1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #include <algorithm> // std::sort 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 33 llvm::Value *Array, 34 llvm::Value *Value, 35 unsigned FirstIndex, 36 unsigned LastIndex) { 37 // Alternatively, we could emit this as a loop in the source. 38 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 39 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 40 Builder.CreateStore(Value, Cell); 41 } 42 } 43 44 static bool isAggregateTypeForABI(QualType T) { 45 return !CodeGenFunction::hasScalarEvaluationKind(T) || 46 T->isMemberFunctionPointerType(); 47 } 48 49 ABIInfo::~ABIInfo() {} 50 51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 52 CGCXXABI &CXXABI) { 53 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 54 if (!RD) 55 return CGCXXABI::RAA_Default; 56 return CXXABI.getRecordArgABI(RD); 57 } 58 59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 60 CGCXXABI &CXXABI) { 61 const RecordType *RT = T->getAs<RecordType>(); 62 if (!RT) 63 return CGCXXABI::RAA_Default; 64 return getRecordArgABI(RT, CXXABI); 65 } 66 67 CGCXXABI &ABIInfo::getCXXABI() const { 68 return CGT.getCXXABI(); 69 } 70 71 ASTContext &ABIInfo::getContext() const { 72 return CGT.getContext(); 73 } 74 75 llvm::LLVMContext &ABIInfo::getVMContext() const { 76 return CGT.getLLVMContext(); 77 } 78 79 const llvm::DataLayout &ABIInfo::getDataLayout() const { 80 return CGT.getDataLayout(); 81 } 82 83 const TargetInfo &ABIInfo::getTarget() const { 84 return CGT.getTarget(); 85 } 86 87 void ABIArgInfo::dump() const { 88 raw_ostream &OS = llvm::errs(); 89 OS << "(ABIArgInfo Kind="; 90 switch (TheKind) { 91 case Direct: 92 OS << "Direct Type="; 93 if (llvm::Type *Ty = getCoerceToType()) 94 Ty->print(OS); 95 else 96 OS << "null"; 97 break; 98 case Extend: 99 OS << "Extend"; 100 break; 101 case Ignore: 102 OS << "Ignore"; 103 break; 104 case InAlloca: 105 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 106 break; 107 case Indirect: 108 OS << "Indirect Align=" << getIndirectAlign() 109 << " ByVal=" << getIndirectByVal() 110 << " Realign=" << getIndirectRealign(); 111 break; 112 case Expand: 113 OS << "Expand"; 114 break; 115 } 116 OS << ")\n"; 117 } 118 119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 120 121 // If someone can figure out a general rule for this, that would be great. 122 // It's probably just doomed to be platform-dependent, though. 123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 124 // Verified for: 125 // x86-64 FreeBSD, Linux, Darwin 126 // x86-32 FreeBSD, Linux, Darwin 127 // PowerPC Linux, Darwin 128 // ARM Darwin (*not* EABI) 129 // AArch64 Linux 130 return 32; 131 } 132 133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 134 const FunctionNoProtoType *fnType) const { 135 // The following conventions are known to require this to be false: 136 // x86_stdcall 137 // MIPS 138 // For everything else, we just prefer false unless we opt out. 139 return false; 140 } 141 142 void 143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 144 llvm::SmallString<24> &Opt) const { 145 // This assumes the user is passing a library name like "rt" instead of a 146 // filename like "librt.a/so", and that they don't care whether it's static or 147 // dynamic. 148 Opt = "-l"; 149 Opt += Lib; 150 } 151 152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 153 154 /// isEmptyField - Return true iff a the field is "empty", that is it 155 /// is an unnamed bit-field or an (array of) empty record(s). 156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 157 bool AllowArrays) { 158 if (FD->isUnnamedBitfield()) 159 return true; 160 161 QualType FT = FD->getType(); 162 163 // Constant arrays of empty records count as empty, strip them off. 164 // Constant arrays of zero length always count as empty. 165 if (AllowArrays) 166 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 167 if (AT->getSize() == 0) 168 return true; 169 FT = AT->getElementType(); 170 } 171 172 const RecordType *RT = FT->getAs<RecordType>(); 173 if (!RT) 174 return false; 175 176 // C++ record fields are never empty, at least in the Itanium ABI. 177 // 178 // FIXME: We should use a predicate for whether this behavior is true in the 179 // current ABI. 180 if (isa<CXXRecordDecl>(RT->getDecl())) 181 return false; 182 183 return isEmptyRecord(Context, FT, AllowArrays); 184 } 185 186 /// isEmptyRecord - Return true iff a structure contains only empty 187 /// fields. Note that a structure with a flexible array member is not 188 /// considered empty. 189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 190 const RecordType *RT = T->getAs<RecordType>(); 191 if (!RT) 192 return 0; 193 const RecordDecl *RD = RT->getDecl(); 194 if (RD->hasFlexibleArrayMember()) 195 return false; 196 197 // If this is a C++ record, check the bases first. 198 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 199 for (const auto &I : CXXRD->bases()) 200 if (!isEmptyRecord(Context, I.getType(), true)) 201 return false; 202 203 for (const auto *I : RD->fields()) 204 if (!isEmptyField(Context, I, AllowArrays)) 205 return false; 206 return true; 207 } 208 209 /// isSingleElementStruct - Determine if a structure is a "single 210 /// element struct", i.e. it has exactly one non-empty field or 211 /// exactly one field which is itself a single element 212 /// struct. Structures with flexible array members are never 213 /// considered single element structs. 214 /// 215 /// \return The field declaration for the single non-empty field, if 216 /// it exists. 217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 218 const RecordType *RT = T->getAsStructureType(); 219 if (!RT) 220 return nullptr; 221 222 const RecordDecl *RD = RT->getDecl(); 223 if (RD->hasFlexibleArrayMember()) 224 return nullptr; 225 226 const Type *Found = nullptr; 227 228 // If this is a C++ record, check the bases first. 229 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 230 for (const auto &I : CXXRD->bases()) { 231 // Ignore empty records. 232 if (isEmptyRecord(Context, I.getType(), true)) 233 continue; 234 235 // If we already found an element then this isn't a single-element struct. 236 if (Found) 237 return nullptr; 238 239 // If this is non-empty and not a single element struct, the composite 240 // cannot be a single element struct. 241 Found = isSingleElementStruct(I.getType(), Context); 242 if (!Found) 243 return nullptr; 244 } 245 } 246 247 // Check for single element. 248 for (const auto *FD : RD->fields()) { 249 QualType FT = FD->getType(); 250 251 // Ignore empty fields. 252 if (isEmptyField(Context, FD, true)) 253 continue; 254 255 // If we already found an element then this isn't a single-element 256 // struct. 257 if (Found) 258 return nullptr; 259 260 // Treat single element arrays as the element. 261 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 262 if (AT->getSize().getZExtValue() != 1) 263 break; 264 FT = AT->getElementType(); 265 } 266 267 if (!isAggregateTypeForABI(FT)) { 268 Found = FT.getTypePtr(); 269 } else { 270 Found = isSingleElementStruct(FT, Context); 271 if (!Found) 272 return nullptr; 273 } 274 } 275 276 // We don't consider a struct a single-element struct if it has 277 // padding beyond the element type. 278 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 279 return nullptr; 280 281 return Found; 282 } 283 284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 285 // Treat complex types as the element type. 286 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 287 Ty = CTy->getElementType(); 288 289 // Check for a type which we know has a simple scalar argument-passing 290 // convention without any padding. (We're specifically looking for 32 291 // and 64-bit integer and integer-equivalents, float, and double.) 292 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 293 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 294 return false; 295 296 uint64_t Size = Context.getTypeSize(Ty); 297 return Size == 32 || Size == 64; 298 } 299 300 /// canExpandIndirectArgument - Test whether an argument type which is to be 301 /// passed indirectly (on the stack) would have the equivalent layout if it was 302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 303 /// inhibiting optimizations. 304 /// 305 // FIXME: This predicate is missing many cases, currently it just follows 306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 307 // should probably make this smarter, or better yet make the LLVM backend 308 // capable of handling it. 309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 310 // We can only expand structure types. 311 const RecordType *RT = Ty->getAs<RecordType>(); 312 if (!RT) 313 return false; 314 315 // We can only expand (C) structures. 316 // 317 // FIXME: This needs to be generalized to handle classes as well. 318 const RecordDecl *RD = RT->getDecl(); 319 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 320 return false; 321 322 uint64_t Size = 0; 323 324 for (const auto *FD : RD->fields()) { 325 if (!is32Or64BitBasicType(FD->getType(), Context)) 326 return false; 327 328 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 329 // how to expand them yet, and the predicate for telling if a bitfield still 330 // counts as "basic" is more complicated than what we were doing previously. 331 if (FD->isBitField()) 332 return false; 333 334 Size += Context.getTypeSize(FD->getType()); 335 } 336 337 // Make sure there are not any holes in the struct. 338 if (Size != Context.getTypeSize(Ty)) 339 return false; 340 341 return true; 342 } 343 344 namespace { 345 /// DefaultABIInfo - The default implementation for ABI specific 346 /// details. This implementation provides information which results in 347 /// self-consistent and sensible LLVM IR generation, but does not 348 /// conform to any particular ABI. 349 class DefaultABIInfo : public ABIInfo { 350 public: 351 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 352 353 ABIArgInfo classifyReturnType(QualType RetTy) const; 354 ABIArgInfo classifyArgumentType(QualType RetTy) const; 355 356 void computeInfo(CGFunctionInfo &FI) const override { 357 if (!getCXXABI().classifyReturnType(FI)) 358 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 359 for (auto &I : FI.arguments()) 360 I.info = classifyArgumentType(I.type); 361 } 362 363 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 364 CodeGenFunction &CGF) const override; 365 }; 366 367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 368 public: 369 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 370 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 371 }; 372 373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 374 CodeGenFunction &CGF) const { 375 return nullptr; 376 } 377 378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 379 if (isAggregateTypeForABI(Ty)) 380 return ABIArgInfo::getIndirect(0); 381 382 // Treat an enum type as its underlying type. 383 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 384 Ty = EnumTy->getDecl()->getIntegerType(); 385 386 return (Ty->isPromotableIntegerType() ? 387 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 388 } 389 390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 391 if (RetTy->isVoidType()) 392 return ABIArgInfo::getIgnore(); 393 394 if (isAggregateTypeForABI(RetTy)) 395 return ABIArgInfo::getIndirect(0); 396 397 // Treat an enum type as its underlying type. 398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 399 RetTy = EnumTy->getDecl()->getIntegerType(); 400 401 return (RetTy->isPromotableIntegerType() ? 402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 403 } 404 405 //===----------------------------------------------------------------------===// 406 // le32/PNaCl bitcode ABI Implementation 407 // 408 // This is a simplified version of the x86_32 ABI. Arguments and return values 409 // are always passed on the stack. 410 //===----------------------------------------------------------------------===// 411 412 class PNaClABIInfo : public ABIInfo { 413 public: 414 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 415 416 ABIArgInfo classifyReturnType(QualType RetTy) const; 417 ABIArgInfo classifyArgumentType(QualType RetTy) const; 418 419 void computeInfo(CGFunctionInfo &FI) const override; 420 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 421 CodeGenFunction &CGF) const override; 422 }; 423 424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 425 public: 426 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 427 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 428 }; 429 430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 431 if (!getCXXABI().classifyReturnType(FI)) 432 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 433 434 for (auto &I : FI.arguments()) 435 I.info = classifyArgumentType(I.type); 436 } 437 438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 439 CodeGenFunction &CGF) const { 440 return nullptr; 441 } 442 443 /// \brief Classify argument of given type \p Ty. 444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 445 if (isAggregateTypeForABI(Ty)) { 446 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 447 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 448 return ABIArgInfo::getIndirect(0); 449 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 450 // Treat an enum type as its underlying type. 451 Ty = EnumTy->getDecl()->getIntegerType(); 452 } else if (Ty->isFloatingType()) { 453 // Floating-point types don't go inreg. 454 return ABIArgInfo::getDirect(); 455 } 456 457 return (Ty->isPromotableIntegerType() ? 458 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 459 } 460 461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 462 if (RetTy->isVoidType()) 463 return ABIArgInfo::getIgnore(); 464 465 // In the PNaCl ABI we always return records/structures on the stack. 466 if (isAggregateTypeForABI(RetTy)) 467 return ABIArgInfo::getIndirect(0); 468 469 // Treat an enum type as its underlying type. 470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 471 RetTy = EnumTy->getDecl()->getIntegerType(); 472 473 return (RetTy->isPromotableIntegerType() ? 474 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 475 } 476 477 /// IsX86_MMXType - Return true if this is an MMX type. 478 bool IsX86_MMXType(llvm::Type *IRType) { 479 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 480 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 481 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 482 IRType->getScalarSizeInBits() != 64; 483 } 484 485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 486 StringRef Constraint, 487 llvm::Type* Ty) { 488 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 489 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 490 // Invalid MMX constraint 491 return nullptr; 492 } 493 494 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 495 } 496 497 // No operation needed 498 return Ty; 499 } 500 501 //===----------------------------------------------------------------------===// 502 // X86-32 ABI Implementation 503 //===----------------------------------------------------------------------===// 504 505 /// \brief Similar to llvm::CCState, but for Clang. 506 struct CCState { 507 CCState(unsigned CC) : CC(CC), FreeRegs(0) {} 508 509 unsigned CC; 510 unsigned FreeRegs; 511 unsigned StackOffset; 512 bool UseInAlloca; 513 }; 514 515 /// X86_32ABIInfo - The X86-32 ABI information. 516 class X86_32ABIInfo : public ABIInfo { 517 enum Class { 518 Integer, 519 Float 520 }; 521 522 static const unsigned MinABIStackAlignInBytes = 4; 523 524 bool IsDarwinVectorABI; 525 bool IsSmallStructInRegABI; 526 bool IsWin32StructABI; 527 unsigned DefaultNumRegisterParameters; 528 529 static bool isRegisterSize(unsigned Size) { 530 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 531 } 532 533 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 534 535 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 536 /// such that the argument will be passed in memory. 537 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 538 539 ABIArgInfo getIndirectReturnResult(CCState &State) const; 540 541 /// \brief Return the alignment to use for the given type on the stack. 542 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 543 544 Class classify(QualType Ty) const; 545 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 546 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 547 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 548 549 /// \brief Rewrite the function info so that all memory arguments use 550 /// inalloca. 551 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 552 553 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 554 unsigned &StackOffset, ABIArgInfo &Info, 555 QualType Type) const; 556 557 public: 558 559 void computeInfo(CGFunctionInfo &FI) const override; 560 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 561 CodeGenFunction &CGF) const override; 562 563 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 564 unsigned r) 565 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 566 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 567 }; 568 569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 570 public: 571 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 572 bool d, bool p, bool w, unsigned r) 573 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 574 575 static bool isStructReturnInRegABI( 576 const llvm::Triple &Triple, const CodeGenOptions &Opts); 577 578 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 579 CodeGen::CodeGenModule &CGM) const override; 580 581 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 582 // Darwin uses different dwarf register numbers for EH. 583 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 584 return 4; 585 } 586 587 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 588 llvm::Value *Address) const override; 589 590 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 591 StringRef Constraint, 592 llvm::Type* Ty) const override { 593 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 594 } 595 596 llvm::Constant * 597 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 598 unsigned Sig = (0xeb << 0) | // jmp rel8 599 (0x06 << 8) | // .+0x08 600 ('F' << 16) | 601 ('T' << 24); 602 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 603 } 604 605 }; 606 607 } 608 609 /// shouldReturnTypeInRegister - Determine if the given type should be 610 /// passed in a register (for the Darwin ABI). 611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 612 ASTContext &Context) const { 613 uint64_t Size = Context.getTypeSize(Ty); 614 615 // Type must be register sized. 616 if (!isRegisterSize(Size)) 617 return false; 618 619 if (Ty->isVectorType()) { 620 // 64- and 128- bit vectors inside structures are not returned in 621 // registers. 622 if (Size == 64 || Size == 128) 623 return false; 624 625 return true; 626 } 627 628 // If this is a builtin, pointer, enum, complex type, member pointer, or 629 // member function pointer it is ok. 630 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 631 Ty->isAnyComplexType() || Ty->isEnumeralType() || 632 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 633 return true; 634 635 // Arrays are treated like records. 636 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 637 return shouldReturnTypeInRegister(AT->getElementType(), Context); 638 639 // Otherwise, it must be a record type. 640 const RecordType *RT = Ty->getAs<RecordType>(); 641 if (!RT) return false; 642 643 // FIXME: Traverse bases here too. 644 645 // Structure types are passed in register if all fields would be 646 // passed in a register. 647 for (const auto *FD : RT->getDecl()->fields()) { 648 // Empty fields are ignored. 649 if (isEmptyField(Context, FD, true)) 650 continue; 651 652 // Check fields recursively. 653 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 654 return false; 655 } 656 return true; 657 } 658 659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 660 // If the return value is indirect, then the hidden argument is consuming one 661 // integer register. 662 if (State.FreeRegs) { 663 --State.FreeRegs; 664 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 665 } 666 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 667 } 668 669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 670 if (RetTy->isVoidType()) 671 return ABIArgInfo::getIgnore(); 672 673 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 674 // On Darwin, some vectors are returned in registers. 675 if (IsDarwinVectorABI) { 676 uint64_t Size = getContext().getTypeSize(RetTy); 677 678 // 128-bit vectors are a special case; they are returned in 679 // registers and we need to make sure to pick a type the LLVM 680 // backend will like. 681 if (Size == 128) 682 return ABIArgInfo::getDirect(llvm::VectorType::get( 683 llvm::Type::getInt64Ty(getVMContext()), 2)); 684 685 // Always return in register if it fits in a general purpose 686 // register, or if it is 64 bits and has a single element. 687 if ((Size == 8 || Size == 16 || Size == 32) || 688 (Size == 64 && VT->getNumElements() == 1)) 689 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 690 Size)); 691 692 return getIndirectReturnResult(State); 693 } 694 695 return ABIArgInfo::getDirect(); 696 } 697 698 if (isAggregateTypeForABI(RetTy)) { 699 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 700 // Structures with flexible arrays are always indirect. 701 if (RT->getDecl()->hasFlexibleArrayMember()) 702 return getIndirectReturnResult(State); 703 } 704 705 // If specified, structs and unions are always indirect. 706 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 707 return getIndirectReturnResult(State); 708 709 // Small structures which are register sized are generally returned 710 // in a register. 711 if (shouldReturnTypeInRegister(RetTy, getContext())) { 712 uint64_t Size = getContext().getTypeSize(RetTy); 713 714 // As a special-case, if the struct is a "single-element" struct, and 715 // the field is of type "float" or "double", return it in a 716 // floating-point register. (MSVC does not apply this special case.) 717 // We apply a similar transformation for pointer types to improve the 718 // quality of the generated IR. 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 721 || SeltTy->hasPointerRepresentation()) 722 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 723 724 // FIXME: We should be able to narrow this integer in cases with dead 725 // padding. 726 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 727 } 728 729 return getIndirectReturnResult(State); 730 } 731 732 // Treat an enum type as its underlying type. 733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 734 RetTy = EnumTy->getDecl()->getIntegerType(); 735 736 return (RetTy->isPromotableIntegerType() ? 737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 738 } 739 740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 741 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 742 } 743 744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 745 const RecordType *RT = Ty->getAs<RecordType>(); 746 if (!RT) 747 return 0; 748 const RecordDecl *RD = RT->getDecl(); 749 750 // If this is a C++ record, check the bases first. 751 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 752 for (const auto &I : CXXRD->bases()) 753 if (!isRecordWithSSEVectorType(Context, I.getType())) 754 return false; 755 756 for (const auto *i : RD->fields()) { 757 QualType FT = i->getType(); 758 759 if (isSSEVectorType(Context, FT)) 760 return true; 761 762 if (isRecordWithSSEVectorType(Context, FT)) 763 return true; 764 } 765 766 return false; 767 } 768 769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 770 unsigned Align) const { 771 // Otherwise, if the alignment is less than or equal to the minimum ABI 772 // alignment, just use the default; the backend will handle this. 773 if (Align <= MinABIStackAlignInBytes) 774 return 0; // Use default alignment. 775 776 // On non-Darwin, the stack type alignment is always 4. 777 if (!IsDarwinVectorABI) { 778 // Set explicit alignment, since we may need to realign the top. 779 return MinABIStackAlignInBytes; 780 } 781 782 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 783 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 784 isRecordWithSSEVectorType(getContext(), Ty))) 785 return 16; 786 787 return MinABIStackAlignInBytes; 788 } 789 790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 791 CCState &State) const { 792 if (!ByVal) { 793 if (State.FreeRegs) { 794 --State.FreeRegs; // Non-byval indirects just use one pointer. 795 return ABIArgInfo::getIndirectInReg(0, false); 796 } 797 return ABIArgInfo::getIndirect(0, false); 798 } 799 800 // Compute the byval alignment. 801 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 802 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 803 if (StackAlign == 0) 804 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 805 806 // If the stack alignment is less than the type alignment, realign the 807 // argument. 808 bool Realign = TypeAlign > StackAlign; 809 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 810 } 811 812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 813 const Type *T = isSingleElementStruct(Ty, getContext()); 814 if (!T) 815 T = Ty.getTypePtr(); 816 817 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 818 BuiltinType::Kind K = BT->getKind(); 819 if (K == BuiltinType::Float || K == BuiltinType::Double) 820 return Float; 821 } 822 return Integer; 823 } 824 825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 826 bool &NeedsPadding) const { 827 NeedsPadding = false; 828 Class C = classify(Ty); 829 if (C == Float) 830 return false; 831 832 unsigned Size = getContext().getTypeSize(Ty); 833 unsigned SizeInRegs = (Size + 31) / 32; 834 835 if (SizeInRegs == 0) 836 return false; 837 838 if (SizeInRegs > State.FreeRegs) { 839 State.FreeRegs = 0; 840 return false; 841 } 842 843 State.FreeRegs -= SizeInRegs; 844 845 if (State.CC == llvm::CallingConv::X86_FastCall) { 846 if (Size > 32) 847 return false; 848 849 if (Ty->isIntegralOrEnumerationType()) 850 return true; 851 852 if (Ty->isPointerType()) 853 return true; 854 855 if (Ty->isReferenceType()) 856 return true; 857 858 if (State.FreeRegs) 859 NeedsPadding = true; 860 861 return false; 862 } 863 864 return true; 865 } 866 867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 868 CCState &State) const { 869 // FIXME: Set alignment on indirect arguments. 870 if (isAggregateTypeForABI(Ty)) { 871 if (const RecordType *RT = Ty->getAs<RecordType>()) { 872 // Check with the C++ ABI first. 873 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 874 if (RAA == CGCXXABI::RAA_Indirect) { 875 return getIndirectResult(Ty, false, State); 876 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 877 // The field index doesn't matter, we'll fix it up later. 878 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 879 } 880 881 // Structs are always byval on win32, regardless of what they contain. 882 if (IsWin32StructABI) 883 return getIndirectResult(Ty, true, State); 884 885 // Structures with flexible arrays are always indirect. 886 if (RT->getDecl()->hasFlexibleArrayMember()) 887 return getIndirectResult(Ty, true, State); 888 } 889 890 // Ignore empty structs/unions. 891 if (isEmptyRecord(getContext(), Ty, true)) 892 return ABIArgInfo::getIgnore(); 893 894 llvm::LLVMContext &LLVMContext = getVMContext(); 895 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 896 bool NeedsPadding; 897 if (shouldUseInReg(Ty, State, NeedsPadding)) { 898 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 899 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 900 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 901 return ABIArgInfo::getDirectInReg(Result); 902 } 903 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 904 905 // Expand small (<= 128-bit) record types when we know that the stack layout 906 // of those arguments will match the struct. This is important because the 907 // LLVM backend isn't smart enough to remove byval, which inhibits many 908 // optimizations. 909 if (getContext().getTypeSize(Ty) <= 4*32 && 910 canExpandIndirectArgument(Ty, getContext())) 911 return ABIArgInfo::getExpandWithPadding( 912 State.CC == llvm::CallingConv::X86_FastCall, PaddingType); 913 914 return getIndirectResult(Ty, true, State); 915 } 916 917 if (const VectorType *VT = Ty->getAs<VectorType>()) { 918 // On Darwin, some vectors are passed in memory, we handle this by passing 919 // it as an i8/i16/i32/i64. 920 if (IsDarwinVectorABI) { 921 uint64_t Size = getContext().getTypeSize(Ty); 922 if ((Size == 8 || Size == 16 || Size == 32) || 923 (Size == 64 && VT->getNumElements() == 1)) 924 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 925 Size)); 926 } 927 928 if (IsX86_MMXType(CGT.ConvertType(Ty))) 929 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 930 931 return ABIArgInfo::getDirect(); 932 } 933 934 935 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 936 Ty = EnumTy->getDecl()->getIntegerType(); 937 938 bool NeedsPadding; 939 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 940 941 if (Ty->isPromotableIntegerType()) { 942 if (InReg) 943 return ABIArgInfo::getExtendInReg(); 944 return ABIArgInfo::getExtend(); 945 } 946 if (InReg) 947 return ABIArgInfo::getDirectInReg(); 948 return ABIArgInfo::getDirect(); 949 } 950 951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 952 CCState State(FI.getCallingConvention()); 953 if (State.CC == llvm::CallingConv::X86_FastCall) 954 State.FreeRegs = 2; 955 else if (FI.getHasRegParm()) 956 State.FreeRegs = FI.getRegParm(); 957 else 958 State.FreeRegs = DefaultNumRegisterParameters; 959 960 if (!getCXXABI().classifyReturnType(FI)) { 961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 962 } else if (FI.getReturnInfo().isIndirect()) { 963 // The C++ ABI is not aware of register usage, so we have to check if the 964 // return value was sret and put it in a register ourselves if appropriate. 965 if (State.FreeRegs) { 966 --State.FreeRegs; // The sret parameter consumes a register. 967 FI.getReturnInfo().setInReg(true); 968 } 969 } 970 971 bool UsedInAlloca = false; 972 for (auto &I : FI.arguments()) { 973 I.info = classifyArgumentType(I.type, State); 974 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 975 } 976 977 // If we needed to use inalloca for any argument, do a second pass and rewrite 978 // all the memory arguments to use inalloca. 979 if (UsedInAlloca) 980 rewriteWithInAlloca(FI); 981 } 982 983 void 984 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 985 unsigned &StackOffset, 986 ABIArgInfo &Info, QualType Type) const { 987 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 988 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 989 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 990 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 991 992 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 993 // byte aligned. 994 if (StackOffset % 4U) { 995 unsigned OldOffset = StackOffset; 996 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 997 unsigned NumBytes = StackOffset - OldOffset; 998 assert(NumBytes); 999 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1000 Ty = llvm::ArrayType::get(Ty, NumBytes); 1001 FrameFields.push_back(Ty); 1002 } 1003 } 1004 1005 static bool isArgInAlloca(const ABIArgInfo &Info) { 1006 // Leave ignored and inreg arguments alone. 1007 switch (Info.getKind()) { 1008 case ABIArgInfo::InAlloca: 1009 return true; 1010 case ABIArgInfo::Indirect: 1011 assert(Info.getIndirectByVal()); 1012 return true; 1013 case ABIArgInfo::Ignore: 1014 return false; 1015 case ABIArgInfo::Direct: 1016 case ABIArgInfo::Extend: 1017 case ABIArgInfo::Expand: 1018 if (Info.getInReg()) 1019 return false; 1020 return true; 1021 } 1022 llvm_unreachable("invalid enum"); 1023 } 1024 1025 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1026 assert(IsWin32StructABI && "inalloca only supported on win32"); 1027 1028 // Build a packed struct type for all of the arguments in memory. 1029 SmallVector<llvm::Type *, 6> FrameFields; 1030 1031 unsigned StackOffset = 0; 1032 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1033 1034 // Put 'this' into the struct before 'sret', if necessary. 1035 bool IsThisCall = 1036 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1037 ABIArgInfo &Ret = FI.getReturnInfo(); 1038 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1039 isArgInAlloca(I->info)) { 1040 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1041 ++I; 1042 } 1043 1044 // Put the sret parameter into the inalloca struct if it's in memory. 1045 if (Ret.isIndirect() && !Ret.getInReg()) { 1046 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1047 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1048 // On Windows, the hidden sret parameter is always returned in eax. 1049 Ret.setInAllocaSRet(IsWin32StructABI); 1050 } 1051 1052 // Skip the 'this' parameter in ecx. 1053 if (IsThisCall) 1054 ++I; 1055 1056 // Put arguments passed in memory into the struct. 1057 for (; I != E; ++I) { 1058 if (isArgInAlloca(I->info)) 1059 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1060 } 1061 1062 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1063 /*isPacked=*/true)); 1064 } 1065 1066 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1067 CodeGenFunction &CGF) const { 1068 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1069 1070 CGBuilderTy &Builder = CGF.Builder; 1071 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1072 "ap"); 1073 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1074 1075 // Compute if the address needs to be aligned 1076 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1077 Align = getTypeStackAlignInBytes(Ty, Align); 1078 Align = std::max(Align, 4U); 1079 if (Align > 4) { 1080 // addr = (addr + align - 1) & -align; 1081 llvm::Value *Offset = 1082 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1083 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1084 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1085 CGF.Int32Ty); 1086 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1087 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1088 Addr->getType(), 1089 "ap.cur.aligned"); 1090 } 1091 1092 llvm::Type *PTy = 1093 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1094 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1095 1096 uint64_t Offset = 1097 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1098 llvm::Value *NextAddr = 1099 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1100 "ap.next"); 1101 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1102 1103 return AddrTyped; 1104 } 1105 1106 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1107 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1108 assert(Triple.getArch() == llvm::Triple::x86); 1109 1110 switch (Opts.getStructReturnConvention()) { 1111 case CodeGenOptions::SRCK_Default: 1112 break; 1113 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1114 return false; 1115 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1116 return true; 1117 } 1118 1119 if (Triple.isOSDarwin()) 1120 return true; 1121 1122 switch (Triple.getOS()) { 1123 case llvm::Triple::AuroraUX: 1124 case llvm::Triple::DragonFly: 1125 case llvm::Triple::FreeBSD: 1126 case llvm::Triple::OpenBSD: 1127 case llvm::Triple::Bitrig: 1128 return true; 1129 case llvm::Triple::Win32: 1130 switch (Triple.getEnvironment()) { 1131 case llvm::Triple::UnknownEnvironment: 1132 case llvm::Triple::Cygnus: 1133 case llvm::Triple::GNU: 1134 case llvm::Triple::MSVC: 1135 return true; 1136 default: 1137 return false; 1138 } 1139 default: 1140 return false; 1141 } 1142 } 1143 1144 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1145 llvm::GlobalValue *GV, 1146 CodeGen::CodeGenModule &CGM) const { 1147 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1148 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1149 // Get the LLVM function. 1150 llvm::Function *Fn = cast<llvm::Function>(GV); 1151 1152 // Now add the 'alignstack' attribute with a value of 16. 1153 llvm::AttrBuilder B; 1154 B.addStackAlignmentAttr(16); 1155 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1156 llvm::AttributeSet::get(CGM.getLLVMContext(), 1157 llvm::AttributeSet::FunctionIndex, 1158 B)); 1159 } 1160 } 1161 } 1162 1163 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1164 CodeGen::CodeGenFunction &CGF, 1165 llvm::Value *Address) const { 1166 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1167 1168 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1169 1170 // 0-7 are the eight integer registers; the order is different 1171 // on Darwin (for EH), but the range is the same. 1172 // 8 is %eip. 1173 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1174 1175 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1176 // 12-16 are st(0..4). Not sure why we stop at 4. 1177 // These have size 16, which is sizeof(long double) on 1178 // platforms with 8-byte alignment for that type. 1179 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1180 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1181 1182 } else { 1183 // 9 is %eflags, which doesn't get a size on Darwin for some 1184 // reason. 1185 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1186 1187 // 11-16 are st(0..5). Not sure why we stop at 5. 1188 // These have size 12, which is sizeof(long double) on 1189 // platforms with 4-byte alignment for that type. 1190 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1191 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1192 } 1193 1194 return false; 1195 } 1196 1197 //===----------------------------------------------------------------------===// 1198 // X86-64 ABI Implementation 1199 //===----------------------------------------------------------------------===// 1200 1201 1202 namespace { 1203 /// X86_64ABIInfo - The X86_64 ABI information. 1204 class X86_64ABIInfo : public ABIInfo { 1205 enum Class { 1206 Integer = 0, 1207 SSE, 1208 SSEUp, 1209 X87, 1210 X87Up, 1211 ComplexX87, 1212 NoClass, 1213 Memory 1214 }; 1215 1216 /// merge - Implement the X86_64 ABI merging algorithm. 1217 /// 1218 /// Merge an accumulating classification \arg Accum with a field 1219 /// classification \arg Field. 1220 /// 1221 /// \param Accum - The accumulating classification. This should 1222 /// always be either NoClass or the result of a previous merge 1223 /// call. In addition, this should never be Memory (the caller 1224 /// should just return Memory for the aggregate). 1225 static Class merge(Class Accum, Class Field); 1226 1227 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1228 /// 1229 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1230 /// final MEMORY or SSE classes when necessary. 1231 /// 1232 /// \param AggregateSize - The size of the current aggregate in 1233 /// the classification process. 1234 /// 1235 /// \param Lo - The classification for the parts of the type 1236 /// residing in the low word of the containing object. 1237 /// 1238 /// \param Hi - The classification for the parts of the type 1239 /// residing in the higher words of the containing object. 1240 /// 1241 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1242 1243 /// classify - Determine the x86_64 register classes in which the 1244 /// given type T should be passed. 1245 /// 1246 /// \param Lo - The classification for the parts of the type 1247 /// residing in the low word of the containing object. 1248 /// 1249 /// \param Hi - The classification for the parts of the type 1250 /// residing in the high word of the containing object. 1251 /// 1252 /// \param OffsetBase - The bit offset of this type in the 1253 /// containing object. Some parameters are classified different 1254 /// depending on whether they straddle an eightbyte boundary. 1255 /// 1256 /// \param isNamedArg - Whether the argument in question is a "named" 1257 /// argument, as used in AMD64-ABI 3.5.7. 1258 /// 1259 /// If a word is unused its result will be NoClass; if a type should 1260 /// be passed in Memory then at least the classification of \arg Lo 1261 /// will be Memory. 1262 /// 1263 /// The \arg Lo class will be NoClass iff the argument is ignored. 1264 /// 1265 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1266 /// also be ComplexX87. 1267 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1268 bool isNamedArg) const; 1269 1270 llvm::Type *GetByteVectorType(QualType Ty) const; 1271 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1272 unsigned IROffset, QualType SourceTy, 1273 unsigned SourceOffset) const; 1274 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1275 unsigned IROffset, QualType SourceTy, 1276 unsigned SourceOffset) const; 1277 1278 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1279 /// such that the argument will be returned in memory. 1280 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1281 1282 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1283 /// such that the argument will be passed in memory. 1284 /// 1285 /// \param freeIntRegs - The number of free integer registers remaining 1286 /// available. 1287 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1288 1289 ABIArgInfo classifyReturnType(QualType RetTy) const; 1290 1291 ABIArgInfo classifyArgumentType(QualType Ty, 1292 unsigned freeIntRegs, 1293 unsigned &neededInt, 1294 unsigned &neededSSE, 1295 bool isNamedArg) const; 1296 1297 bool IsIllegalVectorType(QualType Ty) const; 1298 1299 /// The 0.98 ABI revision clarified a lot of ambiguities, 1300 /// unfortunately in ways that were not always consistent with 1301 /// certain previous compilers. In particular, platforms which 1302 /// required strict binary compatibility with older versions of GCC 1303 /// may need to exempt themselves. 1304 bool honorsRevision0_98() const { 1305 return !getTarget().getTriple().isOSDarwin(); 1306 } 1307 1308 bool HasAVX; 1309 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1310 // 64-bit hardware. 1311 bool Has64BitPointers; 1312 1313 public: 1314 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1315 ABIInfo(CGT), HasAVX(hasavx), 1316 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1317 } 1318 1319 bool isPassedUsingAVXType(QualType type) const { 1320 unsigned neededInt, neededSSE; 1321 // The freeIntRegs argument doesn't matter here. 1322 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1323 /*isNamedArg*/true); 1324 if (info.isDirect()) { 1325 llvm::Type *ty = info.getCoerceToType(); 1326 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1327 return (vectorTy->getBitWidth() > 128); 1328 } 1329 return false; 1330 } 1331 1332 void computeInfo(CGFunctionInfo &FI) const override; 1333 1334 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1335 CodeGenFunction &CGF) const override; 1336 }; 1337 1338 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1339 class WinX86_64ABIInfo : public ABIInfo { 1340 1341 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1342 1343 public: 1344 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1345 1346 void computeInfo(CGFunctionInfo &FI) const override; 1347 1348 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1349 CodeGenFunction &CGF) const override; 1350 }; 1351 1352 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1353 public: 1354 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1355 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1356 1357 const X86_64ABIInfo &getABIInfo() const { 1358 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1359 } 1360 1361 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1362 return 7; 1363 } 1364 1365 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1366 llvm::Value *Address) const override { 1367 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1368 1369 // 0-15 are the 16 integer registers. 1370 // 16 is %rip. 1371 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1372 return false; 1373 } 1374 1375 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1376 StringRef Constraint, 1377 llvm::Type* Ty) const override { 1378 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1379 } 1380 1381 bool isNoProtoCallVariadic(const CallArgList &args, 1382 const FunctionNoProtoType *fnType) const override { 1383 // The default CC on x86-64 sets %al to the number of SSA 1384 // registers used, and GCC sets this when calling an unprototyped 1385 // function, so we override the default behavior. However, don't do 1386 // that when AVX types are involved: the ABI explicitly states it is 1387 // undefined, and it doesn't work in practice because of how the ABI 1388 // defines varargs anyway. 1389 if (fnType->getCallConv() == CC_C) { 1390 bool HasAVXType = false; 1391 for (CallArgList::const_iterator 1392 it = args.begin(), ie = args.end(); it != ie; ++it) { 1393 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1394 HasAVXType = true; 1395 break; 1396 } 1397 } 1398 1399 if (!HasAVXType) 1400 return true; 1401 } 1402 1403 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1404 } 1405 1406 llvm::Constant * 1407 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1408 unsigned Sig = (0xeb << 0) | // jmp rel8 1409 (0x0a << 8) | // .+0x0c 1410 ('F' << 16) | 1411 ('T' << 24); 1412 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1413 } 1414 1415 }; 1416 1417 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1418 // If the argument does not end in .lib, automatically add the suffix. This 1419 // matches the behavior of MSVC. 1420 std::string ArgStr = Lib; 1421 if (!Lib.endswith_lower(".lib")) 1422 ArgStr += ".lib"; 1423 return ArgStr; 1424 } 1425 1426 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1427 public: 1428 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1429 bool d, bool p, bool w, unsigned RegParms) 1430 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1431 1432 void getDependentLibraryOption(llvm::StringRef Lib, 1433 llvm::SmallString<24> &Opt) const override { 1434 Opt = "/DEFAULTLIB:"; 1435 Opt += qualifyWindowsLibrary(Lib); 1436 } 1437 1438 void getDetectMismatchOption(llvm::StringRef Name, 1439 llvm::StringRef Value, 1440 llvm::SmallString<32> &Opt) const override { 1441 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1442 } 1443 }; 1444 1445 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1446 public: 1447 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1448 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1449 1450 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1451 return 7; 1452 } 1453 1454 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1455 llvm::Value *Address) const override { 1456 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1457 1458 // 0-15 are the 16 integer registers. 1459 // 16 is %rip. 1460 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1461 return false; 1462 } 1463 1464 void getDependentLibraryOption(llvm::StringRef Lib, 1465 llvm::SmallString<24> &Opt) const override { 1466 Opt = "/DEFAULTLIB:"; 1467 Opt += qualifyWindowsLibrary(Lib); 1468 } 1469 1470 void getDetectMismatchOption(llvm::StringRef Name, 1471 llvm::StringRef Value, 1472 llvm::SmallString<32> &Opt) const override { 1473 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1474 } 1475 }; 1476 1477 } 1478 1479 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1480 Class &Hi) const { 1481 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1482 // 1483 // (a) If one of the classes is Memory, the whole argument is passed in 1484 // memory. 1485 // 1486 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1487 // memory. 1488 // 1489 // (c) If the size of the aggregate exceeds two eightbytes and the first 1490 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1491 // argument is passed in memory. NOTE: This is necessary to keep the 1492 // ABI working for processors that don't support the __m256 type. 1493 // 1494 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1495 // 1496 // Some of these are enforced by the merging logic. Others can arise 1497 // only with unions; for example: 1498 // union { _Complex double; unsigned; } 1499 // 1500 // Note that clauses (b) and (c) were added in 0.98. 1501 // 1502 if (Hi == Memory) 1503 Lo = Memory; 1504 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1505 Lo = Memory; 1506 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1507 Lo = Memory; 1508 if (Hi == SSEUp && Lo != SSE) 1509 Hi = SSE; 1510 } 1511 1512 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1513 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1514 // classified recursively so that always two fields are 1515 // considered. The resulting class is calculated according to 1516 // the classes of the fields in the eightbyte: 1517 // 1518 // (a) If both classes are equal, this is the resulting class. 1519 // 1520 // (b) If one of the classes is NO_CLASS, the resulting class is 1521 // the other class. 1522 // 1523 // (c) If one of the classes is MEMORY, the result is the MEMORY 1524 // class. 1525 // 1526 // (d) If one of the classes is INTEGER, the result is the 1527 // INTEGER. 1528 // 1529 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1530 // MEMORY is used as class. 1531 // 1532 // (f) Otherwise class SSE is used. 1533 1534 // Accum should never be memory (we should have returned) or 1535 // ComplexX87 (because this cannot be passed in a structure). 1536 assert((Accum != Memory && Accum != ComplexX87) && 1537 "Invalid accumulated classification during merge."); 1538 if (Accum == Field || Field == NoClass) 1539 return Accum; 1540 if (Field == Memory) 1541 return Memory; 1542 if (Accum == NoClass) 1543 return Field; 1544 if (Accum == Integer || Field == Integer) 1545 return Integer; 1546 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1547 Accum == X87 || Accum == X87Up) 1548 return Memory; 1549 return SSE; 1550 } 1551 1552 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1553 Class &Lo, Class &Hi, bool isNamedArg) const { 1554 // FIXME: This code can be simplified by introducing a simple value class for 1555 // Class pairs with appropriate constructor methods for the various 1556 // situations. 1557 1558 // FIXME: Some of the split computations are wrong; unaligned vectors 1559 // shouldn't be passed in registers for example, so there is no chance they 1560 // can straddle an eightbyte. Verify & simplify. 1561 1562 Lo = Hi = NoClass; 1563 1564 Class &Current = OffsetBase < 64 ? Lo : Hi; 1565 Current = Memory; 1566 1567 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1568 BuiltinType::Kind k = BT->getKind(); 1569 1570 if (k == BuiltinType::Void) { 1571 Current = NoClass; 1572 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1573 Lo = Integer; 1574 Hi = Integer; 1575 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1576 Current = Integer; 1577 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1578 (k == BuiltinType::LongDouble && 1579 getTarget().getTriple().isOSNaCl())) { 1580 Current = SSE; 1581 } else if (k == BuiltinType::LongDouble) { 1582 Lo = X87; 1583 Hi = X87Up; 1584 } 1585 // FIXME: _Decimal32 and _Decimal64 are SSE. 1586 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1587 return; 1588 } 1589 1590 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1591 // Classify the underlying integer type. 1592 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1593 return; 1594 } 1595 1596 if (Ty->hasPointerRepresentation()) { 1597 Current = Integer; 1598 return; 1599 } 1600 1601 if (Ty->isMemberPointerType()) { 1602 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1603 Lo = Hi = Integer; 1604 else 1605 Current = Integer; 1606 return; 1607 } 1608 1609 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1610 uint64_t Size = getContext().getTypeSize(VT); 1611 if (Size == 32) { 1612 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1613 // float> as integer. 1614 Current = Integer; 1615 1616 // If this type crosses an eightbyte boundary, it should be 1617 // split. 1618 uint64_t EB_Real = (OffsetBase) / 64; 1619 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1620 if (EB_Real != EB_Imag) 1621 Hi = Lo; 1622 } else if (Size == 64) { 1623 // gcc passes <1 x double> in memory. :( 1624 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1625 return; 1626 1627 // gcc passes <1 x long long> as INTEGER. 1628 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1629 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1630 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1631 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1632 Current = Integer; 1633 else 1634 Current = SSE; 1635 1636 // If this type crosses an eightbyte boundary, it should be 1637 // split. 1638 if (OffsetBase && OffsetBase != 64) 1639 Hi = Lo; 1640 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1641 // Arguments of 256-bits are split into four eightbyte chunks. The 1642 // least significant one belongs to class SSE and all the others to class 1643 // SSEUP. The original Lo and Hi design considers that types can't be 1644 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1645 // This design isn't correct for 256-bits, but since there're no cases 1646 // where the upper parts would need to be inspected, avoid adding 1647 // complexity and just consider Hi to match the 64-256 part. 1648 // 1649 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1650 // registers if they are "named", i.e. not part of the "..." of a 1651 // variadic function. 1652 Lo = SSE; 1653 Hi = SSEUp; 1654 } 1655 return; 1656 } 1657 1658 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1659 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1660 1661 uint64_t Size = getContext().getTypeSize(Ty); 1662 if (ET->isIntegralOrEnumerationType()) { 1663 if (Size <= 64) 1664 Current = Integer; 1665 else if (Size <= 128) 1666 Lo = Hi = Integer; 1667 } else if (ET == getContext().FloatTy) 1668 Current = SSE; 1669 else if (ET == getContext().DoubleTy || 1670 (ET == getContext().LongDoubleTy && 1671 getTarget().getTriple().isOSNaCl())) 1672 Lo = Hi = SSE; 1673 else if (ET == getContext().LongDoubleTy) 1674 Current = ComplexX87; 1675 1676 // If this complex type crosses an eightbyte boundary then it 1677 // should be split. 1678 uint64_t EB_Real = (OffsetBase) / 64; 1679 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1680 if (Hi == NoClass && EB_Real != EB_Imag) 1681 Hi = Lo; 1682 1683 return; 1684 } 1685 1686 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1687 // Arrays are treated like structures. 1688 1689 uint64_t Size = getContext().getTypeSize(Ty); 1690 1691 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1692 // than four eightbytes, ..., it has class MEMORY. 1693 if (Size > 256) 1694 return; 1695 1696 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1697 // fields, it has class MEMORY. 1698 // 1699 // Only need to check alignment of array base. 1700 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1701 return; 1702 1703 // Otherwise implement simplified merge. We could be smarter about 1704 // this, but it isn't worth it and would be harder to verify. 1705 Current = NoClass; 1706 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1707 uint64_t ArraySize = AT->getSize().getZExtValue(); 1708 1709 // The only case a 256-bit wide vector could be used is when the array 1710 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1711 // to work for sizes wider than 128, early check and fallback to memory. 1712 if (Size > 128 && EltSize != 256) 1713 return; 1714 1715 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1716 Class FieldLo, FieldHi; 1717 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1718 Lo = merge(Lo, FieldLo); 1719 Hi = merge(Hi, FieldHi); 1720 if (Lo == Memory || Hi == Memory) 1721 break; 1722 } 1723 1724 postMerge(Size, Lo, Hi); 1725 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1726 return; 1727 } 1728 1729 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1730 uint64_t Size = getContext().getTypeSize(Ty); 1731 1732 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1733 // than four eightbytes, ..., it has class MEMORY. 1734 if (Size > 256) 1735 return; 1736 1737 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1738 // copy constructor or a non-trivial destructor, it is passed by invisible 1739 // reference. 1740 if (getRecordArgABI(RT, getCXXABI())) 1741 return; 1742 1743 const RecordDecl *RD = RT->getDecl(); 1744 1745 // Assume variable sized types are passed in memory. 1746 if (RD->hasFlexibleArrayMember()) 1747 return; 1748 1749 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1750 1751 // Reset Lo class, this will be recomputed. 1752 Current = NoClass; 1753 1754 // If this is a C++ record, classify the bases first. 1755 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1756 for (const auto &I : CXXRD->bases()) { 1757 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1758 "Unexpected base class!"); 1759 const CXXRecordDecl *Base = 1760 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1761 1762 // Classify this field. 1763 // 1764 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1765 // single eightbyte, each is classified separately. Each eightbyte gets 1766 // initialized to class NO_CLASS. 1767 Class FieldLo, FieldHi; 1768 uint64_t Offset = 1769 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1770 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 1771 Lo = merge(Lo, FieldLo); 1772 Hi = merge(Hi, FieldHi); 1773 if (Lo == Memory || Hi == Memory) 1774 break; 1775 } 1776 } 1777 1778 // Classify the fields one at a time, merging the results. 1779 unsigned idx = 0; 1780 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1781 i != e; ++i, ++idx) { 1782 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1783 bool BitField = i->isBitField(); 1784 1785 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1786 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1787 // 1788 // The only case a 256-bit wide vector could be used is when the struct 1789 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1790 // to work for sizes wider than 128, early check and fallback to memory. 1791 // 1792 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1793 Lo = Memory; 1794 return; 1795 } 1796 // Note, skip this test for bit-fields, see below. 1797 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1798 Lo = Memory; 1799 return; 1800 } 1801 1802 // Classify this field. 1803 // 1804 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1805 // exceeds a single eightbyte, each is classified 1806 // separately. Each eightbyte gets initialized to class 1807 // NO_CLASS. 1808 Class FieldLo, FieldHi; 1809 1810 // Bit-fields require special handling, they do not force the 1811 // structure to be passed in memory even if unaligned, and 1812 // therefore they can straddle an eightbyte. 1813 if (BitField) { 1814 // Ignore padding bit-fields. 1815 if (i->isUnnamedBitfield()) 1816 continue; 1817 1818 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1819 uint64_t Size = i->getBitWidthValue(getContext()); 1820 1821 uint64_t EB_Lo = Offset / 64; 1822 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1823 1824 if (EB_Lo) { 1825 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1826 FieldLo = NoClass; 1827 FieldHi = Integer; 1828 } else { 1829 FieldLo = Integer; 1830 FieldHi = EB_Hi ? Integer : NoClass; 1831 } 1832 } else 1833 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1834 Lo = merge(Lo, FieldLo); 1835 Hi = merge(Hi, FieldHi); 1836 if (Lo == Memory || Hi == Memory) 1837 break; 1838 } 1839 1840 postMerge(Size, Lo, Hi); 1841 } 1842 } 1843 1844 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1845 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1846 // place naturally. 1847 if (!isAggregateTypeForABI(Ty)) { 1848 // Treat an enum type as its underlying type. 1849 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1850 Ty = EnumTy->getDecl()->getIntegerType(); 1851 1852 return (Ty->isPromotableIntegerType() ? 1853 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1854 } 1855 1856 return ABIArgInfo::getIndirect(0); 1857 } 1858 1859 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1860 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1861 uint64_t Size = getContext().getTypeSize(VecTy); 1862 unsigned LargestVector = HasAVX ? 256 : 128; 1863 if (Size <= 64 || Size > LargestVector) 1864 return true; 1865 } 1866 1867 return false; 1868 } 1869 1870 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1871 unsigned freeIntRegs) const { 1872 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1873 // place naturally. 1874 // 1875 // This assumption is optimistic, as there could be free registers available 1876 // when we need to pass this argument in memory, and LLVM could try to pass 1877 // the argument in the free register. This does not seem to happen currently, 1878 // but this code would be much safer if we could mark the argument with 1879 // 'onstack'. See PR12193. 1880 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1881 // Treat an enum type as its underlying type. 1882 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1883 Ty = EnumTy->getDecl()->getIntegerType(); 1884 1885 return (Ty->isPromotableIntegerType() ? 1886 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1887 } 1888 1889 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1890 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1891 1892 // Compute the byval alignment. We specify the alignment of the byval in all 1893 // cases so that the mid-level optimizer knows the alignment of the byval. 1894 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1895 1896 // Attempt to avoid passing indirect results using byval when possible. This 1897 // is important for good codegen. 1898 // 1899 // We do this by coercing the value into a scalar type which the backend can 1900 // handle naturally (i.e., without using byval). 1901 // 1902 // For simplicity, we currently only do this when we have exhausted all of the 1903 // free integer registers. Doing this when there are free integer registers 1904 // would require more care, as we would have to ensure that the coerced value 1905 // did not claim the unused register. That would require either reording the 1906 // arguments to the function (so that any subsequent inreg values came first), 1907 // or only doing this optimization when there were no following arguments that 1908 // might be inreg. 1909 // 1910 // We currently expect it to be rare (particularly in well written code) for 1911 // arguments to be passed on the stack when there are still free integer 1912 // registers available (this would typically imply large structs being passed 1913 // by value), so this seems like a fair tradeoff for now. 1914 // 1915 // We can revisit this if the backend grows support for 'onstack' parameter 1916 // attributes. See PR12193. 1917 if (freeIntRegs == 0) { 1918 uint64_t Size = getContext().getTypeSize(Ty); 1919 1920 // If this type fits in an eightbyte, coerce it into the matching integral 1921 // type, which will end up on the stack (with alignment 8). 1922 if (Align == 8 && Size <= 64) 1923 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1924 Size)); 1925 } 1926 1927 return ABIArgInfo::getIndirect(Align); 1928 } 1929 1930 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1931 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1932 /// vector register. 1933 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1934 llvm::Type *IRType = CGT.ConvertType(Ty); 1935 1936 // Wrapper structs that just contain vectors are passed just like vectors, 1937 // strip them off if present. 1938 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1939 while (STy && STy->getNumElements() == 1) { 1940 IRType = STy->getElementType(0); 1941 STy = dyn_cast<llvm::StructType>(IRType); 1942 } 1943 1944 // If the preferred type is a 16-byte vector, prefer to pass it. 1945 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1946 llvm::Type *EltTy = VT->getElementType(); 1947 unsigned BitWidth = VT->getBitWidth(); 1948 if ((BitWidth >= 128 && BitWidth <= 256) && 1949 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1950 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1951 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1952 EltTy->isIntegerTy(128))) 1953 return VT; 1954 } 1955 1956 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1957 } 1958 1959 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1960 /// is known to either be off the end of the specified type or being in 1961 /// alignment padding. The user type specified is known to be at most 128 bits 1962 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1963 /// classification that put one of the two halves in the INTEGER class. 1964 /// 1965 /// It is conservatively correct to return false. 1966 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1967 unsigned EndBit, ASTContext &Context) { 1968 // If the bytes being queried are off the end of the type, there is no user 1969 // data hiding here. This handles analysis of builtins, vectors and other 1970 // types that don't contain interesting padding. 1971 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1972 if (TySize <= StartBit) 1973 return true; 1974 1975 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1976 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1977 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1978 1979 // Check each element to see if the element overlaps with the queried range. 1980 for (unsigned i = 0; i != NumElts; ++i) { 1981 // If the element is after the span we care about, then we're done.. 1982 unsigned EltOffset = i*EltSize; 1983 if (EltOffset >= EndBit) break; 1984 1985 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1986 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1987 EndBit-EltOffset, Context)) 1988 return false; 1989 } 1990 // If it overlaps no elements, then it is safe to process as padding. 1991 return true; 1992 } 1993 1994 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1995 const RecordDecl *RD = RT->getDecl(); 1996 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1997 1998 // If this is a C++ record, check the bases first. 1999 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2000 for (const auto &I : CXXRD->bases()) { 2001 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2002 "Unexpected base class!"); 2003 const CXXRecordDecl *Base = 2004 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2005 2006 // If the base is after the span we care about, ignore it. 2007 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2008 if (BaseOffset >= EndBit) continue; 2009 2010 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2011 if (!BitsContainNoUserData(I.getType(), BaseStart, 2012 EndBit-BaseOffset, Context)) 2013 return false; 2014 } 2015 } 2016 2017 // Verify that no field has data that overlaps the region of interest. Yes 2018 // this could be sped up a lot by being smarter about queried fields, 2019 // however we're only looking at structs up to 16 bytes, so we don't care 2020 // much. 2021 unsigned idx = 0; 2022 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2023 i != e; ++i, ++idx) { 2024 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2025 2026 // If we found a field after the region we care about, then we're done. 2027 if (FieldOffset >= EndBit) break; 2028 2029 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2030 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2031 Context)) 2032 return false; 2033 } 2034 2035 // If nothing in this record overlapped the area of interest, then we're 2036 // clean. 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 2043 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2044 /// float member at the specified offset. For example, {int,{float}} has a 2045 /// float at offset 4. It is conservatively correct for this routine to return 2046 /// false. 2047 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2048 const llvm::DataLayout &TD) { 2049 // Base case if we find a float. 2050 if (IROffset == 0 && IRType->isFloatTy()) 2051 return true; 2052 2053 // If this is a struct, recurse into the field at the specified offset. 2054 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2055 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2056 unsigned Elt = SL->getElementContainingOffset(IROffset); 2057 IROffset -= SL->getElementOffset(Elt); 2058 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2059 } 2060 2061 // If this is an array, recurse into the field at the specified offset. 2062 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2063 llvm::Type *EltTy = ATy->getElementType(); 2064 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2065 IROffset -= IROffset/EltSize*EltSize; 2066 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2067 } 2068 2069 return false; 2070 } 2071 2072 2073 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2074 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2075 llvm::Type *X86_64ABIInfo:: 2076 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2077 QualType SourceTy, unsigned SourceOffset) const { 2078 // The only three choices we have are either double, <2 x float>, or float. We 2079 // pass as float if the last 4 bytes is just padding. This happens for 2080 // structs that contain 3 floats. 2081 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2082 SourceOffset*8+64, getContext())) 2083 return llvm::Type::getFloatTy(getVMContext()); 2084 2085 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2086 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2087 // case. 2088 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2089 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2090 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2091 2092 return llvm::Type::getDoubleTy(getVMContext()); 2093 } 2094 2095 2096 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2097 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2098 /// about the high or low part of an up-to-16-byte struct. This routine picks 2099 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2100 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2101 /// etc). 2102 /// 2103 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2104 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2105 /// the 8-byte value references. PrefType may be null. 2106 /// 2107 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2108 /// an offset into this that we're processing (which is always either 0 or 8). 2109 /// 2110 llvm::Type *X86_64ABIInfo:: 2111 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2112 QualType SourceTy, unsigned SourceOffset) const { 2113 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2114 // returning an 8-byte unit starting with it. See if we can safely use it. 2115 if (IROffset == 0) { 2116 // Pointers and int64's always fill the 8-byte unit. 2117 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2118 IRType->isIntegerTy(64)) 2119 return IRType; 2120 2121 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2122 // goodness in the source type is just tail padding. This is allowed to 2123 // kick in for struct {double,int} on the int, but not on 2124 // struct{double,int,int} because we wouldn't return the second int. We 2125 // have to do this analysis on the source type because we can't depend on 2126 // unions being lowered a specific way etc. 2127 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2128 IRType->isIntegerTy(32) || 2129 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2130 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2131 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2132 2133 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2134 SourceOffset*8+64, getContext())) 2135 return IRType; 2136 } 2137 } 2138 2139 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2140 // If this is a struct, recurse into the field at the specified offset. 2141 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2142 if (IROffset < SL->getSizeInBytes()) { 2143 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2144 IROffset -= SL->getElementOffset(FieldIdx); 2145 2146 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2147 SourceTy, SourceOffset); 2148 } 2149 } 2150 2151 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2152 llvm::Type *EltTy = ATy->getElementType(); 2153 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2154 unsigned EltOffset = IROffset/EltSize*EltSize; 2155 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2156 SourceOffset); 2157 } 2158 2159 // Okay, we don't have any better idea of what to pass, so we pass this in an 2160 // integer register that isn't too big to fit the rest of the struct. 2161 unsigned TySizeInBytes = 2162 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2163 2164 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2165 2166 // It is always safe to classify this as an integer type up to i64 that 2167 // isn't larger than the structure. 2168 return llvm::IntegerType::get(getVMContext(), 2169 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2170 } 2171 2172 2173 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2174 /// be used as elements of a two register pair to pass or return, return a 2175 /// first class aggregate to represent them. For example, if the low part of 2176 /// a by-value argument should be passed as i32* and the high part as float, 2177 /// return {i32*, float}. 2178 static llvm::Type * 2179 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2180 const llvm::DataLayout &TD) { 2181 // In order to correctly satisfy the ABI, we need to the high part to start 2182 // at offset 8. If the high and low parts we inferred are both 4-byte types 2183 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2184 // the second element at offset 8. Check for this: 2185 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2186 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2187 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2188 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2189 2190 // To handle this, we have to increase the size of the low part so that the 2191 // second element will start at an 8 byte offset. We can't increase the size 2192 // of the second element because it might make us access off the end of the 2193 // struct. 2194 if (HiStart != 8) { 2195 // There are only two sorts of types the ABI generation code can produce for 2196 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2197 // Promote these to a larger type. 2198 if (Lo->isFloatTy()) 2199 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2200 else { 2201 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2202 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2203 } 2204 } 2205 2206 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2207 2208 2209 // Verify that the second element is at an 8-byte offset. 2210 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2211 "Invalid x86-64 argument pair!"); 2212 return Result; 2213 } 2214 2215 ABIArgInfo X86_64ABIInfo:: 2216 classifyReturnType(QualType RetTy) const { 2217 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2218 // classification algorithm. 2219 X86_64ABIInfo::Class Lo, Hi; 2220 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2221 2222 // Check some invariants. 2223 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2224 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2225 2226 llvm::Type *ResType = nullptr; 2227 switch (Lo) { 2228 case NoClass: 2229 if (Hi == NoClass) 2230 return ABIArgInfo::getIgnore(); 2231 // If the low part is just padding, it takes no register, leave ResType 2232 // null. 2233 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2234 "Unknown missing lo part"); 2235 break; 2236 2237 case SSEUp: 2238 case X87Up: 2239 llvm_unreachable("Invalid classification for lo word."); 2240 2241 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2242 // hidden argument. 2243 case Memory: 2244 return getIndirectReturnResult(RetTy); 2245 2246 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2247 // available register of the sequence %rax, %rdx is used. 2248 case Integer: 2249 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2250 2251 // If we have a sign or zero extended integer, make sure to return Extend 2252 // so that the parameter gets the right LLVM IR attributes. 2253 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2254 // Treat an enum type as its underlying type. 2255 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2256 RetTy = EnumTy->getDecl()->getIntegerType(); 2257 2258 if (RetTy->isIntegralOrEnumerationType() && 2259 RetTy->isPromotableIntegerType()) 2260 return ABIArgInfo::getExtend(); 2261 } 2262 break; 2263 2264 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2265 // available SSE register of the sequence %xmm0, %xmm1 is used. 2266 case SSE: 2267 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2268 break; 2269 2270 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2271 // returned on the X87 stack in %st0 as 80-bit x87 number. 2272 case X87: 2273 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2274 break; 2275 2276 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2277 // part of the value is returned in %st0 and the imaginary part in 2278 // %st1. 2279 case ComplexX87: 2280 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2281 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2282 llvm::Type::getX86_FP80Ty(getVMContext()), 2283 NULL); 2284 break; 2285 } 2286 2287 llvm::Type *HighPart = nullptr; 2288 switch (Hi) { 2289 // Memory was handled previously and X87 should 2290 // never occur as a hi class. 2291 case Memory: 2292 case X87: 2293 llvm_unreachable("Invalid classification for hi word."); 2294 2295 case ComplexX87: // Previously handled. 2296 case NoClass: 2297 break; 2298 2299 case Integer: 2300 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2301 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2302 return ABIArgInfo::getDirect(HighPart, 8); 2303 break; 2304 case SSE: 2305 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2306 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2307 return ABIArgInfo::getDirect(HighPart, 8); 2308 break; 2309 2310 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2311 // is passed in the next available eightbyte chunk if the last used 2312 // vector register. 2313 // 2314 // SSEUP should always be preceded by SSE, just widen. 2315 case SSEUp: 2316 assert(Lo == SSE && "Unexpected SSEUp classification."); 2317 ResType = GetByteVectorType(RetTy); 2318 break; 2319 2320 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2321 // returned together with the previous X87 value in %st0. 2322 case X87Up: 2323 // If X87Up is preceded by X87, we don't need to do 2324 // anything. However, in some cases with unions it may not be 2325 // preceded by X87. In such situations we follow gcc and pass the 2326 // extra bits in an SSE reg. 2327 if (Lo != X87) { 2328 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2329 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2330 return ABIArgInfo::getDirect(HighPart, 8); 2331 } 2332 break; 2333 } 2334 2335 // If a high part was specified, merge it together with the low part. It is 2336 // known to pass in the high eightbyte of the result. We do this by forming a 2337 // first class struct aggregate with the high and low part: {low, high} 2338 if (HighPart) 2339 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2340 2341 return ABIArgInfo::getDirect(ResType); 2342 } 2343 2344 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2345 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2346 bool isNamedArg) 2347 const 2348 { 2349 X86_64ABIInfo::Class Lo, Hi; 2350 classify(Ty, 0, Lo, Hi, isNamedArg); 2351 2352 // Check some invariants. 2353 // FIXME: Enforce these by construction. 2354 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2355 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2356 2357 neededInt = 0; 2358 neededSSE = 0; 2359 llvm::Type *ResType = nullptr; 2360 switch (Lo) { 2361 case NoClass: 2362 if (Hi == NoClass) 2363 return ABIArgInfo::getIgnore(); 2364 // If the low part is just padding, it takes no register, leave ResType 2365 // null. 2366 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2367 "Unknown missing lo part"); 2368 break; 2369 2370 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2371 // on the stack. 2372 case Memory: 2373 2374 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2375 // COMPLEX_X87, it is passed in memory. 2376 case X87: 2377 case ComplexX87: 2378 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2379 ++neededInt; 2380 return getIndirectResult(Ty, freeIntRegs); 2381 2382 case SSEUp: 2383 case X87Up: 2384 llvm_unreachable("Invalid classification for lo word."); 2385 2386 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2387 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2388 // and %r9 is used. 2389 case Integer: 2390 ++neededInt; 2391 2392 // Pick an 8-byte type based on the preferred type. 2393 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2394 2395 // If we have a sign or zero extended integer, make sure to return Extend 2396 // so that the parameter gets the right LLVM IR attributes. 2397 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2398 // Treat an enum type as its underlying type. 2399 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2400 Ty = EnumTy->getDecl()->getIntegerType(); 2401 2402 if (Ty->isIntegralOrEnumerationType() && 2403 Ty->isPromotableIntegerType()) 2404 return ABIArgInfo::getExtend(); 2405 } 2406 2407 break; 2408 2409 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2410 // available SSE register is used, the registers are taken in the 2411 // order from %xmm0 to %xmm7. 2412 case SSE: { 2413 llvm::Type *IRType = CGT.ConvertType(Ty); 2414 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2415 ++neededSSE; 2416 break; 2417 } 2418 } 2419 2420 llvm::Type *HighPart = nullptr; 2421 switch (Hi) { 2422 // Memory was handled previously, ComplexX87 and X87 should 2423 // never occur as hi classes, and X87Up must be preceded by X87, 2424 // which is passed in memory. 2425 case Memory: 2426 case X87: 2427 case ComplexX87: 2428 llvm_unreachable("Invalid classification for hi word."); 2429 2430 case NoClass: break; 2431 2432 case Integer: 2433 ++neededInt; 2434 // Pick an 8-byte type based on the preferred type. 2435 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2436 2437 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2438 return ABIArgInfo::getDirect(HighPart, 8); 2439 break; 2440 2441 // X87Up generally doesn't occur here (long double is passed in 2442 // memory), except in situations involving unions. 2443 case X87Up: 2444 case SSE: 2445 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2446 2447 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2448 return ABIArgInfo::getDirect(HighPart, 8); 2449 2450 ++neededSSE; 2451 break; 2452 2453 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2454 // eightbyte is passed in the upper half of the last used SSE 2455 // register. This only happens when 128-bit vectors are passed. 2456 case SSEUp: 2457 assert(Lo == SSE && "Unexpected SSEUp classification"); 2458 ResType = GetByteVectorType(Ty); 2459 break; 2460 } 2461 2462 // If a high part was specified, merge it together with the low part. It is 2463 // known to pass in the high eightbyte of the result. We do this by forming a 2464 // first class struct aggregate with the high and low part: {low, high} 2465 if (HighPart) 2466 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2467 2468 return ABIArgInfo::getDirect(ResType); 2469 } 2470 2471 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2472 2473 if (!getCXXABI().classifyReturnType(FI)) 2474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2475 2476 // Keep track of the number of assigned registers. 2477 unsigned freeIntRegs = 6, freeSSERegs = 8; 2478 2479 // If the return value is indirect, then the hidden argument is consuming one 2480 // integer register. 2481 if (FI.getReturnInfo().isIndirect()) 2482 --freeIntRegs; 2483 2484 bool isVariadic = FI.isVariadic(); 2485 unsigned numRequiredArgs = 0; 2486 if (isVariadic) 2487 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2488 2489 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2490 // get assigned (in left-to-right order) for passing as follows... 2491 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2492 it != ie; ++it) { 2493 bool isNamedArg = true; 2494 if (isVariadic) 2495 isNamedArg = (it - FI.arg_begin()) < 2496 static_cast<signed>(numRequiredArgs); 2497 2498 unsigned neededInt, neededSSE; 2499 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2500 neededSSE, isNamedArg); 2501 2502 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2503 // eightbyte of an argument, the whole argument is passed on the 2504 // stack. If registers have already been assigned for some 2505 // eightbytes of such an argument, the assignments get reverted. 2506 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2507 freeIntRegs -= neededInt; 2508 freeSSERegs -= neededSSE; 2509 } else { 2510 it->info = getIndirectResult(it->type, freeIntRegs); 2511 } 2512 } 2513 } 2514 2515 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2516 QualType Ty, 2517 CodeGenFunction &CGF) { 2518 llvm::Value *overflow_arg_area_p = 2519 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2520 llvm::Value *overflow_arg_area = 2521 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2522 2523 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2524 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2525 // It isn't stated explicitly in the standard, but in practice we use 2526 // alignment greater than 16 where necessary. 2527 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2528 if (Align > 8) { 2529 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2530 llvm::Value *Offset = 2531 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2532 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2533 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2534 CGF.Int64Ty); 2535 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2536 overflow_arg_area = 2537 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2538 overflow_arg_area->getType(), 2539 "overflow_arg_area.align"); 2540 } 2541 2542 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2543 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2544 llvm::Value *Res = 2545 CGF.Builder.CreateBitCast(overflow_arg_area, 2546 llvm::PointerType::getUnqual(LTy)); 2547 2548 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2549 // l->overflow_arg_area + sizeof(type). 2550 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2551 // an 8 byte boundary. 2552 2553 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2554 llvm::Value *Offset = 2555 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2556 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2557 "overflow_arg_area.next"); 2558 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2559 2560 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2561 return Res; 2562 } 2563 2564 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2565 CodeGenFunction &CGF) const { 2566 // Assume that va_list type is correct; should be pointer to LLVM type: 2567 // struct { 2568 // i32 gp_offset; 2569 // i32 fp_offset; 2570 // i8* overflow_arg_area; 2571 // i8* reg_save_area; 2572 // }; 2573 unsigned neededInt, neededSSE; 2574 2575 Ty = CGF.getContext().getCanonicalType(Ty); 2576 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2577 /*isNamedArg*/false); 2578 2579 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2580 // in the registers. If not go to step 7. 2581 if (!neededInt && !neededSSE) 2582 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2583 2584 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2585 // general purpose registers needed to pass type and num_fp to hold 2586 // the number of floating point registers needed. 2587 2588 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2589 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2590 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2591 // 2592 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2593 // register save space). 2594 2595 llvm::Value *InRegs = nullptr; 2596 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2597 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2598 if (neededInt) { 2599 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2600 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2601 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2602 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2603 } 2604 2605 if (neededSSE) { 2606 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2607 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2608 llvm::Value *FitsInFP = 2609 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2610 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2611 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2612 } 2613 2614 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2615 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2616 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2617 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2618 2619 // Emit code to load the value if it was passed in registers. 2620 2621 CGF.EmitBlock(InRegBlock); 2622 2623 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2624 // an offset of l->gp_offset and/or l->fp_offset. This may require 2625 // copying to a temporary location in case the parameter is passed 2626 // in different register classes or requires an alignment greater 2627 // than 8 for general purpose registers and 16 for XMM registers. 2628 // 2629 // FIXME: This really results in shameful code when we end up needing to 2630 // collect arguments from different places; often what should result in a 2631 // simple assembling of a structure from scattered addresses has many more 2632 // loads than necessary. Can we clean this up? 2633 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2634 llvm::Value *RegAddr = 2635 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2636 "reg_save_area"); 2637 if (neededInt && neededSSE) { 2638 // FIXME: Cleanup. 2639 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2640 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2641 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2642 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2643 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2644 llvm::Type *TyLo = ST->getElementType(0); 2645 llvm::Type *TyHi = ST->getElementType(1); 2646 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2647 "Unexpected ABI info for mixed regs"); 2648 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2649 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2650 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2651 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2652 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2653 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2654 llvm::Value *V = 2655 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2656 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2657 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2658 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2659 2660 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2661 llvm::PointerType::getUnqual(LTy)); 2662 } else if (neededInt) { 2663 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2664 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2665 llvm::PointerType::getUnqual(LTy)); 2666 2667 // Copy to a temporary if necessary to ensure the appropriate alignment. 2668 std::pair<CharUnits, CharUnits> SizeAlign = 2669 CGF.getContext().getTypeInfoInChars(Ty); 2670 uint64_t TySize = SizeAlign.first.getQuantity(); 2671 unsigned TyAlign = SizeAlign.second.getQuantity(); 2672 if (TyAlign > 8) { 2673 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2674 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2675 RegAddr = Tmp; 2676 } 2677 } else if (neededSSE == 1) { 2678 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2679 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2680 llvm::PointerType::getUnqual(LTy)); 2681 } else { 2682 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2683 // SSE registers are spaced 16 bytes apart in the register save 2684 // area, we need to collect the two eightbytes together. 2685 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2686 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2687 llvm::Type *DoubleTy = CGF.DoubleTy; 2688 llvm::Type *DblPtrTy = 2689 llvm::PointerType::getUnqual(DoubleTy); 2690 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2691 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2692 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2693 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2694 DblPtrTy)); 2695 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2696 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2697 DblPtrTy)); 2698 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2699 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2700 llvm::PointerType::getUnqual(LTy)); 2701 } 2702 2703 // AMD64-ABI 3.5.7p5: Step 5. Set: 2704 // l->gp_offset = l->gp_offset + num_gp * 8 2705 // l->fp_offset = l->fp_offset + num_fp * 16. 2706 if (neededInt) { 2707 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2708 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2709 gp_offset_p); 2710 } 2711 if (neededSSE) { 2712 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2713 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2714 fp_offset_p); 2715 } 2716 CGF.EmitBranch(ContBlock); 2717 2718 // Emit code to load the value if it was passed in memory. 2719 2720 CGF.EmitBlock(InMemBlock); 2721 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2722 2723 // Return the appropriate result. 2724 2725 CGF.EmitBlock(ContBlock); 2726 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2727 "vaarg.addr"); 2728 ResAddr->addIncoming(RegAddr, InRegBlock); 2729 ResAddr->addIncoming(MemAddr, InMemBlock); 2730 return ResAddr; 2731 } 2732 2733 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2734 2735 if (Ty->isVoidType()) 2736 return ABIArgInfo::getIgnore(); 2737 2738 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2739 Ty = EnumTy->getDecl()->getIntegerType(); 2740 2741 uint64_t Size = getContext().getTypeSize(Ty); 2742 2743 const RecordType *RT = Ty->getAs<RecordType>(); 2744 if (RT) { 2745 if (!IsReturnType) { 2746 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2747 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2748 } 2749 2750 if (RT->getDecl()->hasFlexibleArrayMember()) 2751 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2752 2753 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2754 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 2755 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2756 Size)); 2757 } 2758 2759 if (Ty->isMemberPointerType()) { 2760 // If the member pointer is represented by an LLVM int or ptr, pass it 2761 // directly. 2762 llvm::Type *LLTy = CGT.ConvertType(Ty); 2763 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 2764 return ABIArgInfo::getDirect(); 2765 } 2766 2767 if (RT || Ty->isMemberPointerType()) { 2768 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2769 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2770 if (Size > 64 || !llvm::isPowerOf2_64(Size)) 2771 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2772 2773 // Otherwise, coerce it to a small integer. 2774 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 2775 } 2776 2777 if (Ty->isPromotableIntegerType()) 2778 return ABIArgInfo::getExtend(); 2779 2780 return ABIArgInfo::getDirect(); 2781 } 2782 2783 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2784 if (!getCXXABI().classifyReturnType(FI)) 2785 FI.getReturnInfo() = classify(FI.getReturnType(), true); 2786 2787 for (auto &I : FI.arguments()) 2788 I.info = classify(I.type, false); 2789 } 2790 2791 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2792 CodeGenFunction &CGF) const { 2793 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2794 2795 CGBuilderTy &Builder = CGF.Builder; 2796 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2797 "ap"); 2798 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2799 llvm::Type *PTy = 2800 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2801 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2802 2803 uint64_t Offset = 2804 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2805 llvm::Value *NextAddr = 2806 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2807 "ap.next"); 2808 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2809 2810 return AddrTyped; 2811 } 2812 2813 namespace { 2814 2815 class NaClX86_64ABIInfo : public ABIInfo { 2816 public: 2817 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2818 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2819 void computeInfo(CGFunctionInfo &FI) const override; 2820 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2821 CodeGenFunction &CGF) const override; 2822 private: 2823 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2824 X86_64ABIInfo NInfo; // Used for everything else. 2825 }; 2826 2827 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2828 public: 2829 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2830 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2831 }; 2832 2833 } 2834 2835 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2836 if (FI.getASTCallingConvention() == CC_PnaclCall) 2837 PInfo.computeInfo(FI); 2838 else 2839 NInfo.computeInfo(FI); 2840 } 2841 2842 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2843 CodeGenFunction &CGF) const { 2844 // Always use the native convention; calling pnacl-style varargs functions 2845 // is unuspported. 2846 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2847 } 2848 2849 2850 // PowerPC-32 2851 2852 namespace { 2853 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2854 public: 2855 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2856 2857 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2858 // This is recovered from gcc output. 2859 return 1; // r1 is the dedicated stack pointer 2860 } 2861 2862 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2863 llvm::Value *Address) const override; 2864 }; 2865 2866 } 2867 2868 bool 2869 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2870 llvm::Value *Address) const { 2871 // This is calculated from the LLVM and GCC tables and verified 2872 // against gcc output. AFAIK all ABIs use the same encoding. 2873 2874 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2875 2876 llvm::IntegerType *i8 = CGF.Int8Ty; 2877 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2878 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2879 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2880 2881 // 0-31: r0-31, the 4-byte general-purpose registers 2882 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2883 2884 // 32-63: fp0-31, the 8-byte floating-point registers 2885 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2886 2887 // 64-76 are various 4-byte special-purpose registers: 2888 // 64: mq 2889 // 65: lr 2890 // 66: ctr 2891 // 67: ap 2892 // 68-75 cr0-7 2893 // 76: xer 2894 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2895 2896 // 77-108: v0-31, the 16-byte vector registers 2897 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2898 2899 // 109: vrsave 2900 // 110: vscr 2901 // 111: spe_acc 2902 // 112: spefscr 2903 // 113: sfp 2904 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2905 2906 return false; 2907 } 2908 2909 // PowerPC-64 2910 2911 namespace { 2912 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2913 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2914 public: 2915 enum ABIKind { 2916 ELFv1 = 0, 2917 ELFv2 2918 }; 2919 2920 private: 2921 static const unsigned GPRBits = 64; 2922 ABIKind Kind; 2923 2924 public: 2925 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 2926 : DefaultABIInfo(CGT), Kind(Kind) {} 2927 2928 bool isPromotableTypeForABI(QualType Ty) const; 2929 bool isAlignedParamType(QualType Ty) const; 2930 bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 2931 uint64_t &Members) const; 2932 2933 ABIArgInfo classifyReturnType(QualType RetTy) const; 2934 ABIArgInfo classifyArgumentType(QualType Ty) const; 2935 2936 // TODO: We can add more logic to computeInfo to improve performance. 2937 // Example: For aggregate arguments that fit in a register, we could 2938 // use getDirectInReg (as is done below for structs containing a single 2939 // floating-point value) to avoid pushing them to memory on function 2940 // entry. This would require changing the logic in PPCISelLowering 2941 // when lowering the parameters in the caller and args in the callee. 2942 void computeInfo(CGFunctionInfo &FI) const override { 2943 if (!getCXXABI().classifyReturnType(FI)) 2944 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2945 for (auto &I : FI.arguments()) { 2946 // We rely on the default argument classification for the most part. 2947 // One exception: An aggregate containing a single floating-point 2948 // or vector item must be passed in a register if one is available. 2949 const Type *T = isSingleElementStruct(I.type, getContext()); 2950 if (T) { 2951 const BuiltinType *BT = T->getAs<BuiltinType>(); 2952 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 2953 (BT && BT->isFloatingPoint())) { 2954 QualType QT(T, 0); 2955 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2956 continue; 2957 } 2958 } 2959 I.info = classifyArgumentType(I.type); 2960 } 2961 } 2962 2963 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2964 CodeGenFunction &CGF) const override; 2965 }; 2966 2967 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2968 public: 2969 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 2970 PPC64_SVR4_ABIInfo::ABIKind Kind) 2971 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {} 2972 2973 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2974 // This is recovered from gcc output. 2975 return 1; // r1 is the dedicated stack pointer 2976 } 2977 2978 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2979 llvm::Value *Address) const override; 2980 }; 2981 2982 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2983 public: 2984 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2985 2986 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2987 // This is recovered from gcc output. 2988 return 1; // r1 is the dedicated stack pointer 2989 } 2990 2991 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2992 llvm::Value *Address) const override; 2993 }; 2994 2995 } 2996 2997 // Return true if the ABI requires Ty to be passed sign- or zero- 2998 // extended to 64 bits. 2999 bool 3000 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3001 // Treat an enum type as its underlying type. 3002 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3003 Ty = EnumTy->getDecl()->getIntegerType(); 3004 3005 // Promotable integer types are required to be promoted by the ABI. 3006 if (Ty->isPromotableIntegerType()) 3007 return true; 3008 3009 // In addition to the usual promotable integer types, we also need to 3010 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3011 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3012 switch (BT->getKind()) { 3013 case BuiltinType::Int: 3014 case BuiltinType::UInt: 3015 return true; 3016 default: 3017 break; 3018 } 3019 3020 return false; 3021 } 3022 3023 /// isAlignedParamType - Determine whether a type requires 16-byte 3024 /// alignment in the parameter area. 3025 bool 3026 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const { 3027 // Complex types are passed just like their elements. 3028 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3029 Ty = CTy->getElementType(); 3030 3031 // Only vector types of size 16 bytes need alignment (larger types are 3032 // passed via reference, smaller types are not aligned). 3033 if (Ty->isVectorType()) 3034 return getContext().getTypeSize(Ty) == 128; 3035 3036 // For single-element float/vector structs, we consider the whole type 3037 // to have the same alignment requirements as its single element. 3038 const Type *AlignAsType = nullptr; 3039 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3040 if (EltType) { 3041 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3042 if ((EltType->isVectorType() && 3043 getContext().getTypeSize(EltType) == 128) || 3044 (BT && BT->isFloatingPoint())) 3045 AlignAsType = EltType; 3046 } 3047 3048 // Likewise for ELFv2 homogeneous aggregates. 3049 const Type *Base = nullptr; 3050 uint64_t Members = 0; 3051 if (!AlignAsType && Kind == ELFv2 && 3052 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3053 AlignAsType = Base; 3054 3055 // With special case aggregates, only vector base types need alignment. 3056 if (AlignAsType) 3057 return AlignAsType->isVectorType(); 3058 3059 // Otherwise, we only need alignment for any aggregate type that 3060 // has an alignment requirement of >= 16 bytes. 3061 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) 3062 return true; 3063 3064 return false; 3065 } 3066 3067 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3068 /// aggregate. Base is set to the base element type, and Members is set 3069 /// to the number of base elements. 3070 bool 3071 PPC64_SVR4_ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3072 uint64_t &Members) const { 3073 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3074 uint64_t NElements = AT->getSize().getZExtValue(); 3075 if (NElements == 0) 3076 return false; 3077 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3078 return false; 3079 Members *= NElements; 3080 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3081 const RecordDecl *RD = RT->getDecl(); 3082 if (RD->hasFlexibleArrayMember()) 3083 return false; 3084 3085 Members = 0; 3086 for (const auto *FD : RD->fields()) { 3087 // Ignore (non-zero arrays of) empty records. 3088 QualType FT = FD->getType(); 3089 while (const ConstantArrayType *AT = 3090 getContext().getAsConstantArrayType(FT)) { 3091 if (AT->getSize().getZExtValue() == 0) 3092 return false; 3093 FT = AT->getElementType(); 3094 } 3095 if (isEmptyRecord(getContext(), FT, true)) 3096 continue; 3097 3098 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3099 if (getContext().getLangOpts().CPlusPlus && 3100 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3101 continue; 3102 3103 uint64_t FldMembers; 3104 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3105 return false; 3106 3107 Members = (RD->isUnion() ? 3108 std::max(Members, FldMembers) : Members + FldMembers); 3109 } 3110 3111 if (!Base) 3112 return false; 3113 3114 // Ensure there is no padding. 3115 if (getContext().getTypeSize(Base) * Members != 3116 getContext().getTypeSize(Ty)) 3117 return false; 3118 } else { 3119 Members = 1; 3120 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3121 Members = 2; 3122 Ty = CT->getElementType(); 3123 } 3124 3125 // Homogeneous aggregates for ELFv2 must have base types of float, 3126 // double, long double, or 128-bit vectors. 3127 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3128 if (BT->getKind() != BuiltinType::Float && 3129 BT->getKind() != BuiltinType::Double && 3130 BT->getKind() != BuiltinType::LongDouble) 3131 return false; 3132 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 3133 if (getContext().getTypeSize(VT) != 128) 3134 return false; 3135 } else { 3136 return false; 3137 } 3138 3139 // The base type must be the same for all members. Types that 3140 // agree in both total size and mode (float vs. vector) are 3141 // treated as being equivalent here. 3142 const Type *TyPtr = Ty.getTypePtr(); 3143 if (!Base) 3144 Base = TyPtr; 3145 3146 if (Base->isVectorType() != TyPtr->isVectorType() || 3147 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3148 return false; 3149 } 3150 3151 // Vector types require one register, floating point types require one 3152 // or two registers depending on their size. 3153 uint32_t NumRegs = Base->isVectorType() ? 1 : 3154 (getContext().getTypeSize(Base) + 63) / 64; 3155 3156 // Homogeneous Aggregates may occupy at most 8 registers. 3157 return (Members > 0 && Members * NumRegs <= 8); 3158 } 3159 3160 ABIArgInfo 3161 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3162 if (Ty->isAnyComplexType()) 3163 return ABIArgInfo::getDirect(); 3164 3165 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3166 // or via reference (larger than 16 bytes). 3167 if (Ty->isVectorType()) { 3168 uint64_t Size = getContext().getTypeSize(Ty); 3169 if (Size > 128) 3170 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3171 else if (Size < 128) { 3172 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3173 return ABIArgInfo::getDirect(CoerceTy); 3174 } 3175 } 3176 3177 if (isAggregateTypeForABI(Ty)) { 3178 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3179 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3180 3181 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8; 3182 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3183 3184 // ELFv2 homogeneous aggregates are passed as array types. 3185 const Type *Base = nullptr; 3186 uint64_t Members = 0; 3187 if (Kind == ELFv2 && 3188 isHomogeneousAggregate(Ty, Base, Members)) { 3189 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3190 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3191 return ABIArgInfo::getDirect(CoerceTy); 3192 } 3193 3194 // If an aggregate may end up fully in registers, we do not 3195 // use the ByVal method, but pass the aggregate as array. 3196 // This is usually beneficial since we avoid forcing the 3197 // back-end to store the argument to memory. 3198 uint64_t Bits = getContext().getTypeSize(Ty); 3199 if (Bits > 0 && Bits <= 8 * GPRBits) { 3200 llvm::Type *CoerceTy; 3201 3202 // Types up to 8 bytes are passed as integer type (which will be 3203 // properly aligned in the argument save area doubleword). 3204 if (Bits <= GPRBits) 3205 CoerceTy = llvm::IntegerType::get(getVMContext(), 3206 llvm::RoundUpToAlignment(Bits, 8)); 3207 // Larger types are passed as arrays, with the base type selected 3208 // according to the required alignment in the save area. 3209 else { 3210 uint64_t RegBits = ABIAlign * 8; 3211 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3212 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3213 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3214 } 3215 3216 return ABIArgInfo::getDirect(CoerceTy); 3217 } 3218 3219 // All other aggregates are passed ByVal. 3220 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3221 /*Realign=*/TyAlign > ABIAlign); 3222 } 3223 3224 return (isPromotableTypeForABI(Ty) ? 3225 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3226 } 3227 3228 ABIArgInfo 3229 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3230 if (RetTy->isVoidType()) 3231 return ABIArgInfo::getIgnore(); 3232 3233 if (RetTy->isAnyComplexType()) 3234 return ABIArgInfo::getDirect(); 3235 3236 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3237 // or via reference (larger than 16 bytes). 3238 if (RetTy->isVectorType()) { 3239 uint64_t Size = getContext().getTypeSize(RetTy); 3240 if (Size > 128) 3241 return ABIArgInfo::getIndirect(0); 3242 else if (Size < 128) { 3243 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3244 return ABIArgInfo::getDirect(CoerceTy); 3245 } 3246 } 3247 3248 if (isAggregateTypeForABI(RetTy)) { 3249 // ELFv2 homogeneous aggregates are returned as array types. 3250 const Type *Base = nullptr; 3251 uint64_t Members = 0; 3252 if (Kind == ELFv2 && 3253 isHomogeneousAggregate(RetTy, Base, Members)) { 3254 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3255 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3256 return ABIArgInfo::getDirect(CoerceTy); 3257 } 3258 3259 // ELFv2 small aggregates are returned in up to two registers. 3260 uint64_t Bits = getContext().getTypeSize(RetTy); 3261 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3262 if (Bits == 0) 3263 return ABIArgInfo::getIgnore(); 3264 3265 llvm::Type *CoerceTy; 3266 if (Bits > GPRBits) { 3267 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3268 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, NULL); 3269 } else 3270 CoerceTy = llvm::IntegerType::get(getVMContext(), 3271 llvm::RoundUpToAlignment(Bits, 8)); 3272 return ABIArgInfo::getDirect(CoerceTy); 3273 } 3274 3275 // All other aggregates are returned indirectly. 3276 return ABIArgInfo::getIndirect(0); 3277 } 3278 3279 return (isPromotableTypeForABI(RetTy) ? 3280 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3281 } 3282 3283 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3284 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3285 QualType Ty, 3286 CodeGenFunction &CGF) const { 3287 llvm::Type *BP = CGF.Int8PtrTy; 3288 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3289 3290 CGBuilderTy &Builder = CGF.Builder; 3291 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3292 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3293 3294 // Handle types that require 16-byte alignment in the parameter save area. 3295 if (isAlignedParamType(Ty)) { 3296 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3297 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15)); 3298 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16)); 3299 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3300 } 3301 3302 // Update the va_list pointer. The pointer should be bumped by the 3303 // size of the object. We can trust getTypeSize() except for a complex 3304 // type whose base type is smaller than a doubleword. For these, the 3305 // size of the object is 16 bytes; see below for further explanation. 3306 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3307 QualType BaseTy; 3308 unsigned CplxBaseSize = 0; 3309 3310 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3311 BaseTy = CTy->getElementType(); 3312 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3313 if (CplxBaseSize < 8) 3314 SizeInBytes = 16; 3315 } 3316 3317 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3318 llvm::Value *NextAddr = 3319 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3320 "ap.next"); 3321 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3322 3323 // If we have a complex type and the base type is smaller than 8 bytes, 3324 // the ABI calls for the real and imaginary parts to be right-adjusted 3325 // in separate doublewords. However, Clang expects us to produce a 3326 // pointer to a structure with the two parts packed tightly. So generate 3327 // loads of the real and imaginary parts relative to the va_list pointer, 3328 // and store them to a temporary structure. 3329 if (CplxBaseSize && CplxBaseSize < 8) { 3330 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3331 llvm::Value *ImagAddr = RealAddr; 3332 if (CGF.CGM.getDataLayout().isBigEndian()) { 3333 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3334 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3335 } else { 3336 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3337 } 3338 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3339 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3340 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3341 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3342 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3343 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3344 "vacplx"); 3345 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3346 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3347 Builder.CreateStore(Real, RealPtr, false); 3348 Builder.CreateStore(Imag, ImagPtr, false); 3349 return Ptr; 3350 } 3351 3352 // If the argument is smaller than 8 bytes, it is right-adjusted in 3353 // its doubleword slot. Adjust the pointer to pick it up from the 3354 // correct offset. 3355 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3356 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3357 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3358 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3359 } 3360 3361 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3362 return Builder.CreateBitCast(Addr, PTy); 3363 } 3364 3365 static bool 3366 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3367 llvm::Value *Address) { 3368 // This is calculated from the LLVM and GCC tables and verified 3369 // against gcc output. AFAIK all ABIs use the same encoding. 3370 3371 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3372 3373 llvm::IntegerType *i8 = CGF.Int8Ty; 3374 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3375 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3376 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3377 3378 // 0-31: r0-31, the 8-byte general-purpose registers 3379 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3380 3381 // 32-63: fp0-31, the 8-byte floating-point registers 3382 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3383 3384 // 64-76 are various 4-byte special-purpose registers: 3385 // 64: mq 3386 // 65: lr 3387 // 66: ctr 3388 // 67: ap 3389 // 68-75 cr0-7 3390 // 76: xer 3391 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3392 3393 // 77-108: v0-31, the 16-byte vector registers 3394 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3395 3396 // 109: vrsave 3397 // 110: vscr 3398 // 111: spe_acc 3399 // 112: spefscr 3400 // 113: sfp 3401 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3402 3403 return false; 3404 } 3405 3406 bool 3407 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3408 CodeGen::CodeGenFunction &CGF, 3409 llvm::Value *Address) const { 3410 3411 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3412 } 3413 3414 bool 3415 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3416 llvm::Value *Address) const { 3417 3418 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3419 } 3420 3421 //===----------------------------------------------------------------------===// 3422 // AArch64 ABI Implementation 3423 //===----------------------------------------------------------------------===// 3424 3425 namespace { 3426 3427 class AArch64ABIInfo : public ABIInfo { 3428 public: 3429 enum ABIKind { 3430 AAPCS = 0, 3431 DarwinPCS 3432 }; 3433 3434 private: 3435 ABIKind Kind; 3436 3437 public: 3438 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3439 3440 private: 3441 ABIKind getABIKind() const { return Kind; } 3442 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3443 3444 ABIArgInfo classifyReturnType(QualType RetTy) const; 3445 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, 3446 bool &IsHA, unsigned &AllocatedGPR, 3447 bool &IsSmallAggr, bool IsNamedArg) const; 3448 bool isIllegalVectorType(QualType Ty) const; 3449 3450 virtual void computeInfo(CGFunctionInfo &FI) const { 3451 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3452 // number of SIMD and Floating-point registers allocated so far. 3453 // If the argument is an HFA or an HVA and there are sufficient unallocated 3454 // SIMD and Floating-point registers, then the argument is allocated to SIMD 3455 // and Floating-point Registers (with one register per member of the HFA or 3456 // HVA). Otherwise, the NSRN is set to 8. 3457 unsigned AllocatedVFP = 0; 3458 3459 // To correctly handle small aggregates, we need to keep track of the number 3460 // of GPRs allocated so far. If the small aggregate can't all fit into 3461 // registers, it will be on stack. We don't allow the aggregate to be 3462 // partially in registers. 3463 unsigned AllocatedGPR = 0; 3464 3465 // Find the number of named arguments. Variadic arguments get special 3466 // treatment with the Darwin ABI. 3467 unsigned NumRequiredArgs = (FI.isVariadic() ? 3468 FI.getRequiredArgs().getNumRequiredArgs() : 3469 FI.arg_size()); 3470 3471 if (!getCXXABI().classifyReturnType(FI)) 3472 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3473 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3474 it != ie; ++it) { 3475 unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; 3476 bool IsHA = false, IsSmallAggr = false; 3477 const unsigned NumVFPs = 8; 3478 const unsigned NumGPRs = 8; 3479 bool IsNamedArg = ((it - FI.arg_begin()) < 3480 static_cast<signed>(NumRequiredArgs)); 3481 it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, 3482 AllocatedGPR, IsSmallAggr, IsNamedArg); 3483 3484 // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs 3485 // as sequences of floats since they'll get "holes" inserted as 3486 // padding by the back end. 3487 if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && 3488 getContext().getTypeAlign(it->type) < 64) { 3489 uint32_t NumStackSlots = getContext().getTypeSize(it->type); 3490 NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; 3491 3492 llvm::Type *CoerceTy = llvm::ArrayType::get( 3493 llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); 3494 it->info = ABIArgInfo::getDirect(CoerceTy); 3495 } 3496 3497 // If we do not have enough VFP registers for the HA, any VFP registers 3498 // that are unallocated are marked as unavailable. To achieve this, we add 3499 // padding of (NumVFPs - PreAllocation) floats. 3500 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3501 llvm::Type *PaddingTy = llvm::ArrayType::get( 3502 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3503 it->info.setPaddingType(PaddingTy); 3504 } 3505 3506 // If we do not have enough GPRs for the small aggregate, any GPR regs 3507 // that are unallocated are marked as unavailable. 3508 if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { 3509 llvm::Type *PaddingTy = llvm::ArrayType::get( 3510 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); 3511 it->info = 3512 ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); 3513 } 3514 } 3515 } 3516 3517 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3518 CodeGenFunction &CGF) const; 3519 3520 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3521 CodeGenFunction &CGF) const; 3522 3523 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3524 CodeGenFunction &CGF) const { 3525 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3526 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3527 } 3528 }; 3529 3530 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3531 public: 3532 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3533 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3534 3535 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3536 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3537 } 3538 3539 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3540 3541 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3542 }; 3543 } 3544 3545 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3546 ASTContext &Context, 3547 uint64_t *HAMembers = nullptr); 3548 3549 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, 3550 unsigned &AllocatedVFP, 3551 bool &IsHA, 3552 unsigned &AllocatedGPR, 3553 bool &IsSmallAggr, 3554 bool IsNamedArg) const { 3555 // Handle illegal vector types here. 3556 if (isIllegalVectorType(Ty)) { 3557 uint64_t Size = getContext().getTypeSize(Ty); 3558 if (Size <= 32) { 3559 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3560 AllocatedGPR++; 3561 return ABIArgInfo::getDirect(ResType); 3562 } 3563 if (Size == 64) { 3564 llvm::Type *ResType = 3565 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3566 AllocatedVFP++; 3567 return ABIArgInfo::getDirect(ResType); 3568 } 3569 if (Size == 128) { 3570 llvm::Type *ResType = 3571 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3572 AllocatedVFP++; 3573 return ABIArgInfo::getDirect(ResType); 3574 } 3575 AllocatedGPR++; 3576 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3577 } 3578 if (Ty->isVectorType()) 3579 // Size of a legal vector should be either 64 or 128. 3580 AllocatedVFP++; 3581 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3582 if (BT->getKind() == BuiltinType::Half || 3583 BT->getKind() == BuiltinType::Float || 3584 BT->getKind() == BuiltinType::Double || 3585 BT->getKind() == BuiltinType::LongDouble) 3586 AllocatedVFP++; 3587 } 3588 3589 if (!isAggregateTypeForABI(Ty)) { 3590 // Treat an enum type as its underlying type. 3591 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3592 Ty = EnumTy->getDecl()->getIntegerType(); 3593 3594 if (!Ty->isFloatingType() && !Ty->isVectorType()) { 3595 unsigned Alignment = getContext().getTypeAlign(Ty); 3596 if (!isDarwinPCS() && Alignment > 64) 3597 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3598 3599 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3600 AllocatedGPR += RegsNeeded; 3601 } 3602 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3603 ? ABIArgInfo::getExtend() 3604 : ABIArgInfo::getDirect()); 3605 } 3606 3607 // Structures with either a non-trivial destructor or a non-trivial 3608 // copy constructor are always indirect. 3609 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3610 AllocatedGPR++; 3611 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3612 CGCXXABI::RAA_DirectInMemory); 3613 } 3614 3615 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3616 // elsewhere for GNU compatibility. 3617 if (isEmptyRecord(getContext(), Ty, true)) { 3618 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3619 return ABIArgInfo::getIgnore(); 3620 3621 ++AllocatedGPR; 3622 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3623 } 3624 3625 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3626 const Type *Base = nullptr; 3627 uint64_t Members = 0; 3628 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3629 IsHA = true; 3630 if (!IsNamedArg && isDarwinPCS()) { 3631 // With the Darwin ABI, variadic arguments are always passed on the stack 3632 // and should not be expanded. Treat variadic HFAs as arrays of doubles. 3633 uint64_t Size = getContext().getTypeSize(Ty); 3634 llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); 3635 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3636 } 3637 AllocatedVFP += Members; 3638 return ABIArgInfo::getExpand(); 3639 } 3640 3641 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3642 uint64_t Size = getContext().getTypeSize(Ty); 3643 if (Size <= 128) { 3644 unsigned Alignment = getContext().getTypeAlign(Ty); 3645 if (!isDarwinPCS() && Alignment > 64) 3646 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3647 3648 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3649 AllocatedGPR += Size / 64; 3650 IsSmallAggr = true; 3651 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3652 // For aggregates with 16-byte alignment, we use i128. 3653 if (Alignment < 128 && Size == 128) { 3654 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3655 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3656 } 3657 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3658 } 3659 3660 AllocatedGPR++; 3661 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3662 } 3663 3664 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 3665 if (RetTy->isVoidType()) 3666 return ABIArgInfo::getIgnore(); 3667 3668 // Large vector types should be returned via memory. 3669 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3670 return ABIArgInfo::getIndirect(0); 3671 3672 if (!isAggregateTypeForABI(RetTy)) { 3673 // Treat an enum type as its underlying type. 3674 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3675 RetTy = EnumTy->getDecl()->getIntegerType(); 3676 3677 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3678 ? ABIArgInfo::getExtend() 3679 : ABIArgInfo::getDirect()); 3680 } 3681 3682 if (isEmptyRecord(getContext(), RetTy, true)) 3683 return ABIArgInfo::getIgnore(); 3684 3685 const Type *Base = nullptr; 3686 if (isHomogeneousAggregate(RetTy, Base, getContext())) 3687 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3688 return ABIArgInfo::getDirect(); 3689 3690 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3691 uint64_t Size = getContext().getTypeSize(RetTy); 3692 if (Size <= 128) { 3693 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3694 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3695 } 3696 3697 return ABIArgInfo::getIndirect(0); 3698 } 3699 3700 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 3701 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 3702 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3703 // Check whether VT is legal. 3704 unsigned NumElements = VT->getNumElements(); 3705 uint64_t Size = getContext().getTypeSize(VT); 3706 // NumElements should be power of 2 between 1 and 16. 3707 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3708 return true; 3709 return Size != 64 && (Size != 128 || NumElements == 1); 3710 } 3711 return false; 3712 } 3713 3714 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, 3715 int AllocatedGPR, int AllocatedVFP, 3716 bool IsIndirect, CodeGenFunction &CGF) { 3717 // The AArch64 va_list type and handling is specified in the Procedure Call 3718 // Standard, section B.4: 3719 // 3720 // struct { 3721 // void *__stack; 3722 // void *__gr_top; 3723 // void *__vr_top; 3724 // int __gr_offs; 3725 // int __vr_offs; 3726 // }; 3727 3728 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3729 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3730 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3731 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3732 auto &Ctx = CGF.getContext(); 3733 3734 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 3735 int reg_top_index; 3736 int RegSize; 3737 if (AllocatedGPR) { 3738 assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); 3739 // 3 is the field number of __gr_offs 3740 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3741 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 3742 reg_top_index = 1; // field number for __gr_top 3743 RegSize = 8 * AllocatedGPR; 3744 } else { 3745 assert(!AllocatedGPR && "Argument must go in VFP or int regs"); 3746 // 4 is the field number of __vr_offs. 3747 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 3748 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 3749 reg_top_index = 2; // field number for __vr_top 3750 RegSize = 16 * AllocatedVFP; 3751 } 3752 3753 //======================================= 3754 // Find out where argument was passed 3755 //======================================= 3756 3757 // If reg_offs >= 0 we're already using the stack for this type of 3758 // argument. We don't want to keep updating reg_offs (in case it overflows, 3759 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 3760 // whatever they get). 3761 llvm::Value *UsingStack = nullptr; 3762 UsingStack = CGF.Builder.CreateICmpSGE( 3763 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 3764 3765 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 3766 3767 // Otherwise, at least some kind of argument could go in these registers, the 3768 // question is whether this particular type is too big. 3769 CGF.EmitBlock(MaybeRegBlock); 3770 3771 // Integer arguments may need to correct register alignment (for example a 3772 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 3773 // align __gr_offs to calculate the potential address. 3774 if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3775 int Align = Ctx.getTypeAlign(Ty) / 8; 3776 3777 reg_offs = CGF.Builder.CreateAdd( 3778 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 3779 "align_regoffs"); 3780 reg_offs = CGF.Builder.CreateAnd( 3781 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 3782 "aligned_regoffs"); 3783 } 3784 3785 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 3786 llvm::Value *NewOffset = nullptr; 3787 NewOffset = CGF.Builder.CreateAdd( 3788 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 3789 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 3790 3791 // Now we're in a position to decide whether this argument really was in 3792 // registers or not. 3793 llvm::Value *InRegs = nullptr; 3794 InRegs = CGF.Builder.CreateICmpSLE( 3795 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 3796 3797 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 3798 3799 //======================================= 3800 // Argument was in registers 3801 //======================================= 3802 3803 // Now we emit the code for if the argument was originally passed in 3804 // registers. First start the appropriate block: 3805 CGF.EmitBlock(InRegBlock); 3806 3807 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 3808 reg_top_p = 3809 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 3810 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 3811 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 3812 llvm::Value *RegAddr = nullptr; 3813 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 3814 3815 if (IsIndirect) { 3816 // If it's been passed indirectly (actually a struct), whatever we find from 3817 // stored registers or on the stack will actually be a struct **. 3818 MemTy = llvm::PointerType::getUnqual(MemTy); 3819 } 3820 3821 const Type *Base = nullptr; 3822 uint64_t NumMembers; 3823 bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers); 3824 if (IsHFA && NumMembers > 1) { 3825 // Homogeneous aggregates passed in registers will have their elements split 3826 // and stored 16-bytes apart regardless of size (they're notionally in qN, 3827 // qN+1, ...). We reload and store into a temporary local variable 3828 // contiguously. 3829 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 3830 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 3831 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 3832 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 3833 int Offset = 0; 3834 3835 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 3836 Offset = 16 - Ctx.getTypeSize(Base) / 8; 3837 for (unsigned i = 0; i < NumMembers; ++i) { 3838 llvm::Value *BaseOffset = 3839 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 3840 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 3841 LoadAddr = CGF.Builder.CreateBitCast( 3842 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 3843 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 3844 3845 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 3846 CGF.Builder.CreateStore(Elem, StoreAddr); 3847 } 3848 3849 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 3850 } else { 3851 // Otherwise the object is contiguous in memory 3852 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 3853 if (CGF.CGM.getDataLayout().isBigEndian() && 3854 (IsHFA || !isAggregateTypeForABI(Ty)) && 3855 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 3856 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 3857 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 3858 3859 BaseAddr = CGF.Builder.CreateAdd( 3860 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3861 3862 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 3863 } 3864 3865 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 3866 } 3867 3868 CGF.EmitBranch(ContBlock); 3869 3870 //======================================= 3871 // Argument was on the stack 3872 //======================================= 3873 CGF.EmitBlock(OnStackBlock); 3874 3875 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 3876 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 3877 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 3878 3879 // Again, stack arguments may need realigmnent. In this case both integer and 3880 // floating-point ones might be affected. 3881 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3882 int Align = Ctx.getTypeAlign(Ty) / 8; 3883 3884 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3885 3886 OnStackAddr = CGF.Builder.CreateAdd( 3887 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 3888 "align_stack"); 3889 OnStackAddr = CGF.Builder.CreateAnd( 3890 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 3891 "align_stack"); 3892 3893 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3894 } 3895 3896 uint64_t StackSize; 3897 if (IsIndirect) 3898 StackSize = 8; 3899 else 3900 StackSize = Ctx.getTypeSize(Ty) / 8; 3901 3902 // All stack slots are 8 bytes 3903 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 3904 3905 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 3906 llvm::Value *NewStack = 3907 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 3908 3909 // Write the new value of __stack for the next call to va_arg 3910 CGF.Builder.CreateStore(NewStack, stack_p); 3911 3912 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 3913 Ctx.getTypeSize(Ty) < 64) { 3914 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 3915 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3916 3917 OnStackAddr = CGF.Builder.CreateAdd( 3918 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3919 3920 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3921 } 3922 3923 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 3924 3925 CGF.EmitBranch(ContBlock); 3926 3927 //======================================= 3928 // Tidy up 3929 //======================================= 3930 CGF.EmitBlock(ContBlock); 3931 3932 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 3933 ResAddr->addIncoming(RegAddr, InRegBlock); 3934 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 3935 3936 if (IsIndirect) 3937 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 3938 3939 return ResAddr; 3940 } 3941 3942 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3943 CodeGenFunction &CGF) const { 3944 3945 unsigned AllocatedGPR = 0, AllocatedVFP = 0; 3946 bool IsHA = false, IsSmallAggr = false; 3947 ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, 3948 IsSmallAggr, false /*IsNamedArg*/); 3949 3950 return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, 3951 AI.isIndirect(), CGF); 3952 } 3953 3954 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3955 CodeGenFunction &CGF) const { 3956 // We do not support va_arg for aggregates or illegal vector types. 3957 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 3958 // other cases. 3959 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 3960 return nullptr; 3961 3962 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3963 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 3964 3965 const Type *Base = nullptr; 3966 bool isHA = isHomogeneousAggregate(Ty, Base, getContext()); 3967 3968 bool isIndirect = false; 3969 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 3970 // be passed indirectly. 3971 if (Size > 16 && !isHA) { 3972 isIndirect = true; 3973 Size = 8; 3974 Align = 8; 3975 } 3976 3977 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3978 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3979 3980 CGBuilderTy &Builder = CGF.Builder; 3981 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3982 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3983 3984 if (isEmptyRecord(getContext(), Ty, true)) { 3985 // These are ignored for parameter passing purposes. 3986 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3987 return Builder.CreateBitCast(Addr, PTy); 3988 } 3989 3990 const uint64_t MinABIAlign = 8; 3991 if (Align > MinABIAlign) { 3992 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 3993 Addr = Builder.CreateGEP(Addr, Offset); 3994 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3995 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 3996 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 3997 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 3998 } 3999 4000 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4001 llvm::Value *NextAddr = Builder.CreateGEP( 4002 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4003 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4004 4005 if (isIndirect) 4006 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4007 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4008 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4009 4010 return AddrTyped; 4011 } 4012 4013 //===----------------------------------------------------------------------===// 4014 // ARM ABI Implementation 4015 //===----------------------------------------------------------------------===// 4016 4017 namespace { 4018 4019 class ARMABIInfo : public ABIInfo { 4020 public: 4021 enum ABIKind { 4022 APCS = 0, 4023 AAPCS = 1, 4024 AAPCS_VFP 4025 }; 4026 4027 private: 4028 ABIKind Kind; 4029 mutable int VFPRegs[16]; 4030 const unsigned NumVFPs; 4031 const unsigned NumGPRs; 4032 mutable unsigned AllocatedGPRs; 4033 mutable unsigned AllocatedVFPs; 4034 4035 public: 4036 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 4037 NumVFPs(16), NumGPRs(4) { 4038 setRuntimeCC(); 4039 resetAllocatedRegs(); 4040 } 4041 4042 bool isEABI() const { 4043 switch (getTarget().getTriple().getEnvironment()) { 4044 case llvm::Triple::Android: 4045 case llvm::Triple::EABI: 4046 case llvm::Triple::EABIHF: 4047 case llvm::Triple::GNUEABI: 4048 case llvm::Triple::GNUEABIHF: 4049 return true; 4050 default: 4051 return false; 4052 } 4053 } 4054 4055 bool isEABIHF() const { 4056 switch (getTarget().getTriple().getEnvironment()) { 4057 case llvm::Triple::EABIHF: 4058 case llvm::Triple::GNUEABIHF: 4059 return true; 4060 default: 4061 return false; 4062 } 4063 } 4064 4065 ABIKind getABIKind() const { return Kind; } 4066 4067 private: 4068 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4069 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 4070 bool &IsCPRC) const; 4071 bool isIllegalVectorType(QualType Ty) const; 4072 4073 void computeInfo(CGFunctionInfo &FI) const override; 4074 4075 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4076 CodeGenFunction &CGF) const override; 4077 4078 llvm::CallingConv::ID getLLVMDefaultCC() const; 4079 llvm::CallingConv::ID getABIDefaultCC() const; 4080 void setRuntimeCC(); 4081 4082 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 4083 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 4084 void resetAllocatedRegs(void) const; 4085 }; 4086 4087 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4088 public: 4089 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4090 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4091 4092 const ARMABIInfo &getABIInfo() const { 4093 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4094 } 4095 4096 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4097 return 13; 4098 } 4099 4100 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4101 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4102 } 4103 4104 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4105 llvm::Value *Address) const override { 4106 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4107 4108 // 0-15 are the 16 integer registers. 4109 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4110 return false; 4111 } 4112 4113 unsigned getSizeOfUnwindException() const override { 4114 if (getABIInfo().isEABI()) return 88; 4115 return TargetCodeGenInfo::getSizeOfUnwindException(); 4116 } 4117 4118 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4119 CodeGen::CodeGenModule &CGM) const override { 4120 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4121 if (!FD) 4122 return; 4123 4124 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4125 if (!Attr) 4126 return; 4127 4128 const char *Kind; 4129 switch (Attr->getInterrupt()) { 4130 case ARMInterruptAttr::Generic: Kind = ""; break; 4131 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4132 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4133 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4134 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4135 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4136 } 4137 4138 llvm::Function *Fn = cast<llvm::Function>(GV); 4139 4140 Fn->addFnAttr("interrupt", Kind); 4141 4142 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4143 return; 4144 4145 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4146 // however this is not necessarily true on taking any interrupt. Instruct 4147 // the backend to perform a realignment as part of the function prologue. 4148 llvm::AttrBuilder B; 4149 B.addStackAlignmentAttr(8); 4150 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4151 llvm::AttributeSet::get(CGM.getLLVMContext(), 4152 llvm::AttributeSet::FunctionIndex, 4153 B)); 4154 } 4155 4156 }; 4157 4158 } 4159 4160 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4161 // To correctly handle Homogeneous Aggregate, we need to keep track of the 4162 // VFP registers allocated so far. 4163 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4164 // VFP registers of the appropriate type unallocated then the argument is 4165 // allocated to the lowest-numbered sequence of such registers. 4166 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4167 // unallocated are marked as unavailable. 4168 resetAllocatedRegs(); 4169 4170 if (getCXXABI().classifyReturnType(FI)) { 4171 if (FI.getReturnInfo().isIndirect()) 4172 markAllocatedGPRs(1, 1); 4173 } else { 4174 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4175 } 4176 for (auto &I : FI.arguments()) { 4177 unsigned PreAllocationVFPs = AllocatedVFPs; 4178 unsigned PreAllocationGPRs = AllocatedGPRs; 4179 bool IsCPRC = false; 4180 // 6.1.2.3 There is one VFP co-processor register class using registers 4181 // s0-s15 (d0-d7) for passing arguments. 4182 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); 4183 4184 // If we have allocated some arguments onto the stack (due to running 4185 // out of VFP registers), we cannot split an argument between GPRs and 4186 // the stack. If this situation occurs, we add padding to prevent the 4187 // GPRs from being used. In this situation, the current argument could 4188 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 4189 // unusable anyway. 4190 // We do not have to do this if the argument is being passed ByVal, as the 4191 // backend can handle that situation correctly. 4192 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 4193 const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal(); 4194 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && 4195 StackUsed && !IsByVal) { 4196 llvm::Type *PaddingTy = llvm::ArrayType::get( 4197 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 4198 if (I.info.canHaveCoerceToType()) { 4199 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */, 4200 PaddingTy); 4201 } else { 4202 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, 4203 PaddingTy); 4204 } 4205 } 4206 } 4207 4208 // Always honor user-specified calling convention. 4209 if (FI.getCallingConvention() != llvm::CallingConv::C) 4210 return; 4211 4212 llvm::CallingConv::ID cc = getRuntimeCC(); 4213 if (cc != llvm::CallingConv::C) 4214 FI.setEffectiveCallingConvention(cc); 4215 } 4216 4217 /// Return the default calling convention that LLVM will use. 4218 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4219 // The default calling convention that LLVM will infer. 4220 if (isEABIHF()) 4221 return llvm::CallingConv::ARM_AAPCS_VFP; 4222 else if (isEABI()) 4223 return llvm::CallingConv::ARM_AAPCS; 4224 else 4225 return llvm::CallingConv::ARM_APCS; 4226 } 4227 4228 /// Return the calling convention that our ABI would like us to use 4229 /// as the C calling convention. 4230 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4231 switch (getABIKind()) { 4232 case APCS: return llvm::CallingConv::ARM_APCS; 4233 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4234 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4235 } 4236 llvm_unreachable("bad ABI kind"); 4237 } 4238 4239 void ARMABIInfo::setRuntimeCC() { 4240 assert(getRuntimeCC() == llvm::CallingConv::C); 4241 4242 // Don't muddy up the IR with a ton of explicit annotations if 4243 // they'd just match what LLVM will infer from the triple. 4244 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4245 if (abiCC != getLLVMDefaultCC()) 4246 RuntimeCC = abiCC; 4247 } 4248 4249 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 4250 /// aggregate. If HAMembers is non-null, the number of base elements 4251 /// contained in the type is returned through it; this is used for the 4252 /// recursive calls that check aggregate component types. 4253 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 4254 ASTContext &Context, uint64_t *HAMembers) { 4255 uint64_t Members = 0; 4256 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 4257 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 4258 return false; 4259 Members *= AT->getSize().getZExtValue(); 4260 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4261 const RecordDecl *RD = RT->getDecl(); 4262 if (RD->hasFlexibleArrayMember()) 4263 return false; 4264 4265 Members = 0; 4266 for (const auto *FD : RD->fields()) { 4267 uint64_t FldMembers; 4268 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 4269 return false; 4270 4271 Members = (RD->isUnion() ? 4272 std::max(Members, FldMembers) : Members + FldMembers); 4273 } 4274 } else { 4275 Members = 1; 4276 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4277 Members = 2; 4278 Ty = CT->getElementType(); 4279 } 4280 4281 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4282 // double, or 64-bit or 128-bit vectors. 4283 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4284 if (BT->getKind() != BuiltinType::Float && 4285 BT->getKind() != BuiltinType::Double && 4286 BT->getKind() != BuiltinType::LongDouble) 4287 return false; 4288 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4289 unsigned VecSize = Context.getTypeSize(VT); 4290 if (VecSize != 64 && VecSize != 128) 4291 return false; 4292 } else { 4293 return false; 4294 } 4295 4296 // The base type must be the same for all members. Vector types of the 4297 // same total size are treated as being equivalent here. 4298 const Type *TyPtr = Ty.getTypePtr(); 4299 if (!Base) 4300 Base = TyPtr; 4301 4302 if (Base != TyPtr) { 4303 // Homogeneous aggregates are defined as containing members with the 4304 // same machine type. There are two cases in which two members have 4305 // different TypePtrs but the same machine type: 4306 4307 // 1) Vectors of the same length, regardless of the type and number 4308 // of their members. 4309 const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() 4310 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4311 4312 // 2) In the 32-bit AAPCS, `double' and `long double' have the same 4313 // machine type. This is not the case for the 64-bit AAPCS. 4314 const bool SameSizeDoubles = 4315 ( ( Base->isSpecificBuiltinType(BuiltinType::Double) 4316 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) 4317 || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) 4318 && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) 4319 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4320 4321 if (!SameLengthVectors && !SameSizeDoubles) 4322 return false; 4323 } 4324 } 4325 4326 // Homogeneous Aggregates can have at most 4 members of the base type. 4327 if (HAMembers) 4328 *HAMembers = Members; 4329 4330 return (Members > 0 && Members <= 4); 4331 } 4332 4333 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4334 /// number of VFP registers (unit is S register) requested. 4335 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4336 unsigned NumRequired) const { 4337 // Early Exit. 4338 if (AllocatedVFPs >= 16) { 4339 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4340 // the stack. 4341 AllocatedVFPs = 17; 4342 return; 4343 } 4344 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4345 // VFP registers of the appropriate type unallocated then the argument is 4346 // allocated to the lowest-numbered sequence of such registers. 4347 for (unsigned I = 0; I < 16; I += Alignment) { 4348 bool FoundSlot = true; 4349 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4350 if (J >= 16 || VFPRegs[J]) { 4351 FoundSlot = false; 4352 break; 4353 } 4354 if (FoundSlot) { 4355 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4356 VFPRegs[J] = 1; 4357 AllocatedVFPs += NumRequired; 4358 return; 4359 } 4360 } 4361 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4362 // unallocated are marked as unavailable. 4363 for (unsigned I = 0; I < 16; I++) 4364 VFPRegs[I] = 1; 4365 AllocatedVFPs = 17; // We do not have enough VFP registers. 4366 } 4367 4368 /// Update AllocatedGPRs to record the number of general purpose registers 4369 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4370 /// this represents arguments being stored on the stack. 4371 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4372 unsigned NumRequired) const { 4373 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4374 4375 if (Alignment == 2 && AllocatedGPRs & 0x1) 4376 AllocatedGPRs += 1; 4377 4378 AllocatedGPRs += NumRequired; 4379 } 4380 4381 void ARMABIInfo::resetAllocatedRegs(void) const { 4382 AllocatedGPRs = 0; 4383 AllocatedVFPs = 0; 4384 for (unsigned i = 0; i < NumVFPs; ++i) 4385 VFPRegs[i] = 0; 4386 } 4387 4388 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 4389 bool &IsCPRC) const { 4390 // We update number of allocated VFPs according to 4391 // 6.1.2.1 The following argument types are VFP CPRCs: 4392 // A single-precision floating-point type (including promoted 4393 // half-precision types); A double-precision floating-point type; 4394 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4395 // with a Base Type of a single- or double-precision floating-point type, 4396 // 64-bit containerized vectors or 128-bit containerized vectors with one 4397 // to four Elements. 4398 4399 // Handle illegal vector types here. 4400 if (isIllegalVectorType(Ty)) { 4401 uint64_t Size = getContext().getTypeSize(Ty); 4402 if (Size <= 32) { 4403 llvm::Type *ResType = 4404 llvm::Type::getInt32Ty(getVMContext()); 4405 markAllocatedGPRs(1, 1); 4406 return ABIArgInfo::getDirect(ResType); 4407 } 4408 if (Size == 64) { 4409 llvm::Type *ResType = llvm::VectorType::get( 4410 llvm::Type::getInt32Ty(getVMContext()), 2); 4411 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4412 markAllocatedGPRs(2, 2); 4413 } else { 4414 markAllocatedVFPs(2, 2); 4415 IsCPRC = true; 4416 } 4417 return ABIArgInfo::getDirect(ResType); 4418 } 4419 if (Size == 128) { 4420 llvm::Type *ResType = llvm::VectorType::get( 4421 llvm::Type::getInt32Ty(getVMContext()), 4); 4422 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4423 markAllocatedGPRs(2, 4); 4424 } else { 4425 markAllocatedVFPs(4, 4); 4426 IsCPRC = true; 4427 } 4428 return ABIArgInfo::getDirect(ResType); 4429 } 4430 markAllocatedGPRs(1, 1); 4431 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4432 } 4433 // Update VFPRegs for legal vector types. 4434 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4435 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4436 uint64_t Size = getContext().getTypeSize(VT); 4437 // Size of a legal vector should be power of 2 and above 64. 4438 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4439 IsCPRC = true; 4440 } 4441 } 4442 // Update VFPRegs for floating point types. 4443 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4444 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4445 if (BT->getKind() == BuiltinType::Half || 4446 BT->getKind() == BuiltinType::Float) { 4447 markAllocatedVFPs(1, 1); 4448 IsCPRC = true; 4449 } 4450 if (BT->getKind() == BuiltinType::Double || 4451 BT->getKind() == BuiltinType::LongDouble) { 4452 markAllocatedVFPs(2, 2); 4453 IsCPRC = true; 4454 } 4455 } 4456 } 4457 4458 if (!isAggregateTypeForABI(Ty)) { 4459 // Treat an enum type as its underlying type. 4460 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4461 Ty = EnumTy->getDecl()->getIntegerType(); 4462 } 4463 4464 unsigned Size = getContext().getTypeSize(Ty); 4465 if (!IsCPRC) 4466 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4467 return (Ty->isPromotableIntegerType() ? 4468 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4469 } 4470 4471 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4472 markAllocatedGPRs(1, 1); 4473 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4474 } 4475 4476 // Ignore empty records. 4477 if (isEmptyRecord(getContext(), Ty, true)) 4478 return ABIArgInfo::getIgnore(); 4479 4480 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4481 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4482 // into VFP registers. 4483 const Type *Base = nullptr; 4484 uint64_t Members = 0; 4485 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 4486 assert(Base && "Base class should be set for homogeneous aggregate"); 4487 // Base can be a floating-point or a vector. 4488 if (Base->isVectorType()) { 4489 // ElementSize is in number of floats. 4490 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4491 markAllocatedVFPs(ElementSize, 4492 Members * ElementSize); 4493 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4494 markAllocatedVFPs(1, Members); 4495 else { 4496 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4497 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4498 markAllocatedVFPs(2, Members * 2); 4499 } 4500 IsCPRC = true; 4501 return ABIArgInfo::getDirect(); 4502 } 4503 } 4504 4505 // Support byval for ARM. 4506 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4507 // most 8-byte. We realign the indirect argument if type alignment is bigger 4508 // than ABI alignment. 4509 uint64_t ABIAlign = 4; 4510 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4511 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4512 getABIKind() == ARMABIInfo::AAPCS) 4513 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4514 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4515 // Update Allocated GPRs. Since this is only used when the size of the 4516 // argument is greater than 64 bytes, this will always use up any available 4517 // registers (of which there are 4). We also don't care about getting the 4518 // alignment right, because general-purpose registers cannot be back-filled. 4519 markAllocatedGPRs(1, 4); 4520 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4521 /*Realign=*/TyAlign > ABIAlign); 4522 } 4523 4524 // Otherwise, pass by coercing to a structure of the appropriate size. 4525 llvm::Type* ElemTy; 4526 unsigned SizeRegs; 4527 // FIXME: Try to match the types of the arguments more accurately where 4528 // we can. 4529 if (getContext().getTypeAlign(Ty) <= 32) { 4530 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4531 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4532 markAllocatedGPRs(1, SizeRegs); 4533 } else { 4534 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4535 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4536 markAllocatedGPRs(2, SizeRegs * 2); 4537 } 4538 4539 llvm::Type *STy = 4540 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 4541 return ABIArgInfo::getDirect(STy); 4542 } 4543 4544 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4545 llvm::LLVMContext &VMContext) { 4546 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4547 // is called integer-like if its size is less than or equal to one word, and 4548 // the offset of each of its addressable sub-fields is zero. 4549 4550 uint64_t Size = Context.getTypeSize(Ty); 4551 4552 // Check that the type fits in a word. 4553 if (Size > 32) 4554 return false; 4555 4556 // FIXME: Handle vector types! 4557 if (Ty->isVectorType()) 4558 return false; 4559 4560 // Float types are never treated as "integer like". 4561 if (Ty->isRealFloatingType()) 4562 return false; 4563 4564 // If this is a builtin or pointer type then it is ok. 4565 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4566 return true; 4567 4568 // Small complex integer types are "integer like". 4569 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4570 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4571 4572 // Single element and zero sized arrays should be allowed, by the definition 4573 // above, but they are not. 4574 4575 // Otherwise, it must be a record type. 4576 const RecordType *RT = Ty->getAs<RecordType>(); 4577 if (!RT) return false; 4578 4579 // Ignore records with flexible arrays. 4580 const RecordDecl *RD = RT->getDecl(); 4581 if (RD->hasFlexibleArrayMember()) 4582 return false; 4583 4584 // Check that all sub-fields are at offset 0, and are themselves "integer 4585 // like". 4586 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4587 4588 bool HadField = false; 4589 unsigned idx = 0; 4590 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4591 i != e; ++i, ++idx) { 4592 const FieldDecl *FD = *i; 4593 4594 // Bit-fields are not addressable, we only need to verify they are "integer 4595 // like". We still have to disallow a subsequent non-bitfield, for example: 4596 // struct { int : 0; int x } 4597 // is non-integer like according to gcc. 4598 if (FD->isBitField()) { 4599 if (!RD->isUnion()) 4600 HadField = true; 4601 4602 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4603 return false; 4604 4605 continue; 4606 } 4607 4608 // Check if this field is at offset 0. 4609 if (Layout.getFieldOffset(idx) != 0) 4610 return false; 4611 4612 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4613 return false; 4614 4615 // Only allow at most one field in a structure. This doesn't match the 4616 // wording above, but follows gcc in situations with a field following an 4617 // empty structure. 4618 if (!RD->isUnion()) { 4619 if (HadField) 4620 return false; 4621 4622 HadField = true; 4623 } 4624 } 4625 4626 return true; 4627 } 4628 4629 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4630 bool isVariadic) const { 4631 if (RetTy->isVoidType()) 4632 return ABIArgInfo::getIgnore(); 4633 4634 // Large vector types should be returned via memory. 4635 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4636 markAllocatedGPRs(1, 1); 4637 return ABIArgInfo::getIndirect(0); 4638 } 4639 4640 if (!isAggregateTypeForABI(RetTy)) { 4641 // Treat an enum type as its underlying type. 4642 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4643 RetTy = EnumTy->getDecl()->getIntegerType(); 4644 4645 return (RetTy->isPromotableIntegerType() ? 4646 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4647 } 4648 4649 // Are we following APCS? 4650 if (getABIKind() == APCS) { 4651 if (isEmptyRecord(getContext(), RetTy, false)) 4652 return ABIArgInfo::getIgnore(); 4653 4654 // Complex types are all returned as packed integers. 4655 // 4656 // FIXME: Consider using 2 x vector types if the back end handles them 4657 // correctly. 4658 if (RetTy->isAnyComplexType()) 4659 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 4660 getContext().getTypeSize(RetTy))); 4661 4662 // Integer like structures are returned in r0. 4663 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4664 // Return in the smallest viable integer type. 4665 uint64_t Size = getContext().getTypeSize(RetTy); 4666 if (Size <= 8) 4667 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4668 if (Size <= 16) 4669 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4670 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4671 } 4672 4673 // Otherwise return in memory. 4674 markAllocatedGPRs(1, 1); 4675 return ABIArgInfo::getIndirect(0); 4676 } 4677 4678 // Otherwise this is an AAPCS variant. 4679 4680 if (isEmptyRecord(getContext(), RetTy, true)) 4681 return ABIArgInfo::getIgnore(); 4682 4683 // Check for homogeneous aggregates with AAPCS-VFP. 4684 if (getABIKind() == AAPCS_VFP && !isVariadic) { 4685 const Type *Base = nullptr; 4686 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 4687 assert(Base && "Base class should be set for homogeneous aggregate"); 4688 // Homogeneous Aggregates are returned directly. 4689 return ABIArgInfo::getDirect(); 4690 } 4691 } 4692 4693 // Aggregates <= 4 bytes are returned in r0; other aggregates 4694 // are returned indirectly. 4695 uint64_t Size = getContext().getTypeSize(RetTy); 4696 if (Size <= 32) { 4697 if (getDataLayout().isBigEndian()) 4698 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4699 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4700 4701 // Return in the smallest viable integer type. 4702 if (Size <= 8) 4703 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4704 if (Size <= 16) 4705 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4706 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4707 } 4708 4709 markAllocatedGPRs(1, 1); 4710 return ABIArgInfo::getIndirect(0); 4711 } 4712 4713 /// isIllegalVector - check whether Ty is an illegal vector type. 4714 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4715 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4716 // Check whether VT is legal. 4717 unsigned NumElements = VT->getNumElements(); 4718 uint64_t Size = getContext().getTypeSize(VT); 4719 // NumElements should be power of 2. 4720 if ((NumElements & (NumElements - 1)) != 0) 4721 return true; 4722 // Size should be greater than 32 bits. 4723 return Size <= 32; 4724 } 4725 return false; 4726 } 4727 4728 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4729 CodeGenFunction &CGF) const { 4730 llvm::Type *BP = CGF.Int8PtrTy; 4731 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4732 4733 CGBuilderTy &Builder = CGF.Builder; 4734 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4735 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4736 4737 if (isEmptyRecord(getContext(), Ty, true)) { 4738 // These are ignored for parameter passing purposes. 4739 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4740 return Builder.CreateBitCast(Addr, PTy); 4741 } 4742 4743 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4744 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4745 bool IsIndirect = false; 4746 4747 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4748 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4749 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4750 getABIKind() == ARMABIInfo::AAPCS) 4751 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4752 else 4753 TyAlign = 4; 4754 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4755 if (isIllegalVectorType(Ty) && Size > 16) { 4756 IsIndirect = true; 4757 Size = 4; 4758 TyAlign = 4; 4759 } 4760 4761 // Handle address alignment for ABI alignment > 4 bytes. 4762 if (TyAlign > 4) { 4763 assert((TyAlign & (TyAlign - 1)) == 0 && 4764 "Alignment is not power of 2!"); 4765 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4766 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4767 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4768 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4769 } 4770 4771 uint64_t Offset = 4772 llvm::RoundUpToAlignment(Size, 4); 4773 llvm::Value *NextAddr = 4774 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4775 "ap.next"); 4776 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4777 4778 if (IsIndirect) 4779 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4780 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4781 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4782 // may not be correctly aligned for the vector type. We create an aligned 4783 // temporary space and copy the content over from ap.cur to the temporary 4784 // space. This is necessary if the natural alignment of the type is greater 4785 // than the ABI alignment. 4786 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4787 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4788 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4789 "var.align"); 4790 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4791 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4792 Builder.CreateMemCpy(Dst, Src, 4793 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 4794 TyAlign, false); 4795 Addr = AlignedTemp; //The content is in aligned location. 4796 } 4797 llvm::Type *PTy = 4798 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4799 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4800 4801 return AddrTyped; 4802 } 4803 4804 namespace { 4805 4806 class NaClARMABIInfo : public ABIInfo { 4807 public: 4808 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4809 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 4810 void computeInfo(CGFunctionInfo &FI) const override; 4811 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4812 CodeGenFunction &CGF) const override; 4813 private: 4814 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 4815 ARMABIInfo NInfo; // Used for everything else. 4816 }; 4817 4818 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 4819 public: 4820 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4821 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 4822 }; 4823 4824 } 4825 4826 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4827 if (FI.getASTCallingConvention() == CC_PnaclCall) 4828 PInfo.computeInfo(FI); 4829 else 4830 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 4831 } 4832 4833 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4834 CodeGenFunction &CGF) const { 4835 // Always use the native convention; calling pnacl-style varargs functions 4836 // is unsupported. 4837 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 4838 } 4839 4840 //===----------------------------------------------------------------------===// 4841 // NVPTX ABI Implementation 4842 //===----------------------------------------------------------------------===// 4843 4844 namespace { 4845 4846 class NVPTXABIInfo : public ABIInfo { 4847 public: 4848 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4849 4850 ABIArgInfo classifyReturnType(QualType RetTy) const; 4851 ABIArgInfo classifyArgumentType(QualType Ty) const; 4852 4853 void computeInfo(CGFunctionInfo &FI) const override; 4854 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4855 CodeGenFunction &CFG) const override; 4856 }; 4857 4858 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4859 public: 4860 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4861 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4862 4863 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4864 CodeGen::CodeGenModule &M) const override; 4865 private: 4866 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 4867 // resulting MDNode to the nvvm.annotations MDNode. 4868 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 4869 }; 4870 4871 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4872 if (RetTy->isVoidType()) 4873 return ABIArgInfo::getIgnore(); 4874 4875 // note: this is different from default ABI 4876 if (!RetTy->isScalarType()) 4877 return ABIArgInfo::getDirect(); 4878 4879 // Treat an enum type as its underlying type. 4880 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4881 RetTy = EnumTy->getDecl()->getIntegerType(); 4882 4883 return (RetTy->isPromotableIntegerType() ? 4884 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4885 } 4886 4887 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4888 // Treat an enum type as its underlying type. 4889 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4890 Ty = EnumTy->getDecl()->getIntegerType(); 4891 4892 return (Ty->isPromotableIntegerType() ? 4893 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4894 } 4895 4896 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4897 if (!getCXXABI().classifyReturnType(FI)) 4898 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4899 for (auto &I : FI.arguments()) 4900 I.info = classifyArgumentType(I.type); 4901 4902 // Always honor user-specified calling convention. 4903 if (FI.getCallingConvention() != llvm::CallingConv::C) 4904 return; 4905 4906 FI.setEffectiveCallingConvention(getRuntimeCC()); 4907 } 4908 4909 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4910 CodeGenFunction &CFG) const { 4911 llvm_unreachable("NVPTX does not support varargs"); 4912 } 4913 4914 void NVPTXTargetCodeGenInfo:: 4915 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4916 CodeGen::CodeGenModule &M) const{ 4917 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4918 if (!FD) return; 4919 4920 llvm::Function *F = cast<llvm::Function>(GV); 4921 4922 // Perform special handling in OpenCL mode 4923 if (M.getLangOpts().OpenCL) { 4924 // Use OpenCL function attributes to check for kernel functions 4925 // By default, all functions are device functions 4926 if (FD->hasAttr<OpenCLKernelAttr>()) { 4927 // OpenCL __kernel functions get kernel metadata 4928 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4929 addNVVMMetadata(F, "kernel", 1); 4930 // And kernel functions are not subject to inlining 4931 F->addFnAttr(llvm::Attribute::NoInline); 4932 } 4933 } 4934 4935 // Perform special handling in CUDA mode. 4936 if (M.getLangOpts().CUDA) { 4937 // CUDA __global__ functions get a kernel metadata entry. Since 4938 // __global__ functions cannot be called from the device, we do not 4939 // need to set the noinline attribute. 4940 if (FD->hasAttr<CUDAGlobalAttr>()) { 4941 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4942 addNVVMMetadata(F, "kernel", 1); 4943 } 4944 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 4945 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 4946 addNVVMMetadata(F, "maxntidx", 4947 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 4948 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 4949 // zero value from getMinBlocks either means it was not specified in 4950 // __launch_bounds__ or the user specified a 0 value. In both cases, we 4951 // don't have to add a PTX directive. 4952 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 4953 if (MinCTASM > 0) { 4954 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 4955 addNVVMMetadata(F, "minctasm", MinCTASM); 4956 } 4957 } 4958 } 4959 } 4960 4961 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 4962 int Operand) { 4963 llvm::Module *M = F->getParent(); 4964 llvm::LLVMContext &Ctx = M->getContext(); 4965 4966 // Get "nvvm.annotations" metadata node 4967 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4968 4969 llvm::Value *MDVals[] = { 4970 F, llvm::MDString::get(Ctx, Name), 4971 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; 4972 // Append metadata to nvvm.annotations 4973 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4974 } 4975 } 4976 4977 //===----------------------------------------------------------------------===// 4978 // SystemZ ABI Implementation 4979 //===----------------------------------------------------------------------===// 4980 4981 namespace { 4982 4983 class SystemZABIInfo : public ABIInfo { 4984 public: 4985 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4986 4987 bool isPromotableIntegerType(QualType Ty) const; 4988 bool isCompoundType(QualType Ty) const; 4989 bool isFPArgumentType(QualType Ty) const; 4990 4991 ABIArgInfo classifyReturnType(QualType RetTy) const; 4992 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4993 4994 void computeInfo(CGFunctionInfo &FI) const override { 4995 if (!getCXXABI().classifyReturnType(FI)) 4996 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4997 for (auto &I : FI.arguments()) 4998 I.info = classifyArgumentType(I.type); 4999 } 5000 5001 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5002 CodeGenFunction &CGF) const override; 5003 }; 5004 5005 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5006 public: 5007 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 5008 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 5009 }; 5010 5011 } 5012 5013 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5014 // Treat an enum type as its underlying type. 5015 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5016 Ty = EnumTy->getDecl()->getIntegerType(); 5017 5018 // Promotable integer types are required to be promoted by the ABI. 5019 if (Ty->isPromotableIntegerType()) 5020 return true; 5021 5022 // 32-bit values must also be promoted. 5023 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5024 switch (BT->getKind()) { 5025 case BuiltinType::Int: 5026 case BuiltinType::UInt: 5027 return true; 5028 default: 5029 return false; 5030 } 5031 return false; 5032 } 5033 5034 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5035 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 5036 } 5037 5038 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5039 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5040 switch (BT->getKind()) { 5041 case BuiltinType::Float: 5042 case BuiltinType::Double: 5043 return true; 5044 default: 5045 return false; 5046 } 5047 5048 if (const RecordType *RT = Ty->getAsStructureType()) { 5049 const RecordDecl *RD = RT->getDecl(); 5050 bool Found = false; 5051 5052 // If this is a C++ record, check the bases first. 5053 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5054 for (const auto &I : CXXRD->bases()) { 5055 QualType Base = I.getType(); 5056 5057 // Empty bases don't affect things either way. 5058 if (isEmptyRecord(getContext(), Base, true)) 5059 continue; 5060 5061 if (Found) 5062 return false; 5063 Found = isFPArgumentType(Base); 5064 if (!Found) 5065 return false; 5066 } 5067 5068 // Check the fields. 5069 for (const auto *FD : RD->fields()) { 5070 // Empty bitfields don't affect things either way. 5071 // Unlike isSingleElementStruct(), empty structure and array fields 5072 // do count. So do anonymous bitfields that aren't zero-sized. 5073 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5074 return true; 5075 5076 // Unlike isSingleElementStruct(), arrays do not count. 5077 // Nested isFPArgumentType structures still do though. 5078 if (Found) 5079 return false; 5080 Found = isFPArgumentType(FD->getType()); 5081 if (!Found) 5082 return false; 5083 } 5084 5085 // Unlike isSingleElementStruct(), trailing padding is allowed. 5086 // An 8-byte aligned struct s { float f; } is passed as a double. 5087 return Found; 5088 } 5089 5090 return false; 5091 } 5092 5093 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5094 CodeGenFunction &CGF) const { 5095 // Assume that va_list type is correct; should be pointer to LLVM type: 5096 // struct { 5097 // i64 __gpr; 5098 // i64 __fpr; 5099 // i8 *__overflow_arg_area; 5100 // i8 *__reg_save_area; 5101 // }; 5102 5103 // Every argument occupies 8 bytes and is passed by preference in either 5104 // GPRs or FPRs. 5105 Ty = CGF.getContext().getCanonicalType(Ty); 5106 ABIArgInfo AI = classifyArgumentType(Ty); 5107 bool InFPRs = isFPArgumentType(Ty); 5108 5109 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 5110 bool IsIndirect = AI.isIndirect(); 5111 unsigned UnpaddedBitSize; 5112 if (IsIndirect) { 5113 APTy = llvm::PointerType::getUnqual(APTy); 5114 UnpaddedBitSize = 64; 5115 } else 5116 UnpaddedBitSize = getContext().getTypeSize(Ty); 5117 unsigned PaddedBitSize = 64; 5118 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5119 5120 unsigned PaddedSize = PaddedBitSize / 8; 5121 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5122 5123 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5124 if (InFPRs) { 5125 MaxRegs = 4; // Maximum of 4 FPR arguments 5126 RegCountField = 1; // __fpr 5127 RegSaveIndex = 16; // save offset for f0 5128 RegPadding = 0; // floats are passed in the high bits of an FPR 5129 } else { 5130 MaxRegs = 5; // Maximum of 5 GPR arguments 5131 RegCountField = 0; // __gpr 5132 RegSaveIndex = 2; // save offset for r2 5133 RegPadding = Padding; // values are passed in the low bits of a GPR 5134 } 5135 5136 llvm::Value *RegCountPtr = 5137 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 5138 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5139 llvm::Type *IndexTy = RegCount->getType(); 5140 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5141 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5142 "fits_in_regs"); 5143 5144 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5145 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5146 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5147 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5148 5149 // Emit code to load the value if it was passed in registers. 5150 CGF.EmitBlock(InRegBlock); 5151 5152 // Work out the address of an argument register. 5153 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5154 llvm::Value *ScaledRegCount = 5155 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5156 llvm::Value *RegBase = 5157 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5158 llvm::Value *RegOffset = 5159 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5160 llvm::Value *RegSaveAreaPtr = 5161 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 5162 llvm::Value *RegSaveArea = 5163 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5164 llvm::Value *RawRegAddr = 5165 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5166 llvm::Value *RegAddr = 5167 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5168 5169 // Update the register count 5170 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5171 llvm::Value *NewRegCount = 5172 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5173 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5174 CGF.EmitBranch(ContBlock); 5175 5176 // Emit code to load the value if it was passed in memory. 5177 CGF.EmitBlock(InMemBlock); 5178 5179 // Work out the address of a stack argument. 5180 llvm::Value *OverflowArgAreaPtr = 5181 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 5182 llvm::Value *OverflowArgArea = 5183 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5184 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5185 llvm::Value *RawMemAddr = 5186 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5187 llvm::Value *MemAddr = 5188 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5189 5190 // Update overflow_arg_area_ptr pointer 5191 llvm::Value *NewOverflowArgArea = 5192 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5193 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5194 CGF.EmitBranch(ContBlock); 5195 5196 // Return the appropriate result. 5197 CGF.EmitBlock(ContBlock); 5198 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5199 ResAddr->addIncoming(RegAddr, InRegBlock); 5200 ResAddr->addIncoming(MemAddr, InMemBlock); 5201 5202 if (IsIndirect) 5203 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5204 5205 return ResAddr; 5206 } 5207 5208 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5209 if (RetTy->isVoidType()) 5210 return ABIArgInfo::getIgnore(); 5211 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5212 return ABIArgInfo::getIndirect(0); 5213 return (isPromotableIntegerType(RetTy) ? 5214 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5215 } 5216 5217 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5218 // Handle the generic C++ ABI. 5219 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5220 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5221 5222 // Integers and enums are extended to full register width. 5223 if (isPromotableIntegerType(Ty)) 5224 return ABIArgInfo::getExtend(); 5225 5226 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5227 uint64_t Size = getContext().getTypeSize(Ty); 5228 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5229 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5230 5231 // Handle small structures. 5232 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5233 // Structures with flexible arrays have variable length, so really 5234 // fail the size test above. 5235 const RecordDecl *RD = RT->getDecl(); 5236 if (RD->hasFlexibleArrayMember()) 5237 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5238 5239 // The structure is passed as an unextended integer, a float, or a double. 5240 llvm::Type *PassTy; 5241 if (isFPArgumentType(Ty)) { 5242 assert(Size == 32 || Size == 64); 5243 if (Size == 32) 5244 PassTy = llvm::Type::getFloatTy(getVMContext()); 5245 else 5246 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5247 } else 5248 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5249 return ABIArgInfo::getDirect(PassTy); 5250 } 5251 5252 // Non-structure compounds are passed indirectly. 5253 if (isCompoundType(Ty)) 5254 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5255 5256 return ABIArgInfo::getDirect(nullptr); 5257 } 5258 5259 //===----------------------------------------------------------------------===// 5260 // MSP430 ABI Implementation 5261 //===----------------------------------------------------------------------===// 5262 5263 namespace { 5264 5265 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5266 public: 5267 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5268 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5269 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5270 CodeGen::CodeGenModule &M) const override; 5271 }; 5272 5273 } 5274 5275 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5276 llvm::GlobalValue *GV, 5277 CodeGen::CodeGenModule &M) const { 5278 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5279 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5280 // Handle 'interrupt' attribute: 5281 llvm::Function *F = cast<llvm::Function>(GV); 5282 5283 // Step 1: Set ISR calling convention. 5284 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5285 5286 // Step 2: Add attributes goodness. 5287 F->addFnAttr(llvm::Attribute::NoInline); 5288 5289 // Step 3: Emit ISR vector alias. 5290 unsigned Num = attr->getNumber() / 2; 5291 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5292 "__isr_" + Twine(Num), F); 5293 } 5294 } 5295 } 5296 5297 //===----------------------------------------------------------------------===// 5298 // MIPS ABI Implementation. This works for both little-endian and 5299 // big-endian variants. 5300 //===----------------------------------------------------------------------===// 5301 5302 namespace { 5303 class MipsABIInfo : public ABIInfo { 5304 bool IsO32; 5305 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5306 void CoerceToIntArgs(uint64_t TySize, 5307 SmallVectorImpl<llvm::Type *> &ArgList) const; 5308 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5309 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5310 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5311 public: 5312 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5313 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5314 StackAlignInBytes(IsO32 ? 8 : 16) {} 5315 5316 ABIArgInfo classifyReturnType(QualType RetTy) const; 5317 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5318 void computeInfo(CGFunctionInfo &FI) const override; 5319 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5320 CodeGenFunction &CGF) const override; 5321 }; 5322 5323 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5324 unsigned SizeOfUnwindException; 5325 public: 5326 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5327 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5328 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5329 5330 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5331 return 29; 5332 } 5333 5334 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5335 CodeGen::CodeGenModule &CGM) const override { 5336 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5337 if (!FD) return; 5338 llvm::Function *Fn = cast<llvm::Function>(GV); 5339 if (FD->hasAttr<Mips16Attr>()) { 5340 Fn->addFnAttr("mips16"); 5341 } 5342 else if (FD->hasAttr<NoMips16Attr>()) { 5343 Fn->addFnAttr("nomips16"); 5344 } 5345 } 5346 5347 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5348 llvm::Value *Address) const override; 5349 5350 unsigned getSizeOfUnwindException() const override { 5351 return SizeOfUnwindException; 5352 } 5353 }; 5354 } 5355 5356 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5357 SmallVectorImpl<llvm::Type *> &ArgList) const { 5358 llvm::IntegerType *IntTy = 5359 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5360 5361 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5362 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5363 ArgList.push_back(IntTy); 5364 5365 // If necessary, add one more integer type to ArgList. 5366 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5367 5368 if (R) 5369 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5370 } 5371 5372 // In N32/64, an aligned double precision floating point field is passed in 5373 // a register. 5374 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5375 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5376 5377 if (IsO32) { 5378 CoerceToIntArgs(TySize, ArgList); 5379 return llvm::StructType::get(getVMContext(), ArgList); 5380 } 5381 5382 if (Ty->isComplexType()) 5383 return CGT.ConvertType(Ty); 5384 5385 const RecordType *RT = Ty->getAs<RecordType>(); 5386 5387 // Unions/vectors are passed in integer registers. 5388 if (!RT || !RT->isStructureOrClassType()) { 5389 CoerceToIntArgs(TySize, ArgList); 5390 return llvm::StructType::get(getVMContext(), ArgList); 5391 } 5392 5393 const RecordDecl *RD = RT->getDecl(); 5394 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5395 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5396 5397 uint64_t LastOffset = 0; 5398 unsigned idx = 0; 5399 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5400 5401 // Iterate over fields in the struct/class and check if there are any aligned 5402 // double fields. 5403 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5404 i != e; ++i, ++idx) { 5405 const QualType Ty = i->getType(); 5406 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5407 5408 if (!BT || BT->getKind() != BuiltinType::Double) 5409 continue; 5410 5411 uint64_t Offset = Layout.getFieldOffset(idx); 5412 if (Offset % 64) // Ignore doubles that are not aligned. 5413 continue; 5414 5415 // Add ((Offset - LastOffset) / 64) args of type i64. 5416 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5417 ArgList.push_back(I64); 5418 5419 // Add double type. 5420 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5421 LastOffset = Offset + 64; 5422 } 5423 5424 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5425 ArgList.append(IntArgList.begin(), IntArgList.end()); 5426 5427 return llvm::StructType::get(getVMContext(), ArgList); 5428 } 5429 5430 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5431 uint64_t Offset) const { 5432 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5433 return nullptr; 5434 5435 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5436 } 5437 5438 ABIArgInfo 5439 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5440 uint64_t OrigOffset = Offset; 5441 uint64_t TySize = getContext().getTypeSize(Ty); 5442 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5443 5444 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5445 (uint64_t)StackAlignInBytes); 5446 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5447 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5448 5449 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5450 // Ignore empty aggregates. 5451 if (TySize == 0) 5452 return ABIArgInfo::getIgnore(); 5453 5454 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5455 Offset = OrigOffset + MinABIStackAlignInBytes; 5456 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5457 } 5458 5459 // If we have reached here, aggregates are passed directly by coercing to 5460 // another structure type. Padding is inserted if the offset of the 5461 // aggregate is unaligned. 5462 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5463 getPaddingType(OrigOffset, CurrOffset)); 5464 } 5465 5466 // Treat an enum type as its underlying type. 5467 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5468 Ty = EnumTy->getDecl()->getIntegerType(); 5469 5470 if (Ty->isPromotableIntegerType()) 5471 return ABIArgInfo::getExtend(); 5472 5473 return ABIArgInfo::getDirect( 5474 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5475 } 5476 5477 llvm::Type* 5478 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5479 const RecordType *RT = RetTy->getAs<RecordType>(); 5480 SmallVector<llvm::Type*, 8> RTList; 5481 5482 if (RT && RT->isStructureOrClassType()) { 5483 const RecordDecl *RD = RT->getDecl(); 5484 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5485 unsigned FieldCnt = Layout.getFieldCount(); 5486 5487 // N32/64 returns struct/classes in floating point registers if the 5488 // following conditions are met: 5489 // 1. The size of the struct/class is no larger than 128-bit. 5490 // 2. The struct/class has one or two fields all of which are floating 5491 // point types. 5492 // 3. The offset of the first field is zero (this follows what gcc does). 5493 // 5494 // Any other composite results are returned in integer registers. 5495 // 5496 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5497 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5498 for (; b != e; ++b) { 5499 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5500 5501 if (!BT || !BT->isFloatingPoint()) 5502 break; 5503 5504 RTList.push_back(CGT.ConvertType(b->getType())); 5505 } 5506 5507 if (b == e) 5508 return llvm::StructType::get(getVMContext(), RTList, 5509 RD->hasAttr<PackedAttr>()); 5510 5511 RTList.clear(); 5512 } 5513 } 5514 5515 CoerceToIntArgs(Size, RTList); 5516 return llvm::StructType::get(getVMContext(), RTList); 5517 } 5518 5519 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5520 uint64_t Size = getContext().getTypeSize(RetTy); 5521 5522 if (RetTy->isVoidType() || Size == 0) 5523 return ABIArgInfo::getIgnore(); 5524 5525 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5526 if (Size <= 128) { 5527 if (RetTy->isAnyComplexType()) 5528 return ABIArgInfo::getDirect(); 5529 5530 // O32 returns integer vectors in registers. 5531 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 5532 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5533 5534 if (!IsO32) 5535 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5536 } 5537 5538 return ABIArgInfo::getIndirect(0); 5539 } 5540 5541 // Treat an enum type as its underlying type. 5542 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5543 RetTy = EnumTy->getDecl()->getIntegerType(); 5544 5545 return (RetTy->isPromotableIntegerType() ? 5546 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5547 } 5548 5549 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5550 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5551 if (!getCXXABI().classifyReturnType(FI)) 5552 RetInfo = classifyReturnType(FI.getReturnType()); 5553 5554 // Check if a pointer to an aggregate is passed as a hidden argument. 5555 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5556 5557 for (auto &I : FI.arguments()) 5558 I.info = classifyArgumentType(I.type, Offset); 5559 } 5560 5561 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5562 CodeGenFunction &CGF) const { 5563 llvm::Type *BP = CGF.Int8PtrTy; 5564 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5565 5566 CGBuilderTy &Builder = CGF.Builder; 5567 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5568 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5569 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 5570 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5571 llvm::Value *AddrTyped; 5572 unsigned PtrWidth = getTarget().getPointerWidth(0); 5573 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5574 5575 if (TypeAlign > MinABIStackAlignInBytes) { 5576 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5577 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5578 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5579 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5580 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5581 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5582 } 5583 else 5584 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5585 5586 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5587 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5588 uint64_t Offset = 5589 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 5590 llvm::Value *NextAddr = 5591 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5592 "ap.next"); 5593 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5594 5595 return AddrTyped; 5596 } 5597 5598 bool 5599 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5600 llvm::Value *Address) const { 5601 // This information comes from gcc's implementation, which seems to 5602 // as canonical as it gets. 5603 5604 // Everything on MIPS is 4 bytes. Double-precision FP registers 5605 // are aliased to pairs of single-precision FP registers. 5606 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5607 5608 // 0-31 are the general purpose registers, $0 - $31. 5609 // 32-63 are the floating-point registers, $f0 - $f31. 5610 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5611 // 66 is the (notional, I think) register for signal-handler return. 5612 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5613 5614 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5615 // They are one bit wide and ignored here. 5616 5617 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5618 // (coprocessor 1 is the FP unit) 5619 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5620 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5621 // 176-181 are the DSP accumulator registers. 5622 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5623 return false; 5624 } 5625 5626 //===----------------------------------------------------------------------===// 5627 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5628 // Currently subclassed only to implement custom OpenCL C function attribute 5629 // handling. 5630 //===----------------------------------------------------------------------===// 5631 5632 namespace { 5633 5634 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5635 public: 5636 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5637 : DefaultTargetCodeGenInfo(CGT) {} 5638 5639 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5640 CodeGen::CodeGenModule &M) const override; 5641 }; 5642 5643 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5644 llvm::GlobalValue *GV, 5645 CodeGen::CodeGenModule &M) const { 5646 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5647 if (!FD) return; 5648 5649 llvm::Function *F = cast<llvm::Function>(GV); 5650 5651 if (M.getLangOpts().OpenCL) { 5652 if (FD->hasAttr<OpenCLKernelAttr>()) { 5653 // OpenCL C Kernel functions are not subject to inlining 5654 F->addFnAttr(llvm::Attribute::NoInline); 5655 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5656 if (Attr) { 5657 // Convert the reqd_work_group_size() attributes to metadata. 5658 llvm::LLVMContext &Context = F->getContext(); 5659 llvm::NamedMDNode *OpenCLMetadata = 5660 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5661 5662 SmallVector<llvm::Value*, 5> Operands; 5663 Operands.push_back(F); 5664 5665 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5666 llvm::APInt(32, Attr->getXDim()))); 5667 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5668 llvm::APInt(32, Attr->getYDim()))); 5669 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5670 llvm::APInt(32, Attr->getZDim()))); 5671 5672 // Add a boolean constant operand for "required" (true) or "hint" (false) 5673 // for implementing the work_group_size_hint attr later. Currently 5674 // always true as the hint is not yet implemented. 5675 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5676 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5677 } 5678 } 5679 } 5680 } 5681 5682 } 5683 5684 //===----------------------------------------------------------------------===// 5685 // Hexagon ABI Implementation 5686 //===----------------------------------------------------------------------===// 5687 5688 namespace { 5689 5690 class HexagonABIInfo : public ABIInfo { 5691 5692 5693 public: 5694 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5695 5696 private: 5697 5698 ABIArgInfo classifyReturnType(QualType RetTy) const; 5699 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5700 5701 void computeInfo(CGFunctionInfo &FI) const override; 5702 5703 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5704 CodeGenFunction &CGF) const override; 5705 }; 5706 5707 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5708 public: 5709 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5710 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5711 5712 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5713 return 29; 5714 } 5715 }; 5716 5717 } 5718 5719 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5720 if (!getCXXABI().classifyReturnType(FI)) 5721 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5722 for (auto &I : FI.arguments()) 5723 I.info = classifyArgumentType(I.type); 5724 } 5725 5726 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5727 if (!isAggregateTypeForABI(Ty)) { 5728 // Treat an enum type as its underlying type. 5729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5730 Ty = EnumTy->getDecl()->getIntegerType(); 5731 5732 return (Ty->isPromotableIntegerType() ? 5733 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5734 } 5735 5736 // Ignore empty records. 5737 if (isEmptyRecord(getContext(), Ty, true)) 5738 return ABIArgInfo::getIgnore(); 5739 5740 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5741 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5742 5743 uint64_t Size = getContext().getTypeSize(Ty); 5744 if (Size > 64) 5745 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5746 // Pass in the smallest viable integer type. 5747 else if (Size > 32) 5748 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5749 else if (Size > 16) 5750 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5751 else if (Size > 8) 5752 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5753 else 5754 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5755 } 5756 5757 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5758 if (RetTy->isVoidType()) 5759 return ABIArgInfo::getIgnore(); 5760 5761 // Large vector types should be returned via memory. 5762 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5763 return ABIArgInfo::getIndirect(0); 5764 5765 if (!isAggregateTypeForABI(RetTy)) { 5766 // Treat an enum type as its underlying type. 5767 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5768 RetTy = EnumTy->getDecl()->getIntegerType(); 5769 5770 return (RetTy->isPromotableIntegerType() ? 5771 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5772 } 5773 5774 if (isEmptyRecord(getContext(), RetTy, true)) 5775 return ABIArgInfo::getIgnore(); 5776 5777 // Aggregates <= 8 bytes are returned in r0; other aggregates 5778 // are returned indirectly. 5779 uint64_t Size = getContext().getTypeSize(RetTy); 5780 if (Size <= 64) { 5781 // Return in the smallest viable integer type. 5782 if (Size <= 8) 5783 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5784 if (Size <= 16) 5785 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5786 if (Size <= 32) 5787 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5788 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5789 } 5790 5791 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5792 } 5793 5794 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5795 CodeGenFunction &CGF) const { 5796 // FIXME: Need to handle alignment 5797 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5798 5799 CGBuilderTy &Builder = CGF.Builder; 5800 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5801 "ap"); 5802 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5803 llvm::Type *PTy = 5804 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5805 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5806 5807 uint64_t Offset = 5808 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5809 llvm::Value *NextAddr = 5810 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5811 "ap.next"); 5812 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5813 5814 return AddrTyped; 5815 } 5816 5817 5818 //===----------------------------------------------------------------------===// 5819 // SPARC v9 ABI Implementation. 5820 // Based on the SPARC Compliance Definition version 2.4.1. 5821 // 5822 // Function arguments a mapped to a nominal "parameter array" and promoted to 5823 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5824 // the array, structs larger than 16 bytes are passed indirectly. 5825 // 5826 // One case requires special care: 5827 // 5828 // struct mixed { 5829 // int i; 5830 // float f; 5831 // }; 5832 // 5833 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5834 // parameter array, but the int is passed in an integer register, and the float 5835 // is passed in a floating point register. This is represented as two arguments 5836 // with the LLVM IR inreg attribute: 5837 // 5838 // declare void f(i32 inreg %i, float inreg %f) 5839 // 5840 // The code generator will only allocate 4 bytes from the parameter array for 5841 // the inreg arguments. All other arguments are allocated a multiple of 8 5842 // bytes. 5843 // 5844 namespace { 5845 class SparcV9ABIInfo : public ABIInfo { 5846 public: 5847 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5848 5849 private: 5850 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5851 void computeInfo(CGFunctionInfo &FI) const override; 5852 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5853 CodeGenFunction &CGF) const override; 5854 5855 // Coercion type builder for structs passed in registers. The coercion type 5856 // serves two purposes: 5857 // 5858 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5859 // in registers. 5860 // 2. Expose aligned floating point elements as first-level elements, so the 5861 // code generator knows to pass them in floating point registers. 5862 // 5863 // We also compute the InReg flag which indicates that the struct contains 5864 // aligned 32-bit floats. 5865 // 5866 struct CoerceBuilder { 5867 llvm::LLVMContext &Context; 5868 const llvm::DataLayout &DL; 5869 SmallVector<llvm::Type*, 8> Elems; 5870 uint64_t Size; 5871 bool InReg; 5872 5873 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5874 : Context(c), DL(dl), Size(0), InReg(false) {} 5875 5876 // Pad Elems with integers until Size is ToSize. 5877 void pad(uint64_t ToSize) { 5878 assert(ToSize >= Size && "Cannot remove elements"); 5879 if (ToSize == Size) 5880 return; 5881 5882 // Finish the current 64-bit word. 5883 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5884 if (Aligned > Size && Aligned <= ToSize) { 5885 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5886 Size = Aligned; 5887 } 5888 5889 // Add whole 64-bit words. 5890 while (Size + 64 <= ToSize) { 5891 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5892 Size += 64; 5893 } 5894 5895 // Final in-word padding. 5896 if (Size < ToSize) { 5897 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5898 Size = ToSize; 5899 } 5900 } 5901 5902 // Add a floating point element at Offset. 5903 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5904 // Unaligned floats are treated as integers. 5905 if (Offset % Bits) 5906 return; 5907 // The InReg flag is only required if there are any floats < 64 bits. 5908 if (Bits < 64) 5909 InReg = true; 5910 pad(Offset); 5911 Elems.push_back(Ty); 5912 Size = Offset + Bits; 5913 } 5914 5915 // Add a struct type to the coercion type, starting at Offset (in bits). 5916 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5917 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5918 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5919 llvm::Type *ElemTy = StrTy->getElementType(i); 5920 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5921 switch (ElemTy->getTypeID()) { 5922 case llvm::Type::StructTyID: 5923 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5924 break; 5925 case llvm::Type::FloatTyID: 5926 addFloat(ElemOffset, ElemTy, 32); 5927 break; 5928 case llvm::Type::DoubleTyID: 5929 addFloat(ElemOffset, ElemTy, 64); 5930 break; 5931 case llvm::Type::FP128TyID: 5932 addFloat(ElemOffset, ElemTy, 128); 5933 break; 5934 case llvm::Type::PointerTyID: 5935 if (ElemOffset % 64 == 0) { 5936 pad(ElemOffset); 5937 Elems.push_back(ElemTy); 5938 Size += 64; 5939 } 5940 break; 5941 default: 5942 break; 5943 } 5944 } 5945 } 5946 5947 // Check if Ty is a usable substitute for the coercion type. 5948 bool isUsableType(llvm::StructType *Ty) const { 5949 if (Ty->getNumElements() != Elems.size()) 5950 return false; 5951 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5952 if (Elems[i] != Ty->getElementType(i)) 5953 return false; 5954 return true; 5955 } 5956 5957 // Get the coercion type as a literal struct type. 5958 llvm::Type *getType() const { 5959 if (Elems.size() == 1) 5960 return Elems.front(); 5961 else 5962 return llvm::StructType::get(Context, Elems); 5963 } 5964 }; 5965 }; 5966 } // end anonymous namespace 5967 5968 ABIArgInfo 5969 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5970 if (Ty->isVoidType()) 5971 return ABIArgInfo::getIgnore(); 5972 5973 uint64_t Size = getContext().getTypeSize(Ty); 5974 5975 // Anything too big to fit in registers is passed with an explicit indirect 5976 // pointer / sret pointer. 5977 if (Size > SizeLimit) 5978 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5979 5980 // Treat an enum type as its underlying type. 5981 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5982 Ty = EnumTy->getDecl()->getIntegerType(); 5983 5984 // Integer types smaller than a register are extended. 5985 if (Size < 64 && Ty->isIntegerType()) 5986 return ABIArgInfo::getExtend(); 5987 5988 // Other non-aggregates go in registers. 5989 if (!isAggregateTypeForABI(Ty)) 5990 return ABIArgInfo::getDirect(); 5991 5992 // If a C++ object has either a non-trivial copy constructor or a non-trivial 5993 // destructor, it is passed with an explicit indirect pointer / sret pointer. 5994 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5995 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5996 5997 // This is a small aggregate type that should be passed in registers. 5998 // Build a coercion type from the LLVM struct type. 5999 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6000 if (!StrTy) 6001 return ABIArgInfo::getDirect(); 6002 6003 CoerceBuilder CB(getVMContext(), getDataLayout()); 6004 CB.addStruct(0, StrTy); 6005 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6006 6007 // Try to use the original type for coercion. 6008 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6009 6010 if (CB.InReg) 6011 return ABIArgInfo::getDirectInReg(CoerceTy); 6012 else 6013 return ABIArgInfo::getDirect(CoerceTy); 6014 } 6015 6016 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6017 CodeGenFunction &CGF) const { 6018 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6019 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6020 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6021 AI.setCoerceToType(ArgTy); 6022 6023 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6024 CGBuilderTy &Builder = CGF.Builder; 6025 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6026 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6027 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6028 llvm::Value *ArgAddr; 6029 unsigned Stride; 6030 6031 switch (AI.getKind()) { 6032 case ABIArgInfo::Expand: 6033 case ABIArgInfo::InAlloca: 6034 llvm_unreachable("Unsupported ABI kind for va_arg"); 6035 6036 case ABIArgInfo::Extend: 6037 Stride = 8; 6038 ArgAddr = Builder 6039 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6040 "extend"); 6041 break; 6042 6043 case ABIArgInfo::Direct: 6044 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6045 ArgAddr = Addr; 6046 break; 6047 6048 case ABIArgInfo::Indirect: 6049 Stride = 8; 6050 ArgAddr = Builder.CreateBitCast(Addr, 6051 llvm::PointerType::getUnqual(ArgPtrTy), 6052 "indirect"); 6053 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6054 break; 6055 6056 case ABIArgInfo::Ignore: 6057 return llvm::UndefValue::get(ArgPtrTy); 6058 } 6059 6060 // Update VAList. 6061 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6062 Builder.CreateStore(Addr, VAListAddrAsBPP); 6063 6064 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6065 } 6066 6067 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6068 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6069 for (auto &I : FI.arguments()) 6070 I.info = classifyType(I.type, 16 * 8); 6071 } 6072 6073 namespace { 6074 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6075 public: 6076 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6077 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6078 6079 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6080 return 14; 6081 } 6082 6083 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6084 llvm::Value *Address) const override; 6085 }; 6086 } // end anonymous namespace 6087 6088 bool 6089 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6090 llvm::Value *Address) const { 6091 // This is calculated from the LLVM and GCC tables and verified 6092 // against gcc output. AFAIK all ABIs use the same encoding. 6093 6094 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6095 6096 llvm::IntegerType *i8 = CGF.Int8Ty; 6097 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6098 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6099 6100 // 0-31: the 8-byte general-purpose registers 6101 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6102 6103 // 32-63: f0-31, the 4-byte floating-point registers 6104 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6105 6106 // Y = 64 6107 // PSR = 65 6108 // WIM = 66 6109 // TBR = 67 6110 // PC = 68 6111 // NPC = 69 6112 // FSR = 70 6113 // CSR = 71 6114 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6115 6116 // 72-87: d0-15, the 8-byte floating-point registers 6117 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6118 6119 return false; 6120 } 6121 6122 6123 //===----------------------------------------------------------------------===// 6124 // XCore ABI Implementation 6125 //===----------------------------------------------------------------------===// 6126 6127 namespace { 6128 6129 /// A SmallStringEnc instance is used to build up the TypeString by passing 6130 /// it by reference between functions that append to it. 6131 typedef llvm::SmallString<128> SmallStringEnc; 6132 6133 /// TypeStringCache caches the meta encodings of Types. 6134 /// 6135 /// The reason for caching TypeStrings is two fold: 6136 /// 1. To cache a type's encoding for later uses; 6137 /// 2. As a means to break recursive member type inclusion. 6138 /// 6139 /// A cache Entry can have a Status of: 6140 /// NonRecursive: The type encoding is not recursive; 6141 /// Recursive: The type encoding is recursive; 6142 /// Incomplete: An incomplete TypeString; 6143 /// IncompleteUsed: An incomplete TypeString that has been used in a 6144 /// Recursive type encoding. 6145 /// 6146 /// A NonRecursive entry will have all of its sub-members expanded as fully 6147 /// as possible. Whilst it may contain types which are recursive, the type 6148 /// itself is not recursive and thus its encoding may be safely used whenever 6149 /// the type is encountered. 6150 /// 6151 /// A Recursive entry will have all of its sub-members expanded as fully as 6152 /// possible. The type itself is recursive and it may contain other types which 6153 /// are recursive. The Recursive encoding must not be used during the expansion 6154 /// of a recursive type's recursive branch. For simplicity the code uses 6155 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6156 /// 6157 /// An Incomplete entry is always a RecordType and only encodes its 6158 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6159 /// are placed into the cache during type expansion as a means to identify and 6160 /// handle recursive inclusion of types as sub-members. If there is recursion 6161 /// the entry becomes IncompleteUsed. 6162 /// 6163 /// During the expansion of a RecordType's members: 6164 /// 6165 /// If the cache contains a NonRecursive encoding for the member type, the 6166 /// cached encoding is used; 6167 /// 6168 /// If the cache contains a Recursive encoding for the member type, the 6169 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6170 /// 6171 /// If the member is a RecordType, an Incomplete encoding is placed into the 6172 /// cache to break potential recursive inclusion of itself as a sub-member; 6173 /// 6174 /// Once a member RecordType has been expanded, its temporary incomplete 6175 /// entry is removed from the cache. If a Recursive encoding was swapped out 6176 /// it is swapped back in; 6177 /// 6178 /// If an incomplete entry is used to expand a sub-member, the incomplete 6179 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6180 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6181 /// 6182 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6183 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6184 /// Else the member is part of a recursive type and thus the recursion has 6185 /// been exited too soon for the encoding to be correct for the member. 6186 /// 6187 class TypeStringCache { 6188 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6189 struct Entry { 6190 std::string Str; // The encoded TypeString for the type. 6191 enum Status State; // Information about the encoding in 'Str'. 6192 std::string Swapped; // A temporary place holder for a Recursive encoding 6193 // during the expansion of RecordType's members. 6194 }; 6195 std::map<const IdentifierInfo *, struct Entry> Map; 6196 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6197 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6198 public: 6199 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6200 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6201 bool removeIncomplete(const IdentifierInfo *ID); 6202 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6203 bool IsRecursive); 6204 StringRef lookupStr(const IdentifierInfo *ID); 6205 }; 6206 6207 /// TypeString encodings for enum & union fields must be order. 6208 /// FieldEncoding is a helper for this ordering process. 6209 class FieldEncoding { 6210 bool HasName; 6211 std::string Enc; 6212 public: 6213 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6214 StringRef str() {return Enc.c_str();}; 6215 bool operator<(const FieldEncoding &rhs) const { 6216 if (HasName != rhs.HasName) return HasName; 6217 return Enc < rhs.Enc; 6218 } 6219 }; 6220 6221 class XCoreABIInfo : public DefaultABIInfo { 6222 public: 6223 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6224 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6225 CodeGenFunction &CGF) const override; 6226 }; 6227 6228 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6229 mutable TypeStringCache TSC; 6230 public: 6231 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6232 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6233 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6234 CodeGen::CodeGenModule &M) const override; 6235 }; 6236 6237 } // End anonymous namespace. 6238 6239 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6240 CodeGenFunction &CGF) const { 6241 CGBuilderTy &Builder = CGF.Builder; 6242 6243 // Get the VAList. 6244 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6245 CGF.Int8PtrPtrTy); 6246 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6247 6248 // Handle the argument. 6249 ABIArgInfo AI = classifyArgumentType(Ty); 6250 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6251 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6252 AI.setCoerceToType(ArgTy); 6253 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6254 llvm::Value *Val; 6255 uint64_t ArgSize = 0; 6256 switch (AI.getKind()) { 6257 case ABIArgInfo::Expand: 6258 case ABIArgInfo::InAlloca: 6259 llvm_unreachable("Unsupported ABI kind for va_arg"); 6260 case ABIArgInfo::Ignore: 6261 Val = llvm::UndefValue::get(ArgPtrTy); 6262 ArgSize = 0; 6263 break; 6264 case ABIArgInfo::Extend: 6265 case ABIArgInfo::Direct: 6266 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6267 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6268 if (ArgSize < 4) 6269 ArgSize = 4; 6270 break; 6271 case ABIArgInfo::Indirect: 6272 llvm::Value *ArgAddr; 6273 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6274 ArgAddr = Builder.CreateLoad(ArgAddr); 6275 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6276 ArgSize = 4; 6277 break; 6278 } 6279 6280 // Increment the VAList. 6281 if (ArgSize) { 6282 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6283 Builder.CreateStore(APN, VAListAddrAsBPP); 6284 } 6285 return Val; 6286 } 6287 6288 /// During the expansion of a RecordType, an incomplete TypeString is placed 6289 /// into the cache as a means to identify and break recursion. 6290 /// If there is a Recursive encoding in the cache, it is swapped out and will 6291 /// be reinserted by removeIncomplete(). 6292 /// All other types of encoding should have been used rather than arriving here. 6293 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6294 std::string StubEnc) { 6295 if (!ID) 6296 return; 6297 Entry &E = Map[ID]; 6298 assert( (E.Str.empty() || E.State == Recursive) && 6299 "Incorrectly use of addIncomplete"); 6300 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6301 E.Swapped.swap(E.Str); // swap out the Recursive 6302 E.Str.swap(StubEnc); 6303 E.State = Incomplete; 6304 ++IncompleteCount; 6305 } 6306 6307 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6308 /// must be removed from the cache. 6309 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6310 /// Returns true if the RecordType was defined recursively. 6311 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6312 if (!ID) 6313 return false; 6314 auto I = Map.find(ID); 6315 assert(I != Map.end() && "Entry not present"); 6316 Entry &E = I->second; 6317 assert( (E.State == Incomplete || 6318 E.State == IncompleteUsed) && 6319 "Entry must be an incomplete type"); 6320 bool IsRecursive = false; 6321 if (E.State == IncompleteUsed) { 6322 // We made use of our Incomplete encoding, thus we are recursive. 6323 IsRecursive = true; 6324 --IncompleteUsedCount; 6325 } 6326 if (E.Swapped.empty()) 6327 Map.erase(I); 6328 else { 6329 // Swap the Recursive back. 6330 E.Swapped.swap(E.Str); 6331 E.Swapped.clear(); 6332 E.State = Recursive; 6333 } 6334 --IncompleteCount; 6335 return IsRecursive; 6336 } 6337 6338 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6339 /// Recursive (viz: all sub-members were expanded as fully as possible). 6340 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6341 bool IsRecursive) { 6342 if (!ID || IncompleteUsedCount) 6343 return; // No key or it is is an incomplete sub-type so don't add. 6344 Entry &E = Map[ID]; 6345 if (IsRecursive && !E.Str.empty()) { 6346 assert(E.State==Recursive && E.Str.size() == Str.size() && 6347 "This is not the same Recursive entry"); 6348 // The parent container was not recursive after all, so we could have used 6349 // this Recursive sub-member entry after all, but we assumed the worse when 6350 // we started viz: IncompleteCount!=0. 6351 return; 6352 } 6353 assert(E.Str.empty() && "Entry already present"); 6354 E.Str = Str.str(); 6355 E.State = IsRecursive? Recursive : NonRecursive; 6356 } 6357 6358 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6359 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6360 /// encoding is Recursive, return an empty StringRef. 6361 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6362 if (!ID) 6363 return StringRef(); // We have no key. 6364 auto I = Map.find(ID); 6365 if (I == Map.end()) 6366 return StringRef(); // We have no encoding. 6367 Entry &E = I->second; 6368 if (E.State == Recursive && IncompleteCount) 6369 return StringRef(); // We don't use Recursive encodings for member types. 6370 6371 if (E.State == Incomplete) { 6372 // The incomplete type is being used to break out of recursion. 6373 E.State = IncompleteUsed; 6374 ++IncompleteUsedCount; 6375 } 6376 return E.Str.c_str(); 6377 } 6378 6379 /// The XCore ABI includes a type information section that communicates symbol 6380 /// type information to the linker. The linker uses this information to verify 6381 /// safety/correctness of things such as array bound and pointers et al. 6382 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6383 /// This type information (TypeString) is emitted into meta data for all global 6384 /// symbols: definitions, declarations, functions & variables. 6385 /// 6386 /// The TypeString carries type, qualifier, name, size & value details. 6387 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6388 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6389 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6390 /// 6391 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6392 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6393 6394 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6395 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6396 CodeGen::CodeGenModule &CGM) const { 6397 SmallStringEnc Enc; 6398 if (getTypeString(Enc, D, CGM, TSC)) { 6399 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6400 llvm::SmallVector<llvm::Value *, 2> MDVals; 6401 MDVals.push_back(GV); 6402 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6403 llvm::NamedMDNode *MD = 6404 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6405 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6406 } 6407 } 6408 6409 static bool appendType(SmallStringEnc &Enc, QualType QType, 6410 const CodeGen::CodeGenModule &CGM, 6411 TypeStringCache &TSC); 6412 6413 /// Helper function for appendRecordType(). 6414 /// Builds a SmallVector containing the encoded field types in declaration order. 6415 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6416 const RecordDecl *RD, 6417 const CodeGen::CodeGenModule &CGM, 6418 TypeStringCache &TSC) { 6419 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 6420 I != E; ++I) { 6421 SmallStringEnc Enc; 6422 Enc += "m("; 6423 Enc += I->getName(); 6424 Enc += "){"; 6425 if (I->isBitField()) { 6426 Enc += "b("; 6427 llvm::raw_svector_ostream OS(Enc); 6428 OS.resync(); 6429 OS << I->getBitWidthValue(CGM.getContext()); 6430 OS.flush(); 6431 Enc += ':'; 6432 } 6433 if (!appendType(Enc, I->getType(), CGM, TSC)) 6434 return false; 6435 if (I->isBitField()) 6436 Enc += ')'; 6437 Enc += '}'; 6438 FE.push_back(FieldEncoding(!I->getName().empty(), Enc)); 6439 } 6440 return true; 6441 } 6442 6443 /// Appends structure and union types to Enc and adds encoding to cache. 6444 /// Recursively calls appendType (via extractFieldType) for each field. 6445 /// Union types have their fields ordered according to the ABI. 6446 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6447 const CodeGen::CodeGenModule &CGM, 6448 TypeStringCache &TSC, const IdentifierInfo *ID) { 6449 // Append the cached TypeString if we have one. 6450 StringRef TypeString = TSC.lookupStr(ID); 6451 if (!TypeString.empty()) { 6452 Enc += TypeString; 6453 return true; 6454 } 6455 6456 // Start to emit an incomplete TypeString. 6457 size_t Start = Enc.size(); 6458 Enc += (RT->isUnionType()? 'u' : 's'); 6459 Enc += '('; 6460 if (ID) 6461 Enc += ID->getName(); 6462 Enc += "){"; 6463 6464 // We collect all encoded fields and order as necessary. 6465 bool IsRecursive = false; 6466 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6467 if (RD && !RD->field_empty()) { 6468 // An incomplete TypeString stub is placed in the cache for this RecordType 6469 // so that recursive calls to this RecordType will use it whilst building a 6470 // complete TypeString for this RecordType. 6471 SmallVector<FieldEncoding, 16> FE; 6472 std::string StubEnc(Enc.substr(Start).str()); 6473 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6474 TSC.addIncomplete(ID, std::move(StubEnc)); 6475 if (!extractFieldType(FE, RD, CGM, TSC)) { 6476 (void) TSC.removeIncomplete(ID); 6477 return false; 6478 } 6479 IsRecursive = TSC.removeIncomplete(ID); 6480 // The ABI requires unions to be sorted but not structures. 6481 // See FieldEncoding::operator< for sort algorithm. 6482 if (RT->isUnionType()) 6483 std::sort(FE.begin(), FE.end()); 6484 // We can now complete the TypeString. 6485 unsigned E = FE.size(); 6486 for (unsigned I = 0; I != E; ++I) { 6487 if (I) 6488 Enc += ','; 6489 Enc += FE[I].str(); 6490 } 6491 } 6492 Enc += '}'; 6493 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6494 return true; 6495 } 6496 6497 /// Appends enum types to Enc and adds the encoding to the cache. 6498 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6499 TypeStringCache &TSC, 6500 const IdentifierInfo *ID) { 6501 // Append the cached TypeString if we have one. 6502 StringRef TypeString = TSC.lookupStr(ID); 6503 if (!TypeString.empty()) { 6504 Enc += TypeString; 6505 return true; 6506 } 6507 6508 size_t Start = Enc.size(); 6509 Enc += "e("; 6510 if (ID) 6511 Enc += ID->getName(); 6512 Enc += "){"; 6513 6514 // We collect all encoded enumerations and order them alphanumerically. 6515 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6516 SmallVector<FieldEncoding, 16> FE; 6517 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6518 ++I) { 6519 SmallStringEnc EnumEnc; 6520 EnumEnc += "m("; 6521 EnumEnc += I->getName(); 6522 EnumEnc += "){"; 6523 I->getInitVal().toString(EnumEnc); 6524 EnumEnc += '}'; 6525 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6526 } 6527 std::sort(FE.begin(), FE.end()); 6528 unsigned E = FE.size(); 6529 for (unsigned I = 0; I != E; ++I) { 6530 if (I) 6531 Enc += ','; 6532 Enc += FE[I].str(); 6533 } 6534 } 6535 Enc += '}'; 6536 TSC.addIfComplete(ID, Enc.substr(Start), false); 6537 return true; 6538 } 6539 6540 /// Appends type's qualifier to Enc. 6541 /// This is done prior to appending the type's encoding. 6542 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6543 // Qualifiers are emitted in alphabetical order. 6544 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6545 int Lookup = 0; 6546 if (QT.isConstQualified()) 6547 Lookup += 1<<0; 6548 if (QT.isRestrictQualified()) 6549 Lookup += 1<<1; 6550 if (QT.isVolatileQualified()) 6551 Lookup += 1<<2; 6552 Enc += Table[Lookup]; 6553 } 6554 6555 /// Appends built-in types to Enc. 6556 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6557 const char *EncType; 6558 switch (BT->getKind()) { 6559 case BuiltinType::Void: 6560 EncType = "0"; 6561 break; 6562 case BuiltinType::Bool: 6563 EncType = "b"; 6564 break; 6565 case BuiltinType::Char_U: 6566 EncType = "uc"; 6567 break; 6568 case BuiltinType::UChar: 6569 EncType = "uc"; 6570 break; 6571 case BuiltinType::SChar: 6572 EncType = "sc"; 6573 break; 6574 case BuiltinType::UShort: 6575 EncType = "us"; 6576 break; 6577 case BuiltinType::Short: 6578 EncType = "ss"; 6579 break; 6580 case BuiltinType::UInt: 6581 EncType = "ui"; 6582 break; 6583 case BuiltinType::Int: 6584 EncType = "si"; 6585 break; 6586 case BuiltinType::ULong: 6587 EncType = "ul"; 6588 break; 6589 case BuiltinType::Long: 6590 EncType = "sl"; 6591 break; 6592 case BuiltinType::ULongLong: 6593 EncType = "ull"; 6594 break; 6595 case BuiltinType::LongLong: 6596 EncType = "sll"; 6597 break; 6598 case BuiltinType::Float: 6599 EncType = "ft"; 6600 break; 6601 case BuiltinType::Double: 6602 EncType = "d"; 6603 break; 6604 case BuiltinType::LongDouble: 6605 EncType = "ld"; 6606 break; 6607 default: 6608 return false; 6609 } 6610 Enc += EncType; 6611 return true; 6612 } 6613 6614 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6615 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6616 const CodeGen::CodeGenModule &CGM, 6617 TypeStringCache &TSC) { 6618 Enc += "p("; 6619 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6620 return false; 6621 Enc += ')'; 6622 return true; 6623 } 6624 6625 /// Appends array encoding to Enc before calling appendType for the element. 6626 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6627 const ArrayType *AT, 6628 const CodeGen::CodeGenModule &CGM, 6629 TypeStringCache &TSC, StringRef NoSizeEnc) { 6630 if (AT->getSizeModifier() != ArrayType::Normal) 6631 return false; 6632 Enc += "a("; 6633 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6634 CAT->getSize().toStringUnsigned(Enc); 6635 else 6636 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6637 Enc += ':'; 6638 // The Qualifiers should be attached to the type rather than the array. 6639 appendQualifier(Enc, QT); 6640 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6641 return false; 6642 Enc += ')'; 6643 return true; 6644 } 6645 6646 /// Appends a function encoding to Enc, calling appendType for the return type 6647 /// and the arguments. 6648 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6649 const CodeGen::CodeGenModule &CGM, 6650 TypeStringCache &TSC) { 6651 Enc += "f{"; 6652 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6653 return false; 6654 Enc += "}("; 6655 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6656 // N.B. we are only interested in the adjusted param types. 6657 auto I = FPT->param_type_begin(); 6658 auto E = FPT->param_type_end(); 6659 if (I != E) { 6660 do { 6661 if (!appendType(Enc, *I, CGM, TSC)) 6662 return false; 6663 ++I; 6664 if (I != E) 6665 Enc += ','; 6666 } while (I != E); 6667 if (FPT->isVariadic()) 6668 Enc += ",va"; 6669 } else { 6670 if (FPT->isVariadic()) 6671 Enc += "va"; 6672 else 6673 Enc += '0'; 6674 } 6675 } 6676 Enc += ')'; 6677 return true; 6678 } 6679 6680 /// Handles the type's qualifier before dispatching a call to handle specific 6681 /// type encodings. 6682 static bool appendType(SmallStringEnc &Enc, QualType QType, 6683 const CodeGen::CodeGenModule &CGM, 6684 TypeStringCache &TSC) { 6685 6686 QualType QT = QType.getCanonicalType(); 6687 6688 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6689 // The Qualifiers should be attached to the type rather than the array. 6690 // Thus we don't call appendQualifier() here. 6691 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 6692 6693 appendQualifier(Enc, QT); 6694 6695 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 6696 return appendBuiltinType(Enc, BT); 6697 6698 if (const PointerType *PT = QT->getAs<PointerType>()) 6699 return appendPointerType(Enc, PT, CGM, TSC); 6700 6701 if (const EnumType *ET = QT->getAs<EnumType>()) 6702 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 6703 6704 if (const RecordType *RT = QT->getAsStructureType()) 6705 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6706 6707 if (const RecordType *RT = QT->getAsUnionType()) 6708 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6709 6710 if (const FunctionType *FT = QT->getAs<FunctionType>()) 6711 return appendFunctionType(Enc, FT, CGM, TSC); 6712 6713 return false; 6714 } 6715 6716 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6717 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 6718 if (!D) 6719 return false; 6720 6721 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6722 if (FD->getLanguageLinkage() != CLanguageLinkage) 6723 return false; 6724 return appendType(Enc, FD->getType(), CGM, TSC); 6725 } 6726 6727 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 6728 if (VD->getLanguageLinkage() != CLanguageLinkage) 6729 return false; 6730 QualType QT = VD->getType().getCanonicalType(); 6731 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 6732 // Global ArrayTypes are given a size of '*' if the size is unknown. 6733 // The Qualifiers should be attached to the type rather than the array. 6734 // Thus we don't call appendQualifier() here. 6735 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 6736 } 6737 return appendType(Enc, QT, CGM, TSC); 6738 } 6739 return false; 6740 } 6741 6742 6743 //===----------------------------------------------------------------------===// 6744 // Driver code 6745 //===----------------------------------------------------------------------===// 6746 6747 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 6748 if (TheTargetCodeGenInfo) 6749 return *TheTargetCodeGenInfo; 6750 6751 const llvm::Triple &Triple = getTarget().getTriple(); 6752 switch (Triple.getArch()) { 6753 default: 6754 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 6755 6756 case llvm::Triple::le32: 6757 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 6758 case llvm::Triple::mips: 6759 case llvm::Triple::mipsel: 6760 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 6761 6762 case llvm::Triple::mips64: 6763 case llvm::Triple::mips64el: 6764 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 6765 6766 case llvm::Triple::aarch64: 6767 case llvm::Triple::aarch64_be: { 6768 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 6769 if (getTarget().getABI() == "darwinpcs") 6770 Kind = AArch64ABIInfo::DarwinPCS; 6771 6772 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 6773 } 6774 6775 case llvm::Triple::arm: 6776 case llvm::Triple::armeb: 6777 case llvm::Triple::thumb: 6778 case llvm::Triple::thumbeb: 6779 { 6780 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 6781 if (getTarget().getABI() == "apcs-gnu") 6782 Kind = ARMABIInfo::APCS; 6783 else if (CodeGenOpts.FloatABI == "hard" || 6784 (CodeGenOpts.FloatABI != "soft" && 6785 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 6786 Kind = ARMABIInfo::AAPCS_VFP; 6787 6788 switch (Triple.getOS()) { 6789 case llvm::Triple::NaCl: 6790 return *(TheTargetCodeGenInfo = 6791 new NaClARMTargetCodeGenInfo(Types, Kind)); 6792 default: 6793 return *(TheTargetCodeGenInfo = 6794 new ARMTargetCodeGenInfo(Types, Kind)); 6795 } 6796 } 6797 6798 case llvm::Triple::ppc: 6799 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 6800 case llvm::Triple::ppc64: 6801 if (Triple.isOSBinFormatELF()) { 6802 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 6803 if (getTarget().getABI() == "elfv2") 6804 Kind = PPC64_SVR4_ABIInfo::ELFv2; 6805 6806 return *(TheTargetCodeGenInfo = 6807 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 6808 } else 6809 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 6810 case llvm::Triple::ppc64le: { 6811 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 6812 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 6813 if (getTarget().getABI() == "elfv1") 6814 Kind = PPC64_SVR4_ABIInfo::ELFv1; 6815 6816 return *(TheTargetCodeGenInfo = 6817 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind)); 6818 } 6819 6820 case llvm::Triple::nvptx: 6821 case llvm::Triple::nvptx64: 6822 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 6823 6824 case llvm::Triple::msp430: 6825 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 6826 6827 case llvm::Triple::systemz: 6828 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 6829 6830 case llvm::Triple::tce: 6831 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 6832 6833 case llvm::Triple::x86: { 6834 bool IsDarwinVectorABI = Triple.isOSDarwin(); 6835 bool IsSmallStructInRegABI = 6836 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 6837 bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); 6838 6839 if (Triple.getOS() == llvm::Triple::Win32) { 6840 return *(TheTargetCodeGenInfo = 6841 new WinX86_32TargetCodeGenInfo(Types, 6842 IsDarwinVectorABI, IsSmallStructInRegABI, 6843 IsWin32FloatStructABI, 6844 CodeGenOpts.NumRegisterParameters)); 6845 } else { 6846 return *(TheTargetCodeGenInfo = 6847 new X86_32TargetCodeGenInfo(Types, 6848 IsDarwinVectorABI, IsSmallStructInRegABI, 6849 IsWin32FloatStructABI, 6850 CodeGenOpts.NumRegisterParameters)); 6851 } 6852 } 6853 6854 case llvm::Triple::x86_64: { 6855 bool HasAVX = getTarget().getABI() == "avx"; 6856 6857 switch (Triple.getOS()) { 6858 case llvm::Triple::Win32: 6859 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 6860 case llvm::Triple::NaCl: 6861 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 6862 HasAVX)); 6863 default: 6864 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 6865 HasAVX)); 6866 } 6867 } 6868 case llvm::Triple::hexagon: 6869 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 6870 case llvm::Triple::sparcv9: 6871 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 6872 case llvm::Triple::xcore: 6873 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 6874 } 6875 } 6876