1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "clang/CodeGen/SwiftCallingConv.h"
25 #include "llvm/ADT/SmallBitVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/IntrinsicsNVPTX.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm> // std::sort
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 // Helper for coercing an aggregate argument or return value into an integer
40 // array of the same size (including padding) and alignment.  This alternate
41 // coercion happens only for the RenderScript ABI and can be removed after
42 // runtimes that rely on it are no longer supported.
43 //
44 // RenderScript assumes that the size of the argument / return value in the IR
45 // is the same as the size of the corresponding qualified type. This helper
46 // coerces the aggregate type into an array of the same size (including
47 // padding).  This coercion is used in lieu of expansion of struct members or
48 // other canonical coercions that return a coerced-type of larger size.
49 //
50 // Ty          - The argument / return value type
51 // Context     - The associated ASTContext
52 // LLVMContext - The associated LLVMContext
53 static ABIArgInfo coerceToIntArray(QualType Ty,
54                                    ASTContext &Context,
55                                    llvm::LLVMContext &LLVMContext) {
56   // Alignment and Size are measured in bits.
57   const uint64_t Size = Context.getTypeSize(Ty);
58   const uint64_t Alignment = Context.getTypeAlign(Ty);
59   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
60   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
61   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
62 }
63 
64 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
65                                llvm::Value *Array,
66                                llvm::Value *Value,
67                                unsigned FirstIndex,
68                                unsigned LastIndex) {
69   // Alternatively, we could emit this as a loop in the source.
70   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
71     llvm::Value *Cell =
72         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
73     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
74   }
75 }
76 
77 static bool isAggregateTypeForABI(QualType T) {
78   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
79          T->isMemberFunctionPointerType();
80 }
81 
82 ABIArgInfo
83 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
84                                  llvm::Type *Padding) const {
85   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
86                                  ByRef, Realign, Padding);
87 }
88 
89 ABIArgInfo
90 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
91   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
92                                       /*ByRef*/ false, Realign);
93 }
94 
95 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
96                              QualType Ty) const {
97   return Address::invalid();
98 }
99 
100 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
101   if (Ty->isPromotableIntegerType())
102     return true;
103 
104   if (const auto *EIT = Ty->getAs<ExtIntType>())
105     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
106       return true;
107 
108   return false;
109 }
110 
111 ABIInfo::~ABIInfo() {}
112 
113 /// Does the given lowering require more than the given number of
114 /// registers when expanded?
115 ///
116 /// This is intended to be the basis of a reasonable basic implementation
117 /// of should{Pass,Return}IndirectlyForSwift.
118 ///
119 /// For most targets, a limit of four total registers is reasonable; this
120 /// limits the amount of code required in order to move around the value
121 /// in case it wasn't produced immediately prior to the call by the caller
122 /// (or wasn't produced in exactly the right registers) or isn't used
123 /// immediately within the callee.  But some targets may need to further
124 /// limit the register count due to an inability to support that many
125 /// return registers.
126 static bool occupiesMoreThan(CodeGenTypes &cgt,
127                              ArrayRef<llvm::Type*> scalarTypes,
128                              unsigned maxAllRegisters) {
129   unsigned intCount = 0, fpCount = 0;
130   for (llvm::Type *type : scalarTypes) {
131     if (type->isPointerTy()) {
132       intCount++;
133     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
134       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
135       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
136     } else {
137       assert(type->isVectorTy() || type->isFloatingPointTy());
138       fpCount++;
139     }
140   }
141 
142   return (intCount + fpCount > maxAllRegisters);
143 }
144 
145 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
146                                              llvm::Type *eltTy,
147                                              unsigned numElts) const {
148   // The default implementation of this assumes that the target guarantees
149   // 128-bit SIMD support but nothing more.
150   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
151 }
152 
153 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
154                                               CGCXXABI &CXXABI) {
155   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
156   if (!RD) {
157     if (!RT->getDecl()->canPassInRegisters())
158       return CGCXXABI::RAA_Indirect;
159     return CGCXXABI::RAA_Default;
160   }
161   return CXXABI.getRecordArgABI(RD);
162 }
163 
164 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
165                                               CGCXXABI &CXXABI) {
166   const RecordType *RT = T->getAs<RecordType>();
167   if (!RT)
168     return CGCXXABI::RAA_Default;
169   return getRecordArgABI(RT, CXXABI);
170 }
171 
172 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
173                                const ABIInfo &Info) {
174   QualType Ty = FI.getReturnType();
175 
176   if (const auto *RT = Ty->getAs<RecordType>())
177     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
178         !RT->getDecl()->canPassInRegisters()) {
179       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
180       return true;
181     }
182 
183   return CXXABI.classifyReturnType(FI);
184 }
185 
186 /// Pass transparent unions as if they were the type of the first element. Sema
187 /// should ensure that all elements of the union have the same "machine type".
188 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
189   if (const RecordType *UT = Ty->getAsUnionType()) {
190     const RecordDecl *UD = UT->getDecl();
191     if (UD->hasAttr<TransparentUnionAttr>()) {
192       assert(!UD->field_empty() && "sema created an empty transparent union");
193       return UD->field_begin()->getType();
194     }
195   }
196   return Ty;
197 }
198 
199 CGCXXABI &ABIInfo::getCXXABI() const {
200   return CGT.getCXXABI();
201 }
202 
203 ASTContext &ABIInfo::getContext() const {
204   return CGT.getContext();
205 }
206 
207 llvm::LLVMContext &ABIInfo::getVMContext() const {
208   return CGT.getLLVMContext();
209 }
210 
211 const llvm::DataLayout &ABIInfo::getDataLayout() const {
212   return CGT.getDataLayout();
213 }
214 
215 const TargetInfo &ABIInfo::getTarget() const {
216   return CGT.getTarget();
217 }
218 
219 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
220   return CGT.getCodeGenOpts();
221 }
222 
223 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
224 
225 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
226   return false;
227 }
228 
229 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
230                                                 uint64_t Members) const {
231   return false;
232 }
233 
234 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
235   raw_ostream &OS = llvm::errs();
236   OS << "(ABIArgInfo Kind=";
237   switch (TheKind) {
238   case Direct:
239     OS << "Direct Type=";
240     if (llvm::Type *Ty = getCoerceToType())
241       Ty->print(OS);
242     else
243       OS << "null";
244     break;
245   case Extend:
246     OS << "Extend";
247     break;
248   case Ignore:
249     OS << "Ignore";
250     break;
251   case InAlloca:
252     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
253     break;
254   case Indirect:
255     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
256        << " ByVal=" << getIndirectByVal()
257        << " Realign=" << getIndirectRealign();
258     break;
259   case Expand:
260     OS << "Expand";
261     break;
262   case CoerceAndExpand:
263     OS << "CoerceAndExpand Type=";
264     getCoerceAndExpandType()->print(OS);
265     break;
266   }
267   OS << ")\n";
268 }
269 
270 // Dynamically round a pointer up to a multiple of the given alignment.
271 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
272                                                   llvm::Value *Ptr,
273                                                   CharUnits Align) {
274   llvm::Value *PtrAsInt = Ptr;
275   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
276   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
277   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
278         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
279   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
280            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
281   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
282                                         Ptr->getType(),
283                                         Ptr->getName() + ".aligned");
284   return PtrAsInt;
285 }
286 
287 /// Emit va_arg for a platform using the common void* representation,
288 /// where arguments are simply emitted in an array of slots on the stack.
289 ///
290 /// This version implements the core direct-value passing rules.
291 ///
292 /// \param SlotSize - The size and alignment of a stack slot.
293 ///   Each argument will be allocated to a multiple of this number of
294 ///   slots, and all the slots will be aligned to this value.
295 /// \param AllowHigherAlign - The slot alignment is not a cap;
296 ///   an argument type with an alignment greater than the slot size
297 ///   will be emitted on a higher-alignment address, potentially
298 ///   leaving one or more empty slots behind as padding.  If this
299 ///   is false, the returned address might be less-aligned than
300 ///   DirectAlign.
301 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
302                                       Address VAListAddr,
303                                       llvm::Type *DirectTy,
304                                       CharUnits DirectSize,
305                                       CharUnits DirectAlign,
306                                       CharUnits SlotSize,
307                                       bool AllowHigherAlign) {
308   // Cast the element type to i8* if necessary.  Some platforms define
309   // va_list as a struct containing an i8* instead of just an i8*.
310   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
311     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
312 
313   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
314 
315   // If the CC aligns values higher than the slot size, do so if needed.
316   Address Addr = Address::invalid();
317   if (AllowHigherAlign && DirectAlign > SlotSize) {
318     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
319                                                  DirectAlign);
320   } else {
321     Addr = Address(Ptr, SlotSize);
322   }
323 
324   // Advance the pointer past the argument, then store that back.
325   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
326   Address NextPtr =
327       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
328   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
329 
330   // If the argument is smaller than a slot, and this is a big-endian
331   // target, the argument will be right-adjusted in its slot.
332   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
333       !DirectTy->isStructTy()) {
334     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
335   }
336 
337   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
338   return Addr;
339 }
340 
341 /// Emit va_arg for a platform using the common void* representation,
342 /// where arguments are simply emitted in an array of slots on the stack.
343 ///
344 /// \param IsIndirect - Values of this type are passed indirectly.
345 /// \param ValueInfo - The size and alignment of this type, generally
346 ///   computed with getContext().getTypeInfoInChars(ValueTy).
347 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
348 ///   Each argument will be allocated to a multiple of this number of
349 ///   slots, and all the slots will be aligned to this value.
350 /// \param AllowHigherAlign - The slot alignment is not a cap;
351 ///   an argument type with an alignment greater than the slot size
352 ///   will be emitted on a higher-alignment address, potentially
353 ///   leaving one or more empty slots behind as padding.
354 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
355                                 QualType ValueTy, bool IsIndirect,
356                                 std::pair<CharUnits, CharUnits> ValueInfo,
357                                 CharUnits SlotSizeAndAlign,
358                                 bool AllowHigherAlign) {
359   // The size and alignment of the value that was passed directly.
360   CharUnits DirectSize, DirectAlign;
361   if (IsIndirect) {
362     DirectSize = CGF.getPointerSize();
363     DirectAlign = CGF.getPointerAlign();
364   } else {
365     DirectSize = ValueInfo.first;
366     DirectAlign = ValueInfo.second;
367   }
368 
369   // Cast the address we've calculated to the right type.
370   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
371   if (IsIndirect)
372     DirectTy = DirectTy->getPointerTo(0);
373 
374   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
375                                         DirectSize, DirectAlign,
376                                         SlotSizeAndAlign,
377                                         AllowHigherAlign);
378 
379   if (IsIndirect) {
380     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
381   }
382 
383   return Addr;
384 
385 }
386 
387 static Address emitMergePHI(CodeGenFunction &CGF,
388                             Address Addr1, llvm::BasicBlock *Block1,
389                             Address Addr2, llvm::BasicBlock *Block2,
390                             const llvm::Twine &Name = "") {
391   assert(Addr1.getType() == Addr2.getType());
392   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
393   PHI->addIncoming(Addr1.getPointer(), Block1);
394   PHI->addIncoming(Addr2.getPointer(), Block2);
395   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
396   return Address(PHI, Align);
397 }
398 
399 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
400 
401 // If someone can figure out a general rule for this, that would be great.
402 // It's probably just doomed to be platform-dependent, though.
403 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
404   // Verified for:
405   //   x86-64     FreeBSD, Linux, Darwin
406   //   x86-32     FreeBSD, Linux, Darwin
407   //   PowerPC    Linux, Darwin
408   //   ARM        Darwin (*not* EABI)
409   //   AArch64    Linux
410   return 32;
411 }
412 
413 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
414                                      const FunctionNoProtoType *fnType) const {
415   // The following conventions are known to require this to be false:
416   //   x86_stdcall
417   //   MIPS
418   // For everything else, we just prefer false unless we opt out.
419   return false;
420 }
421 
422 void
423 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
424                                              llvm::SmallString<24> &Opt) const {
425   // This assumes the user is passing a library name like "rt" instead of a
426   // filename like "librt.a/so", and that they don't care whether it's static or
427   // dynamic.
428   Opt = "-l";
429   Opt += Lib;
430 }
431 
432 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
433   // OpenCL kernels are called via an explicit runtime API with arguments
434   // set with clSetKernelArg(), not as normal sub-functions.
435   // Return SPIR_KERNEL by default as the kernel calling convention to
436   // ensure the fingerprint is fixed such way that each OpenCL argument
437   // gets one matching argument in the produced kernel function argument
438   // list to enable feasible implementation of clSetKernelArg() with
439   // aggregates etc. In case we would use the default C calling conv here,
440   // clSetKernelArg() might break depending on the target-specific
441   // conventions; different targets might split structs passed as values
442   // to multiple function arguments etc.
443   return llvm::CallingConv::SPIR_KERNEL;
444 }
445 
446 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
447     llvm::PointerType *T, QualType QT) const {
448   return llvm::ConstantPointerNull::get(T);
449 }
450 
451 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
452                                                    const VarDecl *D) const {
453   assert(!CGM.getLangOpts().OpenCL &&
454          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
455          "Address space agnostic languages only");
456   return D ? D->getType().getAddressSpace() : LangAS::Default;
457 }
458 
459 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
460     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
461     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
462   // Since target may map different address spaces in AST to the same address
463   // space, an address space conversion may end up as a bitcast.
464   if (auto *C = dyn_cast<llvm::Constant>(Src))
465     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
466   // Try to preserve the source's name to make IR more readable.
467   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
468       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
469 }
470 
471 llvm::Constant *
472 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
473                                         LangAS SrcAddr, LangAS DestAddr,
474                                         llvm::Type *DestTy) const {
475   // Since target may map different address spaces in AST to the same address
476   // space, an address space conversion may end up as a bitcast.
477   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
478 }
479 
480 llvm::SyncScope::ID
481 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
482                                       SyncScope Scope,
483                                       llvm::AtomicOrdering Ordering,
484                                       llvm::LLVMContext &Ctx) const {
485   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
486 }
487 
488 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
489 
490 /// isEmptyField - Return true iff a the field is "empty", that is it
491 /// is an unnamed bit-field or an (array of) empty record(s).
492 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
493                          bool AllowArrays) {
494   if (FD->isUnnamedBitfield())
495     return true;
496 
497   QualType FT = FD->getType();
498 
499   // Constant arrays of empty records count as empty, strip them off.
500   // Constant arrays of zero length always count as empty.
501   if (AllowArrays)
502     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
503       if (AT->getSize() == 0)
504         return true;
505       FT = AT->getElementType();
506     }
507 
508   const RecordType *RT = FT->getAs<RecordType>();
509   if (!RT)
510     return false;
511 
512   // C++ record fields are never empty, at least in the Itanium ABI.
513   //
514   // FIXME: We should use a predicate for whether this behavior is true in the
515   // current ABI.
516   if (isa<CXXRecordDecl>(RT->getDecl()))
517     return false;
518 
519   return isEmptyRecord(Context, FT, AllowArrays);
520 }
521 
522 /// isEmptyRecord - Return true iff a structure contains only empty
523 /// fields. Note that a structure with a flexible array member is not
524 /// considered empty.
525 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
526   const RecordType *RT = T->getAs<RecordType>();
527   if (!RT)
528     return false;
529   const RecordDecl *RD = RT->getDecl();
530   if (RD->hasFlexibleArrayMember())
531     return false;
532 
533   // If this is a C++ record, check the bases first.
534   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
535     for (const auto &I : CXXRD->bases())
536       if (!isEmptyRecord(Context, I.getType(), true))
537         return false;
538 
539   for (const auto *I : RD->fields())
540     if (!isEmptyField(Context, I, AllowArrays))
541       return false;
542   return true;
543 }
544 
545 /// isSingleElementStruct - Determine if a structure is a "single
546 /// element struct", i.e. it has exactly one non-empty field or
547 /// exactly one field which is itself a single element
548 /// struct. Structures with flexible array members are never
549 /// considered single element structs.
550 ///
551 /// \return The field declaration for the single non-empty field, if
552 /// it exists.
553 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
554   const RecordType *RT = T->getAs<RecordType>();
555   if (!RT)
556     return nullptr;
557 
558   const RecordDecl *RD = RT->getDecl();
559   if (RD->hasFlexibleArrayMember())
560     return nullptr;
561 
562   const Type *Found = nullptr;
563 
564   // If this is a C++ record, check the bases first.
565   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
566     for (const auto &I : CXXRD->bases()) {
567       // Ignore empty records.
568       if (isEmptyRecord(Context, I.getType(), true))
569         continue;
570 
571       // If we already found an element then this isn't a single-element struct.
572       if (Found)
573         return nullptr;
574 
575       // If this is non-empty and not a single element struct, the composite
576       // cannot be a single element struct.
577       Found = isSingleElementStruct(I.getType(), Context);
578       if (!Found)
579         return nullptr;
580     }
581   }
582 
583   // Check for single element.
584   for (const auto *FD : RD->fields()) {
585     QualType FT = FD->getType();
586 
587     // Ignore empty fields.
588     if (isEmptyField(Context, FD, true))
589       continue;
590 
591     // If we already found an element then this isn't a single-element
592     // struct.
593     if (Found)
594       return nullptr;
595 
596     // Treat single element arrays as the element.
597     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
598       if (AT->getSize().getZExtValue() != 1)
599         break;
600       FT = AT->getElementType();
601     }
602 
603     if (!isAggregateTypeForABI(FT)) {
604       Found = FT.getTypePtr();
605     } else {
606       Found = isSingleElementStruct(FT, Context);
607       if (!Found)
608         return nullptr;
609     }
610   }
611 
612   // We don't consider a struct a single-element struct if it has
613   // padding beyond the element type.
614   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
615     return nullptr;
616 
617   return Found;
618 }
619 
620 namespace {
621 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
622                        const ABIArgInfo &AI) {
623   // This default implementation defers to the llvm backend's va_arg
624   // instruction. It can handle only passing arguments directly
625   // (typically only handled in the backend for primitive types), or
626   // aggregates passed indirectly by pointer (NOTE: if the "byval"
627   // flag has ABI impact in the callee, this implementation cannot
628   // work.)
629 
630   // Only a few cases are covered here at the moment -- those needed
631   // by the default abi.
632   llvm::Value *Val;
633 
634   if (AI.isIndirect()) {
635     assert(!AI.getPaddingType() &&
636            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
637     assert(
638         !AI.getIndirectRealign() &&
639         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
640 
641     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
642     CharUnits TyAlignForABI = TyInfo.second;
643 
644     llvm::Type *BaseTy =
645         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
646     llvm::Value *Addr =
647         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
648     return Address(Addr, TyAlignForABI);
649   } else {
650     assert((AI.isDirect() || AI.isExtend()) &&
651            "Unexpected ArgInfo Kind in generic VAArg emitter!");
652 
653     assert(!AI.getInReg() &&
654            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
655     assert(!AI.getPaddingType() &&
656            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
657     assert(!AI.getDirectOffset() &&
658            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
659     assert(!AI.getCoerceToType() &&
660            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
661 
662     Address Temp = CGF.CreateMemTemp(Ty, "varet");
663     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
664     CGF.Builder.CreateStore(Val, Temp);
665     return Temp;
666   }
667 }
668 
669 /// DefaultABIInfo - The default implementation for ABI specific
670 /// details. This implementation provides information which results in
671 /// self-consistent and sensible LLVM IR generation, but does not
672 /// conform to any particular ABI.
673 class DefaultABIInfo : public ABIInfo {
674 public:
675   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
676 
677   ABIArgInfo classifyReturnType(QualType RetTy) const;
678   ABIArgInfo classifyArgumentType(QualType RetTy) const;
679 
680   void computeInfo(CGFunctionInfo &FI) const override {
681     if (!getCXXABI().classifyReturnType(FI))
682       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
683     for (auto &I : FI.arguments())
684       I.info = classifyArgumentType(I.type);
685   }
686 
687   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
688                     QualType Ty) const override {
689     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
690   }
691 };
692 
693 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
694 public:
695   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
696       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
697 };
698 
699 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
700   Ty = useFirstFieldIfTransparentUnion(Ty);
701 
702   if (isAggregateTypeForABI(Ty)) {
703     // Records with non-trivial destructors/copy-constructors should not be
704     // passed by value.
705     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
706       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
707 
708     return getNaturalAlignIndirect(Ty);
709   }
710 
711   // Treat an enum type as its underlying type.
712   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
713     Ty = EnumTy->getDecl()->getIntegerType();
714 
715   ASTContext &Context = getContext();
716   if (const auto *EIT = Ty->getAs<ExtIntType>())
717     if (EIT->getNumBits() >
718         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
719                                 ? Context.Int128Ty
720                                 : Context.LongLongTy))
721       return getNaturalAlignIndirect(Ty);
722 
723   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
724                                             : ABIArgInfo::getDirect());
725 }
726 
727 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
728   if (RetTy->isVoidType())
729     return ABIArgInfo::getIgnore();
730 
731   if (isAggregateTypeForABI(RetTy))
732     return getNaturalAlignIndirect(RetTy);
733 
734   // Treat an enum type as its underlying type.
735   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
736     RetTy = EnumTy->getDecl()->getIntegerType();
737 
738   if (const auto *EIT = RetTy->getAs<ExtIntType>())
739     if (EIT->getNumBits() >
740         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
741                                      ? getContext().Int128Ty
742                                      : getContext().LongLongTy))
743       return getNaturalAlignIndirect(RetTy);
744 
745   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
746                                                : ABIArgInfo::getDirect());
747 }
748 
749 //===----------------------------------------------------------------------===//
750 // WebAssembly ABI Implementation
751 //
752 // This is a very simple ABI that relies a lot on DefaultABIInfo.
753 //===----------------------------------------------------------------------===//
754 
755 class WebAssemblyABIInfo final : public SwiftABIInfo {
756 public:
757   enum ABIKind {
758     MVP = 0,
759     ExperimentalMV = 1,
760   };
761 
762 private:
763   DefaultABIInfo defaultInfo;
764   ABIKind Kind;
765 
766 public:
767   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
768       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
769 
770 private:
771   ABIArgInfo classifyReturnType(QualType RetTy) const;
772   ABIArgInfo classifyArgumentType(QualType Ty) const;
773 
774   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
775   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
776   // overload them.
777   void computeInfo(CGFunctionInfo &FI) const override {
778     if (!getCXXABI().classifyReturnType(FI))
779       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
780     for (auto &Arg : FI.arguments())
781       Arg.info = classifyArgumentType(Arg.type);
782   }
783 
784   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
785                     QualType Ty) const override;
786 
787   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
788                                     bool asReturnValue) const override {
789     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
790   }
791 
792   bool isSwiftErrorInRegister() const override {
793     return false;
794   }
795 };
796 
797 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
798 public:
799   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
800                                         WebAssemblyABIInfo::ABIKind K)
801       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
802 
803   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
804                            CodeGen::CodeGenModule &CGM) const override {
805     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
806     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
807       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
808         llvm::Function *Fn = cast<llvm::Function>(GV);
809         llvm::AttrBuilder B;
810         B.addAttribute("wasm-import-module", Attr->getImportModule());
811         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
812       }
813       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
814         llvm::Function *Fn = cast<llvm::Function>(GV);
815         llvm::AttrBuilder B;
816         B.addAttribute("wasm-import-name", Attr->getImportName());
817         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
818       }
819       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
820         llvm::Function *Fn = cast<llvm::Function>(GV);
821         llvm::AttrBuilder B;
822         B.addAttribute("wasm-export-name", Attr->getExportName());
823         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
824       }
825     }
826 
827     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
828       llvm::Function *Fn = cast<llvm::Function>(GV);
829       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
830         Fn->addFnAttr("no-prototype");
831     }
832   }
833 };
834 
835 /// Classify argument of given type \p Ty.
836 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
837   Ty = useFirstFieldIfTransparentUnion(Ty);
838 
839   if (isAggregateTypeForABI(Ty)) {
840     // Records with non-trivial destructors/copy-constructors should not be
841     // passed by value.
842     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
843       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
844     // Ignore empty structs/unions.
845     if (isEmptyRecord(getContext(), Ty, true))
846       return ABIArgInfo::getIgnore();
847     // Lower single-element structs to just pass a regular value. TODO: We
848     // could do reasonable-size multiple-element structs too, using getExpand(),
849     // though watch out for things like bitfields.
850     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
851       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
852     // For the experimental multivalue ABI, fully expand all other aggregates
853     if (Kind == ABIKind::ExperimentalMV) {
854       const RecordType *RT = Ty->getAs<RecordType>();
855       assert(RT);
856       bool HasBitField = false;
857       for (auto *Field : RT->getDecl()->fields()) {
858         if (Field->isBitField()) {
859           HasBitField = true;
860           break;
861         }
862       }
863       if (!HasBitField)
864         return ABIArgInfo::getExpand();
865     }
866   }
867 
868   // Otherwise just do the default thing.
869   return defaultInfo.classifyArgumentType(Ty);
870 }
871 
872 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
873   if (isAggregateTypeForABI(RetTy)) {
874     // Records with non-trivial destructors/copy-constructors should not be
875     // returned by value.
876     if (!getRecordArgABI(RetTy, getCXXABI())) {
877       // Ignore empty structs/unions.
878       if (isEmptyRecord(getContext(), RetTy, true))
879         return ABIArgInfo::getIgnore();
880       // Lower single-element structs to just return a regular value. TODO: We
881       // could do reasonable-size multiple-element structs too, using
882       // ABIArgInfo::getDirect().
883       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
884         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
885       // For the experimental multivalue ABI, return all other aggregates
886       if (Kind == ABIKind::ExperimentalMV)
887         return ABIArgInfo::getDirect();
888     }
889   }
890 
891   // Otherwise just do the default thing.
892   return defaultInfo.classifyReturnType(RetTy);
893 }
894 
895 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
896                                       QualType Ty) const {
897   bool IsIndirect = isAggregateTypeForABI(Ty) &&
898                     !isEmptyRecord(getContext(), Ty, true) &&
899                     !isSingleElementStruct(Ty, getContext());
900   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
901                           getContext().getTypeInfoInChars(Ty),
902                           CharUnits::fromQuantity(4),
903                           /*AllowHigherAlign=*/true);
904 }
905 
906 //===----------------------------------------------------------------------===//
907 // le32/PNaCl bitcode ABI Implementation
908 //
909 // This is a simplified version of the x86_32 ABI.  Arguments and return values
910 // are always passed on the stack.
911 //===----------------------------------------------------------------------===//
912 
913 class PNaClABIInfo : public ABIInfo {
914  public:
915   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
916 
917   ABIArgInfo classifyReturnType(QualType RetTy) const;
918   ABIArgInfo classifyArgumentType(QualType RetTy) const;
919 
920   void computeInfo(CGFunctionInfo &FI) const override;
921   Address EmitVAArg(CodeGenFunction &CGF,
922                     Address VAListAddr, QualType Ty) const override;
923 };
924 
925 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
926  public:
927    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
928        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
929 };
930 
931 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
932   if (!getCXXABI().classifyReturnType(FI))
933     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
934 
935   for (auto &I : FI.arguments())
936     I.info = classifyArgumentType(I.type);
937 }
938 
939 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
940                                 QualType Ty) const {
941   // The PNaCL ABI is a bit odd, in that varargs don't use normal
942   // function classification. Structs get passed directly for varargs
943   // functions, through a rewriting transform in
944   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
945   // this target to actually support a va_arg instructions with an
946   // aggregate type, unlike other targets.
947   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
948 }
949 
950 /// Classify argument of given type \p Ty.
951 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
952   if (isAggregateTypeForABI(Ty)) {
953     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
954       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
955     return getNaturalAlignIndirect(Ty);
956   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
957     // Treat an enum type as its underlying type.
958     Ty = EnumTy->getDecl()->getIntegerType();
959   } else if (Ty->isFloatingType()) {
960     // Floating-point types don't go inreg.
961     return ABIArgInfo::getDirect();
962   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
963     // Treat extended integers as integers if <=64, otherwise pass indirectly.
964     if (EIT->getNumBits() > 64)
965       return getNaturalAlignIndirect(Ty);
966     return ABIArgInfo::getDirect();
967   }
968 
969   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
970                                             : ABIArgInfo::getDirect());
971 }
972 
973 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
974   if (RetTy->isVoidType())
975     return ABIArgInfo::getIgnore();
976 
977   // In the PNaCl ABI we always return records/structures on the stack.
978   if (isAggregateTypeForABI(RetTy))
979     return getNaturalAlignIndirect(RetTy);
980 
981   // Treat extended integers as integers if <=64, otherwise pass indirectly.
982   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
983     if (EIT->getNumBits() > 64)
984       return getNaturalAlignIndirect(RetTy);
985     return ABIArgInfo::getDirect();
986   }
987 
988   // Treat an enum type as its underlying type.
989   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
990     RetTy = EnumTy->getDecl()->getIntegerType();
991 
992   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
993                                                : ABIArgInfo::getDirect());
994 }
995 
996 /// IsX86_MMXType - Return true if this is an MMX type.
997 bool IsX86_MMXType(llvm::Type *IRType) {
998   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
999   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1000     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1001     IRType->getScalarSizeInBits() != 64;
1002 }
1003 
1004 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1005                                           StringRef Constraint,
1006                                           llvm::Type* Ty) {
1007   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1008                      .Cases("y", "&y", "^Ym", true)
1009                      .Default(false);
1010   if (IsMMXCons && Ty->isVectorTy()) {
1011     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1012         64) {
1013       // Invalid MMX constraint
1014       return nullptr;
1015     }
1016 
1017     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1018   }
1019 
1020   // No operation needed
1021   return Ty;
1022 }
1023 
1024 /// Returns true if this type can be passed in SSE registers with the
1025 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1026 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1027   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1028     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1029       if (BT->getKind() == BuiltinType::LongDouble) {
1030         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1031             &llvm::APFloat::x87DoubleExtended())
1032           return false;
1033       }
1034       return true;
1035     }
1036   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1037     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1038     // registers specially.
1039     unsigned VecSize = Context.getTypeSize(VT);
1040     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1041       return true;
1042   }
1043   return false;
1044 }
1045 
1046 /// Returns true if this aggregate is small enough to be passed in SSE registers
1047 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1048 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1049   return NumMembers <= 4;
1050 }
1051 
1052 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1053 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1054   auto AI = ABIArgInfo::getDirect(T);
1055   AI.setInReg(true);
1056   AI.setCanBeFlattened(false);
1057   return AI;
1058 }
1059 
1060 //===----------------------------------------------------------------------===//
1061 // X86-32 ABI Implementation
1062 //===----------------------------------------------------------------------===//
1063 
1064 /// Similar to llvm::CCState, but for Clang.
1065 struct CCState {
1066   CCState(CGFunctionInfo &FI)
1067       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1068 
1069   llvm::SmallBitVector IsPreassigned;
1070   unsigned CC = CallingConv::CC_C;
1071   unsigned FreeRegs = 0;
1072   unsigned FreeSSERegs = 0;
1073 };
1074 
1075 enum {
1076   // Vectorcall only allows the first 6 parameters to be passed in registers.
1077   VectorcallMaxParamNumAsReg = 6
1078 };
1079 
1080 /// X86_32ABIInfo - The X86-32 ABI information.
1081 class X86_32ABIInfo : public SwiftABIInfo {
1082   enum Class {
1083     Integer,
1084     Float
1085   };
1086 
1087   static const unsigned MinABIStackAlignInBytes = 4;
1088 
1089   bool IsDarwinVectorABI;
1090   bool IsRetSmallStructInRegABI;
1091   bool IsWin32StructABI;
1092   bool IsSoftFloatABI;
1093   bool IsMCUABI;
1094   unsigned DefaultNumRegisterParameters;
1095 
1096   static bool isRegisterSize(unsigned Size) {
1097     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1098   }
1099 
1100   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1101     // FIXME: Assumes vectorcall is in use.
1102     return isX86VectorTypeForVectorCall(getContext(), Ty);
1103   }
1104 
1105   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1106                                          uint64_t NumMembers) const override {
1107     // FIXME: Assumes vectorcall is in use.
1108     return isX86VectorCallAggregateSmallEnough(NumMembers);
1109   }
1110 
1111   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1112 
1113   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1114   /// such that the argument will be passed in memory.
1115   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1116 
1117   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1118 
1119   /// Return the alignment to use for the given type on the stack.
1120   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1121 
1122   Class classify(QualType Ty) const;
1123   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1124   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1125 
1126   /// Updates the number of available free registers, returns
1127   /// true if any registers were allocated.
1128   bool updateFreeRegs(QualType Ty, CCState &State) const;
1129 
1130   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1131                                 bool &NeedsPadding) const;
1132   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1133 
1134   bool canExpandIndirectArgument(QualType Ty) const;
1135 
1136   /// Rewrite the function info so that all memory arguments use
1137   /// inalloca.
1138   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1139 
1140   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1141                            CharUnits &StackOffset, ABIArgInfo &Info,
1142                            QualType Type) const;
1143   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1144 
1145 public:
1146 
1147   void computeInfo(CGFunctionInfo &FI) const override;
1148   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1149                     QualType Ty) const override;
1150 
1151   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1152                 bool RetSmallStructInRegABI, bool Win32StructABI,
1153                 unsigned NumRegisterParameters, bool SoftFloatABI)
1154     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1155       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1156       IsWin32StructABI(Win32StructABI),
1157       IsSoftFloatABI(SoftFloatABI),
1158       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1159       DefaultNumRegisterParameters(NumRegisterParameters) {}
1160 
1161   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1162                                     bool asReturnValue) const override {
1163     // LLVM's x86-32 lowering currently only assigns up to three
1164     // integer registers and three fp registers.  Oddly, it'll use up to
1165     // four vector registers for vectors, but those can overlap with the
1166     // scalar registers.
1167     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1168   }
1169 
1170   bool isSwiftErrorInRegister() const override {
1171     // x86-32 lowering does not support passing swifterror in a register.
1172     return false;
1173   }
1174 };
1175 
1176 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1177 public:
1178   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1179                           bool RetSmallStructInRegABI, bool Win32StructABI,
1180                           unsigned NumRegisterParameters, bool SoftFloatABI)
1181       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1182             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1183             NumRegisterParameters, SoftFloatABI)) {}
1184 
1185   static bool isStructReturnInRegABI(
1186       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1187 
1188   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1189                            CodeGen::CodeGenModule &CGM) const override;
1190 
1191   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1192     // Darwin uses different dwarf register numbers for EH.
1193     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1194     return 4;
1195   }
1196 
1197   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1198                                llvm::Value *Address) const override;
1199 
1200   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1201                                   StringRef Constraint,
1202                                   llvm::Type* Ty) const override {
1203     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1204   }
1205 
1206   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1207                                 std::string &Constraints,
1208                                 std::vector<llvm::Type *> &ResultRegTypes,
1209                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1210                                 std::vector<LValue> &ResultRegDests,
1211                                 std::string &AsmString,
1212                                 unsigned NumOutputs) const override;
1213 
1214   llvm::Constant *
1215   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1216     unsigned Sig = (0xeb << 0) |  // jmp rel8
1217                    (0x06 << 8) |  //           .+0x08
1218                    ('v' << 16) |
1219                    ('2' << 24);
1220     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1221   }
1222 
1223   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1224     return "movl\t%ebp, %ebp"
1225            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1226   }
1227 };
1228 
1229 }
1230 
1231 /// Rewrite input constraint references after adding some output constraints.
1232 /// In the case where there is one output and one input and we add one output,
1233 /// we need to replace all operand references greater than or equal to 1:
1234 ///     mov $0, $1
1235 ///     mov eax, $1
1236 /// The result will be:
1237 ///     mov $0, $2
1238 ///     mov eax, $2
1239 static void rewriteInputConstraintReferences(unsigned FirstIn,
1240                                              unsigned NumNewOuts,
1241                                              std::string &AsmString) {
1242   std::string Buf;
1243   llvm::raw_string_ostream OS(Buf);
1244   size_t Pos = 0;
1245   while (Pos < AsmString.size()) {
1246     size_t DollarStart = AsmString.find('$', Pos);
1247     if (DollarStart == std::string::npos)
1248       DollarStart = AsmString.size();
1249     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1250     if (DollarEnd == std::string::npos)
1251       DollarEnd = AsmString.size();
1252     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1253     Pos = DollarEnd;
1254     size_t NumDollars = DollarEnd - DollarStart;
1255     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1256       // We have an operand reference.
1257       size_t DigitStart = Pos;
1258       if (AsmString[DigitStart] == '{') {
1259         OS << '{';
1260         ++DigitStart;
1261       }
1262       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1263       if (DigitEnd == std::string::npos)
1264         DigitEnd = AsmString.size();
1265       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1266       unsigned OperandIndex;
1267       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1268         if (OperandIndex >= FirstIn)
1269           OperandIndex += NumNewOuts;
1270         OS << OperandIndex;
1271       } else {
1272         OS << OperandStr;
1273       }
1274       Pos = DigitEnd;
1275     }
1276   }
1277   AsmString = std::move(OS.str());
1278 }
1279 
1280 /// Add output constraints for EAX:EDX because they are return registers.
1281 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1282     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1283     std::vector<llvm::Type *> &ResultRegTypes,
1284     std::vector<llvm::Type *> &ResultTruncRegTypes,
1285     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1286     unsigned NumOutputs) const {
1287   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1288 
1289   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1290   // larger.
1291   if (!Constraints.empty())
1292     Constraints += ',';
1293   if (RetWidth <= 32) {
1294     Constraints += "={eax}";
1295     ResultRegTypes.push_back(CGF.Int32Ty);
1296   } else {
1297     // Use the 'A' constraint for EAX:EDX.
1298     Constraints += "=A";
1299     ResultRegTypes.push_back(CGF.Int64Ty);
1300   }
1301 
1302   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1303   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1304   ResultTruncRegTypes.push_back(CoerceTy);
1305 
1306   // Coerce the integer by bitcasting the return slot pointer.
1307   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1308                                                   CoerceTy->getPointerTo()));
1309   ResultRegDests.push_back(ReturnSlot);
1310 
1311   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1312 }
1313 
1314 /// shouldReturnTypeInRegister - Determine if the given type should be
1315 /// returned in a register (for the Darwin and MCU ABI).
1316 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1317                                                ASTContext &Context) const {
1318   uint64_t Size = Context.getTypeSize(Ty);
1319 
1320   // For i386, type must be register sized.
1321   // For the MCU ABI, it only needs to be <= 8-byte
1322   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1323    return false;
1324 
1325   if (Ty->isVectorType()) {
1326     // 64- and 128- bit vectors inside structures are not returned in
1327     // registers.
1328     if (Size == 64 || Size == 128)
1329       return false;
1330 
1331     return true;
1332   }
1333 
1334   // If this is a builtin, pointer, enum, complex type, member pointer, or
1335   // member function pointer it is ok.
1336   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1337       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1338       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1339     return true;
1340 
1341   // Arrays are treated like records.
1342   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1343     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1344 
1345   // Otherwise, it must be a record type.
1346   const RecordType *RT = Ty->getAs<RecordType>();
1347   if (!RT) return false;
1348 
1349   // FIXME: Traverse bases here too.
1350 
1351   // Structure types are passed in register if all fields would be
1352   // passed in a register.
1353   for (const auto *FD : RT->getDecl()->fields()) {
1354     // Empty fields are ignored.
1355     if (isEmptyField(Context, FD, true))
1356       continue;
1357 
1358     // Check fields recursively.
1359     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1360       return false;
1361   }
1362   return true;
1363 }
1364 
1365 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1366   // Treat complex types as the element type.
1367   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1368     Ty = CTy->getElementType();
1369 
1370   // Check for a type which we know has a simple scalar argument-passing
1371   // convention without any padding.  (We're specifically looking for 32
1372   // and 64-bit integer and integer-equivalents, float, and double.)
1373   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1374       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1375     return false;
1376 
1377   uint64_t Size = Context.getTypeSize(Ty);
1378   return Size == 32 || Size == 64;
1379 }
1380 
1381 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1382                           uint64_t &Size) {
1383   for (const auto *FD : RD->fields()) {
1384     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1385     // argument is smaller than 32-bits, expanding the struct will create
1386     // alignment padding.
1387     if (!is32Or64BitBasicType(FD->getType(), Context))
1388       return false;
1389 
1390     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1391     // how to expand them yet, and the predicate for telling if a bitfield still
1392     // counts as "basic" is more complicated than what we were doing previously.
1393     if (FD->isBitField())
1394       return false;
1395 
1396     Size += Context.getTypeSize(FD->getType());
1397   }
1398   return true;
1399 }
1400 
1401 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1402                                  uint64_t &Size) {
1403   // Don't do this if there are any non-empty bases.
1404   for (const CXXBaseSpecifier &Base : RD->bases()) {
1405     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1406                               Size))
1407       return false;
1408   }
1409   if (!addFieldSizes(Context, RD, Size))
1410     return false;
1411   return true;
1412 }
1413 
1414 /// Test whether an argument type which is to be passed indirectly (on the
1415 /// stack) would have the equivalent layout if it was expanded into separate
1416 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1417 /// optimizations.
1418 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1419   // We can only expand structure types.
1420   const RecordType *RT = Ty->getAs<RecordType>();
1421   if (!RT)
1422     return false;
1423   const RecordDecl *RD = RT->getDecl();
1424   uint64_t Size = 0;
1425   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1426     if (!IsWin32StructABI) {
1427       // On non-Windows, we have to conservatively match our old bitcode
1428       // prototypes in order to be ABI-compatible at the bitcode level.
1429       if (!CXXRD->isCLike())
1430         return false;
1431     } else {
1432       // Don't do this for dynamic classes.
1433       if (CXXRD->isDynamicClass())
1434         return false;
1435     }
1436     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1437       return false;
1438   } else {
1439     if (!addFieldSizes(getContext(), RD, Size))
1440       return false;
1441   }
1442 
1443   // We can do this if there was no alignment padding.
1444   return Size == getContext().getTypeSize(Ty);
1445 }
1446 
1447 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1448   // If the return value is indirect, then the hidden argument is consuming one
1449   // integer register.
1450   if (State.FreeRegs) {
1451     --State.FreeRegs;
1452     if (!IsMCUABI)
1453       return getNaturalAlignIndirectInReg(RetTy);
1454   }
1455   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1456 }
1457 
1458 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1459                                              CCState &State) const {
1460   if (RetTy->isVoidType())
1461     return ABIArgInfo::getIgnore();
1462 
1463   const Type *Base = nullptr;
1464   uint64_t NumElts = 0;
1465   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1466        State.CC == llvm::CallingConv::X86_RegCall) &&
1467       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1468     // The LLVM struct type for such an aggregate should lower properly.
1469     return ABIArgInfo::getDirect();
1470   }
1471 
1472   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1473     // On Darwin, some vectors are returned in registers.
1474     if (IsDarwinVectorABI) {
1475       uint64_t Size = getContext().getTypeSize(RetTy);
1476 
1477       // 128-bit vectors are a special case; they are returned in
1478       // registers and we need to make sure to pick a type the LLVM
1479       // backend will like.
1480       if (Size == 128)
1481         return ABIArgInfo::getDirect(llvm::VectorType::get(
1482                   llvm::Type::getInt64Ty(getVMContext()), 2));
1483 
1484       // Always return in register if it fits in a general purpose
1485       // register, or if it is 64 bits and has a single element.
1486       if ((Size == 8 || Size == 16 || Size == 32) ||
1487           (Size == 64 && VT->getNumElements() == 1))
1488         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1489                                                             Size));
1490 
1491       return getIndirectReturnResult(RetTy, State);
1492     }
1493 
1494     return ABIArgInfo::getDirect();
1495   }
1496 
1497   if (isAggregateTypeForABI(RetTy)) {
1498     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1499       // Structures with flexible arrays are always indirect.
1500       if (RT->getDecl()->hasFlexibleArrayMember())
1501         return getIndirectReturnResult(RetTy, State);
1502     }
1503 
1504     // If specified, structs and unions are always indirect.
1505     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1506       return getIndirectReturnResult(RetTy, State);
1507 
1508     // Ignore empty structs/unions.
1509     if (isEmptyRecord(getContext(), RetTy, true))
1510       return ABIArgInfo::getIgnore();
1511 
1512     // Small structures which are register sized are generally returned
1513     // in a register.
1514     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1515       uint64_t Size = getContext().getTypeSize(RetTy);
1516 
1517       // As a special-case, if the struct is a "single-element" struct, and
1518       // the field is of type "float" or "double", return it in a
1519       // floating-point register. (MSVC does not apply this special case.)
1520       // We apply a similar transformation for pointer types to improve the
1521       // quality of the generated IR.
1522       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1523         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1524             || SeltTy->hasPointerRepresentation())
1525           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1526 
1527       // FIXME: We should be able to narrow this integer in cases with dead
1528       // padding.
1529       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1530     }
1531 
1532     return getIndirectReturnResult(RetTy, State);
1533   }
1534 
1535   // Treat an enum type as its underlying type.
1536   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1537     RetTy = EnumTy->getDecl()->getIntegerType();
1538 
1539   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1540     if (EIT->getNumBits() > 64)
1541       return getIndirectReturnResult(RetTy, State);
1542 
1543   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1544                                                : ABIArgInfo::getDirect());
1545 }
1546 
1547 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1548   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1549 }
1550 
1551 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1552   const RecordType *RT = Ty->getAs<RecordType>();
1553   if (!RT)
1554     return 0;
1555   const RecordDecl *RD = RT->getDecl();
1556 
1557   // If this is a C++ record, check the bases first.
1558   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1559     for (const auto &I : CXXRD->bases())
1560       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1561         return false;
1562 
1563   for (const auto *i : RD->fields()) {
1564     QualType FT = i->getType();
1565 
1566     if (isSIMDVectorType(Context, FT))
1567       return true;
1568 
1569     if (isRecordWithSIMDVectorType(Context, FT))
1570       return true;
1571   }
1572 
1573   return false;
1574 }
1575 
1576 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1577                                                  unsigned Align) const {
1578   // Otherwise, if the alignment is less than or equal to the minimum ABI
1579   // alignment, just use the default; the backend will handle this.
1580   if (Align <= MinABIStackAlignInBytes)
1581     return 0; // Use default alignment.
1582 
1583   // On non-Darwin, the stack type alignment is always 4.
1584   if (!IsDarwinVectorABI) {
1585     // Set explicit alignment, since we may need to realign the top.
1586     return MinABIStackAlignInBytes;
1587   }
1588 
1589   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1590   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1591                       isRecordWithSIMDVectorType(getContext(), Ty)))
1592     return 16;
1593 
1594   return MinABIStackAlignInBytes;
1595 }
1596 
1597 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1598                                             CCState &State) const {
1599   if (!ByVal) {
1600     if (State.FreeRegs) {
1601       --State.FreeRegs; // Non-byval indirects just use one pointer.
1602       if (!IsMCUABI)
1603         return getNaturalAlignIndirectInReg(Ty);
1604     }
1605     return getNaturalAlignIndirect(Ty, false);
1606   }
1607 
1608   // Compute the byval alignment.
1609   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1610   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1611   if (StackAlign == 0)
1612     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1613 
1614   // If the stack alignment is less than the type alignment, realign the
1615   // argument.
1616   bool Realign = TypeAlign > StackAlign;
1617   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1618                                  /*ByVal=*/true, Realign);
1619 }
1620 
1621 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1622   const Type *T = isSingleElementStruct(Ty, getContext());
1623   if (!T)
1624     T = Ty.getTypePtr();
1625 
1626   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1627     BuiltinType::Kind K = BT->getKind();
1628     if (K == BuiltinType::Float || K == BuiltinType::Double)
1629       return Float;
1630   }
1631   return Integer;
1632 }
1633 
1634 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1635   if (!IsSoftFloatABI) {
1636     Class C = classify(Ty);
1637     if (C == Float)
1638       return false;
1639   }
1640 
1641   unsigned Size = getContext().getTypeSize(Ty);
1642   unsigned SizeInRegs = (Size + 31) / 32;
1643 
1644   if (SizeInRegs == 0)
1645     return false;
1646 
1647   if (!IsMCUABI) {
1648     if (SizeInRegs > State.FreeRegs) {
1649       State.FreeRegs = 0;
1650       return false;
1651     }
1652   } else {
1653     // The MCU psABI allows passing parameters in-reg even if there are
1654     // earlier parameters that are passed on the stack. Also,
1655     // it does not allow passing >8-byte structs in-register,
1656     // even if there are 3 free registers available.
1657     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1658       return false;
1659   }
1660 
1661   State.FreeRegs -= SizeInRegs;
1662   return true;
1663 }
1664 
1665 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1666                                              bool &InReg,
1667                                              bool &NeedsPadding) const {
1668   // On Windows, aggregates other than HFAs are never passed in registers, and
1669   // they do not consume register slots. Homogenous floating-point aggregates
1670   // (HFAs) have already been dealt with at this point.
1671   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1672     return false;
1673 
1674   NeedsPadding = false;
1675   InReg = !IsMCUABI;
1676 
1677   if (!updateFreeRegs(Ty, State))
1678     return false;
1679 
1680   if (IsMCUABI)
1681     return true;
1682 
1683   if (State.CC == llvm::CallingConv::X86_FastCall ||
1684       State.CC == llvm::CallingConv::X86_VectorCall ||
1685       State.CC == llvm::CallingConv::X86_RegCall) {
1686     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1687       NeedsPadding = true;
1688 
1689     return false;
1690   }
1691 
1692   return true;
1693 }
1694 
1695 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1696   if (!updateFreeRegs(Ty, State))
1697     return false;
1698 
1699   if (IsMCUABI)
1700     return false;
1701 
1702   if (State.CC == llvm::CallingConv::X86_FastCall ||
1703       State.CC == llvm::CallingConv::X86_VectorCall ||
1704       State.CC == llvm::CallingConv::X86_RegCall) {
1705     if (getContext().getTypeSize(Ty) > 32)
1706       return false;
1707 
1708     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1709         Ty->isReferenceType());
1710   }
1711 
1712   return true;
1713 }
1714 
1715 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1716   // Vectorcall x86 works subtly different than in x64, so the format is
1717   // a bit different than the x64 version.  First, all vector types (not HVAs)
1718   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1719   // This differs from the x64 implementation, where the first 6 by INDEX get
1720   // registers.
1721   // In the second pass over the arguments, HVAs are passed in the remaining
1722   // vector registers if possible, or indirectly by address. The address will be
1723   // passed in ECX/EDX if available. Any other arguments are passed according to
1724   // the usual fastcall rules.
1725   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1726   for (int I = 0, E = Args.size(); I < E; ++I) {
1727     const Type *Base = nullptr;
1728     uint64_t NumElts = 0;
1729     const QualType &Ty = Args[I].type;
1730     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1731         isHomogeneousAggregate(Ty, Base, NumElts)) {
1732       if (State.FreeSSERegs >= NumElts) {
1733         State.FreeSSERegs -= NumElts;
1734         Args[I].info = ABIArgInfo::getDirectInReg();
1735         State.IsPreassigned.set(I);
1736       }
1737     }
1738   }
1739 }
1740 
1741 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1742                                                CCState &State) const {
1743   // FIXME: Set alignment on indirect arguments.
1744   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1745   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1746   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1747 
1748   Ty = useFirstFieldIfTransparentUnion(Ty);
1749   TypeInfo TI = getContext().getTypeInfo(Ty);
1750 
1751   // Check with the C++ ABI first.
1752   const RecordType *RT = Ty->getAs<RecordType>();
1753   if (RT) {
1754     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1755     if (RAA == CGCXXABI::RAA_Indirect) {
1756       return getIndirectResult(Ty, false, State);
1757     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1758       // The field index doesn't matter, we'll fix it up later.
1759       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1760     }
1761   }
1762 
1763   // Regcall uses the concept of a homogenous vector aggregate, similar
1764   // to other targets.
1765   const Type *Base = nullptr;
1766   uint64_t NumElts = 0;
1767   if ((IsRegCall || IsVectorCall) &&
1768       isHomogeneousAggregate(Ty, Base, NumElts)) {
1769     if (State.FreeSSERegs >= NumElts) {
1770       State.FreeSSERegs -= NumElts;
1771 
1772       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1773       // does.
1774       if (IsVectorCall)
1775         return getDirectX86Hva();
1776 
1777       if (Ty->isBuiltinType() || Ty->isVectorType())
1778         return ABIArgInfo::getDirect();
1779       return ABIArgInfo::getExpand();
1780     }
1781     return getIndirectResult(Ty, /*ByVal=*/false, State);
1782   }
1783 
1784   if (isAggregateTypeForABI(Ty)) {
1785     // Structures with flexible arrays are always indirect.
1786     // FIXME: This should not be byval!
1787     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1788       return getIndirectResult(Ty, true, State);
1789 
1790     // Ignore empty structs/unions on non-Windows.
1791     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1792       return ABIArgInfo::getIgnore();
1793 
1794     llvm::LLVMContext &LLVMContext = getVMContext();
1795     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1796     bool NeedsPadding = false;
1797     bool InReg;
1798     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1799       unsigned SizeInRegs = (TI.Width + 31) / 32;
1800       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1801       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1802       if (InReg)
1803         return ABIArgInfo::getDirectInReg(Result);
1804       else
1805         return ABIArgInfo::getDirect(Result);
1806     }
1807     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1808 
1809     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1810     // added in MSVC 2015.
1811     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1812       return getIndirectResult(Ty, /*ByVal=*/false, State);
1813 
1814     // Expand small (<= 128-bit) record types when we know that the stack layout
1815     // of those arguments will match the struct. This is important because the
1816     // LLVM backend isn't smart enough to remove byval, which inhibits many
1817     // optimizations.
1818     // Don't do this for the MCU if there are still free integer registers
1819     // (see X86_64 ABI for full explanation).
1820     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1821         canExpandIndirectArgument(Ty))
1822       return ABIArgInfo::getExpandWithPadding(
1823           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1824 
1825     return getIndirectResult(Ty, true, State);
1826   }
1827 
1828   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1829     // On Windows, vectors are passed directly if registers are available, or
1830     // indirectly if not. This avoids the need to align argument memory. Pass
1831     // user-defined vector types larger than 512 bits indirectly for simplicity.
1832     if (IsWin32StructABI) {
1833       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1834         --State.FreeSSERegs;
1835         return ABIArgInfo::getDirectInReg();
1836       }
1837       return getIndirectResult(Ty, /*ByVal=*/false, State);
1838     }
1839 
1840     // On Darwin, some vectors are passed in memory, we handle this by passing
1841     // it as an i8/i16/i32/i64.
1842     if (IsDarwinVectorABI) {
1843       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1844           (TI.Width == 64 && VT->getNumElements() == 1))
1845         return ABIArgInfo::getDirect(
1846             llvm::IntegerType::get(getVMContext(), TI.Width));
1847     }
1848 
1849     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1850       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1851 
1852     return ABIArgInfo::getDirect();
1853   }
1854 
1855 
1856   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1857     Ty = EnumTy->getDecl()->getIntegerType();
1858 
1859   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1860 
1861   if (isPromotableIntegerTypeForABI(Ty)) {
1862     if (InReg)
1863       return ABIArgInfo::getExtendInReg(Ty);
1864     return ABIArgInfo::getExtend(Ty);
1865   }
1866 
1867   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1868     if (EIT->getNumBits() <= 64) {
1869       if (InReg)
1870         return ABIArgInfo::getDirectInReg();
1871       return ABIArgInfo::getDirect();
1872     }
1873     return getIndirectResult(Ty, /*ByVal=*/false, State);
1874   }
1875 
1876   if (InReg)
1877     return ABIArgInfo::getDirectInReg();
1878   return ABIArgInfo::getDirect();
1879 }
1880 
1881 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1882   CCState State(FI);
1883   if (IsMCUABI)
1884     State.FreeRegs = 3;
1885   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1886     State.FreeRegs = 2;
1887     State.FreeSSERegs = 3;
1888   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1889     State.FreeRegs = 2;
1890     State.FreeSSERegs = 6;
1891   } else if (FI.getHasRegParm())
1892     State.FreeRegs = FI.getRegParm();
1893   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1894     State.FreeRegs = 5;
1895     State.FreeSSERegs = 8;
1896   } else if (IsWin32StructABI) {
1897     // Since MSVC 2015, the first three SSE vectors have been passed in
1898     // registers. The rest are passed indirectly.
1899     State.FreeRegs = DefaultNumRegisterParameters;
1900     State.FreeSSERegs = 3;
1901   } else
1902     State.FreeRegs = DefaultNumRegisterParameters;
1903 
1904   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1905     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1906   } else if (FI.getReturnInfo().isIndirect()) {
1907     // The C++ ABI is not aware of register usage, so we have to check if the
1908     // return value was sret and put it in a register ourselves if appropriate.
1909     if (State.FreeRegs) {
1910       --State.FreeRegs;  // The sret parameter consumes a register.
1911       if (!IsMCUABI)
1912         FI.getReturnInfo().setInReg(true);
1913     }
1914   }
1915 
1916   // The chain argument effectively gives us another free register.
1917   if (FI.isChainCall())
1918     ++State.FreeRegs;
1919 
1920   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1921   // arguments to XMM registers as available.
1922   if (State.CC == llvm::CallingConv::X86_VectorCall)
1923     runVectorCallFirstPass(FI, State);
1924 
1925   bool UsedInAlloca = false;
1926   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1927   for (int I = 0, E = Args.size(); I < E; ++I) {
1928     // Skip arguments that have already been assigned.
1929     if (State.IsPreassigned.test(I))
1930       continue;
1931 
1932     Args[I].info = classifyArgumentType(Args[I].type, State);
1933     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1934   }
1935 
1936   // If we needed to use inalloca for any argument, do a second pass and rewrite
1937   // all the memory arguments to use inalloca.
1938   if (UsedInAlloca)
1939     rewriteWithInAlloca(FI);
1940 }
1941 
1942 void
1943 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1944                                    CharUnits &StackOffset, ABIArgInfo &Info,
1945                                    QualType Type) const {
1946   // Arguments are always 4-byte-aligned.
1947   CharUnits WordSize = CharUnits::fromQuantity(4);
1948   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1949 
1950   // sret pointers and indirect things will require an extra pointer
1951   // indirection, unless they are byval. Most things are byval, and will not
1952   // require this indirection.
1953   bool IsIndirect = false;
1954   if (Info.isIndirect() && !Info.getIndirectByVal())
1955     IsIndirect = true;
1956   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1957   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1958   if (IsIndirect)
1959     LLTy = LLTy->getPointerTo(0);
1960   FrameFields.push_back(LLTy);
1961   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1962 
1963   // Insert padding bytes to respect alignment.
1964   CharUnits FieldEnd = StackOffset;
1965   StackOffset = FieldEnd.alignTo(WordSize);
1966   if (StackOffset != FieldEnd) {
1967     CharUnits NumBytes = StackOffset - FieldEnd;
1968     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1969     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1970     FrameFields.push_back(Ty);
1971   }
1972 }
1973 
1974 static bool isArgInAlloca(const ABIArgInfo &Info) {
1975   // Leave ignored and inreg arguments alone.
1976   switch (Info.getKind()) {
1977   case ABIArgInfo::InAlloca:
1978     return true;
1979   case ABIArgInfo::Ignore:
1980     return false;
1981   case ABIArgInfo::Indirect:
1982   case ABIArgInfo::Direct:
1983   case ABIArgInfo::Extend:
1984     return !Info.getInReg();
1985   case ABIArgInfo::Expand:
1986   case ABIArgInfo::CoerceAndExpand:
1987     // These are aggregate types which are never passed in registers when
1988     // inalloca is involved.
1989     return true;
1990   }
1991   llvm_unreachable("invalid enum");
1992 }
1993 
1994 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1995   assert(IsWin32StructABI && "inalloca only supported on win32");
1996 
1997   // Build a packed struct type for all of the arguments in memory.
1998   SmallVector<llvm::Type *, 6> FrameFields;
1999 
2000   // The stack alignment is always 4.
2001   CharUnits StackAlign = CharUnits::fromQuantity(4);
2002 
2003   CharUnits StackOffset;
2004   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2005 
2006   // Put 'this' into the struct before 'sret', if necessary.
2007   bool IsThisCall =
2008       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2009   ABIArgInfo &Ret = FI.getReturnInfo();
2010   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2011       isArgInAlloca(I->info)) {
2012     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2013     ++I;
2014   }
2015 
2016   // Put the sret parameter into the inalloca struct if it's in memory.
2017   if (Ret.isIndirect() && !Ret.getInReg()) {
2018     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2019     // On Windows, the hidden sret parameter is always returned in eax.
2020     Ret.setInAllocaSRet(IsWin32StructABI);
2021   }
2022 
2023   // Skip the 'this' parameter in ecx.
2024   if (IsThisCall)
2025     ++I;
2026 
2027   // Put arguments passed in memory into the struct.
2028   for (; I != E; ++I) {
2029     if (isArgInAlloca(I->info))
2030       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2031   }
2032 
2033   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2034                                         /*isPacked=*/true),
2035                   StackAlign);
2036 }
2037 
2038 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2039                                  Address VAListAddr, QualType Ty) const {
2040 
2041   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2042 
2043   // x86-32 changes the alignment of certain arguments on the stack.
2044   //
2045   // Just messing with TypeInfo like this works because we never pass
2046   // anything indirectly.
2047   TypeInfo.second = CharUnits::fromQuantity(
2048                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
2049 
2050   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2051                           TypeInfo, CharUnits::fromQuantity(4),
2052                           /*AllowHigherAlign*/ true);
2053 }
2054 
2055 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2056     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2057   assert(Triple.getArch() == llvm::Triple::x86);
2058 
2059   switch (Opts.getStructReturnConvention()) {
2060   case CodeGenOptions::SRCK_Default:
2061     break;
2062   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2063     return false;
2064   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2065     return true;
2066   }
2067 
2068   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2069     return true;
2070 
2071   switch (Triple.getOS()) {
2072   case llvm::Triple::DragonFly:
2073   case llvm::Triple::FreeBSD:
2074   case llvm::Triple::OpenBSD:
2075   case llvm::Triple::Win32:
2076     return true;
2077   default:
2078     return false;
2079   }
2080 }
2081 
2082 void X86_32TargetCodeGenInfo::setTargetAttributes(
2083     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2084   if (GV->isDeclaration())
2085     return;
2086   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2087     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2088       llvm::Function *Fn = cast<llvm::Function>(GV);
2089       Fn->addFnAttr("stackrealign");
2090     }
2091     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2092       llvm::Function *Fn = cast<llvm::Function>(GV);
2093       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2094     }
2095   }
2096 }
2097 
2098 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2099                                                CodeGen::CodeGenFunction &CGF,
2100                                                llvm::Value *Address) const {
2101   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2102 
2103   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2104 
2105   // 0-7 are the eight integer registers;  the order is different
2106   //   on Darwin (for EH), but the range is the same.
2107   // 8 is %eip.
2108   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2109 
2110   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2111     // 12-16 are st(0..4).  Not sure why we stop at 4.
2112     // These have size 16, which is sizeof(long double) on
2113     // platforms with 8-byte alignment for that type.
2114     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2115     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2116 
2117   } else {
2118     // 9 is %eflags, which doesn't get a size on Darwin for some
2119     // reason.
2120     Builder.CreateAlignedStore(
2121         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2122                                CharUnits::One());
2123 
2124     // 11-16 are st(0..5).  Not sure why we stop at 5.
2125     // These have size 12, which is sizeof(long double) on
2126     // platforms with 4-byte alignment for that type.
2127     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2128     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2129   }
2130 
2131   return false;
2132 }
2133 
2134 //===----------------------------------------------------------------------===//
2135 // X86-64 ABI Implementation
2136 //===----------------------------------------------------------------------===//
2137 
2138 
2139 namespace {
2140 /// The AVX ABI level for X86 targets.
2141 enum class X86AVXABILevel {
2142   None,
2143   AVX,
2144   AVX512
2145 };
2146 
2147 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2148 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2149   switch (AVXLevel) {
2150   case X86AVXABILevel::AVX512:
2151     return 512;
2152   case X86AVXABILevel::AVX:
2153     return 256;
2154   case X86AVXABILevel::None:
2155     return 128;
2156   }
2157   llvm_unreachable("Unknown AVXLevel");
2158 }
2159 
2160 /// X86_64ABIInfo - The X86_64 ABI information.
2161 class X86_64ABIInfo : public SwiftABIInfo {
2162   enum Class {
2163     Integer = 0,
2164     SSE,
2165     SSEUp,
2166     X87,
2167     X87Up,
2168     ComplexX87,
2169     NoClass,
2170     Memory
2171   };
2172 
2173   /// merge - Implement the X86_64 ABI merging algorithm.
2174   ///
2175   /// Merge an accumulating classification \arg Accum with a field
2176   /// classification \arg Field.
2177   ///
2178   /// \param Accum - The accumulating classification. This should
2179   /// always be either NoClass or the result of a previous merge
2180   /// call. In addition, this should never be Memory (the caller
2181   /// should just return Memory for the aggregate).
2182   static Class merge(Class Accum, Class Field);
2183 
2184   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2185   ///
2186   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2187   /// final MEMORY or SSE classes when necessary.
2188   ///
2189   /// \param AggregateSize - The size of the current aggregate in
2190   /// the classification process.
2191   ///
2192   /// \param Lo - The classification for the parts of the type
2193   /// residing in the low word of the containing object.
2194   ///
2195   /// \param Hi - The classification for the parts of the type
2196   /// residing in the higher words of the containing object.
2197   ///
2198   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2199 
2200   /// classify - Determine the x86_64 register classes in which the
2201   /// given type T should be passed.
2202   ///
2203   /// \param Lo - The classification for the parts of the type
2204   /// residing in the low word of the containing object.
2205   ///
2206   /// \param Hi - The classification for the parts of the type
2207   /// residing in the high word of the containing object.
2208   ///
2209   /// \param OffsetBase - The bit offset of this type in the
2210   /// containing object.  Some parameters are classified different
2211   /// depending on whether they straddle an eightbyte boundary.
2212   ///
2213   /// \param isNamedArg - Whether the argument in question is a "named"
2214   /// argument, as used in AMD64-ABI 3.5.7.
2215   ///
2216   /// If a word is unused its result will be NoClass; if a type should
2217   /// be passed in Memory then at least the classification of \arg Lo
2218   /// will be Memory.
2219   ///
2220   /// The \arg Lo class will be NoClass iff the argument is ignored.
2221   ///
2222   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2223   /// also be ComplexX87.
2224   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2225                 bool isNamedArg) const;
2226 
2227   llvm::Type *GetByteVectorType(QualType Ty) const;
2228   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2229                                  unsigned IROffset, QualType SourceTy,
2230                                  unsigned SourceOffset) const;
2231   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2232                                      unsigned IROffset, QualType SourceTy,
2233                                      unsigned SourceOffset) const;
2234 
2235   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2236   /// such that the argument will be returned in memory.
2237   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2238 
2239   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2240   /// such that the argument will be passed in memory.
2241   ///
2242   /// \param freeIntRegs - The number of free integer registers remaining
2243   /// available.
2244   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2245 
2246   ABIArgInfo classifyReturnType(QualType RetTy) const;
2247 
2248   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2249                                   unsigned &neededInt, unsigned &neededSSE,
2250                                   bool isNamedArg) const;
2251 
2252   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2253                                        unsigned &NeededSSE) const;
2254 
2255   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2256                                            unsigned &NeededSSE) const;
2257 
2258   bool IsIllegalVectorType(QualType Ty) const;
2259 
2260   /// The 0.98 ABI revision clarified a lot of ambiguities,
2261   /// unfortunately in ways that were not always consistent with
2262   /// certain previous compilers.  In particular, platforms which
2263   /// required strict binary compatibility with older versions of GCC
2264   /// may need to exempt themselves.
2265   bool honorsRevision0_98() const {
2266     return !getTarget().getTriple().isOSDarwin();
2267   }
2268 
2269   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2270   /// classify it as INTEGER (for compatibility with older clang compilers).
2271   bool classifyIntegerMMXAsSSE() const {
2272     // Clang <= 3.8 did not do this.
2273     if (getContext().getLangOpts().getClangABICompat() <=
2274         LangOptions::ClangABI::Ver3_8)
2275       return false;
2276 
2277     const llvm::Triple &Triple = getTarget().getTriple();
2278     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2279       return false;
2280     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2281       return false;
2282     return true;
2283   }
2284 
2285   // GCC classifies vectors of __int128 as memory.
2286   bool passInt128VectorsInMem() const {
2287     // Clang <= 9.0 did not do this.
2288     if (getContext().getLangOpts().getClangABICompat() <=
2289         LangOptions::ClangABI::Ver9)
2290       return false;
2291 
2292     const llvm::Triple &T = getTarget().getTriple();
2293     return T.isOSLinux() || T.isOSNetBSD();
2294   }
2295 
2296   X86AVXABILevel AVXLevel;
2297   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2298   // 64-bit hardware.
2299   bool Has64BitPointers;
2300 
2301 public:
2302   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2303       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2304       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2305   }
2306 
2307   bool isPassedUsingAVXType(QualType type) const {
2308     unsigned neededInt, neededSSE;
2309     // The freeIntRegs argument doesn't matter here.
2310     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2311                                            /*isNamedArg*/true);
2312     if (info.isDirect()) {
2313       llvm::Type *ty = info.getCoerceToType();
2314       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2315         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2316     }
2317     return false;
2318   }
2319 
2320   void computeInfo(CGFunctionInfo &FI) const override;
2321 
2322   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2323                     QualType Ty) const override;
2324   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2325                       QualType Ty) const override;
2326 
2327   bool has64BitPointers() const {
2328     return Has64BitPointers;
2329   }
2330 
2331   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2332                                     bool asReturnValue) const override {
2333     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2334   }
2335   bool isSwiftErrorInRegister() const override {
2336     return true;
2337   }
2338 };
2339 
2340 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2341 class WinX86_64ABIInfo : public SwiftABIInfo {
2342 public:
2343   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2344       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2345         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2346 
2347   void computeInfo(CGFunctionInfo &FI) const override;
2348 
2349   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2350                     QualType Ty) const override;
2351 
2352   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2353     // FIXME: Assumes vectorcall is in use.
2354     return isX86VectorTypeForVectorCall(getContext(), Ty);
2355   }
2356 
2357   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2358                                          uint64_t NumMembers) const override {
2359     // FIXME: Assumes vectorcall is in use.
2360     return isX86VectorCallAggregateSmallEnough(NumMembers);
2361   }
2362 
2363   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2364                                     bool asReturnValue) const override {
2365     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2366   }
2367 
2368   bool isSwiftErrorInRegister() const override {
2369     return true;
2370   }
2371 
2372 private:
2373   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2374                       bool IsVectorCall, bool IsRegCall) const;
2375   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2376                                       const ABIArgInfo &current) const;
2377   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2378                              bool IsVectorCall, bool IsRegCall) const;
2379 
2380   X86AVXABILevel AVXLevel;
2381 
2382   bool IsMingw64;
2383 };
2384 
2385 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2386 public:
2387   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2388       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2389 
2390   const X86_64ABIInfo &getABIInfo() const {
2391     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2392   }
2393 
2394   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2395   /// the autoreleaseRV/retainRV optimization.
2396   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2397     return true;
2398   }
2399 
2400   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2401     return 7;
2402   }
2403 
2404   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2405                                llvm::Value *Address) const override {
2406     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2407 
2408     // 0-15 are the 16 integer registers.
2409     // 16 is %rip.
2410     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2411     return false;
2412   }
2413 
2414   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2415                                   StringRef Constraint,
2416                                   llvm::Type* Ty) const override {
2417     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2418   }
2419 
2420   bool isNoProtoCallVariadic(const CallArgList &args,
2421                              const FunctionNoProtoType *fnType) const override {
2422     // The default CC on x86-64 sets %al to the number of SSA
2423     // registers used, and GCC sets this when calling an unprototyped
2424     // function, so we override the default behavior.  However, don't do
2425     // that when AVX types are involved: the ABI explicitly states it is
2426     // undefined, and it doesn't work in practice because of how the ABI
2427     // defines varargs anyway.
2428     if (fnType->getCallConv() == CC_C) {
2429       bool HasAVXType = false;
2430       for (CallArgList::const_iterator
2431              it = args.begin(), ie = args.end(); it != ie; ++it) {
2432         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2433           HasAVXType = true;
2434           break;
2435         }
2436       }
2437 
2438       if (!HasAVXType)
2439         return true;
2440     }
2441 
2442     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2443   }
2444 
2445   llvm::Constant *
2446   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2447     unsigned Sig = (0xeb << 0) | // jmp rel8
2448                    (0x06 << 8) | //           .+0x08
2449                    ('v' << 16) |
2450                    ('2' << 24);
2451     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2452   }
2453 
2454   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2455                            CodeGen::CodeGenModule &CGM) const override {
2456     if (GV->isDeclaration())
2457       return;
2458     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2459       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2460         llvm::Function *Fn = cast<llvm::Function>(GV);
2461         Fn->addFnAttr("stackrealign");
2462       }
2463       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2464         llvm::Function *Fn = cast<llvm::Function>(GV);
2465         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2466       }
2467     }
2468   }
2469 };
2470 
2471 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2472   // If the argument does not end in .lib, automatically add the suffix.
2473   // If the argument contains a space, enclose it in quotes.
2474   // This matches the behavior of MSVC.
2475   bool Quote = (Lib.find(" ") != StringRef::npos);
2476   std::string ArgStr = Quote ? "\"" : "";
2477   ArgStr += Lib;
2478   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2479     ArgStr += ".lib";
2480   ArgStr += Quote ? "\"" : "";
2481   return ArgStr;
2482 }
2483 
2484 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2485 public:
2486   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2487         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2488         unsigned NumRegisterParameters)
2489     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2490         Win32StructABI, NumRegisterParameters, false) {}
2491 
2492   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2493                            CodeGen::CodeGenModule &CGM) const override;
2494 
2495   void getDependentLibraryOption(llvm::StringRef Lib,
2496                                  llvm::SmallString<24> &Opt) const override {
2497     Opt = "/DEFAULTLIB:";
2498     Opt += qualifyWindowsLibrary(Lib);
2499   }
2500 
2501   void getDetectMismatchOption(llvm::StringRef Name,
2502                                llvm::StringRef Value,
2503                                llvm::SmallString<32> &Opt) const override {
2504     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2505   }
2506 };
2507 
2508 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2509                                           CodeGen::CodeGenModule &CGM) {
2510   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2511 
2512     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2513       Fn->addFnAttr("stack-probe-size",
2514                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2515     if (CGM.getCodeGenOpts().NoStackArgProbe)
2516       Fn->addFnAttr("no-stack-arg-probe");
2517   }
2518 }
2519 
2520 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2521     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2522   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2523   if (GV->isDeclaration())
2524     return;
2525   addStackProbeTargetAttributes(D, GV, CGM);
2526 }
2527 
2528 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2529 public:
2530   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2531                              X86AVXABILevel AVXLevel)
2532       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2533 
2534   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2535                            CodeGen::CodeGenModule &CGM) const override;
2536 
2537   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2538     return 7;
2539   }
2540 
2541   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2542                                llvm::Value *Address) const override {
2543     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2544 
2545     // 0-15 are the 16 integer registers.
2546     // 16 is %rip.
2547     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2548     return false;
2549   }
2550 
2551   void getDependentLibraryOption(llvm::StringRef Lib,
2552                                  llvm::SmallString<24> &Opt) const override {
2553     Opt = "/DEFAULTLIB:";
2554     Opt += qualifyWindowsLibrary(Lib);
2555   }
2556 
2557   void getDetectMismatchOption(llvm::StringRef Name,
2558                                llvm::StringRef Value,
2559                                llvm::SmallString<32> &Opt) const override {
2560     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2561   }
2562 };
2563 
2564 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2565     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2566   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2567   if (GV->isDeclaration())
2568     return;
2569   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2570     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2571       llvm::Function *Fn = cast<llvm::Function>(GV);
2572       Fn->addFnAttr("stackrealign");
2573     }
2574     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2575       llvm::Function *Fn = cast<llvm::Function>(GV);
2576       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2577     }
2578   }
2579 
2580   addStackProbeTargetAttributes(D, GV, CGM);
2581 }
2582 }
2583 
2584 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2585                               Class &Hi) const {
2586   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2587   //
2588   // (a) If one of the classes is Memory, the whole argument is passed in
2589   //     memory.
2590   //
2591   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2592   //     memory.
2593   //
2594   // (c) If the size of the aggregate exceeds two eightbytes and the first
2595   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2596   //     argument is passed in memory. NOTE: This is necessary to keep the
2597   //     ABI working for processors that don't support the __m256 type.
2598   //
2599   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2600   //
2601   // Some of these are enforced by the merging logic.  Others can arise
2602   // only with unions; for example:
2603   //   union { _Complex double; unsigned; }
2604   //
2605   // Note that clauses (b) and (c) were added in 0.98.
2606   //
2607   if (Hi == Memory)
2608     Lo = Memory;
2609   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2610     Lo = Memory;
2611   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2612     Lo = Memory;
2613   if (Hi == SSEUp && Lo != SSE)
2614     Hi = SSE;
2615 }
2616 
2617 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2618   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2619   // classified recursively so that always two fields are
2620   // considered. The resulting class is calculated according to
2621   // the classes of the fields in the eightbyte:
2622   //
2623   // (a) If both classes are equal, this is the resulting class.
2624   //
2625   // (b) If one of the classes is NO_CLASS, the resulting class is
2626   // the other class.
2627   //
2628   // (c) If one of the classes is MEMORY, the result is the MEMORY
2629   // class.
2630   //
2631   // (d) If one of the classes is INTEGER, the result is the
2632   // INTEGER.
2633   //
2634   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2635   // MEMORY is used as class.
2636   //
2637   // (f) Otherwise class SSE is used.
2638 
2639   // Accum should never be memory (we should have returned) or
2640   // ComplexX87 (because this cannot be passed in a structure).
2641   assert((Accum != Memory && Accum != ComplexX87) &&
2642          "Invalid accumulated classification during merge.");
2643   if (Accum == Field || Field == NoClass)
2644     return Accum;
2645   if (Field == Memory)
2646     return Memory;
2647   if (Accum == NoClass)
2648     return Field;
2649   if (Accum == Integer || Field == Integer)
2650     return Integer;
2651   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2652       Accum == X87 || Accum == X87Up)
2653     return Memory;
2654   return SSE;
2655 }
2656 
2657 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2658                              Class &Lo, Class &Hi, bool isNamedArg) const {
2659   // FIXME: This code can be simplified by introducing a simple value class for
2660   // Class pairs with appropriate constructor methods for the various
2661   // situations.
2662 
2663   // FIXME: Some of the split computations are wrong; unaligned vectors
2664   // shouldn't be passed in registers for example, so there is no chance they
2665   // can straddle an eightbyte. Verify & simplify.
2666 
2667   Lo = Hi = NoClass;
2668 
2669   Class &Current = OffsetBase < 64 ? Lo : Hi;
2670   Current = Memory;
2671 
2672   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2673     BuiltinType::Kind k = BT->getKind();
2674 
2675     if (k == BuiltinType::Void) {
2676       Current = NoClass;
2677     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2678       Lo = Integer;
2679       Hi = Integer;
2680     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2681       Current = Integer;
2682     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2683       Current = SSE;
2684     } else if (k == BuiltinType::LongDouble) {
2685       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2686       if (LDF == &llvm::APFloat::IEEEquad()) {
2687         Lo = SSE;
2688         Hi = SSEUp;
2689       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2690         Lo = X87;
2691         Hi = X87Up;
2692       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2693         Current = SSE;
2694       } else
2695         llvm_unreachable("unexpected long double representation!");
2696     }
2697     // FIXME: _Decimal32 and _Decimal64 are SSE.
2698     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2699     return;
2700   }
2701 
2702   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2703     // Classify the underlying integer type.
2704     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2705     return;
2706   }
2707 
2708   if (Ty->hasPointerRepresentation()) {
2709     Current = Integer;
2710     return;
2711   }
2712 
2713   if (Ty->isMemberPointerType()) {
2714     if (Ty->isMemberFunctionPointerType()) {
2715       if (Has64BitPointers) {
2716         // If Has64BitPointers, this is an {i64, i64}, so classify both
2717         // Lo and Hi now.
2718         Lo = Hi = Integer;
2719       } else {
2720         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2721         // straddles an eightbyte boundary, Hi should be classified as well.
2722         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2723         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2724         if (EB_FuncPtr != EB_ThisAdj) {
2725           Lo = Hi = Integer;
2726         } else {
2727           Current = Integer;
2728         }
2729       }
2730     } else {
2731       Current = Integer;
2732     }
2733     return;
2734   }
2735 
2736   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2737     uint64_t Size = getContext().getTypeSize(VT);
2738     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2739       // gcc passes the following as integer:
2740       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2741       // 2 bytes - <2 x char>, <1 x short>
2742       // 1 byte  - <1 x char>
2743       Current = Integer;
2744 
2745       // If this type crosses an eightbyte boundary, it should be
2746       // split.
2747       uint64_t EB_Lo = (OffsetBase) / 64;
2748       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2749       if (EB_Lo != EB_Hi)
2750         Hi = Lo;
2751     } else if (Size == 64) {
2752       QualType ElementType = VT->getElementType();
2753 
2754       // gcc passes <1 x double> in memory. :(
2755       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2756         return;
2757 
2758       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2759       // pass them as integer.  For platforms where clang is the de facto
2760       // platform compiler, we must continue to use integer.
2761       if (!classifyIntegerMMXAsSSE() &&
2762           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2763            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2764            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2765            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2766         Current = Integer;
2767       else
2768         Current = SSE;
2769 
2770       // If this type crosses an eightbyte boundary, it should be
2771       // split.
2772       if (OffsetBase && OffsetBase != 64)
2773         Hi = Lo;
2774     } else if (Size == 128 ||
2775                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2776       QualType ElementType = VT->getElementType();
2777 
2778       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2779       if (passInt128VectorsInMem() && Size != 128 &&
2780           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2781            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2782         return;
2783 
2784       // Arguments of 256-bits are split into four eightbyte chunks. The
2785       // least significant one belongs to class SSE and all the others to class
2786       // SSEUP. The original Lo and Hi design considers that types can't be
2787       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2788       // This design isn't correct for 256-bits, but since there're no cases
2789       // where the upper parts would need to be inspected, avoid adding
2790       // complexity and just consider Hi to match the 64-256 part.
2791       //
2792       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2793       // registers if they are "named", i.e. not part of the "..." of a
2794       // variadic function.
2795       //
2796       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2797       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2798       Lo = SSE;
2799       Hi = SSEUp;
2800     }
2801     return;
2802   }
2803 
2804   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2805     QualType ET = getContext().getCanonicalType(CT->getElementType());
2806 
2807     uint64_t Size = getContext().getTypeSize(Ty);
2808     if (ET->isIntegralOrEnumerationType()) {
2809       if (Size <= 64)
2810         Current = Integer;
2811       else if (Size <= 128)
2812         Lo = Hi = Integer;
2813     } else if (ET == getContext().FloatTy) {
2814       Current = SSE;
2815     } else if (ET == getContext().DoubleTy) {
2816       Lo = Hi = SSE;
2817     } else if (ET == getContext().LongDoubleTy) {
2818       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2819       if (LDF == &llvm::APFloat::IEEEquad())
2820         Current = Memory;
2821       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2822         Current = ComplexX87;
2823       else if (LDF == &llvm::APFloat::IEEEdouble())
2824         Lo = Hi = SSE;
2825       else
2826         llvm_unreachable("unexpected long double representation!");
2827     }
2828 
2829     // If this complex type crosses an eightbyte boundary then it
2830     // should be split.
2831     uint64_t EB_Real = (OffsetBase) / 64;
2832     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2833     if (Hi == NoClass && EB_Real != EB_Imag)
2834       Hi = Lo;
2835 
2836     return;
2837   }
2838 
2839   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2840     if (EITy->getNumBits() <= 64)
2841       Current = Integer;
2842     else if (EITy->getNumBits() <= 128)
2843       Lo = Hi = Integer;
2844     // Larger values need to get passed in memory.
2845     return;
2846   }
2847 
2848   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2849     // Arrays are treated like structures.
2850 
2851     uint64_t Size = getContext().getTypeSize(Ty);
2852 
2853     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2854     // than eight eightbytes, ..., it has class MEMORY.
2855     if (Size > 512)
2856       return;
2857 
2858     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2859     // fields, it has class MEMORY.
2860     //
2861     // Only need to check alignment of array base.
2862     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2863       return;
2864 
2865     // Otherwise implement simplified merge. We could be smarter about
2866     // this, but it isn't worth it and would be harder to verify.
2867     Current = NoClass;
2868     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2869     uint64_t ArraySize = AT->getSize().getZExtValue();
2870 
2871     // The only case a 256-bit wide vector could be used is when the array
2872     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2873     // to work for sizes wider than 128, early check and fallback to memory.
2874     //
2875     if (Size > 128 &&
2876         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2877       return;
2878 
2879     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2880       Class FieldLo, FieldHi;
2881       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2882       Lo = merge(Lo, FieldLo);
2883       Hi = merge(Hi, FieldHi);
2884       if (Lo == Memory || Hi == Memory)
2885         break;
2886     }
2887 
2888     postMerge(Size, Lo, Hi);
2889     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2890     return;
2891   }
2892 
2893   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2894     uint64_t Size = getContext().getTypeSize(Ty);
2895 
2896     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2897     // than eight eightbytes, ..., it has class MEMORY.
2898     if (Size > 512)
2899       return;
2900 
2901     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2902     // copy constructor or a non-trivial destructor, it is passed by invisible
2903     // reference.
2904     if (getRecordArgABI(RT, getCXXABI()))
2905       return;
2906 
2907     const RecordDecl *RD = RT->getDecl();
2908 
2909     // Assume variable sized types are passed in memory.
2910     if (RD->hasFlexibleArrayMember())
2911       return;
2912 
2913     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2914 
2915     // Reset Lo class, this will be recomputed.
2916     Current = NoClass;
2917 
2918     // If this is a C++ record, classify the bases first.
2919     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2920       for (const auto &I : CXXRD->bases()) {
2921         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2922                "Unexpected base class!");
2923         const auto *Base =
2924             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2925 
2926         // Classify this field.
2927         //
2928         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2929         // single eightbyte, each is classified separately. Each eightbyte gets
2930         // initialized to class NO_CLASS.
2931         Class FieldLo, FieldHi;
2932         uint64_t Offset =
2933           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2934         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2935         Lo = merge(Lo, FieldLo);
2936         Hi = merge(Hi, FieldHi);
2937         if (Lo == Memory || Hi == Memory) {
2938           postMerge(Size, Lo, Hi);
2939           return;
2940         }
2941       }
2942     }
2943 
2944     // Classify the fields one at a time, merging the results.
2945     unsigned idx = 0;
2946     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2947            i != e; ++i, ++idx) {
2948       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2949       bool BitField = i->isBitField();
2950 
2951       // Ignore padding bit-fields.
2952       if (BitField && i->isUnnamedBitfield())
2953         continue;
2954 
2955       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2956       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2957       //
2958       // The only case a 256-bit wide vector could be used is when the struct
2959       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2960       // to work for sizes wider than 128, early check and fallback to memory.
2961       //
2962       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2963                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2964         Lo = Memory;
2965         postMerge(Size, Lo, Hi);
2966         return;
2967       }
2968       // Note, skip this test for bit-fields, see below.
2969       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2970         Lo = Memory;
2971         postMerge(Size, Lo, Hi);
2972         return;
2973       }
2974 
2975       // Classify this field.
2976       //
2977       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2978       // exceeds a single eightbyte, each is classified
2979       // separately. Each eightbyte gets initialized to class
2980       // NO_CLASS.
2981       Class FieldLo, FieldHi;
2982 
2983       // Bit-fields require special handling, they do not force the
2984       // structure to be passed in memory even if unaligned, and
2985       // therefore they can straddle an eightbyte.
2986       if (BitField) {
2987         assert(!i->isUnnamedBitfield());
2988         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2989         uint64_t Size = i->getBitWidthValue(getContext());
2990 
2991         uint64_t EB_Lo = Offset / 64;
2992         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2993 
2994         if (EB_Lo) {
2995           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2996           FieldLo = NoClass;
2997           FieldHi = Integer;
2998         } else {
2999           FieldLo = Integer;
3000           FieldHi = EB_Hi ? Integer : NoClass;
3001         }
3002       } else
3003         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3004       Lo = merge(Lo, FieldLo);
3005       Hi = merge(Hi, FieldHi);
3006       if (Lo == Memory || Hi == Memory)
3007         break;
3008     }
3009 
3010     postMerge(Size, Lo, Hi);
3011   }
3012 }
3013 
3014 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3015   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3016   // place naturally.
3017   if (!isAggregateTypeForABI(Ty)) {
3018     // Treat an enum type as its underlying type.
3019     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3020       Ty = EnumTy->getDecl()->getIntegerType();
3021 
3022     if (Ty->isExtIntType())
3023       return getNaturalAlignIndirect(Ty);
3024 
3025     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3026                                               : ABIArgInfo::getDirect());
3027   }
3028 
3029   return getNaturalAlignIndirect(Ty);
3030 }
3031 
3032 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3033   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3034     uint64_t Size = getContext().getTypeSize(VecTy);
3035     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3036     if (Size <= 64 || Size > LargestVector)
3037       return true;
3038     QualType EltTy = VecTy->getElementType();
3039     if (passInt128VectorsInMem() &&
3040         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3041          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3042       return true;
3043   }
3044 
3045   return false;
3046 }
3047 
3048 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3049                                             unsigned freeIntRegs) const {
3050   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3051   // place naturally.
3052   //
3053   // This assumption is optimistic, as there could be free registers available
3054   // when we need to pass this argument in memory, and LLVM could try to pass
3055   // the argument in the free register. This does not seem to happen currently,
3056   // but this code would be much safer if we could mark the argument with
3057   // 'onstack'. See PR12193.
3058   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3059       !Ty->isExtIntType()) {
3060     // Treat an enum type as its underlying type.
3061     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3062       Ty = EnumTy->getDecl()->getIntegerType();
3063 
3064     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3065                                               : ABIArgInfo::getDirect());
3066   }
3067 
3068   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3069     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3070 
3071   // Compute the byval alignment. We specify the alignment of the byval in all
3072   // cases so that the mid-level optimizer knows the alignment of the byval.
3073   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3074 
3075   // Attempt to avoid passing indirect results using byval when possible. This
3076   // is important for good codegen.
3077   //
3078   // We do this by coercing the value into a scalar type which the backend can
3079   // handle naturally (i.e., without using byval).
3080   //
3081   // For simplicity, we currently only do this when we have exhausted all of the
3082   // free integer registers. Doing this when there are free integer registers
3083   // would require more care, as we would have to ensure that the coerced value
3084   // did not claim the unused register. That would require either reording the
3085   // arguments to the function (so that any subsequent inreg values came first),
3086   // or only doing this optimization when there were no following arguments that
3087   // might be inreg.
3088   //
3089   // We currently expect it to be rare (particularly in well written code) for
3090   // arguments to be passed on the stack when there are still free integer
3091   // registers available (this would typically imply large structs being passed
3092   // by value), so this seems like a fair tradeoff for now.
3093   //
3094   // We can revisit this if the backend grows support for 'onstack' parameter
3095   // attributes. See PR12193.
3096   if (freeIntRegs == 0) {
3097     uint64_t Size = getContext().getTypeSize(Ty);
3098 
3099     // If this type fits in an eightbyte, coerce it into the matching integral
3100     // type, which will end up on the stack (with alignment 8).
3101     if (Align == 8 && Size <= 64)
3102       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3103                                                           Size));
3104   }
3105 
3106   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3107 }
3108 
3109 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3110 /// register. Pick an LLVM IR type that will be passed as a vector register.
3111 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3112   // Wrapper structs/arrays that only contain vectors are passed just like
3113   // vectors; strip them off if present.
3114   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3115     Ty = QualType(InnerTy, 0);
3116 
3117   llvm::Type *IRType = CGT.ConvertType(Ty);
3118   if (isa<llvm::VectorType>(IRType)) {
3119     // Don't pass vXi128 vectors in their native type, the backend can't
3120     // legalize them.
3121     if (passInt128VectorsInMem() &&
3122         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3123       // Use a vXi64 vector.
3124       uint64_t Size = getContext().getTypeSize(Ty);
3125       return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3126                                    Size / 64);
3127     }
3128 
3129     return IRType;
3130   }
3131 
3132   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3133     return IRType;
3134 
3135   // We couldn't find the preferred IR vector type for 'Ty'.
3136   uint64_t Size = getContext().getTypeSize(Ty);
3137   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3138 
3139 
3140   // Return a LLVM IR vector type based on the size of 'Ty'.
3141   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3142                                Size / 64);
3143 }
3144 
3145 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3146 /// is known to either be off the end of the specified type or being in
3147 /// alignment padding.  The user type specified is known to be at most 128 bits
3148 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3149 /// classification that put one of the two halves in the INTEGER class.
3150 ///
3151 /// It is conservatively correct to return false.
3152 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3153                                   unsigned EndBit, ASTContext &Context) {
3154   // If the bytes being queried are off the end of the type, there is no user
3155   // data hiding here.  This handles analysis of builtins, vectors and other
3156   // types that don't contain interesting padding.
3157   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3158   if (TySize <= StartBit)
3159     return true;
3160 
3161   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3162     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3163     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3164 
3165     // Check each element to see if the element overlaps with the queried range.
3166     for (unsigned i = 0; i != NumElts; ++i) {
3167       // If the element is after the span we care about, then we're done..
3168       unsigned EltOffset = i*EltSize;
3169       if (EltOffset >= EndBit) break;
3170 
3171       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3172       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3173                                  EndBit-EltOffset, Context))
3174         return false;
3175     }
3176     // If it overlaps no elements, then it is safe to process as padding.
3177     return true;
3178   }
3179 
3180   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3181     const RecordDecl *RD = RT->getDecl();
3182     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3183 
3184     // If this is a C++ record, check the bases first.
3185     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3186       for (const auto &I : CXXRD->bases()) {
3187         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3188                "Unexpected base class!");
3189         const auto *Base =
3190             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3191 
3192         // If the base is after the span we care about, ignore it.
3193         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3194         if (BaseOffset >= EndBit) continue;
3195 
3196         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3197         if (!BitsContainNoUserData(I.getType(), BaseStart,
3198                                    EndBit-BaseOffset, Context))
3199           return false;
3200       }
3201     }
3202 
3203     // Verify that no field has data that overlaps the region of interest.  Yes
3204     // this could be sped up a lot by being smarter about queried fields,
3205     // however we're only looking at structs up to 16 bytes, so we don't care
3206     // much.
3207     unsigned idx = 0;
3208     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3209          i != e; ++i, ++idx) {
3210       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3211 
3212       // If we found a field after the region we care about, then we're done.
3213       if (FieldOffset >= EndBit) break;
3214 
3215       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3216       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3217                                  Context))
3218         return false;
3219     }
3220 
3221     // If nothing in this record overlapped the area of interest, then we're
3222     // clean.
3223     return true;
3224   }
3225 
3226   return false;
3227 }
3228 
3229 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3230 /// float member at the specified offset.  For example, {int,{float}} has a
3231 /// float at offset 4.  It is conservatively correct for this routine to return
3232 /// false.
3233 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3234                                   const llvm::DataLayout &TD) {
3235   // Base case if we find a float.
3236   if (IROffset == 0 && IRType->isFloatTy())
3237     return true;
3238 
3239   // If this is a struct, recurse into the field at the specified offset.
3240   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3241     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3242     unsigned Elt = SL->getElementContainingOffset(IROffset);
3243     IROffset -= SL->getElementOffset(Elt);
3244     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3245   }
3246 
3247   // If this is an array, recurse into the field at the specified offset.
3248   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3249     llvm::Type *EltTy = ATy->getElementType();
3250     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3251     IROffset -= IROffset/EltSize*EltSize;
3252     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3253   }
3254 
3255   return false;
3256 }
3257 
3258 
3259 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3260 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3261 llvm::Type *X86_64ABIInfo::
3262 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3263                    QualType SourceTy, unsigned SourceOffset) const {
3264   // The only three choices we have are either double, <2 x float>, or float. We
3265   // pass as float if the last 4 bytes is just padding.  This happens for
3266   // structs that contain 3 floats.
3267   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3268                             SourceOffset*8+64, getContext()))
3269     return llvm::Type::getFloatTy(getVMContext());
3270 
3271   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3272   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3273   // case.
3274   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3275       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3276     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3277 
3278   return llvm::Type::getDoubleTy(getVMContext());
3279 }
3280 
3281 
3282 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3283 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3284 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3285 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3286 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3287 /// etc).
3288 ///
3289 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3290 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3291 /// the 8-byte value references.  PrefType may be null.
3292 ///
3293 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3294 /// an offset into this that we're processing (which is always either 0 or 8).
3295 ///
3296 llvm::Type *X86_64ABIInfo::
3297 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3298                        QualType SourceTy, unsigned SourceOffset) const {
3299   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3300   // returning an 8-byte unit starting with it.  See if we can safely use it.
3301   if (IROffset == 0) {
3302     // Pointers and int64's always fill the 8-byte unit.
3303     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3304         IRType->isIntegerTy(64))
3305       return IRType;
3306 
3307     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3308     // goodness in the source type is just tail padding.  This is allowed to
3309     // kick in for struct {double,int} on the int, but not on
3310     // struct{double,int,int} because we wouldn't return the second int.  We
3311     // have to do this analysis on the source type because we can't depend on
3312     // unions being lowered a specific way etc.
3313     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3314         IRType->isIntegerTy(32) ||
3315         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3316       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3317           cast<llvm::IntegerType>(IRType)->getBitWidth();
3318 
3319       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3320                                 SourceOffset*8+64, getContext()))
3321         return IRType;
3322     }
3323   }
3324 
3325   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3326     // If this is a struct, recurse into the field at the specified offset.
3327     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3328     if (IROffset < SL->getSizeInBytes()) {
3329       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3330       IROffset -= SL->getElementOffset(FieldIdx);
3331 
3332       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3333                                     SourceTy, SourceOffset);
3334     }
3335   }
3336 
3337   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3338     llvm::Type *EltTy = ATy->getElementType();
3339     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3340     unsigned EltOffset = IROffset/EltSize*EltSize;
3341     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3342                                   SourceOffset);
3343   }
3344 
3345   // Okay, we don't have any better idea of what to pass, so we pass this in an
3346   // integer register that isn't too big to fit the rest of the struct.
3347   unsigned TySizeInBytes =
3348     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3349 
3350   assert(TySizeInBytes != SourceOffset && "Empty field?");
3351 
3352   // It is always safe to classify this as an integer type up to i64 that
3353   // isn't larger than the structure.
3354   return llvm::IntegerType::get(getVMContext(),
3355                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3356 }
3357 
3358 
3359 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3360 /// be used as elements of a two register pair to pass or return, return a
3361 /// first class aggregate to represent them.  For example, if the low part of
3362 /// a by-value argument should be passed as i32* and the high part as float,
3363 /// return {i32*, float}.
3364 static llvm::Type *
3365 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3366                            const llvm::DataLayout &TD) {
3367   // In order to correctly satisfy the ABI, we need to the high part to start
3368   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3369   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3370   // the second element at offset 8.  Check for this:
3371   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3372   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3373   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3374   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3375 
3376   // To handle this, we have to increase the size of the low part so that the
3377   // second element will start at an 8 byte offset.  We can't increase the size
3378   // of the second element because it might make us access off the end of the
3379   // struct.
3380   if (HiStart != 8) {
3381     // There are usually two sorts of types the ABI generation code can produce
3382     // for the low part of a pair that aren't 8 bytes in size: float or
3383     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3384     // NaCl).
3385     // Promote these to a larger type.
3386     if (Lo->isFloatTy())
3387       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3388     else {
3389       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3390              && "Invalid/unknown lo type");
3391       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3392     }
3393   }
3394 
3395   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3396 
3397   // Verify that the second element is at an 8-byte offset.
3398   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3399          "Invalid x86-64 argument pair!");
3400   return Result;
3401 }
3402 
3403 ABIArgInfo X86_64ABIInfo::
3404 classifyReturnType(QualType RetTy) const {
3405   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3406   // classification algorithm.
3407   X86_64ABIInfo::Class Lo, Hi;
3408   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3409 
3410   // Check some invariants.
3411   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3412   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3413 
3414   llvm::Type *ResType = nullptr;
3415   switch (Lo) {
3416   case NoClass:
3417     if (Hi == NoClass)
3418       return ABIArgInfo::getIgnore();
3419     // If the low part is just padding, it takes no register, leave ResType
3420     // null.
3421     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3422            "Unknown missing lo part");
3423     break;
3424 
3425   case SSEUp:
3426   case X87Up:
3427     llvm_unreachable("Invalid classification for lo word.");
3428 
3429     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3430     // hidden argument.
3431   case Memory:
3432     return getIndirectReturnResult(RetTy);
3433 
3434     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3435     // available register of the sequence %rax, %rdx is used.
3436   case Integer:
3437     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3438 
3439     // If we have a sign or zero extended integer, make sure to return Extend
3440     // so that the parameter gets the right LLVM IR attributes.
3441     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3442       // Treat an enum type as its underlying type.
3443       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3444         RetTy = EnumTy->getDecl()->getIntegerType();
3445 
3446       if (RetTy->isIntegralOrEnumerationType() &&
3447           isPromotableIntegerTypeForABI(RetTy))
3448         return ABIArgInfo::getExtend(RetTy);
3449     }
3450     break;
3451 
3452     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3453     // available SSE register of the sequence %xmm0, %xmm1 is used.
3454   case SSE:
3455     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3456     break;
3457 
3458     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3459     // returned on the X87 stack in %st0 as 80-bit x87 number.
3460   case X87:
3461     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3462     break;
3463 
3464     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3465     // part of the value is returned in %st0 and the imaginary part in
3466     // %st1.
3467   case ComplexX87:
3468     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3469     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3470                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3471     break;
3472   }
3473 
3474   llvm::Type *HighPart = nullptr;
3475   switch (Hi) {
3476     // Memory was handled previously and X87 should
3477     // never occur as a hi class.
3478   case Memory:
3479   case X87:
3480     llvm_unreachable("Invalid classification for hi word.");
3481 
3482   case ComplexX87: // Previously handled.
3483   case NoClass:
3484     break;
3485 
3486   case Integer:
3487     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3488     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3489       return ABIArgInfo::getDirect(HighPart, 8);
3490     break;
3491   case SSE:
3492     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3493     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3494       return ABIArgInfo::getDirect(HighPart, 8);
3495     break;
3496 
3497     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3498     // is passed in the next available eightbyte chunk if the last used
3499     // vector register.
3500     //
3501     // SSEUP should always be preceded by SSE, just widen.
3502   case SSEUp:
3503     assert(Lo == SSE && "Unexpected SSEUp classification.");
3504     ResType = GetByteVectorType(RetTy);
3505     break;
3506 
3507     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3508     // returned together with the previous X87 value in %st0.
3509   case X87Up:
3510     // If X87Up is preceded by X87, we don't need to do
3511     // anything. However, in some cases with unions it may not be
3512     // preceded by X87. In such situations we follow gcc and pass the
3513     // extra bits in an SSE reg.
3514     if (Lo != X87) {
3515       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3516       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3517         return ABIArgInfo::getDirect(HighPart, 8);
3518     }
3519     break;
3520   }
3521 
3522   // If a high part was specified, merge it together with the low part.  It is
3523   // known to pass in the high eightbyte of the result.  We do this by forming a
3524   // first class struct aggregate with the high and low part: {low, high}
3525   if (HighPart)
3526     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3527 
3528   return ABIArgInfo::getDirect(ResType);
3529 }
3530 
3531 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3532   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3533   bool isNamedArg)
3534   const
3535 {
3536   Ty = useFirstFieldIfTransparentUnion(Ty);
3537 
3538   X86_64ABIInfo::Class Lo, Hi;
3539   classify(Ty, 0, Lo, Hi, isNamedArg);
3540 
3541   // Check some invariants.
3542   // FIXME: Enforce these by construction.
3543   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3544   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3545 
3546   neededInt = 0;
3547   neededSSE = 0;
3548   llvm::Type *ResType = nullptr;
3549   switch (Lo) {
3550   case NoClass:
3551     if (Hi == NoClass)
3552       return ABIArgInfo::getIgnore();
3553     // If the low part is just padding, it takes no register, leave ResType
3554     // null.
3555     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3556            "Unknown missing lo part");
3557     break;
3558 
3559     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3560     // on the stack.
3561   case Memory:
3562 
3563     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3564     // COMPLEX_X87, it is passed in memory.
3565   case X87:
3566   case ComplexX87:
3567     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3568       ++neededInt;
3569     return getIndirectResult(Ty, freeIntRegs);
3570 
3571   case SSEUp:
3572   case X87Up:
3573     llvm_unreachable("Invalid classification for lo word.");
3574 
3575     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3576     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3577     // and %r9 is used.
3578   case Integer:
3579     ++neededInt;
3580 
3581     // Pick an 8-byte type based on the preferred type.
3582     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3583 
3584     // If we have a sign or zero extended integer, make sure to return Extend
3585     // so that the parameter gets the right LLVM IR attributes.
3586     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3587       // Treat an enum type as its underlying type.
3588       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3589         Ty = EnumTy->getDecl()->getIntegerType();
3590 
3591       if (Ty->isIntegralOrEnumerationType() &&
3592           isPromotableIntegerTypeForABI(Ty))
3593         return ABIArgInfo::getExtend(Ty);
3594     }
3595 
3596     break;
3597 
3598     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3599     // available SSE register is used, the registers are taken in the
3600     // order from %xmm0 to %xmm7.
3601   case SSE: {
3602     llvm::Type *IRType = CGT.ConvertType(Ty);
3603     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3604     ++neededSSE;
3605     break;
3606   }
3607   }
3608 
3609   llvm::Type *HighPart = nullptr;
3610   switch (Hi) {
3611     // Memory was handled previously, ComplexX87 and X87 should
3612     // never occur as hi classes, and X87Up must be preceded by X87,
3613     // which is passed in memory.
3614   case Memory:
3615   case X87:
3616   case ComplexX87:
3617     llvm_unreachable("Invalid classification for hi word.");
3618 
3619   case NoClass: break;
3620 
3621   case Integer:
3622     ++neededInt;
3623     // Pick an 8-byte type based on the preferred type.
3624     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3625 
3626     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3627       return ABIArgInfo::getDirect(HighPart, 8);
3628     break;
3629 
3630     // X87Up generally doesn't occur here (long double is passed in
3631     // memory), except in situations involving unions.
3632   case X87Up:
3633   case SSE:
3634     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3635 
3636     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3637       return ABIArgInfo::getDirect(HighPart, 8);
3638 
3639     ++neededSSE;
3640     break;
3641 
3642     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3643     // eightbyte is passed in the upper half of the last used SSE
3644     // register.  This only happens when 128-bit vectors are passed.
3645   case SSEUp:
3646     assert(Lo == SSE && "Unexpected SSEUp classification");
3647     ResType = GetByteVectorType(Ty);
3648     break;
3649   }
3650 
3651   // If a high part was specified, merge it together with the low part.  It is
3652   // known to pass in the high eightbyte of the result.  We do this by forming a
3653   // first class struct aggregate with the high and low part: {low, high}
3654   if (HighPart)
3655     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3656 
3657   return ABIArgInfo::getDirect(ResType);
3658 }
3659 
3660 ABIArgInfo
3661 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3662                                              unsigned &NeededSSE) const {
3663   auto RT = Ty->getAs<RecordType>();
3664   assert(RT && "classifyRegCallStructType only valid with struct types");
3665 
3666   if (RT->getDecl()->hasFlexibleArrayMember())
3667     return getIndirectReturnResult(Ty);
3668 
3669   // Sum up bases
3670   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3671     if (CXXRD->isDynamicClass()) {
3672       NeededInt = NeededSSE = 0;
3673       return getIndirectReturnResult(Ty);
3674     }
3675 
3676     for (const auto &I : CXXRD->bases())
3677       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3678               .isIndirect()) {
3679         NeededInt = NeededSSE = 0;
3680         return getIndirectReturnResult(Ty);
3681       }
3682   }
3683 
3684   // Sum up members
3685   for (const auto *FD : RT->getDecl()->fields()) {
3686     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3687       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3688               .isIndirect()) {
3689         NeededInt = NeededSSE = 0;
3690         return getIndirectReturnResult(Ty);
3691       }
3692     } else {
3693       unsigned LocalNeededInt, LocalNeededSSE;
3694       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3695                                LocalNeededSSE, true)
3696               .isIndirect()) {
3697         NeededInt = NeededSSE = 0;
3698         return getIndirectReturnResult(Ty);
3699       }
3700       NeededInt += LocalNeededInt;
3701       NeededSSE += LocalNeededSSE;
3702     }
3703   }
3704 
3705   return ABIArgInfo::getDirect();
3706 }
3707 
3708 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3709                                                     unsigned &NeededInt,
3710                                                     unsigned &NeededSSE) const {
3711 
3712   NeededInt = 0;
3713   NeededSSE = 0;
3714 
3715   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3716 }
3717 
3718 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3719 
3720   const unsigned CallingConv = FI.getCallingConvention();
3721   // It is possible to force Win64 calling convention on any x86_64 target by
3722   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3723   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3724   if (CallingConv == llvm::CallingConv::Win64) {
3725     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3726     Win64ABIInfo.computeInfo(FI);
3727     return;
3728   }
3729 
3730   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3731 
3732   // Keep track of the number of assigned registers.
3733   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3734   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3735   unsigned NeededInt, NeededSSE;
3736 
3737   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3738     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3739         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3740       FI.getReturnInfo() =
3741           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3742       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3743         FreeIntRegs -= NeededInt;
3744         FreeSSERegs -= NeededSSE;
3745       } else {
3746         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3747       }
3748     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3749                getContext().getCanonicalType(FI.getReturnType()
3750                                                  ->getAs<ComplexType>()
3751                                                  ->getElementType()) ==
3752                    getContext().LongDoubleTy)
3753       // Complex Long Double Type is passed in Memory when Regcall
3754       // calling convention is used.
3755       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3756     else
3757       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3758   }
3759 
3760   // If the return value is indirect, then the hidden argument is consuming one
3761   // integer register.
3762   if (FI.getReturnInfo().isIndirect())
3763     --FreeIntRegs;
3764 
3765   // The chain argument effectively gives us another free register.
3766   if (FI.isChainCall())
3767     ++FreeIntRegs;
3768 
3769   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3770   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3771   // get assigned (in left-to-right order) for passing as follows...
3772   unsigned ArgNo = 0;
3773   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3774        it != ie; ++it, ++ArgNo) {
3775     bool IsNamedArg = ArgNo < NumRequiredArgs;
3776 
3777     if (IsRegCall && it->type->isStructureOrClassType())
3778       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3779     else
3780       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3781                                       NeededSSE, IsNamedArg);
3782 
3783     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3784     // eightbyte of an argument, the whole argument is passed on the
3785     // stack. If registers have already been assigned for some
3786     // eightbytes of such an argument, the assignments get reverted.
3787     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3788       FreeIntRegs -= NeededInt;
3789       FreeSSERegs -= NeededSSE;
3790     } else {
3791       it->info = getIndirectResult(it->type, FreeIntRegs);
3792     }
3793   }
3794 }
3795 
3796 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3797                                          Address VAListAddr, QualType Ty) {
3798   Address overflow_arg_area_p =
3799       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3800   llvm::Value *overflow_arg_area =
3801     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3802 
3803   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3804   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3805   // It isn't stated explicitly in the standard, but in practice we use
3806   // alignment greater than 16 where necessary.
3807   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3808   if (Align > CharUnits::fromQuantity(8)) {
3809     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3810                                                       Align);
3811   }
3812 
3813   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3814   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3815   llvm::Value *Res =
3816     CGF.Builder.CreateBitCast(overflow_arg_area,
3817                               llvm::PointerType::getUnqual(LTy));
3818 
3819   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3820   // l->overflow_arg_area + sizeof(type).
3821   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3822   // an 8 byte boundary.
3823 
3824   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3825   llvm::Value *Offset =
3826       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3827   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3828                                             "overflow_arg_area.next");
3829   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3830 
3831   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3832   return Address(Res, Align);
3833 }
3834 
3835 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3836                                  QualType Ty) const {
3837   // Assume that va_list type is correct; should be pointer to LLVM type:
3838   // struct {
3839   //   i32 gp_offset;
3840   //   i32 fp_offset;
3841   //   i8* overflow_arg_area;
3842   //   i8* reg_save_area;
3843   // };
3844   unsigned neededInt, neededSSE;
3845 
3846   Ty = getContext().getCanonicalType(Ty);
3847   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3848                                        /*isNamedArg*/false);
3849 
3850   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3851   // in the registers. If not go to step 7.
3852   if (!neededInt && !neededSSE)
3853     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3854 
3855   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3856   // general purpose registers needed to pass type and num_fp to hold
3857   // the number of floating point registers needed.
3858 
3859   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3860   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3861   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3862   //
3863   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3864   // register save space).
3865 
3866   llvm::Value *InRegs = nullptr;
3867   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3868   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3869   if (neededInt) {
3870     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3871     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3872     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3873     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3874   }
3875 
3876   if (neededSSE) {
3877     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3878     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3879     llvm::Value *FitsInFP =
3880       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3881     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3882     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3883   }
3884 
3885   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3886   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3887   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3888   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3889 
3890   // Emit code to load the value if it was passed in registers.
3891 
3892   CGF.EmitBlock(InRegBlock);
3893 
3894   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3895   // an offset of l->gp_offset and/or l->fp_offset. This may require
3896   // copying to a temporary location in case the parameter is passed
3897   // in different register classes or requires an alignment greater
3898   // than 8 for general purpose registers and 16 for XMM registers.
3899   //
3900   // FIXME: This really results in shameful code when we end up needing to
3901   // collect arguments from different places; often what should result in a
3902   // simple assembling of a structure from scattered addresses has many more
3903   // loads than necessary. Can we clean this up?
3904   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3905   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3906       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3907 
3908   Address RegAddr = Address::invalid();
3909   if (neededInt && neededSSE) {
3910     // FIXME: Cleanup.
3911     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3912     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3913     Address Tmp = CGF.CreateMemTemp(Ty);
3914     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3915     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3916     llvm::Type *TyLo = ST->getElementType(0);
3917     llvm::Type *TyHi = ST->getElementType(1);
3918     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3919            "Unexpected ABI info for mixed regs");
3920     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3921     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3922     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3923     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3924     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3925     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3926 
3927     // Copy the first element.
3928     // FIXME: Our choice of alignment here and below is probably pessimistic.
3929     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3930         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3931         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3932     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3933 
3934     // Copy the second element.
3935     V = CGF.Builder.CreateAlignedLoad(
3936         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3937         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3938     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3939 
3940     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3941   } else if (neededInt) {
3942     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3943                       CharUnits::fromQuantity(8));
3944     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3945 
3946     // Copy to a temporary if necessary to ensure the appropriate alignment.
3947     std::pair<CharUnits, CharUnits> SizeAlign =
3948         getContext().getTypeInfoInChars(Ty);
3949     uint64_t TySize = SizeAlign.first.getQuantity();
3950     CharUnits TyAlign = SizeAlign.second;
3951 
3952     // Copy into a temporary if the type is more aligned than the
3953     // register save area.
3954     if (TyAlign.getQuantity() > 8) {
3955       Address Tmp = CGF.CreateMemTemp(Ty);
3956       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3957       RegAddr = Tmp;
3958     }
3959 
3960   } else if (neededSSE == 1) {
3961     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3962                       CharUnits::fromQuantity(16));
3963     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3964   } else {
3965     assert(neededSSE == 2 && "Invalid number of needed registers!");
3966     // SSE registers are spaced 16 bytes apart in the register save
3967     // area, we need to collect the two eightbytes together.
3968     // The ABI isn't explicit about this, but it seems reasonable
3969     // to assume that the slots are 16-byte aligned, since the stack is
3970     // naturally 16-byte aligned and the prologue is expected to store
3971     // all the SSE registers to the RSA.
3972     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3973                                 CharUnits::fromQuantity(16));
3974     Address RegAddrHi =
3975       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3976                                              CharUnits::fromQuantity(16));
3977     llvm::Type *ST = AI.canHaveCoerceToType()
3978                          ? AI.getCoerceToType()
3979                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3980     llvm::Value *V;
3981     Address Tmp = CGF.CreateMemTemp(Ty);
3982     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3983     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3984         RegAddrLo, ST->getStructElementType(0)));
3985     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3986     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3987         RegAddrHi, ST->getStructElementType(1)));
3988     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3989 
3990     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3991   }
3992 
3993   // AMD64-ABI 3.5.7p5: Step 5. Set:
3994   // l->gp_offset = l->gp_offset + num_gp * 8
3995   // l->fp_offset = l->fp_offset + num_fp * 16.
3996   if (neededInt) {
3997     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3998     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3999                             gp_offset_p);
4000   }
4001   if (neededSSE) {
4002     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4003     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4004                             fp_offset_p);
4005   }
4006   CGF.EmitBranch(ContBlock);
4007 
4008   // Emit code to load the value if it was passed in memory.
4009 
4010   CGF.EmitBlock(InMemBlock);
4011   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4012 
4013   // Return the appropriate result.
4014 
4015   CGF.EmitBlock(ContBlock);
4016   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4017                                  "vaarg.addr");
4018   return ResAddr;
4019 }
4020 
4021 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4022                                    QualType Ty) const {
4023   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4024                           CGF.getContext().getTypeInfoInChars(Ty),
4025                           CharUnits::fromQuantity(8),
4026                           /*allowHigherAlign*/ false);
4027 }
4028 
4029 ABIArgInfo
4030 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4031                                     const ABIArgInfo &current) const {
4032   // Assumes vectorCall calling convention.
4033   const Type *Base = nullptr;
4034   uint64_t NumElts = 0;
4035 
4036   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4037       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4038     FreeSSERegs -= NumElts;
4039     return getDirectX86Hva();
4040   }
4041   return current;
4042 }
4043 
4044 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4045                                       bool IsReturnType, bool IsVectorCall,
4046                                       bool IsRegCall) const {
4047 
4048   if (Ty->isVoidType())
4049     return ABIArgInfo::getIgnore();
4050 
4051   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4052     Ty = EnumTy->getDecl()->getIntegerType();
4053 
4054   TypeInfo Info = getContext().getTypeInfo(Ty);
4055   uint64_t Width = Info.Width;
4056   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4057 
4058   const RecordType *RT = Ty->getAs<RecordType>();
4059   if (RT) {
4060     if (!IsReturnType) {
4061       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4062         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4063     }
4064 
4065     if (RT->getDecl()->hasFlexibleArrayMember())
4066       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4067 
4068   }
4069 
4070   const Type *Base = nullptr;
4071   uint64_t NumElts = 0;
4072   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4073   // other targets.
4074   if ((IsVectorCall || IsRegCall) &&
4075       isHomogeneousAggregate(Ty, Base, NumElts)) {
4076     if (IsRegCall) {
4077       if (FreeSSERegs >= NumElts) {
4078         FreeSSERegs -= NumElts;
4079         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4080           return ABIArgInfo::getDirect();
4081         return ABIArgInfo::getExpand();
4082       }
4083       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4084     } else if (IsVectorCall) {
4085       if (FreeSSERegs >= NumElts &&
4086           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4087         FreeSSERegs -= NumElts;
4088         return ABIArgInfo::getDirect();
4089       } else if (IsReturnType) {
4090         return ABIArgInfo::getExpand();
4091       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4092         // HVAs are delayed and reclassified in the 2nd step.
4093         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4094       }
4095     }
4096   }
4097 
4098   if (Ty->isMemberPointerType()) {
4099     // If the member pointer is represented by an LLVM int or ptr, pass it
4100     // directly.
4101     llvm::Type *LLTy = CGT.ConvertType(Ty);
4102     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4103       return ABIArgInfo::getDirect();
4104   }
4105 
4106   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4107     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4108     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4109     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4110       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4111 
4112     // Otherwise, coerce it to a small integer.
4113     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4114   }
4115 
4116   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4117     switch (BT->getKind()) {
4118     case BuiltinType::Bool:
4119       // Bool type is always extended to the ABI, other builtin types are not
4120       // extended.
4121       return ABIArgInfo::getExtend(Ty);
4122 
4123     case BuiltinType::LongDouble:
4124       // Mingw64 GCC uses the old 80 bit extended precision floating point
4125       // unit. It passes them indirectly through memory.
4126       if (IsMingw64) {
4127         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4128         if (LDF == &llvm::APFloat::x87DoubleExtended())
4129           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4130       }
4131       break;
4132 
4133     case BuiltinType::Int128:
4134     case BuiltinType::UInt128:
4135       // If it's a parameter type, the normal ABI rule is that arguments larger
4136       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4137       // even though it isn't particularly efficient.
4138       if (!IsReturnType)
4139         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4140 
4141       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4142       // Clang matches them for compatibility.
4143       return ABIArgInfo::getDirect(
4144           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
4145 
4146     default:
4147       break;
4148     }
4149   }
4150 
4151   if (Ty->isExtIntType()) {
4152     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4153     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4154     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4155     // anyway as long is it fits in them, so we don't have to check the power of
4156     // 2.
4157     if (Width <= 64)
4158       return ABIArgInfo::getDirect();
4159     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4160   }
4161 
4162   return ABIArgInfo::getDirect();
4163 }
4164 
4165 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4166                                              unsigned FreeSSERegs,
4167                                              bool IsVectorCall,
4168                                              bool IsRegCall) const {
4169   unsigned Count = 0;
4170   for (auto &I : FI.arguments()) {
4171     // Vectorcall in x64 only permits the first 6 arguments to be passed
4172     // as XMM/YMM registers.
4173     if (Count < VectorcallMaxParamNumAsReg)
4174       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4175     else {
4176       // Since these cannot be passed in registers, pretend no registers
4177       // are left.
4178       unsigned ZeroSSERegsAvail = 0;
4179       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4180                         IsVectorCall, IsRegCall);
4181     }
4182     ++Count;
4183   }
4184 
4185   for (auto &I : FI.arguments()) {
4186     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4187   }
4188 }
4189 
4190 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4191   const unsigned CC = FI.getCallingConvention();
4192   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4193   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4194 
4195   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4196   // classification rules.
4197   if (CC == llvm::CallingConv::X86_64_SysV) {
4198     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4199     SysVABIInfo.computeInfo(FI);
4200     return;
4201   }
4202 
4203   unsigned FreeSSERegs = 0;
4204   if (IsVectorCall) {
4205     // We can use up to 4 SSE return registers with vectorcall.
4206     FreeSSERegs = 4;
4207   } else if (IsRegCall) {
4208     // RegCall gives us 16 SSE registers.
4209     FreeSSERegs = 16;
4210   }
4211 
4212   if (!getCXXABI().classifyReturnType(FI))
4213     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4214                                   IsVectorCall, IsRegCall);
4215 
4216   if (IsVectorCall) {
4217     // We can use up to 6 SSE register parameters with vectorcall.
4218     FreeSSERegs = 6;
4219   } else if (IsRegCall) {
4220     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4221     FreeSSERegs = 16;
4222   }
4223 
4224   if (IsVectorCall) {
4225     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4226   } else {
4227     for (auto &I : FI.arguments())
4228       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4229   }
4230 
4231 }
4232 
4233 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4234                                     QualType Ty) const {
4235 
4236   bool IsIndirect = false;
4237 
4238   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4239   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4240   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4241     uint64_t Width = getContext().getTypeSize(Ty);
4242     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4243   }
4244 
4245   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4246                           CGF.getContext().getTypeInfoInChars(Ty),
4247                           CharUnits::fromQuantity(8),
4248                           /*allowHigherAlign*/ false);
4249 }
4250 
4251 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4252                                         llvm::Value *Address, bool Is64Bit,
4253                                         bool IsAIX) {
4254   // This is calculated from the LLVM and GCC tables and verified
4255   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4256 
4257   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4258 
4259   llvm::IntegerType *i8 = CGF.Int8Ty;
4260   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4261   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4262   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4263 
4264   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4265   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4266 
4267   // 32-63: fp0-31, the 8-byte floating-point registers
4268   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4269 
4270   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4271   // 64: mq
4272   // 65: lr
4273   // 66: ctr
4274   // 67: ap
4275   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4276 
4277   // 68-76 are various 4-byte special-purpose registers:
4278   // 68-75 cr0-7
4279   // 76: xer
4280   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4281 
4282   // 77-108: v0-31, the 16-byte vector registers
4283   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4284 
4285   // 109: vrsave
4286   // 110: vscr
4287   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4288 
4289   // AIX does not utilize the rest of the registers.
4290   if (IsAIX)
4291     return false;
4292 
4293   // 111: spe_acc
4294   // 112: spefscr
4295   // 113: sfp
4296   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4297 
4298   if (!Is64Bit)
4299     return false;
4300 
4301   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4302   // or above CPU.
4303   // 64-bit only registers:
4304   // 114: tfhar
4305   // 115: tfiar
4306   // 116: texasr
4307   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4308 
4309   return false;
4310 }
4311 
4312 // AIX
4313 namespace {
4314 /// AIXABIInfo - The AIX XCOFF ABI information.
4315 class AIXABIInfo : public ABIInfo {
4316   const bool Is64Bit;
4317   const unsigned PtrByteSize;
4318   CharUnits getParamTypeAlignment(QualType Ty) const;
4319 
4320 public:
4321   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4322       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4323 
4324   bool isPromotableTypeForABI(QualType Ty) const;
4325 
4326   ABIArgInfo classifyReturnType(QualType RetTy) const;
4327   ABIArgInfo classifyArgumentType(QualType Ty) const;
4328 
4329   void computeInfo(CGFunctionInfo &FI) const override {
4330     if (!getCXXABI().classifyReturnType(FI))
4331       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4332 
4333     for (auto &I : FI.arguments())
4334       I.info = classifyArgumentType(I.type);
4335   }
4336 
4337   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4338                     QualType Ty) const override;
4339 };
4340 
4341 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4342   const bool Is64Bit;
4343 
4344 public:
4345   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4346       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4347         Is64Bit(Is64Bit) {}
4348   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4349     return 1; // r1 is the dedicated stack pointer
4350   }
4351 
4352   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4353                                llvm::Value *Address) const override;
4354 };
4355 } // namespace
4356 
4357 // Return true if the ABI requires Ty to be passed sign- or zero-
4358 // extended to 32/64 bits.
4359 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4360   // Treat an enum type as its underlying type.
4361   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4362     Ty = EnumTy->getDecl()->getIntegerType();
4363 
4364   // Promotable integer types are required to be promoted by the ABI.
4365   if (Ty->isPromotableIntegerType())
4366     return true;
4367 
4368   if (!Is64Bit)
4369     return false;
4370 
4371   // For 64 bit mode, in addition to the usual promotable integer types, we also
4372   // need to extend all 32-bit types, since the ABI requires promotion to 64
4373   // bits.
4374   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4375     switch (BT->getKind()) {
4376     case BuiltinType::Int:
4377     case BuiltinType::UInt:
4378       return true;
4379     default:
4380       break;
4381     }
4382 
4383   return false;
4384 }
4385 
4386 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4387   if (RetTy->isAnyComplexType())
4388     llvm::report_fatal_error("complex type is not supported on AIX yet");
4389 
4390   if (RetTy->isVectorType())
4391     llvm::report_fatal_error("vector type is not supported on AIX yet");
4392 
4393   if (RetTy->isVoidType())
4394     return ABIArgInfo::getIgnore();
4395 
4396   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4397   // alignment here.
4398   if (isAggregateTypeForABI(RetTy))
4399     return getNaturalAlignIndirect(RetTy);
4400 
4401   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4402                                         : ABIArgInfo::getDirect());
4403 }
4404 
4405 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4406   Ty = useFirstFieldIfTransparentUnion(Ty);
4407 
4408   if (Ty->isAnyComplexType())
4409     llvm::report_fatal_error("complex type is not supported on AIX yet");
4410 
4411   if (Ty->isVectorType())
4412     llvm::report_fatal_error("vector type is not supported on AIX yet");
4413 
4414   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4415   // alignment here.
4416   if (isAggregateTypeForABI(Ty)) {
4417     // Records with non-trivial destructors/copy-constructors should not be
4418     // passed by value.
4419     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4420       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4421 
4422     CharUnits CCAlign = getParamTypeAlignment(Ty);
4423     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4424 
4425     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4426                                    /*Realign*/ TyAlign > CCAlign);
4427   }
4428 
4429   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4430                                      : ABIArgInfo::getDirect());
4431 }
4432 
4433 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4434   if (Ty->isAnyComplexType())
4435     llvm::report_fatal_error("complex type is not supported on AIX yet");
4436 
4437   if (Ty->isVectorType())
4438     llvm::report_fatal_error("vector type is not supported on AIX yet");
4439 
4440   // If the structure contains a vector type, the alignment is 16.
4441   if (isRecordWithSIMDVectorType(getContext(), Ty))
4442     return CharUnits::fromQuantity(16);
4443 
4444   return CharUnits::fromQuantity(PtrByteSize);
4445 }
4446 
4447 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4448                               QualType Ty) const {
4449   if (Ty->isAnyComplexType())
4450     llvm::report_fatal_error("complex type is not supported on AIX yet");
4451 
4452   if (Ty->isVectorType())
4453     llvm::report_fatal_error("vector type is not supported on AIX yet");
4454 
4455   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4456   TypeInfo.second = getParamTypeAlignment(Ty);
4457 
4458   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4459 
4460   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4461                           SlotSize, /*AllowHigher*/ true);
4462 }
4463 
4464 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4465     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4466   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4467 }
4468 
4469 // PowerPC-32
4470 namespace {
4471 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4472 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4473   bool IsSoftFloatABI;
4474   bool IsRetSmallStructInRegABI;
4475 
4476   CharUnits getParamTypeAlignment(QualType Ty) const;
4477 
4478 public:
4479   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4480                      bool RetSmallStructInRegABI)
4481       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4482         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4483 
4484   ABIArgInfo classifyReturnType(QualType RetTy) const;
4485 
4486   void computeInfo(CGFunctionInfo &FI) const override {
4487     if (!getCXXABI().classifyReturnType(FI))
4488       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4489     for (auto &I : FI.arguments())
4490       I.info = classifyArgumentType(I.type);
4491   }
4492 
4493   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4494                     QualType Ty) const override;
4495 };
4496 
4497 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4498 public:
4499   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4500                          bool RetSmallStructInRegABI)
4501       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4502             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4503 
4504   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4505                                      const CodeGenOptions &Opts);
4506 
4507   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4508     // This is recovered from gcc output.
4509     return 1; // r1 is the dedicated stack pointer
4510   }
4511 
4512   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4513                                llvm::Value *Address) const override;
4514 };
4515 }
4516 
4517 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4518   // Complex types are passed just like their elements.
4519   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4520     Ty = CTy->getElementType();
4521 
4522   if (Ty->isVectorType())
4523     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4524                                                                        : 4);
4525 
4526   // For single-element float/vector structs, we consider the whole type
4527   // to have the same alignment requirements as its single element.
4528   const Type *AlignTy = nullptr;
4529   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4530     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4531     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4532         (BT && BT->isFloatingPoint()))
4533       AlignTy = EltType;
4534   }
4535 
4536   if (AlignTy)
4537     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4538   return CharUnits::fromQuantity(4);
4539 }
4540 
4541 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4542   uint64_t Size;
4543 
4544   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4545   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4546       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4547     // System V ABI (1995), page 3-22, specified:
4548     // > A structure or union whose size is less than or equal to 8 bytes
4549     // > shall be returned in r3 and r4, as if it were first stored in the
4550     // > 8-byte aligned memory area and then the low addressed word were
4551     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4552     // > the last member of the structure or union are not defined.
4553     //
4554     // GCC for big-endian PPC32 inserts the pad before the first member,
4555     // not "beyond the last member" of the struct.  To stay compatible
4556     // with GCC, we coerce the struct to an integer of the same size.
4557     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4558     if (Size == 0)
4559       return ABIArgInfo::getIgnore();
4560     else {
4561       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4562       return ABIArgInfo::getDirect(CoerceTy);
4563     }
4564   }
4565 
4566   return DefaultABIInfo::classifyReturnType(RetTy);
4567 }
4568 
4569 // TODO: this implementation is now likely redundant with
4570 // DefaultABIInfo::EmitVAArg.
4571 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4572                                       QualType Ty) const {
4573   if (getTarget().getTriple().isOSDarwin()) {
4574     auto TI = getContext().getTypeInfoInChars(Ty);
4575     TI.second = getParamTypeAlignment(Ty);
4576 
4577     CharUnits SlotSize = CharUnits::fromQuantity(4);
4578     return emitVoidPtrVAArg(CGF, VAList, Ty,
4579                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4580                             /*AllowHigherAlign=*/true);
4581   }
4582 
4583   const unsigned OverflowLimit = 8;
4584   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4585     // TODO: Implement this. For now ignore.
4586     (void)CTy;
4587     return Address::invalid(); // FIXME?
4588   }
4589 
4590   // struct __va_list_tag {
4591   //   unsigned char gpr;
4592   //   unsigned char fpr;
4593   //   unsigned short reserved;
4594   //   void *overflow_arg_area;
4595   //   void *reg_save_area;
4596   // };
4597 
4598   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4599   bool isInt =
4600       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4601   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4602 
4603   // All aggregates are passed indirectly?  That doesn't seem consistent
4604   // with the argument-lowering code.
4605   bool isIndirect = Ty->isAggregateType();
4606 
4607   CGBuilderTy &Builder = CGF.Builder;
4608 
4609   // The calling convention either uses 1-2 GPRs or 1 FPR.
4610   Address NumRegsAddr = Address::invalid();
4611   if (isInt || IsSoftFloatABI) {
4612     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4613   } else {
4614     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4615   }
4616 
4617   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4618 
4619   // "Align" the register count when TY is i64.
4620   if (isI64 || (isF64 && IsSoftFloatABI)) {
4621     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4622     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4623   }
4624 
4625   llvm::Value *CC =
4626       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4627 
4628   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4629   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4630   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4631 
4632   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4633 
4634   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4635   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4636 
4637   // Case 1: consume registers.
4638   Address RegAddr = Address::invalid();
4639   {
4640     CGF.EmitBlock(UsingRegs);
4641 
4642     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4643     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4644                       CharUnits::fromQuantity(8));
4645     assert(RegAddr.getElementType() == CGF.Int8Ty);
4646 
4647     // Floating-point registers start after the general-purpose registers.
4648     if (!(isInt || IsSoftFloatABI)) {
4649       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4650                                                    CharUnits::fromQuantity(32));
4651     }
4652 
4653     // Get the address of the saved value by scaling the number of
4654     // registers we've used by the number of
4655     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4656     llvm::Value *RegOffset =
4657       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4658     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4659                                             RegAddr.getPointer(), RegOffset),
4660                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4661     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4662 
4663     // Increase the used-register count.
4664     NumRegs =
4665       Builder.CreateAdd(NumRegs,
4666                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4667     Builder.CreateStore(NumRegs, NumRegsAddr);
4668 
4669     CGF.EmitBranch(Cont);
4670   }
4671 
4672   // Case 2: consume space in the overflow area.
4673   Address MemAddr = Address::invalid();
4674   {
4675     CGF.EmitBlock(UsingOverflow);
4676 
4677     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4678 
4679     // Everything in the overflow area is rounded up to a size of at least 4.
4680     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4681 
4682     CharUnits Size;
4683     if (!isIndirect) {
4684       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4685       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4686     } else {
4687       Size = CGF.getPointerSize();
4688     }
4689 
4690     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4691     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4692                          OverflowAreaAlign);
4693     // Round up address of argument to alignment
4694     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4695     if (Align > OverflowAreaAlign) {
4696       llvm::Value *Ptr = OverflowArea.getPointer();
4697       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4698                                                            Align);
4699     }
4700 
4701     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4702 
4703     // Increase the overflow area.
4704     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4705     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4706     CGF.EmitBranch(Cont);
4707   }
4708 
4709   CGF.EmitBlock(Cont);
4710 
4711   // Merge the cases with a phi.
4712   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4713                                 "vaarg.addr");
4714 
4715   // Load the pointer if the argument was passed indirectly.
4716   if (isIndirect) {
4717     Result = Address(Builder.CreateLoad(Result, "aggr"),
4718                      getContext().getTypeAlignInChars(Ty));
4719   }
4720 
4721   return Result;
4722 }
4723 
4724 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4725     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4726   assert(Triple.getArch() == llvm::Triple::ppc);
4727 
4728   switch (Opts.getStructReturnConvention()) {
4729   case CodeGenOptions::SRCK_Default:
4730     break;
4731   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4732     return false;
4733   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4734     return true;
4735   }
4736 
4737   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4738     return true;
4739 
4740   return false;
4741 }
4742 
4743 bool
4744 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4745                                                 llvm::Value *Address) const {
4746   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4747                                      /*IsAIX*/ false);
4748 }
4749 
4750 // PowerPC-64
4751 
4752 namespace {
4753 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4754 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4755 public:
4756   enum ABIKind {
4757     ELFv1 = 0,
4758     ELFv2
4759   };
4760 
4761 private:
4762   static const unsigned GPRBits = 64;
4763   ABIKind Kind;
4764   bool HasQPX;
4765   bool IsSoftFloatABI;
4766 
4767   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4768   // will be passed in a QPX register.
4769   bool IsQPXVectorTy(const Type *Ty) const {
4770     if (!HasQPX)
4771       return false;
4772 
4773     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4774       unsigned NumElements = VT->getNumElements();
4775       if (NumElements == 1)
4776         return false;
4777 
4778       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4779         if (getContext().getTypeSize(Ty) <= 256)
4780           return true;
4781       } else if (VT->getElementType()->
4782                    isSpecificBuiltinType(BuiltinType::Float)) {
4783         if (getContext().getTypeSize(Ty) <= 128)
4784           return true;
4785       }
4786     }
4787 
4788     return false;
4789   }
4790 
4791   bool IsQPXVectorTy(QualType Ty) const {
4792     return IsQPXVectorTy(Ty.getTypePtr());
4793   }
4794 
4795 public:
4796   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4797                      bool SoftFloatABI)
4798       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4799         IsSoftFloatABI(SoftFloatABI) {}
4800 
4801   bool isPromotableTypeForABI(QualType Ty) const;
4802   CharUnits getParamTypeAlignment(QualType Ty) const;
4803 
4804   ABIArgInfo classifyReturnType(QualType RetTy) const;
4805   ABIArgInfo classifyArgumentType(QualType Ty) const;
4806 
4807   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4808   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4809                                          uint64_t Members) const override;
4810 
4811   // TODO: We can add more logic to computeInfo to improve performance.
4812   // Example: For aggregate arguments that fit in a register, we could
4813   // use getDirectInReg (as is done below for structs containing a single
4814   // floating-point value) to avoid pushing them to memory on function
4815   // entry.  This would require changing the logic in PPCISelLowering
4816   // when lowering the parameters in the caller and args in the callee.
4817   void computeInfo(CGFunctionInfo &FI) const override {
4818     if (!getCXXABI().classifyReturnType(FI))
4819       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4820     for (auto &I : FI.arguments()) {
4821       // We rely on the default argument classification for the most part.
4822       // One exception:  An aggregate containing a single floating-point
4823       // or vector item must be passed in a register if one is available.
4824       const Type *T = isSingleElementStruct(I.type, getContext());
4825       if (T) {
4826         const BuiltinType *BT = T->getAs<BuiltinType>();
4827         if (IsQPXVectorTy(T) ||
4828             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4829             (BT && BT->isFloatingPoint())) {
4830           QualType QT(T, 0);
4831           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4832           continue;
4833         }
4834       }
4835       I.info = classifyArgumentType(I.type);
4836     }
4837   }
4838 
4839   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4840                     QualType Ty) const override;
4841 
4842   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4843                                     bool asReturnValue) const override {
4844     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4845   }
4846 
4847   bool isSwiftErrorInRegister() const override {
4848     return false;
4849   }
4850 };
4851 
4852 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4853 
4854 public:
4855   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4856                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4857                                bool SoftFloatABI)
4858       : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>(
4859             CGT, Kind, HasQPX, SoftFloatABI)) {}
4860 
4861   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4862     // This is recovered from gcc output.
4863     return 1; // r1 is the dedicated stack pointer
4864   }
4865 
4866   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4867                                llvm::Value *Address) const override;
4868 };
4869 
4870 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4871 public:
4872   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4873 
4874   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4875     // This is recovered from gcc output.
4876     return 1; // r1 is the dedicated stack pointer
4877   }
4878 
4879   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4880                                llvm::Value *Address) const override;
4881 };
4882 
4883 }
4884 
4885 // Return true if the ABI requires Ty to be passed sign- or zero-
4886 // extended to 64 bits.
4887 bool
4888 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4889   // Treat an enum type as its underlying type.
4890   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4891     Ty = EnumTy->getDecl()->getIntegerType();
4892 
4893   // Promotable integer types are required to be promoted by the ABI.
4894   if (isPromotableIntegerTypeForABI(Ty))
4895     return true;
4896 
4897   // In addition to the usual promotable integer types, we also need to
4898   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4899   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4900     switch (BT->getKind()) {
4901     case BuiltinType::Int:
4902     case BuiltinType::UInt:
4903       return true;
4904     default:
4905       break;
4906     }
4907 
4908   if (const auto *EIT = Ty->getAs<ExtIntType>())
4909     if (EIT->getNumBits() < 64)
4910       return true;
4911 
4912   return false;
4913 }
4914 
4915 /// isAlignedParamType - Determine whether a type requires 16-byte or
4916 /// higher alignment in the parameter area.  Always returns at least 8.
4917 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4918   // Complex types are passed just like their elements.
4919   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4920     Ty = CTy->getElementType();
4921 
4922   // Only vector types of size 16 bytes need alignment (larger types are
4923   // passed via reference, smaller types are not aligned).
4924   if (IsQPXVectorTy(Ty)) {
4925     if (getContext().getTypeSize(Ty) > 128)
4926       return CharUnits::fromQuantity(32);
4927 
4928     return CharUnits::fromQuantity(16);
4929   } else if (Ty->isVectorType()) {
4930     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4931   }
4932 
4933   // For single-element float/vector structs, we consider the whole type
4934   // to have the same alignment requirements as its single element.
4935   const Type *AlignAsType = nullptr;
4936   const Type *EltType = isSingleElementStruct(Ty, getContext());
4937   if (EltType) {
4938     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4939     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4940          getContext().getTypeSize(EltType) == 128) ||
4941         (BT && BT->isFloatingPoint()))
4942       AlignAsType = EltType;
4943   }
4944 
4945   // Likewise for ELFv2 homogeneous aggregates.
4946   const Type *Base = nullptr;
4947   uint64_t Members = 0;
4948   if (!AlignAsType && Kind == ELFv2 &&
4949       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4950     AlignAsType = Base;
4951 
4952   // With special case aggregates, only vector base types need alignment.
4953   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4954     if (getContext().getTypeSize(AlignAsType) > 128)
4955       return CharUnits::fromQuantity(32);
4956 
4957     return CharUnits::fromQuantity(16);
4958   } else if (AlignAsType) {
4959     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4960   }
4961 
4962   // Otherwise, we only need alignment for any aggregate type that
4963   // has an alignment requirement of >= 16 bytes.
4964   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4965     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4966       return CharUnits::fromQuantity(32);
4967     return CharUnits::fromQuantity(16);
4968   }
4969 
4970   return CharUnits::fromQuantity(8);
4971 }
4972 
4973 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4974 /// aggregate.  Base is set to the base element type, and Members is set
4975 /// to the number of base elements.
4976 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4977                                      uint64_t &Members) const {
4978   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4979     uint64_t NElements = AT->getSize().getZExtValue();
4980     if (NElements == 0)
4981       return false;
4982     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4983       return false;
4984     Members *= NElements;
4985   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4986     const RecordDecl *RD = RT->getDecl();
4987     if (RD->hasFlexibleArrayMember())
4988       return false;
4989 
4990     Members = 0;
4991 
4992     // If this is a C++ record, check the bases first.
4993     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4994       for (const auto &I : CXXRD->bases()) {
4995         // Ignore empty records.
4996         if (isEmptyRecord(getContext(), I.getType(), true))
4997           continue;
4998 
4999         uint64_t FldMembers;
5000         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5001           return false;
5002 
5003         Members += FldMembers;
5004       }
5005     }
5006 
5007     for (const auto *FD : RD->fields()) {
5008       // Ignore (non-zero arrays of) empty records.
5009       QualType FT = FD->getType();
5010       while (const ConstantArrayType *AT =
5011              getContext().getAsConstantArrayType(FT)) {
5012         if (AT->getSize().getZExtValue() == 0)
5013           return false;
5014         FT = AT->getElementType();
5015       }
5016       if (isEmptyRecord(getContext(), FT, true))
5017         continue;
5018 
5019       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5020       if (getContext().getLangOpts().CPlusPlus &&
5021           FD->isZeroLengthBitField(getContext()))
5022         continue;
5023 
5024       uint64_t FldMembers;
5025       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5026         return false;
5027 
5028       Members = (RD->isUnion() ?
5029                  std::max(Members, FldMembers) : Members + FldMembers);
5030     }
5031 
5032     if (!Base)
5033       return false;
5034 
5035     // Ensure there is no padding.
5036     if (getContext().getTypeSize(Base) * Members !=
5037         getContext().getTypeSize(Ty))
5038       return false;
5039   } else {
5040     Members = 1;
5041     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5042       Members = 2;
5043       Ty = CT->getElementType();
5044     }
5045 
5046     // Most ABIs only support float, double, and some vector type widths.
5047     if (!isHomogeneousAggregateBaseType(Ty))
5048       return false;
5049 
5050     // The base type must be the same for all members.  Types that
5051     // agree in both total size and mode (float vs. vector) are
5052     // treated as being equivalent here.
5053     const Type *TyPtr = Ty.getTypePtr();
5054     if (!Base) {
5055       Base = TyPtr;
5056       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5057       // so make sure to widen it explicitly.
5058       if (const VectorType *VT = Base->getAs<VectorType>()) {
5059         QualType EltTy = VT->getElementType();
5060         unsigned NumElements =
5061             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5062         Base = getContext()
5063                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5064                    .getTypePtr();
5065       }
5066     }
5067 
5068     if (Base->isVectorType() != TyPtr->isVectorType() ||
5069         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5070       return false;
5071   }
5072   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5073 }
5074 
5075 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5076   // Homogeneous aggregates for ELFv2 must have base types of float,
5077   // double, long double, or 128-bit vectors.
5078   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5079     if (BT->getKind() == BuiltinType::Float ||
5080         BT->getKind() == BuiltinType::Double ||
5081         BT->getKind() == BuiltinType::LongDouble ||
5082         (getContext().getTargetInfo().hasFloat128Type() &&
5083           (BT->getKind() == BuiltinType::Float128))) {
5084       if (IsSoftFloatABI)
5085         return false;
5086       return true;
5087     }
5088   }
5089   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5090     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
5091       return true;
5092   }
5093   return false;
5094 }
5095 
5096 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5097     const Type *Base, uint64_t Members) const {
5098   // Vector and fp128 types require one register, other floating point types
5099   // require one or two registers depending on their size.
5100   uint32_t NumRegs =
5101       ((getContext().getTargetInfo().hasFloat128Type() &&
5102           Base->isFloat128Type()) ||
5103         Base->isVectorType()) ? 1
5104                               : (getContext().getTypeSize(Base) + 63) / 64;
5105 
5106   // Homogeneous Aggregates may occupy at most 8 registers.
5107   return Members * NumRegs <= 8;
5108 }
5109 
5110 ABIArgInfo
5111 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5112   Ty = useFirstFieldIfTransparentUnion(Ty);
5113 
5114   if (Ty->isAnyComplexType())
5115     return ABIArgInfo::getDirect();
5116 
5117   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5118   // or via reference (larger than 16 bytes).
5119   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
5120     uint64_t Size = getContext().getTypeSize(Ty);
5121     if (Size > 128)
5122       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5123     else if (Size < 128) {
5124       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5125       return ABIArgInfo::getDirect(CoerceTy);
5126     }
5127   }
5128 
5129   if (const auto *EIT = Ty->getAs<ExtIntType>())
5130     if (EIT->getNumBits() > 128)
5131       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5132 
5133   if (isAggregateTypeForABI(Ty)) {
5134     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5135       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5136 
5137     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5138     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5139 
5140     // ELFv2 homogeneous aggregates are passed as array types.
5141     const Type *Base = nullptr;
5142     uint64_t Members = 0;
5143     if (Kind == ELFv2 &&
5144         isHomogeneousAggregate(Ty, Base, Members)) {
5145       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5146       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5147       return ABIArgInfo::getDirect(CoerceTy);
5148     }
5149 
5150     // If an aggregate may end up fully in registers, we do not
5151     // use the ByVal method, but pass the aggregate as array.
5152     // This is usually beneficial since we avoid forcing the
5153     // back-end to store the argument to memory.
5154     uint64_t Bits = getContext().getTypeSize(Ty);
5155     if (Bits > 0 && Bits <= 8 * GPRBits) {
5156       llvm::Type *CoerceTy;
5157 
5158       // Types up to 8 bytes are passed as integer type (which will be
5159       // properly aligned in the argument save area doubleword).
5160       if (Bits <= GPRBits)
5161         CoerceTy =
5162             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5163       // Larger types are passed as arrays, with the base type selected
5164       // according to the required alignment in the save area.
5165       else {
5166         uint64_t RegBits = ABIAlign * 8;
5167         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5168         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5169         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5170       }
5171 
5172       return ABIArgInfo::getDirect(CoerceTy);
5173     }
5174 
5175     // All other aggregates are passed ByVal.
5176     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5177                                    /*ByVal=*/true,
5178                                    /*Realign=*/TyAlign > ABIAlign);
5179   }
5180 
5181   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5182                                      : ABIArgInfo::getDirect());
5183 }
5184 
5185 ABIArgInfo
5186 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5187   if (RetTy->isVoidType())
5188     return ABIArgInfo::getIgnore();
5189 
5190   if (RetTy->isAnyComplexType())
5191     return ABIArgInfo::getDirect();
5192 
5193   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5194   // or via reference (larger than 16 bytes).
5195   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
5196     uint64_t Size = getContext().getTypeSize(RetTy);
5197     if (Size > 128)
5198       return getNaturalAlignIndirect(RetTy);
5199     else if (Size < 128) {
5200       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5201       return ABIArgInfo::getDirect(CoerceTy);
5202     }
5203   }
5204 
5205   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5206     if (EIT->getNumBits() > 128)
5207       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5208 
5209   if (isAggregateTypeForABI(RetTy)) {
5210     // ELFv2 homogeneous aggregates are returned as array types.
5211     const Type *Base = nullptr;
5212     uint64_t Members = 0;
5213     if (Kind == ELFv2 &&
5214         isHomogeneousAggregate(RetTy, Base, Members)) {
5215       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5216       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5217       return ABIArgInfo::getDirect(CoerceTy);
5218     }
5219 
5220     // ELFv2 small aggregates are returned in up to two registers.
5221     uint64_t Bits = getContext().getTypeSize(RetTy);
5222     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5223       if (Bits == 0)
5224         return ABIArgInfo::getIgnore();
5225 
5226       llvm::Type *CoerceTy;
5227       if (Bits > GPRBits) {
5228         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5229         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5230       } else
5231         CoerceTy =
5232             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5233       return ABIArgInfo::getDirect(CoerceTy);
5234     }
5235 
5236     // All other aggregates are returned indirectly.
5237     return getNaturalAlignIndirect(RetTy);
5238   }
5239 
5240   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5241                                         : ABIArgInfo::getDirect());
5242 }
5243 
5244 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5245 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5246                                       QualType Ty) const {
5247   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5248   TypeInfo.second = getParamTypeAlignment(Ty);
5249 
5250   CharUnits SlotSize = CharUnits::fromQuantity(8);
5251 
5252   // If we have a complex type and the base type is smaller than 8 bytes,
5253   // the ABI calls for the real and imaginary parts to be right-adjusted
5254   // in separate doublewords.  However, Clang expects us to produce a
5255   // pointer to a structure with the two parts packed tightly.  So generate
5256   // loads of the real and imaginary parts relative to the va_list pointer,
5257   // and store them to a temporary structure.
5258   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5259     CharUnits EltSize = TypeInfo.first / 2;
5260     if (EltSize < SlotSize) {
5261       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5262                                             SlotSize * 2, SlotSize,
5263                                             SlotSize, /*AllowHigher*/ true);
5264 
5265       Address RealAddr = Addr;
5266       Address ImagAddr = RealAddr;
5267       if (CGF.CGM.getDataLayout().isBigEndian()) {
5268         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5269                                                           SlotSize - EltSize);
5270         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5271                                                       2 * SlotSize - EltSize);
5272       } else {
5273         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5274       }
5275 
5276       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5277       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5278       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5279       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5280       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5281 
5282       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5283       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5284                              /*init*/ true);
5285       return Temp;
5286     }
5287   }
5288 
5289   // Otherwise, just use the general rule.
5290   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5291                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5292 }
5293 
5294 bool
5295 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5296   CodeGen::CodeGenFunction &CGF,
5297   llvm::Value *Address) const {
5298   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5299                                      /*IsAIX*/ false);
5300 }
5301 
5302 bool
5303 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5304                                                 llvm::Value *Address) const {
5305   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5306                                      /*IsAIX*/ false);
5307 }
5308 
5309 //===----------------------------------------------------------------------===//
5310 // AArch64 ABI Implementation
5311 //===----------------------------------------------------------------------===//
5312 
5313 namespace {
5314 
5315 class AArch64ABIInfo : public SwiftABIInfo {
5316 public:
5317   enum ABIKind {
5318     AAPCS = 0,
5319     DarwinPCS,
5320     Win64
5321   };
5322 
5323 private:
5324   ABIKind Kind;
5325 
5326 public:
5327   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5328     : SwiftABIInfo(CGT), Kind(Kind) {}
5329 
5330 private:
5331   ABIKind getABIKind() const { return Kind; }
5332   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5333 
5334   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5335   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5336   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5337   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5338                                          uint64_t Members) const override;
5339 
5340   bool isIllegalVectorType(QualType Ty) const;
5341 
5342   void computeInfo(CGFunctionInfo &FI) const override {
5343     if (!::classifyReturnType(getCXXABI(), FI, *this))
5344       FI.getReturnInfo() =
5345           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5346 
5347     for (auto &it : FI.arguments())
5348       it.info = classifyArgumentType(it.type);
5349   }
5350 
5351   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5352                           CodeGenFunction &CGF) const;
5353 
5354   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5355                          CodeGenFunction &CGF) const;
5356 
5357   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5358                     QualType Ty) const override {
5359     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5360                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5361                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5362   }
5363 
5364   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5365                       QualType Ty) const override;
5366 
5367   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5368                                     bool asReturnValue) const override {
5369     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5370   }
5371   bool isSwiftErrorInRegister() const override {
5372     return true;
5373   }
5374 
5375   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5376                                  unsigned elts) const override;
5377 };
5378 
5379 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5380 public:
5381   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5382       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5383 
5384   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5385     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5386   }
5387 
5388   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5389     return 31;
5390   }
5391 
5392   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5393 
5394   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5395                            CodeGen::CodeGenModule &CGM) const override {
5396     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5397     if (!FD)
5398       return;
5399 
5400     LangOptions::SignReturnAddressScopeKind Scope =
5401         CGM.getLangOpts().getSignReturnAddressScope();
5402     LangOptions::SignReturnAddressKeyKind Key =
5403         CGM.getLangOpts().getSignReturnAddressKey();
5404     bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement;
5405     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5406       ParsedTargetAttr Attr = TA->parse();
5407       if (!Attr.BranchProtection.empty()) {
5408         TargetInfo::BranchProtectionInfo BPI;
5409         StringRef Error;
5410         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5411                                                        BPI, Error);
5412         assert(Error.empty());
5413         Scope = BPI.SignReturnAddr;
5414         Key = BPI.SignKey;
5415         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5416       }
5417     }
5418 
5419     auto *Fn = cast<llvm::Function>(GV);
5420     if (Scope != LangOptions::SignReturnAddressScopeKind::None) {
5421       Fn->addFnAttr("sign-return-address",
5422                     Scope == LangOptions::SignReturnAddressScopeKind::All
5423                         ? "all"
5424                         : "non-leaf");
5425 
5426       Fn->addFnAttr("sign-return-address-key",
5427                     Key == LangOptions::SignReturnAddressKeyKind::AKey
5428                         ? "a_key"
5429                         : "b_key");
5430     }
5431 
5432     if (BranchTargetEnforcement)
5433       Fn->addFnAttr("branch-target-enforcement");
5434   }
5435 };
5436 
5437 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5438 public:
5439   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5440       : AArch64TargetCodeGenInfo(CGT, K) {}
5441 
5442   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5443                            CodeGen::CodeGenModule &CGM) const override;
5444 
5445   void getDependentLibraryOption(llvm::StringRef Lib,
5446                                  llvm::SmallString<24> &Opt) const override {
5447     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5448   }
5449 
5450   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5451                                llvm::SmallString<32> &Opt) const override {
5452     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5453   }
5454 };
5455 
5456 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5457     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5458   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5459   if (GV->isDeclaration())
5460     return;
5461   addStackProbeTargetAttributes(D, GV, CGM);
5462 }
5463 }
5464 
5465 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5466   Ty = useFirstFieldIfTransparentUnion(Ty);
5467 
5468   // Handle illegal vector types here.
5469   if (isIllegalVectorType(Ty)) {
5470     uint64_t Size = getContext().getTypeSize(Ty);
5471     // Android promotes <2 x i8> to i16, not i32
5472     if (isAndroid() && (Size <= 16)) {
5473       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5474       return ABIArgInfo::getDirect(ResType);
5475     }
5476     if (Size <= 32) {
5477       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5478       return ABIArgInfo::getDirect(ResType);
5479     }
5480     if (Size == 64) {
5481       llvm::Type *ResType =
5482           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5483       return ABIArgInfo::getDirect(ResType);
5484     }
5485     if (Size == 128) {
5486       llvm::Type *ResType =
5487           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5488       return ABIArgInfo::getDirect(ResType);
5489     }
5490     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5491   }
5492 
5493   if (!isAggregateTypeForABI(Ty)) {
5494     // Treat an enum type as its underlying type.
5495     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5496       Ty = EnumTy->getDecl()->getIntegerType();
5497 
5498     if (const auto *EIT = Ty->getAs<ExtIntType>())
5499       if (EIT->getNumBits() > 128)
5500         return getNaturalAlignIndirect(Ty);
5501 
5502     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5503                 ? ABIArgInfo::getExtend(Ty)
5504                 : ABIArgInfo::getDirect());
5505   }
5506 
5507   // Structures with either a non-trivial destructor or a non-trivial
5508   // copy constructor are always indirect.
5509   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5510     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5511                                      CGCXXABI::RAA_DirectInMemory);
5512   }
5513 
5514   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5515   // elsewhere for GNU compatibility.
5516   uint64_t Size = getContext().getTypeSize(Ty);
5517   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5518   if (IsEmpty || Size == 0) {
5519     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5520       return ABIArgInfo::getIgnore();
5521 
5522     // GNU C mode. The only argument that gets ignored is an empty one with size
5523     // 0.
5524     if (IsEmpty && Size == 0)
5525       return ABIArgInfo::getIgnore();
5526     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5527   }
5528 
5529   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5530   const Type *Base = nullptr;
5531   uint64_t Members = 0;
5532   if (isHomogeneousAggregate(Ty, Base, Members)) {
5533     return ABIArgInfo::getDirect(
5534         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5535   }
5536 
5537   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5538   if (Size <= 128) {
5539     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5540     // same size and alignment.
5541     if (getTarget().isRenderScriptTarget()) {
5542       return coerceToIntArray(Ty, getContext(), getVMContext());
5543     }
5544     unsigned Alignment;
5545     if (Kind == AArch64ABIInfo::AAPCS) {
5546       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5547       Alignment = Alignment < 128 ? 64 : 128;
5548     } else {
5549       Alignment = std::max(getContext().getTypeAlign(Ty),
5550                            (unsigned)getTarget().getPointerWidth(0));
5551     }
5552     Size = llvm::alignTo(Size, Alignment);
5553 
5554     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5555     // For aggregates with 16-byte alignment, we use i128.
5556     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5557     return ABIArgInfo::getDirect(
5558         Size == Alignment ? BaseTy
5559                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5560   }
5561 
5562   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5563 }
5564 
5565 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5566                                               bool IsVariadic) const {
5567   if (RetTy->isVoidType())
5568     return ABIArgInfo::getIgnore();
5569 
5570   // Large vector types should be returned via memory.
5571   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5572     return getNaturalAlignIndirect(RetTy);
5573 
5574   if (!isAggregateTypeForABI(RetTy)) {
5575     // Treat an enum type as its underlying type.
5576     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5577       RetTy = EnumTy->getDecl()->getIntegerType();
5578 
5579     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5580       if (EIT->getNumBits() > 128)
5581         return getNaturalAlignIndirect(RetTy);
5582 
5583     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5584                 ? ABIArgInfo::getExtend(RetTy)
5585                 : ABIArgInfo::getDirect());
5586   }
5587 
5588   uint64_t Size = getContext().getTypeSize(RetTy);
5589   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5590     return ABIArgInfo::getIgnore();
5591 
5592   const Type *Base = nullptr;
5593   uint64_t Members = 0;
5594   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5595       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5596         IsVariadic))
5597     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5598     return ABIArgInfo::getDirect();
5599 
5600   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5601   if (Size <= 128) {
5602     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5603     // same size and alignment.
5604     if (getTarget().isRenderScriptTarget()) {
5605       return coerceToIntArray(RetTy, getContext(), getVMContext());
5606     }
5607     unsigned Alignment = getContext().getTypeAlign(RetTy);
5608     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5609 
5610     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5611     // For aggregates with 16-byte alignment, we use i128.
5612     if (Alignment < 128 && Size == 128) {
5613       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5614       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5615     }
5616     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5617   }
5618 
5619   return getNaturalAlignIndirect(RetTy);
5620 }
5621 
5622 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5623 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5624   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5625     // Check whether VT is legal.
5626     unsigned NumElements = VT->getNumElements();
5627     uint64_t Size = getContext().getTypeSize(VT);
5628     // NumElements should be power of 2.
5629     if (!llvm::isPowerOf2_32(NumElements))
5630       return true;
5631 
5632     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5633     // vectors for some reason.
5634     llvm::Triple Triple = getTarget().getTriple();
5635     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5636         Triple.isOSBinFormatMachO())
5637       return Size <= 32;
5638 
5639     return Size != 64 && (Size != 128 || NumElements == 1);
5640   }
5641   return false;
5642 }
5643 
5644 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5645                                                llvm::Type *eltTy,
5646                                                unsigned elts) const {
5647   if (!llvm::isPowerOf2_32(elts))
5648     return false;
5649   if (totalSize.getQuantity() != 8 &&
5650       (totalSize.getQuantity() != 16 || elts == 1))
5651     return false;
5652   return true;
5653 }
5654 
5655 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5656   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5657   // point type or a short-vector type. This is the same as the 32-bit ABI,
5658   // but with the difference that any floating-point type is allowed,
5659   // including __fp16.
5660   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5661     if (BT->isFloatingPoint())
5662       return true;
5663   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5664     unsigned VecSize = getContext().getTypeSize(VT);
5665     if (VecSize == 64 || VecSize == 128)
5666       return true;
5667   }
5668   return false;
5669 }
5670 
5671 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5672                                                        uint64_t Members) const {
5673   return Members <= 4;
5674 }
5675 
5676 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5677                                             QualType Ty,
5678                                             CodeGenFunction &CGF) const {
5679   ABIArgInfo AI = classifyArgumentType(Ty);
5680   bool IsIndirect = AI.isIndirect();
5681 
5682   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5683   if (IsIndirect)
5684     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5685   else if (AI.getCoerceToType())
5686     BaseTy = AI.getCoerceToType();
5687 
5688   unsigned NumRegs = 1;
5689   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5690     BaseTy = ArrTy->getElementType();
5691     NumRegs = ArrTy->getNumElements();
5692   }
5693   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5694 
5695   // The AArch64 va_list type and handling is specified in the Procedure Call
5696   // Standard, section B.4:
5697   //
5698   // struct {
5699   //   void *__stack;
5700   //   void *__gr_top;
5701   //   void *__vr_top;
5702   //   int __gr_offs;
5703   //   int __vr_offs;
5704   // };
5705 
5706   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5707   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5708   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5709   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5710 
5711   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5712   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5713 
5714   Address reg_offs_p = Address::invalid();
5715   llvm::Value *reg_offs = nullptr;
5716   int reg_top_index;
5717   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5718   if (!IsFPR) {
5719     // 3 is the field number of __gr_offs
5720     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5721     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5722     reg_top_index = 1; // field number for __gr_top
5723     RegSize = llvm::alignTo(RegSize, 8);
5724   } else {
5725     // 4 is the field number of __vr_offs.
5726     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5727     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5728     reg_top_index = 2; // field number for __vr_top
5729     RegSize = 16 * NumRegs;
5730   }
5731 
5732   //=======================================
5733   // Find out where argument was passed
5734   //=======================================
5735 
5736   // If reg_offs >= 0 we're already using the stack for this type of
5737   // argument. We don't want to keep updating reg_offs (in case it overflows,
5738   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5739   // whatever they get).
5740   llvm::Value *UsingStack = nullptr;
5741   UsingStack = CGF.Builder.CreateICmpSGE(
5742       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5743 
5744   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5745 
5746   // Otherwise, at least some kind of argument could go in these registers, the
5747   // question is whether this particular type is too big.
5748   CGF.EmitBlock(MaybeRegBlock);
5749 
5750   // Integer arguments may need to correct register alignment (for example a
5751   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5752   // align __gr_offs to calculate the potential address.
5753   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5754     int Align = TyAlign.getQuantity();
5755 
5756     reg_offs = CGF.Builder.CreateAdd(
5757         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5758         "align_regoffs");
5759     reg_offs = CGF.Builder.CreateAnd(
5760         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5761         "aligned_regoffs");
5762   }
5763 
5764   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5765   // The fact that this is done unconditionally reflects the fact that
5766   // allocating an argument to the stack also uses up all the remaining
5767   // registers of the appropriate kind.
5768   llvm::Value *NewOffset = nullptr;
5769   NewOffset = CGF.Builder.CreateAdd(
5770       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5771   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5772 
5773   // Now we're in a position to decide whether this argument really was in
5774   // registers or not.
5775   llvm::Value *InRegs = nullptr;
5776   InRegs = CGF.Builder.CreateICmpSLE(
5777       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5778 
5779   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5780 
5781   //=======================================
5782   // Argument was in registers
5783   //=======================================
5784 
5785   // Now we emit the code for if the argument was originally passed in
5786   // registers. First start the appropriate block:
5787   CGF.EmitBlock(InRegBlock);
5788 
5789   llvm::Value *reg_top = nullptr;
5790   Address reg_top_p =
5791       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5792   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5793   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5794                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5795   Address RegAddr = Address::invalid();
5796   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5797 
5798   if (IsIndirect) {
5799     // If it's been passed indirectly (actually a struct), whatever we find from
5800     // stored registers or on the stack will actually be a struct **.
5801     MemTy = llvm::PointerType::getUnqual(MemTy);
5802   }
5803 
5804   const Type *Base = nullptr;
5805   uint64_t NumMembers = 0;
5806   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5807   if (IsHFA && NumMembers > 1) {
5808     // Homogeneous aggregates passed in registers will have their elements split
5809     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5810     // qN+1, ...). We reload and store into a temporary local variable
5811     // contiguously.
5812     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5813     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5814     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5815     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5816     Address Tmp = CGF.CreateTempAlloca(HFATy,
5817                                        std::max(TyAlign, BaseTyInfo.second));
5818 
5819     // On big-endian platforms, the value will be right-aligned in its slot.
5820     int Offset = 0;
5821     if (CGF.CGM.getDataLayout().isBigEndian() &&
5822         BaseTyInfo.first.getQuantity() < 16)
5823       Offset = 16 - BaseTyInfo.first.getQuantity();
5824 
5825     for (unsigned i = 0; i < NumMembers; ++i) {
5826       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5827       Address LoadAddr =
5828         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5829       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5830 
5831       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5832 
5833       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5834       CGF.Builder.CreateStore(Elem, StoreAddr);
5835     }
5836 
5837     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5838   } else {
5839     // Otherwise the object is contiguous in memory.
5840 
5841     // It might be right-aligned in its slot.
5842     CharUnits SlotSize = BaseAddr.getAlignment();
5843     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5844         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5845         TySize < SlotSize) {
5846       CharUnits Offset = SlotSize - TySize;
5847       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5848     }
5849 
5850     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5851   }
5852 
5853   CGF.EmitBranch(ContBlock);
5854 
5855   //=======================================
5856   // Argument was on the stack
5857   //=======================================
5858   CGF.EmitBlock(OnStackBlock);
5859 
5860   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5861   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5862 
5863   // Again, stack arguments may need realignment. In this case both integer and
5864   // floating-point ones might be affected.
5865   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5866     int Align = TyAlign.getQuantity();
5867 
5868     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5869 
5870     OnStackPtr = CGF.Builder.CreateAdd(
5871         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5872         "align_stack");
5873     OnStackPtr = CGF.Builder.CreateAnd(
5874         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5875         "align_stack");
5876 
5877     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5878   }
5879   Address OnStackAddr(OnStackPtr,
5880                       std::max(CharUnits::fromQuantity(8), TyAlign));
5881 
5882   // All stack slots are multiples of 8 bytes.
5883   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5884   CharUnits StackSize;
5885   if (IsIndirect)
5886     StackSize = StackSlotSize;
5887   else
5888     StackSize = TySize.alignTo(StackSlotSize);
5889 
5890   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5891   llvm::Value *NewStack =
5892       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5893 
5894   // Write the new value of __stack for the next call to va_arg
5895   CGF.Builder.CreateStore(NewStack, stack_p);
5896 
5897   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5898       TySize < StackSlotSize) {
5899     CharUnits Offset = StackSlotSize - TySize;
5900     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5901   }
5902 
5903   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5904 
5905   CGF.EmitBranch(ContBlock);
5906 
5907   //=======================================
5908   // Tidy up
5909   //=======================================
5910   CGF.EmitBlock(ContBlock);
5911 
5912   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5913                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5914 
5915   if (IsIndirect)
5916     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5917                    TyAlign);
5918 
5919   return ResAddr;
5920 }
5921 
5922 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5923                                         CodeGenFunction &CGF) const {
5924   // The backend's lowering doesn't support va_arg for aggregates or
5925   // illegal vector types.  Lower VAArg here for these cases and use
5926   // the LLVM va_arg instruction for everything else.
5927   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5928     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5929 
5930   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
5931   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
5932 
5933   // Empty records are ignored for parameter passing purposes.
5934   if (isEmptyRecord(getContext(), Ty, true)) {
5935     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5936     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5937     return Addr;
5938   }
5939 
5940   // The size of the actual thing passed, which might end up just
5941   // being a pointer for indirect types.
5942   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5943 
5944   // Arguments bigger than 16 bytes which aren't homogeneous
5945   // aggregates should be passed indirectly.
5946   bool IsIndirect = false;
5947   if (TyInfo.first.getQuantity() > 16) {
5948     const Type *Base = nullptr;
5949     uint64_t Members = 0;
5950     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5951   }
5952 
5953   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5954                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5955 }
5956 
5957 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5958                                     QualType Ty) const {
5959   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5960                           CGF.getContext().getTypeInfoInChars(Ty),
5961                           CharUnits::fromQuantity(8),
5962                           /*allowHigherAlign*/ false);
5963 }
5964 
5965 //===----------------------------------------------------------------------===//
5966 // ARM ABI Implementation
5967 //===----------------------------------------------------------------------===//
5968 
5969 namespace {
5970 
5971 class ARMABIInfo : public SwiftABIInfo {
5972 public:
5973   enum ABIKind {
5974     APCS = 0,
5975     AAPCS = 1,
5976     AAPCS_VFP = 2,
5977     AAPCS16_VFP = 3,
5978   };
5979 
5980 private:
5981   ABIKind Kind;
5982 
5983 public:
5984   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5985       : SwiftABIInfo(CGT), Kind(_Kind) {
5986     setCCs();
5987   }
5988 
5989   bool isEABI() const {
5990     switch (getTarget().getTriple().getEnvironment()) {
5991     case llvm::Triple::Android:
5992     case llvm::Triple::EABI:
5993     case llvm::Triple::EABIHF:
5994     case llvm::Triple::GNUEABI:
5995     case llvm::Triple::GNUEABIHF:
5996     case llvm::Triple::MuslEABI:
5997     case llvm::Triple::MuslEABIHF:
5998       return true;
5999     default:
6000       return false;
6001     }
6002   }
6003 
6004   bool isEABIHF() const {
6005     switch (getTarget().getTriple().getEnvironment()) {
6006     case llvm::Triple::EABIHF:
6007     case llvm::Triple::GNUEABIHF:
6008     case llvm::Triple::MuslEABIHF:
6009       return true;
6010     default:
6011       return false;
6012     }
6013   }
6014 
6015   ABIKind getABIKind() const { return Kind; }
6016 
6017 private:
6018   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6019                                 unsigned functionCallConv) const;
6020   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6021                                   unsigned functionCallConv) const;
6022   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6023                                           uint64_t Members) const;
6024   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6025   bool isIllegalVectorType(QualType Ty) const;
6026   bool containsAnyFP16Vectors(QualType Ty) const;
6027 
6028   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6029   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6030                                          uint64_t Members) const override;
6031 
6032   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6033 
6034   void computeInfo(CGFunctionInfo &FI) const override;
6035 
6036   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6037                     QualType Ty) const override;
6038 
6039   llvm::CallingConv::ID getLLVMDefaultCC() const;
6040   llvm::CallingConv::ID getABIDefaultCC() const;
6041   void setCCs();
6042 
6043   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6044                                     bool asReturnValue) const override {
6045     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6046   }
6047   bool isSwiftErrorInRegister() const override {
6048     return true;
6049   }
6050   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6051                                  unsigned elts) const override;
6052 };
6053 
6054 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6055 public:
6056   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6057       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6058 
6059   const ARMABIInfo &getABIInfo() const {
6060     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6061   }
6062 
6063   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6064     return 13;
6065   }
6066 
6067   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6068     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6069   }
6070 
6071   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6072                                llvm::Value *Address) const override {
6073     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6074 
6075     // 0-15 are the 16 integer registers.
6076     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6077     return false;
6078   }
6079 
6080   unsigned getSizeOfUnwindException() const override {
6081     if (getABIInfo().isEABI()) return 88;
6082     return TargetCodeGenInfo::getSizeOfUnwindException();
6083   }
6084 
6085   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6086                            CodeGen::CodeGenModule &CGM) const override {
6087     if (GV->isDeclaration())
6088       return;
6089     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6090     if (!FD)
6091       return;
6092 
6093     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6094     if (!Attr)
6095       return;
6096 
6097     const char *Kind;
6098     switch (Attr->getInterrupt()) {
6099     case ARMInterruptAttr::Generic: Kind = ""; break;
6100     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6101     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6102     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6103     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6104     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6105     }
6106 
6107     llvm::Function *Fn = cast<llvm::Function>(GV);
6108 
6109     Fn->addFnAttr("interrupt", Kind);
6110 
6111     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6112     if (ABI == ARMABIInfo::APCS)
6113       return;
6114 
6115     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6116     // however this is not necessarily true on taking any interrupt. Instruct
6117     // the backend to perform a realignment as part of the function prologue.
6118     llvm::AttrBuilder B;
6119     B.addStackAlignmentAttr(8);
6120     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6121   }
6122 };
6123 
6124 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6125 public:
6126   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6127       : ARMTargetCodeGenInfo(CGT, K) {}
6128 
6129   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6130                            CodeGen::CodeGenModule &CGM) const override;
6131 
6132   void getDependentLibraryOption(llvm::StringRef Lib,
6133                                  llvm::SmallString<24> &Opt) const override {
6134     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6135   }
6136 
6137   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6138                                llvm::SmallString<32> &Opt) const override {
6139     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6140   }
6141 };
6142 
6143 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6144     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6145   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6146   if (GV->isDeclaration())
6147     return;
6148   addStackProbeTargetAttributes(D, GV, CGM);
6149 }
6150 }
6151 
6152 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6153   if (!::classifyReturnType(getCXXABI(), FI, *this))
6154     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6155                                             FI.getCallingConvention());
6156 
6157   for (auto &I : FI.arguments())
6158     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6159                                   FI.getCallingConvention());
6160 
6161 
6162   // Always honor user-specified calling convention.
6163   if (FI.getCallingConvention() != llvm::CallingConv::C)
6164     return;
6165 
6166   llvm::CallingConv::ID cc = getRuntimeCC();
6167   if (cc != llvm::CallingConv::C)
6168     FI.setEffectiveCallingConvention(cc);
6169 }
6170 
6171 /// Return the default calling convention that LLVM will use.
6172 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6173   // The default calling convention that LLVM will infer.
6174   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6175     return llvm::CallingConv::ARM_AAPCS_VFP;
6176   else if (isEABI())
6177     return llvm::CallingConv::ARM_AAPCS;
6178   else
6179     return llvm::CallingConv::ARM_APCS;
6180 }
6181 
6182 /// Return the calling convention that our ABI would like us to use
6183 /// as the C calling convention.
6184 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6185   switch (getABIKind()) {
6186   case APCS: return llvm::CallingConv::ARM_APCS;
6187   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6188   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6189   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6190   }
6191   llvm_unreachable("bad ABI kind");
6192 }
6193 
6194 void ARMABIInfo::setCCs() {
6195   assert(getRuntimeCC() == llvm::CallingConv::C);
6196 
6197   // Don't muddy up the IR with a ton of explicit annotations if
6198   // they'd just match what LLVM will infer from the triple.
6199   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6200   if (abiCC != getLLVMDefaultCC())
6201     RuntimeCC = abiCC;
6202 }
6203 
6204 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6205   uint64_t Size = getContext().getTypeSize(Ty);
6206   if (Size <= 32) {
6207     llvm::Type *ResType =
6208         llvm::Type::getInt32Ty(getVMContext());
6209     return ABIArgInfo::getDirect(ResType);
6210   }
6211   if (Size == 64 || Size == 128) {
6212     llvm::Type *ResType = llvm::VectorType::get(
6213         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6214     return ABIArgInfo::getDirect(ResType);
6215   }
6216   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6217 }
6218 
6219 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6220                                                     const Type *Base,
6221                                                     uint64_t Members) const {
6222   assert(Base && "Base class should be set for homogeneous aggregate");
6223   // Base can be a floating-point or a vector.
6224   if (const VectorType *VT = Base->getAs<VectorType>()) {
6225     // FP16 vectors should be converted to integer vectors
6226     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6227       uint64_t Size = getContext().getTypeSize(VT);
6228       llvm::Type *NewVecTy = llvm::VectorType::get(
6229           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6230       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6231       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6232     }
6233   }
6234   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6235 }
6236 
6237 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6238                                             unsigned functionCallConv) const {
6239   // 6.1.2.1 The following argument types are VFP CPRCs:
6240   //   A single-precision floating-point type (including promoted
6241   //   half-precision types); A double-precision floating-point type;
6242   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6243   //   with a Base Type of a single- or double-precision floating-point type,
6244   //   64-bit containerized vectors or 128-bit containerized vectors with one
6245   //   to four Elements.
6246   // Variadic functions should always marshal to the base standard.
6247   bool IsAAPCS_VFP =
6248       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6249 
6250   Ty = useFirstFieldIfTransparentUnion(Ty);
6251 
6252   // Handle illegal vector types here.
6253   if (isIllegalVectorType(Ty))
6254     return coerceIllegalVector(Ty);
6255 
6256   // _Float16 and __fp16 get passed as if it were an int or float, but with
6257   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6258   // half type natively, and does not need to interwork with AAPCS code.
6259   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
6260       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6261     llvm::Type *ResType = IsAAPCS_VFP ?
6262       llvm::Type::getFloatTy(getVMContext()) :
6263       llvm::Type::getInt32Ty(getVMContext());
6264     return ABIArgInfo::getDirect(ResType);
6265   }
6266 
6267   if (!isAggregateTypeForABI(Ty)) {
6268     // Treat an enum type as its underlying type.
6269     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6270       Ty = EnumTy->getDecl()->getIntegerType();
6271     }
6272 
6273     if (const auto *EIT = Ty->getAs<ExtIntType>())
6274       if (EIT->getNumBits() > 64)
6275         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6276 
6277     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6278                                               : ABIArgInfo::getDirect());
6279   }
6280 
6281   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6282     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6283   }
6284 
6285   // Ignore empty records.
6286   if (isEmptyRecord(getContext(), Ty, true))
6287     return ABIArgInfo::getIgnore();
6288 
6289   if (IsAAPCS_VFP) {
6290     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6291     // into VFP registers.
6292     const Type *Base = nullptr;
6293     uint64_t Members = 0;
6294     if (isHomogeneousAggregate(Ty, Base, Members))
6295       return classifyHomogeneousAggregate(Ty, Base, Members);
6296   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6297     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6298     // this convention even for a variadic function: the backend will use GPRs
6299     // if needed.
6300     const Type *Base = nullptr;
6301     uint64_t Members = 0;
6302     if (isHomogeneousAggregate(Ty, Base, Members)) {
6303       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6304       llvm::Type *Ty =
6305         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6306       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6307     }
6308   }
6309 
6310   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6311       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6312     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6313     // bigger than 128-bits, they get placed in space allocated by the caller,
6314     // and a pointer is passed.
6315     return ABIArgInfo::getIndirect(
6316         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6317   }
6318 
6319   // Support byval for ARM.
6320   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6321   // most 8-byte. We realign the indirect argument if type alignment is bigger
6322   // than ABI alignment.
6323   uint64_t ABIAlign = 4;
6324   uint64_t TyAlign;
6325   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6326       getABIKind() == ARMABIInfo::AAPCS) {
6327     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6328     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6329   } else {
6330     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6331   }
6332   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6333     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6334     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6335                                    /*ByVal=*/true,
6336                                    /*Realign=*/TyAlign > ABIAlign);
6337   }
6338 
6339   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6340   // same size and alignment.
6341   if (getTarget().isRenderScriptTarget()) {
6342     return coerceToIntArray(Ty, getContext(), getVMContext());
6343   }
6344 
6345   // Otherwise, pass by coercing to a structure of the appropriate size.
6346   llvm::Type* ElemTy;
6347   unsigned SizeRegs;
6348   // FIXME: Try to match the types of the arguments more accurately where
6349   // we can.
6350   if (TyAlign <= 4) {
6351     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6352     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6353   } else {
6354     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6355     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6356   }
6357 
6358   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6359 }
6360 
6361 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6362                               llvm::LLVMContext &VMContext) {
6363   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6364   // is called integer-like if its size is less than or equal to one word, and
6365   // the offset of each of its addressable sub-fields is zero.
6366 
6367   uint64_t Size = Context.getTypeSize(Ty);
6368 
6369   // Check that the type fits in a word.
6370   if (Size > 32)
6371     return false;
6372 
6373   // FIXME: Handle vector types!
6374   if (Ty->isVectorType())
6375     return false;
6376 
6377   // Float types are never treated as "integer like".
6378   if (Ty->isRealFloatingType())
6379     return false;
6380 
6381   // If this is a builtin or pointer type then it is ok.
6382   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6383     return true;
6384 
6385   // Small complex integer types are "integer like".
6386   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6387     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6388 
6389   // Single element and zero sized arrays should be allowed, by the definition
6390   // above, but they are not.
6391 
6392   // Otherwise, it must be a record type.
6393   const RecordType *RT = Ty->getAs<RecordType>();
6394   if (!RT) return false;
6395 
6396   // Ignore records with flexible arrays.
6397   const RecordDecl *RD = RT->getDecl();
6398   if (RD->hasFlexibleArrayMember())
6399     return false;
6400 
6401   // Check that all sub-fields are at offset 0, and are themselves "integer
6402   // like".
6403   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6404 
6405   bool HadField = false;
6406   unsigned idx = 0;
6407   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6408        i != e; ++i, ++idx) {
6409     const FieldDecl *FD = *i;
6410 
6411     // Bit-fields are not addressable, we only need to verify they are "integer
6412     // like". We still have to disallow a subsequent non-bitfield, for example:
6413     //   struct { int : 0; int x }
6414     // is non-integer like according to gcc.
6415     if (FD->isBitField()) {
6416       if (!RD->isUnion())
6417         HadField = true;
6418 
6419       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6420         return false;
6421 
6422       continue;
6423     }
6424 
6425     // Check if this field is at offset 0.
6426     if (Layout.getFieldOffset(idx) != 0)
6427       return false;
6428 
6429     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6430       return false;
6431 
6432     // Only allow at most one field in a structure. This doesn't match the
6433     // wording above, but follows gcc in situations with a field following an
6434     // empty structure.
6435     if (!RD->isUnion()) {
6436       if (HadField)
6437         return false;
6438 
6439       HadField = true;
6440     }
6441   }
6442 
6443   return true;
6444 }
6445 
6446 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6447                                           unsigned functionCallConv) const {
6448 
6449   // Variadic functions should always marshal to the base standard.
6450   bool IsAAPCS_VFP =
6451       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6452 
6453   if (RetTy->isVoidType())
6454     return ABIArgInfo::getIgnore();
6455 
6456   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6457     // Large vector types should be returned via memory.
6458     if (getContext().getTypeSize(RetTy) > 128)
6459       return getNaturalAlignIndirect(RetTy);
6460     // FP16 vectors should be converted to integer vectors
6461     if (!getTarget().hasLegalHalfType() &&
6462         (VT->getElementType()->isFloat16Type() ||
6463          VT->getElementType()->isHalfType()))
6464       return coerceIllegalVector(RetTy);
6465   }
6466 
6467   // _Float16 and __fp16 get returned as if it were an int or float, but with
6468   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6469   // half type natively, and does not need to interwork with AAPCS code.
6470   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6471       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6472     llvm::Type *ResType = IsAAPCS_VFP ?
6473       llvm::Type::getFloatTy(getVMContext()) :
6474       llvm::Type::getInt32Ty(getVMContext());
6475     return ABIArgInfo::getDirect(ResType);
6476   }
6477 
6478   if (!isAggregateTypeForABI(RetTy)) {
6479     // Treat an enum type as its underlying type.
6480     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6481       RetTy = EnumTy->getDecl()->getIntegerType();
6482 
6483     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6484       if (EIT->getNumBits() > 64)
6485         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6486 
6487     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6488                                                 : ABIArgInfo::getDirect();
6489   }
6490 
6491   // Are we following APCS?
6492   if (getABIKind() == APCS) {
6493     if (isEmptyRecord(getContext(), RetTy, false))
6494       return ABIArgInfo::getIgnore();
6495 
6496     // Complex types are all returned as packed integers.
6497     //
6498     // FIXME: Consider using 2 x vector types if the back end handles them
6499     // correctly.
6500     if (RetTy->isAnyComplexType())
6501       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6502           getVMContext(), getContext().getTypeSize(RetTy)));
6503 
6504     // Integer like structures are returned in r0.
6505     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6506       // Return in the smallest viable integer type.
6507       uint64_t Size = getContext().getTypeSize(RetTy);
6508       if (Size <= 8)
6509         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6510       if (Size <= 16)
6511         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6512       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6513     }
6514 
6515     // Otherwise return in memory.
6516     return getNaturalAlignIndirect(RetTy);
6517   }
6518 
6519   // Otherwise this is an AAPCS variant.
6520 
6521   if (isEmptyRecord(getContext(), RetTy, true))
6522     return ABIArgInfo::getIgnore();
6523 
6524   // Check for homogeneous aggregates with AAPCS-VFP.
6525   if (IsAAPCS_VFP) {
6526     const Type *Base = nullptr;
6527     uint64_t Members = 0;
6528     if (isHomogeneousAggregate(RetTy, Base, Members))
6529       return classifyHomogeneousAggregate(RetTy, Base, Members);
6530   }
6531 
6532   // Aggregates <= 4 bytes are returned in r0; other aggregates
6533   // are returned indirectly.
6534   uint64_t Size = getContext().getTypeSize(RetTy);
6535   if (Size <= 32) {
6536     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6537     // same size and alignment.
6538     if (getTarget().isRenderScriptTarget()) {
6539       return coerceToIntArray(RetTy, getContext(), getVMContext());
6540     }
6541     if (getDataLayout().isBigEndian())
6542       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6543       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6544 
6545     // Return in the smallest viable integer type.
6546     if (Size <= 8)
6547       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6548     if (Size <= 16)
6549       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6550     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6551   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6552     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6553     llvm::Type *CoerceTy =
6554         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6555     return ABIArgInfo::getDirect(CoerceTy);
6556   }
6557 
6558   return getNaturalAlignIndirect(RetTy);
6559 }
6560 
6561 /// isIllegalVector - check whether Ty is an illegal vector type.
6562 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6563   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6564     // On targets that don't support FP16, FP16 is expanded into float, and we
6565     // don't want the ABI to depend on whether or not FP16 is supported in
6566     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6567     if (!getTarget().hasLegalHalfType() &&
6568         (VT->getElementType()->isFloat16Type() ||
6569          VT->getElementType()->isHalfType()))
6570       return true;
6571     if (isAndroid()) {
6572       // Android shipped using Clang 3.1, which supported a slightly different
6573       // vector ABI. The primary differences were that 3-element vector types
6574       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6575       // accepts that legacy behavior for Android only.
6576       // Check whether VT is legal.
6577       unsigned NumElements = VT->getNumElements();
6578       // NumElements should be power of 2 or equal to 3.
6579       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6580         return true;
6581     } else {
6582       // Check whether VT is legal.
6583       unsigned NumElements = VT->getNumElements();
6584       uint64_t Size = getContext().getTypeSize(VT);
6585       // NumElements should be power of 2.
6586       if (!llvm::isPowerOf2_32(NumElements))
6587         return true;
6588       // Size should be greater than 32 bits.
6589       return Size <= 32;
6590     }
6591   }
6592   return false;
6593 }
6594 
6595 /// Return true if a type contains any 16-bit floating point vectors
6596 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6597   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6598     uint64_t NElements = AT->getSize().getZExtValue();
6599     if (NElements == 0)
6600       return false;
6601     return containsAnyFP16Vectors(AT->getElementType());
6602   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6603     const RecordDecl *RD = RT->getDecl();
6604 
6605     // If this is a C++ record, check the bases first.
6606     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6607       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6608             return containsAnyFP16Vectors(B.getType());
6609           }))
6610         return true;
6611 
6612     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6613           return FD && containsAnyFP16Vectors(FD->getType());
6614         }))
6615       return true;
6616 
6617     return false;
6618   } else {
6619     if (const VectorType *VT = Ty->getAs<VectorType>())
6620       return (VT->getElementType()->isFloat16Type() ||
6621               VT->getElementType()->isHalfType());
6622     return false;
6623   }
6624 }
6625 
6626 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6627                                            llvm::Type *eltTy,
6628                                            unsigned numElts) const {
6629   if (!llvm::isPowerOf2_32(numElts))
6630     return false;
6631   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6632   if (size > 64)
6633     return false;
6634   if (vectorSize.getQuantity() != 8 &&
6635       (vectorSize.getQuantity() != 16 || numElts == 1))
6636     return false;
6637   return true;
6638 }
6639 
6640 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6641   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6642   // double, or 64-bit or 128-bit vectors.
6643   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6644     if (BT->getKind() == BuiltinType::Float ||
6645         BT->getKind() == BuiltinType::Double ||
6646         BT->getKind() == BuiltinType::LongDouble)
6647       return true;
6648   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6649     unsigned VecSize = getContext().getTypeSize(VT);
6650     if (VecSize == 64 || VecSize == 128)
6651       return true;
6652   }
6653   return false;
6654 }
6655 
6656 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6657                                                    uint64_t Members) const {
6658   return Members <= 4;
6659 }
6660 
6661 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6662                                         bool acceptHalf) const {
6663   // Give precedence to user-specified calling conventions.
6664   if (callConvention != llvm::CallingConv::C)
6665     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6666   else
6667     return (getABIKind() == AAPCS_VFP) ||
6668            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6669 }
6670 
6671 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6672                               QualType Ty) const {
6673   CharUnits SlotSize = CharUnits::fromQuantity(4);
6674 
6675   // Empty records are ignored for parameter passing purposes.
6676   if (isEmptyRecord(getContext(), Ty, true)) {
6677     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6678     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6679     return Addr;
6680   }
6681 
6682   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6683   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6684 
6685   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6686   bool IsIndirect = false;
6687   const Type *Base = nullptr;
6688   uint64_t Members = 0;
6689   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6690     IsIndirect = true;
6691 
6692   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6693   // allocated by the caller.
6694   } else if (TySize > CharUnits::fromQuantity(16) &&
6695              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6696              !isHomogeneousAggregate(Ty, Base, Members)) {
6697     IsIndirect = true;
6698 
6699   // Otherwise, bound the type's ABI alignment.
6700   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6701   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6702   // Our callers should be prepared to handle an under-aligned address.
6703   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6704              getABIKind() == ARMABIInfo::AAPCS) {
6705     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6706     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6707   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6708     // ARMv7k allows type alignment up to 16 bytes.
6709     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6710     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6711   } else {
6712     TyAlignForABI = CharUnits::fromQuantity(4);
6713   }
6714 
6715   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6716   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6717                           SlotSize, /*AllowHigherAlign*/ true);
6718 }
6719 
6720 //===----------------------------------------------------------------------===//
6721 // NVPTX ABI Implementation
6722 //===----------------------------------------------------------------------===//
6723 
6724 namespace {
6725 
6726 class NVPTXTargetCodeGenInfo;
6727 
6728 class NVPTXABIInfo : public ABIInfo {
6729   NVPTXTargetCodeGenInfo &CGInfo;
6730 
6731 public:
6732   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6733       : ABIInfo(CGT), CGInfo(Info) {}
6734 
6735   ABIArgInfo classifyReturnType(QualType RetTy) const;
6736   ABIArgInfo classifyArgumentType(QualType Ty) const;
6737 
6738   void computeInfo(CGFunctionInfo &FI) const override;
6739   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6740                     QualType Ty) const override;
6741   bool isUnsupportedType(QualType T) const;
6742   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6743 };
6744 
6745 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6746 public:
6747   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6748       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6749 
6750   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6751                            CodeGen::CodeGenModule &M) const override;
6752   bool shouldEmitStaticExternCAliases() const override;
6753 
6754   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6755     // On the device side, surface reference is represented as an object handle
6756     // in 64-bit integer.
6757     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6758   }
6759 
6760   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6761     // On the device side, texture reference is represented as an object handle
6762     // in 64-bit integer.
6763     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6764   }
6765 
6766   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6767                                               LValue Src) const override {
6768     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6769     return true;
6770   }
6771 
6772   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6773                                               LValue Src) const override {
6774     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6775     return true;
6776   }
6777 
6778 private:
6779   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6780   // resulting MDNode to the nvvm.annotations MDNode.
6781   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6782                               int Operand);
6783 
6784   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6785                                            LValue Src) {
6786     llvm::Value *Handle = nullptr;
6787     llvm::Constant *C =
6788         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6789     // Lookup `addrspacecast` through the constant pointer if any.
6790     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6791       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6792     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6793       // Load the handle from the specific global variable using
6794       // `nvvm.texsurf.handle.internal` intrinsic.
6795       Handle = CGF.EmitRuntimeCall(
6796           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6797                                {GV->getType()}),
6798           {GV}, "texsurf_handle");
6799     } else
6800       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6801     CGF.EmitStoreOfScalar(Handle, Dst);
6802   }
6803 };
6804 
6805 /// Checks if the type is unsupported directly by the current target.
6806 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
6807   ASTContext &Context = getContext();
6808   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6809     return true;
6810   if (!Context.getTargetInfo().hasFloat128Type() &&
6811       (T->isFloat128Type() ||
6812        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6813     return true;
6814   if (const auto *EIT = T->getAs<ExtIntType>())
6815     return EIT->getNumBits() >
6816            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
6817   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6818       Context.getTypeSize(T) > 64U)
6819     return true;
6820   if (const auto *AT = T->getAsArrayTypeUnsafe())
6821     return isUnsupportedType(AT->getElementType());
6822   const auto *RT = T->getAs<RecordType>();
6823   if (!RT)
6824     return false;
6825   const RecordDecl *RD = RT->getDecl();
6826 
6827   // If this is a C++ record, check the bases first.
6828   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6829     for (const CXXBaseSpecifier &I : CXXRD->bases())
6830       if (isUnsupportedType(I.getType()))
6831         return true;
6832 
6833   for (const FieldDecl *I : RD->fields())
6834     if (isUnsupportedType(I->getType()))
6835       return true;
6836   return false;
6837 }
6838 
6839 /// Coerce the given type into an array with maximum allowed size of elements.
6840 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
6841                                                    unsigned MaxSize) const {
6842   // Alignment and Size are measured in bits.
6843   const uint64_t Size = getContext().getTypeSize(Ty);
6844   const uint64_t Alignment = getContext().getTypeAlign(Ty);
6845   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6846   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
6847   const uint64_t NumElements = (Size + Div - 1) / Div;
6848   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6849 }
6850 
6851 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6852   if (RetTy->isVoidType())
6853     return ABIArgInfo::getIgnore();
6854 
6855   if (getContext().getLangOpts().OpenMP &&
6856       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
6857     return coerceToIntArrayWithLimit(RetTy, 64);
6858 
6859   // note: this is different from default ABI
6860   if (!RetTy->isScalarType())
6861     return ABIArgInfo::getDirect();
6862 
6863   // Treat an enum type as its underlying type.
6864   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6865     RetTy = EnumTy->getDecl()->getIntegerType();
6866 
6867   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6868                                                : ABIArgInfo::getDirect());
6869 }
6870 
6871 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6872   // Treat an enum type as its underlying type.
6873   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6874     Ty = EnumTy->getDecl()->getIntegerType();
6875 
6876   // Return aggregates type as indirect by value
6877   if (isAggregateTypeForABI(Ty)) {
6878     // Under CUDA device compilation, tex/surf builtin types are replaced with
6879     // object types and passed directly.
6880     if (getContext().getLangOpts().CUDAIsDevice) {
6881       if (Ty->isCUDADeviceBuiltinSurfaceType())
6882         return ABIArgInfo::getDirect(
6883             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
6884       if (Ty->isCUDADeviceBuiltinTextureType())
6885         return ABIArgInfo::getDirect(
6886             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
6887     }
6888     return getNaturalAlignIndirect(Ty, /* byval */ true);
6889   }
6890 
6891   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
6892     if ((EIT->getNumBits() > 128) ||
6893         (!getContext().getTargetInfo().hasInt128Type() &&
6894          EIT->getNumBits() > 64))
6895       return getNaturalAlignIndirect(Ty, /* byval */ true);
6896   }
6897 
6898   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6899                                             : ABIArgInfo::getDirect());
6900 }
6901 
6902 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6903   if (!getCXXABI().classifyReturnType(FI))
6904     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6905   for (auto &I : FI.arguments())
6906     I.info = classifyArgumentType(I.type);
6907 
6908   // Always honor user-specified calling convention.
6909   if (FI.getCallingConvention() != llvm::CallingConv::C)
6910     return;
6911 
6912   FI.setEffectiveCallingConvention(getRuntimeCC());
6913 }
6914 
6915 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6916                                 QualType Ty) const {
6917   llvm_unreachable("NVPTX does not support varargs");
6918 }
6919 
6920 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6921     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6922   if (GV->isDeclaration())
6923     return;
6924   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
6925   if (VD) {
6926     if (M.getLangOpts().CUDA) {
6927       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
6928         addNVVMMetadata(GV, "surface", 1);
6929       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
6930         addNVVMMetadata(GV, "texture", 1);
6931       return;
6932     }
6933   }
6934 
6935   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6936   if (!FD) return;
6937 
6938   llvm::Function *F = cast<llvm::Function>(GV);
6939 
6940   // Perform special handling in OpenCL mode
6941   if (M.getLangOpts().OpenCL) {
6942     // Use OpenCL function attributes to check for kernel functions
6943     // By default, all functions are device functions
6944     if (FD->hasAttr<OpenCLKernelAttr>()) {
6945       // OpenCL __kernel functions get kernel metadata
6946       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6947       addNVVMMetadata(F, "kernel", 1);
6948       // And kernel functions are not subject to inlining
6949       F->addFnAttr(llvm::Attribute::NoInline);
6950     }
6951   }
6952 
6953   // Perform special handling in CUDA mode.
6954   if (M.getLangOpts().CUDA) {
6955     // CUDA __global__ functions get a kernel metadata entry.  Since
6956     // __global__ functions cannot be called from the device, we do not
6957     // need to set the noinline attribute.
6958     if (FD->hasAttr<CUDAGlobalAttr>()) {
6959       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6960       addNVVMMetadata(F, "kernel", 1);
6961     }
6962     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6963       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6964       llvm::APSInt MaxThreads(32);
6965       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6966       if (MaxThreads > 0)
6967         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6968 
6969       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6970       // not specified in __launch_bounds__ or if the user specified a 0 value,
6971       // we don't have to add a PTX directive.
6972       if (Attr->getMinBlocks()) {
6973         llvm::APSInt MinBlocks(32);
6974         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6975         if (MinBlocks > 0)
6976           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6977           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6978       }
6979     }
6980   }
6981 }
6982 
6983 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
6984                                              StringRef Name, int Operand) {
6985   llvm::Module *M = GV->getParent();
6986   llvm::LLVMContext &Ctx = M->getContext();
6987 
6988   // Get "nvvm.annotations" metadata node
6989   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6990 
6991   llvm::Metadata *MDVals[] = {
6992       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
6993       llvm::ConstantAsMetadata::get(
6994           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6995   // Append metadata to nvvm.annotations
6996   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6997 }
6998 
6999 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7000   return false;
7001 }
7002 }
7003 
7004 //===----------------------------------------------------------------------===//
7005 // SystemZ ABI Implementation
7006 //===----------------------------------------------------------------------===//
7007 
7008 namespace {
7009 
7010 class SystemZABIInfo : public SwiftABIInfo {
7011   bool HasVector;
7012   bool IsSoftFloatABI;
7013 
7014 public:
7015   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7016     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7017 
7018   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7019   bool isCompoundType(QualType Ty) const;
7020   bool isVectorArgumentType(QualType Ty) const;
7021   bool isFPArgumentType(QualType Ty) const;
7022   QualType GetSingleElementType(QualType Ty) const;
7023 
7024   ABIArgInfo classifyReturnType(QualType RetTy) const;
7025   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7026 
7027   void computeInfo(CGFunctionInfo &FI) const override {
7028     if (!getCXXABI().classifyReturnType(FI))
7029       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7030     for (auto &I : FI.arguments())
7031       I.info = classifyArgumentType(I.type);
7032   }
7033 
7034   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7035                     QualType Ty) const override;
7036 
7037   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7038                                     bool asReturnValue) const override {
7039     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7040   }
7041   bool isSwiftErrorInRegister() const override {
7042     return false;
7043   }
7044 };
7045 
7046 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7047 public:
7048   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7049       : TargetCodeGenInfo(
7050             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7051 };
7052 
7053 }
7054 
7055 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7056   // Treat an enum type as its underlying type.
7057   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7058     Ty = EnumTy->getDecl()->getIntegerType();
7059 
7060   // Promotable integer types are required to be promoted by the ABI.
7061   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7062     return true;
7063 
7064   if (const auto *EIT = Ty->getAs<ExtIntType>())
7065     if (EIT->getNumBits() < 64)
7066       return true;
7067 
7068   // 32-bit values must also be promoted.
7069   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7070     switch (BT->getKind()) {
7071     case BuiltinType::Int:
7072     case BuiltinType::UInt:
7073       return true;
7074     default:
7075       return false;
7076     }
7077   return false;
7078 }
7079 
7080 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7081   return (Ty->isAnyComplexType() ||
7082           Ty->isVectorType() ||
7083           isAggregateTypeForABI(Ty));
7084 }
7085 
7086 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7087   return (HasVector &&
7088           Ty->isVectorType() &&
7089           getContext().getTypeSize(Ty) <= 128);
7090 }
7091 
7092 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7093   if (IsSoftFloatABI)
7094     return false;
7095 
7096   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7097     switch (BT->getKind()) {
7098     case BuiltinType::Float:
7099     case BuiltinType::Double:
7100       return true;
7101     default:
7102       return false;
7103     }
7104 
7105   return false;
7106 }
7107 
7108 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7109   if (const RecordType *RT = Ty->getAsStructureType()) {
7110     const RecordDecl *RD = RT->getDecl();
7111     QualType Found;
7112 
7113     // If this is a C++ record, check the bases first.
7114     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7115       for (const auto &I : CXXRD->bases()) {
7116         QualType Base = I.getType();
7117 
7118         // Empty bases don't affect things either way.
7119         if (isEmptyRecord(getContext(), Base, true))
7120           continue;
7121 
7122         if (!Found.isNull())
7123           return Ty;
7124         Found = GetSingleElementType(Base);
7125       }
7126 
7127     // Check the fields.
7128     for (const auto *FD : RD->fields()) {
7129       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7130       // Unlike isSingleElementStruct(), empty structure and array fields
7131       // do count.  So do anonymous bitfields that aren't zero-sized.
7132       if (getContext().getLangOpts().CPlusPlus &&
7133           FD->isZeroLengthBitField(getContext()))
7134         continue;
7135 
7136       // Unlike isSingleElementStruct(), arrays do not count.
7137       // Nested structures still do though.
7138       if (!Found.isNull())
7139         return Ty;
7140       Found = GetSingleElementType(FD->getType());
7141     }
7142 
7143     // Unlike isSingleElementStruct(), trailing padding is allowed.
7144     // An 8-byte aligned struct s { float f; } is passed as a double.
7145     if (!Found.isNull())
7146       return Found;
7147   }
7148 
7149   return Ty;
7150 }
7151 
7152 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7153                                   QualType Ty) const {
7154   // Assume that va_list type is correct; should be pointer to LLVM type:
7155   // struct {
7156   //   i64 __gpr;
7157   //   i64 __fpr;
7158   //   i8 *__overflow_arg_area;
7159   //   i8 *__reg_save_area;
7160   // };
7161 
7162   // Every non-vector argument occupies 8 bytes and is passed by preference
7163   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7164   // always passed on the stack.
7165   Ty = getContext().getCanonicalType(Ty);
7166   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7167   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7168   llvm::Type *DirectTy = ArgTy;
7169   ABIArgInfo AI = classifyArgumentType(Ty);
7170   bool IsIndirect = AI.isIndirect();
7171   bool InFPRs = false;
7172   bool IsVector = false;
7173   CharUnits UnpaddedSize;
7174   CharUnits DirectAlign;
7175   if (IsIndirect) {
7176     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7177     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7178   } else {
7179     if (AI.getCoerceToType())
7180       ArgTy = AI.getCoerceToType();
7181     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7182     IsVector = ArgTy->isVectorTy();
7183     UnpaddedSize = TyInfo.first;
7184     DirectAlign = TyInfo.second;
7185   }
7186   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7187   if (IsVector && UnpaddedSize > PaddedSize)
7188     PaddedSize = CharUnits::fromQuantity(16);
7189   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7190 
7191   CharUnits Padding = (PaddedSize - UnpaddedSize);
7192 
7193   llvm::Type *IndexTy = CGF.Int64Ty;
7194   llvm::Value *PaddedSizeV =
7195     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7196 
7197   if (IsVector) {
7198     // Work out the address of a vector argument on the stack.
7199     // Vector arguments are always passed in the high bits of a
7200     // single (8 byte) or double (16 byte) stack slot.
7201     Address OverflowArgAreaPtr =
7202         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7203     Address OverflowArgArea =
7204       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7205               TyInfo.second);
7206     Address MemAddr =
7207       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7208 
7209     // Update overflow_arg_area_ptr pointer
7210     llvm::Value *NewOverflowArgArea =
7211       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7212                             "overflow_arg_area");
7213     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7214 
7215     return MemAddr;
7216   }
7217 
7218   assert(PaddedSize.getQuantity() == 8);
7219 
7220   unsigned MaxRegs, RegCountField, RegSaveIndex;
7221   CharUnits RegPadding;
7222   if (InFPRs) {
7223     MaxRegs = 4; // Maximum of 4 FPR arguments
7224     RegCountField = 1; // __fpr
7225     RegSaveIndex = 16; // save offset for f0
7226     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7227   } else {
7228     MaxRegs = 5; // Maximum of 5 GPR arguments
7229     RegCountField = 0; // __gpr
7230     RegSaveIndex = 2; // save offset for r2
7231     RegPadding = Padding; // values are passed in the low bits of a GPR
7232   }
7233 
7234   Address RegCountPtr =
7235       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7236   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7237   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7238   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7239                                                  "fits_in_regs");
7240 
7241   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7242   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7243   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7244   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7245 
7246   // Emit code to load the value if it was passed in registers.
7247   CGF.EmitBlock(InRegBlock);
7248 
7249   // Work out the address of an argument register.
7250   llvm::Value *ScaledRegCount =
7251     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7252   llvm::Value *RegBase =
7253     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7254                                       + RegPadding.getQuantity());
7255   llvm::Value *RegOffset =
7256     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7257   Address RegSaveAreaPtr =
7258       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7259   llvm::Value *RegSaveArea =
7260     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7261   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7262                                            "raw_reg_addr"),
7263                      PaddedSize);
7264   Address RegAddr =
7265     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7266 
7267   // Update the register count
7268   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7269   llvm::Value *NewRegCount =
7270     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7271   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7272   CGF.EmitBranch(ContBlock);
7273 
7274   // Emit code to load the value if it was passed in memory.
7275   CGF.EmitBlock(InMemBlock);
7276 
7277   // Work out the address of a stack argument.
7278   Address OverflowArgAreaPtr =
7279       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7280   Address OverflowArgArea =
7281     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7282             PaddedSize);
7283   Address RawMemAddr =
7284     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7285   Address MemAddr =
7286     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7287 
7288   // Update overflow_arg_area_ptr pointer
7289   llvm::Value *NewOverflowArgArea =
7290     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7291                           "overflow_arg_area");
7292   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7293   CGF.EmitBranch(ContBlock);
7294 
7295   // Return the appropriate result.
7296   CGF.EmitBlock(ContBlock);
7297   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7298                                  MemAddr, InMemBlock, "va_arg.addr");
7299 
7300   if (IsIndirect)
7301     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7302                       TyInfo.second);
7303 
7304   return ResAddr;
7305 }
7306 
7307 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7308   if (RetTy->isVoidType())
7309     return ABIArgInfo::getIgnore();
7310   if (isVectorArgumentType(RetTy))
7311     return ABIArgInfo::getDirect();
7312   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7313     return getNaturalAlignIndirect(RetTy);
7314   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7315                                                : ABIArgInfo::getDirect());
7316 }
7317 
7318 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7319   // Handle the generic C++ ABI.
7320   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7321     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7322 
7323   // Integers and enums are extended to full register width.
7324   if (isPromotableIntegerTypeForABI(Ty))
7325     return ABIArgInfo::getExtend(Ty);
7326 
7327   // Handle vector types and vector-like structure types.  Note that
7328   // as opposed to float-like structure types, we do not allow any
7329   // padding for vector-like structures, so verify the sizes match.
7330   uint64_t Size = getContext().getTypeSize(Ty);
7331   QualType SingleElementTy = GetSingleElementType(Ty);
7332   if (isVectorArgumentType(SingleElementTy) &&
7333       getContext().getTypeSize(SingleElementTy) == Size)
7334     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7335 
7336   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7337   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7338     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7339 
7340   // Handle small structures.
7341   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7342     // Structures with flexible arrays have variable length, so really
7343     // fail the size test above.
7344     const RecordDecl *RD = RT->getDecl();
7345     if (RD->hasFlexibleArrayMember())
7346       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7347 
7348     // The structure is passed as an unextended integer, a float, or a double.
7349     llvm::Type *PassTy;
7350     if (isFPArgumentType(SingleElementTy)) {
7351       assert(Size == 32 || Size == 64);
7352       if (Size == 32)
7353         PassTy = llvm::Type::getFloatTy(getVMContext());
7354       else
7355         PassTy = llvm::Type::getDoubleTy(getVMContext());
7356     } else
7357       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7358     return ABIArgInfo::getDirect(PassTy);
7359   }
7360 
7361   // Non-structure compounds are passed indirectly.
7362   if (isCompoundType(Ty))
7363     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7364 
7365   return ABIArgInfo::getDirect(nullptr);
7366 }
7367 
7368 //===----------------------------------------------------------------------===//
7369 // MSP430 ABI Implementation
7370 //===----------------------------------------------------------------------===//
7371 
7372 namespace {
7373 
7374 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7375 public:
7376   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7377       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
7378   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7379                            CodeGen::CodeGenModule &M) const override;
7380 };
7381 
7382 }
7383 
7384 void MSP430TargetCodeGenInfo::setTargetAttributes(
7385     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7386   if (GV->isDeclaration())
7387     return;
7388   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7389     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7390     if (!InterruptAttr)
7391       return;
7392 
7393     // Handle 'interrupt' attribute:
7394     llvm::Function *F = cast<llvm::Function>(GV);
7395 
7396     // Step 1: Set ISR calling convention.
7397     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7398 
7399     // Step 2: Add attributes goodness.
7400     F->addFnAttr(llvm::Attribute::NoInline);
7401     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7402   }
7403 }
7404 
7405 //===----------------------------------------------------------------------===//
7406 // MIPS ABI Implementation.  This works for both little-endian and
7407 // big-endian variants.
7408 //===----------------------------------------------------------------------===//
7409 
7410 namespace {
7411 class MipsABIInfo : public ABIInfo {
7412   bool IsO32;
7413   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7414   void CoerceToIntArgs(uint64_t TySize,
7415                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7416   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7417   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7418   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7419 public:
7420   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7421     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7422     StackAlignInBytes(IsO32 ? 8 : 16) {}
7423 
7424   ABIArgInfo classifyReturnType(QualType RetTy) const;
7425   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7426   void computeInfo(CGFunctionInfo &FI) const override;
7427   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7428                     QualType Ty) const override;
7429   ABIArgInfo extendType(QualType Ty) const;
7430 };
7431 
7432 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7433   unsigned SizeOfUnwindException;
7434 public:
7435   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7436       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7437         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7438 
7439   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7440     return 29;
7441   }
7442 
7443   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7444                            CodeGen::CodeGenModule &CGM) const override {
7445     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7446     if (!FD) return;
7447     llvm::Function *Fn = cast<llvm::Function>(GV);
7448 
7449     if (FD->hasAttr<MipsLongCallAttr>())
7450       Fn->addFnAttr("long-call");
7451     else if (FD->hasAttr<MipsShortCallAttr>())
7452       Fn->addFnAttr("short-call");
7453 
7454     // Other attributes do not have a meaning for declarations.
7455     if (GV->isDeclaration())
7456       return;
7457 
7458     if (FD->hasAttr<Mips16Attr>()) {
7459       Fn->addFnAttr("mips16");
7460     }
7461     else if (FD->hasAttr<NoMips16Attr>()) {
7462       Fn->addFnAttr("nomips16");
7463     }
7464 
7465     if (FD->hasAttr<MicroMipsAttr>())
7466       Fn->addFnAttr("micromips");
7467     else if (FD->hasAttr<NoMicroMipsAttr>())
7468       Fn->addFnAttr("nomicromips");
7469 
7470     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7471     if (!Attr)
7472       return;
7473 
7474     const char *Kind;
7475     switch (Attr->getInterrupt()) {
7476     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7477     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7478     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7479     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7480     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7481     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7482     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7483     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7484     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7485     }
7486 
7487     Fn->addFnAttr("interrupt", Kind);
7488 
7489   }
7490 
7491   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7492                                llvm::Value *Address) const override;
7493 
7494   unsigned getSizeOfUnwindException() const override {
7495     return SizeOfUnwindException;
7496   }
7497 };
7498 }
7499 
7500 void MipsABIInfo::CoerceToIntArgs(
7501     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7502   llvm::IntegerType *IntTy =
7503     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7504 
7505   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7506   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7507     ArgList.push_back(IntTy);
7508 
7509   // If necessary, add one more integer type to ArgList.
7510   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7511 
7512   if (R)
7513     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7514 }
7515 
7516 // In N32/64, an aligned double precision floating point field is passed in
7517 // a register.
7518 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7519   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7520 
7521   if (IsO32) {
7522     CoerceToIntArgs(TySize, ArgList);
7523     return llvm::StructType::get(getVMContext(), ArgList);
7524   }
7525 
7526   if (Ty->isComplexType())
7527     return CGT.ConvertType(Ty);
7528 
7529   const RecordType *RT = Ty->getAs<RecordType>();
7530 
7531   // Unions/vectors are passed in integer registers.
7532   if (!RT || !RT->isStructureOrClassType()) {
7533     CoerceToIntArgs(TySize, ArgList);
7534     return llvm::StructType::get(getVMContext(), ArgList);
7535   }
7536 
7537   const RecordDecl *RD = RT->getDecl();
7538   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7539   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7540 
7541   uint64_t LastOffset = 0;
7542   unsigned idx = 0;
7543   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7544 
7545   // Iterate over fields in the struct/class and check if there are any aligned
7546   // double fields.
7547   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7548        i != e; ++i, ++idx) {
7549     const QualType Ty = i->getType();
7550     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7551 
7552     if (!BT || BT->getKind() != BuiltinType::Double)
7553       continue;
7554 
7555     uint64_t Offset = Layout.getFieldOffset(idx);
7556     if (Offset % 64) // Ignore doubles that are not aligned.
7557       continue;
7558 
7559     // Add ((Offset - LastOffset) / 64) args of type i64.
7560     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7561       ArgList.push_back(I64);
7562 
7563     // Add double type.
7564     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7565     LastOffset = Offset + 64;
7566   }
7567 
7568   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7569   ArgList.append(IntArgList.begin(), IntArgList.end());
7570 
7571   return llvm::StructType::get(getVMContext(), ArgList);
7572 }
7573 
7574 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7575                                         uint64_t Offset) const {
7576   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7577     return nullptr;
7578 
7579   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7580 }
7581 
7582 ABIArgInfo
7583 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7584   Ty = useFirstFieldIfTransparentUnion(Ty);
7585 
7586   uint64_t OrigOffset = Offset;
7587   uint64_t TySize = getContext().getTypeSize(Ty);
7588   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7589 
7590   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7591                    (uint64_t)StackAlignInBytes);
7592   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7593   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7594 
7595   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7596     // Ignore empty aggregates.
7597     if (TySize == 0)
7598       return ABIArgInfo::getIgnore();
7599 
7600     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7601       Offset = OrigOffset + MinABIStackAlignInBytes;
7602       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7603     }
7604 
7605     // If we have reached here, aggregates are passed directly by coercing to
7606     // another structure type. Padding is inserted if the offset of the
7607     // aggregate is unaligned.
7608     ABIArgInfo ArgInfo =
7609         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7610                               getPaddingType(OrigOffset, CurrOffset));
7611     ArgInfo.setInReg(true);
7612     return ArgInfo;
7613   }
7614 
7615   // Treat an enum type as its underlying type.
7616   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7617     Ty = EnumTy->getDecl()->getIntegerType();
7618 
7619   // Make sure we pass indirectly things that are too large.
7620   if (const auto *EIT = Ty->getAs<ExtIntType>())
7621     if (EIT->getNumBits() > 128 ||
7622         (EIT->getNumBits() > 64 &&
7623          !getContext().getTargetInfo().hasInt128Type()))
7624       return getNaturalAlignIndirect(Ty);
7625 
7626   // All integral types are promoted to the GPR width.
7627   if (Ty->isIntegralOrEnumerationType())
7628     return extendType(Ty);
7629 
7630   return ABIArgInfo::getDirect(
7631       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7632 }
7633 
7634 llvm::Type*
7635 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7636   const RecordType *RT = RetTy->getAs<RecordType>();
7637   SmallVector<llvm::Type*, 8> RTList;
7638 
7639   if (RT && RT->isStructureOrClassType()) {
7640     const RecordDecl *RD = RT->getDecl();
7641     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7642     unsigned FieldCnt = Layout.getFieldCount();
7643 
7644     // N32/64 returns struct/classes in floating point registers if the
7645     // following conditions are met:
7646     // 1. The size of the struct/class is no larger than 128-bit.
7647     // 2. The struct/class has one or two fields all of which are floating
7648     //    point types.
7649     // 3. The offset of the first field is zero (this follows what gcc does).
7650     //
7651     // Any other composite results are returned in integer registers.
7652     //
7653     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7654       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7655       for (; b != e; ++b) {
7656         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7657 
7658         if (!BT || !BT->isFloatingPoint())
7659           break;
7660 
7661         RTList.push_back(CGT.ConvertType(b->getType()));
7662       }
7663 
7664       if (b == e)
7665         return llvm::StructType::get(getVMContext(), RTList,
7666                                      RD->hasAttr<PackedAttr>());
7667 
7668       RTList.clear();
7669     }
7670   }
7671 
7672   CoerceToIntArgs(Size, RTList);
7673   return llvm::StructType::get(getVMContext(), RTList);
7674 }
7675 
7676 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7677   uint64_t Size = getContext().getTypeSize(RetTy);
7678 
7679   if (RetTy->isVoidType())
7680     return ABIArgInfo::getIgnore();
7681 
7682   // O32 doesn't treat zero-sized structs differently from other structs.
7683   // However, N32/N64 ignores zero sized return values.
7684   if (!IsO32 && Size == 0)
7685     return ABIArgInfo::getIgnore();
7686 
7687   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7688     if (Size <= 128) {
7689       if (RetTy->isAnyComplexType())
7690         return ABIArgInfo::getDirect();
7691 
7692       // O32 returns integer vectors in registers and N32/N64 returns all small
7693       // aggregates in registers.
7694       if (!IsO32 ||
7695           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7696         ABIArgInfo ArgInfo =
7697             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7698         ArgInfo.setInReg(true);
7699         return ArgInfo;
7700       }
7701     }
7702 
7703     return getNaturalAlignIndirect(RetTy);
7704   }
7705 
7706   // Treat an enum type as its underlying type.
7707   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7708     RetTy = EnumTy->getDecl()->getIntegerType();
7709 
7710   // Make sure we pass indirectly things that are too large.
7711   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7712     if (EIT->getNumBits() > 128 ||
7713         (EIT->getNumBits() > 64 &&
7714          !getContext().getTargetInfo().hasInt128Type()))
7715       return getNaturalAlignIndirect(RetTy);
7716 
7717   if (isPromotableIntegerTypeForABI(RetTy))
7718     return ABIArgInfo::getExtend(RetTy);
7719 
7720   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7721       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7722     return ABIArgInfo::getSignExtend(RetTy);
7723 
7724   return ABIArgInfo::getDirect();
7725 }
7726 
7727 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7728   ABIArgInfo &RetInfo = FI.getReturnInfo();
7729   if (!getCXXABI().classifyReturnType(FI))
7730     RetInfo = classifyReturnType(FI.getReturnType());
7731 
7732   // Check if a pointer to an aggregate is passed as a hidden argument.
7733   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7734 
7735   for (auto &I : FI.arguments())
7736     I.info = classifyArgumentType(I.type, Offset);
7737 }
7738 
7739 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7740                                QualType OrigTy) const {
7741   QualType Ty = OrigTy;
7742 
7743   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7744   // Pointers are also promoted in the same way but this only matters for N32.
7745   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7746   unsigned PtrWidth = getTarget().getPointerWidth(0);
7747   bool DidPromote = false;
7748   if ((Ty->isIntegerType() &&
7749           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7750       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7751     DidPromote = true;
7752     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7753                                             Ty->isSignedIntegerType());
7754   }
7755 
7756   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7757 
7758   // The alignment of things in the argument area is never larger than
7759   // StackAlignInBytes.
7760   TyInfo.second =
7761     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7762 
7763   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7764   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7765 
7766   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7767                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7768 
7769 
7770   // If there was a promotion, "unpromote" into a temporary.
7771   // TODO: can we just use a pointer into a subset of the original slot?
7772   if (DidPromote) {
7773     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7774     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7775 
7776     // Truncate down to the right width.
7777     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7778                                                  : CGF.IntPtrTy);
7779     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7780     if (OrigTy->isPointerType())
7781       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7782 
7783     CGF.Builder.CreateStore(V, Temp);
7784     Addr = Temp;
7785   }
7786 
7787   return Addr;
7788 }
7789 
7790 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7791   int TySize = getContext().getTypeSize(Ty);
7792 
7793   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7794   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7795     return ABIArgInfo::getSignExtend(Ty);
7796 
7797   return ABIArgInfo::getExtend(Ty);
7798 }
7799 
7800 bool
7801 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7802                                                llvm::Value *Address) const {
7803   // This information comes from gcc's implementation, which seems to
7804   // as canonical as it gets.
7805 
7806   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7807   // are aliased to pairs of single-precision FP registers.
7808   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7809 
7810   // 0-31 are the general purpose registers, $0 - $31.
7811   // 32-63 are the floating-point registers, $f0 - $f31.
7812   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7813   // 66 is the (notional, I think) register for signal-handler return.
7814   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7815 
7816   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7817   // They are one bit wide and ignored here.
7818 
7819   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7820   // (coprocessor 1 is the FP unit)
7821   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7822   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7823   // 176-181 are the DSP accumulator registers.
7824   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7825   return false;
7826 }
7827 
7828 //===----------------------------------------------------------------------===//
7829 // AVR ABI Implementation.
7830 //===----------------------------------------------------------------------===//
7831 
7832 namespace {
7833 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7834 public:
7835   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7836       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
7837 
7838   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7839                            CodeGen::CodeGenModule &CGM) const override {
7840     if (GV->isDeclaration())
7841       return;
7842     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7843     if (!FD) return;
7844     auto *Fn = cast<llvm::Function>(GV);
7845 
7846     if (FD->getAttr<AVRInterruptAttr>())
7847       Fn->addFnAttr("interrupt");
7848 
7849     if (FD->getAttr<AVRSignalAttr>())
7850       Fn->addFnAttr("signal");
7851   }
7852 };
7853 }
7854 
7855 //===----------------------------------------------------------------------===//
7856 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7857 // Currently subclassed only to implement custom OpenCL C function attribute
7858 // handling.
7859 //===----------------------------------------------------------------------===//
7860 
7861 namespace {
7862 
7863 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7864 public:
7865   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7866     : DefaultTargetCodeGenInfo(CGT) {}
7867 
7868   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7869                            CodeGen::CodeGenModule &M) const override;
7870 };
7871 
7872 void TCETargetCodeGenInfo::setTargetAttributes(
7873     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7874   if (GV->isDeclaration())
7875     return;
7876   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7877   if (!FD) return;
7878 
7879   llvm::Function *F = cast<llvm::Function>(GV);
7880 
7881   if (M.getLangOpts().OpenCL) {
7882     if (FD->hasAttr<OpenCLKernelAttr>()) {
7883       // OpenCL C Kernel functions are not subject to inlining
7884       F->addFnAttr(llvm::Attribute::NoInline);
7885       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7886       if (Attr) {
7887         // Convert the reqd_work_group_size() attributes to metadata.
7888         llvm::LLVMContext &Context = F->getContext();
7889         llvm::NamedMDNode *OpenCLMetadata =
7890             M.getModule().getOrInsertNamedMetadata(
7891                 "opencl.kernel_wg_size_info");
7892 
7893         SmallVector<llvm::Metadata *, 5> Operands;
7894         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7895 
7896         Operands.push_back(
7897             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7898                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7899         Operands.push_back(
7900             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7901                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7902         Operands.push_back(
7903             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7904                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7905 
7906         // Add a boolean constant operand for "required" (true) or "hint"
7907         // (false) for implementing the work_group_size_hint attr later.
7908         // Currently always true as the hint is not yet implemented.
7909         Operands.push_back(
7910             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7911         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7912       }
7913     }
7914   }
7915 }
7916 
7917 }
7918 
7919 //===----------------------------------------------------------------------===//
7920 // Hexagon ABI Implementation
7921 //===----------------------------------------------------------------------===//
7922 
7923 namespace {
7924 
7925 class HexagonABIInfo : public DefaultABIInfo {
7926 public:
7927   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7928 
7929 private:
7930   ABIArgInfo classifyReturnType(QualType RetTy) const;
7931   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7932   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
7933 
7934   void computeInfo(CGFunctionInfo &FI) const override;
7935 
7936   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7937                     QualType Ty) const override;
7938   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
7939                               QualType Ty) const;
7940   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
7941                               QualType Ty) const;
7942   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
7943                                    QualType Ty) const;
7944 };
7945 
7946 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7947 public:
7948   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7949       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
7950 
7951   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7952     return 29;
7953   }
7954 
7955   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7956                            CodeGen::CodeGenModule &GCM) const override {
7957     if (GV->isDeclaration())
7958       return;
7959     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7960     if (!FD)
7961       return;
7962   }
7963 };
7964 
7965 } // namespace
7966 
7967 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7968   unsigned RegsLeft = 6;
7969   if (!getCXXABI().classifyReturnType(FI))
7970     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7971   for (auto &I : FI.arguments())
7972     I.info = classifyArgumentType(I.type, &RegsLeft);
7973 }
7974 
7975 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
7976   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
7977                        " through registers");
7978 
7979   if (*RegsLeft == 0)
7980     return false;
7981 
7982   if (Size <= 32) {
7983     (*RegsLeft)--;
7984     return true;
7985   }
7986 
7987   if (2 <= (*RegsLeft & (~1U))) {
7988     *RegsLeft = (*RegsLeft & (~1U)) - 2;
7989     return true;
7990   }
7991 
7992   // Next available register was r5 but candidate was greater than 32-bits so it
7993   // has to go on the stack. However we still consume r5
7994   if (*RegsLeft == 1)
7995     *RegsLeft = 0;
7996 
7997   return false;
7998 }
7999 
8000 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8001                                                 unsigned *RegsLeft) const {
8002   if (!isAggregateTypeForABI(Ty)) {
8003     // Treat an enum type as its underlying type.
8004     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8005       Ty = EnumTy->getDecl()->getIntegerType();
8006 
8007     uint64_t Size = getContext().getTypeSize(Ty);
8008     if (Size <= 64)
8009       HexagonAdjustRegsLeft(Size, RegsLeft);
8010 
8011     if (Size > 64 && Ty->isExtIntType())
8012       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8013 
8014     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8015                                              : ABIArgInfo::getDirect();
8016   }
8017 
8018   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8019     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8020 
8021   // Ignore empty records.
8022   if (isEmptyRecord(getContext(), Ty, true))
8023     return ABIArgInfo::getIgnore();
8024 
8025   uint64_t Size = getContext().getTypeSize(Ty);
8026   unsigned Align = getContext().getTypeAlign(Ty);
8027 
8028   if (Size > 64)
8029     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8030 
8031   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8032     Align = Size <= 32 ? 32 : 64;
8033   if (Size <= Align) {
8034     // Pass in the smallest viable integer type.
8035     if (!llvm::isPowerOf2_64(Size))
8036       Size = llvm::NextPowerOf2(Size);
8037     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8038   }
8039   return DefaultABIInfo::classifyArgumentType(Ty);
8040 }
8041 
8042 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8043   if (RetTy->isVoidType())
8044     return ABIArgInfo::getIgnore();
8045 
8046   const TargetInfo &T = CGT.getTarget();
8047   uint64_t Size = getContext().getTypeSize(RetTy);
8048 
8049   if (RetTy->getAs<VectorType>()) {
8050     // HVX vectors are returned in vector registers or register pairs.
8051     if (T.hasFeature("hvx")) {
8052       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8053       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8054       if (Size == VecSize || Size == 2*VecSize)
8055         return ABIArgInfo::getDirectInReg();
8056     }
8057     // Large vector types should be returned via memory.
8058     if (Size > 64)
8059       return getNaturalAlignIndirect(RetTy);
8060   }
8061 
8062   if (!isAggregateTypeForABI(RetTy)) {
8063     // Treat an enum type as its underlying type.
8064     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8065       RetTy = EnumTy->getDecl()->getIntegerType();
8066 
8067     if (Size > 64 && RetTy->isExtIntType())
8068       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8069 
8070     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8071                                                 : ABIArgInfo::getDirect();
8072   }
8073 
8074   if (isEmptyRecord(getContext(), RetTy, true))
8075     return ABIArgInfo::getIgnore();
8076 
8077   // Aggregates <= 8 bytes are returned in registers, other aggregates
8078   // are returned indirectly.
8079   if (Size <= 64) {
8080     // Return in the smallest viable integer type.
8081     if (!llvm::isPowerOf2_64(Size))
8082       Size = llvm::NextPowerOf2(Size);
8083     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8084   }
8085   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8086 }
8087 
8088 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8089                                             Address VAListAddr,
8090                                             QualType Ty) const {
8091   // Load the overflow area pointer.
8092   Address __overflow_area_pointer_p =
8093       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8094   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8095       __overflow_area_pointer_p, "__overflow_area_pointer");
8096 
8097   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8098   if (Align > 4) {
8099     // Alignment should be a power of 2.
8100     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8101 
8102     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8103     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8104 
8105     // Add offset to the current pointer to access the argument.
8106     __overflow_area_pointer =
8107         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8108     llvm::Value *AsInt =
8109         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8110 
8111     // Create a mask which should be "AND"ed
8112     // with (overflow_arg_area + align - 1)
8113     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8114     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8115         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8116         "__overflow_area_pointer.align");
8117   }
8118 
8119   // Get the type of the argument from memory and bitcast
8120   // overflow area pointer to the argument type.
8121   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8122   Address AddrTyped = CGF.Builder.CreateBitCast(
8123       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8124       llvm::PointerType::getUnqual(PTy));
8125 
8126   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8127   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8128 
8129   __overflow_area_pointer = CGF.Builder.CreateGEP(
8130       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8131       "__overflow_area_pointer.next");
8132   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8133 
8134   return AddrTyped;
8135 }
8136 
8137 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8138                                             Address VAListAddr,
8139                                             QualType Ty) const {
8140   // FIXME: Need to handle alignment
8141   llvm::Type *BP = CGF.Int8PtrTy;
8142   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8143   CGBuilderTy &Builder = CGF.Builder;
8144   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8145   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8146   // Handle address alignment for type alignment > 32 bits
8147   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8148   if (TyAlign > 4) {
8149     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8150     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8151     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8152     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8153     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8154   }
8155   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8156   Address AddrTyped = Builder.CreateBitCast(
8157       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8158 
8159   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8160   llvm::Value *NextAddr = Builder.CreateGEP(
8161       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8162   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8163 
8164   return AddrTyped;
8165 }
8166 
8167 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8168                                                  Address VAListAddr,
8169                                                  QualType Ty) const {
8170   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8171 
8172   if (ArgSize > 8)
8173     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8174 
8175   // Here we have check if the argument is in register area or
8176   // in overflow area.
8177   // If the saved register area pointer + argsize rounded up to alignment >
8178   // saved register area end pointer, argument is in overflow area.
8179   unsigned RegsLeft = 6;
8180   Ty = CGF.getContext().getCanonicalType(Ty);
8181   (void)classifyArgumentType(Ty, &RegsLeft);
8182 
8183   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8184   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8185   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8186   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8187 
8188   // Get rounded size of the argument.GCC does not allow vararg of
8189   // size < 4 bytes. We follow the same logic here.
8190   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8191   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8192 
8193   // Argument may be in saved register area
8194   CGF.EmitBlock(MaybeRegBlock);
8195 
8196   // Load the current saved register area pointer.
8197   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8198       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8199   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8200       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8201 
8202   // Load the saved register area end pointer.
8203   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8204       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8205   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8206       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8207 
8208   // If the size of argument is > 4 bytes, check if the stack
8209   // location is aligned to 8 bytes
8210   if (ArgAlign > 4) {
8211 
8212     llvm::Value *__current_saved_reg_area_pointer_int =
8213         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8214                                    CGF.Int32Ty);
8215 
8216     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8217         __current_saved_reg_area_pointer_int,
8218         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8219         "align_current_saved_reg_area_pointer");
8220 
8221     __current_saved_reg_area_pointer_int =
8222         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8223                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8224                               "align_current_saved_reg_area_pointer");
8225 
8226     __current_saved_reg_area_pointer =
8227         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8228                                    __current_saved_reg_area_pointer->getType(),
8229                                    "align_current_saved_reg_area_pointer");
8230   }
8231 
8232   llvm::Value *__new_saved_reg_area_pointer =
8233       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8234                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8235                             "__new_saved_reg_area_pointer");
8236 
8237   llvm::Value *UsingStack = 0;
8238   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8239                                          __saved_reg_area_end_pointer);
8240 
8241   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8242 
8243   // Argument in saved register area
8244   // Implement the block where argument is in register saved area
8245   CGF.EmitBlock(InRegBlock);
8246 
8247   llvm::Type *PTy = CGF.ConvertType(Ty);
8248   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8249       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8250 
8251   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8252                           __current_saved_reg_area_pointer_p);
8253 
8254   CGF.EmitBranch(ContBlock);
8255 
8256   // Argument in overflow area
8257   // Implement the block where the argument is in overflow area.
8258   CGF.EmitBlock(OnStackBlock);
8259 
8260   // Load the overflow area pointer
8261   Address __overflow_area_pointer_p =
8262       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8263   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8264       __overflow_area_pointer_p, "__overflow_area_pointer");
8265 
8266   // Align the overflow area pointer according to the alignment of the argument
8267   if (ArgAlign > 4) {
8268     llvm::Value *__overflow_area_pointer_int =
8269         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8270 
8271     __overflow_area_pointer_int =
8272         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8273                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8274                               "align_overflow_area_pointer");
8275 
8276     __overflow_area_pointer_int =
8277         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8278                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8279                               "align_overflow_area_pointer");
8280 
8281     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8282         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8283         "align_overflow_area_pointer");
8284   }
8285 
8286   // Get the pointer for next argument in overflow area and store it
8287   // to overflow area pointer.
8288   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8289       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8290       "__overflow_area_pointer.next");
8291 
8292   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8293                           __overflow_area_pointer_p);
8294 
8295   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8296                           __current_saved_reg_area_pointer_p);
8297 
8298   // Bitcast the overflow area pointer to the type of argument.
8299   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8300   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8301       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8302 
8303   CGF.EmitBranch(ContBlock);
8304 
8305   // Get the correct pointer to load the variable argument
8306   // Implement the ContBlock
8307   CGF.EmitBlock(ContBlock);
8308 
8309   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8310   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8311   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8312   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8313 
8314   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8315 }
8316 
8317 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8318                                   QualType Ty) const {
8319 
8320   if (getTarget().getTriple().isMusl())
8321     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8322 
8323   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8324 }
8325 
8326 //===----------------------------------------------------------------------===//
8327 // Lanai ABI Implementation
8328 //===----------------------------------------------------------------------===//
8329 
8330 namespace {
8331 class LanaiABIInfo : public DefaultABIInfo {
8332 public:
8333   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8334 
8335   bool shouldUseInReg(QualType Ty, CCState &State) const;
8336 
8337   void computeInfo(CGFunctionInfo &FI) const override {
8338     CCState State(FI);
8339     // Lanai uses 4 registers to pass arguments unless the function has the
8340     // regparm attribute set.
8341     if (FI.getHasRegParm()) {
8342       State.FreeRegs = FI.getRegParm();
8343     } else {
8344       State.FreeRegs = 4;
8345     }
8346 
8347     if (!getCXXABI().classifyReturnType(FI))
8348       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8349     for (auto &I : FI.arguments())
8350       I.info = classifyArgumentType(I.type, State);
8351   }
8352 
8353   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8354   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8355 };
8356 } // end anonymous namespace
8357 
8358 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8359   unsigned Size = getContext().getTypeSize(Ty);
8360   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8361 
8362   if (SizeInRegs == 0)
8363     return false;
8364 
8365   if (SizeInRegs > State.FreeRegs) {
8366     State.FreeRegs = 0;
8367     return false;
8368   }
8369 
8370   State.FreeRegs -= SizeInRegs;
8371 
8372   return true;
8373 }
8374 
8375 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8376                                            CCState &State) const {
8377   if (!ByVal) {
8378     if (State.FreeRegs) {
8379       --State.FreeRegs; // Non-byval indirects just use one pointer.
8380       return getNaturalAlignIndirectInReg(Ty);
8381     }
8382     return getNaturalAlignIndirect(Ty, false);
8383   }
8384 
8385   // Compute the byval alignment.
8386   const unsigned MinABIStackAlignInBytes = 4;
8387   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8388   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8389                                  /*Realign=*/TypeAlign >
8390                                      MinABIStackAlignInBytes);
8391 }
8392 
8393 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8394                                               CCState &State) const {
8395   // Check with the C++ ABI first.
8396   const RecordType *RT = Ty->getAs<RecordType>();
8397   if (RT) {
8398     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8399     if (RAA == CGCXXABI::RAA_Indirect) {
8400       return getIndirectResult(Ty, /*ByVal=*/false, State);
8401     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8402       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
8403     }
8404   }
8405 
8406   if (isAggregateTypeForABI(Ty)) {
8407     // Structures with flexible arrays are always indirect.
8408     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8409       return getIndirectResult(Ty, /*ByVal=*/true, State);
8410 
8411     // Ignore empty structs/unions.
8412     if (isEmptyRecord(getContext(), Ty, true))
8413       return ABIArgInfo::getIgnore();
8414 
8415     llvm::LLVMContext &LLVMContext = getVMContext();
8416     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8417     if (SizeInRegs <= State.FreeRegs) {
8418       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8419       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8420       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8421       State.FreeRegs -= SizeInRegs;
8422       return ABIArgInfo::getDirectInReg(Result);
8423     } else {
8424       State.FreeRegs = 0;
8425     }
8426     return getIndirectResult(Ty, true, State);
8427   }
8428 
8429   // Treat an enum type as its underlying type.
8430   if (const auto *EnumTy = Ty->getAs<EnumType>())
8431     Ty = EnumTy->getDecl()->getIntegerType();
8432 
8433   bool InReg = shouldUseInReg(Ty, State);
8434 
8435   // Don't pass >64 bit integers in registers.
8436   if (const auto *EIT = Ty->getAs<ExtIntType>())
8437     if (EIT->getNumBits() > 64)
8438       return getIndirectResult(Ty, /*ByVal=*/true, State);
8439 
8440   if (isPromotableIntegerTypeForABI(Ty)) {
8441     if (InReg)
8442       return ABIArgInfo::getDirectInReg();
8443     return ABIArgInfo::getExtend(Ty);
8444   }
8445   if (InReg)
8446     return ABIArgInfo::getDirectInReg();
8447   return ABIArgInfo::getDirect();
8448 }
8449 
8450 namespace {
8451 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8452 public:
8453   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8454       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8455 };
8456 }
8457 
8458 //===----------------------------------------------------------------------===//
8459 // AMDGPU ABI Implementation
8460 //===----------------------------------------------------------------------===//
8461 
8462 namespace {
8463 
8464 class AMDGPUABIInfo final : public DefaultABIInfo {
8465 private:
8466   static const unsigned MaxNumRegsForArgsRet = 16;
8467 
8468   unsigned numRegsForType(QualType Ty) const;
8469 
8470   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8471   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8472                                          uint64_t Members) const override;
8473 
8474   // Coerce HIP pointer arguments from generic pointers to global ones.
8475   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8476                                        unsigned ToAS) const {
8477     // Structure types.
8478     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8479       SmallVector<llvm::Type *, 8> EltTys;
8480       bool Changed = false;
8481       for (auto T : STy->elements()) {
8482         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8483         EltTys.push_back(NT);
8484         Changed |= (NT != T);
8485       }
8486       // Skip if there is no change in element types.
8487       if (!Changed)
8488         return STy;
8489       if (STy->hasName())
8490         return llvm::StructType::create(
8491             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8492       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8493     }
8494     // Array types.
8495     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8496       auto T = ATy->getElementType();
8497       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8498       // Skip if there is no change in that element type.
8499       if (NT == T)
8500         return ATy;
8501       return llvm::ArrayType::get(NT, ATy->getNumElements());
8502     }
8503     // Single value types.
8504     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8505       return llvm::PointerType::get(
8506           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8507     return Ty;
8508   }
8509 
8510 public:
8511   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8512     DefaultABIInfo(CGT) {}
8513 
8514   ABIArgInfo classifyReturnType(QualType RetTy) const;
8515   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8516   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8517 
8518   void computeInfo(CGFunctionInfo &FI) const override;
8519   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8520                     QualType Ty) const override;
8521 };
8522 
8523 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8524   return true;
8525 }
8526 
8527 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8528   const Type *Base, uint64_t Members) const {
8529   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8530 
8531   // Homogeneous Aggregates may occupy at most 16 registers.
8532   return Members * NumRegs <= MaxNumRegsForArgsRet;
8533 }
8534 
8535 /// Estimate number of registers the type will use when passed in registers.
8536 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8537   unsigned NumRegs = 0;
8538 
8539   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8540     // Compute from the number of elements. The reported size is based on the
8541     // in-memory size, which includes the padding 4th element for 3-vectors.
8542     QualType EltTy = VT->getElementType();
8543     unsigned EltSize = getContext().getTypeSize(EltTy);
8544 
8545     // 16-bit element vectors should be passed as packed.
8546     if (EltSize == 16)
8547       return (VT->getNumElements() + 1) / 2;
8548 
8549     unsigned EltNumRegs = (EltSize + 31) / 32;
8550     return EltNumRegs * VT->getNumElements();
8551   }
8552 
8553   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8554     const RecordDecl *RD = RT->getDecl();
8555     assert(!RD->hasFlexibleArrayMember());
8556 
8557     for (const FieldDecl *Field : RD->fields()) {
8558       QualType FieldTy = Field->getType();
8559       NumRegs += numRegsForType(FieldTy);
8560     }
8561 
8562     return NumRegs;
8563   }
8564 
8565   return (getContext().getTypeSize(Ty) + 31) / 32;
8566 }
8567 
8568 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8569   llvm::CallingConv::ID CC = FI.getCallingConvention();
8570 
8571   if (!getCXXABI().classifyReturnType(FI))
8572     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8573 
8574   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8575   for (auto &Arg : FI.arguments()) {
8576     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8577       Arg.info = classifyKernelArgumentType(Arg.type);
8578     } else {
8579       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8580     }
8581   }
8582 }
8583 
8584 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8585                                  QualType Ty) const {
8586   llvm_unreachable("AMDGPU does not support varargs");
8587 }
8588 
8589 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8590   if (isAggregateTypeForABI(RetTy)) {
8591     // Records with non-trivial destructors/copy-constructors should not be
8592     // returned by value.
8593     if (!getRecordArgABI(RetTy, getCXXABI())) {
8594       // Ignore empty structs/unions.
8595       if (isEmptyRecord(getContext(), RetTy, true))
8596         return ABIArgInfo::getIgnore();
8597 
8598       // Lower single-element structs to just return a regular value.
8599       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8600         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8601 
8602       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8603         const RecordDecl *RD = RT->getDecl();
8604         if (RD->hasFlexibleArrayMember())
8605           return DefaultABIInfo::classifyReturnType(RetTy);
8606       }
8607 
8608       // Pack aggregates <= 4 bytes into single VGPR or pair.
8609       uint64_t Size = getContext().getTypeSize(RetTy);
8610       if (Size <= 16)
8611         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8612 
8613       if (Size <= 32)
8614         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8615 
8616       if (Size <= 64) {
8617         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8618         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8619       }
8620 
8621       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8622         return ABIArgInfo::getDirect();
8623     }
8624   }
8625 
8626   // Otherwise just do the default thing.
8627   return DefaultABIInfo::classifyReturnType(RetTy);
8628 }
8629 
8630 /// For kernels all parameters are really passed in a special buffer. It doesn't
8631 /// make sense to pass anything byval, so everything must be direct.
8632 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8633   Ty = useFirstFieldIfTransparentUnion(Ty);
8634 
8635   // TODO: Can we omit empty structs?
8636 
8637   llvm::Type *LTy = nullptr;
8638   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8639     LTy = CGT.ConvertType(QualType(SeltTy, 0));
8640 
8641   if (getContext().getLangOpts().HIP) {
8642     if (!LTy)
8643       LTy = CGT.ConvertType(Ty);
8644     LTy = coerceKernelArgumentType(
8645         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8646         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8647   }
8648 
8649   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8650   // individual elements, which confuses the Clover OpenCL backend; therefore we
8651   // have to set it to false here. Other args of getDirect() are just defaults.
8652   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8653 }
8654 
8655 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8656                                                unsigned &NumRegsLeft) const {
8657   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8658 
8659   Ty = useFirstFieldIfTransparentUnion(Ty);
8660 
8661   if (isAggregateTypeForABI(Ty)) {
8662     // Records with non-trivial destructors/copy-constructors should not be
8663     // passed by value.
8664     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8665       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8666 
8667     // Ignore empty structs/unions.
8668     if (isEmptyRecord(getContext(), Ty, true))
8669       return ABIArgInfo::getIgnore();
8670 
8671     // Lower single-element structs to just pass a regular value. TODO: We
8672     // could do reasonable-size multiple-element structs too, using getExpand(),
8673     // though watch out for things like bitfields.
8674     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8675       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8676 
8677     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8678       const RecordDecl *RD = RT->getDecl();
8679       if (RD->hasFlexibleArrayMember())
8680         return DefaultABIInfo::classifyArgumentType(Ty);
8681     }
8682 
8683     // Pack aggregates <= 8 bytes into single VGPR or pair.
8684     uint64_t Size = getContext().getTypeSize(Ty);
8685     if (Size <= 64) {
8686       unsigned NumRegs = (Size + 31) / 32;
8687       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8688 
8689       if (Size <= 16)
8690         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8691 
8692       if (Size <= 32)
8693         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8694 
8695       // XXX: Should this be i64 instead, and should the limit increase?
8696       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8697       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8698     }
8699 
8700     if (NumRegsLeft > 0) {
8701       unsigned NumRegs = numRegsForType(Ty);
8702       if (NumRegsLeft >= NumRegs) {
8703         NumRegsLeft -= NumRegs;
8704         return ABIArgInfo::getDirect();
8705       }
8706     }
8707   }
8708 
8709   // Otherwise just do the default thing.
8710   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8711   if (!ArgInfo.isIndirect()) {
8712     unsigned NumRegs = numRegsForType(Ty);
8713     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8714   }
8715 
8716   return ArgInfo;
8717 }
8718 
8719 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8720 public:
8721   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8722       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8723   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8724                            CodeGen::CodeGenModule &M) const override;
8725   unsigned getOpenCLKernelCallingConv() const override;
8726 
8727   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8728       llvm::PointerType *T, QualType QT) const override;
8729 
8730   LangAS getASTAllocaAddressSpace() const override {
8731     return getLangASFromTargetAS(
8732         getABIInfo().getDataLayout().getAllocaAddrSpace());
8733   }
8734   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8735                                   const VarDecl *D) const override;
8736   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8737                                          SyncScope Scope,
8738                                          llvm::AtomicOrdering Ordering,
8739                                          llvm::LLVMContext &Ctx) const override;
8740   llvm::Function *
8741   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8742                             llvm::Function *BlockInvokeFunc,
8743                             llvm::Value *BlockLiteral) const override;
8744   bool shouldEmitStaticExternCAliases() const override;
8745   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8746 };
8747 }
8748 
8749 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8750                                               llvm::GlobalValue *GV) {
8751   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8752     return false;
8753 
8754   return D->hasAttr<OpenCLKernelAttr>() ||
8755          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8756          (isa<VarDecl>(D) &&
8757           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8758            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
8759            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
8760 }
8761 
8762 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8763     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8764   if (requiresAMDGPUProtectedVisibility(D, GV)) {
8765     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8766     GV->setDSOLocal(true);
8767   }
8768 
8769   if (GV->isDeclaration())
8770     return;
8771   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8772   if (!FD)
8773     return;
8774 
8775   llvm::Function *F = cast<llvm::Function>(GV);
8776 
8777   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8778     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8779 
8780 
8781   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8782                               FD->hasAttr<OpenCLKernelAttr>();
8783   const bool IsHIPKernel = M.getLangOpts().HIP &&
8784                            FD->hasAttr<CUDAGlobalAttr>();
8785   if ((IsOpenCLKernel || IsHIPKernel) &&
8786       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8787     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8788 
8789   if (IsHIPKernel)
8790     F->addFnAttr("uniform-work-group-size", "true");
8791 
8792 
8793   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8794   if (ReqdWGS || FlatWGS) {
8795     unsigned Min = 0;
8796     unsigned Max = 0;
8797     if (FlatWGS) {
8798       Min = FlatWGS->getMin()
8799                 ->EvaluateKnownConstInt(M.getContext())
8800                 .getExtValue();
8801       Max = FlatWGS->getMax()
8802                 ->EvaluateKnownConstInt(M.getContext())
8803                 .getExtValue();
8804     }
8805     if (ReqdWGS && Min == 0 && Max == 0)
8806       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8807 
8808     if (Min != 0) {
8809       assert(Min <= Max && "Min must be less than or equal Max");
8810 
8811       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8812       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8813     } else
8814       assert(Max == 0 && "Max must be zero");
8815   } else if (IsOpenCLKernel || IsHIPKernel) {
8816     // By default, restrict the maximum size to a value specified by
8817     // --gpu-max-threads-per-block=n or its default value.
8818     std::string AttrVal =
8819         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
8820     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8821   }
8822 
8823   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
8824     unsigned Min =
8825         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
8826     unsigned Max = Attr->getMax() ? Attr->getMax()
8827                                         ->EvaluateKnownConstInt(M.getContext())
8828                                         .getExtValue()
8829                                   : 0;
8830 
8831     if (Min != 0) {
8832       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
8833 
8834       std::string AttrVal = llvm::utostr(Min);
8835       if (Max != 0)
8836         AttrVal = AttrVal + "," + llvm::utostr(Max);
8837       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
8838     } else
8839       assert(Max == 0 && "Max must be zero");
8840   }
8841 
8842   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
8843     unsigned NumSGPR = Attr->getNumSGPR();
8844 
8845     if (NumSGPR != 0)
8846       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
8847   }
8848 
8849   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
8850     uint32_t NumVGPR = Attr->getNumVGPR();
8851 
8852     if (NumVGPR != 0)
8853       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
8854   }
8855 }
8856 
8857 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8858   return llvm::CallingConv::AMDGPU_KERNEL;
8859 }
8860 
8861 // Currently LLVM assumes null pointers always have value 0,
8862 // which results in incorrectly transformed IR. Therefore, instead of
8863 // emitting null pointers in private and local address spaces, a null
8864 // pointer in generic address space is emitted which is casted to a
8865 // pointer in local or private address space.
8866 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
8867     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
8868     QualType QT) const {
8869   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
8870     return llvm::ConstantPointerNull::get(PT);
8871 
8872   auto &Ctx = CGM.getContext();
8873   auto NPT = llvm::PointerType::get(PT->getElementType(),
8874       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
8875   return llvm::ConstantExpr::getAddrSpaceCast(
8876       llvm::ConstantPointerNull::get(NPT), PT);
8877 }
8878 
8879 LangAS
8880 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
8881                                                   const VarDecl *D) const {
8882   assert(!CGM.getLangOpts().OpenCL &&
8883          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
8884          "Address space agnostic languages only");
8885   LangAS DefaultGlobalAS = getLangASFromTargetAS(
8886       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
8887   if (!D)
8888     return DefaultGlobalAS;
8889 
8890   LangAS AddrSpace = D->getType().getAddressSpace();
8891   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
8892   if (AddrSpace != LangAS::Default)
8893     return AddrSpace;
8894 
8895   if (CGM.isTypeConstant(D->getType(), false)) {
8896     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8897       return ConstAS.getValue();
8898   }
8899   return DefaultGlobalAS;
8900 }
8901 
8902 llvm::SyncScope::ID
8903 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8904                                             SyncScope Scope,
8905                                             llvm::AtomicOrdering Ordering,
8906                                             llvm::LLVMContext &Ctx) const {
8907   std::string Name;
8908   switch (Scope) {
8909   case SyncScope::OpenCLWorkGroup:
8910     Name = "workgroup";
8911     break;
8912   case SyncScope::OpenCLDevice:
8913     Name = "agent";
8914     break;
8915   case SyncScope::OpenCLAllSVMDevices:
8916     Name = "";
8917     break;
8918   case SyncScope::OpenCLSubGroup:
8919     Name = "wavefront";
8920   }
8921 
8922   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8923     if (!Name.empty())
8924       Name = Twine(Twine(Name) + Twine("-")).str();
8925 
8926     Name = Twine(Twine(Name) + Twine("one-as")).str();
8927   }
8928 
8929   return Ctx.getOrInsertSyncScopeID(Name);
8930 }
8931 
8932 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8933   return false;
8934 }
8935 
8936 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8937     const FunctionType *&FT) const {
8938   FT = getABIInfo().getContext().adjustFunctionType(
8939       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8940 }
8941 
8942 //===----------------------------------------------------------------------===//
8943 // SPARC v8 ABI Implementation.
8944 // Based on the SPARC Compliance Definition version 2.4.1.
8945 //
8946 // Ensures that complex values are passed in registers.
8947 //
8948 namespace {
8949 class SparcV8ABIInfo : public DefaultABIInfo {
8950 public:
8951   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8952 
8953 private:
8954   ABIArgInfo classifyReturnType(QualType RetTy) const;
8955   void computeInfo(CGFunctionInfo &FI) const override;
8956 };
8957 } // end anonymous namespace
8958 
8959 
8960 ABIArgInfo
8961 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8962   if (Ty->isAnyComplexType()) {
8963     return ABIArgInfo::getDirect();
8964   }
8965   else {
8966     return DefaultABIInfo::classifyReturnType(Ty);
8967   }
8968 }
8969 
8970 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8971 
8972   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8973   for (auto &Arg : FI.arguments())
8974     Arg.info = classifyArgumentType(Arg.type);
8975 }
8976 
8977 namespace {
8978 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8979 public:
8980   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8981       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
8982 };
8983 } // end anonymous namespace
8984 
8985 //===----------------------------------------------------------------------===//
8986 // SPARC v9 ABI Implementation.
8987 // Based on the SPARC Compliance Definition version 2.4.1.
8988 //
8989 // Function arguments a mapped to a nominal "parameter array" and promoted to
8990 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8991 // the array, structs larger than 16 bytes are passed indirectly.
8992 //
8993 // One case requires special care:
8994 //
8995 //   struct mixed {
8996 //     int i;
8997 //     float f;
8998 //   };
8999 //
9000 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9001 // parameter array, but the int is passed in an integer register, and the float
9002 // is passed in a floating point register. This is represented as two arguments
9003 // with the LLVM IR inreg attribute:
9004 //
9005 //   declare void f(i32 inreg %i, float inreg %f)
9006 //
9007 // The code generator will only allocate 4 bytes from the parameter array for
9008 // the inreg arguments. All other arguments are allocated a multiple of 8
9009 // bytes.
9010 //
9011 namespace {
9012 class SparcV9ABIInfo : public ABIInfo {
9013 public:
9014   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9015 
9016 private:
9017   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9018   void computeInfo(CGFunctionInfo &FI) const override;
9019   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9020                     QualType Ty) const override;
9021 
9022   // Coercion type builder for structs passed in registers. The coercion type
9023   // serves two purposes:
9024   //
9025   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9026   //    in registers.
9027   // 2. Expose aligned floating point elements as first-level elements, so the
9028   //    code generator knows to pass them in floating point registers.
9029   //
9030   // We also compute the InReg flag which indicates that the struct contains
9031   // aligned 32-bit floats.
9032   //
9033   struct CoerceBuilder {
9034     llvm::LLVMContext &Context;
9035     const llvm::DataLayout &DL;
9036     SmallVector<llvm::Type*, 8> Elems;
9037     uint64_t Size;
9038     bool InReg;
9039 
9040     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9041       : Context(c), DL(dl), Size(0), InReg(false) {}
9042 
9043     // Pad Elems with integers until Size is ToSize.
9044     void pad(uint64_t ToSize) {
9045       assert(ToSize >= Size && "Cannot remove elements");
9046       if (ToSize == Size)
9047         return;
9048 
9049       // Finish the current 64-bit word.
9050       uint64_t Aligned = llvm::alignTo(Size, 64);
9051       if (Aligned > Size && Aligned <= ToSize) {
9052         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9053         Size = Aligned;
9054       }
9055 
9056       // Add whole 64-bit words.
9057       while (Size + 64 <= ToSize) {
9058         Elems.push_back(llvm::Type::getInt64Ty(Context));
9059         Size += 64;
9060       }
9061 
9062       // Final in-word padding.
9063       if (Size < ToSize) {
9064         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9065         Size = ToSize;
9066       }
9067     }
9068 
9069     // Add a floating point element at Offset.
9070     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9071       // Unaligned floats are treated as integers.
9072       if (Offset % Bits)
9073         return;
9074       // The InReg flag is only required if there are any floats < 64 bits.
9075       if (Bits < 64)
9076         InReg = true;
9077       pad(Offset);
9078       Elems.push_back(Ty);
9079       Size = Offset + Bits;
9080     }
9081 
9082     // Add a struct type to the coercion type, starting at Offset (in bits).
9083     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9084       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9085       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9086         llvm::Type *ElemTy = StrTy->getElementType(i);
9087         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9088         switch (ElemTy->getTypeID()) {
9089         case llvm::Type::StructTyID:
9090           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9091           break;
9092         case llvm::Type::FloatTyID:
9093           addFloat(ElemOffset, ElemTy, 32);
9094           break;
9095         case llvm::Type::DoubleTyID:
9096           addFloat(ElemOffset, ElemTy, 64);
9097           break;
9098         case llvm::Type::FP128TyID:
9099           addFloat(ElemOffset, ElemTy, 128);
9100           break;
9101         case llvm::Type::PointerTyID:
9102           if (ElemOffset % 64 == 0) {
9103             pad(ElemOffset);
9104             Elems.push_back(ElemTy);
9105             Size += 64;
9106           }
9107           break;
9108         default:
9109           break;
9110         }
9111       }
9112     }
9113 
9114     // Check if Ty is a usable substitute for the coercion type.
9115     bool isUsableType(llvm::StructType *Ty) const {
9116       return llvm::makeArrayRef(Elems) == Ty->elements();
9117     }
9118 
9119     // Get the coercion type as a literal struct type.
9120     llvm::Type *getType() const {
9121       if (Elems.size() == 1)
9122         return Elems.front();
9123       else
9124         return llvm::StructType::get(Context, Elems);
9125     }
9126   };
9127 };
9128 } // end anonymous namespace
9129 
9130 ABIArgInfo
9131 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9132   if (Ty->isVoidType())
9133     return ABIArgInfo::getIgnore();
9134 
9135   uint64_t Size = getContext().getTypeSize(Ty);
9136 
9137   // Anything too big to fit in registers is passed with an explicit indirect
9138   // pointer / sret pointer.
9139   if (Size > SizeLimit)
9140     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9141 
9142   // Treat an enum type as its underlying type.
9143   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9144     Ty = EnumTy->getDecl()->getIntegerType();
9145 
9146   // Integer types smaller than a register are extended.
9147   if (Size < 64 && Ty->isIntegerType())
9148     return ABIArgInfo::getExtend(Ty);
9149 
9150   if (const auto *EIT = Ty->getAs<ExtIntType>())
9151     if (EIT->getNumBits() < 64)
9152       return ABIArgInfo::getExtend(Ty);
9153 
9154   // Other non-aggregates go in registers.
9155   if (!isAggregateTypeForABI(Ty))
9156     return ABIArgInfo::getDirect();
9157 
9158   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9159   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9160   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9161     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9162 
9163   // This is a small aggregate type that should be passed in registers.
9164   // Build a coercion type from the LLVM struct type.
9165   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9166   if (!StrTy)
9167     return ABIArgInfo::getDirect();
9168 
9169   CoerceBuilder CB(getVMContext(), getDataLayout());
9170   CB.addStruct(0, StrTy);
9171   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9172 
9173   // Try to use the original type for coercion.
9174   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9175 
9176   if (CB.InReg)
9177     return ABIArgInfo::getDirectInReg(CoerceTy);
9178   else
9179     return ABIArgInfo::getDirect(CoerceTy);
9180 }
9181 
9182 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9183                                   QualType Ty) const {
9184   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9185   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9186   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9187     AI.setCoerceToType(ArgTy);
9188 
9189   CharUnits SlotSize = CharUnits::fromQuantity(8);
9190 
9191   CGBuilderTy &Builder = CGF.Builder;
9192   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9193   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9194 
9195   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9196 
9197   Address ArgAddr = Address::invalid();
9198   CharUnits Stride;
9199   switch (AI.getKind()) {
9200   case ABIArgInfo::Expand:
9201   case ABIArgInfo::CoerceAndExpand:
9202   case ABIArgInfo::InAlloca:
9203     llvm_unreachable("Unsupported ABI kind for va_arg");
9204 
9205   case ABIArgInfo::Extend: {
9206     Stride = SlotSize;
9207     CharUnits Offset = SlotSize - TypeInfo.first;
9208     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9209     break;
9210   }
9211 
9212   case ABIArgInfo::Direct: {
9213     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9214     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9215     ArgAddr = Addr;
9216     break;
9217   }
9218 
9219   case ABIArgInfo::Indirect:
9220     Stride = SlotSize;
9221     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9222     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9223                       TypeInfo.second);
9224     break;
9225 
9226   case ABIArgInfo::Ignore:
9227     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
9228   }
9229 
9230   // Update VAList.
9231   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9232   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9233 
9234   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9235 }
9236 
9237 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9238   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9239   for (auto &I : FI.arguments())
9240     I.info = classifyType(I.type, 16 * 8);
9241 }
9242 
9243 namespace {
9244 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9245 public:
9246   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9247       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9248 
9249   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9250     return 14;
9251   }
9252 
9253   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9254                                llvm::Value *Address) const override;
9255 };
9256 } // end anonymous namespace
9257 
9258 bool
9259 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9260                                                 llvm::Value *Address) const {
9261   // This is calculated from the LLVM and GCC tables and verified
9262   // against gcc output.  AFAIK all ABIs use the same encoding.
9263 
9264   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9265 
9266   llvm::IntegerType *i8 = CGF.Int8Ty;
9267   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9268   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9269 
9270   // 0-31: the 8-byte general-purpose registers
9271   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9272 
9273   // 32-63: f0-31, the 4-byte floating-point registers
9274   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9275 
9276   //   Y   = 64
9277   //   PSR = 65
9278   //   WIM = 66
9279   //   TBR = 67
9280   //   PC  = 68
9281   //   NPC = 69
9282   //   FSR = 70
9283   //   CSR = 71
9284   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9285 
9286   // 72-87: d0-15, the 8-byte floating-point registers
9287   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9288 
9289   return false;
9290 }
9291 
9292 // ARC ABI implementation.
9293 namespace {
9294 
9295 class ARCABIInfo : public DefaultABIInfo {
9296 public:
9297   using DefaultABIInfo::DefaultABIInfo;
9298 
9299 private:
9300   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9301                     QualType Ty) const override;
9302 
9303   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9304     if (!State.FreeRegs)
9305       return;
9306     if (Info.isIndirect() && Info.getInReg())
9307       State.FreeRegs--;
9308     else if (Info.isDirect() && Info.getInReg()) {
9309       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9310       if (sz < State.FreeRegs)
9311         State.FreeRegs -= sz;
9312       else
9313         State.FreeRegs = 0;
9314     }
9315   }
9316 
9317   void computeInfo(CGFunctionInfo &FI) const override {
9318     CCState State(FI);
9319     // ARC uses 8 registers to pass arguments.
9320     State.FreeRegs = 8;
9321 
9322     if (!getCXXABI().classifyReturnType(FI))
9323       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9324     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9325     for (auto &I : FI.arguments()) {
9326       I.info = classifyArgumentType(I.type, State.FreeRegs);
9327       updateState(I.info, I.type, State);
9328     }
9329   }
9330 
9331   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9332   ABIArgInfo getIndirectByValue(QualType Ty) const;
9333   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9334   ABIArgInfo classifyReturnType(QualType RetTy) const;
9335 };
9336 
9337 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9338 public:
9339   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9340       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9341 };
9342 
9343 
9344 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9345   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9346                        getNaturalAlignIndirect(Ty, false);
9347 }
9348 
9349 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9350   // Compute the byval alignment.
9351   const unsigned MinABIStackAlignInBytes = 4;
9352   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9353   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9354                                  TypeAlign > MinABIStackAlignInBytes);
9355 }
9356 
9357 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9358                               QualType Ty) const {
9359   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9360                           getContext().getTypeInfoInChars(Ty),
9361                           CharUnits::fromQuantity(4), true);
9362 }
9363 
9364 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9365                                             uint8_t FreeRegs) const {
9366   // Handle the generic C++ ABI.
9367   const RecordType *RT = Ty->getAs<RecordType>();
9368   if (RT) {
9369     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9370     if (RAA == CGCXXABI::RAA_Indirect)
9371       return getIndirectByRef(Ty, FreeRegs > 0);
9372 
9373     if (RAA == CGCXXABI::RAA_DirectInMemory)
9374       return getIndirectByValue(Ty);
9375   }
9376 
9377   // Treat an enum type as its underlying type.
9378   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9379     Ty = EnumTy->getDecl()->getIntegerType();
9380 
9381   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9382 
9383   if (isAggregateTypeForABI(Ty)) {
9384     // Structures with flexible arrays are always indirect.
9385     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9386       return getIndirectByValue(Ty);
9387 
9388     // Ignore empty structs/unions.
9389     if (isEmptyRecord(getContext(), Ty, true))
9390       return ABIArgInfo::getIgnore();
9391 
9392     llvm::LLVMContext &LLVMContext = getVMContext();
9393 
9394     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9395     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9396     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9397 
9398     return FreeRegs >= SizeInRegs ?
9399         ABIArgInfo::getDirectInReg(Result) :
9400         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9401   }
9402 
9403   if (const auto *EIT = Ty->getAs<ExtIntType>())
9404     if (EIT->getNumBits() > 64)
9405       return getIndirectByValue(Ty);
9406 
9407   return isPromotableIntegerTypeForABI(Ty)
9408              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9409                                        : ABIArgInfo::getExtend(Ty))
9410              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9411                                        : ABIArgInfo::getDirect());
9412 }
9413 
9414 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9415   if (RetTy->isAnyComplexType())
9416     return ABIArgInfo::getDirectInReg();
9417 
9418   // Arguments of size > 4 registers are indirect.
9419   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9420   if (RetSize > 4)
9421     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9422 
9423   return DefaultABIInfo::classifyReturnType(RetTy);
9424 }
9425 
9426 } // End anonymous namespace.
9427 
9428 //===----------------------------------------------------------------------===//
9429 // XCore ABI Implementation
9430 //===----------------------------------------------------------------------===//
9431 
9432 namespace {
9433 
9434 /// A SmallStringEnc instance is used to build up the TypeString by passing
9435 /// it by reference between functions that append to it.
9436 typedef llvm::SmallString<128> SmallStringEnc;
9437 
9438 /// TypeStringCache caches the meta encodings of Types.
9439 ///
9440 /// The reason for caching TypeStrings is two fold:
9441 ///   1. To cache a type's encoding for later uses;
9442 ///   2. As a means to break recursive member type inclusion.
9443 ///
9444 /// A cache Entry can have a Status of:
9445 ///   NonRecursive:   The type encoding is not recursive;
9446 ///   Recursive:      The type encoding is recursive;
9447 ///   Incomplete:     An incomplete TypeString;
9448 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9449 ///                   Recursive type encoding.
9450 ///
9451 /// A NonRecursive entry will have all of its sub-members expanded as fully
9452 /// as possible. Whilst it may contain types which are recursive, the type
9453 /// itself is not recursive and thus its encoding may be safely used whenever
9454 /// the type is encountered.
9455 ///
9456 /// A Recursive entry will have all of its sub-members expanded as fully as
9457 /// possible. The type itself is recursive and it may contain other types which
9458 /// are recursive. The Recursive encoding must not be used during the expansion
9459 /// of a recursive type's recursive branch. For simplicity the code uses
9460 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9461 ///
9462 /// An Incomplete entry is always a RecordType and only encodes its
9463 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9464 /// are placed into the cache during type expansion as a means to identify and
9465 /// handle recursive inclusion of types as sub-members. If there is recursion
9466 /// the entry becomes IncompleteUsed.
9467 ///
9468 /// During the expansion of a RecordType's members:
9469 ///
9470 ///   If the cache contains a NonRecursive encoding for the member type, the
9471 ///   cached encoding is used;
9472 ///
9473 ///   If the cache contains a Recursive encoding for the member type, the
9474 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9475 ///
9476 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9477 ///   cache to break potential recursive inclusion of itself as a sub-member;
9478 ///
9479 ///   Once a member RecordType has been expanded, its temporary incomplete
9480 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9481 ///   it is swapped back in;
9482 ///
9483 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9484 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9485 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9486 ///
9487 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9488 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9489 ///   Else the member is part of a recursive type and thus the recursion has
9490 ///   been exited too soon for the encoding to be correct for the member.
9491 ///
9492 class TypeStringCache {
9493   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9494   struct Entry {
9495     std::string Str;     // The encoded TypeString for the type.
9496     enum Status State;   // Information about the encoding in 'Str'.
9497     std::string Swapped; // A temporary place holder for a Recursive encoding
9498                          // during the expansion of RecordType's members.
9499   };
9500   std::map<const IdentifierInfo *, struct Entry> Map;
9501   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9502   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9503 public:
9504   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9505   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9506   bool removeIncomplete(const IdentifierInfo *ID);
9507   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9508                      bool IsRecursive);
9509   StringRef lookupStr(const IdentifierInfo *ID);
9510 };
9511 
9512 /// TypeString encodings for enum & union fields must be order.
9513 /// FieldEncoding is a helper for this ordering process.
9514 class FieldEncoding {
9515   bool HasName;
9516   std::string Enc;
9517 public:
9518   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9519   StringRef str() { return Enc; }
9520   bool operator<(const FieldEncoding &rhs) const {
9521     if (HasName != rhs.HasName) return HasName;
9522     return Enc < rhs.Enc;
9523   }
9524 };
9525 
9526 class XCoreABIInfo : public DefaultABIInfo {
9527 public:
9528   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9529   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9530                     QualType Ty) const override;
9531 };
9532 
9533 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9534   mutable TypeStringCache TSC;
9535 public:
9536   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9537       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9538   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9539                     CodeGen::CodeGenModule &M) const override;
9540 };
9541 
9542 } // End anonymous namespace.
9543 
9544 // TODO: this implementation is likely now redundant with the default
9545 // EmitVAArg.
9546 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9547                                 QualType Ty) const {
9548   CGBuilderTy &Builder = CGF.Builder;
9549 
9550   // Get the VAList.
9551   CharUnits SlotSize = CharUnits::fromQuantity(4);
9552   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9553 
9554   // Handle the argument.
9555   ABIArgInfo AI = classifyArgumentType(Ty);
9556   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9557   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9558   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9559     AI.setCoerceToType(ArgTy);
9560   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9561 
9562   Address Val = Address::invalid();
9563   CharUnits ArgSize = CharUnits::Zero();
9564   switch (AI.getKind()) {
9565   case ABIArgInfo::Expand:
9566   case ABIArgInfo::CoerceAndExpand:
9567   case ABIArgInfo::InAlloca:
9568     llvm_unreachable("Unsupported ABI kind for va_arg");
9569   case ABIArgInfo::Ignore:
9570     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9571     ArgSize = CharUnits::Zero();
9572     break;
9573   case ABIArgInfo::Extend:
9574   case ABIArgInfo::Direct:
9575     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9576     ArgSize = CharUnits::fromQuantity(
9577                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9578     ArgSize = ArgSize.alignTo(SlotSize);
9579     break;
9580   case ABIArgInfo::Indirect:
9581     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9582     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9583     ArgSize = SlotSize;
9584     break;
9585   }
9586 
9587   // Increment the VAList.
9588   if (!ArgSize.isZero()) {
9589     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9590     Builder.CreateStore(APN.getPointer(), VAListAddr);
9591   }
9592 
9593   return Val;
9594 }
9595 
9596 /// During the expansion of a RecordType, an incomplete TypeString is placed
9597 /// into the cache as a means to identify and break recursion.
9598 /// If there is a Recursive encoding in the cache, it is swapped out and will
9599 /// be reinserted by removeIncomplete().
9600 /// All other types of encoding should have been used rather than arriving here.
9601 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9602                                     std::string StubEnc) {
9603   if (!ID)
9604     return;
9605   Entry &E = Map[ID];
9606   assert( (E.Str.empty() || E.State == Recursive) &&
9607          "Incorrectly use of addIncomplete");
9608   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9609   E.Swapped.swap(E.Str); // swap out the Recursive
9610   E.Str.swap(StubEnc);
9611   E.State = Incomplete;
9612   ++IncompleteCount;
9613 }
9614 
9615 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9616 /// must be removed from the cache.
9617 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9618 /// Returns true if the RecordType was defined recursively.
9619 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9620   if (!ID)
9621     return false;
9622   auto I = Map.find(ID);
9623   assert(I != Map.end() && "Entry not present");
9624   Entry &E = I->second;
9625   assert( (E.State == Incomplete ||
9626            E.State == IncompleteUsed) &&
9627          "Entry must be an incomplete type");
9628   bool IsRecursive = false;
9629   if (E.State == IncompleteUsed) {
9630     // We made use of our Incomplete encoding, thus we are recursive.
9631     IsRecursive = true;
9632     --IncompleteUsedCount;
9633   }
9634   if (E.Swapped.empty())
9635     Map.erase(I);
9636   else {
9637     // Swap the Recursive back.
9638     E.Swapped.swap(E.Str);
9639     E.Swapped.clear();
9640     E.State = Recursive;
9641   }
9642   --IncompleteCount;
9643   return IsRecursive;
9644 }
9645 
9646 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9647 /// Recursive (viz: all sub-members were expanded as fully as possible).
9648 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9649                                     bool IsRecursive) {
9650   if (!ID || IncompleteUsedCount)
9651     return; // No key or it is is an incomplete sub-type so don't add.
9652   Entry &E = Map[ID];
9653   if (IsRecursive && !E.Str.empty()) {
9654     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9655            "This is not the same Recursive entry");
9656     // The parent container was not recursive after all, so we could have used
9657     // this Recursive sub-member entry after all, but we assumed the worse when
9658     // we started viz: IncompleteCount!=0.
9659     return;
9660   }
9661   assert(E.Str.empty() && "Entry already present");
9662   E.Str = Str.str();
9663   E.State = IsRecursive? Recursive : NonRecursive;
9664 }
9665 
9666 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9667 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9668 /// encoding is Recursive, return an empty StringRef.
9669 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9670   if (!ID)
9671     return StringRef();   // We have no key.
9672   auto I = Map.find(ID);
9673   if (I == Map.end())
9674     return StringRef();   // We have no encoding.
9675   Entry &E = I->second;
9676   if (E.State == Recursive && IncompleteCount)
9677     return StringRef();   // We don't use Recursive encodings for member types.
9678 
9679   if (E.State == Incomplete) {
9680     // The incomplete type is being used to break out of recursion.
9681     E.State = IncompleteUsed;
9682     ++IncompleteUsedCount;
9683   }
9684   return E.Str;
9685 }
9686 
9687 /// The XCore ABI includes a type information section that communicates symbol
9688 /// type information to the linker. The linker uses this information to verify
9689 /// safety/correctness of things such as array bound and pointers et al.
9690 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9691 /// This type information (TypeString) is emitted into meta data for all global
9692 /// symbols: definitions, declarations, functions & variables.
9693 ///
9694 /// The TypeString carries type, qualifier, name, size & value details.
9695 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9696 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9697 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9698 ///
9699 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9700                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
9701 
9702 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9703 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9704                                           CodeGen::CodeGenModule &CGM) const {
9705   SmallStringEnc Enc;
9706   if (getTypeString(Enc, D, CGM, TSC)) {
9707     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9708     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9709                                 llvm::MDString::get(Ctx, Enc.str())};
9710     llvm::NamedMDNode *MD =
9711       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9712     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9713   }
9714 }
9715 
9716 //===----------------------------------------------------------------------===//
9717 // SPIR ABI Implementation
9718 //===----------------------------------------------------------------------===//
9719 
9720 namespace {
9721 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9722 public:
9723   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9724       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
9725   unsigned getOpenCLKernelCallingConv() const override;
9726 };
9727 
9728 } // End anonymous namespace.
9729 
9730 namespace clang {
9731 namespace CodeGen {
9732 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9733   DefaultABIInfo SPIRABI(CGM.getTypes());
9734   SPIRABI.computeInfo(FI);
9735 }
9736 }
9737 }
9738 
9739 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9740   return llvm::CallingConv::SPIR_KERNEL;
9741 }
9742 
9743 static bool appendType(SmallStringEnc &Enc, QualType QType,
9744                        const CodeGen::CodeGenModule &CGM,
9745                        TypeStringCache &TSC);
9746 
9747 /// Helper function for appendRecordType().
9748 /// Builds a SmallVector containing the encoded field types in declaration
9749 /// order.
9750 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
9751                              const RecordDecl *RD,
9752                              const CodeGen::CodeGenModule &CGM,
9753                              TypeStringCache &TSC) {
9754   for (const auto *Field : RD->fields()) {
9755     SmallStringEnc Enc;
9756     Enc += "m(";
9757     Enc += Field->getName();
9758     Enc += "){";
9759     if (Field->isBitField()) {
9760       Enc += "b(";
9761       llvm::raw_svector_ostream OS(Enc);
9762       OS << Field->getBitWidthValue(CGM.getContext());
9763       Enc += ':';
9764     }
9765     if (!appendType(Enc, Field->getType(), CGM, TSC))
9766       return false;
9767     if (Field->isBitField())
9768       Enc += ')';
9769     Enc += '}';
9770     FE.emplace_back(!Field->getName().empty(), Enc);
9771   }
9772   return true;
9773 }
9774 
9775 /// Appends structure and union types to Enc and adds encoding to cache.
9776 /// Recursively calls appendType (via extractFieldType) for each field.
9777 /// Union types have their fields ordered according to the ABI.
9778 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9779                              const CodeGen::CodeGenModule &CGM,
9780                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9781   // Append the cached TypeString if we have one.
9782   StringRef TypeString = TSC.lookupStr(ID);
9783   if (!TypeString.empty()) {
9784     Enc += TypeString;
9785     return true;
9786   }
9787 
9788   // Start to emit an incomplete TypeString.
9789   size_t Start = Enc.size();
9790   Enc += (RT->isUnionType()? 'u' : 's');
9791   Enc += '(';
9792   if (ID)
9793     Enc += ID->getName();
9794   Enc += "){";
9795 
9796   // We collect all encoded fields and order as necessary.
9797   bool IsRecursive = false;
9798   const RecordDecl *RD = RT->getDecl()->getDefinition();
9799   if (RD && !RD->field_empty()) {
9800     // An incomplete TypeString stub is placed in the cache for this RecordType
9801     // so that recursive calls to this RecordType will use it whilst building a
9802     // complete TypeString for this RecordType.
9803     SmallVector<FieldEncoding, 16> FE;
9804     std::string StubEnc(Enc.substr(Start).str());
9805     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
9806     TSC.addIncomplete(ID, std::move(StubEnc));
9807     if (!extractFieldType(FE, RD, CGM, TSC)) {
9808       (void) TSC.removeIncomplete(ID);
9809       return false;
9810     }
9811     IsRecursive = TSC.removeIncomplete(ID);
9812     // The ABI requires unions to be sorted but not structures.
9813     // See FieldEncoding::operator< for sort algorithm.
9814     if (RT->isUnionType())
9815       llvm::sort(FE);
9816     // We can now complete the TypeString.
9817     unsigned E = FE.size();
9818     for (unsigned I = 0; I != E; ++I) {
9819       if (I)
9820         Enc += ',';
9821       Enc += FE[I].str();
9822     }
9823   }
9824   Enc += '}';
9825   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
9826   return true;
9827 }
9828 
9829 /// Appends enum types to Enc and adds the encoding to the cache.
9830 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
9831                            TypeStringCache &TSC,
9832                            const IdentifierInfo *ID) {
9833   // Append the cached TypeString if we have one.
9834   StringRef TypeString = TSC.lookupStr(ID);
9835   if (!TypeString.empty()) {
9836     Enc += TypeString;
9837     return true;
9838   }
9839 
9840   size_t Start = Enc.size();
9841   Enc += "e(";
9842   if (ID)
9843     Enc += ID->getName();
9844   Enc += "){";
9845 
9846   // We collect all encoded enumerations and order them alphanumerically.
9847   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
9848     SmallVector<FieldEncoding, 16> FE;
9849     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
9850          ++I) {
9851       SmallStringEnc EnumEnc;
9852       EnumEnc += "m(";
9853       EnumEnc += I->getName();
9854       EnumEnc += "){";
9855       I->getInitVal().toString(EnumEnc);
9856       EnumEnc += '}';
9857       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
9858     }
9859     llvm::sort(FE);
9860     unsigned E = FE.size();
9861     for (unsigned I = 0; I != E; ++I) {
9862       if (I)
9863         Enc += ',';
9864       Enc += FE[I].str();
9865     }
9866   }
9867   Enc += '}';
9868   TSC.addIfComplete(ID, Enc.substr(Start), false);
9869   return true;
9870 }
9871 
9872 /// Appends type's qualifier to Enc.
9873 /// This is done prior to appending the type's encoding.
9874 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
9875   // Qualifiers are emitted in alphabetical order.
9876   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
9877   int Lookup = 0;
9878   if (QT.isConstQualified())
9879     Lookup += 1<<0;
9880   if (QT.isRestrictQualified())
9881     Lookup += 1<<1;
9882   if (QT.isVolatileQualified())
9883     Lookup += 1<<2;
9884   Enc += Table[Lookup];
9885 }
9886 
9887 /// Appends built-in types to Enc.
9888 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
9889   const char *EncType;
9890   switch (BT->getKind()) {
9891     case BuiltinType::Void:
9892       EncType = "0";
9893       break;
9894     case BuiltinType::Bool:
9895       EncType = "b";
9896       break;
9897     case BuiltinType::Char_U:
9898       EncType = "uc";
9899       break;
9900     case BuiltinType::UChar:
9901       EncType = "uc";
9902       break;
9903     case BuiltinType::SChar:
9904       EncType = "sc";
9905       break;
9906     case BuiltinType::UShort:
9907       EncType = "us";
9908       break;
9909     case BuiltinType::Short:
9910       EncType = "ss";
9911       break;
9912     case BuiltinType::UInt:
9913       EncType = "ui";
9914       break;
9915     case BuiltinType::Int:
9916       EncType = "si";
9917       break;
9918     case BuiltinType::ULong:
9919       EncType = "ul";
9920       break;
9921     case BuiltinType::Long:
9922       EncType = "sl";
9923       break;
9924     case BuiltinType::ULongLong:
9925       EncType = "ull";
9926       break;
9927     case BuiltinType::LongLong:
9928       EncType = "sll";
9929       break;
9930     case BuiltinType::Float:
9931       EncType = "ft";
9932       break;
9933     case BuiltinType::Double:
9934       EncType = "d";
9935       break;
9936     case BuiltinType::LongDouble:
9937       EncType = "ld";
9938       break;
9939     default:
9940       return false;
9941   }
9942   Enc += EncType;
9943   return true;
9944 }
9945 
9946 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9947 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9948                               const CodeGen::CodeGenModule &CGM,
9949                               TypeStringCache &TSC) {
9950   Enc += "p(";
9951   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9952     return false;
9953   Enc += ')';
9954   return true;
9955 }
9956 
9957 /// Appends array encoding to Enc before calling appendType for the element.
9958 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9959                             const ArrayType *AT,
9960                             const CodeGen::CodeGenModule &CGM,
9961                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9962   if (AT->getSizeModifier() != ArrayType::Normal)
9963     return false;
9964   Enc += "a(";
9965   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9966     CAT->getSize().toStringUnsigned(Enc);
9967   else
9968     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9969   Enc += ':';
9970   // The Qualifiers should be attached to the type rather than the array.
9971   appendQualifier(Enc, QT);
9972   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9973     return false;
9974   Enc += ')';
9975   return true;
9976 }
9977 
9978 /// Appends a function encoding to Enc, calling appendType for the return type
9979 /// and the arguments.
9980 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9981                              const CodeGen::CodeGenModule &CGM,
9982                              TypeStringCache &TSC) {
9983   Enc += "f{";
9984   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9985     return false;
9986   Enc += "}(";
9987   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9988     // N.B. we are only interested in the adjusted param types.
9989     auto I = FPT->param_type_begin();
9990     auto E = FPT->param_type_end();
9991     if (I != E) {
9992       do {
9993         if (!appendType(Enc, *I, CGM, TSC))
9994           return false;
9995         ++I;
9996         if (I != E)
9997           Enc += ',';
9998       } while (I != E);
9999       if (FPT->isVariadic())
10000         Enc += ",va";
10001     } else {
10002       if (FPT->isVariadic())
10003         Enc += "va";
10004       else
10005         Enc += '0';
10006     }
10007   }
10008   Enc += ')';
10009   return true;
10010 }
10011 
10012 /// Handles the type's qualifier before dispatching a call to handle specific
10013 /// type encodings.
10014 static bool appendType(SmallStringEnc &Enc, QualType QType,
10015                        const CodeGen::CodeGenModule &CGM,
10016                        TypeStringCache &TSC) {
10017 
10018   QualType QT = QType.getCanonicalType();
10019 
10020   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10021     // The Qualifiers should be attached to the type rather than the array.
10022     // Thus we don't call appendQualifier() here.
10023     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10024 
10025   appendQualifier(Enc, QT);
10026 
10027   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10028     return appendBuiltinType(Enc, BT);
10029 
10030   if (const PointerType *PT = QT->getAs<PointerType>())
10031     return appendPointerType(Enc, PT, CGM, TSC);
10032 
10033   if (const EnumType *ET = QT->getAs<EnumType>())
10034     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10035 
10036   if (const RecordType *RT = QT->getAsStructureType())
10037     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10038 
10039   if (const RecordType *RT = QT->getAsUnionType())
10040     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10041 
10042   if (const FunctionType *FT = QT->getAs<FunctionType>())
10043     return appendFunctionType(Enc, FT, CGM, TSC);
10044 
10045   return false;
10046 }
10047 
10048 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10049                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
10050   if (!D)
10051     return false;
10052 
10053   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10054     if (FD->getLanguageLinkage() != CLanguageLinkage)
10055       return false;
10056     return appendType(Enc, FD->getType(), CGM, TSC);
10057   }
10058 
10059   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10060     if (VD->getLanguageLinkage() != CLanguageLinkage)
10061       return false;
10062     QualType QT = VD->getType().getCanonicalType();
10063     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10064       // Global ArrayTypes are given a size of '*' if the size is unknown.
10065       // The Qualifiers should be attached to the type rather than the array.
10066       // Thus we don't call appendQualifier() here.
10067       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10068     }
10069     return appendType(Enc, QT, CGM, TSC);
10070   }
10071   return false;
10072 }
10073 
10074 //===----------------------------------------------------------------------===//
10075 // RISCV ABI Implementation
10076 //===----------------------------------------------------------------------===//
10077 
10078 namespace {
10079 class RISCVABIInfo : public DefaultABIInfo {
10080 private:
10081   // Size of the integer ('x') registers in bits.
10082   unsigned XLen;
10083   // Size of the floating point ('f') registers in bits. Note that the target
10084   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10085   // with soft float ABI has FLen==0).
10086   unsigned FLen;
10087   static const int NumArgGPRs = 8;
10088   static const int NumArgFPRs = 8;
10089   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10090                                       llvm::Type *&Field1Ty,
10091                                       CharUnits &Field1Off,
10092                                       llvm::Type *&Field2Ty,
10093                                       CharUnits &Field2Off) const;
10094 
10095 public:
10096   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10097       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10098 
10099   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10100   // non-virtual, but computeInfo is virtual, so we overload it.
10101   void computeInfo(CGFunctionInfo &FI) const override;
10102 
10103   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10104                                   int &ArgFPRsLeft) const;
10105   ABIArgInfo classifyReturnType(QualType RetTy) const;
10106 
10107   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10108                     QualType Ty) const override;
10109 
10110   ABIArgInfo extendType(QualType Ty) const;
10111 
10112   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10113                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10114                                 CharUnits &Field2Off, int &NeededArgGPRs,
10115                                 int &NeededArgFPRs) const;
10116   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10117                                                CharUnits Field1Off,
10118                                                llvm::Type *Field2Ty,
10119                                                CharUnits Field2Off) const;
10120 };
10121 } // end anonymous namespace
10122 
10123 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10124   QualType RetTy = FI.getReturnType();
10125   if (!getCXXABI().classifyReturnType(FI))
10126     FI.getReturnInfo() = classifyReturnType(RetTy);
10127 
10128   // IsRetIndirect is true if classifyArgumentType indicated the value should
10129   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10130   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10131   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10132   // list and pass indirectly on RV32.
10133   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10134   if (!IsRetIndirect && RetTy->isScalarType() &&
10135       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10136     if (RetTy->isComplexType() && FLen) {
10137       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
10138       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10139     } else {
10140       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10141       IsRetIndirect = true;
10142     }
10143   }
10144 
10145   // We must track the number of GPRs used in order to conform to the RISC-V
10146   // ABI, as integer scalars passed in registers should have signext/zeroext
10147   // when promoted, but are anyext if passed on the stack. As GPR usage is
10148   // different for variadic arguments, we must also track whether we are
10149   // examining a vararg or not.
10150   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10151   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10152   int NumFixedArgs = FI.getNumRequiredArgs();
10153 
10154   int ArgNum = 0;
10155   for (auto &ArgInfo : FI.arguments()) {
10156     bool IsFixed = ArgNum < NumFixedArgs;
10157     ArgInfo.info =
10158         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10159     ArgNum++;
10160   }
10161 }
10162 
10163 // Returns true if the struct is a potential candidate for the floating point
10164 // calling convention. If this function returns true, the caller is
10165 // responsible for checking that if there is only a single field then that
10166 // field is a float.
10167 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10168                                                   llvm::Type *&Field1Ty,
10169                                                   CharUnits &Field1Off,
10170                                                   llvm::Type *&Field2Ty,
10171                                                   CharUnits &Field2Off) const {
10172   bool IsInt = Ty->isIntegralOrEnumerationType();
10173   bool IsFloat = Ty->isRealFloatingType();
10174 
10175   if (IsInt || IsFloat) {
10176     uint64_t Size = getContext().getTypeSize(Ty);
10177     if (IsInt && Size > XLen)
10178       return false;
10179     // Can't be eligible if larger than the FP registers. Half precision isn't
10180     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10181     // default to the integer ABI in that case.
10182     if (IsFloat && (Size > FLen || Size < 32))
10183       return false;
10184     // Can't be eligible if an integer type was already found (int+int pairs
10185     // are not eligible).
10186     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10187       return false;
10188     if (!Field1Ty) {
10189       Field1Ty = CGT.ConvertType(Ty);
10190       Field1Off = CurOff;
10191       return true;
10192     }
10193     if (!Field2Ty) {
10194       Field2Ty = CGT.ConvertType(Ty);
10195       Field2Off = CurOff;
10196       return true;
10197     }
10198     return false;
10199   }
10200 
10201   if (auto CTy = Ty->getAs<ComplexType>()) {
10202     if (Field1Ty)
10203       return false;
10204     QualType EltTy = CTy->getElementType();
10205     if (getContext().getTypeSize(EltTy) > FLen)
10206       return false;
10207     Field1Ty = CGT.ConvertType(EltTy);
10208     Field1Off = CurOff;
10209     assert(CurOff.isZero() && "Unexpected offset for first field");
10210     Field2Ty = Field1Ty;
10211     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10212     return true;
10213   }
10214 
10215   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10216     uint64_t ArraySize = ATy->getSize().getZExtValue();
10217     QualType EltTy = ATy->getElementType();
10218     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10219     for (uint64_t i = 0; i < ArraySize; ++i) {
10220       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10221                                                 Field1Off, Field2Ty, Field2Off);
10222       if (!Ret)
10223         return false;
10224       CurOff += EltSize;
10225     }
10226     return true;
10227   }
10228 
10229   if (const auto *RTy = Ty->getAs<RecordType>()) {
10230     // Structures with either a non-trivial destructor or a non-trivial
10231     // copy constructor are not eligible for the FP calling convention.
10232     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10233       return false;
10234     if (isEmptyRecord(getContext(), Ty, true))
10235       return true;
10236     const RecordDecl *RD = RTy->getDecl();
10237     // Unions aren't eligible unless they're empty (which is caught above).
10238     if (RD->isUnion())
10239       return false;
10240     int ZeroWidthBitFieldCount = 0;
10241     for (const FieldDecl *FD : RD->fields()) {
10242       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10243       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10244       QualType QTy = FD->getType();
10245       if (FD->isBitField()) {
10246         unsigned BitWidth = FD->getBitWidthValue(getContext());
10247         // Allow a bitfield with a type greater than XLen as long as the
10248         // bitwidth is XLen or less.
10249         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10250           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10251         if (BitWidth == 0) {
10252           ZeroWidthBitFieldCount++;
10253           continue;
10254         }
10255       }
10256 
10257       bool Ret = detectFPCCEligibleStructHelper(
10258           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10259           Field1Ty, Field1Off, Field2Ty, Field2Off);
10260       if (!Ret)
10261         return false;
10262 
10263       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10264       // or int+fp structs, but are ignored for a struct with an fp field and
10265       // any number of zero-width bitfields.
10266       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10267         return false;
10268     }
10269     return Field1Ty != nullptr;
10270   }
10271 
10272   return false;
10273 }
10274 
10275 // Determine if a struct is eligible for passing according to the floating
10276 // point calling convention (i.e., when flattened it contains a single fp
10277 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10278 // NeededArgGPRs are incremented appropriately.
10279 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10280                                             CharUnits &Field1Off,
10281                                             llvm::Type *&Field2Ty,
10282                                             CharUnits &Field2Off,
10283                                             int &NeededArgGPRs,
10284                                             int &NeededArgFPRs) const {
10285   Field1Ty = nullptr;
10286   Field2Ty = nullptr;
10287   NeededArgGPRs = 0;
10288   NeededArgFPRs = 0;
10289   bool IsCandidate = detectFPCCEligibleStructHelper(
10290       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10291   // Not really a candidate if we have a single int but no float.
10292   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10293     return false;
10294   if (!IsCandidate)
10295     return false;
10296   if (Field1Ty && Field1Ty->isFloatingPointTy())
10297     NeededArgFPRs++;
10298   else if (Field1Ty)
10299     NeededArgGPRs++;
10300   if (Field2Ty && Field2Ty->isFloatingPointTy())
10301     NeededArgFPRs++;
10302   else if (Field2Ty)
10303     NeededArgGPRs++;
10304   return IsCandidate;
10305 }
10306 
10307 // Call getCoerceAndExpand for the two-element flattened struct described by
10308 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10309 // appropriate coerceToType and unpaddedCoerceToType.
10310 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10311     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10312     CharUnits Field2Off) const {
10313   SmallVector<llvm::Type *, 3> CoerceElts;
10314   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10315   if (!Field1Off.isZero())
10316     CoerceElts.push_back(llvm::ArrayType::get(
10317         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10318 
10319   CoerceElts.push_back(Field1Ty);
10320   UnpaddedCoerceElts.push_back(Field1Ty);
10321 
10322   if (!Field2Ty) {
10323     return ABIArgInfo::getCoerceAndExpand(
10324         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10325         UnpaddedCoerceElts[0]);
10326   }
10327 
10328   CharUnits Field2Align =
10329       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10330   CharUnits Field1Size =
10331       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10332   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
10333 
10334   CharUnits Padding = CharUnits::Zero();
10335   if (Field2Off > Field2OffNoPadNoPack)
10336     Padding = Field2Off - Field2OffNoPadNoPack;
10337   else if (Field2Off != Field2Align && Field2Off > Field1Size)
10338     Padding = Field2Off - Field1Size;
10339 
10340   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10341 
10342   if (!Padding.isZero())
10343     CoerceElts.push_back(llvm::ArrayType::get(
10344         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10345 
10346   CoerceElts.push_back(Field2Ty);
10347   UnpaddedCoerceElts.push_back(Field2Ty);
10348 
10349   auto CoerceToType =
10350       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10351   auto UnpaddedCoerceToType =
10352       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10353 
10354   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10355 }
10356 
10357 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10358                                               int &ArgGPRsLeft,
10359                                               int &ArgFPRsLeft) const {
10360   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10361   Ty = useFirstFieldIfTransparentUnion(Ty);
10362 
10363   // Structures with either a non-trivial destructor or a non-trivial
10364   // copy constructor are always passed indirectly.
10365   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10366     if (ArgGPRsLeft)
10367       ArgGPRsLeft -= 1;
10368     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10369                                            CGCXXABI::RAA_DirectInMemory);
10370   }
10371 
10372   // Ignore empty structs/unions.
10373   if (isEmptyRecord(getContext(), Ty, true))
10374     return ABIArgInfo::getIgnore();
10375 
10376   uint64_t Size = getContext().getTypeSize(Ty);
10377 
10378   // Pass floating point values via FPRs if possible.
10379   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10380       FLen >= Size && ArgFPRsLeft) {
10381     ArgFPRsLeft--;
10382     return ABIArgInfo::getDirect();
10383   }
10384 
10385   // Complex types for the hard float ABI must be passed direct rather than
10386   // using CoerceAndExpand.
10387   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10388     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10389     if (getContext().getTypeSize(EltTy) <= FLen) {
10390       ArgFPRsLeft -= 2;
10391       return ABIArgInfo::getDirect();
10392     }
10393   }
10394 
10395   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10396     llvm::Type *Field1Ty = nullptr;
10397     llvm::Type *Field2Ty = nullptr;
10398     CharUnits Field1Off = CharUnits::Zero();
10399     CharUnits Field2Off = CharUnits::Zero();
10400     int NeededArgGPRs;
10401     int NeededArgFPRs;
10402     bool IsCandidate =
10403         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10404                                  NeededArgGPRs, NeededArgFPRs);
10405     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10406         NeededArgFPRs <= ArgFPRsLeft) {
10407       ArgGPRsLeft -= NeededArgGPRs;
10408       ArgFPRsLeft -= NeededArgFPRs;
10409       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10410                                                Field2Off);
10411     }
10412   }
10413 
10414   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10415   bool MustUseStack = false;
10416   // Determine the number of GPRs needed to pass the current argument
10417   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10418   // register pairs, so may consume 3 registers.
10419   int NeededArgGPRs = 1;
10420   if (!IsFixed && NeededAlign == 2 * XLen)
10421     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10422   else if (Size > XLen && Size <= 2 * XLen)
10423     NeededArgGPRs = 2;
10424 
10425   if (NeededArgGPRs > ArgGPRsLeft) {
10426     MustUseStack = true;
10427     NeededArgGPRs = ArgGPRsLeft;
10428   }
10429 
10430   ArgGPRsLeft -= NeededArgGPRs;
10431 
10432   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10433     // Treat an enum type as its underlying type.
10434     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10435       Ty = EnumTy->getDecl()->getIntegerType();
10436 
10437     // All integral types are promoted to XLen width, unless passed on the
10438     // stack.
10439     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10440       return extendType(Ty);
10441     }
10442 
10443     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10444       if (EIT->getNumBits() < XLen && !MustUseStack)
10445         return extendType(Ty);
10446       if (EIT->getNumBits() > 128 ||
10447           (!getContext().getTargetInfo().hasInt128Type() &&
10448            EIT->getNumBits() > 64))
10449         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10450     }
10451 
10452     return ABIArgInfo::getDirect();
10453   }
10454 
10455   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10456   // so coerce to integers.
10457   if (Size <= 2 * XLen) {
10458     unsigned Alignment = getContext().getTypeAlign(Ty);
10459 
10460     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10461     // required, and a 2-element XLen array if only XLen alignment is required.
10462     if (Size <= XLen) {
10463       return ABIArgInfo::getDirect(
10464           llvm::IntegerType::get(getVMContext(), XLen));
10465     } else if (Alignment == 2 * XLen) {
10466       return ABIArgInfo::getDirect(
10467           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10468     } else {
10469       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10470           llvm::IntegerType::get(getVMContext(), XLen), 2));
10471     }
10472   }
10473   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10474 }
10475 
10476 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10477   if (RetTy->isVoidType())
10478     return ABIArgInfo::getIgnore();
10479 
10480   int ArgGPRsLeft = 2;
10481   int ArgFPRsLeft = FLen ? 2 : 0;
10482 
10483   // The rules for return and argument types are the same, so defer to
10484   // classifyArgumentType.
10485   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10486                               ArgFPRsLeft);
10487 }
10488 
10489 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10490                                 QualType Ty) const {
10491   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10492 
10493   // Empty records are ignored for parameter passing purposes.
10494   if (isEmptyRecord(getContext(), Ty, true)) {
10495     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10496     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10497     return Addr;
10498   }
10499 
10500   std::pair<CharUnits, CharUnits> SizeAndAlign =
10501       getContext().getTypeInfoInChars(Ty);
10502 
10503   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10504   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10505 
10506   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10507                           SlotSize, /*AllowHigherAlign=*/true);
10508 }
10509 
10510 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10511   int TySize = getContext().getTypeSize(Ty);
10512   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10513   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10514     return ABIArgInfo::getSignExtend(Ty);
10515   return ABIArgInfo::getExtend(Ty);
10516 }
10517 
10518 namespace {
10519 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10520 public:
10521   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10522                          unsigned FLen)
10523       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10524 
10525   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10526                            CodeGen::CodeGenModule &CGM) const override {
10527     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10528     if (!FD) return;
10529 
10530     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10531     if (!Attr)
10532       return;
10533 
10534     const char *Kind;
10535     switch (Attr->getInterrupt()) {
10536     case RISCVInterruptAttr::user: Kind = "user"; break;
10537     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10538     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10539     }
10540 
10541     auto *Fn = cast<llvm::Function>(GV);
10542 
10543     Fn->addFnAttr("interrupt", Kind);
10544   }
10545 };
10546 } // namespace
10547 
10548 //===----------------------------------------------------------------------===//
10549 // Driver code
10550 //===----------------------------------------------------------------------===//
10551 
10552 bool CodeGenModule::supportsCOMDAT() const {
10553   return getTriple().supportsCOMDAT();
10554 }
10555 
10556 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10557   if (TheTargetCodeGenInfo)
10558     return *TheTargetCodeGenInfo;
10559 
10560   // Helper to set the unique_ptr while still keeping the return value.
10561   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10562     this->TheTargetCodeGenInfo.reset(P);
10563     return *P;
10564   };
10565 
10566   const llvm::Triple &Triple = getTarget().getTriple();
10567   switch (Triple.getArch()) {
10568   default:
10569     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10570 
10571   case llvm::Triple::le32:
10572     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10573   case llvm::Triple::mips:
10574   case llvm::Triple::mipsel:
10575     if (Triple.getOS() == llvm::Triple::NaCl)
10576       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10577     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10578 
10579   case llvm::Triple::mips64:
10580   case llvm::Triple::mips64el:
10581     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10582 
10583   case llvm::Triple::avr:
10584     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10585 
10586   case llvm::Triple::aarch64:
10587   case llvm::Triple::aarch64_32:
10588   case llvm::Triple::aarch64_be: {
10589     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10590     if (getTarget().getABI() == "darwinpcs")
10591       Kind = AArch64ABIInfo::DarwinPCS;
10592     else if (Triple.isOSWindows())
10593       return SetCGInfo(
10594           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10595 
10596     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10597   }
10598 
10599   case llvm::Triple::wasm32:
10600   case llvm::Triple::wasm64: {
10601     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10602     if (getTarget().getABI() == "experimental-mv")
10603       Kind = WebAssemblyABIInfo::ExperimentalMV;
10604     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10605   }
10606 
10607   case llvm::Triple::arm:
10608   case llvm::Triple::armeb:
10609   case llvm::Triple::thumb:
10610   case llvm::Triple::thumbeb: {
10611     if (Triple.getOS() == llvm::Triple::Win32) {
10612       return SetCGInfo(
10613           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10614     }
10615 
10616     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10617     StringRef ABIStr = getTarget().getABI();
10618     if (ABIStr == "apcs-gnu")
10619       Kind = ARMABIInfo::APCS;
10620     else if (ABIStr == "aapcs16")
10621       Kind = ARMABIInfo::AAPCS16_VFP;
10622     else if (CodeGenOpts.FloatABI == "hard" ||
10623              (CodeGenOpts.FloatABI != "soft" &&
10624               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10625                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10626                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10627       Kind = ARMABIInfo::AAPCS_VFP;
10628 
10629     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10630   }
10631 
10632   case llvm::Triple::ppc: {
10633     if (Triple.isOSAIX())
10634       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10635 
10636     bool IsSoftFloat =
10637         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10638     bool RetSmallStructInRegABI =
10639         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10640     return SetCGInfo(
10641         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10642   }
10643   case llvm::Triple::ppc64:
10644     if (Triple.isOSAIX())
10645       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10646 
10647     if (Triple.isOSBinFormatELF()) {
10648       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10649       if (getTarget().getABI() == "elfv2")
10650         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10651       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10652       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10653 
10654       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10655                                                         IsSoftFloat));
10656     }
10657     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10658   case llvm::Triple::ppc64le: {
10659     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10660     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10661     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10662       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10663     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10664     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10665 
10666     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10667                                                       IsSoftFloat));
10668   }
10669 
10670   case llvm::Triple::nvptx:
10671   case llvm::Triple::nvptx64:
10672     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10673 
10674   case llvm::Triple::msp430:
10675     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10676 
10677   case llvm::Triple::riscv32:
10678   case llvm::Triple::riscv64: {
10679     StringRef ABIStr = getTarget().getABI();
10680     unsigned XLen = getTarget().getPointerWidth(0);
10681     unsigned ABIFLen = 0;
10682     if (ABIStr.endswith("f"))
10683       ABIFLen = 32;
10684     else if (ABIStr.endswith("d"))
10685       ABIFLen = 64;
10686     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10687   }
10688 
10689   case llvm::Triple::systemz: {
10690     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
10691     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
10692     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
10693   }
10694 
10695   case llvm::Triple::tce:
10696   case llvm::Triple::tcele:
10697     return SetCGInfo(new TCETargetCodeGenInfo(Types));
10698 
10699   case llvm::Triple::x86: {
10700     bool IsDarwinVectorABI = Triple.isOSDarwin();
10701     bool RetSmallStructInRegABI =
10702         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10703     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
10704 
10705     if (Triple.getOS() == llvm::Triple::Win32) {
10706       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
10707           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10708           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
10709     } else {
10710       return SetCGInfo(new X86_32TargetCodeGenInfo(
10711           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10712           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
10713           CodeGenOpts.FloatABI == "soft"));
10714     }
10715   }
10716 
10717   case llvm::Triple::x86_64: {
10718     StringRef ABI = getTarget().getABI();
10719     X86AVXABILevel AVXLevel =
10720         (ABI == "avx512"
10721              ? X86AVXABILevel::AVX512
10722              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
10723 
10724     switch (Triple.getOS()) {
10725     case llvm::Triple::Win32:
10726       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
10727     default:
10728       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
10729     }
10730   }
10731   case llvm::Triple::hexagon:
10732     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
10733   case llvm::Triple::lanai:
10734     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
10735   case llvm::Triple::r600:
10736     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10737   case llvm::Triple::amdgcn:
10738     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10739   case llvm::Triple::sparc:
10740     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
10741   case llvm::Triple::sparcv9:
10742     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
10743   case llvm::Triple::xcore:
10744     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
10745   case llvm::Triple::arc:
10746     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
10747   case llvm::Triple::spir:
10748   case llvm::Triple::spir64:
10749     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
10750   }
10751 }
10752 
10753 /// Create an OpenCL kernel for an enqueued block.
10754 ///
10755 /// The kernel has the same function type as the block invoke function. Its
10756 /// name is the name of the block invoke function postfixed with "_kernel".
10757 /// It simply calls the block invoke function then returns.
10758 llvm::Function *
10759 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
10760                                              llvm::Function *Invoke,
10761                                              llvm::Value *BlockLiteral) const {
10762   auto *InvokeFT = Invoke->getFunctionType();
10763   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10764   for (auto &P : InvokeFT->params())
10765     ArgTys.push_back(P);
10766   auto &C = CGF.getLLVMContext();
10767   std::string Name = Invoke->getName().str() + "_kernel";
10768   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10769   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10770                                    &CGF.CGM.getModule());
10771   auto IP = CGF.Builder.saveIP();
10772   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10773   auto &Builder = CGF.Builder;
10774   Builder.SetInsertPoint(BB);
10775   llvm::SmallVector<llvm::Value *, 2> Args;
10776   for (auto &A : F->args())
10777     Args.push_back(&A);
10778   Builder.CreateCall(Invoke, Args);
10779   Builder.CreateRetVoid();
10780   Builder.restoreIP(IP);
10781   return F;
10782 }
10783 
10784 /// Create an OpenCL kernel for an enqueued block.
10785 ///
10786 /// The type of the first argument (the block literal) is the struct type
10787 /// of the block literal instead of a pointer type. The first argument
10788 /// (block literal) is passed directly by value to the kernel. The kernel
10789 /// allocates the same type of struct on stack and stores the block literal
10790 /// to it and passes its pointer to the block invoke function. The kernel
10791 /// has "enqueued-block" function attribute and kernel argument metadata.
10792 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
10793     CodeGenFunction &CGF, llvm::Function *Invoke,
10794     llvm::Value *BlockLiteral) const {
10795   auto &Builder = CGF.Builder;
10796   auto &C = CGF.getLLVMContext();
10797 
10798   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
10799   auto *InvokeFT = Invoke->getFunctionType();
10800   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10801   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
10802   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
10803   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
10804   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
10805   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
10806   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
10807 
10808   ArgTys.push_back(BlockTy);
10809   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10810   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
10811   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10812   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10813   AccessQuals.push_back(llvm::MDString::get(C, "none"));
10814   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
10815   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
10816     ArgTys.push_back(InvokeFT->getParamType(I));
10817     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
10818     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
10819     AccessQuals.push_back(llvm::MDString::get(C, "none"));
10820     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
10821     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10822     ArgNames.push_back(
10823         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
10824   }
10825   std::string Name = Invoke->getName().str() + "_kernel";
10826   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10827   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10828                                    &CGF.CGM.getModule());
10829   F->addFnAttr("enqueued-block");
10830   auto IP = CGF.Builder.saveIP();
10831   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10832   Builder.SetInsertPoint(BB);
10833   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
10834   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
10835   BlockPtr->setAlignment(BlockAlign);
10836   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
10837   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
10838   llvm::SmallVector<llvm::Value *, 2> Args;
10839   Args.push_back(Cast);
10840   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
10841     Args.push_back(I);
10842   Builder.CreateCall(Invoke, Args);
10843   Builder.CreateRetVoid();
10844   Builder.restoreIP(IP);
10845 
10846   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
10847   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
10848   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
10849   F->setMetadata("kernel_arg_base_type",
10850                  llvm::MDNode::get(C, ArgBaseTypeNames));
10851   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
10852   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
10853     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
10854 
10855   return F;
10856 }
10857