1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 // Helper for coercing an aggregate argument or return value into an integer 35 // array of the same size (including padding) and alignment. This alternate 36 // coercion happens only for the RenderScript ABI and can be removed after 37 // runtimes that rely on it are no longer supported. 38 // 39 // RenderScript assumes that the size of the argument / return value in the IR 40 // is the same as the size of the corresponding qualified type. This helper 41 // coerces the aggregate type into an array of the same size (including 42 // padding). This coercion is used in lieu of expansion of struct members or 43 // other canonical coercions that return a coerced-type of larger size. 44 // 45 // Ty - The argument / return value type 46 // Context - The associated ASTContext 47 // LLVMContext - The associated LLVMContext 48 static ABIArgInfo coerceToIntArray(QualType Ty, 49 ASTContext &Context, 50 llvm::LLVMContext &LLVMContext) { 51 // Alignment and Size are measured in bits. 52 const uint64_t Size = Context.getTypeSize(Ty); 53 const uint64_t Alignment = Context.getTypeAlign(Ty); 54 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 55 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 56 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 57 } 58 59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 60 llvm::Value *Array, 61 llvm::Value *Value, 62 unsigned FirstIndex, 63 unsigned LastIndex) { 64 // Alternatively, we could emit this as a loop in the source. 65 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 66 llvm::Value *Cell = 67 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 68 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 69 } 70 } 71 72 static bool isAggregateTypeForABI(QualType T) { 73 return !CodeGenFunction::hasScalarEvaluationKind(T) || 74 T->isMemberFunctionPointerType(); 75 } 76 77 ABIArgInfo 78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 79 llvm::Type *Padding) const { 80 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 81 ByRef, Realign, Padding); 82 } 83 84 ABIArgInfo 85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 86 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 87 /*ByRef*/ false, Realign); 88 } 89 90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 91 QualType Ty) const { 92 return Address::invalid(); 93 } 94 95 ABIInfo::~ABIInfo() {} 96 97 /// Does the given lowering require more than the given number of 98 /// registers when expanded? 99 /// 100 /// This is intended to be the basis of a reasonable basic implementation 101 /// of should{Pass,Return}IndirectlyForSwift. 102 /// 103 /// For most targets, a limit of four total registers is reasonable; this 104 /// limits the amount of code required in order to move around the value 105 /// in case it wasn't produced immediately prior to the call by the caller 106 /// (or wasn't produced in exactly the right registers) or isn't used 107 /// immediately within the callee. But some targets may need to further 108 /// limit the register count due to an inability to support that many 109 /// return registers. 110 static bool occupiesMoreThan(CodeGenTypes &cgt, 111 ArrayRef<llvm::Type*> scalarTypes, 112 unsigned maxAllRegisters) { 113 unsigned intCount = 0, fpCount = 0; 114 for (llvm::Type *type : scalarTypes) { 115 if (type->isPointerTy()) { 116 intCount++; 117 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 118 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 119 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 120 } else { 121 assert(type->isVectorTy() || type->isFloatingPointTy()); 122 fpCount++; 123 } 124 } 125 126 return (intCount + fpCount > maxAllRegisters); 127 } 128 129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 130 llvm::Type *eltTy, 131 unsigned numElts) const { 132 // The default implementation of this assumes that the target guarantees 133 // 128-bit SIMD support but nothing more. 134 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 135 } 136 137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 138 CGCXXABI &CXXABI) { 139 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 140 if (!RD) 141 return CGCXXABI::RAA_Default; 142 return CXXABI.getRecordArgABI(RD); 143 } 144 145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 146 CGCXXABI &CXXABI) { 147 const RecordType *RT = T->getAs<RecordType>(); 148 if (!RT) 149 return CGCXXABI::RAA_Default; 150 return getRecordArgABI(RT, CXXABI); 151 } 152 153 /// Pass transparent unions as if they were the type of the first element. Sema 154 /// should ensure that all elements of the union have the same "machine type". 155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 156 if (const RecordType *UT = Ty->getAsUnionType()) { 157 const RecordDecl *UD = UT->getDecl(); 158 if (UD->hasAttr<TransparentUnionAttr>()) { 159 assert(!UD->field_empty() && "sema created an empty transparent union"); 160 return UD->field_begin()->getType(); 161 } 162 } 163 return Ty; 164 } 165 166 CGCXXABI &ABIInfo::getCXXABI() const { 167 return CGT.getCXXABI(); 168 } 169 170 ASTContext &ABIInfo::getContext() const { 171 return CGT.getContext(); 172 } 173 174 llvm::LLVMContext &ABIInfo::getVMContext() const { 175 return CGT.getLLVMContext(); 176 } 177 178 const llvm::DataLayout &ABIInfo::getDataLayout() const { 179 return CGT.getDataLayout(); 180 } 181 182 const TargetInfo &ABIInfo::getTarget() const { 183 return CGT.getTarget(); 184 } 185 186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 187 188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 189 return false; 190 } 191 192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 193 uint64_t Members) const { 194 return false; 195 } 196 197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 198 return false; 199 } 200 201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 202 raw_ostream &OS = llvm::errs(); 203 OS << "(ABIArgInfo Kind="; 204 switch (TheKind) { 205 case Direct: 206 OS << "Direct Type="; 207 if (llvm::Type *Ty = getCoerceToType()) 208 Ty->print(OS); 209 else 210 OS << "null"; 211 break; 212 case Extend: 213 OS << "Extend"; 214 break; 215 case Ignore: 216 OS << "Ignore"; 217 break; 218 case InAlloca: 219 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 220 break; 221 case Indirect: 222 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 223 << " ByVal=" << getIndirectByVal() 224 << " Realign=" << getIndirectRealign(); 225 break; 226 case Expand: 227 OS << "Expand"; 228 break; 229 case CoerceAndExpand: 230 OS << "CoerceAndExpand Type="; 231 getCoerceAndExpandType()->print(OS); 232 break; 233 } 234 OS << ")\n"; 235 } 236 237 // Dynamically round a pointer up to a multiple of the given alignment. 238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 239 llvm::Value *Ptr, 240 CharUnits Align) { 241 llvm::Value *PtrAsInt = Ptr; 242 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 243 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 244 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 245 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 246 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 247 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 248 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 249 Ptr->getType(), 250 Ptr->getName() + ".aligned"); 251 return PtrAsInt; 252 } 253 254 /// Emit va_arg for a platform using the common void* representation, 255 /// where arguments are simply emitted in an array of slots on the stack. 256 /// 257 /// This version implements the core direct-value passing rules. 258 /// 259 /// \param SlotSize - The size and alignment of a stack slot. 260 /// Each argument will be allocated to a multiple of this number of 261 /// slots, and all the slots will be aligned to this value. 262 /// \param AllowHigherAlign - The slot alignment is not a cap; 263 /// an argument type with an alignment greater than the slot size 264 /// will be emitted on a higher-alignment address, potentially 265 /// leaving one or more empty slots behind as padding. If this 266 /// is false, the returned address might be less-aligned than 267 /// DirectAlign. 268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 269 Address VAListAddr, 270 llvm::Type *DirectTy, 271 CharUnits DirectSize, 272 CharUnits DirectAlign, 273 CharUnits SlotSize, 274 bool AllowHigherAlign) { 275 // Cast the element type to i8* if necessary. Some platforms define 276 // va_list as a struct containing an i8* instead of just an i8*. 277 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 278 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 279 280 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 281 282 // If the CC aligns values higher than the slot size, do so if needed. 283 Address Addr = Address::invalid(); 284 if (AllowHigherAlign && DirectAlign > SlotSize) { 285 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 286 DirectAlign); 287 } else { 288 Addr = Address(Ptr, SlotSize); 289 } 290 291 // Advance the pointer past the argument, then store that back. 292 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 293 llvm::Value *NextPtr = 294 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 295 "argp.next"); 296 CGF.Builder.CreateStore(NextPtr, VAListAddr); 297 298 // If the argument is smaller than a slot, and this is a big-endian 299 // target, the argument will be right-adjusted in its slot. 300 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 301 !DirectTy->isStructTy()) { 302 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 303 } 304 305 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 306 return Addr; 307 } 308 309 /// Emit va_arg for a platform using the common void* representation, 310 /// where arguments are simply emitted in an array of slots on the stack. 311 /// 312 /// \param IsIndirect - Values of this type are passed indirectly. 313 /// \param ValueInfo - The size and alignment of this type, generally 314 /// computed with getContext().getTypeInfoInChars(ValueTy). 315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 316 /// Each argument will be allocated to a multiple of this number of 317 /// slots, and all the slots will be aligned to this value. 318 /// \param AllowHigherAlign - The slot alignment is not a cap; 319 /// an argument type with an alignment greater than the slot size 320 /// will be emitted on a higher-alignment address, potentially 321 /// leaving one or more empty slots behind as padding. 322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 323 QualType ValueTy, bool IsIndirect, 324 std::pair<CharUnits, CharUnits> ValueInfo, 325 CharUnits SlotSizeAndAlign, 326 bool AllowHigherAlign) { 327 // The size and alignment of the value that was passed directly. 328 CharUnits DirectSize, DirectAlign; 329 if (IsIndirect) { 330 DirectSize = CGF.getPointerSize(); 331 DirectAlign = CGF.getPointerAlign(); 332 } else { 333 DirectSize = ValueInfo.first; 334 DirectAlign = ValueInfo.second; 335 } 336 337 // Cast the address we've calculated to the right type. 338 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 339 if (IsIndirect) 340 DirectTy = DirectTy->getPointerTo(0); 341 342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 343 DirectSize, DirectAlign, 344 SlotSizeAndAlign, 345 AllowHigherAlign); 346 347 if (IsIndirect) { 348 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 349 } 350 351 return Addr; 352 353 } 354 355 static Address emitMergePHI(CodeGenFunction &CGF, 356 Address Addr1, llvm::BasicBlock *Block1, 357 Address Addr2, llvm::BasicBlock *Block2, 358 const llvm::Twine &Name = "") { 359 assert(Addr1.getType() == Addr2.getType()); 360 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 361 PHI->addIncoming(Addr1.getPointer(), Block1); 362 PHI->addIncoming(Addr2.getPointer(), Block2); 363 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 364 return Address(PHI, Align); 365 } 366 367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 368 369 // If someone can figure out a general rule for this, that would be great. 370 // It's probably just doomed to be platform-dependent, though. 371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 372 // Verified for: 373 // x86-64 FreeBSD, Linux, Darwin 374 // x86-32 FreeBSD, Linux, Darwin 375 // PowerPC Linux, Darwin 376 // ARM Darwin (*not* EABI) 377 // AArch64 Linux 378 return 32; 379 } 380 381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 382 const FunctionNoProtoType *fnType) const { 383 // The following conventions are known to require this to be false: 384 // x86_stdcall 385 // MIPS 386 // For everything else, we just prefer false unless we opt out. 387 return false; 388 } 389 390 void 391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 392 llvm::SmallString<24> &Opt) const { 393 // This assumes the user is passing a library name like "rt" instead of a 394 // filename like "librt.a/so", and that they don't care whether it's static or 395 // dynamic. 396 Opt = "-l"; 397 Opt += Lib; 398 } 399 400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 401 return llvm::CallingConv::C; 402 } 403 404 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 405 406 /// isEmptyField - Return true iff a the field is "empty", that is it 407 /// is an unnamed bit-field or an (array of) empty record(s). 408 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 409 bool AllowArrays) { 410 if (FD->isUnnamedBitfield()) 411 return true; 412 413 QualType FT = FD->getType(); 414 415 // Constant arrays of empty records count as empty, strip them off. 416 // Constant arrays of zero length always count as empty. 417 if (AllowArrays) 418 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 419 if (AT->getSize() == 0) 420 return true; 421 FT = AT->getElementType(); 422 } 423 424 const RecordType *RT = FT->getAs<RecordType>(); 425 if (!RT) 426 return false; 427 428 // C++ record fields are never empty, at least in the Itanium ABI. 429 // 430 // FIXME: We should use a predicate for whether this behavior is true in the 431 // current ABI. 432 if (isa<CXXRecordDecl>(RT->getDecl())) 433 return false; 434 435 return isEmptyRecord(Context, FT, AllowArrays); 436 } 437 438 /// isEmptyRecord - Return true iff a structure contains only empty 439 /// fields. Note that a structure with a flexible array member is not 440 /// considered empty. 441 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 442 const RecordType *RT = T->getAs<RecordType>(); 443 if (!RT) 444 return false; 445 const RecordDecl *RD = RT->getDecl(); 446 if (RD->hasFlexibleArrayMember()) 447 return false; 448 449 // If this is a C++ record, check the bases first. 450 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 451 for (const auto &I : CXXRD->bases()) 452 if (!isEmptyRecord(Context, I.getType(), true)) 453 return false; 454 455 for (const auto *I : RD->fields()) 456 if (!isEmptyField(Context, I, AllowArrays)) 457 return false; 458 return true; 459 } 460 461 /// isSingleElementStruct - Determine if a structure is a "single 462 /// element struct", i.e. it has exactly one non-empty field or 463 /// exactly one field which is itself a single element 464 /// struct. Structures with flexible array members are never 465 /// considered single element structs. 466 /// 467 /// \return The field declaration for the single non-empty field, if 468 /// it exists. 469 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 470 const RecordType *RT = T->getAs<RecordType>(); 471 if (!RT) 472 return nullptr; 473 474 const RecordDecl *RD = RT->getDecl(); 475 if (RD->hasFlexibleArrayMember()) 476 return nullptr; 477 478 const Type *Found = nullptr; 479 480 // If this is a C++ record, check the bases first. 481 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 482 for (const auto &I : CXXRD->bases()) { 483 // Ignore empty records. 484 if (isEmptyRecord(Context, I.getType(), true)) 485 continue; 486 487 // If we already found an element then this isn't a single-element struct. 488 if (Found) 489 return nullptr; 490 491 // If this is non-empty and not a single element struct, the composite 492 // cannot be a single element struct. 493 Found = isSingleElementStruct(I.getType(), Context); 494 if (!Found) 495 return nullptr; 496 } 497 } 498 499 // Check for single element. 500 for (const auto *FD : RD->fields()) { 501 QualType FT = FD->getType(); 502 503 // Ignore empty fields. 504 if (isEmptyField(Context, FD, true)) 505 continue; 506 507 // If we already found an element then this isn't a single-element 508 // struct. 509 if (Found) 510 return nullptr; 511 512 // Treat single element arrays as the element. 513 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 514 if (AT->getSize().getZExtValue() != 1) 515 break; 516 FT = AT->getElementType(); 517 } 518 519 if (!isAggregateTypeForABI(FT)) { 520 Found = FT.getTypePtr(); 521 } else { 522 Found = isSingleElementStruct(FT, Context); 523 if (!Found) 524 return nullptr; 525 } 526 } 527 528 // We don't consider a struct a single-element struct if it has 529 // padding beyond the element type. 530 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 531 return nullptr; 532 533 return Found; 534 } 535 536 namespace { 537 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 538 const ABIArgInfo &AI) { 539 // This default implementation defers to the llvm backend's va_arg 540 // instruction. It can handle only passing arguments directly 541 // (typically only handled in the backend for primitive types), or 542 // aggregates passed indirectly by pointer (NOTE: if the "byval" 543 // flag has ABI impact in the callee, this implementation cannot 544 // work.) 545 546 // Only a few cases are covered here at the moment -- those needed 547 // by the default abi. 548 llvm::Value *Val; 549 550 if (AI.isIndirect()) { 551 assert(!AI.getPaddingType() && 552 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 553 assert( 554 !AI.getIndirectRealign() && 555 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 556 557 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 558 CharUnits TyAlignForABI = TyInfo.second; 559 560 llvm::Type *BaseTy = 561 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 562 llvm::Value *Addr = 563 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 564 return Address(Addr, TyAlignForABI); 565 } else { 566 assert((AI.isDirect() || AI.isExtend()) && 567 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 568 569 assert(!AI.getInReg() && 570 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 571 assert(!AI.getPaddingType() && 572 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 573 assert(!AI.getDirectOffset() && 574 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 575 assert(!AI.getCoerceToType() && 576 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 577 578 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 579 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 580 CGF.Builder.CreateStore(Val, Temp); 581 return Temp; 582 } 583 } 584 585 /// DefaultABIInfo - The default implementation for ABI specific 586 /// details. This implementation provides information which results in 587 /// self-consistent and sensible LLVM IR generation, but does not 588 /// conform to any particular ABI. 589 class DefaultABIInfo : public ABIInfo { 590 public: 591 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 592 593 ABIArgInfo classifyReturnType(QualType RetTy) const; 594 ABIArgInfo classifyArgumentType(QualType RetTy) const; 595 596 void computeInfo(CGFunctionInfo &FI) const override { 597 if (!getCXXABI().classifyReturnType(FI)) 598 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 599 for (auto &I : FI.arguments()) 600 I.info = classifyArgumentType(I.type); 601 } 602 603 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 604 QualType Ty) const override { 605 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 606 } 607 }; 608 609 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 610 public: 611 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 612 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 613 }; 614 615 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 616 Ty = useFirstFieldIfTransparentUnion(Ty); 617 618 if (isAggregateTypeForABI(Ty)) { 619 // Records with non-trivial destructors/copy-constructors should not be 620 // passed by value. 621 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 622 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 623 624 return getNaturalAlignIndirect(Ty); 625 } 626 627 // Treat an enum type as its underlying type. 628 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 629 Ty = EnumTy->getDecl()->getIntegerType(); 630 631 return (Ty->isPromotableIntegerType() ? 632 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 633 } 634 635 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 636 if (RetTy->isVoidType()) 637 return ABIArgInfo::getIgnore(); 638 639 if (isAggregateTypeForABI(RetTy)) 640 return getNaturalAlignIndirect(RetTy); 641 642 // Treat an enum type as its underlying type. 643 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 644 RetTy = EnumTy->getDecl()->getIntegerType(); 645 646 return (RetTy->isPromotableIntegerType() ? 647 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 648 } 649 650 //===----------------------------------------------------------------------===// 651 // WebAssembly ABI Implementation 652 // 653 // This is a very simple ABI that relies a lot on DefaultABIInfo. 654 //===----------------------------------------------------------------------===// 655 656 class WebAssemblyABIInfo final : public DefaultABIInfo { 657 public: 658 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 659 : DefaultABIInfo(CGT) {} 660 661 private: 662 ABIArgInfo classifyReturnType(QualType RetTy) const; 663 ABIArgInfo classifyArgumentType(QualType Ty) const; 664 665 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 666 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 667 // overload them. 668 void computeInfo(CGFunctionInfo &FI) const override { 669 if (!getCXXABI().classifyReturnType(FI)) 670 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 671 for (auto &Arg : FI.arguments()) 672 Arg.info = classifyArgumentType(Arg.type); 673 } 674 675 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 676 QualType Ty) const override; 677 }; 678 679 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 680 public: 681 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 682 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 683 }; 684 685 /// \brief Classify argument of given type \p Ty. 686 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 687 Ty = useFirstFieldIfTransparentUnion(Ty); 688 689 if (isAggregateTypeForABI(Ty)) { 690 // Records with non-trivial destructors/copy-constructors should not be 691 // passed by value. 692 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 693 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 694 // Ignore empty structs/unions. 695 if (isEmptyRecord(getContext(), Ty, true)) 696 return ABIArgInfo::getIgnore(); 697 // Lower single-element structs to just pass a regular value. TODO: We 698 // could do reasonable-size multiple-element structs too, using getExpand(), 699 // though watch out for things like bitfields. 700 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 701 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 702 } 703 704 // Otherwise just do the default thing. 705 return DefaultABIInfo::classifyArgumentType(Ty); 706 } 707 708 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 709 if (isAggregateTypeForABI(RetTy)) { 710 // Records with non-trivial destructors/copy-constructors should not be 711 // returned by value. 712 if (!getRecordArgABI(RetTy, getCXXABI())) { 713 // Ignore empty structs/unions. 714 if (isEmptyRecord(getContext(), RetTy, true)) 715 return ABIArgInfo::getIgnore(); 716 // Lower single-element structs to just return a regular value. TODO: We 717 // could do reasonable-size multiple-element structs too, using 718 // ABIArgInfo::getDirect(). 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 721 } 722 } 723 724 // Otherwise just do the default thing. 725 return DefaultABIInfo::classifyReturnType(RetTy); 726 } 727 728 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 729 QualType Ty) const { 730 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 731 getContext().getTypeInfoInChars(Ty), 732 CharUnits::fromQuantity(4), 733 /*AllowHigherAlign=*/ true); 734 } 735 736 //===----------------------------------------------------------------------===// 737 // le32/PNaCl bitcode ABI Implementation 738 // 739 // This is a simplified version of the x86_32 ABI. Arguments and return values 740 // are always passed on the stack. 741 //===----------------------------------------------------------------------===// 742 743 class PNaClABIInfo : public ABIInfo { 744 public: 745 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 746 747 ABIArgInfo classifyReturnType(QualType RetTy) const; 748 ABIArgInfo classifyArgumentType(QualType RetTy) const; 749 750 void computeInfo(CGFunctionInfo &FI) const override; 751 Address EmitVAArg(CodeGenFunction &CGF, 752 Address VAListAddr, QualType Ty) const override; 753 }; 754 755 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 756 public: 757 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 758 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 759 }; 760 761 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 762 if (!getCXXABI().classifyReturnType(FI)) 763 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 764 765 for (auto &I : FI.arguments()) 766 I.info = classifyArgumentType(I.type); 767 } 768 769 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 770 QualType Ty) const { 771 // The PNaCL ABI is a bit odd, in that varargs don't use normal 772 // function classification. Structs get passed directly for varargs 773 // functions, through a rewriting transform in 774 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 775 // this target to actually support a va_arg instructions with an 776 // aggregate type, unlike other targets. 777 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 778 } 779 780 /// \brief Classify argument of given type \p Ty. 781 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 782 if (isAggregateTypeForABI(Ty)) { 783 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 784 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 785 return getNaturalAlignIndirect(Ty); 786 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 787 // Treat an enum type as its underlying type. 788 Ty = EnumTy->getDecl()->getIntegerType(); 789 } else if (Ty->isFloatingType()) { 790 // Floating-point types don't go inreg. 791 return ABIArgInfo::getDirect(); 792 } 793 794 return (Ty->isPromotableIntegerType() ? 795 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 796 } 797 798 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 799 if (RetTy->isVoidType()) 800 return ABIArgInfo::getIgnore(); 801 802 // In the PNaCl ABI we always return records/structures on the stack. 803 if (isAggregateTypeForABI(RetTy)) 804 return getNaturalAlignIndirect(RetTy); 805 806 // Treat an enum type as its underlying type. 807 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 808 RetTy = EnumTy->getDecl()->getIntegerType(); 809 810 return (RetTy->isPromotableIntegerType() ? 811 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 812 } 813 814 /// IsX86_MMXType - Return true if this is an MMX type. 815 bool IsX86_MMXType(llvm::Type *IRType) { 816 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 817 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 818 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 819 IRType->getScalarSizeInBits() != 64; 820 } 821 822 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 823 StringRef Constraint, 824 llvm::Type* Ty) { 825 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 826 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 827 // Invalid MMX constraint 828 return nullptr; 829 } 830 831 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 832 } 833 834 // No operation needed 835 return Ty; 836 } 837 838 /// Returns true if this type can be passed in SSE registers with the 839 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 840 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 841 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 842 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 843 return true; 844 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 845 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 846 // registers specially. 847 unsigned VecSize = Context.getTypeSize(VT); 848 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 849 return true; 850 } 851 return false; 852 } 853 854 /// Returns true if this aggregate is small enough to be passed in SSE registers 855 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 856 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 857 return NumMembers <= 4; 858 } 859 860 //===----------------------------------------------------------------------===// 861 // X86-32 ABI Implementation 862 //===----------------------------------------------------------------------===// 863 864 /// \brief Similar to llvm::CCState, but for Clang. 865 struct CCState { 866 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 867 868 unsigned CC; 869 unsigned FreeRegs; 870 unsigned FreeSSERegs; 871 }; 872 873 /// X86_32ABIInfo - The X86-32 ABI information. 874 class X86_32ABIInfo : public SwiftABIInfo { 875 enum Class { 876 Integer, 877 Float 878 }; 879 880 static const unsigned MinABIStackAlignInBytes = 4; 881 882 bool IsDarwinVectorABI; 883 bool IsRetSmallStructInRegABI; 884 bool IsWin32StructABI; 885 bool IsSoftFloatABI; 886 bool IsMCUABI; 887 unsigned DefaultNumRegisterParameters; 888 889 static bool isRegisterSize(unsigned Size) { 890 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 891 } 892 893 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 894 // FIXME: Assumes vectorcall is in use. 895 return isX86VectorTypeForVectorCall(getContext(), Ty); 896 } 897 898 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 899 uint64_t NumMembers) const override { 900 // FIXME: Assumes vectorcall is in use. 901 return isX86VectorCallAggregateSmallEnough(NumMembers); 902 } 903 904 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 905 906 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 907 /// such that the argument will be passed in memory. 908 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 909 910 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 911 912 /// \brief Return the alignment to use for the given type on the stack. 913 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 914 915 Class classify(QualType Ty) const; 916 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 917 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 918 /// \brief Updates the number of available free registers, returns 919 /// true if any registers were allocated. 920 bool updateFreeRegs(QualType Ty, CCState &State) const; 921 922 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 923 bool &NeedsPadding) const; 924 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 925 926 bool canExpandIndirectArgument(QualType Ty) const; 927 928 /// \brief Rewrite the function info so that all memory arguments use 929 /// inalloca. 930 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 931 932 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 933 CharUnits &StackOffset, ABIArgInfo &Info, 934 QualType Type) const; 935 936 public: 937 938 void computeInfo(CGFunctionInfo &FI) const override; 939 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 940 QualType Ty) const override; 941 942 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 943 bool RetSmallStructInRegABI, bool Win32StructABI, 944 unsigned NumRegisterParameters, bool SoftFloatABI) 945 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 946 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 947 IsWin32StructABI(Win32StructABI), 948 IsSoftFloatABI(SoftFloatABI), 949 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 950 DefaultNumRegisterParameters(NumRegisterParameters) {} 951 952 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 953 ArrayRef<llvm::Type*> scalars, 954 bool asReturnValue) const override { 955 // LLVM's x86-32 lowering currently only assigns up to three 956 // integer registers and three fp registers. Oddly, it'll use up to 957 // four vector registers for vectors, but those can overlap with the 958 // scalar registers. 959 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 960 } 961 }; 962 963 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 964 public: 965 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 966 bool RetSmallStructInRegABI, bool Win32StructABI, 967 unsigned NumRegisterParameters, bool SoftFloatABI) 968 : TargetCodeGenInfo(new X86_32ABIInfo( 969 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 970 NumRegisterParameters, SoftFloatABI)) {} 971 972 static bool isStructReturnInRegABI( 973 const llvm::Triple &Triple, const CodeGenOptions &Opts); 974 975 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 976 CodeGen::CodeGenModule &CGM) const override; 977 978 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 979 // Darwin uses different dwarf register numbers for EH. 980 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 981 return 4; 982 } 983 984 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 985 llvm::Value *Address) const override; 986 987 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 988 StringRef Constraint, 989 llvm::Type* Ty) const override { 990 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 991 } 992 993 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 994 std::string &Constraints, 995 std::vector<llvm::Type *> &ResultRegTypes, 996 std::vector<llvm::Type *> &ResultTruncRegTypes, 997 std::vector<LValue> &ResultRegDests, 998 std::string &AsmString, 999 unsigned NumOutputs) const override; 1000 1001 llvm::Constant * 1002 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1003 unsigned Sig = (0xeb << 0) | // jmp rel8 1004 (0x06 << 8) | // .+0x08 1005 ('F' << 16) | 1006 ('T' << 24); 1007 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1008 } 1009 1010 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1011 return "movl\t%ebp, %ebp" 1012 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1013 } 1014 }; 1015 1016 } 1017 1018 /// Rewrite input constraint references after adding some output constraints. 1019 /// In the case where there is one output and one input and we add one output, 1020 /// we need to replace all operand references greater than or equal to 1: 1021 /// mov $0, $1 1022 /// mov eax, $1 1023 /// The result will be: 1024 /// mov $0, $2 1025 /// mov eax, $2 1026 static void rewriteInputConstraintReferences(unsigned FirstIn, 1027 unsigned NumNewOuts, 1028 std::string &AsmString) { 1029 std::string Buf; 1030 llvm::raw_string_ostream OS(Buf); 1031 size_t Pos = 0; 1032 while (Pos < AsmString.size()) { 1033 size_t DollarStart = AsmString.find('$', Pos); 1034 if (DollarStart == std::string::npos) 1035 DollarStart = AsmString.size(); 1036 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1037 if (DollarEnd == std::string::npos) 1038 DollarEnd = AsmString.size(); 1039 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1040 Pos = DollarEnd; 1041 size_t NumDollars = DollarEnd - DollarStart; 1042 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1043 // We have an operand reference. 1044 size_t DigitStart = Pos; 1045 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1046 if (DigitEnd == std::string::npos) 1047 DigitEnd = AsmString.size(); 1048 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1049 unsigned OperandIndex; 1050 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1051 if (OperandIndex >= FirstIn) 1052 OperandIndex += NumNewOuts; 1053 OS << OperandIndex; 1054 } else { 1055 OS << OperandStr; 1056 } 1057 Pos = DigitEnd; 1058 } 1059 } 1060 AsmString = std::move(OS.str()); 1061 } 1062 1063 /// Add output constraints for EAX:EDX because they are return registers. 1064 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1065 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1066 std::vector<llvm::Type *> &ResultRegTypes, 1067 std::vector<llvm::Type *> &ResultTruncRegTypes, 1068 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1069 unsigned NumOutputs) const { 1070 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1071 1072 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1073 // larger. 1074 if (!Constraints.empty()) 1075 Constraints += ','; 1076 if (RetWidth <= 32) { 1077 Constraints += "={eax}"; 1078 ResultRegTypes.push_back(CGF.Int32Ty); 1079 } else { 1080 // Use the 'A' constraint for EAX:EDX. 1081 Constraints += "=A"; 1082 ResultRegTypes.push_back(CGF.Int64Ty); 1083 } 1084 1085 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1086 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1087 ResultTruncRegTypes.push_back(CoerceTy); 1088 1089 // Coerce the integer by bitcasting the return slot pointer. 1090 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1091 CoerceTy->getPointerTo())); 1092 ResultRegDests.push_back(ReturnSlot); 1093 1094 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1095 } 1096 1097 /// shouldReturnTypeInRegister - Determine if the given type should be 1098 /// returned in a register (for the Darwin and MCU ABI). 1099 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1100 ASTContext &Context) const { 1101 uint64_t Size = Context.getTypeSize(Ty); 1102 1103 // For i386, type must be register sized. 1104 // For the MCU ABI, it only needs to be <= 8-byte 1105 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1106 return false; 1107 1108 if (Ty->isVectorType()) { 1109 // 64- and 128- bit vectors inside structures are not returned in 1110 // registers. 1111 if (Size == 64 || Size == 128) 1112 return false; 1113 1114 return true; 1115 } 1116 1117 // If this is a builtin, pointer, enum, complex type, member pointer, or 1118 // member function pointer it is ok. 1119 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1120 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1121 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1122 return true; 1123 1124 // Arrays are treated like records. 1125 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1126 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1127 1128 // Otherwise, it must be a record type. 1129 const RecordType *RT = Ty->getAs<RecordType>(); 1130 if (!RT) return false; 1131 1132 // FIXME: Traverse bases here too. 1133 1134 // Structure types are passed in register if all fields would be 1135 // passed in a register. 1136 for (const auto *FD : RT->getDecl()->fields()) { 1137 // Empty fields are ignored. 1138 if (isEmptyField(Context, FD, true)) 1139 continue; 1140 1141 // Check fields recursively. 1142 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1143 return false; 1144 } 1145 return true; 1146 } 1147 1148 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1149 // Treat complex types as the element type. 1150 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1151 Ty = CTy->getElementType(); 1152 1153 // Check for a type which we know has a simple scalar argument-passing 1154 // convention without any padding. (We're specifically looking for 32 1155 // and 64-bit integer and integer-equivalents, float, and double.) 1156 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1157 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1158 return false; 1159 1160 uint64_t Size = Context.getTypeSize(Ty); 1161 return Size == 32 || Size == 64; 1162 } 1163 1164 /// Test whether an argument type which is to be passed indirectly (on the 1165 /// stack) would have the equivalent layout if it was expanded into separate 1166 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1167 /// optimizations. 1168 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1169 // We can only expand structure types. 1170 const RecordType *RT = Ty->getAs<RecordType>(); 1171 if (!RT) 1172 return false; 1173 const RecordDecl *RD = RT->getDecl(); 1174 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1175 if (!IsWin32StructABI ) { 1176 // On non-Windows, we have to conservatively match our old bitcode 1177 // prototypes in order to be ABI-compatible at the bitcode level. 1178 if (!CXXRD->isCLike()) 1179 return false; 1180 } else { 1181 // Don't do this for dynamic classes. 1182 if (CXXRD->isDynamicClass()) 1183 return false; 1184 // Don't do this if there are any non-empty bases. 1185 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 1186 if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true)) 1187 return false; 1188 } 1189 } 1190 } 1191 1192 uint64_t Size = 0; 1193 1194 for (const auto *FD : RD->fields()) { 1195 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1196 // argument is smaller than 32-bits, expanding the struct will create 1197 // alignment padding. 1198 if (!is32Or64BitBasicType(FD->getType(), getContext())) 1199 return false; 1200 1201 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1202 // how to expand them yet, and the predicate for telling if a bitfield still 1203 // counts as "basic" is more complicated than what we were doing previously. 1204 if (FD->isBitField()) 1205 return false; 1206 1207 Size += getContext().getTypeSize(FD->getType()); 1208 } 1209 1210 // We can do this if there was no alignment padding. 1211 return Size == getContext().getTypeSize(Ty); 1212 } 1213 1214 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1215 // If the return value is indirect, then the hidden argument is consuming one 1216 // integer register. 1217 if (State.FreeRegs) { 1218 --State.FreeRegs; 1219 if (!IsMCUABI) 1220 return getNaturalAlignIndirectInReg(RetTy); 1221 } 1222 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1223 } 1224 1225 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1226 CCState &State) const { 1227 if (RetTy->isVoidType()) 1228 return ABIArgInfo::getIgnore(); 1229 1230 const Type *Base = nullptr; 1231 uint64_t NumElts = 0; 1232 if (State.CC == llvm::CallingConv::X86_VectorCall && 1233 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1234 // The LLVM struct type for such an aggregate should lower properly. 1235 return ABIArgInfo::getDirect(); 1236 } 1237 1238 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1239 // On Darwin, some vectors are returned in registers. 1240 if (IsDarwinVectorABI) { 1241 uint64_t Size = getContext().getTypeSize(RetTy); 1242 1243 // 128-bit vectors are a special case; they are returned in 1244 // registers and we need to make sure to pick a type the LLVM 1245 // backend will like. 1246 if (Size == 128) 1247 return ABIArgInfo::getDirect(llvm::VectorType::get( 1248 llvm::Type::getInt64Ty(getVMContext()), 2)); 1249 1250 // Always return in register if it fits in a general purpose 1251 // register, or if it is 64 bits and has a single element. 1252 if ((Size == 8 || Size == 16 || Size == 32) || 1253 (Size == 64 && VT->getNumElements() == 1)) 1254 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1255 Size)); 1256 1257 return getIndirectReturnResult(RetTy, State); 1258 } 1259 1260 return ABIArgInfo::getDirect(); 1261 } 1262 1263 if (isAggregateTypeForABI(RetTy)) { 1264 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1265 // Structures with flexible arrays are always indirect. 1266 if (RT->getDecl()->hasFlexibleArrayMember()) 1267 return getIndirectReturnResult(RetTy, State); 1268 } 1269 1270 // If specified, structs and unions are always indirect. 1271 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1272 return getIndirectReturnResult(RetTy, State); 1273 1274 // Ignore empty structs/unions. 1275 if (isEmptyRecord(getContext(), RetTy, true)) 1276 return ABIArgInfo::getIgnore(); 1277 1278 // Small structures which are register sized are generally returned 1279 // in a register. 1280 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1281 uint64_t Size = getContext().getTypeSize(RetTy); 1282 1283 // As a special-case, if the struct is a "single-element" struct, and 1284 // the field is of type "float" or "double", return it in a 1285 // floating-point register. (MSVC does not apply this special case.) 1286 // We apply a similar transformation for pointer types to improve the 1287 // quality of the generated IR. 1288 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1289 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1290 || SeltTy->hasPointerRepresentation()) 1291 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1292 1293 // FIXME: We should be able to narrow this integer in cases with dead 1294 // padding. 1295 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1296 } 1297 1298 return getIndirectReturnResult(RetTy, State); 1299 } 1300 1301 // Treat an enum type as its underlying type. 1302 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1303 RetTy = EnumTy->getDecl()->getIntegerType(); 1304 1305 return (RetTy->isPromotableIntegerType() ? 1306 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1307 } 1308 1309 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1310 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1311 } 1312 1313 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1314 const RecordType *RT = Ty->getAs<RecordType>(); 1315 if (!RT) 1316 return 0; 1317 const RecordDecl *RD = RT->getDecl(); 1318 1319 // If this is a C++ record, check the bases first. 1320 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1321 for (const auto &I : CXXRD->bases()) 1322 if (!isRecordWithSSEVectorType(Context, I.getType())) 1323 return false; 1324 1325 for (const auto *i : RD->fields()) { 1326 QualType FT = i->getType(); 1327 1328 if (isSSEVectorType(Context, FT)) 1329 return true; 1330 1331 if (isRecordWithSSEVectorType(Context, FT)) 1332 return true; 1333 } 1334 1335 return false; 1336 } 1337 1338 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1339 unsigned Align) const { 1340 // Otherwise, if the alignment is less than or equal to the minimum ABI 1341 // alignment, just use the default; the backend will handle this. 1342 if (Align <= MinABIStackAlignInBytes) 1343 return 0; // Use default alignment. 1344 1345 // On non-Darwin, the stack type alignment is always 4. 1346 if (!IsDarwinVectorABI) { 1347 // Set explicit alignment, since we may need to realign the top. 1348 return MinABIStackAlignInBytes; 1349 } 1350 1351 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1352 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1353 isRecordWithSSEVectorType(getContext(), Ty))) 1354 return 16; 1355 1356 return MinABIStackAlignInBytes; 1357 } 1358 1359 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1360 CCState &State) const { 1361 if (!ByVal) { 1362 if (State.FreeRegs) { 1363 --State.FreeRegs; // Non-byval indirects just use one pointer. 1364 if (!IsMCUABI) 1365 return getNaturalAlignIndirectInReg(Ty); 1366 } 1367 return getNaturalAlignIndirect(Ty, false); 1368 } 1369 1370 // Compute the byval alignment. 1371 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1372 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1373 if (StackAlign == 0) 1374 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1375 1376 // If the stack alignment is less than the type alignment, realign the 1377 // argument. 1378 bool Realign = TypeAlign > StackAlign; 1379 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1380 /*ByVal=*/true, Realign); 1381 } 1382 1383 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1384 const Type *T = isSingleElementStruct(Ty, getContext()); 1385 if (!T) 1386 T = Ty.getTypePtr(); 1387 1388 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1389 BuiltinType::Kind K = BT->getKind(); 1390 if (K == BuiltinType::Float || K == BuiltinType::Double) 1391 return Float; 1392 } 1393 return Integer; 1394 } 1395 1396 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1397 if (!IsSoftFloatABI) { 1398 Class C = classify(Ty); 1399 if (C == Float) 1400 return false; 1401 } 1402 1403 unsigned Size = getContext().getTypeSize(Ty); 1404 unsigned SizeInRegs = (Size + 31) / 32; 1405 1406 if (SizeInRegs == 0) 1407 return false; 1408 1409 if (!IsMCUABI) { 1410 if (SizeInRegs > State.FreeRegs) { 1411 State.FreeRegs = 0; 1412 return false; 1413 } 1414 } else { 1415 // The MCU psABI allows passing parameters in-reg even if there are 1416 // earlier parameters that are passed on the stack. Also, 1417 // it does not allow passing >8-byte structs in-register, 1418 // even if there are 3 free registers available. 1419 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1420 return false; 1421 } 1422 1423 State.FreeRegs -= SizeInRegs; 1424 return true; 1425 } 1426 1427 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1428 bool &InReg, 1429 bool &NeedsPadding) const { 1430 // On Windows, aggregates other than HFAs are never passed in registers, and 1431 // they do not consume register slots. Homogenous floating-point aggregates 1432 // (HFAs) have already been dealt with at this point. 1433 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1434 return false; 1435 1436 NeedsPadding = false; 1437 InReg = !IsMCUABI; 1438 1439 if (!updateFreeRegs(Ty, State)) 1440 return false; 1441 1442 if (IsMCUABI) 1443 return true; 1444 1445 if (State.CC == llvm::CallingConv::X86_FastCall || 1446 State.CC == llvm::CallingConv::X86_VectorCall) { 1447 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1448 NeedsPadding = true; 1449 1450 return false; 1451 } 1452 1453 return true; 1454 } 1455 1456 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1457 if (!updateFreeRegs(Ty, State)) 1458 return false; 1459 1460 if (IsMCUABI) 1461 return false; 1462 1463 if (State.CC == llvm::CallingConv::X86_FastCall || 1464 State.CC == llvm::CallingConv::X86_VectorCall) { 1465 if (getContext().getTypeSize(Ty) > 32) 1466 return false; 1467 1468 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1469 Ty->isReferenceType()); 1470 } 1471 1472 return true; 1473 } 1474 1475 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1476 CCState &State) const { 1477 // FIXME: Set alignment on indirect arguments. 1478 1479 Ty = useFirstFieldIfTransparentUnion(Ty); 1480 1481 // Check with the C++ ABI first. 1482 const RecordType *RT = Ty->getAs<RecordType>(); 1483 if (RT) { 1484 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1485 if (RAA == CGCXXABI::RAA_Indirect) { 1486 return getIndirectResult(Ty, false, State); 1487 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1488 // The field index doesn't matter, we'll fix it up later. 1489 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1490 } 1491 } 1492 1493 // vectorcall adds the concept of a homogenous vector aggregate, similar 1494 // to other targets. 1495 const Type *Base = nullptr; 1496 uint64_t NumElts = 0; 1497 if (State.CC == llvm::CallingConv::X86_VectorCall && 1498 isHomogeneousAggregate(Ty, Base, NumElts)) { 1499 if (State.FreeSSERegs >= NumElts) { 1500 State.FreeSSERegs -= NumElts; 1501 if (Ty->isBuiltinType() || Ty->isVectorType()) 1502 return ABIArgInfo::getDirect(); 1503 return ABIArgInfo::getExpand(); 1504 } 1505 return getIndirectResult(Ty, /*ByVal=*/false, State); 1506 } 1507 1508 if (isAggregateTypeForABI(Ty)) { 1509 // Structures with flexible arrays are always indirect. 1510 // FIXME: This should not be byval! 1511 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1512 return getIndirectResult(Ty, true, State); 1513 1514 // Ignore empty structs/unions on non-Windows. 1515 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1516 return ABIArgInfo::getIgnore(); 1517 1518 llvm::LLVMContext &LLVMContext = getVMContext(); 1519 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1520 bool NeedsPadding = false; 1521 bool InReg; 1522 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1523 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1524 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1525 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1526 if (InReg) 1527 return ABIArgInfo::getDirectInReg(Result); 1528 else 1529 return ABIArgInfo::getDirect(Result); 1530 } 1531 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1532 1533 // Expand small (<= 128-bit) record types when we know that the stack layout 1534 // of those arguments will match the struct. This is important because the 1535 // LLVM backend isn't smart enough to remove byval, which inhibits many 1536 // optimizations. 1537 // Don't do this for the MCU if there are still free integer registers 1538 // (see X86_64 ABI for full explanation). 1539 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1540 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1541 return ABIArgInfo::getExpandWithPadding( 1542 State.CC == llvm::CallingConv::X86_FastCall || 1543 State.CC == llvm::CallingConv::X86_VectorCall, 1544 PaddingType); 1545 1546 return getIndirectResult(Ty, true, State); 1547 } 1548 1549 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1550 // On Darwin, some vectors are passed in memory, we handle this by passing 1551 // it as an i8/i16/i32/i64. 1552 if (IsDarwinVectorABI) { 1553 uint64_t Size = getContext().getTypeSize(Ty); 1554 if ((Size == 8 || Size == 16 || Size == 32) || 1555 (Size == 64 && VT->getNumElements() == 1)) 1556 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1557 Size)); 1558 } 1559 1560 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1561 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1562 1563 return ABIArgInfo::getDirect(); 1564 } 1565 1566 1567 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1568 Ty = EnumTy->getDecl()->getIntegerType(); 1569 1570 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1571 1572 if (Ty->isPromotableIntegerType()) { 1573 if (InReg) 1574 return ABIArgInfo::getExtendInReg(); 1575 return ABIArgInfo::getExtend(); 1576 } 1577 1578 if (InReg) 1579 return ABIArgInfo::getDirectInReg(); 1580 return ABIArgInfo::getDirect(); 1581 } 1582 1583 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1584 CCState State(FI.getCallingConvention()); 1585 if (IsMCUABI) 1586 State.FreeRegs = 3; 1587 else if (State.CC == llvm::CallingConv::X86_FastCall) 1588 State.FreeRegs = 2; 1589 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1590 State.FreeRegs = 2; 1591 State.FreeSSERegs = 6; 1592 } else if (FI.getHasRegParm()) 1593 State.FreeRegs = FI.getRegParm(); 1594 else 1595 State.FreeRegs = DefaultNumRegisterParameters; 1596 1597 if (!getCXXABI().classifyReturnType(FI)) { 1598 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1599 } else if (FI.getReturnInfo().isIndirect()) { 1600 // The C++ ABI is not aware of register usage, so we have to check if the 1601 // return value was sret and put it in a register ourselves if appropriate. 1602 if (State.FreeRegs) { 1603 --State.FreeRegs; // The sret parameter consumes a register. 1604 if (!IsMCUABI) 1605 FI.getReturnInfo().setInReg(true); 1606 } 1607 } 1608 1609 // The chain argument effectively gives us another free register. 1610 if (FI.isChainCall()) 1611 ++State.FreeRegs; 1612 1613 bool UsedInAlloca = false; 1614 for (auto &I : FI.arguments()) { 1615 I.info = classifyArgumentType(I.type, State); 1616 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1617 } 1618 1619 // If we needed to use inalloca for any argument, do a second pass and rewrite 1620 // all the memory arguments to use inalloca. 1621 if (UsedInAlloca) 1622 rewriteWithInAlloca(FI); 1623 } 1624 1625 void 1626 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1627 CharUnits &StackOffset, ABIArgInfo &Info, 1628 QualType Type) const { 1629 // Arguments are always 4-byte-aligned. 1630 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1631 1632 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1633 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1634 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1635 StackOffset += getContext().getTypeSizeInChars(Type); 1636 1637 // Insert padding bytes to respect alignment. 1638 CharUnits FieldEnd = StackOffset; 1639 StackOffset = FieldEnd.alignTo(FieldAlign); 1640 if (StackOffset != FieldEnd) { 1641 CharUnits NumBytes = StackOffset - FieldEnd; 1642 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1643 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1644 FrameFields.push_back(Ty); 1645 } 1646 } 1647 1648 static bool isArgInAlloca(const ABIArgInfo &Info) { 1649 // Leave ignored and inreg arguments alone. 1650 switch (Info.getKind()) { 1651 case ABIArgInfo::InAlloca: 1652 return true; 1653 case ABIArgInfo::Indirect: 1654 assert(Info.getIndirectByVal()); 1655 return true; 1656 case ABIArgInfo::Ignore: 1657 return false; 1658 case ABIArgInfo::Direct: 1659 case ABIArgInfo::Extend: 1660 if (Info.getInReg()) 1661 return false; 1662 return true; 1663 case ABIArgInfo::Expand: 1664 case ABIArgInfo::CoerceAndExpand: 1665 // These are aggregate types which are never passed in registers when 1666 // inalloca is involved. 1667 return true; 1668 } 1669 llvm_unreachable("invalid enum"); 1670 } 1671 1672 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1673 assert(IsWin32StructABI && "inalloca only supported on win32"); 1674 1675 // Build a packed struct type for all of the arguments in memory. 1676 SmallVector<llvm::Type *, 6> FrameFields; 1677 1678 // The stack alignment is always 4. 1679 CharUnits StackAlign = CharUnits::fromQuantity(4); 1680 1681 CharUnits StackOffset; 1682 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1683 1684 // Put 'this' into the struct before 'sret', if necessary. 1685 bool IsThisCall = 1686 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1687 ABIArgInfo &Ret = FI.getReturnInfo(); 1688 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1689 isArgInAlloca(I->info)) { 1690 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1691 ++I; 1692 } 1693 1694 // Put the sret parameter into the inalloca struct if it's in memory. 1695 if (Ret.isIndirect() && !Ret.getInReg()) { 1696 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1697 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1698 // On Windows, the hidden sret parameter is always returned in eax. 1699 Ret.setInAllocaSRet(IsWin32StructABI); 1700 } 1701 1702 // Skip the 'this' parameter in ecx. 1703 if (IsThisCall) 1704 ++I; 1705 1706 // Put arguments passed in memory into the struct. 1707 for (; I != E; ++I) { 1708 if (isArgInAlloca(I->info)) 1709 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1710 } 1711 1712 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1713 /*isPacked=*/true), 1714 StackAlign); 1715 } 1716 1717 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1718 Address VAListAddr, QualType Ty) const { 1719 1720 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1721 1722 // x86-32 changes the alignment of certain arguments on the stack. 1723 // 1724 // Just messing with TypeInfo like this works because we never pass 1725 // anything indirectly. 1726 TypeInfo.second = CharUnits::fromQuantity( 1727 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1728 1729 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1730 TypeInfo, CharUnits::fromQuantity(4), 1731 /*AllowHigherAlign*/ true); 1732 } 1733 1734 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1735 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1736 assert(Triple.getArch() == llvm::Triple::x86); 1737 1738 switch (Opts.getStructReturnConvention()) { 1739 case CodeGenOptions::SRCK_Default: 1740 break; 1741 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1742 return false; 1743 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1744 return true; 1745 } 1746 1747 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1748 return true; 1749 1750 switch (Triple.getOS()) { 1751 case llvm::Triple::DragonFly: 1752 case llvm::Triple::FreeBSD: 1753 case llvm::Triple::OpenBSD: 1754 case llvm::Triple::Bitrig: 1755 case llvm::Triple::Win32: 1756 return true; 1757 default: 1758 return false; 1759 } 1760 } 1761 1762 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1763 llvm::GlobalValue *GV, 1764 CodeGen::CodeGenModule &CGM) const { 1765 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1766 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1767 // Get the LLVM function. 1768 llvm::Function *Fn = cast<llvm::Function>(GV); 1769 1770 // Now add the 'alignstack' attribute with a value of 16. 1771 llvm::AttrBuilder B; 1772 B.addStackAlignmentAttr(16); 1773 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1774 llvm::AttributeSet::get(CGM.getLLVMContext(), 1775 llvm::AttributeSet::FunctionIndex, 1776 B)); 1777 } 1778 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1779 llvm::Function *Fn = cast<llvm::Function>(GV); 1780 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1781 } 1782 } 1783 } 1784 1785 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1786 CodeGen::CodeGenFunction &CGF, 1787 llvm::Value *Address) const { 1788 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1789 1790 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1791 1792 // 0-7 are the eight integer registers; the order is different 1793 // on Darwin (for EH), but the range is the same. 1794 // 8 is %eip. 1795 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1796 1797 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1798 // 12-16 are st(0..4). Not sure why we stop at 4. 1799 // These have size 16, which is sizeof(long double) on 1800 // platforms with 8-byte alignment for that type. 1801 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1802 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1803 1804 } else { 1805 // 9 is %eflags, which doesn't get a size on Darwin for some 1806 // reason. 1807 Builder.CreateAlignedStore( 1808 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1809 CharUnits::One()); 1810 1811 // 11-16 are st(0..5). Not sure why we stop at 5. 1812 // These have size 12, which is sizeof(long double) on 1813 // platforms with 4-byte alignment for that type. 1814 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1815 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1816 } 1817 1818 return false; 1819 } 1820 1821 //===----------------------------------------------------------------------===// 1822 // X86-64 ABI Implementation 1823 //===----------------------------------------------------------------------===// 1824 1825 1826 namespace { 1827 /// The AVX ABI level for X86 targets. 1828 enum class X86AVXABILevel { 1829 None, 1830 AVX, 1831 AVX512 1832 }; 1833 1834 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1835 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1836 switch (AVXLevel) { 1837 case X86AVXABILevel::AVX512: 1838 return 512; 1839 case X86AVXABILevel::AVX: 1840 return 256; 1841 case X86AVXABILevel::None: 1842 return 128; 1843 } 1844 llvm_unreachable("Unknown AVXLevel"); 1845 } 1846 1847 /// X86_64ABIInfo - The X86_64 ABI information. 1848 class X86_64ABIInfo : public SwiftABIInfo { 1849 enum Class { 1850 Integer = 0, 1851 SSE, 1852 SSEUp, 1853 X87, 1854 X87Up, 1855 ComplexX87, 1856 NoClass, 1857 Memory 1858 }; 1859 1860 /// merge - Implement the X86_64 ABI merging algorithm. 1861 /// 1862 /// Merge an accumulating classification \arg Accum with a field 1863 /// classification \arg Field. 1864 /// 1865 /// \param Accum - The accumulating classification. This should 1866 /// always be either NoClass or the result of a previous merge 1867 /// call. In addition, this should never be Memory (the caller 1868 /// should just return Memory for the aggregate). 1869 static Class merge(Class Accum, Class Field); 1870 1871 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1872 /// 1873 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1874 /// final MEMORY or SSE classes when necessary. 1875 /// 1876 /// \param AggregateSize - The size of the current aggregate in 1877 /// the classification process. 1878 /// 1879 /// \param Lo - The classification for the parts of the type 1880 /// residing in the low word of the containing object. 1881 /// 1882 /// \param Hi - The classification for the parts of the type 1883 /// residing in the higher words of the containing object. 1884 /// 1885 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1886 1887 /// classify - Determine the x86_64 register classes in which the 1888 /// given type T should be passed. 1889 /// 1890 /// \param Lo - The classification for the parts of the type 1891 /// residing in the low word of the containing object. 1892 /// 1893 /// \param Hi - The classification for the parts of the type 1894 /// residing in the high word of the containing object. 1895 /// 1896 /// \param OffsetBase - The bit offset of this type in the 1897 /// containing object. Some parameters are classified different 1898 /// depending on whether they straddle an eightbyte boundary. 1899 /// 1900 /// \param isNamedArg - Whether the argument in question is a "named" 1901 /// argument, as used in AMD64-ABI 3.5.7. 1902 /// 1903 /// If a word is unused its result will be NoClass; if a type should 1904 /// be passed in Memory then at least the classification of \arg Lo 1905 /// will be Memory. 1906 /// 1907 /// The \arg Lo class will be NoClass iff the argument is ignored. 1908 /// 1909 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1910 /// also be ComplexX87. 1911 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1912 bool isNamedArg) const; 1913 1914 llvm::Type *GetByteVectorType(QualType Ty) const; 1915 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1916 unsigned IROffset, QualType SourceTy, 1917 unsigned SourceOffset) const; 1918 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1919 unsigned IROffset, QualType SourceTy, 1920 unsigned SourceOffset) const; 1921 1922 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1923 /// such that the argument will be returned in memory. 1924 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1925 1926 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1927 /// such that the argument will be passed in memory. 1928 /// 1929 /// \param freeIntRegs - The number of free integer registers remaining 1930 /// available. 1931 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1932 1933 ABIArgInfo classifyReturnType(QualType RetTy) const; 1934 1935 ABIArgInfo classifyArgumentType(QualType Ty, 1936 unsigned freeIntRegs, 1937 unsigned &neededInt, 1938 unsigned &neededSSE, 1939 bool isNamedArg) const; 1940 1941 bool IsIllegalVectorType(QualType Ty) const; 1942 1943 /// The 0.98 ABI revision clarified a lot of ambiguities, 1944 /// unfortunately in ways that were not always consistent with 1945 /// certain previous compilers. In particular, platforms which 1946 /// required strict binary compatibility with older versions of GCC 1947 /// may need to exempt themselves. 1948 bool honorsRevision0_98() const { 1949 return !getTarget().getTriple().isOSDarwin(); 1950 } 1951 1952 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 1953 // compilers require us to classify it as INTEGER. 1954 bool classifyIntegerMMXAsSSE() const { 1955 const llvm::Triple &Triple = getTarget().getTriple(); 1956 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 1957 return false; 1958 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 1959 return false; 1960 return true; 1961 } 1962 1963 X86AVXABILevel AVXLevel; 1964 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1965 // 64-bit hardware. 1966 bool Has64BitPointers; 1967 1968 public: 1969 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1970 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 1971 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1972 } 1973 1974 bool isPassedUsingAVXType(QualType type) const { 1975 unsigned neededInt, neededSSE; 1976 // The freeIntRegs argument doesn't matter here. 1977 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1978 /*isNamedArg*/true); 1979 if (info.isDirect()) { 1980 llvm::Type *ty = info.getCoerceToType(); 1981 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1982 return (vectorTy->getBitWidth() > 128); 1983 } 1984 return false; 1985 } 1986 1987 void computeInfo(CGFunctionInfo &FI) const override; 1988 1989 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1990 QualType Ty) const override; 1991 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 1992 QualType Ty) const override; 1993 1994 bool has64BitPointers() const { 1995 return Has64BitPointers; 1996 } 1997 1998 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 1999 ArrayRef<llvm::Type*> scalars, 2000 bool asReturnValue) const override { 2001 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2002 } 2003 }; 2004 2005 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2006 class WinX86_64ABIInfo : public SwiftABIInfo { 2007 public: 2008 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2009 : SwiftABIInfo(CGT), 2010 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2011 2012 void computeInfo(CGFunctionInfo &FI) const override; 2013 2014 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2015 QualType Ty) const override; 2016 2017 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2018 // FIXME: Assumes vectorcall is in use. 2019 return isX86VectorTypeForVectorCall(getContext(), Ty); 2020 } 2021 2022 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2023 uint64_t NumMembers) const override { 2024 // FIXME: Assumes vectorcall is in use. 2025 return isX86VectorCallAggregateSmallEnough(NumMembers); 2026 } 2027 2028 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2029 ArrayRef<llvm::Type *> scalars, 2030 bool asReturnValue) const override { 2031 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2032 } 2033 2034 private: 2035 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 2036 bool IsReturnType) const; 2037 2038 bool IsMingw64; 2039 }; 2040 2041 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2042 public: 2043 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2044 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2045 2046 const X86_64ABIInfo &getABIInfo() const { 2047 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2048 } 2049 2050 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2051 return 7; 2052 } 2053 2054 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2055 llvm::Value *Address) const override { 2056 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2057 2058 // 0-15 are the 16 integer registers. 2059 // 16 is %rip. 2060 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2061 return false; 2062 } 2063 2064 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2065 StringRef Constraint, 2066 llvm::Type* Ty) const override { 2067 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2068 } 2069 2070 bool isNoProtoCallVariadic(const CallArgList &args, 2071 const FunctionNoProtoType *fnType) const override { 2072 // The default CC on x86-64 sets %al to the number of SSA 2073 // registers used, and GCC sets this when calling an unprototyped 2074 // function, so we override the default behavior. However, don't do 2075 // that when AVX types are involved: the ABI explicitly states it is 2076 // undefined, and it doesn't work in practice because of how the ABI 2077 // defines varargs anyway. 2078 if (fnType->getCallConv() == CC_C) { 2079 bool HasAVXType = false; 2080 for (CallArgList::const_iterator 2081 it = args.begin(), ie = args.end(); it != ie; ++it) { 2082 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2083 HasAVXType = true; 2084 break; 2085 } 2086 } 2087 2088 if (!HasAVXType) 2089 return true; 2090 } 2091 2092 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2093 } 2094 2095 llvm::Constant * 2096 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2097 unsigned Sig; 2098 if (getABIInfo().has64BitPointers()) 2099 Sig = (0xeb << 0) | // jmp rel8 2100 (0x0a << 8) | // .+0x0c 2101 ('F' << 16) | 2102 ('T' << 24); 2103 else 2104 Sig = (0xeb << 0) | // jmp rel8 2105 (0x06 << 8) | // .+0x08 2106 ('F' << 16) | 2107 ('T' << 24); 2108 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2109 } 2110 2111 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2112 CodeGen::CodeGenModule &CGM) const override { 2113 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2114 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2115 llvm::Function *Fn = cast<llvm::Function>(GV); 2116 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2117 } 2118 } 2119 } 2120 }; 2121 2122 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2123 public: 2124 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2125 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2126 2127 void getDependentLibraryOption(llvm::StringRef Lib, 2128 llvm::SmallString<24> &Opt) const override { 2129 Opt = "\01"; 2130 // If the argument contains a space, enclose it in quotes. 2131 if (Lib.find(" ") != StringRef::npos) 2132 Opt += "\"" + Lib.str() + "\""; 2133 else 2134 Opt += Lib; 2135 } 2136 }; 2137 2138 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2139 // If the argument does not end in .lib, automatically add the suffix. 2140 // If the argument contains a space, enclose it in quotes. 2141 // This matches the behavior of MSVC. 2142 bool Quote = (Lib.find(" ") != StringRef::npos); 2143 std::string ArgStr = Quote ? "\"" : ""; 2144 ArgStr += Lib; 2145 if (!Lib.endswith_lower(".lib")) 2146 ArgStr += ".lib"; 2147 ArgStr += Quote ? "\"" : ""; 2148 return ArgStr; 2149 } 2150 2151 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2152 public: 2153 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2154 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2155 unsigned NumRegisterParameters) 2156 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2157 Win32StructABI, NumRegisterParameters, false) {} 2158 2159 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2160 CodeGen::CodeGenModule &CGM) const override; 2161 2162 void getDependentLibraryOption(llvm::StringRef Lib, 2163 llvm::SmallString<24> &Opt) const override { 2164 Opt = "/DEFAULTLIB:"; 2165 Opt += qualifyWindowsLibrary(Lib); 2166 } 2167 2168 void getDetectMismatchOption(llvm::StringRef Name, 2169 llvm::StringRef Value, 2170 llvm::SmallString<32> &Opt) const override { 2171 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2172 } 2173 }; 2174 2175 static void addStackProbeSizeTargetAttribute(const Decl *D, 2176 llvm::GlobalValue *GV, 2177 CodeGen::CodeGenModule &CGM) { 2178 if (D && isa<FunctionDecl>(D)) { 2179 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2180 llvm::Function *Fn = cast<llvm::Function>(GV); 2181 2182 Fn->addFnAttr("stack-probe-size", 2183 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2184 } 2185 } 2186 } 2187 2188 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2189 llvm::GlobalValue *GV, 2190 CodeGen::CodeGenModule &CGM) const { 2191 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2192 2193 addStackProbeSizeTargetAttribute(D, GV, CGM); 2194 } 2195 2196 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2197 public: 2198 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2199 X86AVXABILevel AVXLevel) 2200 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2201 2202 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2203 CodeGen::CodeGenModule &CGM) const override; 2204 2205 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2206 return 7; 2207 } 2208 2209 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2210 llvm::Value *Address) const override { 2211 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2212 2213 // 0-15 are the 16 integer registers. 2214 // 16 is %rip. 2215 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2216 return false; 2217 } 2218 2219 void getDependentLibraryOption(llvm::StringRef Lib, 2220 llvm::SmallString<24> &Opt) const override { 2221 Opt = "/DEFAULTLIB:"; 2222 Opt += qualifyWindowsLibrary(Lib); 2223 } 2224 2225 void getDetectMismatchOption(llvm::StringRef Name, 2226 llvm::StringRef Value, 2227 llvm::SmallString<32> &Opt) const override { 2228 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2229 } 2230 }; 2231 2232 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2233 llvm::GlobalValue *GV, 2234 CodeGen::CodeGenModule &CGM) const { 2235 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2236 2237 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2238 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2239 llvm::Function *Fn = cast<llvm::Function>(GV); 2240 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2241 } 2242 } 2243 2244 addStackProbeSizeTargetAttribute(D, GV, CGM); 2245 } 2246 } 2247 2248 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2249 Class &Hi) const { 2250 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2251 // 2252 // (a) If one of the classes is Memory, the whole argument is passed in 2253 // memory. 2254 // 2255 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2256 // memory. 2257 // 2258 // (c) If the size of the aggregate exceeds two eightbytes and the first 2259 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2260 // argument is passed in memory. NOTE: This is necessary to keep the 2261 // ABI working for processors that don't support the __m256 type. 2262 // 2263 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2264 // 2265 // Some of these are enforced by the merging logic. Others can arise 2266 // only with unions; for example: 2267 // union { _Complex double; unsigned; } 2268 // 2269 // Note that clauses (b) and (c) were added in 0.98. 2270 // 2271 if (Hi == Memory) 2272 Lo = Memory; 2273 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2274 Lo = Memory; 2275 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2276 Lo = Memory; 2277 if (Hi == SSEUp && Lo != SSE) 2278 Hi = SSE; 2279 } 2280 2281 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2282 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2283 // classified recursively so that always two fields are 2284 // considered. The resulting class is calculated according to 2285 // the classes of the fields in the eightbyte: 2286 // 2287 // (a) If both classes are equal, this is the resulting class. 2288 // 2289 // (b) If one of the classes is NO_CLASS, the resulting class is 2290 // the other class. 2291 // 2292 // (c) If one of the classes is MEMORY, the result is the MEMORY 2293 // class. 2294 // 2295 // (d) If one of the classes is INTEGER, the result is the 2296 // INTEGER. 2297 // 2298 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2299 // MEMORY is used as class. 2300 // 2301 // (f) Otherwise class SSE is used. 2302 2303 // Accum should never be memory (we should have returned) or 2304 // ComplexX87 (because this cannot be passed in a structure). 2305 assert((Accum != Memory && Accum != ComplexX87) && 2306 "Invalid accumulated classification during merge."); 2307 if (Accum == Field || Field == NoClass) 2308 return Accum; 2309 if (Field == Memory) 2310 return Memory; 2311 if (Accum == NoClass) 2312 return Field; 2313 if (Accum == Integer || Field == Integer) 2314 return Integer; 2315 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2316 Accum == X87 || Accum == X87Up) 2317 return Memory; 2318 return SSE; 2319 } 2320 2321 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2322 Class &Lo, Class &Hi, bool isNamedArg) const { 2323 // FIXME: This code can be simplified by introducing a simple value class for 2324 // Class pairs with appropriate constructor methods for the various 2325 // situations. 2326 2327 // FIXME: Some of the split computations are wrong; unaligned vectors 2328 // shouldn't be passed in registers for example, so there is no chance they 2329 // can straddle an eightbyte. Verify & simplify. 2330 2331 Lo = Hi = NoClass; 2332 2333 Class &Current = OffsetBase < 64 ? Lo : Hi; 2334 Current = Memory; 2335 2336 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2337 BuiltinType::Kind k = BT->getKind(); 2338 2339 if (k == BuiltinType::Void) { 2340 Current = NoClass; 2341 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2342 Lo = Integer; 2343 Hi = Integer; 2344 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2345 Current = Integer; 2346 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2347 Current = SSE; 2348 } else if (k == BuiltinType::LongDouble) { 2349 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2350 if (LDF == &llvm::APFloat::IEEEquad) { 2351 Lo = SSE; 2352 Hi = SSEUp; 2353 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 2354 Lo = X87; 2355 Hi = X87Up; 2356 } else if (LDF == &llvm::APFloat::IEEEdouble) { 2357 Current = SSE; 2358 } else 2359 llvm_unreachable("unexpected long double representation!"); 2360 } 2361 // FIXME: _Decimal32 and _Decimal64 are SSE. 2362 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2363 return; 2364 } 2365 2366 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2367 // Classify the underlying integer type. 2368 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2369 return; 2370 } 2371 2372 if (Ty->hasPointerRepresentation()) { 2373 Current = Integer; 2374 return; 2375 } 2376 2377 if (Ty->isMemberPointerType()) { 2378 if (Ty->isMemberFunctionPointerType()) { 2379 if (Has64BitPointers) { 2380 // If Has64BitPointers, this is an {i64, i64}, so classify both 2381 // Lo and Hi now. 2382 Lo = Hi = Integer; 2383 } else { 2384 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2385 // straddles an eightbyte boundary, Hi should be classified as well. 2386 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2387 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2388 if (EB_FuncPtr != EB_ThisAdj) { 2389 Lo = Hi = Integer; 2390 } else { 2391 Current = Integer; 2392 } 2393 } 2394 } else { 2395 Current = Integer; 2396 } 2397 return; 2398 } 2399 2400 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2401 uint64_t Size = getContext().getTypeSize(VT); 2402 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2403 // gcc passes the following as integer: 2404 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2405 // 2 bytes - <2 x char>, <1 x short> 2406 // 1 byte - <1 x char> 2407 Current = Integer; 2408 2409 // If this type crosses an eightbyte boundary, it should be 2410 // split. 2411 uint64_t EB_Lo = (OffsetBase) / 64; 2412 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2413 if (EB_Lo != EB_Hi) 2414 Hi = Lo; 2415 } else if (Size == 64) { 2416 QualType ElementType = VT->getElementType(); 2417 2418 // gcc passes <1 x double> in memory. :( 2419 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2420 return; 2421 2422 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2423 // pass them as integer. For platforms where clang is the de facto 2424 // platform compiler, we must continue to use integer. 2425 if (!classifyIntegerMMXAsSSE() && 2426 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2427 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2428 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2429 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2430 Current = Integer; 2431 else 2432 Current = SSE; 2433 2434 // If this type crosses an eightbyte boundary, it should be 2435 // split. 2436 if (OffsetBase && OffsetBase != 64) 2437 Hi = Lo; 2438 } else if (Size == 128 || 2439 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2440 // Arguments of 256-bits are split into four eightbyte chunks. The 2441 // least significant one belongs to class SSE and all the others to class 2442 // SSEUP. The original Lo and Hi design considers that types can't be 2443 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2444 // This design isn't correct for 256-bits, but since there're no cases 2445 // where the upper parts would need to be inspected, avoid adding 2446 // complexity and just consider Hi to match the 64-256 part. 2447 // 2448 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2449 // registers if they are "named", i.e. not part of the "..." of a 2450 // variadic function. 2451 // 2452 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2453 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2454 Lo = SSE; 2455 Hi = SSEUp; 2456 } 2457 return; 2458 } 2459 2460 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2461 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2462 2463 uint64_t Size = getContext().getTypeSize(Ty); 2464 if (ET->isIntegralOrEnumerationType()) { 2465 if (Size <= 64) 2466 Current = Integer; 2467 else if (Size <= 128) 2468 Lo = Hi = Integer; 2469 } else if (ET == getContext().FloatTy) { 2470 Current = SSE; 2471 } else if (ET == getContext().DoubleTy) { 2472 Lo = Hi = SSE; 2473 } else if (ET == getContext().LongDoubleTy) { 2474 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2475 if (LDF == &llvm::APFloat::IEEEquad) 2476 Current = Memory; 2477 else if (LDF == &llvm::APFloat::x87DoubleExtended) 2478 Current = ComplexX87; 2479 else if (LDF == &llvm::APFloat::IEEEdouble) 2480 Lo = Hi = SSE; 2481 else 2482 llvm_unreachable("unexpected long double representation!"); 2483 } 2484 2485 // If this complex type crosses an eightbyte boundary then it 2486 // should be split. 2487 uint64_t EB_Real = (OffsetBase) / 64; 2488 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2489 if (Hi == NoClass && EB_Real != EB_Imag) 2490 Hi = Lo; 2491 2492 return; 2493 } 2494 2495 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2496 // Arrays are treated like structures. 2497 2498 uint64_t Size = getContext().getTypeSize(Ty); 2499 2500 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2501 // than eight eightbytes, ..., it has class MEMORY. 2502 if (Size > 512) 2503 return; 2504 2505 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2506 // fields, it has class MEMORY. 2507 // 2508 // Only need to check alignment of array base. 2509 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2510 return; 2511 2512 // Otherwise implement simplified merge. We could be smarter about 2513 // this, but it isn't worth it and would be harder to verify. 2514 Current = NoClass; 2515 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2516 uint64_t ArraySize = AT->getSize().getZExtValue(); 2517 2518 // The only case a 256-bit wide vector could be used is when the array 2519 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2520 // to work for sizes wider than 128, early check and fallback to memory. 2521 // 2522 if (Size > 128 && 2523 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2524 return; 2525 2526 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2527 Class FieldLo, FieldHi; 2528 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2529 Lo = merge(Lo, FieldLo); 2530 Hi = merge(Hi, FieldHi); 2531 if (Lo == Memory || Hi == Memory) 2532 break; 2533 } 2534 2535 postMerge(Size, Lo, Hi); 2536 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2537 return; 2538 } 2539 2540 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2541 uint64_t Size = getContext().getTypeSize(Ty); 2542 2543 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2544 // than eight eightbytes, ..., it has class MEMORY. 2545 if (Size > 512) 2546 return; 2547 2548 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2549 // copy constructor or a non-trivial destructor, it is passed by invisible 2550 // reference. 2551 if (getRecordArgABI(RT, getCXXABI())) 2552 return; 2553 2554 const RecordDecl *RD = RT->getDecl(); 2555 2556 // Assume variable sized types are passed in memory. 2557 if (RD->hasFlexibleArrayMember()) 2558 return; 2559 2560 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2561 2562 // Reset Lo class, this will be recomputed. 2563 Current = NoClass; 2564 2565 // If this is a C++ record, classify the bases first. 2566 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2567 for (const auto &I : CXXRD->bases()) { 2568 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2569 "Unexpected base class!"); 2570 const CXXRecordDecl *Base = 2571 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2572 2573 // Classify this field. 2574 // 2575 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2576 // single eightbyte, each is classified separately. Each eightbyte gets 2577 // initialized to class NO_CLASS. 2578 Class FieldLo, FieldHi; 2579 uint64_t Offset = 2580 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2581 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2582 Lo = merge(Lo, FieldLo); 2583 Hi = merge(Hi, FieldHi); 2584 if (Lo == Memory || Hi == Memory) { 2585 postMerge(Size, Lo, Hi); 2586 return; 2587 } 2588 } 2589 } 2590 2591 // Classify the fields one at a time, merging the results. 2592 unsigned idx = 0; 2593 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2594 i != e; ++i, ++idx) { 2595 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2596 bool BitField = i->isBitField(); 2597 2598 // Ignore padding bit-fields. 2599 if (BitField && i->isUnnamedBitfield()) 2600 continue; 2601 2602 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2603 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2604 // 2605 // The only case a 256-bit wide vector could be used is when the struct 2606 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2607 // to work for sizes wider than 128, early check and fallback to memory. 2608 // 2609 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2610 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2611 Lo = Memory; 2612 postMerge(Size, Lo, Hi); 2613 return; 2614 } 2615 // Note, skip this test for bit-fields, see below. 2616 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2617 Lo = Memory; 2618 postMerge(Size, Lo, Hi); 2619 return; 2620 } 2621 2622 // Classify this field. 2623 // 2624 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2625 // exceeds a single eightbyte, each is classified 2626 // separately. Each eightbyte gets initialized to class 2627 // NO_CLASS. 2628 Class FieldLo, FieldHi; 2629 2630 // Bit-fields require special handling, they do not force the 2631 // structure to be passed in memory even if unaligned, and 2632 // therefore they can straddle an eightbyte. 2633 if (BitField) { 2634 assert(!i->isUnnamedBitfield()); 2635 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2636 uint64_t Size = i->getBitWidthValue(getContext()); 2637 2638 uint64_t EB_Lo = Offset / 64; 2639 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2640 2641 if (EB_Lo) { 2642 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2643 FieldLo = NoClass; 2644 FieldHi = Integer; 2645 } else { 2646 FieldLo = Integer; 2647 FieldHi = EB_Hi ? Integer : NoClass; 2648 } 2649 } else 2650 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2651 Lo = merge(Lo, FieldLo); 2652 Hi = merge(Hi, FieldHi); 2653 if (Lo == Memory || Hi == Memory) 2654 break; 2655 } 2656 2657 postMerge(Size, Lo, Hi); 2658 } 2659 } 2660 2661 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2662 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2663 // place naturally. 2664 if (!isAggregateTypeForABI(Ty)) { 2665 // Treat an enum type as its underlying type. 2666 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2667 Ty = EnumTy->getDecl()->getIntegerType(); 2668 2669 return (Ty->isPromotableIntegerType() ? 2670 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2671 } 2672 2673 return getNaturalAlignIndirect(Ty); 2674 } 2675 2676 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2677 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2678 uint64_t Size = getContext().getTypeSize(VecTy); 2679 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2680 if (Size <= 64 || Size > LargestVector) 2681 return true; 2682 } 2683 2684 return false; 2685 } 2686 2687 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2688 unsigned freeIntRegs) const { 2689 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2690 // place naturally. 2691 // 2692 // This assumption is optimistic, as there could be free registers available 2693 // when we need to pass this argument in memory, and LLVM could try to pass 2694 // the argument in the free register. This does not seem to happen currently, 2695 // but this code would be much safer if we could mark the argument with 2696 // 'onstack'. See PR12193. 2697 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2698 // Treat an enum type as its underlying type. 2699 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2700 Ty = EnumTy->getDecl()->getIntegerType(); 2701 2702 return (Ty->isPromotableIntegerType() ? 2703 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2704 } 2705 2706 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2707 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2708 2709 // Compute the byval alignment. We specify the alignment of the byval in all 2710 // cases so that the mid-level optimizer knows the alignment of the byval. 2711 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2712 2713 // Attempt to avoid passing indirect results using byval when possible. This 2714 // is important for good codegen. 2715 // 2716 // We do this by coercing the value into a scalar type which the backend can 2717 // handle naturally (i.e., without using byval). 2718 // 2719 // For simplicity, we currently only do this when we have exhausted all of the 2720 // free integer registers. Doing this when there are free integer registers 2721 // would require more care, as we would have to ensure that the coerced value 2722 // did not claim the unused register. That would require either reording the 2723 // arguments to the function (so that any subsequent inreg values came first), 2724 // or only doing this optimization when there were no following arguments that 2725 // might be inreg. 2726 // 2727 // We currently expect it to be rare (particularly in well written code) for 2728 // arguments to be passed on the stack when there are still free integer 2729 // registers available (this would typically imply large structs being passed 2730 // by value), so this seems like a fair tradeoff for now. 2731 // 2732 // We can revisit this if the backend grows support for 'onstack' parameter 2733 // attributes. See PR12193. 2734 if (freeIntRegs == 0) { 2735 uint64_t Size = getContext().getTypeSize(Ty); 2736 2737 // If this type fits in an eightbyte, coerce it into the matching integral 2738 // type, which will end up on the stack (with alignment 8). 2739 if (Align == 8 && Size <= 64) 2740 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2741 Size)); 2742 } 2743 2744 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2745 } 2746 2747 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2748 /// register. Pick an LLVM IR type that will be passed as a vector register. 2749 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2750 // Wrapper structs/arrays that only contain vectors are passed just like 2751 // vectors; strip them off if present. 2752 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2753 Ty = QualType(InnerTy, 0); 2754 2755 llvm::Type *IRType = CGT.ConvertType(Ty); 2756 if (isa<llvm::VectorType>(IRType) || 2757 IRType->getTypeID() == llvm::Type::FP128TyID) 2758 return IRType; 2759 2760 // We couldn't find the preferred IR vector type for 'Ty'. 2761 uint64_t Size = getContext().getTypeSize(Ty); 2762 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2763 2764 // Return a LLVM IR vector type based on the size of 'Ty'. 2765 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2766 Size / 64); 2767 } 2768 2769 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2770 /// is known to either be off the end of the specified type or being in 2771 /// alignment padding. The user type specified is known to be at most 128 bits 2772 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2773 /// classification that put one of the two halves in the INTEGER class. 2774 /// 2775 /// It is conservatively correct to return false. 2776 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2777 unsigned EndBit, ASTContext &Context) { 2778 // If the bytes being queried are off the end of the type, there is no user 2779 // data hiding here. This handles analysis of builtins, vectors and other 2780 // types that don't contain interesting padding. 2781 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2782 if (TySize <= StartBit) 2783 return true; 2784 2785 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2786 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2787 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2788 2789 // Check each element to see if the element overlaps with the queried range. 2790 for (unsigned i = 0; i != NumElts; ++i) { 2791 // If the element is after the span we care about, then we're done.. 2792 unsigned EltOffset = i*EltSize; 2793 if (EltOffset >= EndBit) break; 2794 2795 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2796 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2797 EndBit-EltOffset, Context)) 2798 return false; 2799 } 2800 // If it overlaps no elements, then it is safe to process as padding. 2801 return true; 2802 } 2803 2804 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2805 const RecordDecl *RD = RT->getDecl(); 2806 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2807 2808 // If this is a C++ record, check the bases first. 2809 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2810 for (const auto &I : CXXRD->bases()) { 2811 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2812 "Unexpected base class!"); 2813 const CXXRecordDecl *Base = 2814 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2815 2816 // If the base is after the span we care about, ignore it. 2817 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2818 if (BaseOffset >= EndBit) continue; 2819 2820 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2821 if (!BitsContainNoUserData(I.getType(), BaseStart, 2822 EndBit-BaseOffset, Context)) 2823 return false; 2824 } 2825 } 2826 2827 // Verify that no field has data that overlaps the region of interest. Yes 2828 // this could be sped up a lot by being smarter about queried fields, 2829 // however we're only looking at structs up to 16 bytes, so we don't care 2830 // much. 2831 unsigned idx = 0; 2832 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2833 i != e; ++i, ++idx) { 2834 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2835 2836 // If we found a field after the region we care about, then we're done. 2837 if (FieldOffset >= EndBit) break; 2838 2839 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2840 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2841 Context)) 2842 return false; 2843 } 2844 2845 // If nothing in this record overlapped the area of interest, then we're 2846 // clean. 2847 return true; 2848 } 2849 2850 return false; 2851 } 2852 2853 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2854 /// float member at the specified offset. For example, {int,{float}} has a 2855 /// float at offset 4. It is conservatively correct for this routine to return 2856 /// false. 2857 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2858 const llvm::DataLayout &TD) { 2859 // Base case if we find a float. 2860 if (IROffset == 0 && IRType->isFloatTy()) 2861 return true; 2862 2863 // If this is a struct, recurse into the field at the specified offset. 2864 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2865 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2866 unsigned Elt = SL->getElementContainingOffset(IROffset); 2867 IROffset -= SL->getElementOffset(Elt); 2868 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2869 } 2870 2871 // If this is an array, recurse into the field at the specified offset. 2872 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2873 llvm::Type *EltTy = ATy->getElementType(); 2874 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2875 IROffset -= IROffset/EltSize*EltSize; 2876 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2877 } 2878 2879 return false; 2880 } 2881 2882 2883 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2884 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2885 llvm::Type *X86_64ABIInfo:: 2886 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2887 QualType SourceTy, unsigned SourceOffset) const { 2888 // The only three choices we have are either double, <2 x float>, or float. We 2889 // pass as float if the last 4 bytes is just padding. This happens for 2890 // structs that contain 3 floats. 2891 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2892 SourceOffset*8+64, getContext())) 2893 return llvm::Type::getFloatTy(getVMContext()); 2894 2895 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2896 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2897 // case. 2898 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2899 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2900 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2901 2902 return llvm::Type::getDoubleTy(getVMContext()); 2903 } 2904 2905 2906 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2907 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2908 /// about the high or low part of an up-to-16-byte struct. This routine picks 2909 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2910 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2911 /// etc). 2912 /// 2913 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2914 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2915 /// the 8-byte value references. PrefType may be null. 2916 /// 2917 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2918 /// an offset into this that we're processing (which is always either 0 or 8). 2919 /// 2920 llvm::Type *X86_64ABIInfo:: 2921 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2922 QualType SourceTy, unsigned SourceOffset) const { 2923 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2924 // returning an 8-byte unit starting with it. See if we can safely use it. 2925 if (IROffset == 0) { 2926 // Pointers and int64's always fill the 8-byte unit. 2927 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2928 IRType->isIntegerTy(64)) 2929 return IRType; 2930 2931 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2932 // goodness in the source type is just tail padding. This is allowed to 2933 // kick in for struct {double,int} on the int, but not on 2934 // struct{double,int,int} because we wouldn't return the second int. We 2935 // have to do this analysis on the source type because we can't depend on 2936 // unions being lowered a specific way etc. 2937 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2938 IRType->isIntegerTy(32) || 2939 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2940 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2941 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2942 2943 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2944 SourceOffset*8+64, getContext())) 2945 return IRType; 2946 } 2947 } 2948 2949 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2950 // If this is a struct, recurse into the field at the specified offset. 2951 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2952 if (IROffset < SL->getSizeInBytes()) { 2953 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2954 IROffset -= SL->getElementOffset(FieldIdx); 2955 2956 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2957 SourceTy, SourceOffset); 2958 } 2959 } 2960 2961 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2962 llvm::Type *EltTy = ATy->getElementType(); 2963 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2964 unsigned EltOffset = IROffset/EltSize*EltSize; 2965 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2966 SourceOffset); 2967 } 2968 2969 // Okay, we don't have any better idea of what to pass, so we pass this in an 2970 // integer register that isn't too big to fit the rest of the struct. 2971 unsigned TySizeInBytes = 2972 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2973 2974 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2975 2976 // It is always safe to classify this as an integer type up to i64 that 2977 // isn't larger than the structure. 2978 return llvm::IntegerType::get(getVMContext(), 2979 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2980 } 2981 2982 2983 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2984 /// be used as elements of a two register pair to pass or return, return a 2985 /// first class aggregate to represent them. For example, if the low part of 2986 /// a by-value argument should be passed as i32* and the high part as float, 2987 /// return {i32*, float}. 2988 static llvm::Type * 2989 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2990 const llvm::DataLayout &TD) { 2991 // In order to correctly satisfy the ABI, we need to the high part to start 2992 // at offset 8. If the high and low parts we inferred are both 4-byte types 2993 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2994 // the second element at offset 8. Check for this: 2995 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2996 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2997 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2998 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2999 3000 // To handle this, we have to increase the size of the low part so that the 3001 // second element will start at an 8 byte offset. We can't increase the size 3002 // of the second element because it might make us access off the end of the 3003 // struct. 3004 if (HiStart != 8) { 3005 // There are usually two sorts of types the ABI generation code can produce 3006 // for the low part of a pair that aren't 8 bytes in size: float or 3007 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3008 // NaCl). 3009 // Promote these to a larger type. 3010 if (Lo->isFloatTy()) 3011 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3012 else { 3013 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3014 && "Invalid/unknown lo type"); 3015 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3016 } 3017 } 3018 3019 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 3020 3021 3022 // Verify that the second element is at an 8-byte offset. 3023 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3024 "Invalid x86-64 argument pair!"); 3025 return Result; 3026 } 3027 3028 ABIArgInfo X86_64ABIInfo:: 3029 classifyReturnType(QualType RetTy) const { 3030 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3031 // classification algorithm. 3032 X86_64ABIInfo::Class Lo, Hi; 3033 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3034 3035 // Check some invariants. 3036 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3037 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3038 3039 llvm::Type *ResType = nullptr; 3040 switch (Lo) { 3041 case NoClass: 3042 if (Hi == NoClass) 3043 return ABIArgInfo::getIgnore(); 3044 // If the low part is just padding, it takes no register, leave ResType 3045 // null. 3046 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3047 "Unknown missing lo part"); 3048 break; 3049 3050 case SSEUp: 3051 case X87Up: 3052 llvm_unreachable("Invalid classification for lo word."); 3053 3054 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3055 // hidden argument. 3056 case Memory: 3057 return getIndirectReturnResult(RetTy); 3058 3059 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3060 // available register of the sequence %rax, %rdx is used. 3061 case Integer: 3062 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3063 3064 // If we have a sign or zero extended integer, make sure to return Extend 3065 // so that the parameter gets the right LLVM IR attributes. 3066 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3067 // Treat an enum type as its underlying type. 3068 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3069 RetTy = EnumTy->getDecl()->getIntegerType(); 3070 3071 if (RetTy->isIntegralOrEnumerationType() && 3072 RetTy->isPromotableIntegerType()) 3073 return ABIArgInfo::getExtend(); 3074 } 3075 break; 3076 3077 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3078 // available SSE register of the sequence %xmm0, %xmm1 is used. 3079 case SSE: 3080 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3081 break; 3082 3083 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3084 // returned on the X87 stack in %st0 as 80-bit x87 number. 3085 case X87: 3086 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3087 break; 3088 3089 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3090 // part of the value is returned in %st0 and the imaginary part in 3091 // %st1. 3092 case ComplexX87: 3093 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3094 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3095 llvm::Type::getX86_FP80Ty(getVMContext()), 3096 nullptr); 3097 break; 3098 } 3099 3100 llvm::Type *HighPart = nullptr; 3101 switch (Hi) { 3102 // Memory was handled previously and X87 should 3103 // never occur as a hi class. 3104 case Memory: 3105 case X87: 3106 llvm_unreachable("Invalid classification for hi word."); 3107 3108 case ComplexX87: // Previously handled. 3109 case NoClass: 3110 break; 3111 3112 case Integer: 3113 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3114 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3115 return ABIArgInfo::getDirect(HighPart, 8); 3116 break; 3117 case SSE: 3118 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3119 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3120 return ABIArgInfo::getDirect(HighPart, 8); 3121 break; 3122 3123 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3124 // is passed in the next available eightbyte chunk if the last used 3125 // vector register. 3126 // 3127 // SSEUP should always be preceded by SSE, just widen. 3128 case SSEUp: 3129 assert(Lo == SSE && "Unexpected SSEUp classification."); 3130 ResType = GetByteVectorType(RetTy); 3131 break; 3132 3133 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3134 // returned together with the previous X87 value in %st0. 3135 case X87Up: 3136 // If X87Up is preceded by X87, we don't need to do 3137 // anything. However, in some cases with unions it may not be 3138 // preceded by X87. In such situations we follow gcc and pass the 3139 // extra bits in an SSE reg. 3140 if (Lo != X87) { 3141 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3142 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3143 return ABIArgInfo::getDirect(HighPart, 8); 3144 } 3145 break; 3146 } 3147 3148 // If a high part was specified, merge it together with the low part. It is 3149 // known to pass in the high eightbyte of the result. We do this by forming a 3150 // first class struct aggregate with the high and low part: {low, high} 3151 if (HighPart) 3152 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3153 3154 return ABIArgInfo::getDirect(ResType); 3155 } 3156 3157 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3158 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3159 bool isNamedArg) 3160 const 3161 { 3162 Ty = useFirstFieldIfTransparentUnion(Ty); 3163 3164 X86_64ABIInfo::Class Lo, Hi; 3165 classify(Ty, 0, Lo, Hi, isNamedArg); 3166 3167 // Check some invariants. 3168 // FIXME: Enforce these by construction. 3169 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3170 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3171 3172 neededInt = 0; 3173 neededSSE = 0; 3174 llvm::Type *ResType = nullptr; 3175 switch (Lo) { 3176 case NoClass: 3177 if (Hi == NoClass) 3178 return ABIArgInfo::getIgnore(); 3179 // If the low part is just padding, it takes no register, leave ResType 3180 // null. 3181 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3182 "Unknown missing lo part"); 3183 break; 3184 3185 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3186 // on the stack. 3187 case Memory: 3188 3189 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3190 // COMPLEX_X87, it is passed in memory. 3191 case X87: 3192 case ComplexX87: 3193 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3194 ++neededInt; 3195 return getIndirectResult(Ty, freeIntRegs); 3196 3197 case SSEUp: 3198 case X87Up: 3199 llvm_unreachable("Invalid classification for lo word."); 3200 3201 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3202 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3203 // and %r9 is used. 3204 case Integer: 3205 ++neededInt; 3206 3207 // Pick an 8-byte type based on the preferred type. 3208 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3209 3210 // If we have a sign or zero extended integer, make sure to return Extend 3211 // so that the parameter gets the right LLVM IR attributes. 3212 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3213 // Treat an enum type as its underlying type. 3214 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3215 Ty = EnumTy->getDecl()->getIntegerType(); 3216 3217 if (Ty->isIntegralOrEnumerationType() && 3218 Ty->isPromotableIntegerType()) 3219 return ABIArgInfo::getExtend(); 3220 } 3221 3222 break; 3223 3224 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3225 // available SSE register is used, the registers are taken in the 3226 // order from %xmm0 to %xmm7. 3227 case SSE: { 3228 llvm::Type *IRType = CGT.ConvertType(Ty); 3229 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3230 ++neededSSE; 3231 break; 3232 } 3233 } 3234 3235 llvm::Type *HighPart = nullptr; 3236 switch (Hi) { 3237 // Memory was handled previously, ComplexX87 and X87 should 3238 // never occur as hi classes, and X87Up must be preceded by X87, 3239 // which is passed in memory. 3240 case Memory: 3241 case X87: 3242 case ComplexX87: 3243 llvm_unreachable("Invalid classification for hi word."); 3244 3245 case NoClass: break; 3246 3247 case Integer: 3248 ++neededInt; 3249 // Pick an 8-byte type based on the preferred type. 3250 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3251 3252 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3253 return ABIArgInfo::getDirect(HighPart, 8); 3254 break; 3255 3256 // X87Up generally doesn't occur here (long double is passed in 3257 // memory), except in situations involving unions. 3258 case X87Up: 3259 case SSE: 3260 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3261 3262 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3263 return ABIArgInfo::getDirect(HighPart, 8); 3264 3265 ++neededSSE; 3266 break; 3267 3268 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3269 // eightbyte is passed in the upper half of the last used SSE 3270 // register. This only happens when 128-bit vectors are passed. 3271 case SSEUp: 3272 assert(Lo == SSE && "Unexpected SSEUp classification"); 3273 ResType = GetByteVectorType(Ty); 3274 break; 3275 } 3276 3277 // If a high part was specified, merge it together with the low part. It is 3278 // known to pass in the high eightbyte of the result. We do this by forming a 3279 // first class struct aggregate with the high and low part: {low, high} 3280 if (HighPart) 3281 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3282 3283 return ABIArgInfo::getDirect(ResType); 3284 } 3285 3286 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3287 3288 if (!getCXXABI().classifyReturnType(FI)) 3289 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3290 3291 // Keep track of the number of assigned registers. 3292 unsigned freeIntRegs = 6, freeSSERegs = 8; 3293 3294 // If the return value is indirect, then the hidden argument is consuming one 3295 // integer register. 3296 if (FI.getReturnInfo().isIndirect()) 3297 --freeIntRegs; 3298 3299 // The chain argument effectively gives us another free register. 3300 if (FI.isChainCall()) 3301 ++freeIntRegs; 3302 3303 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3304 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3305 // get assigned (in left-to-right order) for passing as follows... 3306 unsigned ArgNo = 0; 3307 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3308 it != ie; ++it, ++ArgNo) { 3309 bool IsNamedArg = ArgNo < NumRequiredArgs; 3310 3311 unsigned neededInt, neededSSE; 3312 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 3313 neededSSE, IsNamedArg); 3314 3315 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3316 // eightbyte of an argument, the whole argument is passed on the 3317 // stack. If registers have already been assigned for some 3318 // eightbytes of such an argument, the assignments get reverted. 3319 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 3320 freeIntRegs -= neededInt; 3321 freeSSERegs -= neededSSE; 3322 } else { 3323 it->info = getIndirectResult(it->type, freeIntRegs); 3324 } 3325 } 3326 } 3327 3328 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3329 Address VAListAddr, QualType Ty) { 3330 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3331 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3332 llvm::Value *overflow_arg_area = 3333 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3334 3335 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3336 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3337 // It isn't stated explicitly in the standard, but in practice we use 3338 // alignment greater than 16 where necessary. 3339 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3340 if (Align > CharUnits::fromQuantity(8)) { 3341 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3342 Align); 3343 } 3344 3345 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3346 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3347 llvm::Value *Res = 3348 CGF.Builder.CreateBitCast(overflow_arg_area, 3349 llvm::PointerType::getUnqual(LTy)); 3350 3351 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3352 // l->overflow_arg_area + sizeof(type). 3353 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3354 // an 8 byte boundary. 3355 3356 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3357 llvm::Value *Offset = 3358 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3359 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3360 "overflow_arg_area.next"); 3361 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3362 3363 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3364 return Address(Res, Align); 3365 } 3366 3367 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3368 QualType Ty) const { 3369 // Assume that va_list type is correct; should be pointer to LLVM type: 3370 // struct { 3371 // i32 gp_offset; 3372 // i32 fp_offset; 3373 // i8* overflow_arg_area; 3374 // i8* reg_save_area; 3375 // }; 3376 unsigned neededInt, neededSSE; 3377 3378 Ty = getContext().getCanonicalType(Ty); 3379 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3380 /*isNamedArg*/false); 3381 3382 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3383 // in the registers. If not go to step 7. 3384 if (!neededInt && !neededSSE) 3385 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3386 3387 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3388 // general purpose registers needed to pass type and num_fp to hold 3389 // the number of floating point registers needed. 3390 3391 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3392 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3393 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3394 // 3395 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3396 // register save space). 3397 3398 llvm::Value *InRegs = nullptr; 3399 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3400 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3401 if (neededInt) { 3402 gp_offset_p = 3403 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3404 "gp_offset_p"); 3405 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3406 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3407 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3408 } 3409 3410 if (neededSSE) { 3411 fp_offset_p = 3412 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3413 "fp_offset_p"); 3414 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3415 llvm::Value *FitsInFP = 3416 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3417 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3418 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3419 } 3420 3421 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3422 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3423 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3424 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3425 3426 // Emit code to load the value if it was passed in registers. 3427 3428 CGF.EmitBlock(InRegBlock); 3429 3430 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3431 // an offset of l->gp_offset and/or l->fp_offset. This may require 3432 // copying to a temporary location in case the parameter is passed 3433 // in different register classes or requires an alignment greater 3434 // than 8 for general purpose registers and 16 for XMM registers. 3435 // 3436 // FIXME: This really results in shameful code when we end up needing to 3437 // collect arguments from different places; often what should result in a 3438 // simple assembling of a structure from scattered addresses has many more 3439 // loads than necessary. Can we clean this up? 3440 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3441 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3442 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3443 "reg_save_area"); 3444 3445 Address RegAddr = Address::invalid(); 3446 if (neededInt && neededSSE) { 3447 // FIXME: Cleanup. 3448 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3449 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3450 Address Tmp = CGF.CreateMemTemp(Ty); 3451 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3452 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3453 llvm::Type *TyLo = ST->getElementType(0); 3454 llvm::Type *TyHi = ST->getElementType(1); 3455 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3456 "Unexpected ABI info for mixed regs"); 3457 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3458 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3459 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3460 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3461 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3462 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3463 3464 // Copy the first element. 3465 llvm::Value *V = 3466 CGF.Builder.CreateDefaultAlignedLoad( 3467 CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 3468 CGF.Builder.CreateStore(V, 3469 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3470 3471 // Copy the second element. 3472 V = CGF.Builder.CreateDefaultAlignedLoad( 3473 CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 3474 CharUnits Offset = CharUnits::fromQuantity( 3475 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3476 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3477 3478 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3479 } else if (neededInt) { 3480 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3481 CharUnits::fromQuantity(8)); 3482 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3483 3484 // Copy to a temporary if necessary to ensure the appropriate alignment. 3485 std::pair<CharUnits, CharUnits> SizeAlign = 3486 getContext().getTypeInfoInChars(Ty); 3487 uint64_t TySize = SizeAlign.first.getQuantity(); 3488 CharUnits TyAlign = SizeAlign.second; 3489 3490 // Copy into a temporary if the type is more aligned than the 3491 // register save area. 3492 if (TyAlign.getQuantity() > 8) { 3493 Address Tmp = CGF.CreateMemTemp(Ty); 3494 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3495 RegAddr = Tmp; 3496 } 3497 3498 } else if (neededSSE == 1) { 3499 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3500 CharUnits::fromQuantity(16)); 3501 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3502 } else { 3503 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3504 // SSE registers are spaced 16 bytes apart in the register save 3505 // area, we need to collect the two eightbytes together. 3506 // The ABI isn't explicit about this, but it seems reasonable 3507 // to assume that the slots are 16-byte aligned, since the stack is 3508 // naturally 16-byte aligned and the prologue is expected to store 3509 // all the SSE registers to the RSA. 3510 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3511 CharUnits::fromQuantity(16)); 3512 Address RegAddrHi = 3513 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3514 CharUnits::fromQuantity(16)); 3515 llvm::Type *DoubleTy = CGF.DoubleTy; 3516 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3517 llvm::Value *V; 3518 Address Tmp = CGF.CreateMemTemp(Ty); 3519 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3520 V = CGF.Builder.CreateLoad( 3521 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3522 CGF.Builder.CreateStore(V, 3523 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3524 V = CGF.Builder.CreateLoad( 3525 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3526 CGF.Builder.CreateStore(V, 3527 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3528 3529 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3530 } 3531 3532 // AMD64-ABI 3.5.7p5: Step 5. Set: 3533 // l->gp_offset = l->gp_offset + num_gp * 8 3534 // l->fp_offset = l->fp_offset + num_fp * 16. 3535 if (neededInt) { 3536 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3537 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3538 gp_offset_p); 3539 } 3540 if (neededSSE) { 3541 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3542 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3543 fp_offset_p); 3544 } 3545 CGF.EmitBranch(ContBlock); 3546 3547 // Emit code to load the value if it was passed in memory. 3548 3549 CGF.EmitBlock(InMemBlock); 3550 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3551 3552 // Return the appropriate result. 3553 3554 CGF.EmitBlock(ContBlock); 3555 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3556 "vaarg.addr"); 3557 return ResAddr; 3558 } 3559 3560 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3561 QualType Ty) const { 3562 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3563 CGF.getContext().getTypeInfoInChars(Ty), 3564 CharUnits::fromQuantity(8), 3565 /*allowHigherAlign*/ false); 3566 } 3567 3568 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3569 bool IsReturnType) const { 3570 3571 if (Ty->isVoidType()) 3572 return ABIArgInfo::getIgnore(); 3573 3574 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3575 Ty = EnumTy->getDecl()->getIntegerType(); 3576 3577 TypeInfo Info = getContext().getTypeInfo(Ty); 3578 uint64_t Width = Info.Width; 3579 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3580 3581 const RecordType *RT = Ty->getAs<RecordType>(); 3582 if (RT) { 3583 if (!IsReturnType) { 3584 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3585 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3586 } 3587 3588 if (RT->getDecl()->hasFlexibleArrayMember()) 3589 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3590 3591 } 3592 3593 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3594 // other targets. 3595 const Type *Base = nullptr; 3596 uint64_t NumElts = 0; 3597 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3598 if (FreeSSERegs >= NumElts) { 3599 FreeSSERegs -= NumElts; 3600 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3601 return ABIArgInfo::getDirect(); 3602 return ABIArgInfo::getExpand(); 3603 } 3604 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3605 } 3606 3607 3608 if (Ty->isMemberPointerType()) { 3609 // If the member pointer is represented by an LLVM int or ptr, pass it 3610 // directly. 3611 llvm::Type *LLTy = CGT.ConvertType(Ty); 3612 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3613 return ABIArgInfo::getDirect(); 3614 } 3615 3616 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3617 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3618 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3619 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3620 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3621 3622 // Otherwise, coerce it to a small integer. 3623 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3624 } 3625 3626 // Bool type is always extended to the ABI, other builtin types are not 3627 // extended. 3628 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3629 if (BT && BT->getKind() == BuiltinType::Bool) 3630 return ABIArgInfo::getExtend(); 3631 3632 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3633 // passes them indirectly through memory. 3634 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3635 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3636 if (LDF == &llvm::APFloat::x87DoubleExtended) 3637 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3638 } 3639 3640 return ABIArgInfo::getDirect(); 3641 } 3642 3643 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3644 bool IsVectorCall = 3645 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3646 3647 // We can use up to 4 SSE return registers with vectorcall. 3648 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3649 if (!getCXXABI().classifyReturnType(FI)) 3650 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3651 3652 // We can use up to 6 SSE register parameters with vectorcall. 3653 FreeSSERegs = IsVectorCall ? 6 : 0; 3654 for (auto &I : FI.arguments()) 3655 I.info = classify(I.type, FreeSSERegs, false); 3656 } 3657 3658 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3659 QualType Ty) const { 3660 3661 bool IsIndirect = false; 3662 3663 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3664 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3665 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 3666 uint64_t Width = getContext().getTypeSize(Ty); 3667 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3668 } 3669 3670 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3671 CGF.getContext().getTypeInfoInChars(Ty), 3672 CharUnits::fromQuantity(8), 3673 /*allowHigherAlign*/ false); 3674 } 3675 3676 // PowerPC-32 3677 namespace { 3678 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3679 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3680 bool IsSoftFloatABI; 3681 public: 3682 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3683 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3684 3685 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3686 QualType Ty) const override; 3687 }; 3688 3689 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3690 public: 3691 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3692 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3693 3694 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3695 // This is recovered from gcc output. 3696 return 1; // r1 is the dedicated stack pointer 3697 } 3698 3699 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3700 llvm::Value *Address) const override; 3701 }; 3702 3703 } 3704 3705 // TODO: this implementation is now likely redundant with 3706 // DefaultABIInfo::EmitVAArg. 3707 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3708 QualType Ty) const { 3709 const unsigned OverflowLimit = 8; 3710 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3711 // TODO: Implement this. For now ignore. 3712 (void)CTy; 3713 return Address::invalid(); // FIXME? 3714 } 3715 3716 // struct __va_list_tag { 3717 // unsigned char gpr; 3718 // unsigned char fpr; 3719 // unsigned short reserved; 3720 // void *overflow_arg_area; 3721 // void *reg_save_area; 3722 // }; 3723 3724 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3725 bool isInt = 3726 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3727 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3728 3729 // All aggregates are passed indirectly? That doesn't seem consistent 3730 // with the argument-lowering code. 3731 bool isIndirect = Ty->isAggregateType(); 3732 3733 CGBuilderTy &Builder = CGF.Builder; 3734 3735 // The calling convention either uses 1-2 GPRs or 1 FPR. 3736 Address NumRegsAddr = Address::invalid(); 3737 if (isInt || IsSoftFloatABI) { 3738 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3739 } else { 3740 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3741 } 3742 3743 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3744 3745 // "Align" the register count when TY is i64. 3746 if (isI64 || (isF64 && IsSoftFloatABI)) { 3747 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3748 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3749 } 3750 3751 llvm::Value *CC = 3752 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 3753 3754 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3755 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3756 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3757 3758 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3759 3760 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3761 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3762 3763 // Case 1: consume registers. 3764 Address RegAddr = Address::invalid(); 3765 { 3766 CGF.EmitBlock(UsingRegs); 3767 3768 Address RegSaveAreaPtr = 3769 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3770 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3771 CharUnits::fromQuantity(8)); 3772 assert(RegAddr.getElementType() == CGF.Int8Ty); 3773 3774 // Floating-point registers start after the general-purpose registers. 3775 if (!(isInt || IsSoftFloatABI)) { 3776 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3777 CharUnits::fromQuantity(32)); 3778 } 3779 3780 // Get the address of the saved value by scaling the number of 3781 // registers we've used by the number of 3782 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3783 llvm::Value *RegOffset = 3784 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3785 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3786 RegAddr.getPointer(), RegOffset), 3787 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3788 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3789 3790 // Increase the used-register count. 3791 NumRegs = 3792 Builder.CreateAdd(NumRegs, 3793 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3794 Builder.CreateStore(NumRegs, NumRegsAddr); 3795 3796 CGF.EmitBranch(Cont); 3797 } 3798 3799 // Case 2: consume space in the overflow area. 3800 Address MemAddr = Address::invalid(); 3801 { 3802 CGF.EmitBlock(UsingOverflow); 3803 3804 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 3805 3806 // Everything in the overflow area is rounded up to a size of at least 4. 3807 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3808 3809 CharUnits Size; 3810 if (!isIndirect) { 3811 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3812 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3813 } else { 3814 Size = CGF.getPointerSize(); 3815 } 3816 3817 Address OverflowAreaAddr = 3818 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3819 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3820 OverflowAreaAlign); 3821 // Round up address of argument to alignment 3822 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3823 if (Align > OverflowAreaAlign) { 3824 llvm::Value *Ptr = OverflowArea.getPointer(); 3825 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3826 Align); 3827 } 3828 3829 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3830 3831 // Increase the overflow area. 3832 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3833 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3834 CGF.EmitBranch(Cont); 3835 } 3836 3837 CGF.EmitBlock(Cont); 3838 3839 // Merge the cases with a phi. 3840 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3841 "vaarg.addr"); 3842 3843 // Load the pointer if the argument was passed indirectly. 3844 if (isIndirect) { 3845 Result = Address(Builder.CreateLoad(Result, "aggr"), 3846 getContext().getTypeAlignInChars(Ty)); 3847 } 3848 3849 return Result; 3850 } 3851 3852 bool 3853 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3854 llvm::Value *Address) const { 3855 // This is calculated from the LLVM and GCC tables and verified 3856 // against gcc output. AFAIK all ABIs use the same encoding. 3857 3858 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3859 3860 llvm::IntegerType *i8 = CGF.Int8Ty; 3861 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3862 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3863 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3864 3865 // 0-31: r0-31, the 4-byte general-purpose registers 3866 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3867 3868 // 32-63: fp0-31, the 8-byte floating-point registers 3869 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3870 3871 // 64-76 are various 4-byte special-purpose registers: 3872 // 64: mq 3873 // 65: lr 3874 // 66: ctr 3875 // 67: ap 3876 // 68-75 cr0-7 3877 // 76: xer 3878 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3879 3880 // 77-108: v0-31, the 16-byte vector registers 3881 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3882 3883 // 109: vrsave 3884 // 110: vscr 3885 // 111: spe_acc 3886 // 112: spefscr 3887 // 113: sfp 3888 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3889 3890 return false; 3891 } 3892 3893 // PowerPC-64 3894 3895 namespace { 3896 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3897 class PPC64_SVR4_ABIInfo : public ABIInfo { 3898 public: 3899 enum ABIKind { 3900 ELFv1 = 0, 3901 ELFv2 3902 }; 3903 3904 private: 3905 static const unsigned GPRBits = 64; 3906 ABIKind Kind; 3907 bool HasQPX; 3908 bool IsSoftFloatABI; 3909 3910 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3911 // will be passed in a QPX register. 3912 bool IsQPXVectorTy(const Type *Ty) const { 3913 if (!HasQPX) 3914 return false; 3915 3916 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3917 unsigned NumElements = VT->getNumElements(); 3918 if (NumElements == 1) 3919 return false; 3920 3921 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3922 if (getContext().getTypeSize(Ty) <= 256) 3923 return true; 3924 } else if (VT->getElementType()-> 3925 isSpecificBuiltinType(BuiltinType::Float)) { 3926 if (getContext().getTypeSize(Ty) <= 128) 3927 return true; 3928 } 3929 } 3930 3931 return false; 3932 } 3933 3934 bool IsQPXVectorTy(QualType Ty) const { 3935 return IsQPXVectorTy(Ty.getTypePtr()); 3936 } 3937 3938 public: 3939 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 3940 bool SoftFloatABI) 3941 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 3942 IsSoftFloatABI(SoftFloatABI) {} 3943 3944 bool isPromotableTypeForABI(QualType Ty) const; 3945 CharUnits getParamTypeAlignment(QualType Ty) const; 3946 3947 ABIArgInfo classifyReturnType(QualType RetTy) const; 3948 ABIArgInfo classifyArgumentType(QualType Ty) const; 3949 3950 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3951 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3952 uint64_t Members) const override; 3953 3954 // TODO: We can add more logic to computeInfo to improve performance. 3955 // Example: For aggregate arguments that fit in a register, we could 3956 // use getDirectInReg (as is done below for structs containing a single 3957 // floating-point value) to avoid pushing them to memory on function 3958 // entry. This would require changing the logic in PPCISelLowering 3959 // when lowering the parameters in the caller and args in the callee. 3960 void computeInfo(CGFunctionInfo &FI) const override { 3961 if (!getCXXABI().classifyReturnType(FI)) 3962 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3963 for (auto &I : FI.arguments()) { 3964 // We rely on the default argument classification for the most part. 3965 // One exception: An aggregate containing a single floating-point 3966 // or vector item must be passed in a register if one is available. 3967 const Type *T = isSingleElementStruct(I.type, getContext()); 3968 if (T) { 3969 const BuiltinType *BT = T->getAs<BuiltinType>(); 3970 if (IsQPXVectorTy(T) || 3971 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3972 (BT && BT->isFloatingPoint())) { 3973 QualType QT(T, 0); 3974 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3975 continue; 3976 } 3977 } 3978 I.info = classifyArgumentType(I.type); 3979 } 3980 } 3981 3982 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3983 QualType Ty) const override; 3984 }; 3985 3986 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3987 3988 public: 3989 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3990 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 3991 bool SoftFloatABI) 3992 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 3993 SoftFloatABI)) {} 3994 3995 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3996 // This is recovered from gcc output. 3997 return 1; // r1 is the dedicated stack pointer 3998 } 3999 4000 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4001 llvm::Value *Address) const override; 4002 }; 4003 4004 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4005 public: 4006 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4007 4008 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4009 // This is recovered from gcc output. 4010 return 1; // r1 is the dedicated stack pointer 4011 } 4012 4013 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4014 llvm::Value *Address) const override; 4015 }; 4016 4017 } 4018 4019 // Return true if the ABI requires Ty to be passed sign- or zero- 4020 // extended to 64 bits. 4021 bool 4022 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4023 // Treat an enum type as its underlying type. 4024 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4025 Ty = EnumTy->getDecl()->getIntegerType(); 4026 4027 // Promotable integer types are required to be promoted by the ABI. 4028 if (Ty->isPromotableIntegerType()) 4029 return true; 4030 4031 // In addition to the usual promotable integer types, we also need to 4032 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4033 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4034 switch (BT->getKind()) { 4035 case BuiltinType::Int: 4036 case BuiltinType::UInt: 4037 return true; 4038 default: 4039 break; 4040 } 4041 4042 return false; 4043 } 4044 4045 /// isAlignedParamType - Determine whether a type requires 16-byte or 4046 /// higher alignment in the parameter area. Always returns at least 8. 4047 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4048 // Complex types are passed just like their elements. 4049 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4050 Ty = CTy->getElementType(); 4051 4052 // Only vector types of size 16 bytes need alignment (larger types are 4053 // passed via reference, smaller types are not aligned). 4054 if (IsQPXVectorTy(Ty)) { 4055 if (getContext().getTypeSize(Ty) > 128) 4056 return CharUnits::fromQuantity(32); 4057 4058 return CharUnits::fromQuantity(16); 4059 } else if (Ty->isVectorType()) { 4060 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4061 } 4062 4063 // For single-element float/vector structs, we consider the whole type 4064 // to have the same alignment requirements as its single element. 4065 const Type *AlignAsType = nullptr; 4066 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4067 if (EltType) { 4068 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4069 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4070 getContext().getTypeSize(EltType) == 128) || 4071 (BT && BT->isFloatingPoint())) 4072 AlignAsType = EltType; 4073 } 4074 4075 // Likewise for ELFv2 homogeneous aggregates. 4076 const Type *Base = nullptr; 4077 uint64_t Members = 0; 4078 if (!AlignAsType && Kind == ELFv2 && 4079 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4080 AlignAsType = Base; 4081 4082 // With special case aggregates, only vector base types need alignment. 4083 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4084 if (getContext().getTypeSize(AlignAsType) > 128) 4085 return CharUnits::fromQuantity(32); 4086 4087 return CharUnits::fromQuantity(16); 4088 } else if (AlignAsType) { 4089 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4090 } 4091 4092 // Otherwise, we only need alignment for any aggregate type that 4093 // has an alignment requirement of >= 16 bytes. 4094 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4095 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4096 return CharUnits::fromQuantity(32); 4097 return CharUnits::fromQuantity(16); 4098 } 4099 4100 return CharUnits::fromQuantity(8); 4101 } 4102 4103 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4104 /// aggregate. Base is set to the base element type, and Members is set 4105 /// to the number of base elements. 4106 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4107 uint64_t &Members) const { 4108 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4109 uint64_t NElements = AT->getSize().getZExtValue(); 4110 if (NElements == 0) 4111 return false; 4112 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4113 return false; 4114 Members *= NElements; 4115 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4116 const RecordDecl *RD = RT->getDecl(); 4117 if (RD->hasFlexibleArrayMember()) 4118 return false; 4119 4120 Members = 0; 4121 4122 // If this is a C++ record, check the bases first. 4123 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4124 for (const auto &I : CXXRD->bases()) { 4125 // Ignore empty records. 4126 if (isEmptyRecord(getContext(), I.getType(), true)) 4127 continue; 4128 4129 uint64_t FldMembers; 4130 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4131 return false; 4132 4133 Members += FldMembers; 4134 } 4135 } 4136 4137 for (const auto *FD : RD->fields()) { 4138 // Ignore (non-zero arrays of) empty records. 4139 QualType FT = FD->getType(); 4140 while (const ConstantArrayType *AT = 4141 getContext().getAsConstantArrayType(FT)) { 4142 if (AT->getSize().getZExtValue() == 0) 4143 return false; 4144 FT = AT->getElementType(); 4145 } 4146 if (isEmptyRecord(getContext(), FT, true)) 4147 continue; 4148 4149 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4150 if (getContext().getLangOpts().CPlusPlus && 4151 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4152 continue; 4153 4154 uint64_t FldMembers; 4155 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4156 return false; 4157 4158 Members = (RD->isUnion() ? 4159 std::max(Members, FldMembers) : Members + FldMembers); 4160 } 4161 4162 if (!Base) 4163 return false; 4164 4165 // Ensure there is no padding. 4166 if (getContext().getTypeSize(Base) * Members != 4167 getContext().getTypeSize(Ty)) 4168 return false; 4169 } else { 4170 Members = 1; 4171 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4172 Members = 2; 4173 Ty = CT->getElementType(); 4174 } 4175 4176 // Most ABIs only support float, double, and some vector type widths. 4177 if (!isHomogeneousAggregateBaseType(Ty)) 4178 return false; 4179 4180 // The base type must be the same for all members. Types that 4181 // agree in both total size and mode (float vs. vector) are 4182 // treated as being equivalent here. 4183 const Type *TyPtr = Ty.getTypePtr(); 4184 if (!Base) { 4185 Base = TyPtr; 4186 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4187 // so make sure to widen it explicitly. 4188 if (const VectorType *VT = Base->getAs<VectorType>()) { 4189 QualType EltTy = VT->getElementType(); 4190 unsigned NumElements = 4191 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4192 Base = getContext() 4193 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4194 .getTypePtr(); 4195 } 4196 } 4197 4198 if (Base->isVectorType() != TyPtr->isVectorType() || 4199 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4200 return false; 4201 } 4202 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4203 } 4204 4205 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4206 // Homogeneous aggregates for ELFv2 must have base types of float, 4207 // double, long double, or 128-bit vectors. 4208 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4209 if (BT->getKind() == BuiltinType::Float || 4210 BT->getKind() == BuiltinType::Double || 4211 BT->getKind() == BuiltinType::LongDouble) { 4212 if (IsSoftFloatABI) 4213 return false; 4214 return true; 4215 } 4216 } 4217 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4218 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4219 return true; 4220 } 4221 return false; 4222 } 4223 4224 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4225 const Type *Base, uint64_t Members) const { 4226 // Vector types require one register, floating point types require one 4227 // or two registers depending on their size. 4228 uint32_t NumRegs = 4229 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4230 4231 // Homogeneous Aggregates may occupy at most 8 registers. 4232 return Members * NumRegs <= 8; 4233 } 4234 4235 ABIArgInfo 4236 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4237 Ty = useFirstFieldIfTransparentUnion(Ty); 4238 4239 if (Ty->isAnyComplexType()) 4240 return ABIArgInfo::getDirect(); 4241 4242 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4243 // or via reference (larger than 16 bytes). 4244 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4245 uint64_t Size = getContext().getTypeSize(Ty); 4246 if (Size > 128) 4247 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4248 else if (Size < 128) { 4249 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4250 return ABIArgInfo::getDirect(CoerceTy); 4251 } 4252 } 4253 4254 if (isAggregateTypeForABI(Ty)) { 4255 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4256 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4257 4258 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4259 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4260 4261 // ELFv2 homogeneous aggregates are passed as array types. 4262 const Type *Base = nullptr; 4263 uint64_t Members = 0; 4264 if (Kind == ELFv2 && 4265 isHomogeneousAggregate(Ty, Base, Members)) { 4266 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4267 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4268 return ABIArgInfo::getDirect(CoerceTy); 4269 } 4270 4271 // If an aggregate may end up fully in registers, we do not 4272 // use the ByVal method, but pass the aggregate as array. 4273 // This is usually beneficial since we avoid forcing the 4274 // back-end to store the argument to memory. 4275 uint64_t Bits = getContext().getTypeSize(Ty); 4276 if (Bits > 0 && Bits <= 8 * GPRBits) { 4277 llvm::Type *CoerceTy; 4278 4279 // Types up to 8 bytes are passed as integer type (which will be 4280 // properly aligned in the argument save area doubleword). 4281 if (Bits <= GPRBits) 4282 CoerceTy = 4283 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4284 // Larger types are passed as arrays, with the base type selected 4285 // according to the required alignment in the save area. 4286 else { 4287 uint64_t RegBits = ABIAlign * 8; 4288 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4289 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4290 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4291 } 4292 4293 return ABIArgInfo::getDirect(CoerceTy); 4294 } 4295 4296 // All other aggregates are passed ByVal. 4297 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4298 /*ByVal=*/true, 4299 /*Realign=*/TyAlign > ABIAlign); 4300 } 4301 4302 return (isPromotableTypeForABI(Ty) ? 4303 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4304 } 4305 4306 ABIArgInfo 4307 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4308 if (RetTy->isVoidType()) 4309 return ABIArgInfo::getIgnore(); 4310 4311 if (RetTy->isAnyComplexType()) 4312 return ABIArgInfo::getDirect(); 4313 4314 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4315 // or via reference (larger than 16 bytes). 4316 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4317 uint64_t Size = getContext().getTypeSize(RetTy); 4318 if (Size > 128) 4319 return getNaturalAlignIndirect(RetTy); 4320 else if (Size < 128) { 4321 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4322 return ABIArgInfo::getDirect(CoerceTy); 4323 } 4324 } 4325 4326 if (isAggregateTypeForABI(RetTy)) { 4327 // ELFv2 homogeneous aggregates are returned as array types. 4328 const Type *Base = nullptr; 4329 uint64_t Members = 0; 4330 if (Kind == ELFv2 && 4331 isHomogeneousAggregate(RetTy, Base, Members)) { 4332 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4333 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4334 return ABIArgInfo::getDirect(CoerceTy); 4335 } 4336 4337 // ELFv2 small aggregates are returned in up to two registers. 4338 uint64_t Bits = getContext().getTypeSize(RetTy); 4339 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4340 if (Bits == 0) 4341 return ABIArgInfo::getIgnore(); 4342 4343 llvm::Type *CoerceTy; 4344 if (Bits > GPRBits) { 4345 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4346 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4347 } else 4348 CoerceTy = 4349 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4350 return ABIArgInfo::getDirect(CoerceTy); 4351 } 4352 4353 // All other aggregates are returned indirectly. 4354 return getNaturalAlignIndirect(RetTy); 4355 } 4356 4357 return (isPromotableTypeForABI(RetTy) ? 4358 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4359 } 4360 4361 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4362 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4363 QualType Ty) const { 4364 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4365 TypeInfo.second = getParamTypeAlignment(Ty); 4366 4367 CharUnits SlotSize = CharUnits::fromQuantity(8); 4368 4369 // If we have a complex type and the base type is smaller than 8 bytes, 4370 // the ABI calls for the real and imaginary parts to be right-adjusted 4371 // in separate doublewords. However, Clang expects us to produce a 4372 // pointer to a structure with the two parts packed tightly. So generate 4373 // loads of the real and imaginary parts relative to the va_list pointer, 4374 // and store them to a temporary structure. 4375 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4376 CharUnits EltSize = TypeInfo.first / 2; 4377 if (EltSize < SlotSize) { 4378 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4379 SlotSize * 2, SlotSize, 4380 SlotSize, /*AllowHigher*/ true); 4381 4382 Address RealAddr = Addr; 4383 Address ImagAddr = RealAddr; 4384 if (CGF.CGM.getDataLayout().isBigEndian()) { 4385 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4386 SlotSize - EltSize); 4387 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4388 2 * SlotSize - EltSize); 4389 } else { 4390 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4391 } 4392 4393 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4394 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4395 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4396 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4397 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4398 4399 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4400 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4401 /*init*/ true); 4402 return Temp; 4403 } 4404 } 4405 4406 // Otherwise, just use the general rule. 4407 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4408 TypeInfo, SlotSize, /*AllowHigher*/ true); 4409 } 4410 4411 static bool 4412 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4413 llvm::Value *Address) { 4414 // This is calculated from the LLVM and GCC tables and verified 4415 // against gcc output. AFAIK all ABIs use the same encoding. 4416 4417 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4418 4419 llvm::IntegerType *i8 = CGF.Int8Ty; 4420 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4421 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4422 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4423 4424 // 0-31: r0-31, the 8-byte general-purpose registers 4425 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4426 4427 // 32-63: fp0-31, the 8-byte floating-point registers 4428 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4429 4430 // 64-67 are various 8-byte special-purpose registers: 4431 // 64: mq 4432 // 65: lr 4433 // 66: ctr 4434 // 67: ap 4435 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4436 4437 // 68-76 are various 4-byte special-purpose registers: 4438 // 68-75 cr0-7 4439 // 76: xer 4440 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4441 4442 // 77-108: v0-31, the 16-byte vector registers 4443 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4444 4445 // 109: vrsave 4446 // 110: vscr 4447 // 111: spe_acc 4448 // 112: spefscr 4449 // 113: sfp 4450 // 114: tfhar 4451 // 115: tfiar 4452 // 116: texasr 4453 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4454 4455 return false; 4456 } 4457 4458 bool 4459 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4460 CodeGen::CodeGenFunction &CGF, 4461 llvm::Value *Address) const { 4462 4463 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4464 } 4465 4466 bool 4467 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4468 llvm::Value *Address) const { 4469 4470 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4471 } 4472 4473 //===----------------------------------------------------------------------===// 4474 // AArch64 ABI Implementation 4475 //===----------------------------------------------------------------------===// 4476 4477 namespace { 4478 4479 class AArch64ABIInfo : public SwiftABIInfo { 4480 public: 4481 enum ABIKind { 4482 AAPCS = 0, 4483 DarwinPCS 4484 }; 4485 4486 private: 4487 ABIKind Kind; 4488 4489 public: 4490 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4491 : SwiftABIInfo(CGT), Kind(Kind) {} 4492 4493 private: 4494 ABIKind getABIKind() const { return Kind; } 4495 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4496 4497 ABIArgInfo classifyReturnType(QualType RetTy) const; 4498 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4499 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4500 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4501 uint64_t Members) const override; 4502 4503 bool isIllegalVectorType(QualType Ty) const; 4504 4505 void computeInfo(CGFunctionInfo &FI) const override { 4506 if (!getCXXABI().classifyReturnType(FI)) 4507 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4508 4509 for (auto &it : FI.arguments()) 4510 it.info = classifyArgumentType(it.type); 4511 } 4512 4513 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4514 CodeGenFunction &CGF) const; 4515 4516 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4517 CodeGenFunction &CGF) const; 4518 4519 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4520 QualType Ty) const override { 4521 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4522 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4523 } 4524 4525 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4526 ArrayRef<llvm::Type*> scalars, 4527 bool asReturnValue) const override { 4528 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4529 } 4530 }; 4531 4532 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4533 public: 4534 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4535 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4536 4537 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4538 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4539 } 4540 4541 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4542 return 31; 4543 } 4544 4545 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4546 }; 4547 } 4548 4549 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4550 Ty = useFirstFieldIfTransparentUnion(Ty); 4551 4552 // Handle illegal vector types here. 4553 if (isIllegalVectorType(Ty)) { 4554 uint64_t Size = getContext().getTypeSize(Ty); 4555 // Android promotes <2 x i8> to i16, not i32 4556 if (isAndroid() && (Size <= 16)) { 4557 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4558 return ABIArgInfo::getDirect(ResType); 4559 } 4560 if (Size <= 32) { 4561 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4562 return ABIArgInfo::getDirect(ResType); 4563 } 4564 if (Size == 64) { 4565 llvm::Type *ResType = 4566 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4567 return ABIArgInfo::getDirect(ResType); 4568 } 4569 if (Size == 128) { 4570 llvm::Type *ResType = 4571 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4572 return ABIArgInfo::getDirect(ResType); 4573 } 4574 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4575 } 4576 4577 if (!isAggregateTypeForABI(Ty)) { 4578 // Treat an enum type as its underlying type. 4579 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4580 Ty = EnumTy->getDecl()->getIntegerType(); 4581 4582 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4583 ? ABIArgInfo::getExtend() 4584 : ABIArgInfo::getDirect()); 4585 } 4586 4587 // Structures with either a non-trivial destructor or a non-trivial 4588 // copy constructor are always indirect. 4589 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4590 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4591 CGCXXABI::RAA_DirectInMemory); 4592 } 4593 4594 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4595 // elsewhere for GNU compatibility. 4596 if (isEmptyRecord(getContext(), Ty, true)) { 4597 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4598 return ABIArgInfo::getIgnore(); 4599 4600 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4601 } 4602 4603 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4604 const Type *Base = nullptr; 4605 uint64_t Members = 0; 4606 if (isHomogeneousAggregate(Ty, Base, Members)) { 4607 return ABIArgInfo::getDirect( 4608 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4609 } 4610 4611 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4612 uint64_t Size = getContext().getTypeSize(Ty); 4613 if (Size <= 128) { 4614 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4615 // same size and alignment. 4616 if (getTarget().isRenderScriptTarget()) { 4617 return coerceToIntArray(Ty, getContext(), getVMContext()); 4618 } 4619 unsigned Alignment = getContext().getTypeAlign(Ty); 4620 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4621 4622 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4623 // For aggregates with 16-byte alignment, we use i128. 4624 if (Alignment < 128 && Size == 128) { 4625 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4626 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4627 } 4628 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4629 } 4630 4631 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4632 } 4633 4634 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4635 if (RetTy->isVoidType()) 4636 return ABIArgInfo::getIgnore(); 4637 4638 // Large vector types should be returned via memory. 4639 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4640 return getNaturalAlignIndirect(RetTy); 4641 4642 if (!isAggregateTypeForABI(RetTy)) { 4643 // Treat an enum type as its underlying type. 4644 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4645 RetTy = EnumTy->getDecl()->getIntegerType(); 4646 4647 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4648 ? ABIArgInfo::getExtend() 4649 : ABIArgInfo::getDirect()); 4650 } 4651 4652 if (isEmptyRecord(getContext(), RetTy, true)) 4653 return ABIArgInfo::getIgnore(); 4654 4655 const Type *Base = nullptr; 4656 uint64_t Members = 0; 4657 if (isHomogeneousAggregate(RetTy, Base, Members)) 4658 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4659 return ABIArgInfo::getDirect(); 4660 4661 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4662 uint64_t Size = getContext().getTypeSize(RetTy); 4663 if (Size <= 128) { 4664 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4665 // same size and alignment. 4666 if (getTarget().isRenderScriptTarget()) { 4667 return coerceToIntArray(RetTy, getContext(), getVMContext()); 4668 } 4669 unsigned Alignment = getContext().getTypeAlign(RetTy); 4670 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4671 4672 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4673 // For aggregates with 16-byte alignment, we use i128. 4674 if (Alignment < 128 && Size == 128) { 4675 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4676 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4677 } 4678 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4679 } 4680 4681 return getNaturalAlignIndirect(RetTy); 4682 } 4683 4684 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4685 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4686 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4687 // Check whether VT is legal. 4688 unsigned NumElements = VT->getNumElements(); 4689 uint64_t Size = getContext().getTypeSize(VT); 4690 // NumElements should be power of 2. 4691 if (!llvm::isPowerOf2_32(NumElements)) 4692 return true; 4693 return Size != 64 && (Size != 128 || NumElements == 1); 4694 } 4695 return false; 4696 } 4697 4698 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4699 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4700 // point type or a short-vector type. This is the same as the 32-bit ABI, 4701 // but with the difference that any floating-point type is allowed, 4702 // including __fp16. 4703 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4704 if (BT->isFloatingPoint()) 4705 return true; 4706 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4707 unsigned VecSize = getContext().getTypeSize(VT); 4708 if (VecSize == 64 || VecSize == 128) 4709 return true; 4710 } 4711 return false; 4712 } 4713 4714 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4715 uint64_t Members) const { 4716 return Members <= 4; 4717 } 4718 4719 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4720 QualType Ty, 4721 CodeGenFunction &CGF) const { 4722 ABIArgInfo AI = classifyArgumentType(Ty); 4723 bool IsIndirect = AI.isIndirect(); 4724 4725 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4726 if (IsIndirect) 4727 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4728 else if (AI.getCoerceToType()) 4729 BaseTy = AI.getCoerceToType(); 4730 4731 unsigned NumRegs = 1; 4732 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4733 BaseTy = ArrTy->getElementType(); 4734 NumRegs = ArrTy->getNumElements(); 4735 } 4736 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4737 4738 // The AArch64 va_list type and handling is specified in the Procedure Call 4739 // Standard, section B.4: 4740 // 4741 // struct { 4742 // void *__stack; 4743 // void *__gr_top; 4744 // void *__vr_top; 4745 // int __gr_offs; 4746 // int __vr_offs; 4747 // }; 4748 4749 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4750 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4751 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4752 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4753 4754 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4755 CharUnits TyAlign = TyInfo.second; 4756 4757 Address reg_offs_p = Address::invalid(); 4758 llvm::Value *reg_offs = nullptr; 4759 int reg_top_index; 4760 CharUnits reg_top_offset; 4761 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4762 if (!IsFPR) { 4763 // 3 is the field number of __gr_offs 4764 reg_offs_p = 4765 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4766 "gr_offs_p"); 4767 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4768 reg_top_index = 1; // field number for __gr_top 4769 reg_top_offset = CharUnits::fromQuantity(8); 4770 RegSize = llvm::alignTo(RegSize, 8); 4771 } else { 4772 // 4 is the field number of __vr_offs. 4773 reg_offs_p = 4774 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4775 "vr_offs_p"); 4776 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4777 reg_top_index = 2; // field number for __vr_top 4778 reg_top_offset = CharUnits::fromQuantity(16); 4779 RegSize = 16 * NumRegs; 4780 } 4781 4782 //======================================= 4783 // Find out where argument was passed 4784 //======================================= 4785 4786 // If reg_offs >= 0 we're already using the stack for this type of 4787 // argument. We don't want to keep updating reg_offs (in case it overflows, 4788 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4789 // whatever they get). 4790 llvm::Value *UsingStack = nullptr; 4791 UsingStack = CGF.Builder.CreateICmpSGE( 4792 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4793 4794 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4795 4796 // Otherwise, at least some kind of argument could go in these registers, the 4797 // question is whether this particular type is too big. 4798 CGF.EmitBlock(MaybeRegBlock); 4799 4800 // Integer arguments may need to correct register alignment (for example a 4801 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4802 // align __gr_offs to calculate the potential address. 4803 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4804 int Align = TyAlign.getQuantity(); 4805 4806 reg_offs = CGF.Builder.CreateAdd( 4807 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4808 "align_regoffs"); 4809 reg_offs = CGF.Builder.CreateAnd( 4810 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4811 "aligned_regoffs"); 4812 } 4813 4814 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4815 // The fact that this is done unconditionally reflects the fact that 4816 // allocating an argument to the stack also uses up all the remaining 4817 // registers of the appropriate kind. 4818 llvm::Value *NewOffset = nullptr; 4819 NewOffset = CGF.Builder.CreateAdd( 4820 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4821 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4822 4823 // Now we're in a position to decide whether this argument really was in 4824 // registers or not. 4825 llvm::Value *InRegs = nullptr; 4826 InRegs = CGF.Builder.CreateICmpSLE( 4827 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4828 4829 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4830 4831 //======================================= 4832 // Argument was in registers 4833 //======================================= 4834 4835 // Now we emit the code for if the argument was originally passed in 4836 // registers. First start the appropriate block: 4837 CGF.EmitBlock(InRegBlock); 4838 4839 llvm::Value *reg_top = nullptr; 4840 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4841 reg_top_offset, "reg_top_p"); 4842 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4843 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4844 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4845 Address RegAddr = Address::invalid(); 4846 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4847 4848 if (IsIndirect) { 4849 // If it's been passed indirectly (actually a struct), whatever we find from 4850 // stored registers or on the stack will actually be a struct **. 4851 MemTy = llvm::PointerType::getUnqual(MemTy); 4852 } 4853 4854 const Type *Base = nullptr; 4855 uint64_t NumMembers = 0; 4856 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4857 if (IsHFA && NumMembers > 1) { 4858 // Homogeneous aggregates passed in registers will have their elements split 4859 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4860 // qN+1, ...). We reload and store into a temporary local variable 4861 // contiguously. 4862 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4863 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4864 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4865 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4866 Address Tmp = CGF.CreateTempAlloca(HFATy, 4867 std::max(TyAlign, BaseTyInfo.second)); 4868 4869 // On big-endian platforms, the value will be right-aligned in its slot. 4870 int Offset = 0; 4871 if (CGF.CGM.getDataLayout().isBigEndian() && 4872 BaseTyInfo.first.getQuantity() < 16) 4873 Offset = 16 - BaseTyInfo.first.getQuantity(); 4874 4875 for (unsigned i = 0; i < NumMembers; ++i) { 4876 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 4877 Address LoadAddr = 4878 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 4879 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 4880 4881 Address StoreAddr = 4882 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 4883 4884 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4885 CGF.Builder.CreateStore(Elem, StoreAddr); 4886 } 4887 4888 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 4889 } else { 4890 // Otherwise the object is contiguous in memory. 4891 4892 // It might be right-aligned in its slot. 4893 CharUnits SlotSize = BaseAddr.getAlignment(); 4894 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 4895 (IsHFA || !isAggregateTypeForABI(Ty)) && 4896 TyInfo.first < SlotSize) { 4897 CharUnits Offset = SlotSize - TyInfo.first; 4898 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 4899 } 4900 4901 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 4902 } 4903 4904 CGF.EmitBranch(ContBlock); 4905 4906 //======================================= 4907 // Argument was on the stack 4908 //======================================= 4909 CGF.EmitBlock(OnStackBlock); 4910 4911 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 4912 CharUnits::Zero(), "stack_p"); 4913 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 4914 4915 // Again, stack arguments may need realignment. In this case both integer and 4916 // floating-point ones might be affected. 4917 if (!IsIndirect && TyAlign.getQuantity() > 8) { 4918 int Align = TyAlign.getQuantity(); 4919 4920 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 4921 4922 OnStackPtr = CGF.Builder.CreateAdd( 4923 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4924 "align_stack"); 4925 OnStackPtr = CGF.Builder.CreateAnd( 4926 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4927 "align_stack"); 4928 4929 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 4930 } 4931 Address OnStackAddr(OnStackPtr, 4932 std::max(CharUnits::fromQuantity(8), TyAlign)); 4933 4934 // All stack slots are multiples of 8 bytes. 4935 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 4936 CharUnits StackSize; 4937 if (IsIndirect) 4938 StackSize = StackSlotSize; 4939 else 4940 StackSize = TyInfo.first.alignTo(StackSlotSize); 4941 4942 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 4943 llvm::Value *NewStack = 4944 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 4945 4946 // Write the new value of __stack for the next call to va_arg 4947 CGF.Builder.CreateStore(NewStack, stack_p); 4948 4949 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4950 TyInfo.first < StackSlotSize) { 4951 CharUnits Offset = StackSlotSize - TyInfo.first; 4952 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 4953 } 4954 4955 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 4956 4957 CGF.EmitBranch(ContBlock); 4958 4959 //======================================= 4960 // Tidy up 4961 //======================================= 4962 CGF.EmitBlock(ContBlock); 4963 4964 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 4965 OnStackAddr, OnStackBlock, "vaargs.addr"); 4966 4967 if (IsIndirect) 4968 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 4969 TyInfo.second); 4970 4971 return ResAddr; 4972 } 4973 4974 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4975 CodeGenFunction &CGF) const { 4976 // The backend's lowering doesn't support va_arg for aggregates or 4977 // illegal vector types. Lower VAArg here for these cases and use 4978 // the LLVM va_arg instruction for everything else. 4979 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4980 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 4981 4982 CharUnits SlotSize = CharUnits::fromQuantity(8); 4983 4984 // Empty records are ignored for parameter passing purposes. 4985 if (isEmptyRecord(getContext(), Ty, true)) { 4986 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 4987 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 4988 return Addr; 4989 } 4990 4991 // The size of the actual thing passed, which might end up just 4992 // being a pointer for indirect types. 4993 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4994 4995 // Arguments bigger than 16 bytes which aren't homogeneous 4996 // aggregates should be passed indirectly. 4997 bool IsIndirect = false; 4998 if (TyInfo.first.getQuantity() > 16) { 4999 const Type *Base = nullptr; 5000 uint64_t Members = 0; 5001 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5002 } 5003 5004 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5005 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5006 } 5007 5008 //===----------------------------------------------------------------------===// 5009 // ARM ABI Implementation 5010 //===----------------------------------------------------------------------===// 5011 5012 namespace { 5013 5014 class ARMABIInfo : public SwiftABIInfo { 5015 public: 5016 enum ABIKind { 5017 APCS = 0, 5018 AAPCS = 1, 5019 AAPCS_VFP = 2, 5020 AAPCS16_VFP = 3, 5021 }; 5022 5023 private: 5024 ABIKind Kind; 5025 5026 public: 5027 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5028 : SwiftABIInfo(CGT), Kind(_Kind) { 5029 setCCs(); 5030 } 5031 5032 bool isEABI() const { 5033 switch (getTarget().getTriple().getEnvironment()) { 5034 case llvm::Triple::Android: 5035 case llvm::Triple::EABI: 5036 case llvm::Triple::EABIHF: 5037 case llvm::Triple::GNUEABI: 5038 case llvm::Triple::GNUEABIHF: 5039 case llvm::Triple::MuslEABI: 5040 case llvm::Triple::MuslEABIHF: 5041 return true; 5042 default: 5043 return false; 5044 } 5045 } 5046 5047 bool isEABIHF() const { 5048 switch (getTarget().getTriple().getEnvironment()) { 5049 case llvm::Triple::EABIHF: 5050 case llvm::Triple::GNUEABIHF: 5051 case llvm::Triple::MuslEABIHF: 5052 return true; 5053 default: 5054 return false; 5055 } 5056 } 5057 5058 ABIKind getABIKind() const { return Kind; } 5059 5060 private: 5061 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5062 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5063 bool isIllegalVectorType(QualType Ty) const; 5064 5065 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5066 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5067 uint64_t Members) const override; 5068 5069 void computeInfo(CGFunctionInfo &FI) const override; 5070 5071 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5072 QualType Ty) const override; 5073 5074 llvm::CallingConv::ID getLLVMDefaultCC() const; 5075 llvm::CallingConv::ID getABIDefaultCC() const; 5076 void setCCs(); 5077 5078 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5079 ArrayRef<llvm::Type*> scalars, 5080 bool asReturnValue) const override { 5081 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5082 } 5083 }; 5084 5085 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5086 public: 5087 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5088 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5089 5090 const ARMABIInfo &getABIInfo() const { 5091 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5092 } 5093 5094 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5095 return 13; 5096 } 5097 5098 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5099 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5100 } 5101 5102 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5103 llvm::Value *Address) const override { 5104 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5105 5106 // 0-15 are the 16 integer registers. 5107 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5108 return false; 5109 } 5110 5111 unsigned getSizeOfUnwindException() const override { 5112 if (getABIInfo().isEABI()) return 88; 5113 return TargetCodeGenInfo::getSizeOfUnwindException(); 5114 } 5115 5116 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5117 CodeGen::CodeGenModule &CGM) const override { 5118 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5119 if (!FD) 5120 return; 5121 5122 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5123 if (!Attr) 5124 return; 5125 5126 const char *Kind; 5127 switch (Attr->getInterrupt()) { 5128 case ARMInterruptAttr::Generic: Kind = ""; break; 5129 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5130 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5131 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5132 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5133 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5134 } 5135 5136 llvm::Function *Fn = cast<llvm::Function>(GV); 5137 5138 Fn->addFnAttr("interrupt", Kind); 5139 5140 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5141 if (ABI == ARMABIInfo::APCS) 5142 return; 5143 5144 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5145 // however this is not necessarily true on taking any interrupt. Instruct 5146 // the backend to perform a realignment as part of the function prologue. 5147 llvm::AttrBuilder B; 5148 B.addStackAlignmentAttr(8); 5149 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 5150 llvm::AttributeSet::get(CGM.getLLVMContext(), 5151 llvm::AttributeSet::FunctionIndex, 5152 B)); 5153 } 5154 }; 5155 5156 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5157 public: 5158 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5159 : ARMTargetCodeGenInfo(CGT, K) {} 5160 5161 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5162 CodeGen::CodeGenModule &CGM) const override; 5163 5164 void getDependentLibraryOption(llvm::StringRef Lib, 5165 llvm::SmallString<24> &Opt) const override { 5166 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5167 } 5168 5169 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5170 llvm::SmallString<32> &Opt) const override { 5171 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5172 } 5173 }; 5174 5175 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5176 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5177 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5178 addStackProbeSizeTargetAttribute(D, GV, CGM); 5179 } 5180 } 5181 5182 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5183 if (!getCXXABI().classifyReturnType(FI)) 5184 FI.getReturnInfo() = 5185 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5186 5187 for (auto &I : FI.arguments()) 5188 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5189 5190 // Always honor user-specified calling convention. 5191 if (FI.getCallingConvention() != llvm::CallingConv::C) 5192 return; 5193 5194 llvm::CallingConv::ID cc = getRuntimeCC(); 5195 if (cc != llvm::CallingConv::C) 5196 FI.setEffectiveCallingConvention(cc); 5197 } 5198 5199 /// Return the default calling convention that LLVM will use. 5200 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5201 // The default calling convention that LLVM will infer. 5202 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5203 return llvm::CallingConv::ARM_AAPCS_VFP; 5204 else if (isEABI()) 5205 return llvm::CallingConv::ARM_AAPCS; 5206 else 5207 return llvm::CallingConv::ARM_APCS; 5208 } 5209 5210 /// Return the calling convention that our ABI would like us to use 5211 /// as the C calling convention. 5212 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5213 switch (getABIKind()) { 5214 case APCS: return llvm::CallingConv::ARM_APCS; 5215 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5216 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5217 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5218 } 5219 llvm_unreachable("bad ABI kind"); 5220 } 5221 5222 void ARMABIInfo::setCCs() { 5223 assert(getRuntimeCC() == llvm::CallingConv::C); 5224 5225 // Don't muddy up the IR with a ton of explicit annotations if 5226 // they'd just match what LLVM will infer from the triple. 5227 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5228 if (abiCC != getLLVMDefaultCC()) 5229 RuntimeCC = abiCC; 5230 5231 // AAPCS apparently requires runtime support functions to be soft-float, but 5232 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5233 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5234 switch (getABIKind()) { 5235 case APCS: 5236 case AAPCS16_VFP: 5237 if (abiCC != getLLVMDefaultCC()) 5238 BuiltinCC = abiCC; 5239 break; 5240 case AAPCS: 5241 case AAPCS_VFP: 5242 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5243 break; 5244 } 5245 } 5246 5247 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5248 bool isVariadic) const { 5249 // 6.1.2.1 The following argument types are VFP CPRCs: 5250 // A single-precision floating-point type (including promoted 5251 // half-precision types); A double-precision floating-point type; 5252 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5253 // with a Base Type of a single- or double-precision floating-point type, 5254 // 64-bit containerized vectors or 128-bit containerized vectors with one 5255 // to four Elements. 5256 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5257 5258 Ty = useFirstFieldIfTransparentUnion(Ty); 5259 5260 // Handle illegal vector types here. 5261 if (isIllegalVectorType(Ty)) { 5262 uint64_t Size = getContext().getTypeSize(Ty); 5263 if (Size <= 32) { 5264 llvm::Type *ResType = 5265 llvm::Type::getInt32Ty(getVMContext()); 5266 return ABIArgInfo::getDirect(ResType); 5267 } 5268 if (Size == 64) { 5269 llvm::Type *ResType = llvm::VectorType::get( 5270 llvm::Type::getInt32Ty(getVMContext()), 2); 5271 return ABIArgInfo::getDirect(ResType); 5272 } 5273 if (Size == 128) { 5274 llvm::Type *ResType = llvm::VectorType::get( 5275 llvm::Type::getInt32Ty(getVMContext()), 4); 5276 return ABIArgInfo::getDirect(ResType); 5277 } 5278 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5279 } 5280 5281 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5282 // unspecified. This is not done for OpenCL as it handles the half type 5283 // natively, and does not need to interwork with AAPCS code. 5284 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5285 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5286 llvm::Type::getFloatTy(getVMContext()) : 5287 llvm::Type::getInt32Ty(getVMContext()); 5288 return ABIArgInfo::getDirect(ResType); 5289 } 5290 5291 if (!isAggregateTypeForABI(Ty)) { 5292 // Treat an enum type as its underlying type. 5293 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5294 Ty = EnumTy->getDecl()->getIntegerType(); 5295 } 5296 5297 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5298 : ABIArgInfo::getDirect()); 5299 } 5300 5301 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5302 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5303 } 5304 5305 // Ignore empty records. 5306 if (isEmptyRecord(getContext(), Ty, true)) 5307 return ABIArgInfo::getIgnore(); 5308 5309 if (IsEffectivelyAAPCS_VFP) { 5310 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5311 // into VFP registers. 5312 const Type *Base = nullptr; 5313 uint64_t Members = 0; 5314 if (isHomogeneousAggregate(Ty, Base, Members)) { 5315 assert(Base && "Base class should be set for homogeneous aggregate"); 5316 // Base can be a floating-point or a vector. 5317 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5318 } 5319 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5320 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5321 // this convention even for a variadic function: the backend will use GPRs 5322 // if needed. 5323 const Type *Base = nullptr; 5324 uint64_t Members = 0; 5325 if (isHomogeneousAggregate(Ty, Base, Members)) { 5326 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5327 llvm::Type *Ty = 5328 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5329 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5330 } 5331 } 5332 5333 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5334 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5335 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5336 // bigger than 128-bits, they get placed in space allocated by the caller, 5337 // and a pointer is passed. 5338 return ABIArgInfo::getIndirect( 5339 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5340 } 5341 5342 // Support byval for ARM. 5343 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5344 // most 8-byte. We realign the indirect argument if type alignment is bigger 5345 // than ABI alignment. 5346 uint64_t ABIAlign = 4; 5347 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5348 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5349 getABIKind() == ARMABIInfo::AAPCS) 5350 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5351 5352 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5353 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5354 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5355 /*ByVal=*/true, 5356 /*Realign=*/TyAlign > ABIAlign); 5357 } 5358 5359 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5360 // same size and alignment. 5361 if (getTarget().isRenderScriptTarget()) { 5362 return coerceToIntArray(Ty, getContext(), getVMContext()); 5363 } 5364 5365 // Otherwise, pass by coercing to a structure of the appropriate size. 5366 llvm::Type* ElemTy; 5367 unsigned SizeRegs; 5368 // FIXME: Try to match the types of the arguments more accurately where 5369 // we can. 5370 if (getContext().getTypeAlign(Ty) <= 32) { 5371 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5372 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5373 } else { 5374 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5375 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5376 } 5377 5378 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5379 } 5380 5381 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5382 llvm::LLVMContext &VMContext) { 5383 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5384 // is called integer-like if its size is less than or equal to one word, and 5385 // the offset of each of its addressable sub-fields is zero. 5386 5387 uint64_t Size = Context.getTypeSize(Ty); 5388 5389 // Check that the type fits in a word. 5390 if (Size > 32) 5391 return false; 5392 5393 // FIXME: Handle vector types! 5394 if (Ty->isVectorType()) 5395 return false; 5396 5397 // Float types are never treated as "integer like". 5398 if (Ty->isRealFloatingType()) 5399 return false; 5400 5401 // If this is a builtin or pointer type then it is ok. 5402 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5403 return true; 5404 5405 // Small complex integer types are "integer like". 5406 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5407 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5408 5409 // Single element and zero sized arrays should be allowed, by the definition 5410 // above, but they are not. 5411 5412 // Otherwise, it must be a record type. 5413 const RecordType *RT = Ty->getAs<RecordType>(); 5414 if (!RT) return false; 5415 5416 // Ignore records with flexible arrays. 5417 const RecordDecl *RD = RT->getDecl(); 5418 if (RD->hasFlexibleArrayMember()) 5419 return false; 5420 5421 // Check that all sub-fields are at offset 0, and are themselves "integer 5422 // like". 5423 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5424 5425 bool HadField = false; 5426 unsigned idx = 0; 5427 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5428 i != e; ++i, ++idx) { 5429 const FieldDecl *FD = *i; 5430 5431 // Bit-fields are not addressable, we only need to verify they are "integer 5432 // like". We still have to disallow a subsequent non-bitfield, for example: 5433 // struct { int : 0; int x } 5434 // is non-integer like according to gcc. 5435 if (FD->isBitField()) { 5436 if (!RD->isUnion()) 5437 HadField = true; 5438 5439 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5440 return false; 5441 5442 continue; 5443 } 5444 5445 // Check if this field is at offset 0. 5446 if (Layout.getFieldOffset(idx) != 0) 5447 return false; 5448 5449 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5450 return false; 5451 5452 // Only allow at most one field in a structure. This doesn't match the 5453 // wording above, but follows gcc in situations with a field following an 5454 // empty structure. 5455 if (!RD->isUnion()) { 5456 if (HadField) 5457 return false; 5458 5459 HadField = true; 5460 } 5461 } 5462 5463 return true; 5464 } 5465 5466 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5467 bool isVariadic) const { 5468 bool IsEffectivelyAAPCS_VFP = 5469 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5470 5471 if (RetTy->isVoidType()) 5472 return ABIArgInfo::getIgnore(); 5473 5474 // Large vector types should be returned via memory. 5475 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5476 return getNaturalAlignIndirect(RetTy); 5477 } 5478 5479 // __fp16 gets returned as if it were an int or float, but with the top 16 5480 // bits unspecified. This is not done for OpenCL as it handles the half type 5481 // natively, and does not need to interwork with AAPCS code. 5482 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5483 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5484 llvm::Type::getFloatTy(getVMContext()) : 5485 llvm::Type::getInt32Ty(getVMContext()); 5486 return ABIArgInfo::getDirect(ResType); 5487 } 5488 5489 if (!isAggregateTypeForABI(RetTy)) { 5490 // Treat an enum type as its underlying type. 5491 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5492 RetTy = EnumTy->getDecl()->getIntegerType(); 5493 5494 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5495 : ABIArgInfo::getDirect(); 5496 } 5497 5498 // Are we following APCS? 5499 if (getABIKind() == APCS) { 5500 if (isEmptyRecord(getContext(), RetTy, false)) 5501 return ABIArgInfo::getIgnore(); 5502 5503 // Complex types are all returned as packed integers. 5504 // 5505 // FIXME: Consider using 2 x vector types if the back end handles them 5506 // correctly. 5507 if (RetTy->isAnyComplexType()) 5508 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5509 getVMContext(), getContext().getTypeSize(RetTy))); 5510 5511 // Integer like structures are returned in r0. 5512 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5513 // Return in the smallest viable integer type. 5514 uint64_t Size = getContext().getTypeSize(RetTy); 5515 if (Size <= 8) 5516 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5517 if (Size <= 16) 5518 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5519 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5520 } 5521 5522 // Otherwise return in memory. 5523 return getNaturalAlignIndirect(RetTy); 5524 } 5525 5526 // Otherwise this is an AAPCS variant. 5527 5528 if (isEmptyRecord(getContext(), RetTy, true)) 5529 return ABIArgInfo::getIgnore(); 5530 5531 // Check for homogeneous aggregates with AAPCS-VFP. 5532 if (IsEffectivelyAAPCS_VFP) { 5533 const Type *Base = nullptr; 5534 uint64_t Members = 0; 5535 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5536 assert(Base && "Base class should be set for homogeneous aggregate"); 5537 // Homogeneous Aggregates are returned directly. 5538 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5539 } 5540 } 5541 5542 // Aggregates <= 4 bytes are returned in r0; other aggregates 5543 // are returned indirectly. 5544 uint64_t Size = getContext().getTypeSize(RetTy); 5545 if (Size <= 32) { 5546 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5547 // same size and alignment. 5548 if (getTarget().isRenderScriptTarget()) { 5549 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5550 } 5551 if (getDataLayout().isBigEndian()) 5552 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5553 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5554 5555 // Return in the smallest viable integer type. 5556 if (Size <= 8) 5557 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5558 if (Size <= 16) 5559 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5560 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5561 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5562 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5563 llvm::Type *CoerceTy = 5564 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5565 return ABIArgInfo::getDirect(CoerceTy); 5566 } 5567 5568 return getNaturalAlignIndirect(RetTy); 5569 } 5570 5571 /// isIllegalVector - check whether Ty is an illegal vector type. 5572 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5573 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5574 if (isAndroid()) { 5575 // Android shipped using Clang 3.1, which supported a slightly different 5576 // vector ABI. The primary differences were that 3-element vector types 5577 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5578 // accepts that legacy behavior for Android only. 5579 // Check whether VT is legal. 5580 unsigned NumElements = VT->getNumElements(); 5581 // NumElements should be power of 2 or equal to 3. 5582 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5583 return true; 5584 } else { 5585 // Check whether VT is legal. 5586 unsigned NumElements = VT->getNumElements(); 5587 uint64_t Size = getContext().getTypeSize(VT); 5588 // NumElements should be power of 2. 5589 if (!llvm::isPowerOf2_32(NumElements)) 5590 return true; 5591 // Size should be greater than 32 bits. 5592 return Size <= 32; 5593 } 5594 } 5595 return false; 5596 } 5597 5598 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5599 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5600 // double, or 64-bit or 128-bit vectors. 5601 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5602 if (BT->getKind() == BuiltinType::Float || 5603 BT->getKind() == BuiltinType::Double || 5604 BT->getKind() == BuiltinType::LongDouble) 5605 return true; 5606 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5607 unsigned VecSize = getContext().getTypeSize(VT); 5608 if (VecSize == 64 || VecSize == 128) 5609 return true; 5610 } 5611 return false; 5612 } 5613 5614 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5615 uint64_t Members) const { 5616 return Members <= 4; 5617 } 5618 5619 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5620 QualType Ty) const { 5621 CharUnits SlotSize = CharUnits::fromQuantity(4); 5622 5623 // Empty records are ignored for parameter passing purposes. 5624 if (isEmptyRecord(getContext(), Ty, true)) { 5625 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5626 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5627 return Addr; 5628 } 5629 5630 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5631 CharUnits TyAlignForABI = TyInfo.second; 5632 5633 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5634 bool IsIndirect = false; 5635 const Type *Base = nullptr; 5636 uint64_t Members = 0; 5637 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5638 IsIndirect = true; 5639 5640 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5641 // allocated by the caller. 5642 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5643 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5644 !isHomogeneousAggregate(Ty, Base, Members)) { 5645 IsIndirect = true; 5646 5647 // Otherwise, bound the type's ABI alignment. 5648 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5649 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5650 // Our callers should be prepared to handle an under-aligned address. 5651 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5652 getABIKind() == ARMABIInfo::AAPCS) { 5653 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5654 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5655 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5656 // ARMv7k allows type alignment up to 16 bytes. 5657 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5658 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5659 } else { 5660 TyAlignForABI = CharUnits::fromQuantity(4); 5661 } 5662 TyInfo.second = TyAlignForABI; 5663 5664 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5665 SlotSize, /*AllowHigherAlign*/ true); 5666 } 5667 5668 //===----------------------------------------------------------------------===// 5669 // NVPTX ABI Implementation 5670 //===----------------------------------------------------------------------===// 5671 5672 namespace { 5673 5674 class NVPTXABIInfo : public ABIInfo { 5675 public: 5676 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5677 5678 ABIArgInfo classifyReturnType(QualType RetTy) const; 5679 ABIArgInfo classifyArgumentType(QualType Ty) const; 5680 5681 void computeInfo(CGFunctionInfo &FI) const override; 5682 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5683 QualType Ty) const override; 5684 }; 5685 5686 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5687 public: 5688 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5689 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5690 5691 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5692 CodeGen::CodeGenModule &M) const override; 5693 private: 5694 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5695 // resulting MDNode to the nvvm.annotations MDNode. 5696 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5697 }; 5698 5699 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5700 if (RetTy->isVoidType()) 5701 return ABIArgInfo::getIgnore(); 5702 5703 // note: this is different from default ABI 5704 if (!RetTy->isScalarType()) 5705 return ABIArgInfo::getDirect(); 5706 5707 // Treat an enum type as its underlying type. 5708 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5709 RetTy = EnumTy->getDecl()->getIntegerType(); 5710 5711 return (RetTy->isPromotableIntegerType() ? 5712 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5713 } 5714 5715 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5716 // Treat an enum type as its underlying type. 5717 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5718 Ty = EnumTy->getDecl()->getIntegerType(); 5719 5720 // Return aggregates type as indirect by value 5721 if (isAggregateTypeForABI(Ty)) 5722 return getNaturalAlignIndirect(Ty, /* byval */ true); 5723 5724 return (Ty->isPromotableIntegerType() ? 5725 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5726 } 5727 5728 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5729 if (!getCXXABI().classifyReturnType(FI)) 5730 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5731 for (auto &I : FI.arguments()) 5732 I.info = classifyArgumentType(I.type); 5733 5734 // Always honor user-specified calling convention. 5735 if (FI.getCallingConvention() != llvm::CallingConv::C) 5736 return; 5737 5738 FI.setEffectiveCallingConvention(getRuntimeCC()); 5739 } 5740 5741 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5742 QualType Ty) const { 5743 llvm_unreachable("NVPTX does not support varargs"); 5744 } 5745 5746 void NVPTXTargetCodeGenInfo:: 5747 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5748 CodeGen::CodeGenModule &M) const{ 5749 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5750 if (!FD) return; 5751 5752 llvm::Function *F = cast<llvm::Function>(GV); 5753 5754 // Perform special handling in OpenCL mode 5755 if (M.getLangOpts().OpenCL) { 5756 // Use OpenCL function attributes to check for kernel functions 5757 // By default, all functions are device functions 5758 if (FD->hasAttr<OpenCLKernelAttr>()) { 5759 // OpenCL __kernel functions get kernel metadata 5760 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5761 addNVVMMetadata(F, "kernel", 1); 5762 // And kernel functions are not subject to inlining 5763 F->addFnAttr(llvm::Attribute::NoInline); 5764 } 5765 } 5766 5767 // Perform special handling in CUDA mode. 5768 if (M.getLangOpts().CUDA) { 5769 // CUDA __global__ functions get a kernel metadata entry. Since 5770 // __global__ functions cannot be called from the device, we do not 5771 // need to set the noinline attribute. 5772 if (FD->hasAttr<CUDAGlobalAttr>()) { 5773 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5774 addNVVMMetadata(F, "kernel", 1); 5775 } 5776 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5777 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5778 llvm::APSInt MaxThreads(32); 5779 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5780 if (MaxThreads > 0) 5781 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5782 5783 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5784 // not specified in __launch_bounds__ or if the user specified a 0 value, 5785 // we don't have to add a PTX directive. 5786 if (Attr->getMinBlocks()) { 5787 llvm::APSInt MinBlocks(32); 5788 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5789 if (MinBlocks > 0) 5790 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5791 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5792 } 5793 } 5794 } 5795 } 5796 5797 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5798 int Operand) { 5799 llvm::Module *M = F->getParent(); 5800 llvm::LLVMContext &Ctx = M->getContext(); 5801 5802 // Get "nvvm.annotations" metadata node 5803 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5804 5805 llvm::Metadata *MDVals[] = { 5806 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5807 llvm::ConstantAsMetadata::get( 5808 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5809 // Append metadata to nvvm.annotations 5810 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5811 } 5812 } 5813 5814 //===----------------------------------------------------------------------===// 5815 // SystemZ ABI Implementation 5816 //===----------------------------------------------------------------------===// 5817 5818 namespace { 5819 5820 class SystemZABIInfo : public SwiftABIInfo { 5821 bool HasVector; 5822 5823 public: 5824 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5825 : SwiftABIInfo(CGT), HasVector(HV) {} 5826 5827 bool isPromotableIntegerType(QualType Ty) const; 5828 bool isCompoundType(QualType Ty) const; 5829 bool isVectorArgumentType(QualType Ty) const; 5830 bool isFPArgumentType(QualType Ty) const; 5831 QualType GetSingleElementType(QualType Ty) const; 5832 5833 ABIArgInfo classifyReturnType(QualType RetTy) const; 5834 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5835 5836 void computeInfo(CGFunctionInfo &FI) const override { 5837 if (!getCXXABI().classifyReturnType(FI)) 5838 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5839 for (auto &I : FI.arguments()) 5840 I.info = classifyArgumentType(I.type); 5841 } 5842 5843 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5844 QualType Ty) const override; 5845 5846 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5847 ArrayRef<llvm::Type*> scalars, 5848 bool asReturnValue) const override { 5849 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5850 } 5851 }; 5852 5853 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5854 public: 5855 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5856 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5857 }; 5858 5859 } 5860 5861 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5862 // Treat an enum type as its underlying type. 5863 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5864 Ty = EnumTy->getDecl()->getIntegerType(); 5865 5866 // Promotable integer types are required to be promoted by the ABI. 5867 if (Ty->isPromotableIntegerType()) 5868 return true; 5869 5870 // 32-bit values must also be promoted. 5871 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5872 switch (BT->getKind()) { 5873 case BuiltinType::Int: 5874 case BuiltinType::UInt: 5875 return true; 5876 default: 5877 return false; 5878 } 5879 return false; 5880 } 5881 5882 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5883 return (Ty->isAnyComplexType() || 5884 Ty->isVectorType() || 5885 isAggregateTypeForABI(Ty)); 5886 } 5887 5888 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5889 return (HasVector && 5890 Ty->isVectorType() && 5891 getContext().getTypeSize(Ty) <= 128); 5892 } 5893 5894 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5895 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5896 switch (BT->getKind()) { 5897 case BuiltinType::Float: 5898 case BuiltinType::Double: 5899 return true; 5900 default: 5901 return false; 5902 } 5903 5904 return false; 5905 } 5906 5907 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5908 if (const RecordType *RT = Ty->getAsStructureType()) { 5909 const RecordDecl *RD = RT->getDecl(); 5910 QualType Found; 5911 5912 // If this is a C++ record, check the bases first. 5913 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5914 for (const auto &I : CXXRD->bases()) { 5915 QualType Base = I.getType(); 5916 5917 // Empty bases don't affect things either way. 5918 if (isEmptyRecord(getContext(), Base, true)) 5919 continue; 5920 5921 if (!Found.isNull()) 5922 return Ty; 5923 Found = GetSingleElementType(Base); 5924 } 5925 5926 // Check the fields. 5927 for (const auto *FD : RD->fields()) { 5928 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5929 // Unlike isSingleElementStruct(), empty structure and array fields 5930 // do count. So do anonymous bitfields that aren't zero-sized. 5931 if (getContext().getLangOpts().CPlusPlus && 5932 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5933 continue; 5934 5935 // Unlike isSingleElementStruct(), arrays do not count. 5936 // Nested structures still do though. 5937 if (!Found.isNull()) 5938 return Ty; 5939 Found = GetSingleElementType(FD->getType()); 5940 } 5941 5942 // Unlike isSingleElementStruct(), trailing padding is allowed. 5943 // An 8-byte aligned struct s { float f; } is passed as a double. 5944 if (!Found.isNull()) 5945 return Found; 5946 } 5947 5948 return Ty; 5949 } 5950 5951 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5952 QualType Ty) const { 5953 // Assume that va_list type is correct; should be pointer to LLVM type: 5954 // struct { 5955 // i64 __gpr; 5956 // i64 __fpr; 5957 // i8 *__overflow_arg_area; 5958 // i8 *__reg_save_area; 5959 // }; 5960 5961 // Every non-vector argument occupies 8 bytes and is passed by preference 5962 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5963 // always passed on the stack. 5964 Ty = getContext().getCanonicalType(Ty); 5965 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5966 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5967 llvm::Type *DirectTy = ArgTy; 5968 ABIArgInfo AI = classifyArgumentType(Ty); 5969 bool IsIndirect = AI.isIndirect(); 5970 bool InFPRs = false; 5971 bool IsVector = false; 5972 CharUnits UnpaddedSize; 5973 CharUnits DirectAlign; 5974 if (IsIndirect) { 5975 DirectTy = llvm::PointerType::getUnqual(DirectTy); 5976 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 5977 } else { 5978 if (AI.getCoerceToType()) 5979 ArgTy = AI.getCoerceToType(); 5980 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5981 IsVector = ArgTy->isVectorTy(); 5982 UnpaddedSize = TyInfo.first; 5983 DirectAlign = TyInfo.second; 5984 } 5985 CharUnits PaddedSize = CharUnits::fromQuantity(8); 5986 if (IsVector && UnpaddedSize > PaddedSize) 5987 PaddedSize = CharUnits::fromQuantity(16); 5988 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 5989 5990 CharUnits Padding = (PaddedSize - UnpaddedSize); 5991 5992 llvm::Type *IndexTy = CGF.Int64Ty; 5993 llvm::Value *PaddedSizeV = 5994 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 5995 5996 if (IsVector) { 5997 // Work out the address of a vector argument on the stack. 5998 // Vector arguments are always passed in the high bits of a 5999 // single (8 byte) or double (16 byte) stack slot. 6000 Address OverflowArgAreaPtr = 6001 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6002 "overflow_arg_area_ptr"); 6003 Address OverflowArgArea = 6004 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6005 TyInfo.second); 6006 Address MemAddr = 6007 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6008 6009 // Update overflow_arg_area_ptr pointer 6010 llvm::Value *NewOverflowArgArea = 6011 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6012 "overflow_arg_area"); 6013 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6014 6015 return MemAddr; 6016 } 6017 6018 assert(PaddedSize.getQuantity() == 8); 6019 6020 unsigned MaxRegs, RegCountField, RegSaveIndex; 6021 CharUnits RegPadding; 6022 if (InFPRs) { 6023 MaxRegs = 4; // Maximum of 4 FPR arguments 6024 RegCountField = 1; // __fpr 6025 RegSaveIndex = 16; // save offset for f0 6026 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6027 } else { 6028 MaxRegs = 5; // Maximum of 5 GPR arguments 6029 RegCountField = 0; // __gpr 6030 RegSaveIndex = 2; // save offset for r2 6031 RegPadding = Padding; // values are passed in the low bits of a GPR 6032 } 6033 6034 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6035 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6036 "reg_count_ptr"); 6037 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6038 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6039 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6040 "fits_in_regs"); 6041 6042 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6043 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6044 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6045 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6046 6047 // Emit code to load the value if it was passed in registers. 6048 CGF.EmitBlock(InRegBlock); 6049 6050 // Work out the address of an argument register. 6051 llvm::Value *ScaledRegCount = 6052 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6053 llvm::Value *RegBase = 6054 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6055 + RegPadding.getQuantity()); 6056 llvm::Value *RegOffset = 6057 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6058 Address RegSaveAreaPtr = 6059 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6060 "reg_save_area_ptr"); 6061 llvm::Value *RegSaveArea = 6062 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6063 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6064 "raw_reg_addr"), 6065 PaddedSize); 6066 Address RegAddr = 6067 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6068 6069 // Update the register count 6070 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6071 llvm::Value *NewRegCount = 6072 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6073 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6074 CGF.EmitBranch(ContBlock); 6075 6076 // Emit code to load the value if it was passed in memory. 6077 CGF.EmitBlock(InMemBlock); 6078 6079 // Work out the address of a stack argument. 6080 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6081 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6082 Address OverflowArgArea = 6083 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6084 PaddedSize); 6085 Address RawMemAddr = 6086 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6087 Address MemAddr = 6088 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6089 6090 // Update overflow_arg_area_ptr pointer 6091 llvm::Value *NewOverflowArgArea = 6092 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6093 "overflow_arg_area"); 6094 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6095 CGF.EmitBranch(ContBlock); 6096 6097 // Return the appropriate result. 6098 CGF.EmitBlock(ContBlock); 6099 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6100 MemAddr, InMemBlock, "va_arg.addr"); 6101 6102 if (IsIndirect) 6103 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6104 TyInfo.second); 6105 6106 return ResAddr; 6107 } 6108 6109 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6110 if (RetTy->isVoidType()) 6111 return ABIArgInfo::getIgnore(); 6112 if (isVectorArgumentType(RetTy)) 6113 return ABIArgInfo::getDirect(); 6114 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6115 return getNaturalAlignIndirect(RetTy); 6116 return (isPromotableIntegerType(RetTy) ? 6117 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6118 } 6119 6120 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6121 // Handle the generic C++ ABI. 6122 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6123 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6124 6125 // Integers and enums are extended to full register width. 6126 if (isPromotableIntegerType(Ty)) 6127 return ABIArgInfo::getExtend(); 6128 6129 // Handle vector types and vector-like structure types. Note that 6130 // as opposed to float-like structure types, we do not allow any 6131 // padding for vector-like structures, so verify the sizes match. 6132 uint64_t Size = getContext().getTypeSize(Ty); 6133 QualType SingleElementTy = GetSingleElementType(Ty); 6134 if (isVectorArgumentType(SingleElementTy) && 6135 getContext().getTypeSize(SingleElementTy) == Size) 6136 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6137 6138 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6139 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6140 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6141 6142 // Handle small structures. 6143 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6144 // Structures with flexible arrays have variable length, so really 6145 // fail the size test above. 6146 const RecordDecl *RD = RT->getDecl(); 6147 if (RD->hasFlexibleArrayMember()) 6148 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6149 6150 // The structure is passed as an unextended integer, a float, or a double. 6151 llvm::Type *PassTy; 6152 if (isFPArgumentType(SingleElementTy)) { 6153 assert(Size == 32 || Size == 64); 6154 if (Size == 32) 6155 PassTy = llvm::Type::getFloatTy(getVMContext()); 6156 else 6157 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6158 } else 6159 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6160 return ABIArgInfo::getDirect(PassTy); 6161 } 6162 6163 // Non-structure compounds are passed indirectly. 6164 if (isCompoundType(Ty)) 6165 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6166 6167 return ABIArgInfo::getDirect(nullptr); 6168 } 6169 6170 //===----------------------------------------------------------------------===// 6171 // MSP430 ABI Implementation 6172 //===----------------------------------------------------------------------===// 6173 6174 namespace { 6175 6176 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6177 public: 6178 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6179 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6180 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6181 CodeGen::CodeGenModule &M) const override; 6182 }; 6183 6184 } 6185 6186 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6187 llvm::GlobalValue *GV, 6188 CodeGen::CodeGenModule &M) const { 6189 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6190 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6191 // Handle 'interrupt' attribute: 6192 llvm::Function *F = cast<llvm::Function>(GV); 6193 6194 // Step 1: Set ISR calling convention. 6195 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6196 6197 // Step 2: Add attributes goodness. 6198 F->addFnAttr(llvm::Attribute::NoInline); 6199 6200 // Step 3: Emit ISR vector alias. 6201 unsigned Num = attr->getNumber() / 2; 6202 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6203 "__isr_" + Twine(Num), F); 6204 } 6205 } 6206 } 6207 6208 //===----------------------------------------------------------------------===// 6209 // MIPS ABI Implementation. This works for both little-endian and 6210 // big-endian variants. 6211 //===----------------------------------------------------------------------===// 6212 6213 namespace { 6214 class MipsABIInfo : public ABIInfo { 6215 bool IsO32; 6216 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6217 void CoerceToIntArgs(uint64_t TySize, 6218 SmallVectorImpl<llvm::Type *> &ArgList) const; 6219 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6220 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6221 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6222 public: 6223 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6224 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6225 StackAlignInBytes(IsO32 ? 8 : 16) {} 6226 6227 ABIArgInfo classifyReturnType(QualType RetTy) const; 6228 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6229 void computeInfo(CGFunctionInfo &FI) const override; 6230 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6231 QualType Ty) const override; 6232 bool shouldSignExtUnsignedType(QualType Ty) const override; 6233 }; 6234 6235 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6236 unsigned SizeOfUnwindException; 6237 public: 6238 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6239 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6240 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6241 6242 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6243 return 29; 6244 } 6245 6246 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6247 CodeGen::CodeGenModule &CGM) const override { 6248 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6249 if (!FD) return; 6250 llvm::Function *Fn = cast<llvm::Function>(GV); 6251 if (FD->hasAttr<Mips16Attr>()) { 6252 Fn->addFnAttr("mips16"); 6253 } 6254 else if (FD->hasAttr<NoMips16Attr>()) { 6255 Fn->addFnAttr("nomips16"); 6256 } 6257 6258 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6259 if (!Attr) 6260 return; 6261 6262 const char *Kind; 6263 switch (Attr->getInterrupt()) { 6264 case MipsInterruptAttr::eic: Kind = "eic"; break; 6265 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6266 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6267 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6268 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6269 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6270 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6271 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6272 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6273 } 6274 6275 Fn->addFnAttr("interrupt", Kind); 6276 6277 } 6278 6279 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6280 llvm::Value *Address) const override; 6281 6282 unsigned getSizeOfUnwindException() const override { 6283 return SizeOfUnwindException; 6284 } 6285 }; 6286 } 6287 6288 void MipsABIInfo::CoerceToIntArgs( 6289 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6290 llvm::IntegerType *IntTy = 6291 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6292 6293 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6294 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6295 ArgList.push_back(IntTy); 6296 6297 // If necessary, add one more integer type to ArgList. 6298 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6299 6300 if (R) 6301 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6302 } 6303 6304 // In N32/64, an aligned double precision floating point field is passed in 6305 // a register. 6306 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6307 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6308 6309 if (IsO32) { 6310 CoerceToIntArgs(TySize, ArgList); 6311 return llvm::StructType::get(getVMContext(), ArgList); 6312 } 6313 6314 if (Ty->isComplexType()) 6315 return CGT.ConvertType(Ty); 6316 6317 const RecordType *RT = Ty->getAs<RecordType>(); 6318 6319 // Unions/vectors are passed in integer registers. 6320 if (!RT || !RT->isStructureOrClassType()) { 6321 CoerceToIntArgs(TySize, ArgList); 6322 return llvm::StructType::get(getVMContext(), ArgList); 6323 } 6324 6325 const RecordDecl *RD = RT->getDecl(); 6326 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6327 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6328 6329 uint64_t LastOffset = 0; 6330 unsigned idx = 0; 6331 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6332 6333 // Iterate over fields in the struct/class and check if there are any aligned 6334 // double fields. 6335 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6336 i != e; ++i, ++idx) { 6337 const QualType Ty = i->getType(); 6338 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6339 6340 if (!BT || BT->getKind() != BuiltinType::Double) 6341 continue; 6342 6343 uint64_t Offset = Layout.getFieldOffset(idx); 6344 if (Offset % 64) // Ignore doubles that are not aligned. 6345 continue; 6346 6347 // Add ((Offset - LastOffset) / 64) args of type i64. 6348 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6349 ArgList.push_back(I64); 6350 6351 // Add double type. 6352 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6353 LastOffset = Offset + 64; 6354 } 6355 6356 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6357 ArgList.append(IntArgList.begin(), IntArgList.end()); 6358 6359 return llvm::StructType::get(getVMContext(), ArgList); 6360 } 6361 6362 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6363 uint64_t Offset) const { 6364 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6365 return nullptr; 6366 6367 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6368 } 6369 6370 ABIArgInfo 6371 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6372 Ty = useFirstFieldIfTransparentUnion(Ty); 6373 6374 uint64_t OrigOffset = Offset; 6375 uint64_t TySize = getContext().getTypeSize(Ty); 6376 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6377 6378 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6379 (uint64_t)StackAlignInBytes); 6380 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6381 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6382 6383 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6384 // Ignore empty aggregates. 6385 if (TySize == 0) 6386 return ABIArgInfo::getIgnore(); 6387 6388 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6389 Offset = OrigOffset + MinABIStackAlignInBytes; 6390 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6391 } 6392 6393 // If we have reached here, aggregates are passed directly by coercing to 6394 // another structure type. Padding is inserted if the offset of the 6395 // aggregate is unaligned. 6396 ABIArgInfo ArgInfo = 6397 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6398 getPaddingType(OrigOffset, CurrOffset)); 6399 ArgInfo.setInReg(true); 6400 return ArgInfo; 6401 } 6402 6403 // Treat an enum type as its underlying type. 6404 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6405 Ty = EnumTy->getDecl()->getIntegerType(); 6406 6407 // All integral types are promoted to the GPR width. 6408 if (Ty->isIntegralOrEnumerationType()) 6409 return ABIArgInfo::getExtend(); 6410 6411 return ABIArgInfo::getDirect( 6412 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6413 } 6414 6415 llvm::Type* 6416 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6417 const RecordType *RT = RetTy->getAs<RecordType>(); 6418 SmallVector<llvm::Type*, 8> RTList; 6419 6420 if (RT && RT->isStructureOrClassType()) { 6421 const RecordDecl *RD = RT->getDecl(); 6422 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6423 unsigned FieldCnt = Layout.getFieldCount(); 6424 6425 // N32/64 returns struct/classes in floating point registers if the 6426 // following conditions are met: 6427 // 1. The size of the struct/class is no larger than 128-bit. 6428 // 2. The struct/class has one or two fields all of which are floating 6429 // point types. 6430 // 3. The offset of the first field is zero (this follows what gcc does). 6431 // 6432 // Any other composite results are returned in integer registers. 6433 // 6434 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6435 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6436 for (; b != e; ++b) { 6437 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6438 6439 if (!BT || !BT->isFloatingPoint()) 6440 break; 6441 6442 RTList.push_back(CGT.ConvertType(b->getType())); 6443 } 6444 6445 if (b == e) 6446 return llvm::StructType::get(getVMContext(), RTList, 6447 RD->hasAttr<PackedAttr>()); 6448 6449 RTList.clear(); 6450 } 6451 } 6452 6453 CoerceToIntArgs(Size, RTList); 6454 return llvm::StructType::get(getVMContext(), RTList); 6455 } 6456 6457 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6458 uint64_t Size = getContext().getTypeSize(RetTy); 6459 6460 if (RetTy->isVoidType()) 6461 return ABIArgInfo::getIgnore(); 6462 6463 // O32 doesn't treat zero-sized structs differently from other structs. 6464 // However, N32/N64 ignores zero sized return values. 6465 if (!IsO32 && Size == 0) 6466 return ABIArgInfo::getIgnore(); 6467 6468 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6469 if (Size <= 128) { 6470 if (RetTy->isAnyComplexType()) 6471 return ABIArgInfo::getDirect(); 6472 6473 // O32 returns integer vectors in registers and N32/N64 returns all small 6474 // aggregates in registers. 6475 if (!IsO32 || 6476 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6477 ABIArgInfo ArgInfo = 6478 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6479 ArgInfo.setInReg(true); 6480 return ArgInfo; 6481 } 6482 } 6483 6484 return getNaturalAlignIndirect(RetTy); 6485 } 6486 6487 // Treat an enum type as its underlying type. 6488 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6489 RetTy = EnumTy->getDecl()->getIntegerType(); 6490 6491 return (RetTy->isPromotableIntegerType() ? 6492 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6493 } 6494 6495 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6496 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6497 if (!getCXXABI().classifyReturnType(FI)) 6498 RetInfo = classifyReturnType(FI.getReturnType()); 6499 6500 // Check if a pointer to an aggregate is passed as a hidden argument. 6501 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6502 6503 for (auto &I : FI.arguments()) 6504 I.info = classifyArgumentType(I.type, Offset); 6505 } 6506 6507 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6508 QualType OrigTy) const { 6509 QualType Ty = OrigTy; 6510 6511 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6512 // Pointers are also promoted in the same way but this only matters for N32. 6513 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6514 unsigned PtrWidth = getTarget().getPointerWidth(0); 6515 bool DidPromote = false; 6516 if ((Ty->isIntegerType() && 6517 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6518 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6519 DidPromote = true; 6520 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6521 Ty->isSignedIntegerType()); 6522 } 6523 6524 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6525 6526 // The alignment of things in the argument area is never larger than 6527 // StackAlignInBytes. 6528 TyInfo.second = 6529 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6530 6531 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6532 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6533 6534 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6535 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6536 6537 6538 // If there was a promotion, "unpromote" into a temporary. 6539 // TODO: can we just use a pointer into a subset of the original slot? 6540 if (DidPromote) { 6541 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6542 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6543 6544 // Truncate down to the right width. 6545 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6546 : CGF.IntPtrTy); 6547 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6548 if (OrigTy->isPointerType()) 6549 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6550 6551 CGF.Builder.CreateStore(V, Temp); 6552 Addr = Temp; 6553 } 6554 6555 return Addr; 6556 } 6557 6558 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6559 int TySize = getContext().getTypeSize(Ty); 6560 6561 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6562 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6563 return true; 6564 6565 return false; 6566 } 6567 6568 bool 6569 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6570 llvm::Value *Address) const { 6571 // This information comes from gcc's implementation, which seems to 6572 // as canonical as it gets. 6573 6574 // Everything on MIPS is 4 bytes. Double-precision FP registers 6575 // are aliased to pairs of single-precision FP registers. 6576 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6577 6578 // 0-31 are the general purpose registers, $0 - $31. 6579 // 32-63 are the floating-point registers, $f0 - $f31. 6580 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6581 // 66 is the (notional, I think) register for signal-handler return. 6582 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6583 6584 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6585 // They are one bit wide and ignored here. 6586 6587 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6588 // (coprocessor 1 is the FP unit) 6589 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6590 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6591 // 176-181 are the DSP accumulator registers. 6592 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6593 return false; 6594 } 6595 6596 //===----------------------------------------------------------------------===// 6597 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6598 // Currently subclassed only to implement custom OpenCL C function attribute 6599 // handling. 6600 //===----------------------------------------------------------------------===// 6601 6602 namespace { 6603 6604 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6605 public: 6606 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6607 : DefaultTargetCodeGenInfo(CGT) {} 6608 6609 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6610 CodeGen::CodeGenModule &M) const override; 6611 }; 6612 6613 void TCETargetCodeGenInfo::setTargetAttributes( 6614 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6615 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6616 if (!FD) return; 6617 6618 llvm::Function *F = cast<llvm::Function>(GV); 6619 6620 if (M.getLangOpts().OpenCL) { 6621 if (FD->hasAttr<OpenCLKernelAttr>()) { 6622 // OpenCL C Kernel functions are not subject to inlining 6623 F->addFnAttr(llvm::Attribute::NoInline); 6624 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6625 if (Attr) { 6626 // Convert the reqd_work_group_size() attributes to metadata. 6627 llvm::LLVMContext &Context = F->getContext(); 6628 llvm::NamedMDNode *OpenCLMetadata = 6629 M.getModule().getOrInsertNamedMetadata( 6630 "opencl.kernel_wg_size_info"); 6631 6632 SmallVector<llvm::Metadata *, 5> Operands; 6633 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6634 6635 Operands.push_back( 6636 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6637 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6638 Operands.push_back( 6639 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6640 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6641 Operands.push_back( 6642 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6643 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6644 6645 // Add a boolean constant operand for "required" (true) or "hint" 6646 // (false) for implementing the work_group_size_hint attr later. 6647 // Currently always true as the hint is not yet implemented. 6648 Operands.push_back( 6649 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6650 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6651 } 6652 } 6653 } 6654 } 6655 6656 } 6657 6658 //===----------------------------------------------------------------------===// 6659 // Hexagon ABI Implementation 6660 //===----------------------------------------------------------------------===// 6661 6662 namespace { 6663 6664 class HexagonABIInfo : public ABIInfo { 6665 6666 6667 public: 6668 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6669 6670 private: 6671 6672 ABIArgInfo classifyReturnType(QualType RetTy) const; 6673 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6674 6675 void computeInfo(CGFunctionInfo &FI) const override; 6676 6677 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6678 QualType Ty) const override; 6679 }; 6680 6681 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6682 public: 6683 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6684 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6685 6686 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6687 return 29; 6688 } 6689 }; 6690 6691 } 6692 6693 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6694 if (!getCXXABI().classifyReturnType(FI)) 6695 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6696 for (auto &I : FI.arguments()) 6697 I.info = classifyArgumentType(I.type); 6698 } 6699 6700 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6701 if (!isAggregateTypeForABI(Ty)) { 6702 // Treat an enum type as its underlying type. 6703 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6704 Ty = EnumTy->getDecl()->getIntegerType(); 6705 6706 return (Ty->isPromotableIntegerType() ? 6707 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6708 } 6709 6710 // Ignore empty records. 6711 if (isEmptyRecord(getContext(), Ty, true)) 6712 return ABIArgInfo::getIgnore(); 6713 6714 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6715 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6716 6717 uint64_t Size = getContext().getTypeSize(Ty); 6718 if (Size > 64) 6719 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6720 // Pass in the smallest viable integer type. 6721 else if (Size > 32) 6722 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6723 else if (Size > 16) 6724 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6725 else if (Size > 8) 6726 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6727 else 6728 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6729 } 6730 6731 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6732 if (RetTy->isVoidType()) 6733 return ABIArgInfo::getIgnore(); 6734 6735 // Large vector types should be returned via memory. 6736 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6737 return getNaturalAlignIndirect(RetTy); 6738 6739 if (!isAggregateTypeForABI(RetTy)) { 6740 // Treat an enum type as its underlying type. 6741 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6742 RetTy = EnumTy->getDecl()->getIntegerType(); 6743 6744 return (RetTy->isPromotableIntegerType() ? 6745 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6746 } 6747 6748 if (isEmptyRecord(getContext(), RetTy, true)) 6749 return ABIArgInfo::getIgnore(); 6750 6751 // Aggregates <= 8 bytes are returned in r0; other aggregates 6752 // are returned indirectly. 6753 uint64_t Size = getContext().getTypeSize(RetTy); 6754 if (Size <= 64) { 6755 // Return in the smallest viable integer type. 6756 if (Size <= 8) 6757 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6758 if (Size <= 16) 6759 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6760 if (Size <= 32) 6761 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6762 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6763 } 6764 6765 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6766 } 6767 6768 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6769 QualType Ty) const { 6770 // FIXME: Someone needs to audit that this handle alignment correctly. 6771 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6772 getContext().getTypeInfoInChars(Ty), 6773 CharUnits::fromQuantity(4), 6774 /*AllowHigherAlign*/ true); 6775 } 6776 6777 //===----------------------------------------------------------------------===// 6778 // Lanai ABI Implementation 6779 //===----------------------------------------------------------------------===// 6780 6781 namespace { 6782 class LanaiABIInfo : public DefaultABIInfo { 6783 public: 6784 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6785 6786 bool shouldUseInReg(QualType Ty, CCState &State) const; 6787 6788 void computeInfo(CGFunctionInfo &FI) const override { 6789 CCState State(FI.getCallingConvention()); 6790 // Lanai uses 4 registers to pass arguments unless the function has the 6791 // regparm attribute set. 6792 if (FI.getHasRegParm()) { 6793 State.FreeRegs = FI.getRegParm(); 6794 } else { 6795 State.FreeRegs = 4; 6796 } 6797 6798 if (!getCXXABI().classifyReturnType(FI)) 6799 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6800 for (auto &I : FI.arguments()) 6801 I.info = classifyArgumentType(I.type, State); 6802 } 6803 6804 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 6805 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 6806 }; 6807 } // end anonymous namespace 6808 6809 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 6810 unsigned Size = getContext().getTypeSize(Ty); 6811 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 6812 6813 if (SizeInRegs == 0) 6814 return false; 6815 6816 if (SizeInRegs > State.FreeRegs) { 6817 State.FreeRegs = 0; 6818 return false; 6819 } 6820 6821 State.FreeRegs -= SizeInRegs; 6822 6823 return true; 6824 } 6825 6826 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 6827 CCState &State) const { 6828 if (!ByVal) { 6829 if (State.FreeRegs) { 6830 --State.FreeRegs; // Non-byval indirects just use one pointer. 6831 return getNaturalAlignIndirectInReg(Ty); 6832 } 6833 return getNaturalAlignIndirect(Ty, false); 6834 } 6835 6836 // Compute the byval alignment. 6837 const unsigned MinABIStackAlignInBytes = 4; 6838 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 6839 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 6840 /*Realign=*/TypeAlign > 6841 MinABIStackAlignInBytes); 6842 } 6843 6844 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 6845 CCState &State) const { 6846 // Check with the C++ ABI first. 6847 const RecordType *RT = Ty->getAs<RecordType>(); 6848 if (RT) { 6849 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 6850 if (RAA == CGCXXABI::RAA_Indirect) { 6851 return getIndirectResult(Ty, /*ByVal=*/false, State); 6852 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 6853 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 6854 } 6855 } 6856 6857 if (isAggregateTypeForABI(Ty)) { 6858 // Structures with flexible arrays are always indirect. 6859 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 6860 return getIndirectResult(Ty, /*ByVal=*/true, State); 6861 6862 // Ignore empty structs/unions. 6863 if (isEmptyRecord(getContext(), Ty, true)) 6864 return ABIArgInfo::getIgnore(); 6865 6866 llvm::LLVMContext &LLVMContext = getVMContext(); 6867 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6868 if (SizeInRegs <= State.FreeRegs) { 6869 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 6870 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 6871 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 6872 State.FreeRegs -= SizeInRegs; 6873 return ABIArgInfo::getDirectInReg(Result); 6874 } else { 6875 State.FreeRegs = 0; 6876 } 6877 return getIndirectResult(Ty, true, State); 6878 } 6879 6880 // Treat an enum type as its underlying type. 6881 if (const auto *EnumTy = Ty->getAs<EnumType>()) 6882 Ty = EnumTy->getDecl()->getIntegerType(); 6883 6884 bool InReg = shouldUseInReg(Ty, State); 6885 if (Ty->isPromotableIntegerType()) { 6886 if (InReg) 6887 return ABIArgInfo::getDirectInReg(); 6888 return ABIArgInfo::getExtend(); 6889 } 6890 if (InReg) 6891 return ABIArgInfo::getDirectInReg(); 6892 return ABIArgInfo::getDirect(); 6893 } 6894 6895 namespace { 6896 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 6897 public: 6898 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 6899 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 6900 }; 6901 } 6902 6903 //===----------------------------------------------------------------------===// 6904 // AMDGPU ABI Implementation 6905 //===----------------------------------------------------------------------===// 6906 6907 namespace { 6908 6909 class AMDGPUABIInfo final : public DefaultABIInfo { 6910 public: 6911 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6912 6913 private: 6914 ABIArgInfo classifyArgumentType(QualType Ty) const; 6915 6916 void computeInfo(CGFunctionInfo &FI) const override; 6917 }; 6918 6919 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 6920 if (!getCXXABI().classifyReturnType(FI)) 6921 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6922 6923 unsigned CC = FI.getCallingConvention(); 6924 for (auto &Arg : FI.arguments()) 6925 if (CC == llvm::CallingConv::AMDGPU_KERNEL) 6926 Arg.info = classifyArgumentType(Arg.type); 6927 else 6928 Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type); 6929 } 6930 6931 /// \brief Classify argument of given type \p Ty. 6932 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const { 6933 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6934 if (!StrTy) { 6935 return DefaultABIInfo::classifyArgumentType(Ty); 6936 } 6937 6938 // Coerce single element structs to its element. 6939 if (StrTy->getNumElements() == 1) { 6940 return ABIArgInfo::getDirect(); 6941 } 6942 6943 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 6944 // individual elements, which confuses the Clover OpenCL backend; therefore we 6945 // have to set it to false here. Other args of getDirect() are just defaults. 6946 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6947 } 6948 6949 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6950 public: 6951 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6952 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 6953 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6954 CodeGen::CodeGenModule &M) const override; 6955 unsigned getOpenCLKernelCallingConv() const override; 6956 }; 6957 6958 } 6959 6960 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM); 6961 6962 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6963 const Decl *D, 6964 llvm::GlobalValue *GV, 6965 CodeGen::CodeGenModule &M) const { 6966 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6967 if (!FD) 6968 return; 6969 6970 llvm::Function *F = cast<llvm::Function>(GV); 6971 6972 if (const auto *Attr = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { 6973 unsigned Min = Attr->getMin(); 6974 unsigned Max = Attr->getMax(); 6975 6976 if (Min != 0) { 6977 assert(Min <= Max && "Min must be less than or equal Max"); 6978 6979 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 6980 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 6981 } else 6982 assert(Max == 0 && "Max must be zero"); 6983 } 6984 6985 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 6986 unsigned Min = Attr->getMin(); 6987 unsigned Max = Attr->getMax(); 6988 6989 if (Min != 0) { 6990 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 6991 6992 std::string AttrVal = llvm::utostr(Min); 6993 if (Max != 0) 6994 AttrVal = AttrVal + "," + llvm::utostr(Max); 6995 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 6996 } else 6997 assert(Max == 0 && "Max must be zero"); 6998 } 6999 7000 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7001 unsigned NumSGPR = Attr->getNumSGPR(); 7002 7003 if (NumSGPR != 0) 7004 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7005 } 7006 7007 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7008 uint32_t NumVGPR = Attr->getNumVGPR(); 7009 7010 if (NumVGPR != 0) 7011 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7012 } 7013 7014 appendOpenCLVersionMD(M); 7015 } 7016 7017 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7018 return llvm::CallingConv::AMDGPU_KERNEL; 7019 } 7020 7021 //===----------------------------------------------------------------------===// 7022 // SPARC v8 ABI Implementation. 7023 // Based on the SPARC Compliance Definition version 2.4.1. 7024 // 7025 // Ensures that complex values are passed in registers. 7026 // 7027 namespace { 7028 class SparcV8ABIInfo : public DefaultABIInfo { 7029 public: 7030 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7031 7032 private: 7033 ABIArgInfo classifyReturnType(QualType RetTy) const; 7034 void computeInfo(CGFunctionInfo &FI) const override; 7035 }; 7036 } // end anonymous namespace 7037 7038 7039 ABIArgInfo 7040 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7041 if (Ty->isAnyComplexType()) { 7042 return ABIArgInfo::getDirect(); 7043 } 7044 else { 7045 return DefaultABIInfo::classifyReturnType(Ty); 7046 } 7047 } 7048 7049 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7050 7051 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7052 for (auto &Arg : FI.arguments()) 7053 Arg.info = classifyArgumentType(Arg.type); 7054 } 7055 7056 namespace { 7057 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7058 public: 7059 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7060 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7061 }; 7062 } // end anonymous namespace 7063 7064 //===----------------------------------------------------------------------===// 7065 // SPARC v9 ABI Implementation. 7066 // Based on the SPARC Compliance Definition version 2.4.1. 7067 // 7068 // Function arguments a mapped to a nominal "parameter array" and promoted to 7069 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7070 // the array, structs larger than 16 bytes are passed indirectly. 7071 // 7072 // One case requires special care: 7073 // 7074 // struct mixed { 7075 // int i; 7076 // float f; 7077 // }; 7078 // 7079 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7080 // parameter array, but the int is passed in an integer register, and the float 7081 // is passed in a floating point register. This is represented as two arguments 7082 // with the LLVM IR inreg attribute: 7083 // 7084 // declare void f(i32 inreg %i, float inreg %f) 7085 // 7086 // The code generator will only allocate 4 bytes from the parameter array for 7087 // the inreg arguments. All other arguments are allocated a multiple of 8 7088 // bytes. 7089 // 7090 namespace { 7091 class SparcV9ABIInfo : public ABIInfo { 7092 public: 7093 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7094 7095 private: 7096 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7097 void computeInfo(CGFunctionInfo &FI) const override; 7098 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7099 QualType Ty) const override; 7100 7101 // Coercion type builder for structs passed in registers. The coercion type 7102 // serves two purposes: 7103 // 7104 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7105 // in registers. 7106 // 2. Expose aligned floating point elements as first-level elements, so the 7107 // code generator knows to pass them in floating point registers. 7108 // 7109 // We also compute the InReg flag which indicates that the struct contains 7110 // aligned 32-bit floats. 7111 // 7112 struct CoerceBuilder { 7113 llvm::LLVMContext &Context; 7114 const llvm::DataLayout &DL; 7115 SmallVector<llvm::Type*, 8> Elems; 7116 uint64_t Size; 7117 bool InReg; 7118 7119 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7120 : Context(c), DL(dl), Size(0), InReg(false) {} 7121 7122 // Pad Elems with integers until Size is ToSize. 7123 void pad(uint64_t ToSize) { 7124 assert(ToSize >= Size && "Cannot remove elements"); 7125 if (ToSize == Size) 7126 return; 7127 7128 // Finish the current 64-bit word. 7129 uint64_t Aligned = llvm::alignTo(Size, 64); 7130 if (Aligned > Size && Aligned <= ToSize) { 7131 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7132 Size = Aligned; 7133 } 7134 7135 // Add whole 64-bit words. 7136 while (Size + 64 <= ToSize) { 7137 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7138 Size += 64; 7139 } 7140 7141 // Final in-word padding. 7142 if (Size < ToSize) { 7143 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7144 Size = ToSize; 7145 } 7146 } 7147 7148 // Add a floating point element at Offset. 7149 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7150 // Unaligned floats are treated as integers. 7151 if (Offset % Bits) 7152 return; 7153 // The InReg flag is only required if there are any floats < 64 bits. 7154 if (Bits < 64) 7155 InReg = true; 7156 pad(Offset); 7157 Elems.push_back(Ty); 7158 Size = Offset + Bits; 7159 } 7160 7161 // Add a struct type to the coercion type, starting at Offset (in bits). 7162 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7163 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7164 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7165 llvm::Type *ElemTy = StrTy->getElementType(i); 7166 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7167 switch (ElemTy->getTypeID()) { 7168 case llvm::Type::StructTyID: 7169 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7170 break; 7171 case llvm::Type::FloatTyID: 7172 addFloat(ElemOffset, ElemTy, 32); 7173 break; 7174 case llvm::Type::DoubleTyID: 7175 addFloat(ElemOffset, ElemTy, 64); 7176 break; 7177 case llvm::Type::FP128TyID: 7178 addFloat(ElemOffset, ElemTy, 128); 7179 break; 7180 case llvm::Type::PointerTyID: 7181 if (ElemOffset % 64 == 0) { 7182 pad(ElemOffset); 7183 Elems.push_back(ElemTy); 7184 Size += 64; 7185 } 7186 break; 7187 default: 7188 break; 7189 } 7190 } 7191 } 7192 7193 // Check if Ty is a usable substitute for the coercion type. 7194 bool isUsableType(llvm::StructType *Ty) const { 7195 return llvm::makeArrayRef(Elems) == Ty->elements(); 7196 } 7197 7198 // Get the coercion type as a literal struct type. 7199 llvm::Type *getType() const { 7200 if (Elems.size() == 1) 7201 return Elems.front(); 7202 else 7203 return llvm::StructType::get(Context, Elems); 7204 } 7205 }; 7206 }; 7207 } // end anonymous namespace 7208 7209 ABIArgInfo 7210 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7211 if (Ty->isVoidType()) 7212 return ABIArgInfo::getIgnore(); 7213 7214 uint64_t Size = getContext().getTypeSize(Ty); 7215 7216 // Anything too big to fit in registers is passed with an explicit indirect 7217 // pointer / sret pointer. 7218 if (Size > SizeLimit) 7219 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7220 7221 // Treat an enum type as its underlying type. 7222 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7223 Ty = EnumTy->getDecl()->getIntegerType(); 7224 7225 // Integer types smaller than a register are extended. 7226 if (Size < 64 && Ty->isIntegerType()) 7227 return ABIArgInfo::getExtend(); 7228 7229 // Other non-aggregates go in registers. 7230 if (!isAggregateTypeForABI(Ty)) 7231 return ABIArgInfo::getDirect(); 7232 7233 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7234 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7235 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7236 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7237 7238 // This is a small aggregate type that should be passed in registers. 7239 // Build a coercion type from the LLVM struct type. 7240 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7241 if (!StrTy) 7242 return ABIArgInfo::getDirect(); 7243 7244 CoerceBuilder CB(getVMContext(), getDataLayout()); 7245 CB.addStruct(0, StrTy); 7246 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7247 7248 // Try to use the original type for coercion. 7249 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7250 7251 if (CB.InReg) 7252 return ABIArgInfo::getDirectInReg(CoerceTy); 7253 else 7254 return ABIArgInfo::getDirect(CoerceTy); 7255 } 7256 7257 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7258 QualType Ty) const { 7259 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7260 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7261 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7262 AI.setCoerceToType(ArgTy); 7263 7264 CharUnits SlotSize = CharUnits::fromQuantity(8); 7265 7266 CGBuilderTy &Builder = CGF.Builder; 7267 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7268 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7269 7270 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7271 7272 Address ArgAddr = Address::invalid(); 7273 CharUnits Stride; 7274 switch (AI.getKind()) { 7275 case ABIArgInfo::Expand: 7276 case ABIArgInfo::CoerceAndExpand: 7277 case ABIArgInfo::InAlloca: 7278 llvm_unreachable("Unsupported ABI kind for va_arg"); 7279 7280 case ABIArgInfo::Extend: { 7281 Stride = SlotSize; 7282 CharUnits Offset = SlotSize - TypeInfo.first; 7283 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7284 break; 7285 } 7286 7287 case ABIArgInfo::Direct: { 7288 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7289 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7290 ArgAddr = Addr; 7291 break; 7292 } 7293 7294 case ABIArgInfo::Indirect: 7295 Stride = SlotSize; 7296 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7297 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7298 TypeInfo.second); 7299 break; 7300 7301 case ABIArgInfo::Ignore: 7302 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7303 } 7304 7305 // Update VAList. 7306 llvm::Value *NextPtr = 7307 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7308 Builder.CreateStore(NextPtr, VAListAddr); 7309 7310 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7311 } 7312 7313 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7314 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7315 for (auto &I : FI.arguments()) 7316 I.info = classifyType(I.type, 16 * 8); 7317 } 7318 7319 namespace { 7320 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7321 public: 7322 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7323 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7324 7325 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7326 return 14; 7327 } 7328 7329 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7330 llvm::Value *Address) const override; 7331 }; 7332 } // end anonymous namespace 7333 7334 bool 7335 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7336 llvm::Value *Address) const { 7337 // This is calculated from the LLVM and GCC tables and verified 7338 // against gcc output. AFAIK all ABIs use the same encoding. 7339 7340 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7341 7342 llvm::IntegerType *i8 = CGF.Int8Ty; 7343 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7344 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7345 7346 // 0-31: the 8-byte general-purpose registers 7347 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7348 7349 // 32-63: f0-31, the 4-byte floating-point registers 7350 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7351 7352 // Y = 64 7353 // PSR = 65 7354 // WIM = 66 7355 // TBR = 67 7356 // PC = 68 7357 // NPC = 69 7358 // FSR = 70 7359 // CSR = 71 7360 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7361 7362 // 72-87: d0-15, the 8-byte floating-point registers 7363 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7364 7365 return false; 7366 } 7367 7368 7369 //===----------------------------------------------------------------------===// 7370 // XCore ABI Implementation 7371 //===----------------------------------------------------------------------===// 7372 7373 namespace { 7374 7375 /// A SmallStringEnc instance is used to build up the TypeString by passing 7376 /// it by reference between functions that append to it. 7377 typedef llvm::SmallString<128> SmallStringEnc; 7378 7379 /// TypeStringCache caches the meta encodings of Types. 7380 /// 7381 /// The reason for caching TypeStrings is two fold: 7382 /// 1. To cache a type's encoding for later uses; 7383 /// 2. As a means to break recursive member type inclusion. 7384 /// 7385 /// A cache Entry can have a Status of: 7386 /// NonRecursive: The type encoding is not recursive; 7387 /// Recursive: The type encoding is recursive; 7388 /// Incomplete: An incomplete TypeString; 7389 /// IncompleteUsed: An incomplete TypeString that has been used in a 7390 /// Recursive type encoding. 7391 /// 7392 /// A NonRecursive entry will have all of its sub-members expanded as fully 7393 /// as possible. Whilst it may contain types which are recursive, the type 7394 /// itself is not recursive and thus its encoding may be safely used whenever 7395 /// the type is encountered. 7396 /// 7397 /// A Recursive entry will have all of its sub-members expanded as fully as 7398 /// possible. The type itself is recursive and it may contain other types which 7399 /// are recursive. The Recursive encoding must not be used during the expansion 7400 /// of a recursive type's recursive branch. For simplicity the code uses 7401 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7402 /// 7403 /// An Incomplete entry is always a RecordType and only encodes its 7404 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7405 /// are placed into the cache during type expansion as a means to identify and 7406 /// handle recursive inclusion of types as sub-members. If there is recursion 7407 /// the entry becomes IncompleteUsed. 7408 /// 7409 /// During the expansion of a RecordType's members: 7410 /// 7411 /// If the cache contains a NonRecursive encoding for the member type, the 7412 /// cached encoding is used; 7413 /// 7414 /// If the cache contains a Recursive encoding for the member type, the 7415 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7416 /// 7417 /// If the member is a RecordType, an Incomplete encoding is placed into the 7418 /// cache to break potential recursive inclusion of itself as a sub-member; 7419 /// 7420 /// Once a member RecordType has been expanded, its temporary incomplete 7421 /// entry is removed from the cache. If a Recursive encoding was swapped out 7422 /// it is swapped back in; 7423 /// 7424 /// If an incomplete entry is used to expand a sub-member, the incomplete 7425 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7426 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7427 /// 7428 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7429 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7430 /// Else the member is part of a recursive type and thus the recursion has 7431 /// been exited too soon for the encoding to be correct for the member. 7432 /// 7433 class TypeStringCache { 7434 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7435 struct Entry { 7436 std::string Str; // The encoded TypeString for the type. 7437 enum Status State; // Information about the encoding in 'Str'. 7438 std::string Swapped; // A temporary place holder for a Recursive encoding 7439 // during the expansion of RecordType's members. 7440 }; 7441 std::map<const IdentifierInfo *, struct Entry> Map; 7442 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7443 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7444 public: 7445 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7446 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7447 bool removeIncomplete(const IdentifierInfo *ID); 7448 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7449 bool IsRecursive); 7450 StringRef lookupStr(const IdentifierInfo *ID); 7451 }; 7452 7453 /// TypeString encodings for enum & union fields must be order. 7454 /// FieldEncoding is a helper for this ordering process. 7455 class FieldEncoding { 7456 bool HasName; 7457 std::string Enc; 7458 public: 7459 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7460 StringRef str() {return Enc.c_str();} 7461 bool operator<(const FieldEncoding &rhs) const { 7462 if (HasName != rhs.HasName) return HasName; 7463 return Enc < rhs.Enc; 7464 } 7465 }; 7466 7467 class XCoreABIInfo : public DefaultABIInfo { 7468 public: 7469 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7470 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7471 QualType Ty) const override; 7472 }; 7473 7474 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7475 mutable TypeStringCache TSC; 7476 public: 7477 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7478 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7479 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7480 CodeGen::CodeGenModule &M) const override; 7481 }; 7482 7483 } // End anonymous namespace. 7484 7485 // TODO: this implementation is likely now redundant with the default 7486 // EmitVAArg. 7487 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7488 QualType Ty) const { 7489 CGBuilderTy &Builder = CGF.Builder; 7490 7491 // Get the VAList. 7492 CharUnits SlotSize = CharUnits::fromQuantity(4); 7493 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7494 7495 // Handle the argument. 7496 ABIArgInfo AI = classifyArgumentType(Ty); 7497 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7498 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7499 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7500 AI.setCoerceToType(ArgTy); 7501 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7502 7503 Address Val = Address::invalid(); 7504 CharUnits ArgSize = CharUnits::Zero(); 7505 switch (AI.getKind()) { 7506 case ABIArgInfo::Expand: 7507 case ABIArgInfo::CoerceAndExpand: 7508 case ABIArgInfo::InAlloca: 7509 llvm_unreachable("Unsupported ABI kind for va_arg"); 7510 case ABIArgInfo::Ignore: 7511 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7512 ArgSize = CharUnits::Zero(); 7513 break; 7514 case ABIArgInfo::Extend: 7515 case ABIArgInfo::Direct: 7516 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7517 ArgSize = CharUnits::fromQuantity( 7518 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7519 ArgSize = ArgSize.alignTo(SlotSize); 7520 break; 7521 case ABIArgInfo::Indirect: 7522 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7523 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7524 ArgSize = SlotSize; 7525 break; 7526 } 7527 7528 // Increment the VAList. 7529 if (!ArgSize.isZero()) { 7530 llvm::Value *APN = 7531 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7532 Builder.CreateStore(APN, VAListAddr); 7533 } 7534 7535 return Val; 7536 } 7537 7538 /// During the expansion of a RecordType, an incomplete TypeString is placed 7539 /// into the cache as a means to identify and break recursion. 7540 /// If there is a Recursive encoding in the cache, it is swapped out and will 7541 /// be reinserted by removeIncomplete(). 7542 /// All other types of encoding should have been used rather than arriving here. 7543 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7544 std::string StubEnc) { 7545 if (!ID) 7546 return; 7547 Entry &E = Map[ID]; 7548 assert( (E.Str.empty() || E.State == Recursive) && 7549 "Incorrectly use of addIncomplete"); 7550 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7551 E.Swapped.swap(E.Str); // swap out the Recursive 7552 E.Str.swap(StubEnc); 7553 E.State = Incomplete; 7554 ++IncompleteCount; 7555 } 7556 7557 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7558 /// must be removed from the cache. 7559 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7560 /// Returns true if the RecordType was defined recursively. 7561 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7562 if (!ID) 7563 return false; 7564 auto I = Map.find(ID); 7565 assert(I != Map.end() && "Entry not present"); 7566 Entry &E = I->second; 7567 assert( (E.State == Incomplete || 7568 E.State == IncompleteUsed) && 7569 "Entry must be an incomplete type"); 7570 bool IsRecursive = false; 7571 if (E.State == IncompleteUsed) { 7572 // We made use of our Incomplete encoding, thus we are recursive. 7573 IsRecursive = true; 7574 --IncompleteUsedCount; 7575 } 7576 if (E.Swapped.empty()) 7577 Map.erase(I); 7578 else { 7579 // Swap the Recursive back. 7580 E.Swapped.swap(E.Str); 7581 E.Swapped.clear(); 7582 E.State = Recursive; 7583 } 7584 --IncompleteCount; 7585 return IsRecursive; 7586 } 7587 7588 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7589 /// Recursive (viz: all sub-members were expanded as fully as possible). 7590 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7591 bool IsRecursive) { 7592 if (!ID || IncompleteUsedCount) 7593 return; // No key or it is is an incomplete sub-type so don't add. 7594 Entry &E = Map[ID]; 7595 if (IsRecursive && !E.Str.empty()) { 7596 assert(E.State==Recursive && E.Str.size() == Str.size() && 7597 "This is not the same Recursive entry"); 7598 // The parent container was not recursive after all, so we could have used 7599 // this Recursive sub-member entry after all, but we assumed the worse when 7600 // we started viz: IncompleteCount!=0. 7601 return; 7602 } 7603 assert(E.Str.empty() && "Entry already present"); 7604 E.Str = Str.str(); 7605 E.State = IsRecursive? Recursive : NonRecursive; 7606 } 7607 7608 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7609 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7610 /// encoding is Recursive, return an empty StringRef. 7611 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7612 if (!ID) 7613 return StringRef(); // We have no key. 7614 auto I = Map.find(ID); 7615 if (I == Map.end()) 7616 return StringRef(); // We have no encoding. 7617 Entry &E = I->second; 7618 if (E.State == Recursive && IncompleteCount) 7619 return StringRef(); // We don't use Recursive encodings for member types. 7620 7621 if (E.State == Incomplete) { 7622 // The incomplete type is being used to break out of recursion. 7623 E.State = IncompleteUsed; 7624 ++IncompleteUsedCount; 7625 } 7626 return E.Str.c_str(); 7627 } 7628 7629 /// The XCore ABI includes a type information section that communicates symbol 7630 /// type information to the linker. The linker uses this information to verify 7631 /// safety/correctness of things such as array bound and pointers et al. 7632 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7633 /// This type information (TypeString) is emitted into meta data for all global 7634 /// symbols: definitions, declarations, functions & variables. 7635 /// 7636 /// The TypeString carries type, qualifier, name, size & value details. 7637 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7638 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7639 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7640 /// 7641 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7642 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7643 7644 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7645 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7646 CodeGen::CodeGenModule &CGM) const { 7647 SmallStringEnc Enc; 7648 if (getTypeString(Enc, D, CGM, TSC)) { 7649 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7650 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 7651 llvm::MDString::get(Ctx, Enc.str())}; 7652 llvm::NamedMDNode *MD = 7653 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7654 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7655 } 7656 } 7657 7658 //===----------------------------------------------------------------------===// 7659 // SPIR ABI Implementation 7660 //===----------------------------------------------------------------------===// 7661 7662 namespace { 7663 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 7664 public: 7665 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7666 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7667 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7668 CodeGen::CodeGenModule &M) const override; 7669 unsigned getOpenCLKernelCallingConv() const override; 7670 }; 7671 } // End anonymous namespace. 7672 7673 /// Emit SPIR specific metadata: OpenCL and SPIR version. 7674 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7675 CodeGen::CodeGenModule &CGM) const { 7676 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7677 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7678 llvm::Module &M = CGM.getModule(); 7679 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 7680 // opencl.spir.version named metadata. 7681 llvm::Metadata *SPIRVerElts[] = { 7682 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)), 7683 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))}; 7684 llvm::NamedMDNode *SPIRVerMD = 7685 M.getOrInsertNamedMetadata("opencl.spir.version"); 7686 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 7687 appendOpenCLVersionMD(CGM); 7688 } 7689 7690 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) { 7691 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7692 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7693 llvm::Module &M = CGM.getModule(); 7694 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 7695 // opencl.ocl.version named metadata node. 7696 llvm::Metadata *OCLVerElts[] = { 7697 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7698 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7699 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7700 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 7701 llvm::NamedMDNode *OCLVerMD = 7702 M.getOrInsertNamedMetadata("opencl.ocl.version"); 7703 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 7704 } 7705 7706 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7707 return llvm::CallingConv::SPIR_KERNEL; 7708 } 7709 7710 static bool appendType(SmallStringEnc &Enc, QualType QType, 7711 const CodeGen::CodeGenModule &CGM, 7712 TypeStringCache &TSC); 7713 7714 /// Helper function for appendRecordType(). 7715 /// Builds a SmallVector containing the encoded field types in declaration 7716 /// order. 7717 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7718 const RecordDecl *RD, 7719 const CodeGen::CodeGenModule &CGM, 7720 TypeStringCache &TSC) { 7721 for (const auto *Field : RD->fields()) { 7722 SmallStringEnc Enc; 7723 Enc += "m("; 7724 Enc += Field->getName(); 7725 Enc += "){"; 7726 if (Field->isBitField()) { 7727 Enc += "b("; 7728 llvm::raw_svector_ostream OS(Enc); 7729 OS << Field->getBitWidthValue(CGM.getContext()); 7730 Enc += ':'; 7731 } 7732 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7733 return false; 7734 if (Field->isBitField()) 7735 Enc += ')'; 7736 Enc += '}'; 7737 FE.emplace_back(!Field->getName().empty(), Enc); 7738 } 7739 return true; 7740 } 7741 7742 /// Appends structure and union types to Enc and adds encoding to cache. 7743 /// Recursively calls appendType (via extractFieldType) for each field. 7744 /// Union types have their fields ordered according to the ABI. 7745 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7746 const CodeGen::CodeGenModule &CGM, 7747 TypeStringCache &TSC, const IdentifierInfo *ID) { 7748 // Append the cached TypeString if we have one. 7749 StringRef TypeString = TSC.lookupStr(ID); 7750 if (!TypeString.empty()) { 7751 Enc += TypeString; 7752 return true; 7753 } 7754 7755 // Start to emit an incomplete TypeString. 7756 size_t Start = Enc.size(); 7757 Enc += (RT->isUnionType()? 'u' : 's'); 7758 Enc += '('; 7759 if (ID) 7760 Enc += ID->getName(); 7761 Enc += "){"; 7762 7763 // We collect all encoded fields and order as necessary. 7764 bool IsRecursive = false; 7765 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7766 if (RD && !RD->field_empty()) { 7767 // An incomplete TypeString stub is placed in the cache for this RecordType 7768 // so that recursive calls to this RecordType will use it whilst building a 7769 // complete TypeString for this RecordType. 7770 SmallVector<FieldEncoding, 16> FE; 7771 std::string StubEnc(Enc.substr(Start).str()); 7772 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7773 TSC.addIncomplete(ID, std::move(StubEnc)); 7774 if (!extractFieldType(FE, RD, CGM, TSC)) { 7775 (void) TSC.removeIncomplete(ID); 7776 return false; 7777 } 7778 IsRecursive = TSC.removeIncomplete(ID); 7779 // The ABI requires unions to be sorted but not structures. 7780 // See FieldEncoding::operator< for sort algorithm. 7781 if (RT->isUnionType()) 7782 std::sort(FE.begin(), FE.end()); 7783 // We can now complete the TypeString. 7784 unsigned E = FE.size(); 7785 for (unsigned I = 0; I != E; ++I) { 7786 if (I) 7787 Enc += ','; 7788 Enc += FE[I].str(); 7789 } 7790 } 7791 Enc += '}'; 7792 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7793 return true; 7794 } 7795 7796 /// Appends enum types to Enc and adds the encoding to the cache. 7797 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7798 TypeStringCache &TSC, 7799 const IdentifierInfo *ID) { 7800 // Append the cached TypeString if we have one. 7801 StringRef TypeString = TSC.lookupStr(ID); 7802 if (!TypeString.empty()) { 7803 Enc += TypeString; 7804 return true; 7805 } 7806 7807 size_t Start = Enc.size(); 7808 Enc += "e("; 7809 if (ID) 7810 Enc += ID->getName(); 7811 Enc += "){"; 7812 7813 // We collect all encoded enumerations and order them alphanumerically. 7814 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7815 SmallVector<FieldEncoding, 16> FE; 7816 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7817 ++I) { 7818 SmallStringEnc EnumEnc; 7819 EnumEnc += "m("; 7820 EnumEnc += I->getName(); 7821 EnumEnc += "){"; 7822 I->getInitVal().toString(EnumEnc); 7823 EnumEnc += '}'; 7824 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7825 } 7826 std::sort(FE.begin(), FE.end()); 7827 unsigned E = FE.size(); 7828 for (unsigned I = 0; I != E; ++I) { 7829 if (I) 7830 Enc += ','; 7831 Enc += FE[I].str(); 7832 } 7833 } 7834 Enc += '}'; 7835 TSC.addIfComplete(ID, Enc.substr(Start), false); 7836 return true; 7837 } 7838 7839 /// Appends type's qualifier to Enc. 7840 /// This is done prior to appending the type's encoding. 7841 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 7842 // Qualifiers are emitted in alphabetical order. 7843 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 7844 int Lookup = 0; 7845 if (QT.isConstQualified()) 7846 Lookup += 1<<0; 7847 if (QT.isRestrictQualified()) 7848 Lookup += 1<<1; 7849 if (QT.isVolatileQualified()) 7850 Lookup += 1<<2; 7851 Enc += Table[Lookup]; 7852 } 7853 7854 /// Appends built-in types to Enc. 7855 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 7856 const char *EncType; 7857 switch (BT->getKind()) { 7858 case BuiltinType::Void: 7859 EncType = "0"; 7860 break; 7861 case BuiltinType::Bool: 7862 EncType = "b"; 7863 break; 7864 case BuiltinType::Char_U: 7865 EncType = "uc"; 7866 break; 7867 case BuiltinType::UChar: 7868 EncType = "uc"; 7869 break; 7870 case BuiltinType::SChar: 7871 EncType = "sc"; 7872 break; 7873 case BuiltinType::UShort: 7874 EncType = "us"; 7875 break; 7876 case BuiltinType::Short: 7877 EncType = "ss"; 7878 break; 7879 case BuiltinType::UInt: 7880 EncType = "ui"; 7881 break; 7882 case BuiltinType::Int: 7883 EncType = "si"; 7884 break; 7885 case BuiltinType::ULong: 7886 EncType = "ul"; 7887 break; 7888 case BuiltinType::Long: 7889 EncType = "sl"; 7890 break; 7891 case BuiltinType::ULongLong: 7892 EncType = "ull"; 7893 break; 7894 case BuiltinType::LongLong: 7895 EncType = "sll"; 7896 break; 7897 case BuiltinType::Float: 7898 EncType = "ft"; 7899 break; 7900 case BuiltinType::Double: 7901 EncType = "d"; 7902 break; 7903 case BuiltinType::LongDouble: 7904 EncType = "ld"; 7905 break; 7906 default: 7907 return false; 7908 } 7909 Enc += EncType; 7910 return true; 7911 } 7912 7913 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 7914 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 7915 const CodeGen::CodeGenModule &CGM, 7916 TypeStringCache &TSC) { 7917 Enc += "p("; 7918 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 7919 return false; 7920 Enc += ')'; 7921 return true; 7922 } 7923 7924 /// Appends array encoding to Enc before calling appendType for the element. 7925 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 7926 const ArrayType *AT, 7927 const CodeGen::CodeGenModule &CGM, 7928 TypeStringCache &TSC, StringRef NoSizeEnc) { 7929 if (AT->getSizeModifier() != ArrayType::Normal) 7930 return false; 7931 Enc += "a("; 7932 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 7933 CAT->getSize().toStringUnsigned(Enc); 7934 else 7935 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 7936 Enc += ':'; 7937 // The Qualifiers should be attached to the type rather than the array. 7938 appendQualifier(Enc, QT); 7939 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 7940 return false; 7941 Enc += ')'; 7942 return true; 7943 } 7944 7945 /// Appends a function encoding to Enc, calling appendType for the return type 7946 /// and the arguments. 7947 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 7948 const CodeGen::CodeGenModule &CGM, 7949 TypeStringCache &TSC) { 7950 Enc += "f{"; 7951 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 7952 return false; 7953 Enc += "}("; 7954 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 7955 // N.B. we are only interested in the adjusted param types. 7956 auto I = FPT->param_type_begin(); 7957 auto E = FPT->param_type_end(); 7958 if (I != E) { 7959 do { 7960 if (!appendType(Enc, *I, CGM, TSC)) 7961 return false; 7962 ++I; 7963 if (I != E) 7964 Enc += ','; 7965 } while (I != E); 7966 if (FPT->isVariadic()) 7967 Enc += ",va"; 7968 } else { 7969 if (FPT->isVariadic()) 7970 Enc += "va"; 7971 else 7972 Enc += '0'; 7973 } 7974 } 7975 Enc += ')'; 7976 return true; 7977 } 7978 7979 /// Handles the type's qualifier before dispatching a call to handle specific 7980 /// type encodings. 7981 static bool appendType(SmallStringEnc &Enc, QualType QType, 7982 const CodeGen::CodeGenModule &CGM, 7983 TypeStringCache &TSC) { 7984 7985 QualType QT = QType.getCanonicalType(); 7986 7987 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7988 // The Qualifiers should be attached to the type rather than the array. 7989 // Thus we don't call appendQualifier() here. 7990 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7991 7992 appendQualifier(Enc, QT); 7993 7994 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7995 return appendBuiltinType(Enc, BT); 7996 7997 if (const PointerType *PT = QT->getAs<PointerType>()) 7998 return appendPointerType(Enc, PT, CGM, TSC); 7999 8000 if (const EnumType *ET = QT->getAs<EnumType>()) 8001 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8002 8003 if (const RecordType *RT = QT->getAsStructureType()) 8004 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8005 8006 if (const RecordType *RT = QT->getAsUnionType()) 8007 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8008 8009 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8010 return appendFunctionType(Enc, FT, CGM, TSC); 8011 8012 return false; 8013 } 8014 8015 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8016 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8017 if (!D) 8018 return false; 8019 8020 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8021 if (FD->getLanguageLinkage() != CLanguageLinkage) 8022 return false; 8023 return appendType(Enc, FD->getType(), CGM, TSC); 8024 } 8025 8026 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8027 if (VD->getLanguageLinkage() != CLanguageLinkage) 8028 return false; 8029 QualType QT = VD->getType().getCanonicalType(); 8030 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8031 // Global ArrayTypes are given a size of '*' if the size is unknown. 8032 // The Qualifiers should be attached to the type rather than the array. 8033 // Thus we don't call appendQualifier() here. 8034 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8035 } 8036 return appendType(Enc, QT, CGM, TSC); 8037 } 8038 return false; 8039 } 8040 8041 8042 //===----------------------------------------------------------------------===// 8043 // Driver code 8044 //===----------------------------------------------------------------------===// 8045 8046 bool CodeGenModule::supportsCOMDAT() const { 8047 return getTriple().supportsCOMDAT(); 8048 } 8049 8050 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8051 if (TheTargetCodeGenInfo) 8052 return *TheTargetCodeGenInfo; 8053 8054 // Helper to set the unique_ptr while still keeping the return value. 8055 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8056 this->TheTargetCodeGenInfo.reset(P); 8057 return *P; 8058 }; 8059 8060 const llvm::Triple &Triple = getTarget().getTriple(); 8061 switch (Triple.getArch()) { 8062 default: 8063 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8064 8065 case llvm::Triple::le32: 8066 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8067 case llvm::Triple::mips: 8068 case llvm::Triple::mipsel: 8069 if (Triple.getOS() == llvm::Triple::NaCl) 8070 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8071 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8072 8073 case llvm::Triple::mips64: 8074 case llvm::Triple::mips64el: 8075 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8076 8077 case llvm::Triple::aarch64: 8078 case llvm::Triple::aarch64_be: { 8079 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8080 if (getTarget().getABI() == "darwinpcs") 8081 Kind = AArch64ABIInfo::DarwinPCS; 8082 8083 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8084 } 8085 8086 case llvm::Triple::wasm32: 8087 case llvm::Triple::wasm64: 8088 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8089 8090 case llvm::Triple::arm: 8091 case llvm::Triple::armeb: 8092 case llvm::Triple::thumb: 8093 case llvm::Triple::thumbeb: { 8094 if (Triple.getOS() == llvm::Triple::Win32) { 8095 return SetCGInfo( 8096 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8097 } 8098 8099 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8100 StringRef ABIStr = getTarget().getABI(); 8101 if (ABIStr == "apcs-gnu") 8102 Kind = ARMABIInfo::APCS; 8103 else if (ABIStr == "aapcs16") 8104 Kind = ARMABIInfo::AAPCS16_VFP; 8105 else if (CodeGenOpts.FloatABI == "hard" || 8106 (CodeGenOpts.FloatABI != "soft" && 8107 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8108 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8109 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8110 Kind = ARMABIInfo::AAPCS_VFP; 8111 8112 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8113 } 8114 8115 case llvm::Triple::ppc: 8116 return SetCGInfo( 8117 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8118 case llvm::Triple::ppc64: 8119 if (Triple.isOSBinFormatELF()) { 8120 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8121 if (getTarget().getABI() == "elfv2") 8122 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8123 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8124 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8125 8126 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8127 IsSoftFloat)); 8128 } else 8129 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8130 case llvm::Triple::ppc64le: { 8131 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8132 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8133 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8134 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8135 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8136 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8137 8138 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8139 IsSoftFloat)); 8140 } 8141 8142 case llvm::Triple::nvptx: 8143 case llvm::Triple::nvptx64: 8144 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8145 8146 case llvm::Triple::msp430: 8147 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8148 8149 case llvm::Triple::systemz: { 8150 bool HasVector = getTarget().getABI() == "vector"; 8151 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8152 } 8153 8154 case llvm::Triple::tce: 8155 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8156 8157 case llvm::Triple::x86: { 8158 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8159 bool RetSmallStructInRegABI = 8160 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8161 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8162 8163 if (Triple.getOS() == llvm::Triple::Win32) { 8164 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8165 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8166 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8167 } else { 8168 return SetCGInfo(new X86_32TargetCodeGenInfo( 8169 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8170 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8171 CodeGenOpts.FloatABI == "soft")); 8172 } 8173 } 8174 8175 case llvm::Triple::x86_64: { 8176 StringRef ABI = getTarget().getABI(); 8177 X86AVXABILevel AVXLevel = 8178 (ABI == "avx512" 8179 ? X86AVXABILevel::AVX512 8180 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8181 8182 switch (Triple.getOS()) { 8183 case llvm::Triple::Win32: 8184 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8185 case llvm::Triple::PS4: 8186 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8187 default: 8188 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8189 } 8190 } 8191 case llvm::Triple::hexagon: 8192 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8193 case llvm::Triple::lanai: 8194 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8195 case llvm::Triple::r600: 8196 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8197 case llvm::Triple::amdgcn: 8198 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8199 case llvm::Triple::sparc: 8200 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8201 case llvm::Triple::sparcv9: 8202 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8203 case llvm::Triple::xcore: 8204 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8205 case llvm::Triple::spir: 8206 case llvm::Triple::spir64: 8207 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8208 } 8209 } 8210