 6257 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6258 // half type natively, and does not need to interwork with AAPCS code. 6259 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 6260 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6261 llvm::Type *ResType = IsAAPCS_VFP ? 6262 llvm::Type::getFloatTy(getVMContext()) : 6263 llvm::Type::getInt32Ty(getVMContext()); 6264 return ABIArgInfo::getDirect(ResType); 6265 } 6266 6267 if (!isAggregateTypeForABI(Ty)) { 6268 // Treat an enum type as its underlying type. 6269 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6270 Ty = EnumTy->getDecl()->getIntegerType(); 6271 } 6272 6273 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6274 if (EIT->getNumBits() > 64) 6275 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6276 6277 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6278 : ABIArgInfo::getDirect()); 6279 } 6280 6281 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6282 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6283 } 6284 6285 // Ignore empty records. 6286 if (isEmptyRecord(getContext(), Ty, true)) 6287 return ABIArgInfo::getIgnore(); 6288 6289 if (IsAAPCS_VFP) { 6290 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6291 // into VFP registers. 6292 const Type *Base = nullptr; 6293 uint64_t Members = 0; 6294 if (isHomogeneousAggregate(Ty, Base, Members)) 6295 return classifyHomogeneousAggregate(Ty, Base, Members); 6296 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6297 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6298 // this convention even for a variadic function: the backend will use GPRs 6299 // if needed. 6300 const Type *Base = nullptr; 6301 uint64_t Members = 0; 6302 if (isHomogeneousAggregate(Ty, Base, Members)) { 6303 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6304 llvm::Type *Ty = 6305 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6306 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6307 } 6308 } 6309 6310 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6311 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6312 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6313 // bigger than 128-bits, they get placed in space allocated by the caller, 6314 // and a pointer is passed. 6315 return ABIArgInfo::getIndirect( 6316 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6317 } 6318 6319 // Support byval for ARM. 6320 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6321 // most 8-byte. We realign the indirect argument if type alignment is bigger 6322 // than ABI alignment. 6323 uint64_t ABIAlign = 4; 6324 uint64_t TyAlign; 6325 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6326 getABIKind() == ARMABIInfo::AAPCS) { 6327 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6328 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6329 } else { 6330 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6331 } 6332 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6333 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6334 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6335 /*ByVal=*/true, 6336 /*Realign=*/TyAlign > ABIAlign); 6337 } 6338 6339 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6340 // same size and alignment. 6341 if (getTarget().isRenderScriptTarget()) { 6342 return coerceToIntArray(Ty, getContext(), getVMContext()); 6343 } 6344 6345 // Otherwise, pass by coercing to a structure of the appropriate size. 6346 llvm::Type* ElemTy; 6347 unsigned SizeRegs; 6348 // FIXME: Try to match the types of the arguments more accurately where 6349 // we can. 6350 if (TyAlign <= 4) { 6351 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6352 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6353 } else { 6354 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6355 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6356 } 6357 6358 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6359 } 6360 6361 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6362 llvm::LLVMContext &VMContext) { 6363 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6364 // is called integer-like if its size is less than or equal to one word, and 6365 // the offset of each of its addressable sub-fields is zero. 6366 6367 uint64_t Size = Context.getTypeSize(Ty); 6368 6369 // Check that the type fits in a word. 6370 if (Size > 32) 6371 return false; 6372 6373 // FIXME: Handle vector types! 6374 if (Ty->isVectorType()) 6375 return false; 6376 6377 // Float types are never treated as "integer like". 6378 if (Ty->isRealFloatingType()) 6379 return false; 6380 6381 // If this is a builtin or pointer type then it is ok. 6382 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6383 return true; 6384 6385 // Small complex integer types are "integer like". 6386 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6387 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6388 6389 // Single element and zero sized arrays should be allowed, by the definition 6390 // above, but they are not. 6391 6392 // Otherwise, it must be a record type. 6393 const RecordType *RT = Ty->getAs<RecordType>(); 6394 if (!RT) return false; 6395 6396 // Ignore records with flexible arrays. 6397 const RecordDecl *RD = RT->getDecl(); 6398 if (RD->hasFlexibleArrayMember()) 6399 return false; 6400 6401 // Check that all sub-fields are at offset 0, and are themselves "integer 6402 // like". 6403 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6404 6405 bool HadField = false; 6406 unsigned idx = 0; 6407 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6408 i != e; ++i, ++idx) { 6409 const FieldDecl *FD = *i; 6410 6411 // Bit-fields are not addressable, we only need to verify they are "integer 6412 // like". We still have to disallow a subsequent non-bitfield, for example: 6413 // struct { int : 0; int x } 6414 // is non-integer like according to gcc. 6415 if (FD->isBitField()) { 6416 if (!RD->isUnion()) 6417 HadField = true; 6418 6419 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6420 return false; 6421 6422 continue; 6423 } 6424 6425 // Check if this field is at offset 0. 6426 if (Layout.getFieldOffset(idx) != 0) 6427 return false; 6428 6429 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6430 return false; 6431 6432 // Only allow at most one field in a structure. This doesn't match the 6433 // wording above, but follows gcc in situations with a field following an 6434 // empty structure. 6435 if (!RD->isUnion()) { 6436 if (HadField) 6437 return false; 6438 6439 HadField = true; 6440 } 6441 } 6442 6443 return true; 6444 } 6445 6446 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6447 unsigned functionCallConv) const { 6448 6449 // Variadic functions should always marshal to the base standard. 6450 bool IsAAPCS_VFP = 6451 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6452 6453 if (RetTy->isVoidType()) 6454 return ABIArgInfo::getIgnore(); 6455 6456 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6457 // Large vector types should be returned via memory. 6458 if (getContext().getTypeSize(RetTy) > 128) 6459 return getNaturalAlignIndirect(RetTy); 6460 // FP16 vectors should be converted to integer vectors 6461 if (!getTarget().hasLegalHalfType() && 6462 (VT->getElementType()->isFloat16Type() || 6463 VT->getElementType()->isHalfType())) 6464 return coerceIllegalVector(RetTy); 6465 } 6466 6467 // _Float16 and __fp16 get returned as if it were an int or float, but with 6468 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6469 // half type natively, and does not need to interwork with AAPCS code. 6470 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6471 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6472 llvm::Type *ResType = IsAAPCS_VFP ? 6473 llvm::Type::getFloatTy(getVMContext()) : 6474 llvm::Type::getInt32Ty(getVMContext()); 6475 return ABIArgInfo::getDirect(ResType); 6476 } 6477 6478 if (!isAggregateTypeForABI(RetTy)) { 6479 // Treat an enum type as its underlying type. 6480 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6481 RetTy = EnumTy->getDecl()->getIntegerType(); 6482 6483 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6484 if (EIT->getNumBits() > 64) 6485 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6486 6487 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6488 : ABIArgInfo::getDirect(); 6489 } 6490 6491 // Are we following APCS? 6492 if (getABIKind() == APCS) { 6493 if (isEmptyRecord(getContext(), RetTy, false)) 6494 return ABIArgInfo::getIgnore(); 6495 6496 // Complex types are all returned as packed integers. 6497 // 6498 // FIXME: Consider using 2 x vector types if the back end handles them 6499 // correctly. 6500 if (RetTy->isAnyComplexType()) 6501 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6502 getVMContext(), getContext().getTypeSize(RetTy))); 6503 6504 // Integer like structures are returned in r0. 6505 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6506 // Return in the smallest viable integer type. 6507 uint64_t Size = getContext().getTypeSize(RetTy); 6508 if (Size <= 8) 6509 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6510 if (Size <= 16) 6511 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6512 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6513 } 6514 6515 // Otherwise return in memory. 6516 return getNaturalAlignIndirect(RetTy); 6517 } 6518 6519 // Otherwise this is an AAPCS variant. 6520 6521 if (isEmptyRecord(getContext(), RetTy, true)) 6522 return ABIArgInfo::getIgnore(); 6523 6524 // Check for homogeneous aggregates with AAPCS-VFP. 6525 if (IsAAPCS_VFP) { 6526 const Type *Base = nullptr; 6527 uint64_t Members = 0; 6528 if (isHomogeneousAggregate(RetTy, Base, Members)) 6529 return classifyHomogeneousAggregate(RetTy, Base, Members); 6530 } 6531 6532 // Aggregates <= 4 bytes are returned in r0; other aggregates 6533 // are returned indirectly. 6534 uint64_t Size = getContext().getTypeSize(RetTy); 6535 if (Size <= 32) { 6536 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6537 // same size and alignment. 6538 if (getTarget().isRenderScriptTarget()) { 6539 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6540 } 6541 if (getDataLayout().isBigEndian()) 6542 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6543 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6544 6545 // Return in the smallest viable integer type. 6546 if (Size <= 8) 6547 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6548 if (Size <= 16) 6549 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6550 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6551 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6552 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6553 llvm::Type *CoerceTy = 6554 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6555 return ABIArgInfo::getDirect(CoerceTy); 6556 } 6557 6558 return getNaturalAlignIndirect(RetTy); 6559 } 6560 6561 /// isIllegalVector - check whether Ty is an illegal vector type. 6562 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6563 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6564 // On targets that don't support FP16, FP16 is expanded into float, and we 6565 // don't want the ABI to depend on whether or not FP16 is supported in 6566 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6567 if (!getTarget().hasLegalHalfType() && 6568 (VT->getElementType()->isFloat16Type() || 6569 VT->getElementType()->isHalfType())) 6570 return true; 6571 if (isAndroid()) { 6572 // Android shipped using Clang 3.1, which supported a slightly different 6573 // vector ABI. The primary differences were that 3-element vector types 6574 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6575 // accepts that legacy behavior for Android only. 6576 // Check whether VT is legal. 6577 unsigned NumElements = VT->getNumElements(); 6578 // NumElements should be power of 2 or equal to 3. 6579 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6580 return true; 6581 } else { 6582 // Check whether VT is legal. 6583 unsigned NumElements = VT->getNumElements(); 6584 uint64_t Size = getContext().getTypeSize(VT); 6585 // NumElements should be power of 2. 6586 if (!llvm::isPowerOf2_32(NumElements)) 6587 return true; 6588 // Size should be greater than 32 bits. 6589 return Size <= 32; 6590 } 6591 } 6592 return false; 6593 } 6594 6595 /// Return true if a type contains any 16-bit floating point vectors 6596 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6597 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6598 uint64_t NElements = AT->getSize().getZExtValue(); 6599 if (NElements == 0) 6600 return false; 6601 return containsAnyFP16Vectors(AT->getElementType()); 6602 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6603 const RecordDecl *RD = RT->getDecl(); 6604 6605 // If this is a C++ record, check the bases first. 6606 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6607 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6608 return containsAnyFP16Vectors(B.getType()); 6609 })) 6610 return true; 6611 6612 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6613 return FD && containsAnyFP16Vectors(FD->getType()); 6614 })) 6615 return true; 6616 6617 return false; 6618 } else { 6619 if (const VectorType *VT = Ty->getAs<VectorType>()) 6620 return (VT->getElementType()->isFloat16Type() || 6621 VT->getElementType()->isHalfType()); 6622 return false; 6623 } 6624 } 6625 6626 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6627 llvm::Type *eltTy, 6628 unsigned numElts) const { 6629 if (!llvm::isPowerOf2_32(numElts)) 6630 return false; 6631 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6632 if (size > 64) 6633 return false; 6634 if (vectorSize.getQuantity() != 8 && 6635 (vectorSize.getQuantity() != 16 || numElts == 1)) 6636 return false; 6637 return true; 6638 } 6639 6640 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6641 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6642 // double, or 64-bit or 128-bit vectors. 6643 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6644 if (BT->getKind() == BuiltinType::Float || 6645 BT->getKind() == BuiltinType::Double || 6646 BT->getKind() == BuiltinType::LongDouble) 6647 return true; 6648 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6649 unsigned VecSize = getContext().getTypeSize(VT); 6650 if (VecSize == 64 || VecSize == 128) 6651 return true; 6652 } 6653 return false; 6654 } 6655 6656 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6657 uint64_t Members) const { 6658 return Members <= 4; 6659 } 6660 6661 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6662 bool acceptHalf) const { 6663 // Give precedence to user-specified calling conventions. 6664 if (callConvention != llvm::CallingConv::C) 6665 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6666 else 6667 return (getABIKind() == AAPCS_VFP) || 6668 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6669 } 6670 6671 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6672 QualType Ty) const { 6673 CharUnits SlotSize = CharUnits::fromQuantity(4); 6674 6675 // Empty records are ignored for parameter passing purposes. 6676 if (isEmptyRecord(getContext(), Ty, true)) { 6677 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6678 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6679 return Addr; 6680 } 6681 6682 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6683 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6684 6685 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6686 bool IsIndirect = false; 6687 const Type *Base = nullptr; 6688 uint64_t Members = 0; 6689 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6690 IsIndirect = true; 6691 6692 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6693 // allocated by the caller. 6694 } else if (TySize > CharUnits::fromQuantity(16) && 6695 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6696 !isHomogeneousAggregate(Ty, Base, Members)) { 6697 IsIndirect = true; 6698 6699 // Otherwise, bound the type's ABI alignment. 6700 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6701 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6702 // Our callers should be prepared to handle an under-aligned address. 6703 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6704 getABIKind() == ARMABIInfo::AAPCS) { 6705 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6706 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6707 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6708 // ARMv7k allows type alignment up to 16 bytes. 6709 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6710 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6711 } else { 6712 TyAlignForABI = CharUnits::fromQuantity(4); 6713 } 6714 6715 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6716 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6717 SlotSize, /*AllowHigherAlign*/ true); 6718 } 6719 6720 //===----------------------------------------------------------------------===// 6721 // NVPTX ABI Implementation 6722 //===----------------------------------------------------------------------===// 6723 6724 namespace { 6725 6726 class NVPTXTargetCodeGenInfo; 6727 6728 class NVPTXABIInfo : public ABIInfo { 6729 NVPTXTargetCodeGenInfo &CGInfo; 6730 6731 public: 6732 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6733 : ABIInfo(CGT), CGInfo(Info) {} 6734 6735 ABIArgInfo classifyReturnType(QualType RetTy) const; 6736 ABIArgInfo classifyArgumentType(QualType Ty) const; 6737 6738 void computeInfo(CGFunctionInfo &FI) const override; 6739 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6740 QualType Ty) const override; 6741 bool isUnsupportedType(QualType T) const; 6742 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6743 }; 6744 6745 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6746 public: 6747 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6748 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6749 6750 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6751 CodeGen::CodeGenModule &M) const override; 6752 bool shouldEmitStaticExternCAliases() const override; 6753 6754 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6755 // On the device side, surface reference is represented as an object handle 6756 // in 64-bit integer. 6757 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6758 } 6759 6760 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6761 // On the device side, texture reference is represented as an object handle 6762 // in 64-bit integer. 6763 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6764 } 6765 6766 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6767 LValue Src) const override { 6768 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6769 return true; 6770 } 6771 6772 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6773 LValue Src) const override { 6774 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6775 return true; 6776 } 6777 6778 private: 6779 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6780 // resulting MDNode to the nvvm.annotations MDNode. 6781 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6782 int Operand); 6783 6784 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6785 LValue Src) { 6786 llvm::Value *Handle = nullptr; 6787 llvm::Constant *C = 6788 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6789 // Lookup `addrspacecast` through the constant pointer if any. 6790 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6791 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6792 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6793 // Load the handle from the specific global variable using 6794 // `nvvm.texsurf.handle.internal` intrinsic. 6795 Handle = CGF.EmitRuntimeCall( 6796 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6797 {GV->getType()}), 6798 {GV}, "texsurf_handle"); 6799 } else 6800 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6801 CGF.EmitStoreOfScalar(Handle, Dst); 6802 } 6803 }; 6804 6805 /// Checks if the type is unsupported directly by the current target. 6806 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6807 ASTContext &Context = getContext(); 6808 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6809 return true; 6810 if (!Context.getTargetInfo().hasFloat128Type() && 6811 (T->isFloat128Type() || 6812 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6813 return true; 6814 if (const auto *EIT = T->getAs<ExtIntType>()) 6815 return EIT->getNumBits() > 6816 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6817 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6818 Context.getTypeSize(T) > 64U) 6819 return true; 6820 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6821 return isUnsupportedType(AT->getElementType()); 6822 const auto *RT = T->getAs<RecordType>(); 6823 if (!RT) 6824 return false; 6825 const RecordDecl *RD = RT->getDecl(); 6826 6827 // If this is a C++ record, check the bases first. 6828 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6829 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6830 if (isUnsupportedType(I.getType())) 6831 return true; 6832 6833 for (const FieldDecl *I : RD->fields()) 6834 if (isUnsupportedType(I->getType())) 6835 return true; 6836 return false; 6837 } 6838 6839 /// Coerce the given type into an array with maximum allowed size of elements. 6840 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 6841 unsigned MaxSize) const { 6842 // Alignment and Size are measured in bits. 6843 const uint64_t Size = getContext().getTypeSize(Ty); 6844 const uint64_t Alignment = getContext().getTypeAlign(Ty); 6845 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6846 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 6847 const uint64_t NumElements = (Size + Div - 1) / Div; 6848 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6849 } 6850 6851 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6852 if (RetTy->isVoidType()) 6853 return ABIArgInfo::getIgnore(); 6854 6855 if (getContext().getLangOpts().OpenMP && 6856 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 6857 return coerceToIntArrayWithLimit(RetTy, 64); 6858 6859 // note: this is different from default ABI 6860 if (!RetTy->isScalarType()) 6861 return ABIArgInfo::getDirect(); 6862 6863 // Treat an enum type as its underlying type. 6864 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6865 RetTy = EnumTy->getDecl()->getIntegerType(); 6866 6867 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6868 : ABIArgInfo::getDirect()); 6869 } 6870 6871 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6872 // Treat an enum type as its underlying type. 6873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6874 Ty = EnumTy->getDecl()->getIntegerType(); 6875 6876 // Return aggregates type as indirect by value 6877 if (isAggregateTypeForABI(Ty)) { 6878 // Under CUDA device compilation, tex/surf builtin types are replaced with 6879 // object types and passed directly. 6880 if (getContext().getLangOpts().CUDAIsDevice) { 6881 if (Ty->isCUDADeviceBuiltinSurfaceType()) 6882 return ABIArgInfo::getDirect( 6883 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 6884 if (Ty->isCUDADeviceBuiltinTextureType()) 6885 return ABIArgInfo::getDirect( 6886 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 6887 } 6888 return getNaturalAlignIndirect(Ty, /* byval */ true); 6889 } 6890 6891 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 6892 if ((EIT->getNumBits() > 128) || 6893 (!getContext().getTargetInfo().hasInt128Type() && 6894 EIT->getNumBits() > 64)) 6895 return getNaturalAlignIndirect(Ty, /* byval */ true); 6896 } 6897 6898 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6899 : ABIArgInfo::getDirect()); 6900 } 6901 6902 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6903 if (!getCXXABI().classifyReturnType(FI)) 6904 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6905 for (auto &I : FI.arguments()) 6906 I.info = classifyArgumentType(I.type); 6907 6908 // Always honor user-specified calling convention. 6909 if (FI.getCallingConvention() != llvm::CallingConv::C) 6910 return; 6911 6912 FI.setEffectiveCallingConvention(getRuntimeCC()); 6913 } 6914 6915 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6916 QualType Ty) const { 6917 llvm_unreachable("NVPTX does not support varargs"); 6918 } 6919 6920 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6921 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6922 if (GV->isDeclaration()) 6923 return; 6924 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 6925 if (VD) { 6926 if (M.getLangOpts().CUDA) { 6927 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 6928 addNVVMMetadata(GV, "surface", 1); 6929 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 6930 addNVVMMetadata(GV, "texture", 1); 6931 return; 6932 } 6933 } 6934 6935 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6936 if (!FD) return; 6937 6938 llvm::Function *F = cast<llvm::Function>(GV); 6939 6940 // Perform special handling in OpenCL mode 6941 if (M.getLangOpts().OpenCL) { 6942 // Use OpenCL function attributes to check for kernel functions 6943 // By default, all functions are device functions 6944 if (FD->hasAttr<OpenCLKernelAttr>()) { 6945 // OpenCL __kernel functions get kernel metadata 6946 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6947 addNVVMMetadata(F, "kernel", 1); 6948 // And kernel functions are not subject to inlining 6949 F->addFnAttr(llvm::Attribute::NoInline); 6950 } 6951 } 6952 6953 // Perform special handling in CUDA mode. 6954 if (M.getLangOpts().CUDA) { 6955 // CUDA __global__ functions get a kernel metadata entry. Since 6956 // __global__ functions cannot be called from the device, we do not 6957 // need to set the noinline attribute. 6958 if (FD->hasAttr<CUDAGlobalAttr>()) { 6959 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6960 addNVVMMetadata(F, "kernel", 1); 6961 } 6962 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6963 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6964 llvm::APSInt MaxThreads(32); 6965 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6966 if (MaxThreads > 0) 6967 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6968 6969 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6970 // not specified in __launch_bounds__ or if the user specified a 0 value, 6971 // we don't have to add a PTX directive. 6972 if (Attr->getMinBlocks()) { 6973 llvm::APSInt MinBlocks(32); 6974 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6975 if (MinBlocks > 0) 6976 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6977 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6978 } 6979 } 6980 } 6981 } 6982 6983 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 6984 StringRef Name, int Operand) { 6985 llvm::Module *M = GV->getParent(); 6986 llvm::LLVMContext &Ctx = M->getContext(); 6987 6988 // Get "nvvm.annotations" metadata node 6989 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6990 6991 llvm::Metadata *MDVals[] = { 6992 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 6993 llvm::ConstantAsMetadata::get( 6994 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6995 // Append metadata to nvvm.annotations 6996 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6997 } 6998 6999 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7000 return false; 7001 } 7002 } 7003 7004 //===----------------------------------------------------------------------===// 7005 // SystemZ ABI Implementation 7006 //===----------------------------------------------------------------------===// 7007 7008 namespace { 7009 7010 class SystemZABIInfo : public SwiftABIInfo { 7011 bool HasVector; 7012 bool IsSoftFloatABI; 7013 7014 public: 7015 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7016 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7017 7018 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7019 bool isCompoundType(QualType Ty) const; 7020 bool isVectorArgumentType(QualType Ty) const; 7021 bool isFPArgumentType(QualType Ty) const; 7022 QualType GetSingleElementType(QualType Ty) const; 7023 7024 ABIArgInfo classifyReturnType(QualType RetTy) const; 7025 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7026 7027 void computeInfo(CGFunctionInfo &FI) const override { 7028 if (!getCXXABI().classifyReturnType(FI)) 7029 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7030 for (auto &I : FI.arguments()) 7031 I.info = classifyArgumentType(I.type); 7032 } 7033 7034 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7035 QualType Ty) const override; 7036 7037 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7038 bool asReturnValue) const override { 7039 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7040 } 7041 bool isSwiftErrorInRegister() const override { 7042 return false; 7043 } 7044 }; 7045 7046 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7047 public: 7048 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7049 : TargetCodeGenInfo( 7050 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7051 }; 7052 7053 } 7054 7055 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7056 // Treat an enum type as its underlying type. 7057 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7058 Ty = EnumTy->getDecl()->getIntegerType(); 7059 7060 // Promotable integer types are required to be promoted by the ABI. 7061 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7062 return true; 7063 7064 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7065 if (EIT->getNumBits() < 64) 7066 return true; 7067 7068 // 32-bit values must also be promoted. 7069 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7070 switch (BT->getKind()) { 7071 case BuiltinType::Int: 7072 case BuiltinType::UInt: 7073 return true; 7074 default: 7075 return false; 7076 } 7077 return false; 7078 } 7079 7080 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7081 return (Ty->isAnyComplexType() || 7082 Ty->isVectorType() || 7083 isAggregateTypeForABI(Ty)); 7084 } 7085 7086 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7087 return (HasVector && 7088 Ty->isVectorType() && 7089 getContext().getTypeSize(Ty) <= 128); 7090 } 7091 7092 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7093 if (IsSoftFloatABI) 7094 return false; 7095 7096 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7097 switch (BT->getKind()) { 7098 case BuiltinType::Float: 7099 case BuiltinType::Double: 7100 return true; 7101 default: 7102 return false; 7103 } 7104 7105 return false; 7106 } 7107 7108 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7109 if (const RecordType *RT = Ty->getAsStructureType()) { 7110 const RecordDecl *RD = RT->getDecl(); 7111 QualType Found; 7112 7113 // If this is a C++ record, check the bases first. 7114 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7115 for (const auto &I : CXXRD->bases()) { 7116 QualType Base = I.getType(); 7117 7118 // Empty bases don't affect things either way. 7119 if (isEmptyRecord(getContext(), Base, true)) 7120 continue; 7121 7122 if (!Found.isNull()) 7123 return Ty; 7124 Found = GetSingleElementType(Base); 7125 } 7126 7127 // Check the fields. 7128 for (const auto *FD : RD->fields()) { 7129 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7130 // Unlike isSingleElementStruct(), empty structure and array fields 7131 // do count. So do anonymous bitfields that aren't zero-sized. 7132 if (getContext().getLangOpts().CPlusPlus && 7133 FD->isZeroLengthBitField(getContext())) 7134 continue; 7135 7136 // Unlike isSingleElementStruct(), arrays do not count. 7137 // Nested structures still do though. 7138 if (!Found.isNull()) 7139 return Ty; 7140 Found = GetSingleElementType(FD->getType()); 7141 } 7142 7143 // Unlike isSingleElementStruct(), trailing padding is allowed. 7144 // An 8-byte aligned struct s { float f; } is passed as a double. 7145 if (!Found.isNull()) 7146 return Found; 7147 } 7148 7149 return Ty; 7150 } 7151 7152 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7153 QualType Ty) const { 7154 // Assume that va_list type is correct; should be pointer to LLVM type: 7155 // struct { 7156 // i64 __gpr; 7157 // i64 __fpr; 7158 // i8 *__overflow_arg_area; 7159 // i8 *__reg_save_area; 7160 // }; 7161 7162 // Every non-vector argument occupies 8 bytes and is passed by preference 7163 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7164 // always passed on the stack. 7165 Ty = getContext().getCanonicalType(Ty); 7166 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7167 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7168 llvm::Type *DirectTy = ArgTy; 7169 ABIArgInfo AI = classifyArgumentType(Ty); 7170 bool IsIndirect = AI.isIndirect(); 7171 bool InFPRs = false; 7172 bool IsVector = false; 7173 CharUnits UnpaddedSize; 7174 CharUnits DirectAlign; 7175 if (IsIndirect) { 7176 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7177 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7178 } else { 7179 if (AI.getCoerceToType()) 7180 ArgTy = AI.getCoerceToType(); 7181 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7182 IsVector = ArgTy->isVectorTy(); 7183 UnpaddedSize = TyInfo.first; 7184 DirectAlign = TyInfo.second; 7185 } 7186 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7187 if (IsVector && UnpaddedSize > PaddedSize) 7188 PaddedSize = CharUnits::fromQuantity(16); 7189 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7190 7191 CharUnits Padding = (PaddedSize - UnpaddedSize); 7192 7193 llvm::Type *IndexTy = CGF.Int64Ty; 7194 llvm::Value *PaddedSizeV = 7195 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7196 7197 if (IsVector) { 7198 // Work out the address of a vector argument on the stack. 7199 // Vector arguments are always passed in the high bits of a 7200 // single (8 byte) or double (16 byte) stack slot. 7201 Address OverflowArgAreaPtr = 7202 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7203 Address OverflowArgArea = 7204 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7205 TyInfo.second); 7206 Address MemAddr = 7207 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7208 7209 // Update overflow_arg_area_ptr pointer 7210 llvm::Value *NewOverflowArgArea = 7211 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7212 "overflow_arg_area"); 7213 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7214 7215 return MemAddr; 7216 } 7217 7218 assert(PaddedSize.getQuantity() == 8); 7219 7220 unsigned MaxRegs, RegCountField, RegSaveIndex; 7221 CharUnits RegPadding; 7222 if (InFPRs) { 7223 MaxRegs = 4; // Maximum of 4 FPR arguments 7224 RegCountField = 1; // __fpr 7225 RegSaveIndex = 16; // save offset for f0 7226 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7227 } else { 7228 MaxRegs = 5; // Maximum of 5 GPR arguments 7229 RegCountField = 0; // __gpr 7230 RegSaveIndex = 2; // save offset for r2 7231 RegPadding = Padding; // values are passed in the low bits of a GPR 7232 } 7233 7234 Address RegCountPtr = 7235 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7236 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7237 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7238 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7239 "fits_in_regs"); 7240 7241 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7242 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7243 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7244 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7245 7246 // Emit code to load the value if it was passed in registers. 7247 CGF.EmitBlock(InRegBlock); 7248 7249 // Work out the address of an argument register. 7250 llvm::Value *ScaledRegCount = 7251 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7252 llvm::Value *RegBase = 7253 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7254 + RegPadding.getQuantity()); 7255 llvm::Value *RegOffset = 7256 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7257 Address RegSaveAreaPtr = 7258 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7259 llvm::Value *RegSaveArea = 7260 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7261 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7262 "raw_reg_addr"), 7263 PaddedSize); 7264 Address RegAddr = 7265 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7266 7267 // Update the register count 7268 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7269 llvm::Value *NewRegCount = 7270 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7271 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7272 CGF.EmitBranch(ContBlock); 7273 7274 // Emit code to load the value if it was passed in memory. 7275 CGF.EmitBlock(InMemBlock); 7276 7277 // Work out the address of a stack argument. 7278 Address OverflowArgAreaPtr = 7279 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7280 Address OverflowArgArea = 7281 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7282 PaddedSize); 7283 Address RawMemAddr = 7284 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7285 Address MemAddr = 7286 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7287 7288 // Update overflow_arg_area_ptr pointer 7289 llvm::Value *NewOverflowArgArea = 7290 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7291 "overflow_arg_area"); 7292 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7293 CGF.EmitBranch(ContBlock); 7294 7295 // Return the appropriate result. 7296 CGF.EmitBlock(ContBlock); 7297 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7298 MemAddr, InMemBlock, "va_arg.addr"); 7299 7300 if (IsIndirect) 7301 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7302 TyInfo.second); 7303 7304 return ResAddr; 7305 } 7306 7307 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7308 if (RetTy->isVoidType()) 7309 return ABIArgInfo::getIgnore(); 7310 if (isVectorArgumentType(RetTy)) 7311 return ABIArgInfo::getDirect(); 7312 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7313 return getNaturalAlignIndirect(RetTy); 7314 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7315 : ABIArgInfo::getDirect()); 7316 } 7317 7318 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7319 // Handle the generic C++ ABI. 7320 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7321 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7322 7323 // Integers and enums are extended to full register width. 7324 if (isPromotableIntegerTypeForABI(Ty)) 7325 return ABIArgInfo::getExtend(Ty); 7326 7327 // Handle vector types and vector-like structure types. Note that 7328 // as opposed to float-like structure types, we do not allow any 7329 // padding for vector-like structures, so verify the sizes match. 7330 uint64_t Size = getContext().getTypeSize(Ty); 7331 QualType SingleElementTy = GetSingleElementType(Ty); 7332 if (isVectorArgumentType(SingleElementTy) && 7333 getContext().getTypeSize(SingleElementTy) == Size) 7334 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7335 7336 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7337 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7338 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7339 7340 // Handle small structures. 7341 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7342 // Structures with flexible arrays have variable length, so really 7343 // fail the size test above. 7344 const RecordDecl *RD = RT->getDecl(); 7345 if (RD->hasFlexibleArrayMember()) 7346 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7347 7348 // The structure is passed as an unextended integer, a float, or a double. 7349 llvm::Type *PassTy; 7350 if (isFPArgumentType(SingleElementTy)) { 7351 assert(Size == 32 || Size == 64); 7352 if (Size == 32) 7353 PassTy = llvm::Type::getFloatTy(getVMContext()); 7354 else 7355 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7356 } else 7357 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7358 return ABIArgInfo::getDirect(PassTy); 7359 } 7360 7361 // Non-structure compounds are passed indirectly. 7362 if (isCompoundType(Ty)) 7363 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7364 7365 return ABIArgInfo::getDirect(nullptr); 7366 } 7367 7368 //===----------------------------------------------------------------------===// 7369 // MSP430 ABI Implementation 7370 //===----------------------------------------------------------------------===// 7371 7372 namespace { 7373 7374 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7375 public: 7376 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7377 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7378 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7379 CodeGen::CodeGenModule &M) const override; 7380 }; 7381 7382 } 7383 7384 void MSP430TargetCodeGenInfo::setTargetAttributes( 7385 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7386 if (GV->isDeclaration()) 7387 return; 7388 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7389 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7390 if (!InterruptAttr) 7391 return; 7392 7393 // Handle 'interrupt' attribute: 7394 llvm::Function *F = cast<llvm::Function>(GV); 7395 7396 // Step 1: Set ISR calling convention. 7397 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7398 7399 // Step 2: Add attributes goodness. 7400 F->addFnAttr(llvm::Attribute::NoInline); 7401 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7402 } 7403 } 7404 7405 //===----------------------------------------------------------------------===// 7406 // MIPS ABI Implementation. This works for both little-endian and 7407 // big-endian variants. 7408 //===----------------------------------------------------------------------===// 7409 7410 namespace { 7411 class MipsABIInfo : public ABIInfo { 7412 bool IsO32; 7413 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7414 void CoerceToIntArgs(uint64_t TySize, 7415 SmallVectorImpl<llvm::Type *> &ArgList) const; 7416 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7417 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7418 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7419 public: 7420 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7421 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7422 StackAlignInBytes(IsO32 ? 8 : 16) {} 7423 7424 ABIArgInfo classifyReturnType(QualType RetTy) const; 7425 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7426 void computeInfo(CGFunctionInfo &FI) const override; 7427 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7428 QualType Ty) const override; 7429 ABIArgInfo extendType(QualType Ty) const; 7430 }; 7431 7432 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7433 unsigned SizeOfUnwindException; 7434 public: 7435 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7436 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7437 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7438 7439 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7440 return 29; 7441 } 7442 7443 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7444 CodeGen::CodeGenModule &CGM) const override { 7445 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7446 if (!FD) return; 7447 llvm::Function *Fn = cast<llvm::Function>(GV); 7448 7449 if (FD->hasAttr<MipsLongCallAttr>()) 7450 Fn->addFnAttr("long-call"); 7451 else if (FD->hasAttr<MipsShortCallAttr>()) 7452 Fn->addFnAttr("short-call"); 7453 7454 // Other attributes do not have a meaning for declarations. 7455 if (GV->isDeclaration()) 7456 return; 7457 7458 if (FD->hasAttr<Mips16Attr>()) { 7459 Fn->addFnAttr("mips16"); 7460 } 7461 else if (FD->hasAttr<NoMips16Attr>()) { 7462 Fn->addFnAttr("nomips16"); 7463 } 7464 7465 if (FD->hasAttr<MicroMipsAttr>()) 7466 Fn->addFnAttr("micromips"); 7467 else if (FD->hasAttr<NoMicroMipsAttr>()) 7468 Fn->addFnAttr("nomicromips"); 7469 7470 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7471 if (!Attr) 7472 return; 7473 7474 const char *Kind; 7475 switch (Attr->getInterrupt()) { 7476 case MipsInterruptAttr::eic: Kind = "eic"; break; 7477 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7478 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7479 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7480 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7481 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7482 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7483 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7484 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7485 } 7486 7487 Fn->addFnAttr("interrupt", Kind); 7488 7489 } 7490 7491 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7492 llvm::Value *Address) const override; 7493 7494 unsigned getSizeOfUnwindException() const override { 7495 return SizeOfUnwindException; 7496 } 7497 }; 7498 } 7499 7500 void MipsABIInfo::CoerceToIntArgs( 7501 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7502 llvm::IntegerType *IntTy = 7503 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7504 7505 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7506 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7507 ArgList.push_back(IntTy); 7508 7509 // If necessary, add one more integer type to ArgList. 7510 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7511 7512 if (R) 7513 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7514 } 7515 7516 // In N32/64, an aligned double precision floating point field is passed in 7517 // a register. 7518 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7519 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7520 7521 if (IsO32) { 7522 CoerceToIntArgs(TySize, ArgList); 7523 return llvm::StructType::get(getVMContext(), ArgList); 7524 } 7525 7526 if (Ty->isComplexType()) 7527 return CGT.ConvertType(Ty); 7528 7529 const RecordType *RT = Ty->getAs<RecordType>(); 7530 7531 // Unions/vectors are passed in integer registers. 7532 if (!RT || !RT->isStructureOrClassType()) { 7533 CoerceToIntArgs(TySize, ArgList); 7534 return llvm::StructType::get(getVMContext(), ArgList); 7535 } 7536 7537 const RecordDecl *RD = RT->getDecl(); 7538 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7539 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7540 7541 uint64_t LastOffset = 0; 7542 unsigned idx = 0; 7543 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7544 7545 // Iterate over fields in the struct/class and check if there are any aligned 7546 // double fields. 7547 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7548 i != e; ++i, ++idx) { 7549 const QualType Ty = i->getType(); 7550 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7551 7552 if (!BT || BT->getKind() != BuiltinType::Double) 7553 continue; 7554 7555 uint64_t Offset = Layout.getFieldOffset(idx); 7556 if (Offset % 64) // Ignore doubles that are not aligned. 7557 continue; 7558 7559 // Add ((Offset - LastOffset) / 64) args of type i64. 7560 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7561 ArgList.push_back(I64); 7562 7563 // Add double type. 7564 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7565 LastOffset = Offset + 64; 7566 } 7567 7568 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7569 ArgList.append(IntArgList.begin(), IntArgList.end()); 7570 7571 return llvm::StructType::get(getVMContext(), ArgList); 7572 } 7573 7574 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7575 uint64_t Offset) const { 7576 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7577 return nullptr; 7578 7579 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7580 } 7581 7582 ABIArgInfo 7583 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7584 Ty = useFirstFieldIfTransparentUnion(Ty); 7585 7586 uint64_t OrigOffset = Offset; 7587 uint64_t TySize = getContext().getTypeSize(Ty); 7588 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7589 7590 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7591 (uint64_t)StackAlignInBytes); 7592 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7593 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7594 7595 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7596 // Ignore empty aggregates. 7597 if (TySize == 0) 7598 return ABIArgInfo::getIgnore(); 7599 7600 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7601 Offset = OrigOffset + MinABIStackAlignInBytes; 7602 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7603 } 7604 7605 // If we have reached here, aggregates are passed directly by coercing to 7606 // another structure type. Padding is inserted if the offset of the 7607 // aggregate is unaligned. 7608 ABIArgInfo ArgInfo = 7609 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7610 getPaddingType(OrigOffset, CurrOffset)); 7611 ArgInfo.setInReg(true); 7612 return ArgInfo; 7613 } 7614 7615 // Treat an enum type as its underlying type. 7616 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7617 Ty = EnumTy->getDecl()->getIntegerType(); 7618 7619 // Make sure we pass indirectly things that are too large. 7620 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7621 if (EIT->getNumBits() > 128 || 7622 (EIT->getNumBits() > 64 && 7623 !getContext().getTargetInfo().hasInt128Type())) 7624 return getNaturalAlignIndirect(Ty); 7625 7626 // All integral types are promoted to the GPR width. 7627 if (Ty->isIntegralOrEnumerationType()) 7628 return extendType(Ty); 7629 7630 return ABIArgInfo::getDirect( 7631 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7632 } 7633 7634 llvm::Type* 7635 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7636 const RecordType *RT = RetTy->getAs<RecordType>(); 7637 SmallVector<llvm::Type*, 8> RTList; 7638 7639 if (RT && RT->isStructureOrClassType()) { 7640 const RecordDecl *RD = RT->getDecl(); 7641 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7642 unsigned FieldCnt = Layout.getFieldCount(); 7643 7644 // N32/64 returns struct/classes in floating point registers if the 7645 // following conditions are met: 7646 // 1. The size of the struct/class is no larger than 128-bit. 7647 // 2. The struct/class has one or two fields all of which are floating 7648 // point types. 7649 // 3. The offset of the first field is zero (this follows what gcc does). 7650 // 7651 // Any other composite results are returned in integer registers. 7652 // 7653 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7654 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7655 for (; b != e; ++b) { 7656 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7657 7658 if (!BT || !BT->isFloatingPoint()) 7659 break; 7660 7661 RTList.push_back(CGT.ConvertType(b->getType())); 7662 } 7663 7664 if (b == e) 7665 return llvm::StructType::get(getVMContext(), RTList, 7666 RD->hasAttr<PackedAttr>()); 7667 7668 RTList.clear(); 7669 } 7670 } 7671 7672 CoerceToIntArgs(Size, RTList); 7673 return llvm::StructType::get(getVMContext(), RTList); 7674 } 7675 7676 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7677 uint64_t Size = getContext().getTypeSize(RetTy); 7678 7679 if (RetTy->isVoidType()) 7680 return ABIArgInfo::getIgnore(); 7681 7682 // O32 doesn't treat zero-sized structs differently from other structs. 7683 // However, N32/N64 ignores zero sized return values. 7684 if (!IsO32 && Size == 0) 7685 return ABIArgInfo::getIgnore(); 7686 7687 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7688 if (Size <= 128) { 7689 if (RetTy->isAnyComplexType()) 7690 return ABIArgInfo::getDirect(); 7691 7692 // O32 returns integer vectors in registers and N32/N64 returns all small 7693 // aggregates in registers. 7694 if (!IsO32 || 7695 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7696 ABIArgInfo ArgInfo = 7697 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7698 ArgInfo.setInReg(true); 7699 return ArgInfo; 7700 } 7701 } 7702 7703 return getNaturalAlignIndirect(RetTy); 7704 } 7705 7706 // Treat an enum type as its underlying type. 7707 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7708 RetTy = EnumTy->getDecl()->getIntegerType(); 7709 7710 // Make sure we pass indirectly things that are too large. 7711 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7712 if (EIT->getNumBits() > 128 || 7713 (EIT->getNumBits() > 64 && 7714 !getContext().getTargetInfo().hasInt128Type())) 7715 return getNaturalAlignIndirect(RetTy); 7716 7717 if (isPromotableIntegerTypeForABI(RetTy)) 7718 return ABIArgInfo::getExtend(RetTy); 7719 7720 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7721 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7722 return ABIArgInfo::getSignExtend(RetTy); 7723 7724 return ABIArgInfo::getDirect(); 7725 } 7726 7727 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7728 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7729 if (!getCXXABI().classifyReturnType(FI)) 7730 RetInfo = classifyReturnType(FI.getReturnType()); 7731 7732 // Check if a pointer to an aggregate is passed as a hidden argument. 7733 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7734 7735 for (auto &I : FI.arguments()) 7736 I.info = classifyArgumentType(I.type, Offset); 7737 } 7738 7739 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7740 QualType OrigTy) const { 7741 QualType Ty = OrigTy; 7742 7743 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7744 // Pointers are also promoted in the same way but this only matters for N32. 7745 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7746 unsigned PtrWidth = getTarget().getPointerWidth(0); 7747 bool DidPromote = false; 7748 if ((Ty->isIntegerType() && 7749 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7750 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7751 DidPromote = true; 7752 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7753 Ty->isSignedIntegerType()); 7754 } 7755 7756 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7757 7758 // The alignment of things in the argument area is never larger than 7759 // StackAlignInBytes. 7760 TyInfo.second = 7761 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7762 7763 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7764 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7765 7766 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7767 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7768 7769 7770 // If there was a promotion, "unpromote" into a temporary. 7771 // TODO: can we just use a pointer into a subset of the original slot? 7772 if (DidPromote) { 7773 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7774 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7775 7776 // Truncate down to the right width. 7777 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7778 : CGF.IntPtrTy); 7779 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7780 if (OrigTy->isPointerType()) 7781 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7782 7783 CGF.Builder.CreateStore(V, Temp); 7784 Addr = Temp; 7785 } 7786 7787 return Addr; 7788 } 7789 7790 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7791 int TySize = getContext().getTypeSize(Ty); 7792 7793 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7794 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7795 return ABIArgInfo::getSignExtend(Ty); 7796 7797 return ABIArgInfo::getExtend(Ty); 7798 } 7799 7800 bool 7801 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7802 llvm::Value *Address) const { 7803 // This information comes from gcc's implementation, which seems to 7804 // as canonical as it gets. 7805 7806 // Everything on MIPS is 4 bytes. Double-precision FP registers 7807 // are aliased to pairs of single-precision FP registers. 7808 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7809 7810 // 0-31 are the general purpose registers, $0 - $31. 7811 // 32-63 are the floating-point registers, $f0 - $f31. 7812 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7813 // 66 is the (notional, I think) register for signal-handler return. 7814 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7815 7816 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7817 // They are one bit wide and ignored here. 7818 7819 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7820 // (coprocessor 1 is the FP unit) 7821 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7822 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7823 // 176-181 are the DSP accumulator registers. 7824 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7825 return false; 7826 } 7827 7828 //===----------------------------------------------------------------------===// 7829 // AVR ABI Implementation. 7830 //===----------------------------------------------------------------------===// 7831 7832 namespace { 7833 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7834 public: 7835 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7836 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7837 7838 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7839 CodeGen::CodeGenModule &CGM) const override { 7840 if (GV->isDeclaration()) 7841 return; 7842 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7843 if (!FD) return; 7844 auto *Fn = cast<llvm::Function>(GV); 7845 7846 if (FD->getAttr<AVRInterruptAttr>()) 7847 Fn->addFnAttr("interrupt"); 7848 7849 if (FD->getAttr<AVRSignalAttr>()) 7850 Fn->addFnAttr("signal"); 7851 } 7852 }; 7853 } 7854 7855 //===----------------------------------------------------------------------===// 7856 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7857 // Currently subclassed only to implement custom OpenCL C function attribute 7858 // handling. 7859 //===----------------------------------------------------------------------===// 7860 7861 namespace { 7862 7863 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7864 public: 7865 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7866 : DefaultTargetCodeGenInfo(CGT) {} 7867 7868 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7869 CodeGen::CodeGenModule &M) const override; 7870 }; 7871 7872 void TCETargetCodeGenInfo::setTargetAttributes( 7873 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7874 if (GV->isDeclaration()) 7875 return; 7876 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7877 if (!FD) return; 7878 7879 llvm::Function *F = cast<llvm::Function>(GV); 7880 7881 if (M.getLangOpts().OpenCL) { 7882 if (FD->hasAttr<OpenCLKernelAttr>()) { 7883 // OpenCL C Kernel functions are not subject to inlining 7884 F->addFnAttr(llvm::Attribute::NoInline); 7885 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7886 if (Attr) { 7887 // Convert the reqd_work_group_size() attributes to metadata. 7888 llvm::LLVMContext &Context = F->getContext(); 7889 llvm::NamedMDNode *OpenCLMetadata = 7890 M.getModule().getOrInsertNamedMetadata( 7891 "opencl.kernel_wg_size_info"); 7892 7893 SmallVector<llvm::Metadata *, 5> Operands; 7894 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7895 7896 Operands.push_back( 7897 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7898 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7899 Operands.push_back( 7900 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7901 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7902 Operands.push_back( 7903 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7904 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7905 7906 // Add a boolean constant operand for "required" (true) or "hint" 7907 // (false) for implementing the work_group_size_hint attr later. 7908 // Currently always true as the hint is not yet implemented. 7909 Operands.push_back( 7910 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7911 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7912 } 7913 } 7914 } 7915 } 7916 7917 } 7918 7919 //===----------------------------------------------------------------------===// 7920 // Hexagon ABI Implementation 7921 //===----------------------------------------------------------------------===// 7922 7923 namespace { 7924 7925 class HexagonABIInfo : public DefaultABIInfo { 7926 public: 7927 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7928 7929 private: 7930 ABIArgInfo classifyReturnType(QualType RetTy) const; 7931 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7932 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 7933 7934 void computeInfo(CGFunctionInfo &FI) const override; 7935 7936 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7937 QualType Ty) const override; 7938 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 7939 QualType Ty) const; 7940 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 7941 QualType Ty) const; 7942 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 7943 QualType Ty) const; 7944 }; 7945 7946 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7947 public: 7948 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7949 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 7950 7951 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7952 return 29; 7953 } 7954 7955 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7956 CodeGen::CodeGenModule &GCM) const override { 7957 if (GV->isDeclaration()) 7958 return; 7959 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7960 if (!FD) 7961 return; 7962 } 7963 }; 7964 7965 } // namespace 7966 7967 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7968 unsigned RegsLeft = 6; 7969 if (!getCXXABI().classifyReturnType(FI)) 7970 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7971 for (auto &I : FI.arguments()) 7972 I.info = classifyArgumentType(I.type, &RegsLeft); 7973 } 7974 7975 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 7976 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 7977 " through registers"); 7978 7979 if (*RegsLeft == 0) 7980 return false; 7981 7982 if (Size <= 32) { 7983 (*RegsLeft)--; 7984 return true; 7985 } 7986 7987 if (2 <= (*RegsLeft & (~1U))) { 7988 *RegsLeft = (*RegsLeft & (~1U)) - 2; 7989 return true; 7990 } 7991 7992 // Next available register was r5 but candidate was greater than 32-bits so it 7993 // has to go on the stack. However we still consume r5 7994 if (*RegsLeft == 1) 7995 *RegsLeft = 0; 7996 7997 return false; 7998 } 7999 8000 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8001 unsigned *RegsLeft) const { 8002 if (!isAggregateTypeForABI(Ty)) { 8003 // Treat an enum type as its underlying type. 8004 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8005 Ty = EnumTy->getDecl()->getIntegerType(); 8006 8007 uint64_t Size = getContext().getTypeSize(Ty); 8008 if (Size <= 64) 8009 HexagonAdjustRegsLeft(Size, RegsLeft); 8010 8011 if (Size > 64 && Ty->isExtIntType()) 8012 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8013 8014 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8015 : ABIArgInfo::getDirect(); 8016 } 8017 8018 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8019 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8020 8021 // Ignore empty records. 8022 if (isEmptyRecord(getContext(), Ty, true)) 8023 return ABIArgInfo::getIgnore(); 8024 8025 uint64_t Size = getContext().getTypeSize(Ty); 8026 unsigned Align = getContext().getTypeAlign(Ty); 8027 8028 if (Size > 64) 8029 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8030 8031 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8032 Align = Size <= 32 ? 32 : 64; 8033 if (Size <= Align) { 8034 // Pass in the smallest viable integer type. 8035 if (!llvm::isPowerOf2_64(Size)) 8036 Size = llvm::NextPowerOf2(Size); 8037 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8038 } 8039 return DefaultABIInfo::classifyArgumentType(Ty); 8040 } 8041 8042 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8043 if (RetTy->isVoidType()) 8044 return ABIArgInfo::getIgnore(); 8045 8046 const TargetInfo &T = CGT.getTarget(); 8047 uint64_t Size = getContext().getTypeSize(RetTy); 8048 8049 if (RetTy->getAs<VectorType>()) { 8050 // HVX vectors are returned in vector registers or register pairs. 8051 if (T.hasFeature("hvx")) { 8052 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8053 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8054 if (Size == VecSize || Size == 2*VecSize) 8055 return ABIArgInfo::getDirectInReg(); 8056 } 8057 // Large vector types should be returned via memory. 8058 if (Size > 64) 8059 return getNaturalAlignIndirect(RetTy); 8060 } 8061 8062 if (!isAggregateTypeForABI(RetTy)) { 8063 // Treat an enum type as its underlying type. 8064 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8065 RetTy = EnumTy->getDecl()->getIntegerType(); 8066 8067 if (Size > 64 && RetTy->isExtIntType()) 8068 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8069 8070 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8071 : ABIArgInfo::getDirect(); 8072 } 8073 8074 if (isEmptyRecord(getContext(), RetTy, true)) 8075 return ABIArgInfo::getIgnore(); 8076 8077 // Aggregates <= 8 bytes are returned in registers, other aggregates 8078 // are returned indirectly. 8079 if (Size <= 64) { 8080 // Return in the smallest viable integer type. 8081 if (!llvm::isPowerOf2_64(Size)) 8082 Size = llvm::NextPowerOf2(Size); 8083 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8084 } 8085 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8086 } 8087 8088 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8089 Address VAListAddr, 8090 QualType Ty) const { 8091 // Load the overflow area pointer. 8092 Address __overflow_area_pointer_p = 8093 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8094 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8095 __overflow_area_pointer_p, "__overflow_area_pointer"); 8096 8097 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8098 if (Align > 4) { 8099 // Alignment should be a power of 2. 8100 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8101 8102 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8103 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8104 8105 // Add offset to the current pointer to access the argument. 8106 __overflow_area_pointer = 8107 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8108 llvm::Value *AsInt = 8109 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8110 8111 // Create a mask which should be "AND"ed 8112 // with (overflow_arg_area + align - 1) 8113 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8114 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8115 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8116 "__overflow_area_pointer.align"); 8117 } 8118 8119 // Get the type of the argument from memory and bitcast 8120 // overflow area pointer to the argument type. 8121 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8122 Address AddrTyped = CGF.Builder.CreateBitCast( 8123 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8124 llvm::PointerType::getUnqual(PTy)); 8125 8126 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8127 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8128 8129 __overflow_area_pointer = CGF.Builder.CreateGEP( 8130 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8131 "__overflow_area_pointer.next"); 8132 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8133 8134 return AddrTyped; 8135 } 8136 8137 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8138 Address VAListAddr, 8139 QualType Ty) const { 8140 // FIXME: Need to handle alignment 8141 llvm::Type *BP = CGF.Int8PtrTy; 8142 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8143 CGBuilderTy &Builder = CGF.Builder; 8144 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8145 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8146 // Handle address alignment for type alignment > 32 bits 8147 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8148 if (TyAlign > 4) { 8149 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8150 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8151 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8152 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8153 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8154 } 8155 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8156 Address AddrTyped = Builder.CreateBitCast( 8157 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8158 8159 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8160 llvm::Value *NextAddr = Builder.CreateGEP( 8161 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8162 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8163 8164 return AddrTyped; 8165 } 8166 8167 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8168 Address VAListAddr, 8169 QualType Ty) const { 8170 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8171 8172 if (ArgSize > 8) 8173 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8174 8175 // Here we have check if the argument is in register area or 8176 // in overflow area. 8177 // If the saved register area pointer + argsize rounded up to alignment > 8178 // saved register area end pointer, argument is in overflow area. 8179 unsigned RegsLeft = 6; 8180 Ty = CGF.getContext().getCanonicalType(Ty); 8181 (void)classifyArgumentType(Ty, &RegsLeft); 8182 8183 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8184 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8185 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8186 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8187 8188 // Get rounded size of the argument.GCC does not allow vararg of 8189 // size < 4 bytes. We follow the same logic here. 8190 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8191 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8192 8193 // Argument may be in saved register area 8194 CGF.EmitBlock(MaybeRegBlock); 8195 8196 // Load the current saved register area pointer. 8197 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8198 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8199 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8200 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8201 8202 // Load the saved register area end pointer. 8203 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8204 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8205 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8206 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8207 8208 // If the size of argument is > 4 bytes, check if the stack 8209 // location is aligned to 8 bytes 8210 if (ArgAlign > 4) { 8211 8212 llvm::Value *__current_saved_reg_area_pointer_int = 8213 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8214 CGF.Int32Ty); 8215 8216 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8217 __current_saved_reg_area_pointer_int, 8218 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8219 "align_current_saved_reg_area_pointer"); 8220 8221 __current_saved_reg_area_pointer_int = 8222 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8223 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8224 "align_current_saved_reg_area_pointer"); 8225 8226 __current_saved_reg_area_pointer = 8227 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8228 __current_saved_reg_area_pointer->getType(), 8229 "align_current_saved_reg_area_pointer"); 8230 } 8231 8232 llvm::Value *__new_saved_reg_area_pointer = 8233 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8234 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8235 "__new_saved_reg_area_pointer"); 8236 8237 llvm::Value *UsingStack = 0; 8238 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8239 __saved_reg_area_end_pointer); 8240 8241 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8242 8243 // Argument in saved register area 8244 // Implement the block where argument is in register saved area 8245 CGF.EmitBlock(InRegBlock); 8246 8247 llvm::Type *PTy = CGF.ConvertType(Ty); 8248 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8249 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8250 8251 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8252 __current_saved_reg_area_pointer_p); 8253 8254 CGF.EmitBranch(ContBlock); 8255 8256 // Argument in overflow area 8257 // Implement the block where the argument is in overflow area. 8258 CGF.EmitBlock(OnStackBlock); 8259 8260 // Load the overflow area pointer 8261 Address __overflow_area_pointer_p = 8262 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8263 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8264 __overflow_area_pointer_p, "__overflow_area_pointer"); 8265 8266 // Align the overflow area pointer according to the alignment of the argument 8267 if (ArgAlign > 4) { 8268 llvm::Value *__overflow_area_pointer_int = 8269 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8270 8271 __overflow_area_pointer_int = 8272 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8273 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8274 "align_overflow_area_pointer"); 8275 8276 __overflow_area_pointer_int = 8277 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8278 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8279 "align_overflow_area_pointer"); 8280 8281 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8282 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8283 "align_overflow_area_pointer"); 8284 } 8285 8286 // Get the pointer for next argument in overflow area and store it 8287 // to overflow area pointer. 8288 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8289 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8290 "__overflow_area_pointer.next"); 8291 8292 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8293 __overflow_area_pointer_p); 8294 8295 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8296 __current_saved_reg_area_pointer_p); 8297 8298 // Bitcast the overflow area pointer to the type of argument. 8299 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8300 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8301 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8302 8303 CGF.EmitBranch(ContBlock); 8304 8305 // Get the correct pointer to load the variable argument 8306 // Implement the ContBlock 8307 CGF.EmitBlock(ContBlock); 8308 8309 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8310 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8311 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8312 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8313 8314 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8315 } 8316 8317 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8318 QualType Ty) const { 8319 8320 if (getTarget().getTriple().isMusl()) 8321 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8322 8323 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8324 } 8325 8326 //===----------------------------------------------------------------------===// 8327 // Lanai ABI Implementation 8328 //===----------------------------------------------------------------------===// 8329 8330 namespace { 8331 class LanaiABIInfo : public DefaultABIInfo { 8332 public: 8333 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8334 8335 bool shouldUseInReg(QualType Ty, CCState &State) const; 8336 8337 void computeInfo(CGFunctionInfo &FI) const override { 8338 CCState State(FI); 8339 // Lanai uses 4 registers to pass arguments unless the function has the 8340 // regparm attribute set. 8341 if (FI.getHasRegParm()) { 8342 State.FreeRegs = FI.getRegParm(); 8343 } else { 8344 State.FreeRegs = 4; 8345 } 8346 8347 if (!getCXXABI().classifyReturnType(FI)) 8348 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8349 for (auto &I : FI.arguments()) 8350 I.info = classifyArgumentType(I.type, State); 8351 } 8352 8353 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8354 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8355 }; 8356 } // end anonymous namespace 8357 8358 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8359 unsigned Size = getContext().getTypeSize(Ty); 8360 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8361 8362 if (SizeInRegs == 0) 8363 return false; 8364 8365 if (SizeInRegs > State.FreeRegs) { 8366 State.FreeRegs = 0; 8367 return false; 8368 } 8369 8370 State.FreeRegs -= SizeInRegs; 8371 8372 return true; 8373 } 8374 8375 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8376 CCState &State) const { 8377 if (!ByVal) { 8378 if (State.FreeRegs) { 8379 --State.FreeRegs; // Non-byval indirects just use one pointer. 8380 return getNaturalAlignIndirectInReg(Ty); 8381 } 8382 return getNaturalAlignIndirect(Ty, false); 8383 } 8384 8385 // Compute the byval alignment. 8386 const unsigned MinABIStackAlignInBytes = 4; 8387 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8388 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8389 /*Realign=*/TypeAlign > 8390 MinABIStackAlignInBytes); 8391 } 8392 8393 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8394 CCState &State) const { 8395 // Check with the C++ ABI first. 8396 const RecordType *RT = Ty->getAs<RecordType>(); 8397 if (RT) { 8398 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8399 if (RAA == CGCXXABI::RAA_Indirect) { 8400 return getIndirectResult(Ty, /*ByVal=*/false, State); 8401 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8402 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 8403 } 8404 } 8405 8406 if (isAggregateTypeForABI(Ty)) { 8407 // Structures with flexible arrays are always indirect. 8408 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8409 return getIndirectResult(Ty, /*ByVal=*/true, State); 8410 8411 // Ignore empty structs/unions. 8412 if (isEmptyRecord(getContext(), Ty, true)) 8413 return ABIArgInfo::getIgnore(); 8414 8415 llvm::LLVMContext &LLVMContext = getVMContext(); 8416 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8417 if (SizeInRegs <= State.FreeRegs) { 8418 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8419 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8420 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8421 State.FreeRegs -= SizeInRegs; 8422 return ABIArgInfo::getDirectInReg(Result); 8423 } else { 8424 State.FreeRegs = 0; 8425 } 8426 return getIndirectResult(Ty, true, State); 8427 } 8428 8429 // Treat an enum type as its underlying type. 8430 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8431 Ty = EnumTy->getDecl()->getIntegerType(); 8432 8433 bool InReg = shouldUseInReg(Ty, State); 8434 8435 // Don't pass >64 bit integers in registers. 8436 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8437 if (EIT->getNumBits() > 64) 8438 return getIndirectResult(Ty, /*ByVal=*/true, State); 8439 8440 if (isPromotableIntegerTypeForABI(Ty)) { 8441 if (InReg) 8442 return ABIArgInfo::getDirectInReg(); 8443 return ABIArgInfo::getExtend(Ty); 8444 } 8445 if (InReg) 8446 return ABIArgInfo::getDirectInReg(); 8447 return ABIArgInfo::getDirect(); 8448 } 8449 8450 namespace { 8451 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8452 public: 8453 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8454 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8455 }; 8456 } 8457 8458 //===----------------------------------------------------------------------===// 8459 // AMDGPU ABI Implementation 8460 //===----------------------------------------------------------------------===// 8461 8462 namespace { 8463 8464 class AMDGPUABIInfo final : public DefaultABIInfo { 8465 private: 8466 static const unsigned MaxNumRegsForArgsRet = 16; 8467 8468 unsigned numRegsForType(QualType Ty) const; 8469 8470 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8471 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8472 uint64_t Members) const override; 8473 8474 // Coerce HIP pointer arguments from generic pointers to global ones. 8475 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8476 unsigned ToAS) const { 8477 // Structure types. 8478 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8479 SmallVector<llvm::Type *, 8> EltTys; 8480 bool Changed = false; 8481 for (auto T : STy->elements()) { 8482 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8483 EltTys.push_back(NT); 8484 Changed |= (NT != T); 8485 } 8486 // Skip if there is no change in element types. 8487 if (!Changed) 8488 return STy; 8489 if (STy->hasName()) 8490 return llvm::StructType::create( 8491 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8492 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8493 } 8494 // Array types. 8495 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8496 auto T = ATy->getElementType(); 8497 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8498 // Skip if there is no change in that element type. 8499 if (NT == T) 8500 return ATy; 8501 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8502 } 8503 // Single value types. 8504 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8505 return llvm::PointerType::get( 8506 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8507 return Ty; 8508 } 8509 8510 public: 8511 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8512 DefaultABIInfo(CGT) {} 8513 8514 ABIArgInfo classifyReturnType(QualType RetTy) const; 8515 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8516 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8517 8518 void computeInfo(CGFunctionInfo &FI) const override; 8519 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8520 QualType Ty) const override; 8521 }; 8522 8523 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8524 return true; 8525 } 8526 8527 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8528 const Type *Base, uint64_t Members) const { 8529 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8530 8531 // Homogeneous Aggregates may occupy at most 16 registers. 8532 return Members * NumRegs <= MaxNumRegsForArgsRet; 8533 } 8534 8535 /// Estimate number of registers the type will use when passed in registers. 8536 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8537 unsigned NumRegs = 0; 8538 8539 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8540 // Compute from the number of elements. The reported size is based on the 8541 // in-memory size, which includes the padding 4th element for 3-vectors. 8542 QualType EltTy = VT->getElementType(); 8543 unsigned EltSize = getContext().getTypeSize(EltTy); 8544 8545 // 16-bit element vectors should be passed as packed. 8546 if (EltSize == 16) 8547 return (VT->getNumElements() + 1) / 2; 8548 8549 unsigned EltNumRegs = (EltSize + 31) / 32; 8550 return EltNumRegs * VT->getNumElements(); 8551 } 8552 8553 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8554 const RecordDecl *RD = RT->getDecl(); 8555 assert(!RD->hasFlexibleArrayMember()); 8556 8557 for (const FieldDecl *Field : RD->fields()) { 8558 QualType FieldTy = Field->getType(); 8559 NumRegs += numRegsForType(FieldTy); 8560 } 8561 8562 return NumRegs; 8563 } 8564 8565 return (getContext().getTypeSize(Ty) + 31) / 32; 8566 } 8567 8568 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8569 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8570 8571 if (!getCXXABI().classifyReturnType(FI)) 8572 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8573 8574 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8575 for (auto &Arg : FI.arguments()) { 8576 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8577 Arg.info = classifyKernelArgumentType(Arg.type); 8578 } else { 8579 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8580 } 8581 } 8582 } 8583 8584 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8585 QualType Ty) const { 8586 llvm_unreachable("AMDGPU does not support varargs"); 8587 } 8588 8589 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8590 if (isAggregateTypeForABI(RetTy)) { 8591 // Records with non-trivial destructors/copy-constructors should not be 8592 // returned by value. 8593 if (!getRecordArgABI(RetTy, getCXXABI())) { 8594 // Ignore empty structs/unions. 8595 if (isEmptyRecord(getContext(), RetTy, true)) 8596 return ABIArgInfo::getIgnore(); 8597 8598 // Lower single-element structs to just return a regular value. 8599 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8600 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8601 8602 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8603 const RecordDecl *RD = RT->getDecl(); 8604 if (RD->hasFlexibleArrayMember()) 8605 return DefaultABIInfo::classifyReturnType(RetTy); 8606 } 8607 8608 // Pack aggregates <= 4 bytes into single VGPR or pair. 8609 uint64_t Size = getContext().getTypeSize(RetTy); 8610 if (Size <= 16) 8611 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8612 8613 if (Size <= 32) 8614 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8615 8616 if (Size <= 64) { 8617 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8618 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8619 } 8620 8621 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8622 return ABIArgInfo::getDirect(); 8623 } 8624 } 8625 8626 // Otherwise just do the default thing. 8627 return DefaultABIInfo::classifyReturnType(RetTy); 8628 } 8629 8630 /// For kernels all parameters are really passed in a special buffer. It doesn't 8631 /// make sense to pass anything byval, so everything must be direct. 8632 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8633 Ty = useFirstFieldIfTransparentUnion(Ty); 8634 8635 // TODO: Can we omit empty structs? 8636 8637 llvm::Type *LTy = nullptr; 8638 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8639 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 8640 8641 if (getContext().getLangOpts().HIP) { 8642 if (!LTy) 8643 LTy = CGT.ConvertType(Ty); 8644 LTy = coerceKernelArgumentType( 8645 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8646 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8647 } 8648 8649 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8650 // individual elements, which confuses the Clover OpenCL backend; therefore we 8651 // have to set it to false here. Other args of getDirect() are just defaults. 8652 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8653 } 8654 8655 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8656 unsigned &NumRegsLeft) const { 8657 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8658 8659 Ty = useFirstFieldIfTransparentUnion(Ty); 8660 8661 if (isAggregateTypeForABI(Ty)) { 8662 // Records with non-trivial destructors/copy-constructors should not be 8663 // passed by value. 8664 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8665 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8666 8667 // Ignore empty structs/unions. 8668 if (isEmptyRecord(getContext(), Ty, true)) 8669 return ABIArgInfo::getIgnore(); 8670 8671 // Lower single-element structs to just pass a regular value. TODO: We 8672 // could do reasonable-size multiple-element structs too, using getExpand(), 8673 // though watch out for things like bitfields. 8674 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8675 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8676 8677 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8678 const RecordDecl *RD = RT->getDecl(); 8679 if (RD->hasFlexibleArrayMember()) 8680 return DefaultABIInfo::classifyArgumentType(Ty); 8681 } 8682 8683 // Pack aggregates <= 8 bytes into single VGPR or pair. 8684 uint64_t Size = getContext().getTypeSize(Ty); 8685 if (Size <= 64) { 8686 unsigned NumRegs = (Size + 31) / 32; 8687 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8688 8689 if (Size <= 16) 8690 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8691 8692 if (Size <= 32) 8693 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8694 8695 // XXX: Should this be i64 instead, and should the limit increase? 8696 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8697 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8698 } 8699 8700 if (NumRegsLeft > 0) { 8701 unsigned NumRegs = numRegsForType(Ty); 8702 if (NumRegsLeft >= NumRegs) { 8703 NumRegsLeft -= NumRegs; 8704 return ABIArgInfo::getDirect(); 8705 } 8706 } 8707 } 8708 8709 // Otherwise just do the default thing. 8710 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8711 if (!ArgInfo.isIndirect()) { 8712 unsigned NumRegs = numRegsForType(Ty); 8713 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8714 } 8715 8716 return ArgInfo; 8717 } 8718 8719 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8720 public: 8721 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8722 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8723 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8724 CodeGen::CodeGenModule &M) const override; 8725 unsigned getOpenCLKernelCallingConv() const override; 8726 8727 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8728 llvm::PointerType *T, QualType QT) const override; 8729 8730 LangAS getASTAllocaAddressSpace() const override { 8731 return getLangASFromTargetAS( 8732 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8733 } 8734 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8735 const VarDecl *D) const override; 8736 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8737 SyncScope Scope, 8738 llvm::AtomicOrdering Ordering, 8739 llvm::LLVMContext &Ctx) const override; 8740 llvm::Function * 8741 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8742 llvm::Function *BlockInvokeFunc, 8743 llvm::Value *BlockLiteral) const override; 8744 bool shouldEmitStaticExternCAliases() const override; 8745 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8746 }; 8747 } 8748 8749 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8750 llvm::GlobalValue *GV) { 8751 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8752 return false; 8753 8754 return D->hasAttr<OpenCLKernelAttr>() || 8755 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8756 (isa<VarDecl>(D) && 8757 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8758 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8759 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8760 } 8761 8762 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8763 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8764 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8765 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8766 GV->setDSOLocal(true); 8767 } 8768 8769 if (GV->isDeclaration()) 8770 return; 8771 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8772 if (!FD) 8773 return; 8774 8775 llvm::Function *F = cast<llvm::Function>(GV); 8776 8777 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8778 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8779 8780 8781 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8782 FD->hasAttr<OpenCLKernelAttr>(); 8783 const bool IsHIPKernel = M.getLangOpts().HIP && 8784 FD->hasAttr<CUDAGlobalAttr>(); 8785 if ((IsOpenCLKernel || IsHIPKernel) && 8786 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8787 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8788 8789 if (IsHIPKernel) 8790 F->addFnAttr("uniform-work-group-size", "true"); 8791 8792 8793 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8794 if (ReqdWGS || FlatWGS) { 8795 unsigned Min = 0; 8796 unsigned Max = 0; 8797 if (FlatWGS) { 8798 Min = FlatWGS->getMin() 8799 ->EvaluateKnownConstInt(M.getContext()) 8800 .getExtValue(); 8801 Max = FlatWGS->getMax() 8802 ->EvaluateKnownConstInt(M.getContext()) 8803 .getExtValue(); 8804 } 8805 if (ReqdWGS && Min == 0 && Max == 0) 8806 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8807 8808 if (Min != 0) { 8809 assert(Min <= Max && "Min must be less than or equal Max"); 8810 8811 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8812 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8813 } else 8814 assert(Max == 0 && "Max must be zero"); 8815 } else if (IsOpenCLKernel || IsHIPKernel) { 8816 // By default, restrict the maximum size to a value specified by 8817 // --gpu-max-threads-per-block=n or its default value. 8818 std::string AttrVal = 8819 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 8820 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8821 } 8822 8823 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8824 unsigned Min = 8825 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8826 unsigned Max = Attr->getMax() ? Attr->getMax() 8827 ->EvaluateKnownConstInt(M.getContext()) 8828 .getExtValue() 8829 : 0; 8830 8831 if (Min != 0) { 8832 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8833 8834 std::string AttrVal = llvm::utostr(Min); 8835 if (Max != 0) 8836 AttrVal = AttrVal + "," + llvm::utostr(Max); 8837 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8838 } else 8839 assert(Max == 0 && "Max must be zero"); 8840 } 8841 8842 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8843 unsigned NumSGPR = Attr->getNumSGPR(); 8844 8845 if (NumSGPR != 0) 8846 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8847 } 8848 8849 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8850 uint32_t NumVGPR = Attr->getNumVGPR(); 8851 8852 if (NumVGPR != 0) 8853 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8854 } 8855 } 8856 8857 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8858 return llvm::CallingConv::AMDGPU_KERNEL; 8859 } 8860 8861 // Currently LLVM assumes null pointers always have value 0, 8862 // which results in incorrectly transformed IR. Therefore, instead of 8863 // emitting null pointers in private and local address spaces, a null 8864 // pointer in generic address space is emitted which is casted to a 8865 // pointer in local or private address space. 8866 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8867 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8868 QualType QT) const { 8869 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8870 return llvm::ConstantPointerNull::get(PT); 8871 8872 auto &Ctx = CGM.getContext(); 8873 auto NPT = llvm::PointerType::get(PT->getElementType(), 8874 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8875 return llvm::ConstantExpr::getAddrSpaceCast( 8876 llvm::ConstantPointerNull::get(NPT), PT); 8877 } 8878 8879 LangAS 8880 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8881 const VarDecl *D) const { 8882 assert(!CGM.getLangOpts().OpenCL && 8883 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8884 "Address space agnostic languages only"); 8885 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8886 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8887 if (!D) 8888 return DefaultGlobalAS; 8889 8890 LangAS AddrSpace = D->getType().getAddressSpace(); 8891 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8892 if (AddrSpace != LangAS::Default) 8893 return AddrSpace; 8894 8895 if (CGM.isTypeConstant(D->getType(), false)) { 8896 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8897 return ConstAS.getValue(); 8898 } 8899 return DefaultGlobalAS; 8900 } 8901 8902 llvm::SyncScope::ID 8903 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8904 SyncScope Scope, 8905 llvm::AtomicOrdering Ordering, 8906 llvm::LLVMContext &Ctx) const { 8907 std::string Name; 8908 switch (Scope) { 8909 case SyncScope::OpenCLWorkGroup: 8910 Name = "workgroup"; 8911 break; 8912 case SyncScope::OpenCLDevice: 8913 Name = "agent"; 8914 break; 8915 case SyncScope::OpenCLAllSVMDevices: 8916 Name = ""; 8917 break; 8918 case SyncScope::OpenCLSubGroup: 8919 Name = "wavefront"; 8920 } 8921 8922 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8923 if (!Name.empty()) 8924 Name = Twine(Twine(Name) + Twine("-")).str(); 8925 8926 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8927 } 8928 8929 return Ctx.getOrInsertSyncScopeID(Name); 8930 } 8931 8932 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8933 return false; 8934 } 8935 8936 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8937 const FunctionType *&FT) const { 8938 FT = getABIInfo().getContext().adjustFunctionType( 8939 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8940 } 8941 8942 //===----------------------------------------------------------------------===// 8943 // SPARC v8 ABI Implementation. 8944 // Based on the SPARC Compliance Definition version 2.4.1. 8945 // 8946 // Ensures that complex values are passed in registers. 8947 // 8948 namespace { 8949 class SparcV8ABIInfo : public DefaultABIInfo { 8950 public: 8951 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8952 8953 private: 8954 ABIArgInfo classifyReturnType(QualType RetTy) const; 8955 void computeInfo(CGFunctionInfo &FI) const override; 8956 }; 8957 } // end anonymous namespace 8958 8959 8960 ABIArgInfo 8961 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8962 if (Ty->isAnyComplexType()) { 8963 return ABIArgInfo::getDirect(); 8964 } 8965 else { 8966 return DefaultABIInfo::classifyReturnType(Ty); 8967 } 8968 } 8969 8970 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8971 8972 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8973 for (auto &Arg : FI.arguments()) 8974 Arg.info = classifyArgumentType(Arg.type); 8975 } 8976 8977 namespace { 8978 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8979 public: 8980 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8981 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 8982 }; 8983 } // end anonymous namespace 8984 8985 //===----------------------------------------------------------------------===// 8986 // SPARC v9 ABI Implementation. 8987 // Based on the SPARC Compliance Definition version 2.4.1. 8988 // 8989 // Function arguments a mapped to a nominal "parameter array" and promoted to 8990 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8991 // the array, structs larger than 16 bytes are passed indirectly. 8992 // 8993 // One case requires special care: 8994 // 8995 // struct mixed { 8996 // int i; 8997 // float f; 8998 // }; 8999 // 9000 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9001 // parameter array, but the int is passed in an integer register, and the float 9002 // is passed in a floating point register. This is represented as two arguments 9003 // with the LLVM IR inreg attribute: 9004 // 9005 // declare void f(i32 inreg %i, float inreg %f) 9006 // 9007 // The code generator will only allocate 4 bytes from the parameter array for 9008 // the inreg arguments. All other arguments are allocated a multiple of 8 9009 // bytes. 9010 // 9011 namespace { 9012 class SparcV9ABIInfo : public ABIInfo { 9013 public: 9014 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9015 9016 private: 9017 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9018 void computeInfo(CGFunctionInfo &FI) const override; 9019 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9020 QualType Ty) const override; 9021 9022 // Coercion type builder for structs passed in registers. The coercion type 9023 // serves two purposes: 9024 // 9025 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9026 // in registers. 9027 // 2. Expose aligned floating point elements as first-level elements, so the 9028 // code generator knows to pass them in floating point registers. 9029 // 9030 // We also compute the InReg flag which indicates that the struct contains 9031 // aligned 32-bit floats. 9032 // 9033 struct CoerceBuilder { 9034 llvm::LLVMContext &Context; 9035 const llvm::DataLayout &DL; 9036 SmallVector<llvm::Type*, 8> Elems; 9037 uint64_t Size; 9038 bool InReg; 9039 9040 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9041 : Context(c), DL(dl), Size(0), InReg(false) {} 9042 9043 // Pad Elems with integers until Size is ToSize. 9044 void pad(uint64_t ToSize) { 9045 assert(ToSize >= Size && "Cannot remove elements"); 9046 if (ToSize == Size) 9047 return; 9048 9049 // Finish the current 64-bit word. 9050 uint64_t Aligned = llvm::alignTo(Size, 64); 9051 if (Aligned > Size && Aligned <= ToSize) { 9052 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9053 Size = Aligned; 9054 } 9055 9056 // Add whole 64-bit words. 9057 while (Size + 64 <= ToSize) { 9058 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9059 Size += 64; 9060 } 9061 9062 // Final in-word padding. 9063 if (Size < ToSize) { 9064 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9065 Size = ToSize; 9066 } 9067 } 9068 9069 // Add a floating point element at Offset. 9070 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9071 // Unaligned floats are treated as integers. 9072 if (Offset % Bits) 9073 return; 9074 // The InReg flag is only required if there are any floats < 64 bits. 9075 if (Bits < 64) 9076 InReg = true; 9077 pad(Offset); 9078 Elems.push_back(Ty); 9079 Size = Offset + Bits; 9080 } 9081 9082 // Add a struct type to the coercion type, starting at Offset (in bits). 9083 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9084 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9085 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9086 llvm::Type *ElemTy = StrTy->getElementType(i); 9087 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9088 switch (ElemTy->getTypeID()) { 9089 case llvm::Type::StructTyID: 9090 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9091 break; 9092 case llvm::Type::FloatTyID: 9093 addFloat(ElemOffset, ElemTy, 32); 9094 break; 9095 case llvm::Type::DoubleTyID: 9096 addFloat(ElemOffset, ElemTy, 64); 9097 break; 9098 case llvm::Type::FP128TyID: 9099 addFloat(ElemOffset, ElemTy, 128); 9100 break; 9101 case llvm::Type::PointerTyID: 9102 if (ElemOffset % 64 == 0) { 9103 pad(ElemOffset); 9104 Elems.push_back(ElemTy); 9105 Size += 64; 9106 } 9107 break; 9108 default: 9109 break; 9110 } 9111 } 9112 } 9113 9114 // Check if Ty is a usable substitute for the coercion type. 9115 bool isUsableType(llvm::StructType *Ty) const { 9116 return llvm::makeArrayRef(Elems) == Ty->elements(); 9117 } 9118 9119 // Get the coercion type as a literal struct type. 9120 llvm::Type *getType() const { 9121 if (Elems.size() == 1) 9122 return Elems.front(); 9123 else 9124 return llvm::StructType::get(Context, Elems); 9125 } 9126 }; 9127 }; 9128 } // end anonymous namespace 9129 9130 ABIArgInfo 9131 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9132 if (Ty->isVoidType()) 9133 return ABIArgInfo::getIgnore(); 9134 9135 uint64_t Size = getContext().getTypeSize(Ty); 9136 9137 // Anything too big to fit in registers is passed with an explicit indirect 9138 // pointer / sret pointer. 9139 if (Size > SizeLimit) 9140 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9141 9142 // Treat an enum type as its underlying type. 9143 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9144 Ty = EnumTy->getDecl()->getIntegerType(); 9145 9146 // Integer types smaller than a register are extended. 9147 if (Size < 64 && Ty->isIntegerType()) 9148 return ABIArgInfo::getExtend(Ty); 9149 9150 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9151 if (EIT->getNumBits() < 64) 9152 return ABIArgInfo::getExtend(Ty); 9153 9154 // Other non-aggregates go in registers. 9155 if (!isAggregateTypeForABI(Ty)) 9156 return ABIArgInfo::getDirect(); 9157 9158 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9159 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9160 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9161 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9162 9163 // This is a small aggregate type that should be passed in registers. 9164 // Build a coercion type from the LLVM struct type. 9165 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9166 if (!StrTy) 9167 return ABIArgInfo::getDirect(); 9168 9169 CoerceBuilder CB(getVMContext(), getDataLayout()); 9170 CB.addStruct(0, StrTy); 9171 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9172 9173 // Try to use the original type for coercion. 9174 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9175 9176 if (CB.InReg) 9177 return ABIArgInfo::getDirectInReg(CoerceTy); 9178 else 9179 return ABIArgInfo::getDirect(CoerceTy); 9180 } 9181 9182 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9183 QualType Ty) const { 9184 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9185 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9186 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9187 AI.setCoerceToType(ArgTy); 9188 9189 CharUnits SlotSize = CharUnits::fromQuantity(8); 9190 9191 CGBuilderTy &Builder = CGF.Builder; 9192 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9193 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9194 9195 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9196 9197 Address ArgAddr = Address::invalid(); 9198 CharUnits Stride; 9199 switch (AI.getKind()) { 9200 case ABIArgInfo::Expand: 9201 case ABIArgInfo::CoerceAndExpand: 9202 case ABIArgInfo::InAlloca: 9203 llvm_unreachable("Unsupported ABI kind for va_arg"); 9204 9205 case ABIArgInfo::Extend: { 9206 Stride = SlotSize; 9207 CharUnits Offset = SlotSize - TypeInfo.first; 9208 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9209 break; 9210 } 9211 9212 case ABIArgInfo::Direct: { 9213 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9214 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9215 ArgAddr = Addr; 9216 break; 9217 } 9218 9219 case ABIArgInfo::Indirect: 9220 Stride = SlotSize; 9221 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9222 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9223 TypeInfo.second); 9224 break; 9225 9226 case ABIArgInfo::Ignore: 9227 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 9228 } 9229 9230 // Update VAList. 9231 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9232 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9233 9234 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9235 } 9236 9237 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9238 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9239 for (auto &I : FI.arguments()) 9240 I.info = classifyType(I.type, 16 * 8); 9241 } 9242 9243 namespace { 9244 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9245 public: 9246 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9247 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9248 9249 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9250 return 14; 9251 } 9252 9253 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9254 llvm::Value *Address) const override; 9255 }; 9256 } // end anonymous namespace 9257 9258 bool 9259 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9260 llvm::Value *Address) const { 9261 // This is calculated from the LLVM and GCC tables and verified 9262 // against gcc output. AFAIK all ABIs use the same encoding. 9263 9264 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9265 9266 llvm::IntegerType *i8 = CGF.Int8Ty; 9267 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9268 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9269 9270 // 0-31: the 8-byte general-purpose registers 9271 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9272 9273 // 32-63: f0-31, the 4-byte floating-point registers 9274 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9275 9276 // Y = 64 9277 // PSR = 65 9278 // WIM = 66 9279 // TBR = 67 9280 // PC = 68 9281 // NPC = 69 9282 // FSR = 70 9283 // CSR = 71 9284 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9285 9286 // 72-87: d0-15, the 8-byte floating-point registers 9287 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9288 9289 return false; 9290 } 9291 9292 // ARC ABI implementation. 9293 namespace { 9294 9295 class ARCABIInfo : public DefaultABIInfo { 9296 public: 9297 using DefaultABIInfo::DefaultABIInfo; 9298 9299 private: 9300 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9301 QualType Ty) const override; 9302 9303 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9304 if (!State.FreeRegs) 9305 return; 9306 if (Info.isIndirect() && Info.getInReg()) 9307 State.FreeRegs--; 9308 else if (Info.isDirect() && Info.getInReg()) { 9309 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9310 if (sz < State.FreeRegs) 9311 State.FreeRegs -= sz; 9312 else 9313 State.FreeRegs = 0; 9314 } 9315 } 9316 9317 void computeInfo(CGFunctionInfo &FI) const override { 9318 CCState State(FI); 9319 // ARC uses 8 registers to pass arguments. 9320 State.FreeRegs = 8; 9321 9322 if (!getCXXABI().classifyReturnType(FI)) 9323 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9324 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9325 for (auto &I : FI.arguments()) { 9326 I.info = classifyArgumentType(I.type, State.FreeRegs); 9327 updateState(I.info, I.type, State); 9328 } 9329 } 9330 9331 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9332 ABIArgInfo getIndirectByValue(QualType Ty) const; 9333 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9334 ABIArgInfo classifyReturnType(QualType RetTy) const; 9335 }; 9336 9337 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9338 public: 9339 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9340 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9341 }; 9342 9343 9344 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9345 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9346 getNaturalAlignIndirect(Ty, false); 9347 } 9348 9349 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9350 // Compute the byval alignment. 9351 const unsigned MinABIStackAlignInBytes = 4; 9352 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9353 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9354 TypeAlign > MinABIStackAlignInBytes); 9355 } 9356 9357 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9358 QualType Ty) const { 9359 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9360 getContext().getTypeInfoInChars(Ty), 9361 CharUnits::fromQuantity(4), true); 9362 } 9363 9364 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9365 uint8_t FreeRegs) const { 9366 // Handle the generic C++ ABI. 9367 const RecordType *RT = Ty->getAs<RecordType>(); 9368 if (RT) { 9369 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9370 if (RAA == CGCXXABI::RAA_Indirect) 9371 return getIndirectByRef(Ty, FreeRegs > 0); 9372 9373 if (RAA == CGCXXABI::RAA_DirectInMemory) 9374 return getIndirectByValue(Ty); 9375 } 9376 9377 // Treat an enum type as its underlying type. 9378 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9379 Ty = EnumTy->getDecl()->getIntegerType(); 9380 9381 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9382 9383 if (isAggregateTypeForABI(Ty)) { 9384 // Structures with flexible arrays are always indirect. 9385 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9386 return getIndirectByValue(Ty); 9387 9388 // Ignore empty structs/unions. 9389 if (isEmptyRecord(getContext(), Ty, true)) 9390 return ABIArgInfo::getIgnore(); 9391 9392 llvm::LLVMContext &LLVMContext = getVMContext(); 9393 9394 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9395 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9396 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9397 9398 return FreeRegs >= SizeInRegs ? 9399 ABIArgInfo::getDirectInReg(Result) : 9400 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9401 } 9402 9403 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9404 if (EIT->getNumBits() > 64) 9405 return getIndirectByValue(Ty); 9406 9407 return isPromotableIntegerTypeForABI(Ty) 9408 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9409 : ABIArgInfo::getExtend(Ty)) 9410 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9411 : ABIArgInfo::getDirect()); 9412 } 9413 9414 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9415 if (RetTy->isAnyComplexType()) 9416 return ABIArgInfo::getDirectInReg(); 9417 9418 // Arguments of size > 4 registers are indirect. 9419 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9420 if (RetSize > 4) 9421 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9422 9423 return DefaultABIInfo::classifyReturnType(RetTy); 9424 } 9425 9426 } // End anonymous namespace. 9427 9428 //===----------------------------------------------------------------------===// 9429 // XCore ABI Implementation 9430 //===----------------------------------------------------------------------===// 9431 9432 namespace { 9433 9434 /// A SmallStringEnc instance is used to build up the TypeString by passing 9435 /// it by reference between functions that append to it. 9436 typedef llvm::SmallString<128> SmallStringEnc; 9437 9438 /// TypeStringCache caches the meta encodings of Types. 9439 /// 9440 /// The reason for caching TypeStrings is two fold: 9441 /// 1. To cache a type's encoding for later uses; 9442 /// 2. As a means to break recursive member type inclusion. 9443 /// 9444 /// A cache Entry can have a Status of: 9445 /// NonRecursive: The type encoding is not recursive; 9446 /// Recursive: The type encoding is recursive; 9447 /// Incomplete: An incomplete TypeString; 9448 /// IncompleteUsed: An incomplete TypeString that has been used in a 9449 /// Recursive type encoding. 9450 /// 9451 /// A NonRecursive entry will have all of its sub-members expanded as fully 9452 /// as possible. Whilst it may contain types which are recursive, the type 9453 /// itself is not recursive and thus its encoding may be safely used whenever 9454 /// the type is encountered. 9455 /// 9456 /// A Recursive entry will have all of its sub-members expanded as fully as 9457 /// possible. The type itself is recursive and it may contain other types which 9458 /// are recursive. The Recursive encoding must not be used during the expansion 9459 /// of a recursive type's recursive branch. For simplicity the code uses 9460 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9461 /// 9462 /// An Incomplete entry is always a RecordType and only encodes its 9463 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9464 /// are placed into the cache during type expansion as a means to identify and 9465 /// handle recursive inclusion of types as sub-members. If there is recursion 9466 /// the entry becomes IncompleteUsed. 9467 /// 9468 /// During the expansion of a RecordType's members: 9469 /// 9470 /// If the cache contains a NonRecursive encoding for the member type, the 9471 /// cached encoding is used; 9472 /// 9473 /// If the cache contains a Recursive encoding for the member type, the 9474 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9475 /// 9476 /// If the member is a RecordType, an Incomplete encoding is placed into the 9477 /// cache to break potential recursive inclusion of itself as a sub-member; 9478 /// 9479 /// Once a member RecordType has been expanded, its temporary incomplete 9480 /// entry is removed from the cache. If a Recursive encoding was swapped out 9481 /// it is swapped back in; 9482 /// 9483 /// If an incomplete entry is used to expand a sub-member, the incomplete 9484 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9485 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9486 /// 9487 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9488 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9489 /// Else the member is part of a recursive type and thus the recursion has 9490 /// been exited too soon for the encoding to be correct for the member. 9491 /// 9492 class TypeStringCache { 9493 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9494 struct Entry { 9495 std::string Str; // The encoded TypeString for the type. 9496 enum Status State; // Information about the encoding in 'Str'. 9497 std::string Swapped; // A temporary place holder for a Recursive encoding 9498 // during the expansion of RecordType's members. 9499 }; 9500 std::map<const IdentifierInfo *, struct Entry> Map; 9501 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9502 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9503 public: 9504 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9505 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9506 bool removeIncomplete(const IdentifierInfo *ID); 9507 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9508 bool IsRecursive); 9509 StringRef lookupStr(const IdentifierInfo *ID); 9510 }; 9511 9512 /// TypeString encodings for enum & union fields must be order. 9513 /// FieldEncoding is a helper for this ordering process. 9514 class FieldEncoding { 9515 bool HasName; 9516 std::string Enc; 9517 public: 9518 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9519 StringRef str() { return Enc; } 9520 bool operator<(const FieldEncoding &rhs) const { 9521 if (HasName != rhs.HasName) return HasName; 9522 return Enc < rhs.Enc; 9523 } 9524 }; 9525 9526 class XCoreABIInfo : public DefaultABIInfo { 9527 public: 9528 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9529 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9530 QualType Ty) const override; 9531 }; 9532 9533 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9534 mutable TypeStringCache TSC; 9535 public: 9536 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9537 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9538 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9539 CodeGen::CodeGenModule &M) const override; 9540 }; 9541 9542 } // End anonymous namespace. 9543 9544 // TODO: this implementation is likely now redundant with the default 9545 // EmitVAArg. 9546 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9547 QualType Ty) const { 9548 CGBuilderTy &Builder = CGF.Builder; 9549 9550 // Get the VAList. 9551 CharUnits SlotSize = CharUnits::fromQuantity(4); 9552 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9553 9554 // Handle the argument. 9555 ABIArgInfo AI = classifyArgumentType(Ty); 9556 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9557 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9558 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9559 AI.setCoerceToType(ArgTy); 9560 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9561 9562 Address Val = Address::invalid(); 9563 CharUnits ArgSize = CharUnits::Zero(); 9564 switch (AI.getKind()) { 9565 case ABIArgInfo::Expand: 9566 case ABIArgInfo::CoerceAndExpand: 9567 case ABIArgInfo::InAlloca: 9568 llvm_unreachable("Unsupported ABI kind for va_arg"); 9569 case ABIArgInfo::Ignore: 9570 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9571 ArgSize = CharUnits::Zero(); 9572 break; 9573 case ABIArgInfo::Extend: 9574 case ABIArgInfo::Direct: 9575 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9576 ArgSize = CharUnits::fromQuantity( 9577 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9578 ArgSize = ArgSize.alignTo(SlotSize); 9579 break; 9580 case ABIArgInfo::Indirect: 9581 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9582 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9583 ArgSize = SlotSize; 9584 break; 9585 } 9586 9587 // Increment the VAList. 9588 if (!ArgSize.isZero()) { 9589 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9590 Builder.CreateStore(APN.getPointer(), VAListAddr); 9591 } 9592 9593 return Val; 9594 } 9595 9596 /// During the expansion of a RecordType, an incomplete TypeString is placed 9597 /// into the cache as a means to identify and break recursion. 9598 /// If there is a Recursive encoding in the cache, it is swapped out and will 9599 /// be reinserted by removeIncomplete(). 9600 /// All other types of encoding should have been used rather than arriving here. 9601 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9602 std::string StubEnc) { 9603 if (!ID) 9604 return; 9605 Entry &E = Map[ID]; 9606 assert( (E.Str.empty() || E.State == Recursive) && 9607 "Incorrectly use of addIncomplete"); 9608 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9609 E.Swapped.swap(E.Str); // swap out the Recursive 9610 E.Str.swap(StubEnc); 9611 E.State = Incomplete; 9612 ++IncompleteCount; 9613 } 9614 9615 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9616 /// must be removed from the cache. 9617 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9618 /// Returns true if the RecordType was defined recursively. 9619 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9620 if (!ID) 9621 return false; 9622 auto I = Map.find(ID); 9623 assert(I != Map.end() && "Entry not present"); 9624 Entry &E = I->second; 9625 assert( (E.State == Incomplete || 9626 E.State == IncompleteUsed) && 9627 "Entry must be an incomplete type"); 9628 bool IsRecursive = false; 9629 if (E.State == IncompleteUsed) { 9630 // We made use of our Incomplete encoding, thus we are recursive. 9631 IsRecursive = true; 9632 --IncompleteUsedCount; 9633 } 9634 if (E.Swapped.empty()) 9635 Map.erase(I); 9636 else { 9637 // Swap the Recursive back. 9638 E.Swapped.swap(E.Str); 9639 E.Swapped.clear(); 9640 E.State = Recursive; 9641 } 9642 --IncompleteCount; 9643 return IsRecursive; 9644 } 9645 9646 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9647 /// Recursive (viz: all sub-members were expanded as fully as possible). 9648 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9649 bool IsRecursive) { 9650 if (!ID || IncompleteUsedCount) 9651 return; // No key or it is is an incomplete sub-type so don't add. 9652 Entry &E = Map[ID]; 9653 if (IsRecursive && !E.Str.empty()) { 9654 assert(E.State==Recursive && E.Str.size() == Str.size() && 9655 "This is not the same Recursive entry"); 9656 // The parent container was not recursive after all, so we could have used 9657 // this Recursive sub-member entry after all, but we assumed the worse when 9658 // we started viz: IncompleteCount!=0. 9659 return; 9660 } 9661 assert(E.Str.empty() && "Entry already present"); 9662 E.Str = Str.str(); 9663 E.State = IsRecursive? Recursive : NonRecursive; 9664 } 9665 9666 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9667 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9668 /// encoding is Recursive, return an empty StringRef. 9669 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9670 if (!ID) 9671 return StringRef(); // We have no key. 9672 auto I = Map.find(ID); 9673 if (I == Map.end()) 9674 return StringRef(); // We have no encoding. 9675 Entry &E = I->second; 9676 if (E.State == Recursive && IncompleteCount) 9677 return StringRef(); // We don't use Recursive encodings for member types. 9678 9679 if (E.State == Incomplete) { 9680 // The incomplete type is being used to break out of recursion. 9681 E.State = IncompleteUsed; 9682 ++IncompleteUsedCount; 9683 } 9684 return E.Str; 9685 } 9686 9687 /// The XCore ABI includes a type information section that communicates symbol 9688 /// type information to the linker. The linker uses this information to verify 9689 /// safety/correctness of things such as array bound and pointers et al. 9690 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9691 /// This type information (TypeString) is emitted into meta data for all global 9692 /// symbols: definitions, declarations, functions & variables. 9693 /// 9694 /// The TypeString carries type, qualifier, name, size & value details. 9695 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9696 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9697 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9698 /// 9699 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9700 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 9701 9702 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9703 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9704 CodeGen::CodeGenModule &CGM) const { 9705 SmallStringEnc Enc; 9706 if (getTypeString(Enc, D, CGM, TSC)) { 9707 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9708 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9709 llvm::MDString::get(Ctx, Enc.str())}; 9710 llvm::NamedMDNode *MD = 9711 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9712 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9713 } 9714 } 9715 9716 //===----------------------------------------------------------------------===// 9717 // SPIR ABI Implementation 9718 //===----------------------------------------------------------------------===// 9719 9720 namespace { 9721 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9722 public: 9723 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9724 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9725 unsigned getOpenCLKernelCallingConv() const override; 9726 }; 9727 9728 } // End anonymous namespace. 9729 9730 namespace clang { 9731 namespace CodeGen { 9732 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9733 DefaultABIInfo SPIRABI(CGM.getTypes()); 9734 SPIRABI.computeInfo(FI); 9735 } 9736 } 9737 } 9738 9739 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9740 return llvm::CallingConv::SPIR_KERNEL; 9741 } 9742 9743 static bool appendType(SmallStringEnc &Enc, QualType QType, 9744 const CodeGen::CodeGenModule &CGM, 9745 TypeStringCache &TSC); 9746 9747 /// Helper function for appendRecordType(). 9748 /// Builds a SmallVector containing the encoded field types in declaration 9749 /// order. 9750 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9751 const RecordDecl *RD, 9752 const CodeGen::CodeGenModule &CGM, 9753 TypeStringCache &TSC) { 9754 for (const auto *Field : RD->fields()) { 9755 SmallStringEnc Enc; 9756 Enc += "m("; 9757 Enc += Field->getName(); 9758 Enc += "){"; 9759 if (Field->isBitField()) { 9760 Enc += "b("; 9761 llvm::raw_svector_ostream OS(Enc); 9762 OS << Field->getBitWidthValue(CGM.getContext()); 9763 Enc += ':'; 9764 } 9765 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9766 return false; 9767 if (Field->isBitField()) 9768 Enc += ')'; 9769 Enc += '}'; 9770 FE.emplace_back(!Field->getName().empty(), Enc); 9771 } 9772 return true; 9773 } 9774 9775 /// Appends structure and union types to Enc and adds encoding to cache. 9776 /// Recursively calls appendType (via extractFieldType) for each field. 9777 /// Union types have their fields ordered according to the ABI. 9778 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9779 const CodeGen::CodeGenModule &CGM, 9780 TypeStringCache &TSC, const IdentifierInfo *ID) { 9781 // Append the cached TypeString if we have one. 9782 StringRef TypeString = TSC.lookupStr(ID); 9783 if (!TypeString.empty()) { 9784 Enc += TypeString; 9785 return true; 9786 } 9787 9788 // Start to emit an incomplete TypeString. 9789 size_t Start = Enc.size(); 9790 Enc += (RT->isUnionType()? 'u' : 's'); 9791 Enc += '('; 9792 if (ID) 9793 Enc += ID->getName(); 9794 Enc += "){"; 9795 9796 // We collect all encoded fields and order as necessary. 9797 bool IsRecursive = false; 9798 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9799 if (RD && !RD->field_empty()) { 9800 // An incomplete TypeString stub is placed in the cache for this RecordType 9801 // so that recursive calls to this RecordType will use it whilst building a 9802 // complete TypeString for this RecordType. 9803 SmallVector<FieldEncoding, 16> FE; 9804 std::string StubEnc(Enc.substr(Start).str()); 9805 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9806 TSC.addIncomplete(ID, std::move(StubEnc)); 9807 if (!extractFieldType(FE, RD, CGM, TSC)) { 9808 (void) TSC.removeIncomplete(ID); 9809 return false; 9810 } 9811 IsRecursive = TSC.removeIncomplete(ID); 9812 // The ABI requires unions to be sorted but not structures. 9813 // See FieldEncoding::operator< for sort algorithm. 9814 if (RT->isUnionType()) 9815 llvm::sort(FE); 9816 // We can now complete the TypeString. 9817 unsigned E = FE.size(); 9818 for (unsigned I = 0; I != E; ++I) { 9819 if (I) 9820 Enc += ','; 9821 Enc += FE[I].str(); 9822 } 9823 } 9824 Enc += '}'; 9825 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9826 return true; 9827 } 9828 9829 /// Appends enum types to Enc and adds the encoding to the cache. 9830 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9831 TypeStringCache &TSC, 9832 const IdentifierInfo *ID) { 9833 // Append the cached TypeString if we have one. 9834 StringRef TypeString = TSC.lookupStr(ID); 9835 if (!TypeString.empty()) { 9836 Enc += TypeString; 9837 return true; 9838 } 9839 9840 size_t Start = Enc.size(); 9841 Enc += "e("; 9842 if (ID) 9843 Enc += ID->getName(); 9844 Enc += "){"; 9845 9846 // We collect all encoded enumerations and order them alphanumerically. 9847 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9848 SmallVector<FieldEncoding, 16> FE; 9849 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9850 ++I) { 9851 SmallStringEnc EnumEnc; 9852 EnumEnc += "m("; 9853 EnumEnc += I->getName(); 9854 EnumEnc += "){"; 9855 I->getInitVal().toString(EnumEnc); 9856 EnumEnc += '}'; 9857 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9858 } 9859 llvm::sort(FE); 9860 unsigned E = FE.size(); 9861 for (unsigned I = 0; I != E; ++I) { 9862 if (I) 9863 Enc += ','; 9864 Enc += FE[I].str(); 9865 } 9866 } 9867 Enc += '}'; 9868 TSC.addIfComplete(ID, Enc.substr(Start), false); 9869 return true; 9870 } 9871 9872 /// Appends type's qualifier to Enc. 9873 /// This is done prior to appending the type's encoding. 9874 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9875 // Qualifiers are emitted in alphabetical order. 9876 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9877 int Lookup = 0; 9878 if (QT.isConstQualified()) 9879 Lookup += 1<<0; 9880 if (QT.isRestrictQualified()) 9881 Lookup += 1<<1; 9882 if (QT.isVolatileQualified()) 9883 Lookup += 1<<2; 9884 Enc += Table[Lookup]; 9885 } 9886 9887 /// Appends built-in types to Enc. 9888 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9889 const char *EncType; 9890 switch (BT->getKind()) { 9891 case BuiltinType::Void: 9892 EncType = "0"; 9893 break; 9894 case BuiltinType::Bool: 9895 EncType = "b"; 9896 break; 9897 case BuiltinType::Char_U: 9898 EncType = "uc"; 9899 break; 9900 case BuiltinType::UChar: 9901 EncType = "uc"; 9902 break; 9903 case BuiltinType::SChar: 9904 EncType = "sc"; 9905 break; 9906 case BuiltinType::UShort: 9907 EncType = "us"; 9908 break; 9909 case BuiltinType::Short: 9910 EncType = "ss"; 9911 break; 9912 case BuiltinType::UInt: 9913 EncType = "ui"; 9914 break; 9915 case BuiltinType::Int: 9916 EncType = "si"; 9917 break; 9918 case BuiltinType::ULong: 9919 EncType = "ul"; 9920 break; 9921 case BuiltinType::Long: 9922 EncType = "sl"; 9923 break; 9924 case BuiltinType::ULongLong: 9925 EncType = "ull"; 9926 break; 9927 case BuiltinType::LongLong: 9928 EncType = "sll"; 9929 break; 9930 case BuiltinType::Float: 9931 EncType = "ft"; 9932 break; 9933 case BuiltinType::Double: 9934 EncType = "d"; 9935 break; 9936 case BuiltinType::LongDouble: 9937 EncType = "ld"; 9938 break; 9939 default: 9940 return false; 9941 } 9942 Enc += EncType; 9943 return true; 9944 } 9945 9946 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9947 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9948 const CodeGen::CodeGenModule &CGM, 9949 TypeStringCache &TSC) { 9950 Enc += "p("; 9951 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9952 return false; 9953 Enc += ')'; 9954 return true; 9955 } 9956 9957 /// Appends array encoding to Enc before calling appendType for the element. 9958 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9959 const ArrayType *AT, 9960 const CodeGen::CodeGenModule &CGM, 9961 TypeStringCache &TSC, StringRef NoSizeEnc) { 9962 if (AT->getSizeModifier() != ArrayType::Normal) 9963 return false; 9964 Enc += "a("; 9965 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9966 CAT->getSize().toStringUnsigned(Enc); 9967 else 9968 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9969 Enc += ':'; 9970 // The Qualifiers should be attached to the type rather than the array. 9971 appendQualifier(Enc, QT); 9972 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9973 return false; 9974 Enc += ')'; 9975 return true; 9976 } 9977 9978 /// Appends a function encoding to Enc, calling appendType for the return type 9979 /// and the arguments. 9980 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9981 const CodeGen::CodeGenModule &CGM, 9982 TypeStringCache &TSC) { 9983 Enc += "f{"; 9984 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9985 return false; 9986 Enc += "}("; 9987 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9988 // N.B. we are only interested in the adjusted param types. 9989 auto I = FPT->param_type_begin(); 9990 auto E = FPT->param_type_end(); 9991 if (I != E) { 9992 do { 9993 if (!appendType(Enc, *I, CGM, TSC)) 9994 return false; 9995 ++I; 9996 if (I != E) 9997 Enc += ','; 9998 } while (I != E); 9999 if (FPT->isVariadic()) 10000 Enc += ",va"; 10001 } else { 10002 if (FPT->isVariadic()) 10003 Enc += "va"; 10004 else 10005 Enc += '0'; 10006 } 10007 } 10008 Enc += ')'; 10009 return true; 10010 } 10011 10012 /// Handles the type's qualifier before dispatching a call to handle specific 10013 /// type encodings. 10014 static bool appendType(SmallStringEnc &Enc, QualType QType, 10015 const CodeGen::CodeGenModule &CGM, 10016 TypeStringCache &TSC) { 10017 10018 QualType QT = QType.getCanonicalType(); 10019 10020 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10021 // The Qualifiers should be attached to the type rather than the array. 10022 // Thus we don't call appendQualifier() here. 10023 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10024 10025 appendQualifier(Enc, QT); 10026 10027 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10028 return appendBuiltinType(Enc, BT); 10029 10030 if (const PointerType *PT = QT->getAs<PointerType>()) 10031 return appendPointerType(Enc, PT, CGM, TSC); 10032 10033 if (const EnumType *ET = QT->getAs<EnumType>()) 10034 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10035 10036 if (const RecordType *RT = QT->getAsStructureType()) 10037 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10038 10039 if (const RecordType *RT = QT->getAsUnionType()) 10040 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10041 10042 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10043 return appendFunctionType(Enc, FT, CGM, TSC); 10044 10045 return false; 10046 } 10047 10048 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10049 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 10050 if (!D) 10051 return false; 10052 10053 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10054 if (FD->getLanguageLinkage() != CLanguageLinkage) 10055 return false; 10056 return appendType(Enc, FD->getType(), CGM, TSC); 10057 } 10058 10059 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10060 if (VD->getLanguageLinkage() != CLanguageLinkage) 10061 return false; 10062 QualType QT = VD->getType().getCanonicalType(); 10063 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10064 // Global ArrayTypes are given a size of '*' if the size is unknown. 10065 // The Qualifiers should be attached to the type rather than the array. 10066 // Thus we don't call appendQualifier() here. 10067 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10068 } 10069 return appendType(Enc, QT, CGM, TSC); 10070 } 10071 return false; 10072 } 10073 10074 //===----------------------------------------------------------------------===// 10075 // RISCV ABI Implementation 10076 //===----------------------------------------------------------------------===// 10077 10078 namespace { 10079 class RISCVABIInfo : public DefaultABIInfo { 10080 private: 10081 // Size of the integer ('x') registers in bits. 10082 unsigned XLen; 10083 // Size of the floating point ('f') registers in bits. Note that the target 10084 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10085 // with soft float ABI has FLen==0). 10086 unsigned FLen; 10087 static const int NumArgGPRs = 8; 10088 static const int NumArgFPRs = 8; 10089 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10090 llvm::Type *&Field1Ty, 10091 CharUnits &Field1Off, 10092 llvm::Type *&Field2Ty, 10093 CharUnits &Field2Off) const; 10094 10095 public: 10096 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10097 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10098 10099 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10100 // non-virtual, but computeInfo is virtual, so we overload it. 10101 void computeInfo(CGFunctionInfo &FI) const override; 10102 10103 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10104 int &ArgFPRsLeft) const; 10105 ABIArgInfo classifyReturnType(QualType RetTy) const; 10106 10107 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10108 QualType Ty) const override; 10109 10110 ABIArgInfo extendType(QualType Ty) const; 10111 10112 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10113 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10114 CharUnits &Field2Off, int &NeededArgGPRs, 10115 int &NeededArgFPRs) const; 10116 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10117 CharUnits Field1Off, 10118 llvm::Type *Field2Ty, 10119 CharUnits Field2Off) const; 10120 }; 10121 } // end anonymous namespace 10122 10123 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10124 QualType RetTy = FI.getReturnType(); 10125 if (!getCXXABI().classifyReturnType(FI)) 10126 FI.getReturnInfo() = classifyReturnType(RetTy); 10127 10128 // IsRetIndirect is true if classifyArgumentType indicated the value should 10129 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10130 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10131 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10132 // list and pass indirectly on RV32. 10133 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10134 if (!IsRetIndirect && RetTy->isScalarType() && 10135 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10136 if (RetTy->isComplexType() && FLen) { 10137 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10138 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10139 } else { 10140 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10141 IsRetIndirect = true; 10142 } 10143 } 10144 10145 // We must track the number of GPRs used in order to conform to the RISC-V 10146 // ABI, as integer scalars passed in registers should have signext/zeroext 10147 // when promoted, but are anyext if passed on the stack. As GPR usage is 10148 // different for variadic arguments, we must also track whether we are 10149 // examining a vararg or not. 10150 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10151 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10152 int NumFixedArgs = FI.getNumRequiredArgs(); 10153 10154 int ArgNum = 0; 10155 for (auto &ArgInfo : FI.arguments()) { 10156 bool IsFixed = ArgNum < NumFixedArgs; 10157 ArgInfo.info = 10158 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10159 ArgNum++; 10160 } 10161 } 10162 10163 // Returns true if the struct is a potential candidate for the floating point 10164 // calling convention. If this function returns true, the caller is 10165 // responsible for checking that if there is only a single field then that 10166 // field is a float. 10167 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10168 llvm::Type *&Field1Ty, 10169 CharUnits &Field1Off, 10170 llvm::Type *&Field2Ty, 10171 CharUnits &Field2Off) const { 10172 bool IsInt = Ty->isIntegralOrEnumerationType(); 10173 bool IsFloat = Ty->isRealFloatingType(); 10174 10175 if (IsInt || IsFloat) { 10176 uint64_t Size = getContext().getTypeSize(Ty); 10177 if (IsInt && Size > XLen) 10178 return false; 10179 // Can't be eligible if larger than the FP registers. Half precision isn't 10180 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10181 // default to the integer ABI in that case. 10182 if (IsFloat && (Size > FLen || Size < 32)) 10183 return false; 10184 // Can't be eligible if an integer type was already found (int+int pairs 10185 // are not eligible). 10186 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10187 return false; 10188 if (!Field1Ty) { 10189 Field1Ty = CGT.ConvertType(Ty); 10190 Field1Off = CurOff; 10191 return true; 10192 } 10193 if (!Field2Ty) { 10194 Field2Ty = CGT.ConvertType(Ty); 10195 Field2Off = CurOff; 10196 return true; 10197 } 10198 return false; 10199 } 10200 10201 if (auto CTy = Ty->getAs<ComplexType>()) { 10202 if (Field1Ty) 10203 return false; 10204 QualType EltTy = CTy->getElementType(); 10205 if (getContext().getTypeSize(EltTy) > FLen) 10206 return false; 10207 Field1Ty = CGT.ConvertType(EltTy); 10208 Field1Off = CurOff; 10209 assert(CurOff.isZero() && "Unexpected offset for first field"); 10210 Field2Ty = Field1Ty; 10211 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10212 return true; 10213 } 10214 10215 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10216 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10217 QualType EltTy = ATy->getElementType(); 10218 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10219 for (uint64_t i = 0; i < ArraySize; ++i) { 10220 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10221 Field1Off, Field2Ty, Field2Off); 10222 if (!Ret) 10223 return false; 10224 CurOff += EltSize; 10225 } 10226 return true; 10227 } 10228 10229 if (const auto *RTy = Ty->getAs<RecordType>()) { 10230 // Structures with either a non-trivial destructor or a non-trivial 10231 // copy constructor are not eligible for the FP calling convention. 10232 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10233 return false; 10234 if (isEmptyRecord(getContext(), Ty, true)) 10235 return true; 10236 const RecordDecl *RD = RTy->getDecl(); 10237 // Unions aren't eligible unless they're empty (which is caught above). 10238 if (RD->isUnion()) 10239 return false; 10240 int ZeroWidthBitFieldCount = 0; 10241 for (const FieldDecl *FD : RD->fields()) { 10242 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10243 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10244 QualType QTy = FD->getType(); 10245 if (FD->isBitField()) { 10246 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10247 // Allow a bitfield with a type greater than XLen as long as the 10248 // bitwidth is XLen or less. 10249 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10250 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10251 if (BitWidth == 0) { 10252 ZeroWidthBitFieldCount++; 10253 continue; 10254 } 10255 } 10256 10257 bool Ret = detectFPCCEligibleStructHelper( 10258 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10259 Field1Ty, Field1Off, Field2Ty, Field2Off); 10260 if (!Ret) 10261 return false; 10262 10263 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10264 // or int+fp structs, but are ignored for a struct with an fp field and 10265 // any number of zero-width bitfields. 10266 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10267 return false; 10268 } 10269 return Field1Ty != nullptr; 10270 } 10271 10272 return false; 10273 } 10274 10275 // Determine if a struct is eligible for passing according to the floating 10276 // point calling convention (i.e., when flattened it contains a single fp 10277 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10278 // NeededArgGPRs are incremented appropriately. 10279 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10280 CharUnits &Field1Off, 10281 llvm::Type *&Field2Ty, 10282 CharUnits &Field2Off, 10283 int &NeededArgGPRs, 10284 int &NeededArgFPRs) const { 10285 Field1Ty = nullptr; 10286 Field2Ty = nullptr; 10287 NeededArgGPRs = 0; 10288 NeededArgFPRs = 0; 10289 bool IsCandidate = detectFPCCEligibleStructHelper( 10290 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10291 // Not really a candidate if we have a single int but no float. 10292 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10293 return false; 10294 if (!IsCandidate) 10295 return false; 10296 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10297 NeededArgFPRs++; 10298 else if (Field1Ty) 10299 NeededArgGPRs++; 10300 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10301 NeededArgFPRs++; 10302 else if (Field2Ty) 10303 NeededArgGPRs++; 10304 return IsCandidate; 10305 } 10306 10307 // Call getCoerceAndExpand for the two-element flattened struct described by 10308 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10309 // appropriate coerceToType and unpaddedCoerceToType. 10310 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10311 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10312 CharUnits Field2Off) const { 10313 SmallVector<llvm::Type *, 3> CoerceElts; 10314 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10315 if (!Field1Off.isZero()) 10316 CoerceElts.push_back(llvm::ArrayType::get( 10317 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10318 10319 CoerceElts.push_back(Field1Ty); 10320 UnpaddedCoerceElts.push_back(Field1Ty); 10321 10322 if (!Field2Ty) { 10323 return ABIArgInfo::getCoerceAndExpand( 10324 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10325 UnpaddedCoerceElts[0]); 10326 } 10327 10328 CharUnits Field2Align = 10329 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10330 CharUnits Field1Size = 10331 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10332 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 10333 10334 CharUnits Padding = CharUnits::Zero(); 10335 if (Field2Off > Field2OffNoPadNoPack) 10336 Padding = Field2Off - Field2OffNoPadNoPack; 10337 else if (Field2Off != Field2Align && Field2Off > Field1Size) 10338 Padding = Field2Off - Field1Size; 10339 10340 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10341 10342 if (!Padding.isZero()) 10343 CoerceElts.push_back(llvm::ArrayType::get( 10344 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10345 10346 CoerceElts.push_back(Field2Ty); 10347 UnpaddedCoerceElts.push_back(Field2Ty); 10348 10349 auto CoerceToType = 10350 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10351 auto UnpaddedCoerceToType = 10352 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10353 10354 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10355 } 10356 10357 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10358 int &ArgGPRsLeft, 10359 int &ArgFPRsLeft) const { 10360 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10361 Ty = useFirstFieldIfTransparentUnion(Ty); 10362 10363 // Structures with either a non-trivial destructor or a non-trivial 10364 // copy constructor are always passed indirectly. 10365 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10366 if (ArgGPRsLeft) 10367 ArgGPRsLeft -= 1; 10368 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10369 CGCXXABI::RAA_DirectInMemory); 10370 } 10371 10372 // Ignore empty structs/unions. 10373 if (isEmptyRecord(getContext(), Ty, true)) 10374 return ABIArgInfo::getIgnore(); 10375 10376 uint64_t Size = getContext().getTypeSize(Ty); 10377 10378 // Pass floating point values via FPRs if possible. 10379 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10380 FLen >= Size && ArgFPRsLeft) { 10381 ArgFPRsLeft--; 10382 return ABIArgInfo::getDirect(); 10383 } 10384 10385 // Complex types for the hard float ABI must be passed direct rather than 10386 // using CoerceAndExpand. 10387 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10388 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10389 if (getContext().getTypeSize(EltTy) <= FLen) { 10390 ArgFPRsLeft -= 2; 10391 return ABIArgInfo::getDirect(); 10392 } 10393 } 10394 10395 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10396 llvm::Type *Field1Ty = nullptr; 10397 llvm::Type *Field2Ty = nullptr; 10398 CharUnits Field1Off = CharUnits::Zero(); 10399 CharUnits Field2Off = CharUnits::Zero(); 10400 int NeededArgGPRs; 10401 int NeededArgFPRs; 10402 bool IsCandidate = 10403 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10404 NeededArgGPRs, NeededArgFPRs); 10405 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10406 NeededArgFPRs <= ArgFPRsLeft) { 10407 ArgGPRsLeft -= NeededArgGPRs; 10408 ArgFPRsLeft -= NeededArgFPRs; 10409 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10410 Field2Off); 10411 } 10412 } 10413 10414 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10415 bool MustUseStack = false; 10416 // Determine the number of GPRs needed to pass the current argument 10417 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10418 // register pairs, so may consume 3 registers. 10419 int NeededArgGPRs = 1; 10420 if (!IsFixed && NeededAlign == 2 * XLen) 10421 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10422 else if (Size > XLen && Size <= 2 * XLen) 10423 NeededArgGPRs = 2; 10424 10425 if (NeededArgGPRs > ArgGPRsLeft) { 10426 MustUseStack = true; 10427 NeededArgGPRs = ArgGPRsLeft; 10428 } 10429 10430 ArgGPRsLeft -= NeededArgGPRs; 10431 10432 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10433 // Treat an enum type as its underlying type. 10434 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10435 Ty = EnumTy->getDecl()->getIntegerType(); 10436 10437 // All integral types are promoted to XLen width, unless passed on the 10438 // stack. 10439 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10440 return extendType(Ty); 10441 } 10442 10443 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10444 if (EIT->getNumBits() < XLen && !MustUseStack) 10445 return extendType(Ty); 10446 if (EIT->getNumBits() > 128 || 10447 (!getContext().getTargetInfo().hasInt128Type() && 10448 EIT->getNumBits() > 64)) 10449 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10450 } 10451 10452 return ABIArgInfo::getDirect(); 10453 } 10454 10455 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10456 // so coerce to integers. 10457 if (Size <= 2 * XLen) { 10458 unsigned Alignment = getContext().getTypeAlign(Ty); 10459 10460 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10461 // required, and a 2-element XLen array if only XLen alignment is required. 10462 if (Size <= XLen) { 10463 return ABIArgInfo::getDirect( 10464 llvm::IntegerType::get(getVMContext(), XLen)); 10465 } else if (Alignment == 2 * XLen) { 10466 return ABIArgInfo::getDirect( 10467 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10468 } else { 10469 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10470 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10471 } 10472 } 10473 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10474 } 10475 10476 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10477 if (RetTy->isVoidType()) 10478 return ABIArgInfo::getIgnore(); 10479 10480 int ArgGPRsLeft = 2; 10481 int ArgFPRsLeft = FLen ? 2 : 0; 10482 10483 // The rules for return and argument types are the same, so defer to 10484 // classifyArgumentType. 10485 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10486 ArgFPRsLeft); 10487 } 10488 10489 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10490 QualType Ty) const { 10491 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10492 10493 // Empty records are ignored for parameter passing purposes. 10494 if (isEmptyRecord(getContext(), Ty, true)) { 10495 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10496 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10497 return Addr; 10498 } 10499 10500 std::pair<CharUnits, CharUnits> SizeAndAlign = 10501 getContext().getTypeInfoInChars(Ty); 10502 10503 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10504 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 10505 10506 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 10507 SlotSize, /*AllowHigherAlign=*/true); 10508 } 10509 10510 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10511 int TySize = getContext().getTypeSize(Ty); 10512 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10513 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10514 return ABIArgInfo::getSignExtend(Ty); 10515 return ABIArgInfo::getExtend(Ty); 10516 } 10517 10518 namespace { 10519 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10520 public: 10521 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10522 unsigned FLen) 10523 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10524 10525 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10526 CodeGen::CodeGenModule &CGM) const override { 10527 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10528 if (!FD) return; 10529 10530 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10531 if (!Attr) 10532 return; 10533 10534 const char *Kind; 10535 switch (Attr->getInterrupt()) { 10536 case RISCVInterruptAttr::user: Kind = "user"; break; 10537 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10538 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10539 } 10540 10541 auto *Fn = cast<llvm::Function>(GV); 10542 10543 Fn->addFnAttr("interrupt", Kind); 10544 } 10545 }; 10546 } // namespace 10547 10548 //===----------------------------------------------------------------------===// 10549 // Driver code 10550 //===----------------------------------------------------------------------===// 10551 10552 bool CodeGenModule::supportsCOMDAT() const { 10553 return getTriple().supportsCOMDAT(); 10554 } 10555 10556 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10557 if (TheTargetCodeGenInfo) 10558 return *TheTargetCodeGenInfo; 10559 10560 // Helper to set the unique_ptr while still keeping the return value. 10561 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10562 this->TheTargetCodeGenInfo.reset(P); 10563 return *P; 10564 }; 10565 10566 const llvm::Triple &Triple = getTarget().getTriple(); 10567 switch (Triple.getArch()) { 10568 default: 10569 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10570 10571 case llvm::Triple::le32: 10572 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10573 case llvm::Triple::mips: 10574 case llvm::Triple::mipsel: 10575 if (Triple.getOS() == llvm::Triple::NaCl) 10576 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10577 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10578 10579 case llvm::Triple::mips64: 10580 case llvm::Triple::mips64el: 10581 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10582 10583 case llvm::Triple::avr: 10584 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10585 10586 case llvm::Triple::aarch64: 10587 case llvm::Triple::aarch64_32: 10588 case llvm::Triple::aarch64_be: { 10589 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10590 if (getTarget().getABI() == "darwinpcs") 10591 Kind = AArch64ABIInfo::DarwinPCS; 10592 else if (Triple.isOSWindows()) 10593 return SetCGInfo( 10594 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10595 10596 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10597 } 10598 10599 case llvm::Triple::wasm32: 10600 case llvm::Triple::wasm64: { 10601 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10602 if (getTarget().getABI() == "experimental-mv") 10603 Kind = WebAssemblyABIInfo::ExperimentalMV; 10604 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10605 } 10606 10607 case llvm::Triple::arm: 10608 case llvm::Triple::armeb: 10609 case llvm::Triple::thumb: 10610 case llvm::Triple::thumbeb: { 10611 if (Triple.getOS() == llvm::Triple::Win32) { 10612 return SetCGInfo( 10613 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10614 } 10615 10616 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10617 StringRef ABIStr = getTarget().getABI(); 10618 if (ABIStr == "apcs-gnu") 10619 Kind = ARMABIInfo::APCS; 10620 else if (ABIStr == "aapcs16") 10621 Kind = ARMABIInfo::AAPCS16_VFP; 10622 else if (CodeGenOpts.FloatABI == "hard" || 10623 (CodeGenOpts.FloatABI != "soft" && 10624 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10625 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10626 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10627 Kind = ARMABIInfo::AAPCS_VFP; 10628 10629 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10630 } 10631 10632 case llvm::Triple::ppc: { 10633 if (Triple.isOSAIX()) 10634 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10635 10636 bool IsSoftFloat = 10637 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10638 bool RetSmallStructInRegABI = 10639 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10640 return SetCGInfo( 10641 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10642 } 10643 case llvm::Triple::ppc64: 10644 if (Triple.isOSAIX()) 10645 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10646 10647 if (Triple.isOSBinFormatELF()) { 10648 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10649 if (getTarget().getABI() == "elfv2") 10650 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10651 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10652 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10653 10654 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10655 IsSoftFloat)); 10656 } 10657 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10658 case llvm::Triple::ppc64le: { 10659 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10660 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10661 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10662 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10663 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10664 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10665 10666 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10667 IsSoftFloat)); 10668 } 10669 10670 case llvm::Triple::nvptx: 10671 case llvm::Triple::nvptx64: 10672 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10673 10674 case llvm::Triple::msp430: 10675 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10676 10677 case llvm::Triple::riscv32: 10678 case llvm::Triple::riscv64: { 10679 StringRef ABIStr = getTarget().getABI(); 10680 unsigned XLen = getTarget().getPointerWidth(0); 10681 unsigned ABIFLen = 0; 10682 if (ABIStr.endswith("f")) 10683 ABIFLen = 32; 10684 else if (ABIStr.endswith("d")) 10685 ABIFLen = 64; 10686 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10687 } 10688 10689 case llvm::Triple::systemz: { 10690 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10691 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10692 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10693 } 10694 10695 case llvm::Triple::tce: 10696 case llvm::Triple::tcele: 10697 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10698 10699 case llvm::Triple::x86: { 10700 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10701 bool RetSmallStructInRegABI = 10702 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10703 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10704 10705 if (Triple.getOS() == llvm::Triple::Win32) { 10706 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10707 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10708 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10709 } else { 10710 return SetCGInfo(new X86_32TargetCodeGenInfo( 10711 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10712 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10713 CodeGenOpts.FloatABI == "soft")); 10714 } 10715 } 10716 10717 case llvm::Triple::x86_64: { 10718 StringRef ABI = getTarget().getABI(); 10719 X86AVXABILevel AVXLevel = 10720 (ABI == "avx512" 10721 ? X86AVXABILevel::AVX512 10722 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10723 10724 switch (Triple.getOS()) { 10725 case llvm::Triple::Win32: 10726 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10727 default: 10728 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10729 } 10730 } 10731 case llvm::Triple::hexagon: 10732 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 10733 case llvm::Triple::lanai: 10734 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 10735 case llvm::Triple::r600: 10736 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10737 case llvm::Triple::amdgcn: 10738 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10739 case llvm::Triple::sparc: 10740 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 10741 case llvm::Triple::sparcv9: 10742 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 10743 case llvm::Triple::xcore: 10744 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 10745 case llvm::Triple::arc: 10746 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 10747 case llvm::Triple::spir: 10748 case llvm::Triple::spir64: 10749 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 10750 } 10751 } 10752 10753 /// Create an OpenCL kernel for an enqueued block. 10754 /// 10755 /// The kernel has the same function type as the block invoke function. Its 10756 /// name is the name of the block invoke function postfixed with "_kernel". 10757 /// It simply calls the block invoke function then returns. 10758 llvm::Function * 10759 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 10760 llvm::Function *Invoke, 10761 llvm::Value *BlockLiteral) const { 10762 auto *InvokeFT = Invoke->getFunctionType(); 10763 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10764 for (auto &P : InvokeFT->params()) 10765 ArgTys.push_back(P); 10766 auto &C = CGF.getLLVMContext(); 10767 std::string Name = Invoke->getName().str() + "_kernel"; 10768 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10769 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10770 &CGF.CGM.getModule()); 10771 auto IP = CGF.Builder.saveIP(); 10772 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10773 auto &Builder = CGF.Builder; 10774 Builder.SetInsertPoint(BB); 10775 llvm::SmallVector<llvm::Value *, 2> Args; 10776 for (auto &A : F->args()) 10777 Args.push_back(&A); 10778 Builder.CreateCall(Invoke, Args); 10779 Builder.CreateRetVoid(); 10780 Builder.restoreIP(IP); 10781 return F; 10782 } 10783 10784 /// Create an OpenCL kernel for an enqueued block. 10785 /// 10786 /// The type of the first argument (the block literal) is the struct type 10787 /// of the block literal instead of a pointer type. The first argument 10788 /// (block literal) is passed directly by value to the kernel. The kernel 10789 /// allocates the same type of struct on stack and stores the block literal 10790 /// to it and passes its pointer to the block invoke function. The kernel 10791 /// has "enqueued-block" function attribute and kernel argument metadata. 10792 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10793 CodeGenFunction &CGF, llvm::Function *Invoke, 10794 llvm::Value *BlockLiteral) const { 10795 auto &Builder = CGF.Builder; 10796 auto &C = CGF.getLLVMContext(); 10797 10798 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10799 auto *InvokeFT = Invoke->getFunctionType(); 10800 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10801 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10802 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10803 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10804 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10805 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10806 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10807 10808 ArgTys.push_back(BlockTy); 10809 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10810 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10811 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10812 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10813 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10814 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10815 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10816 ArgTys.push_back(InvokeFT->getParamType(I)); 10817 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10818 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10819 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10820 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10821 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10822 ArgNames.push_back( 10823 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10824 } 10825 std::string Name = Invoke->getName().str() + "_kernel"; 10826 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10827 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10828 &CGF.CGM.getModule()); 10829 F->addFnAttr("enqueued-block"); 10830 auto IP = CGF.Builder.saveIP(); 10831 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10832 Builder.SetInsertPoint(BB); 10833 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 10834 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10835 BlockPtr->setAlignment(BlockAlign); 10836 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10837 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10838 llvm::SmallVector<llvm::Value *, 2> Args; 10839 Args.push_back(Cast); 10840 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10841 Args.push_back(I); 10842 Builder.CreateCall(Invoke, Args); 10843 Builder.CreateRetVoid(); 10844 Builder.restoreIP(IP); 10845 10846 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10847 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10848 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10849 F->setMetadata("kernel_arg_base_type", 10850 llvm::MDNode::get(C, ArgBaseTypeNames)); 10851 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10852 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10853 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10854 10855 return F; 10856 } 10857