1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIArgInfo
52 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
53                                  llvm::Type *Padding) const {
54   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
55                                  ByRef, Realign, Padding);
56 }
57 
58 ABIArgInfo
59 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
60   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
61                                       /*ByRef*/ false, Realign);
62 }
63 
64 ABIInfo::~ABIInfo() {}
65 
66 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
67                                               CGCXXABI &CXXABI) {
68   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
69   if (!RD)
70     return CGCXXABI::RAA_Default;
71   return CXXABI.getRecordArgABI(RD);
72 }
73 
74 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
75                                               CGCXXABI &CXXABI) {
76   const RecordType *RT = T->getAs<RecordType>();
77   if (!RT)
78     return CGCXXABI::RAA_Default;
79   return getRecordArgABI(RT, CXXABI);
80 }
81 
82 /// Pass transparent unions as if they were the type of the first element. Sema
83 /// should ensure that all elements of the union have the same "machine type".
84 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
85   if (const RecordType *UT = Ty->getAsUnionType()) {
86     const RecordDecl *UD = UT->getDecl();
87     if (UD->hasAttr<TransparentUnionAttr>()) {
88       assert(!UD->field_empty() && "sema created an empty transparent union");
89       return UD->field_begin()->getType();
90     }
91   }
92   return Ty;
93 }
94 
95 CGCXXABI &ABIInfo::getCXXABI() const {
96   return CGT.getCXXABI();
97 }
98 
99 ASTContext &ABIInfo::getContext() const {
100   return CGT.getContext();
101 }
102 
103 llvm::LLVMContext &ABIInfo::getVMContext() const {
104   return CGT.getLLVMContext();
105 }
106 
107 const llvm::DataLayout &ABIInfo::getDataLayout() const {
108   return CGT.getDataLayout();
109 }
110 
111 const TargetInfo &ABIInfo::getTarget() const {
112   return CGT.getTarget();
113 }
114 
115 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
116   return false;
117 }
118 
119 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
120                                                 uint64_t Members) const {
121   return false;
122 }
123 
124 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
125   return false;
126 }
127 
128 void ABIArgInfo::dump() const {
129   raw_ostream &OS = llvm::errs();
130   OS << "(ABIArgInfo Kind=";
131   switch (TheKind) {
132   case Direct:
133     OS << "Direct Type=";
134     if (llvm::Type *Ty = getCoerceToType())
135       Ty->print(OS);
136     else
137       OS << "null";
138     break;
139   case Extend:
140     OS << "Extend";
141     break;
142   case Ignore:
143     OS << "Ignore";
144     break;
145   case InAlloca:
146     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
147     break;
148   case Indirect:
149     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
150        << " ByVal=" << getIndirectByVal()
151        << " Realign=" << getIndirectRealign();
152     break;
153   case Expand:
154     OS << "Expand";
155     break;
156   }
157   OS << ")\n";
158 }
159 
160 /// Emit va_arg for a platform using the common void* representation,
161 /// where arguments are simply emitted in an array of slots on the stack.
162 ///
163 /// This version implements the core direct-value passing rules.
164 ///
165 /// \param SlotSize - The size and alignment of a stack slot.
166 ///   Each argument will be allocated to a multiple of this number of
167 ///   slots, and all the slots will be aligned to this value.
168 /// \param AllowHigherAlign - The slot alignment is not a cap;
169 ///   an argument type with an alignment greater than the slot size
170 ///   will be emitted on a higher-alignment address, potentially
171 ///   leaving one or more empty slots behind as padding.  If this
172 ///   is false, the returned address might be less-aligned than
173 ///   DirectAlign.
174 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
175                                       Address VAListAddr,
176                                       llvm::Type *DirectTy,
177                                       CharUnits DirectSize,
178                                       CharUnits DirectAlign,
179                                       CharUnits SlotSize,
180                                       bool AllowHigherAlign) {
181   // Cast the element type to i8* if necessary.  Some platforms define
182   // va_list as a struct containing an i8* instead of just an i8*.
183   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
184     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
185 
186   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
187 
188   // If the CC aligns values higher than the slot size, do so if needed.
189   Address Addr = Address::invalid();
190   if (AllowHigherAlign && DirectAlign > SlotSize) {
191     llvm::Value *PtrAsInt = Ptr;
192     PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
193     PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
194           llvm::ConstantInt::get(CGF.IntPtrTy, DirectAlign.getQuantity() - 1));
195     PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
196              llvm::ConstantInt::get(CGF.IntPtrTy, -DirectAlign.getQuantity()));
197     Addr = Address(CGF.Builder.CreateIntToPtr(PtrAsInt, Ptr->getType(),
198                                               "argp.cur.aligned"),
199                    DirectAlign);
200   } else {
201     Addr = Address(Ptr, SlotSize);
202   }
203 
204   // Advance the pointer past the argument, then store that back.
205   CharUnits FullDirectSize = DirectSize.RoundUpToAlignment(SlotSize);
206   llvm::Value *NextPtr =
207     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
208                                            "argp.next");
209   CGF.Builder.CreateStore(NextPtr, VAListAddr);
210 
211   // If the argument is smaller than a slot, and this is a big-endian
212   // target, the argument will be right-adjusted in its slot.
213   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
214     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
215   }
216 
217   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
218   return Addr;
219 }
220 
221 /// Emit va_arg for a platform using the common void* representation,
222 /// where arguments are simply emitted in an array of slots on the stack.
223 ///
224 /// \param IsIndirect - Values of this type are passed indirectly.
225 /// \param ValueInfo - The size and alignment of this type, generally
226 ///   computed with getContext().getTypeInfoInChars(ValueTy).
227 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
228 ///   Each argument will be allocated to a multiple of this number of
229 ///   slots, and all the slots will be aligned to this value.
230 /// \param AllowHigherAlign - The slot alignment is not a cap;
231 ///   an argument type with an alignment greater than the slot size
232 ///   will be emitted on a higher-alignment address, potentially
233 ///   leaving one or more empty slots behind as padding.
234 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
235                                 QualType ValueTy, bool IsIndirect,
236                                 std::pair<CharUnits, CharUnits> ValueInfo,
237                                 CharUnits SlotSizeAndAlign,
238                                 bool AllowHigherAlign) {
239   // The size and alignment of the value that was passed directly.
240   CharUnits DirectSize, DirectAlign;
241   if (IsIndirect) {
242     DirectSize = CGF.getPointerSize();
243     DirectAlign = CGF.getPointerAlign();
244   } else {
245     DirectSize = ValueInfo.first;
246     DirectAlign = ValueInfo.second;
247   }
248 
249   // Cast the address we've calculated to the right type.
250   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
251   if (IsIndirect)
252     DirectTy = DirectTy->getPointerTo(0);
253 
254   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
255                                         DirectSize, DirectAlign,
256                                         SlotSizeAndAlign,
257                                         AllowHigherAlign);
258 
259   if (IsIndirect) {
260     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
261   }
262 
263   return Addr;
264 
265 }
266 
267 static Address emitMergePHI(CodeGenFunction &CGF,
268                             Address Addr1, llvm::BasicBlock *Block1,
269                             Address Addr2, llvm::BasicBlock *Block2,
270                             const llvm::Twine &Name = "") {
271   assert(Addr1.getType() == Addr2.getType());
272   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
273   PHI->addIncoming(Addr1.getPointer(), Block1);
274   PHI->addIncoming(Addr2.getPointer(), Block2);
275   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
276   return Address(PHI, Align);
277 }
278 
279 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
280 
281 // If someone can figure out a general rule for this, that would be great.
282 // It's probably just doomed to be platform-dependent, though.
283 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
284   // Verified for:
285   //   x86-64     FreeBSD, Linux, Darwin
286   //   x86-32     FreeBSD, Linux, Darwin
287   //   PowerPC    Linux, Darwin
288   //   ARM        Darwin (*not* EABI)
289   //   AArch64    Linux
290   return 32;
291 }
292 
293 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
294                                      const FunctionNoProtoType *fnType) const {
295   // The following conventions are known to require this to be false:
296   //   x86_stdcall
297   //   MIPS
298   // For everything else, we just prefer false unless we opt out.
299   return false;
300 }
301 
302 void
303 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
304                                              llvm::SmallString<24> &Opt) const {
305   // This assumes the user is passing a library name like "rt" instead of a
306   // filename like "librt.a/so", and that they don't care whether it's static or
307   // dynamic.
308   Opt = "-l";
309   Opt += Lib;
310 }
311 
312 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
313 
314 /// isEmptyField - Return true iff a the field is "empty", that is it
315 /// is an unnamed bit-field or an (array of) empty record(s).
316 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
317                          bool AllowArrays) {
318   if (FD->isUnnamedBitfield())
319     return true;
320 
321   QualType FT = FD->getType();
322 
323   // Constant arrays of empty records count as empty, strip them off.
324   // Constant arrays of zero length always count as empty.
325   if (AllowArrays)
326     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
327       if (AT->getSize() == 0)
328         return true;
329       FT = AT->getElementType();
330     }
331 
332   const RecordType *RT = FT->getAs<RecordType>();
333   if (!RT)
334     return false;
335 
336   // C++ record fields are never empty, at least in the Itanium ABI.
337   //
338   // FIXME: We should use a predicate for whether this behavior is true in the
339   // current ABI.
340   if (isa<CXXRecordDecl>(RT->getDecl()))
341     return false;
342 
343   return isEmptyRecord(Context, FT, AllowArrays);
344 }
345 
346 /// isEmptyRecord - Return true iff a structure contains only empty
347 /// fields. Note that a structure with a flexible array member is not
348 /// considered empty.
349 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
350   const RecordType *RT = T->getAs<RecordType>();
351   if (!RT)
352     return 0;
353   const RecordDecl *RD = RT->getDecl();
354   if (RD->hasFlexibleArrayMember())
355     return false;
356 
357   // If this is a C++ record, check the bases first.
358   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
359     for (const auto &I : CXXRD->bases())
360       if (!isEmptyRecord(Context, I.getType(), true))
361         return false;
362 
363   for (const auto *I : RD->fields())
364     if (!isEmptyField(Context, I, AllowArrays))
365       return false;
366   return true;
367 }
368 
369 /// isSingleElementStruct - Determine if a structure is a "single
370 /// element struct", i.e. it has exactly one non-empty field or
371 /// exactly one field which is itself a single element
372 /// struct. Structures with flexible array members are never
373 /// considered single element structs.
374 ///
375 /// \return The field declaration for the single non-empty field, if
376 /// it exists.
377 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
378   const RecordType *RT = T->getAs<RecordType>();
379   if (!RT)
380     return nullptr;
381 
382   const RecordDecl *RD = RT->getDecl();
383   if (RD->hasFlexibleArrayMember())
384     return nullptr;
385 
386   const Type *Found = nullptr;
387 
388   // If this is a C++ record, check the bases first.
389   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
390     for (const auto &I : CXXRD->bases()) {
391       // Ignore empty records.
392       if (isEmptyRecord(Context, I.getType(), true))
393         continue;
394 
395       // If we already found an element then this isn't a single-element struct.
396       if (Found)
397         return nullptr;
398 
399       // If this is non-empty and not a single element struct, the composite
400       // cannot be a single element struct.
401       Found = isSingleElementStruct(I.getType(), Context);
402       if (!Found)
403         return nullptr;
404     }
405   }
406 
407   // Check for single element.
408   for (const auto *FD : RD->fields()) {
409     QualType FT = FD->getType();
410 
411     // Ignore empty fields.
412     if (isEmptyField(Context, FD, true))
413       continue;
414 
415     // If we already found an element then this isn't a single-element
416     // struct.
417     if (Found)
418       return nullptr;
419 
420     // Treat single element arrays as the element.
421     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
422       if (AT->getSize().getZExtValue() != 1)
423         break;
424       FT = AT->getElementType();
425     }
426 
427     if (!isAggregateTypeForABI(FT)) {
428       Found = FT.getTypePtr();
429     } else {
430       Found = isSingleElementStruct(FT, Context);
431       if (!Found)
432         return nullptr;
433     }
434   }
435 
436   // We don't consider a struct a single-element struct if it has
437   // padding beyond the element type.
438   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
439     return nullptr;
440 
441   return Found;
442 }
443 
444 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
445   // Treat complex types as the element type.
446   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
447     Ty = CTy->getElementType();
448 
449   // Check for a type which we know has a simple scalar argument-passing
450   // convention without any padding.  (We're specifically looking for 32
451   // and 64-bit integer and integer-equivalents, float, and double.)
452   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
453       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
454     return false;
455 
456   uint64_t Size = Context.getTypeSize(Ty);
457   return Size == 32 || Size == 64;
458 }
459 
460 /// canExpandIndirectArgument - Test whether an argument type which is to be
461 /// passed indirectly (on the stack) would have the equivalent layout if it was
462 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
463 /// inhibiting optimizations.
464 ///
465 // FIXME: This predicate is missing many cases, currently it just follows
466 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
467 // should probably make this smarter, or better yet make the LLVM backend
468 // capable of handling it.
469 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
470   // We can only expand structure types.
471   const RecordType *RT = Ty->getAs<RecordType>();
472   if (!RT)
473     return false;
474 
475   // We can only expand (C) structures.
476   //
477   // FIXME: This needs to be generalized to handle classes as well.
478   const RecordDecl *RD = RT->getDecl();
479   if (!RD->isStruct())
480     return false;
481 
482   // We try to expand CLike CXXRecordDecl.
483   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
484     if (!CXXRD->isCLike())
485       return false;
486   }
487 
488   uint64_t Size = 0;
489 
490   for (const auto *FD : RD->fields()) {
491     if (!is32Or64BitBasicType(FD->getType(), Context))
492       return false;
493 
494     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
495     // how to expand them yet, and the predicate for telling if a bitfield still
496     // counts as "basic" is more complicated than what we were doing previously.
497     if (FD->isBitField())
498       return false;
499 
500     Size += Context.getTypeSize(FD->getType());
501   }
502 
503   // Make sure there are not any holes in the struct.
504   if (Size != Context.getTypeSize(Ty))
505     return false;
506 
507   return true;
508 }
509 
510 namespace {
511 /// DefaultABIInfo - The default implementation for ABI specific
512 /// details. This implementation provides information which results in
513 /// self-consistent and sensible LLVM IR generation, but does not
514 /// conform to any particular ABI.
515 class DefaultABIInfo : public ABIInfo {
516 public:
517   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
518 
519   ABIArgInfo classifyReturnType(QualType RetTy) const;
520   ABIArgInfo classifyArgumentType(QualType RetTy) const;
521 
522   void computeInfo(CGFunctionInfo &FI) const override {
523     if (!getCXXABI().classifyReturnType(FI))
524       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
525     for (auto &I : FI.arguments())
526       I.info = classifyArgumentType(I.type);
527   }
528 
529   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
530                     QualType Ty) const override;
531 };
532 
533 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
534 public:
535   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
536     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
537 };
538 
539 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
540                                   QualType Ty) const {
541   return Address::invalid();
542 }
543 
544 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
545   Ty = useFirstFieldIfTransparentUnion(Ty);
546 
547   if (isAggregateTypeForABI(Ty)) {
548     // Records with non-trivial destructors/copy-constructors should not be
549     // passed by value.
550     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
551       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
552 
553     return getNaturalAlignIndirect(Ty);
554   }
555 
556   // Treat an enum type as its underlying type.
557   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
558     Ty = EnumTy->getDecl()->getIntegerType();
559 
560   return (Ty->isPromotableIntegerType() ?
561           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
562 }
563 
564 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
565   if (RetTy->isVoidType())
566     return ABIArgInfo::getIgnore();
567 
568   if (isAggregateTypeForABI(RetTy))
569     return getNaturalAlignIndirect(RetTy);
570 
571   // Treat an enum type as its underlying type.
572   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
573     RetTy = EnumTy->getDecl()->getIntegerType();
574 
575   return (RetTy->isPromotableIntegerType() ?
576           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
577 }
578 
579 //===----------------------------------------------------------------------===//
580 // WebAssembly ABI Implementation
581 //
582 // This is a very simple ABI that relies a lot on DefaultABIInfo.
583 //===----------------------------------------------------------------------===//
584 
585 class WebAssemblyABIInfo final : public DefaultABIInfo {
586 public:
587   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
588       : DefaultABIInfo(CGT) {}
589 
590 private:
591   ABIArgInfo classifyReturnType(QualType RetTy) const;
592   ABIArgInfo classifyArgumentType(QualType Ty) const;
593 
594   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
595   // non-virtual, but computeInfo is virtual, so we overload that.
596   void computeInfo(CGFunctionInfo &FI) const override {
597     if (!getCXXABI().classifyReturnType(FI))
598       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
599     for (auto &Arg : FI.arguments())
600       Arg.info = classifyArgumentType(Arg.type);
601   }
602 };
603 
604 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
605 public:
606   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
607       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
608 };
609 
610 /// \brief Classify argument of given type \p Ty.
611 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
612   Ty = useFirstFieldIfTransparentUnion(Ty);
613 
614   if (isAggregateTypeForABI(Ty)) {
615     // Records with non-trivial destructors/copy-constructors should not be
616     // passed by value.
617     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
618       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
619     // Ignore empty structs/unions.
620     if (isEmptyRecord(getContext(), Ty, true))
621       return ABIArgInfo::getIgnore();
622     // Lower single-element structs to just pass a regular value. TODO: We
623     // could do reasonable-size multiple-element structs too, using getExpand(),
624     // though watch out for things like bitfields.
625     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
626       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
627   }
628 
629   // Otherwise just do the default thing.
630   return DefaultABIInfo::classifyArgumentType(Ty);
631 }
632 
633 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
634   if (isAggregateTypeForABI(RetTy)) {
635     // Records with non-trivial destructors/copy-constructors should not be
636     // returned by value.
637     if (!getRecordArgABI(RetTy, getCXXABI())) {
638       // Ignore empty structs/unions.
639       if (isEmptyRecord(getContext(), RetTy, true))
640         return ABIArgInfo::getIgnore();
641       // Lower single-element structs to just return a regular value. TODO: We
642       // could do reasonable-size multiple-element structs too, using
643       // ABIArgInfo::getDirect().
644       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
645         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
646     }
647   }
648 
649   // Otherwise just do the default thing.
650   return DefaultABIInfo::classifyReturnType(RetTy);
651 }
652 
653 //===----------------------------------------------------------------------===//
654 // le32/PNaCl bitcode ABI Implementation
655 //
656 // This is a simplified version of the x86_32 ABI.  Arguments and return values
657 // are always passed on the stack.
658 //===----------------------------------------------------------------------===//
659 
660 class PNaClABIInfo : public ABIInfo {
661  public:
662   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
663 
664   ABIArgInfo classifyReturnType(QualType RetTy) const;
665   ABIArgInfo classifyArgumentType(QualType RetTy) const;
666 
667   void computeInfo(CGFunctionInfo &FI) const override;
668   Address EmitVAArg(CodeGenFunction &CGF,
669                     Address VAListAddr, QualType Ty) const override;
670 };
671 
672 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
673  public:
674   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
675     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
676 };
677 
678 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
679   if (!getCXXABI().classifyReturnType(FI))
680     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
681 
682   for (auto &I : FI.arguments())
683     I.info = classifyArgumentType(I.type);
684 }
685 
686 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
687                                 QualType Ty) const {
688   return Address::invalid();
689 }
690 
691 /// \brief Classify argument of given type \p Ty.
692 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
693   if (isAggregateTypeForABI(Ty)) {
694     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
695       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
696     return getNaturalAlignIndirect(Ty);
697   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
698     // Treat an enum type as its underlying type.
699     Ty = EnumTy->getDecl()->getIntegerType();
700   } else if (Ty->isFloatingType()) {
701     // Floating-point types don't go inreg.
702     return ABIArgInfo::getDirect();
703   }
704 
705   return (Ty->isPromotableIntegerType() ?
706           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
707 }
708 
709 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
710   if (RetTy->isVoidType())
711     return ABIArgInfo::getIgnore();
712 
713   // In the PNaCl ABI we always return records/structures on the stack.
714   if (isAggregateTypeForABI(RetTy))
715     return getNaturalAlignIndirect(RetTy);
716 
717   // Treat an enum type as its underlying type.
718   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
719     RetTy = EnumTy->getDecl()->getIntegerType();
720 
721   return (RetTy->isPromotableIntegerType() ?
722           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
723 }
724 
725 /// IsX86_MMXType - Return true if this is an MMX type.
726 bool IsX86_MMXType(llvm::Type *IRType) {
727   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
728   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
729     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
730     IRType->getScalarSizeInBits() != 64;
731 }
732 
733 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
734                                           StringRef Constraint,
735                                           llvm::Type* Ty) {
736   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
737     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
738       // Invalid MMX constraint
739       return nullptr;
740     }
741 
742     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
743   }
744 
745   // No operation needed
746   return Ty;
747 }
748 
749 /// Returns true if this type can be passed in SSE registers with the
750 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
751 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
752   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
753     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
754       return true;
755   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
756     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
757     // registers specially.
758     unsigned VecSize = Context.getTypeSize(VT);
759     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
760       return true;
761   }
762   return false;
763 }
764 
765 /// Returns true if this aggregate is small enough to be passed in SSE registers
766 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
767 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
768   return NumMembers <= 4;
769 }
770 
771 //===----------------------------------------------------------------------===//
772 // X86-32 ABI Implementation
773 //===----------------------------------------------------------------------===//
774 
775 /// \brief Similar to llvm::CCState, but for Clang.
776 struct CCState {
777   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
778 
779   unsigned CC;
780   unsigned FreeRegs;
781   unsigned FreeSSERegs;
782 };
783 
784 /// X86_32ABIInfo - The X86-32 ABI information.
785 class X86_32ABIInfo : public ABIInfo {
786   enum Class {
787     Integer,
788     Float
789   };
790 
791   static const unsigned MinABIStackAlignInBytes = 4;
792 
793   bool IsDarwinVectorABI;
794   bool IsSmallStructInRegABI;
795   bool IsWin32StructABI;
796   unsigned DefaultNumRegisterParameters;
797 
798   static bool isRegisterSize(unsigned Size) {
799     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
800   }
801 
802   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
803     // FIXME: Assumes vectorcall is in use.
804     return isX86VectorTypeForVectorCall(getContext(), Ty);
805   }
806 
807   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
808                                          uint64_t NumMembers) const override {
809     // FIXME: Assumes vectorcall is in use.
810     return isX86VectorCallAggregateSmallEnough(NumMembers);
811   }
812 
813   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
814 
815   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
816   /// such that the argument will be passed in memory.
817   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
818 
819   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
820 
821   /// \brief Return the alignment to use for the given type on the stack.
822   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
823 
824   Class classify(QualType Ty) const;
825   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
826   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
827   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
828 
829   /// \brief Rewrite the function info so that all memory arguments use
830   /// inalloca.
831   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
832 
833   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
834                            CharUnits &StackOffset, ABIArgInfo &Info,
835                            QualType Type) const;
836 
837 public:
838 
839   void computeInfo(CGFunctionInfo &FI) const override;
840   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
841                     QualType Ty) const override;
842 
843   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
844                 unsigned r)
845     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
846       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
847 };
848 
849 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
850 public:
851   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
852       bool d, bool p, bool w, unsigned r)
853     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
854 
855   static bool isStructReturnInRegABI(
856       const llvm::Triple &Triple, const CodeGenOptions &Opts);
857 
858   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
859                            CodeGen::CodeGenModule &CGM) const override;
860 
861   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
862     // Darwin uses different dwarf register numbers for EH.
863     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
864     return 4;
865   }
866 
867   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
868                                llvm::Value *Address) const override;
869 
870   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
871                                   StringRef Constraint,
872                                   llvm::Type* Ty) const override {
873     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
874   }
875 
876   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
877                                 std::string &Constraints,
878                                 std::vector<llvm::Type *> &ResultRegTypes,
879                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
880                                 std::vector<LValue> &ResultRegDests,
881                                 std::string &AsmString,
882                                 unsigned NumOutputs) const override;
883 
884   llvm::Constant *
885   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
886     unsigned Sig = (0xeb << 0) |  // jmp rel8
887                    (0x06 << 8) |  //           .+0x08
888                    ('F' << 16) |
889                    ('T' << 24);
890     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
891   }
892 };
893 
894 }
895 
896 /// Rewrite input constraint references after adding some output constraints.
897 /// In the case where there is one output and one input and we add one output,
898 /// we need to replace all operand references greater than or equal to 1:
899 ///     mov $0, $1
900 ///     mov eax, $1
901 /// The result will be:
902 ///     mov $0, $2
903 ///     mov eax, $2
904 static void rewriteInputConstraintReferences(unsigned FirstIn,
905                                              unsigned NumNewOuts,
906                                              std::string &AsmString) {
907   std::string Buf;
908   llvm::raw_string_ostream OS(Buf);
909   size_t Pos = 0;
910   while (Pos < AsmString.size()) {
911     size_t DollarStart = AsmString.find('$', Pos);
912     if (DollarStart == std::string::npos)
913       DollarStart = AsmString.size();
914     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
915     if (DollarEnd == std::string::npos)
916       DollarEnd = AsmString.size();
917     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
918     Pos = DollarEnd;
919     size_t NumDollars = DollarEnd - DollarStart;
920     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
921       // We have an operand reference.
922       size_t DigitStart = Pos;
923       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
924       if (DigitEnd == std::string::npos)
925         DigitEnd = AsmString.size();
926       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
927       unsigned OperandIndex;
928       if (!OperandStr.getAsInteger(10, OperandIndex)) {
929         if (OperandIndex >= FirstIn)
930           OperandIndex += NumNewOuts;
931         OS << OperandIndex;
932       } else {
933         OS << OperandStr;
934       }
935       Pos = DigitEnd;
936     }
937   }
938   AsmString = std::move(OS.str());
939 }
940 
941 /// Add output constraints for EAX:EDX because they are return registers.
942 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
943     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
944     std::vector<llvm::Type *> &ResultRegTypes,
945     std::vector<llvm::Type *> &ResultTruncRegTypes,
946     std::vector<LValue> &ResultRegDests, std::string &AsmString,
947     unsigned NumOutputs) const {
948   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
949 
950   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
951   // larger.
952   if (!Constraints.empty())
953     Constraints += ',';
954   if (RetWidth <= 32) {
955     Constraints += "={eax}";
956     ResultRegTypes.push_back(CGF.Int32Ty);
957   } else {
958     // Use the 'A' constraint for EAX:EDX.
959     Constraints += "=A";
960     ResultRegTypes.push_back(CGF.Int64Ty);
961   }
962 
963   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
964   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
965   ResultTruncRegTypes.push_back(CoerceTy);
966 
967   // Coerce the integer by bitcasting the return slot pointer.
968   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
969                                                   CoerceTy->getPointerTo()));
970   ResultRegDests.push_back(ReturnSlot);
971 
972   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
973 }
974 
975 /// shouldReturnTypeInRegister - Determine if the given type should be
976 /// passed in a register (for the Darwin ABI).
977 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
978                                                ASTContext &Context) const {
979   uint64_t Size = Context.getTypeSize(Ty);
980 
981   // Type must be register sized.
982   if (!isRegisterSize(Size))
983     return false;
984 
985   if (Ty->isVectorType()) {
986     // 64- and 128- bit vectors inside structures are not returned in
987     // registers.
988     if (Size == 64 || Size == 128)
989       return false;
990 
991     return true;
992   }
993 
994   // If this is a builtin, pointer, enum, complex type, member pointer, or
995   // member function pointer it is ok.
996   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
997       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
998       Ty->isBlockPointerType() || Ty->isMemberPointerType())
999     return true;
1000 
1001   // Arrays are treated like records.
1002   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1003     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1004 
1005   // Otherwise, it must be a record type.
1006   const RecordType *RT = Ty->getAs<RecordType>();
1007   if (!RT) return false;
1008 
1009   // FIXME: Traverse bases here too.
1010 
1011   // Structure types are passed in register if all fields would be
1012   // passed in a register.
1013   for (const auto *FD : RT->getDecl()->fields()) {
1014     // Empty fields are ignored.
1015     if (isEmptyField(Context, FD, true))
1016       continue;
1017 
1018     // Check fields recursively.
1019     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1020       return false;
1021   }
1022   return true;
1023 }
1024 
1025 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1026   // If the return value is indirect, then the hidden argument is consuming one
1027   // integer register.
1028   if (State.FreeRegs) {
1029     --State.FreeRegs;
1030     return getNaturalAlignIndirectInReg(RetTy);
1031   }
1032   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1033 }
1034 
1035 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1036                                              CCState &State) const {
1037   if (RetTy->isVoidType())
1038     return ABIArgInfo::getIgnore();
1039 
1040   const Type *Base = nullptr;
1041   uint64_t NumElts = 0;
1042   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1043       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1044     // The LLVM struct type for such an aggregate should lower properly.
1045     return ABIArgInfo::getDirect();
1046   }
1047 
1048   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1049     // On Darwin, some vectors are returned in registers.
1050     if (IsDarwinVectorABI) {
1051       uint64_t Size = getContext().getTypeSize(RetTy);
1052 
1053       // 128-bit vectors are a special case; they are returned in
1054       // registers and we need to make sure to pick a type the LLVM
1055       // backend will like.
1056       if (Size == 128)
1057         return ABIArgInfo::getDirect(llvm::VectorType::get(
1058                   llvm::Type::getInt64Ty(getVMContext()), 2));
1059 
1060       // Always return in register if it fits in a general purpose
1061       // register, or if it is 64 bits and has a single element.
1062       if ((Size == 8 || Size == 16 || Size == 32) ||
1063           (Size == 64 && VT->getNumElements() == 1))
1064         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1065                                                             Size));
1066 
1067       return getIndirectReturnResult(RetTy, State);
1068     }
1069 
1070     return ABIArgInfo::getDirect();
1071   }
1072 
1073   if (isAggregateTypeForABI(RetTy)) {
1074     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1075       // Structures with flexible arrays are always indirect.
1076       if (RT->getDecl()->hasFlexibleArrayMember())
1077         return getIndirectReturnResult(RetTy, State);
1078     }
1079 
1080     // If specified, structs and unions are always indirect.
1081     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
1082       return getIndirectReturnResult(RetTy, State);
1083 
1084     // Small structures which are register sized are generally returned
1085     // in a register.
1086     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1087       uint64_t Size = getContext().getTypeSize(RetTy);
1088 
1089       // As a special-case, if the struct is a "single-element" struct, and
1090       // the field is of type "float" or "double", return it in a
1091       // floating-point register. (MSVC does not apply this special case.)
1092       // We apply a similar transformation for pointer types to improve the
1093       // quality of the generated IR.
1094       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1095         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1096             || SeltTy->hasPointerRepresentation())
1097           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1098 
1099       // FIXME: We should be able to narrow this integer in cases with dead
1100       // padding.
1101       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1102     }
1103 
1104     return getIndirectReturnResult(RetTy, State);
1105   }
1106 
1107   // Treat an enum type as its underlying type.
1108   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1109     RetTy = EnumTy->getDecl()->getIntegerType();
1110 
1111   return (RetTy->isPromotableIntegerType() ?
1112           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1113 }
1114 
1115 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1116   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1117 }
1118 
1119 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1120   const RecordType *RT = Ty->getAs<RecordType>();
1121   if (!RT)
1122     return 0;
1123   const RecordDecl *RD = RT->getDecl();
1124 
1125   // If this is a C++ record, check the bases first.
1126   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1127     for (const auto &I : CXXRD->bases())
1128       if (!isRecordWithSSEVectorType(Context, I.getType()))
1129         return false;
1130 
1131   for (const auto *i : RD->fields()) {
1132     QualType FT = i->getType();
1133 
1134     if (isSSEVectorType(Context, FT))
1135       return true;
1136 
1137     if (isRecordWithSSEVectorType(Context, FT))
1138       return true;
1139   }
1140 
1141   return false;
1142 }
1143 
1144 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1145                                                  unsigned Align) const {
1146   // Otherwise, if the alignment is less than or equal to the minimum ABI
1147   // alignment, just use the default; the backend will handle this.
1148   if (Align <= MinABIStackAlignInBytes)
1149     return 0; // Use default alignment.
1150 
1151   // On non-Darwin, the stack type alignment is always 4.
1152   if (!IsDarwinVectorABI) {
1153     // Set explicit alignment, since we may need to realign the top.
1154     return MinABIStackAlignInBytes;
1155   }
1156 
1157   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1158   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1159                       isRecordWithSSEVectorType(getContext(), Ty)))
1160     return 16;
1161 
1162   return MinABIStackAlignInBytes;
1163 }
1164 
1165 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1166                                             CCState &State) const {
1167   if (!ByVal) {
1168     if (State.FreeRegs) {
1169       --State.FreeRegs; // Non-byval indirects just use one pointer.
1170       return getNaturalAlignIndirectInReg(Ty);
1171     }
1172     return getNaturalAlignIndirect(Ty, false);
1173   }
1174 
1175   // Compute the byval alignment.
1176   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1177   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1178   if (StackAlign == 0)
1179     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1180 
1181   // If the stack alignment is less than the type alignment, realign the
1182   // argument.
1183   bool Realign = TypeAlign > StackAlign;
1184   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1185                                  /*ByVal=*/true, Realign);
1186 }
1187 
1188 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1189   const Type *T = isSingleElementStruct(Ty, getContext());
1190   if (!T)
1191     T = Ty.getTypePtr();
1192 
1193   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1194     BuiltinType::Kind K = BT->getKind();
1195     if (K == BuiltinType::Float || K == BuiltinType::Double)
1196       return Float;
1197   }
1198   return Integer;
1199 }
1200 
1201 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
1202                                    bool &NeedsPadding) const {
1203   NeedsPadding = false;
1204   Class C = classify(Ty);
1205   if (C == Float)
1206     return false;
1207 
1208   unsigned Size = getContext().getTypeSize(Ty);
1209   unsigned SizeInRegs = (Size + 31) / 32;
1210 
1211   if (SizeInRegs == 0)
1212     return false;
1213 
1214   if (SizeInRegs > State.FreeRegs) {
1215     State.FreeRegs = 0;
1216     return false;
1217   }
1218 
1219   State.FreeRegs -= SizeInRegs;
1220 
1221   if (State.CC == llvm::CallingConv::X86_FastCall ||
1222       State.CC == llvm::CallingConv::X86_VectorCall) {
1223     if (Size > 32)
1224       return false;
1225 
1226     if (Ty->isIntegralOrEnumerationType())
1227       return true;
1228 
1229     if (Ty->isPointerType())
1230       return true;
1231 
1232     if (Ty->isReferenceType())
1233       return true;
1234 
1235     if (State.FreeRegs)
1236       NeedsPadding = true;
1237 
1238     return false;
1239   }
1240 
1241   return true;
1242 }
1243 
1244 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1245                                                CCState &State) const {
1246   // FIXME: Set alignment on indirect arguments.
1247 
1248   Ty = useFirstFieldIfTransparentUnion(Ty);
1249 
1250   // Check with the C++ ABI first.
1251   const RecordType *RT = Ty->getAs<RecordType>();
1252   if (RT) {
1253     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1254     if (RAA == CGCXXABI::RAA_Indirect) {
1255       return getIndirectResult(Ty, false, State);
1256     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1257       // The field index doesn't matter, we'll fix it up later.
1258       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1259     }
1260   }
1261 
1262   // vectorcall adds the concept of a homogenous vector aggregate, similar
1263   // to other targets.
1264   const Type *Base = nullptr;
1265   uint64_t NumElts = 0;
1266   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1267       isHomogeneousAggregate(Ty, Base, NumElts)) {
1268     if (State.FreeSSERegs >= NumElts) {
1269       State.FreeSSERegs -= NumElts;
1270       if (Ty->isBuiltinType() || Ty->isVectorType())
1271         return ABIArgInfo::getDirect();
1272       return ABIArgInfo::getExpand();
1273     }
1274     return getIndirectResult(Ty, /*ByVal=*/false, State);
1275   }
1276 
1277   if (isAggregateTypeForABI(Ty)) {
1278     if (RT) {
1279       // Structs are always byval on win32, regardless of what they contain.
1280       if (IsWin32StructABI)
1281         return getIndirectResult(Ty, true, State);
1282 
1283       // Structures with flexible arrays are always indirect.
1284       if (RT->getDecl()->hasFlexibleArrayMember())
1285         return getIndirectResult(Ty, true, State);
1286     }
1287 
1288     // Ignore empty structs/unions.
1289     if (isEmptyRecord(getContext(), Ty, true))
1290       return ABIArgInfo::getIgnore();
1291 
1292     llvm::LLVMContext &LLVMContext = getVMContext();
1293     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1294     bool NeedsPadding;
1295     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1296       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1297       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1298       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1299       return ABIArgInfo::getDirectInReg(Result);
1300     }
1301     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1302 
1303     // Expand small (<= 128-bit) record types when we know that the stack layout
1304     // of those arguments will match the struct. This is important because the
1305     // LLVM backend isn't smart enough to remove byval, which inhibits many
1306     // optimizations.
1307     if (getContext().getTypeSize(Ty) <= 4*32 &&
1308         canExpandIndirectArgument(Ty, getContext()))
1309       return ABIArgInfo::getExpandWithPadding(
1310           State.CC == llvm::CallingConv::X86_FastCall ||
1311               State.CC == llvm::CallingConv::X86_VectorCall,
1312           PaddingType);
1313 
1314     return getIndirectResult(Ty, true, State);
1315   }
1316 
1317   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1318     // On Darwin, some vectors are passed in memory, we handle this by passing
1319     // it as an i8/i16/i32/i64.
1320     if (IsDarwinVectorABI) {
1321       uint64_t Size = getContext().getTypeSize(Ty);
1322       if ((Size == 8 || Size == 16 || Size == 32) ||
1323           (Size == 64 && VT->getNumElements() == 1))
1324         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1325                                                             Size));
1326     }
1327 
1328     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1329       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1330 
1331     return ABIArgInfo::getDirect();
1332   }
1333 
1334 
1335   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1336     Ty = EnumTy->getDecl()->getIntegerType();
1337 
1338   bool NeedsPadding;
1339   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1340 
1341   if (Ty->isPromotableIntegerType()) {
1342     if (InReg)
1343       return ABIArgInfo::getExtendInReg();
1344     return ABIArgInfo::getExtend();
1345   }
1346   if (InReg)
1347     return ABIArgInfo::getDirectInReg();
1348   return ABIArgInfo::getDirect();
1349 }
1350 
1351 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1352   CCState State(FI.getCallingConvention());
1353   if (State.CC == llvm::CallingConv::X86_FastCall)
1354     State.FreeRegs = 2;
1355   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1356     State.FreeRegs = 2;
1357     State.FreeSSERegs = 6;
1358   } else if (FI.getHasRegParm())
1359     State.FreeRegs = FI.getRegParm();
1360   else
1361     State.FreeRegs = DefaultNumRegisterParameters;
1362 
1363   if (!getCXXABI().classifyReturnType(FI)) {
1364     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1365   } else if (FI.getReturnInfo().isIndirect()) {
1366     // The C++ ABI is not aware of register usage, so we have to check if the
1367     // return value was sret and put it in a register ourselves if appropriate.
1368     if (State.FreeRegs) {
1369       --State.FreeRegs;  // The sret parameter consumes a register.
1370       FI.getReturnInfo().setInReg(true);
1371     }
1372   }
1373 
1374   // The chain argument effectively gives us another free register.
1375   if (FI.isChainCall())
1376     ++State.FreeRegs;
1377 
1378   bool UsedInAlloca = false;
1379   for (auto &I : FI.arguments()) {
1380     I.info = classifyArgumentType(I.type, State);
1381     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1382   }
1383 
1384   // If we needed to use inalloca for any argument, do a second pass and rewrite
1385   // all the memory arguments to use inalloca.
1386   if (UsedInAlloca)
1387     rewriteWithInAlloca(FI);
1388 }
1389 
1390 void
1391 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1392                                    CharUnits &StackOffset, ABIArgInfo &Info,
1393                                    QualType Type) const {
1394   // Arguments are always 4-byte-aligned.
1395   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1396 
1397   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1398   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1399   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1400   StackOffset += getContext().getTypeSizeInChars(Type);
1401 
1402   // Insert padding bytes to respect alignment.
1403   CharUnits FieldEnd = StackOffset;
1404   StackOffset = FieldEnd.RoundUpToAlignment(FieldAlign);
1405   if (StackOffset != FieldEnd) {
1406     CharUnits NumBytes = StackOffset - FieldEnd;
1407     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1408     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1409     FrameFields.push_back(Ty);
1410   }
1411 }
1412 
1413 static bool isArgInAlloca(const ABIArgInfo &Info) {
1414   // Leave ignored and inreg arguments alone.
1415   switch (Info.getKind()) {
1416   case ABIArgInfo::InAlloca:
1417     return true;
1418   case ABIArgInfo::Indirect:
1419     assert(Info.getIndirectByVal());
1420     return true;
1421   case ABIArgInfo::Ignore:
1422     return false;
1423   case ABIArgInfo::Direct:
1424   case ABIArgInfo::Extend:
1425   case ABIArgInfo::Expand:
1426     if (Info.getInReg())
1427       return false;
1428     return true;
1429   }
1430   llvm_unreachable("invalid enum");
1431 }
1432 
1433 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1434   assert(IsWin32StructABI && "inalloca only supported on win32");
1435 
1436   // Build a packed struct type for all of the arguments in memory.
1437   SmallVector<llvm::Type *, 6> FrameFields;
1438 
1439   // The stack alignment is always 4.
1440   CharUnits StackAlign = CharUnits::fromQuantity(4);
1441 
1442   CharUnits StackOffset;
1443   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1444 
1445   // Put 'this' into the struct before 'sret', if necessary.
1446   bool IsThisCall =
1447       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1448   ABIArgInfo &Ret = FI.getReturnInfo();
1449   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1450       isArgInAlloca(I->info)) {
1451     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1452     ++I;
1453   }
1454 
1455   // Put the sret parameter into the inalloca struct if it's in memory.
1456   if (Ret.isIndirect() && !Ret.getInReg()) {
1457     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1458     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1459     // On Windows, the hidden sret parameter is always returned in eax.
1460     Ret.setInAllocaSRet(IsWin32StructABI);
1461   }
1462 
1463   // Skip the 'this' parameter in ecx.
1464   if (IsThisCall)
1465     ++I;
1466 
1467   // Put arguments passed in memory into the struct.
1468   for (; I != E; ++I) {
1469     if (isArgInAlloca(I->info))
1470       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1471   }
1472 
1473   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1474                                         /*isPacked=*/true),
1475                   StackAlign);
1476 }
1477 
1478 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1479                                  Address VAListAddr, QualType Ty) const {
1480 
1481   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1482 
1483   // x86-32 changes the alignment of certain arguments on the stack.
1484   //
1485   // Just messing with TypeInfo like this works because we never pass
1486   // anything indirectly.
1487   TypeInfo.second = CharUnits::fromQuantity(
1488                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1489 
1490   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1491                           TypeInfo, CharUnits::fromQuantity(4),
1492                           /*AllowHigherAlign*/ true);
1493 }
1494 
1495 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1496     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1497   assert(Triple.getArch() == llvm::Triple::x86);
1498 
1499   switch (Opts.getStructReturnConvention()) {
1500   case CodeGenOptions::SRCK_Default:
1501     break;
1502   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1503     return false;
1504   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1505     return true;
1506   }
1507 
1508   if (Triple.isOSDarwin())
1509     return true;
1510 
1511   switch (Triple.getOS()) {
1512   case llvm::Triple::DragonFly:
1513   case llvm::Triple::FreeBSD:
1514   case llvm::Triple::OpenBSD:
1515   case llvm::Triple::Bitrig:
1516   case llvm::Triple::Win32:
1517     return true;
1518   default:
1519     return false;
1520   }
1521 }
1522 
1523 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1524                                                   llvm::GlobalValue *GV,
1525                                             CodeGen::CodeGenModule &CGM) const {
1526   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1527     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1528       // Get the LLVM function.
1529       llvm::Function *Fn = cast<llvm::Function>(GV);
1530 
1531       // Now add the 'alignstack' attribute with a value of 16.
1532       llvm::AttrBuilder B;
1533       B.addStackAlignmentAttr(16);
1534       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1535                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1536                                               llvm::AttributeSet::FunctionIndex,
1537                                               B));
1538     }
1539   }
1540 }
1541 
1542 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1543                                                CodeGen::CodeGenFunction &CGF,
1544                                                llvm::Value *Address) const {
1545   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1546 
1547   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1548 
1549   // 0-7 are the eight integer registers;  the order is different
1550   //   on Darwin (for EH), but the range is the same.
1551   // 8 is %eip.
1552   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1553 
1554   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1555     // 12-16 are st(0..4).  Not sure why we stop at 4.
1556     // These have size 16, which is sizeof(long double) on
1557     // platforms with 8-byte alignment for that type.
1558     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1559     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1560 
1561   } else {
1562     // 9 is %eflags, which doesn't get a size on Darwin for some
1563     // reason.
1564     Builder.CreateAlignedStore(
1565         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1566                                CharUnits::One());
1567 
1568     // 11-16 are st(0..5).  Not sure why we stop at 5.
1569     // These have size 12, which is sizeof(long double) on
1570     // platforms with 4-byte alignment for that type.
1571     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1572     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1573   }
1574 
1575   return false;
1576 }
1577 
1578 //===----------------------------------------------------------------------===//
1579 // X86-64 ABI Implementation
1580 //===----------------------------------------------------------------------===//
1581 
1582 
1583 namespace {
1584 /// The AVX ABI level for X86 targets.
1585 enum class X86AVXABILevel {
1586   None,
1587   AVX,
1588   AVX512
1589 };
1590 
1591 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1592 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1593   switch (AVXLevel) {
1594   case X86AVXABILevel::AVX512:
1595     return 512;
1596   case X86AVXABILevel::AVX:
1597     return 256;
1598   case X86AVXABILevel::None:
1599     return 128;
1600   }
1601   llvm_unreachable("Unknown AVXLevel");
1602 }
1603 
1604 /// X86_64ABIInfo - The X86_64 ABI information.
1605 class X86_64ABIInfo : public ABIInfo {
1606   enum Class {
1607     Integer = 0,
1608     SSE,
1609     SSEUp,
1610     X87,
1611     X87Up,
1612     ComplexX87,
1613     NoClass,
1614     Memory
1615   };
1616 
1617   /// merge - Implement the X86_64 ABI merging algorithm.
1618   ///
1619   /// Merge an accumulating classification \arg Accum with a field
1620   /// classification \arg Field.
1621   ///
1622   /// \param Accum - The accumulating classification. This should
1623   /// always be either NoClass or the result of a previous merge
1624   /// call. In addition, this should never be Memory (the caller
1625   /// should just return Memory for the aggregate).
1626   static Class merge(Class Accum, Class Field);
1627 
1628   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1629   ///
1630   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1631   /// final MEMORY or SSE classes when necessary.
1632   ///
1633   /// \param AggregateSize - The size of the current aggregate in
1634   /// the classification process.
1635   ///
1636   /// \param Lo - The classification for the parts of the type
1637   /// residing in the low word of the containing object.
1638   ///
1639   /// \param Hi - The classification for the parts of the type
1640   /// residing in the higher words of the containing object.
1641   ///
1642   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1643 
1644   /// classify - Determine the x86_64 register classes in which the
1645   /// given type T should be passed.
1646   ///
1647   /// \param Lo - The classification for the parts of the type
1648   /// residing in the low word of the containing object.
1649   ///
1650   /// \param Hi - The classification for the parts of the type
1651   /// residing in the high word of the containing object.
1652   ///
1653   /// \param OffsetBase - The bit offset of this type in the
1654   /// containing object.  Some parameters are classified different
1655   /// depending on whether they straddle an eightbyte boundary.
1656   ///
1657   /// \param isNamedArg - Whether the argument in question is a "named"
1658   /// argument, as used in AMD64-ABI 3.5.7.
1659   ///
1660   /// If a word is unused its result will be NoClass; if a type should
1661   /// be passed in Memory then at least the classification of \arg Lo
1662   /// will be Memory.
1663   ///
1664   /// The \arg Lo class will be NoClass iff the argument is ignored.
1665   ///
1666   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1667   /// also be ComplexX87.
1668   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1669                 bool isNamedArg) const;
1670 
1671   llvm::Type *GetByteVectorType(QualType Ty) const;
1672   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1673                                  unsigned IROffset, QualType SourceTy,
1674                                  unsigned SourceOffset) const;
1675   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1676                                      unsigned IROffset, QualType SourceTy,
1677                                      unsigned SourceOffset) const;
1678 
1679   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1680   /// such that the argument will be returned in memory.
1681   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1682 
1683   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1684   /// such that the argument will be passed in memory.
1685   ///
1686   /// \param freeIntRegs - The number of free integer registers remaining
1687   /// available.
1688   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1689 
1690   ABIArgInfo classifyReturnType(QualType RetTy) const;
1691 
1692   ABIArgInfo classifyArgumentType(QualType Ty,
1693                                   unsigned freeIntRegs,
1694                                   unsigned &neededInt,
1695                                   unsigned &neededSSE,
1696                                   bool isNamedArg) const;
1697 
1698   bool IsIllegalVectorType(QualType Ty) const;
1699 
1700   /// The 0.98 ABI revision clarified a lot of ambiguities,
1701   /// unfortunately in ways that were not always consistent with
1702   /// certain previous compilers.  In particular, platforms which
1703   /// required strict binary compatibility with older versions of GCC
1704   /// may need to exempt themselves.
1705   bool honorsRevision0_98() const {
1706     return !getTarget().getTriple().isOSDarwin();
1707   }
1708 
1709   X86AVXABILevel AVXLevel;
1710   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1711   // 64-bit hardware.
1712   bool Has64BitPointers;
1713 
1714 public:
1715   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1716       ABIInfo(CGT), AVXLevel(AVXLevel),
1717       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1718   }
1719 
1720   bool isPassedUsingAVXType(QualType type) const {
1721     unsigned neededInt, neededSSE;
1722     // The freeIntRegs argument doesn't matter here.
1723     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1724                                            /*isNamedArg*/true);
1725     if (info.isDirect()) {
1726       llvm::Type *ty = info.getCoerceToType();
1727       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1728         return (vectorTy->getBitWidth() > 128);
1729     }
1730     return false;
1731   }
1732 
1733   void computeInfo(CGFunctionInfo &FI) const override;
1734 
1735   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1736                     QualType Ty) const override;
1737 
1738   bool has64BitPointers() const {
1739     return Has64BitPointers;
1740   }
1741 };
1742 
1743 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1744 class WinX86_64ABIInfo : public ABIInfo {
1745 
1746   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1747                       bool IsReturnType) const;
1748 
1749 public:
1750   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1751 
1752   void computeInfo(CGFunctionInfo &FI) const override;
1753 
1754   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1755                     QualType Ty) const override;
1756 
1757   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1758     // FIXME: Assumes vectorcall is in use.
1759     return isX86VectorTypeForVectorCall(getContext(), Ty);
1760   }
1761 
1762   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1763                                          uint64_t NumMembers) const override {
1764     // FIXME: Assumes vectorcall is in use.
1765     return isX86VectorCallAggregateSmallEnough(NumMembers);
1766   }
1767 };
1768 
1769 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1770 public:
1771   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1772       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1773 
1774   const X86_64ABIInfo &getABIInfo() const {
1775     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1776   }
1777 
1778   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1779     return 7;
1780   }
1781 
1782   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1783                                llvm::Value *Address) const override {
1784     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1785 
1786     // 0-15 are the 16 integer registers.
1787     // 16 is %rip.
1788     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1789     return false;
1790   }
1791 
1792   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1793                                   StringRef Constraint,
1794                                   llvm::Type* Ty) const override {
1795     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1796   }
1797 
1798   bool isNoProtoCallVariadic(const CallArgList &args,
1799                              const FunctionNoProtoType *fnType) const override {
1800     // The default CC on x86-64 sets %al to the number of SSA
1801     // registers used, and GCC sets this when calling an unprototyped
1802     // function, so we override the default behavior.  However, don't do
1803     // that when AVX types are involved: the ABI explicitly states it is
1804     // undefined, and it doesn't work in practice because of how the ABI
1805     // defines varargs anyway.
1806     if (fnType->getCallConv() == CC_C) {
1807       bool HasAVXType = false;
1808       for (CallArgList::const_iterator
1809              it = args.begin(), ie = args.end(); it != ie; ++it) {
1810         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1811           HasAVXType = true;
1812           break;
1813         }
1814       }
1815 
1816       if (!HasAVXType)
1817         return true;
1818     }
1819 
1820     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1821   }
1822 
1823   llvm::Constant *
1824   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1825     unsigned Sig;
1826     if (getABIInfo().has64BitPointers())
1827       Sig = (0xeb << 0) |  // jmp rel8
1828             (0x0a << 8) |  //           .+0x0c
1829             ('F' << 16) |
1830             ('T' << 24);
1831     else
1832       Sig = (0xeb << 0) |  // jmp rel8
1833             (0x06 << 8) |  //           .+0x08
1834             ('F' << 16) |
1835             ('T' << 24);
1836     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1837   }
1838 };
1839 
1840 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1841 public:
1842   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1843     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1844 
1845   void getDependentLibraryOption(llvm::StringRef Lib,
1846                                  llvm::SmallString<24> &Opt) const override {
1847     Opt = "\01";
1848     // If the argument contains a space, enclose it in quotes.
1849     if (Lib.find(" ") != StringRef::npos)
1850       Opt += "\"" + Lib.str() + "\"";
1851     else
1852       Opt += Lib;
1853   }
1854 };
1855 
1856 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1857   // If the argument does not end in .lib, automatically add the suffix.
1858   // If the argument contains a space, enclose it in quotes.
1859   // This matches the behavior of MSVC.
1860   bool Quote = (Lib.find(" ") != StringRef::npos);
1861   std::string ArgStr = Quote ? "\"" : "";
1862   ArgStr += Lib;
1863   if (!Lib.endswith_lower(".lib"))
1864     ArgStr += ".lib";
1865   ArgStr += Quote ? "\"" : "";
1866   return ArgStr;
1867 }
1868 
1869 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1870 public:
1871   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1872         bool d, bool p, bool w, unsigned RegParms)
1873     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1874 
1875   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1876                            CodeGen::CodeGenModule &CGM) const override;
1877 
1878   void getDependentLibraryOption(llvm::StringRef Lib,
1879                                  llvm::SmallString<24> &Opt) const override {
1880     Opt = "/DEFAULTLIB:";
1881     Opt += qualifyWindowsLibrary(Lib);
1882   }
1883 
1884   void getDetectMismatchOption(llvm::StringRef Name,
1885                                llvm::StringRef Value,
1886                                llvm::SmallString<32> &Opt) const override {
1887     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1888   }
1889 };
1890 
1891 static void addStackProbeSizeTargetAttribute(const Decl *D,
1892                                              llvm::GlobalValue *GV,
1893                                              CodeGen::CodeGenModule &CGM) {
1894   if (isa<FunctionDecl>(D)) {
1895     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1896       llvm::Function *Fn = cast<llvm::Function>(GV);
1897 
1898       Fn->addFnAttr("stack-probe-size",
1899                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1900     }
1901   }
1902 }
1903 
1904 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1905                                                      llvm::GlobalValue *GV,
1906                                             CodeGen::CodeGenModule &CGM) const {
1907   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1908 
1909   addStackProbeSizeTargetAttribute(D, GV, CGM);
1910 }
1911 
1912 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1913 public:
1914   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1915                              X86AVXABILevel AVXLevel)
1916       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1917 
1918   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1919                            CodeGen::CodeGenModule &CGM) const override;
1920 
1921   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1922     return 7;
1923   }
1924 
1925   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1926                                llvm::Value *Address) const override {
1927     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1928 
1929     // 0-15 are the 16 integer registers.
1930     // 16 is %rip.
1931     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1932     return false;
1933   }
1934 
1935   void getDependentLibraryOption(llvm::StringRef Lib,
1936                                  llvm::SmallString<24> &Opt) const override {
1937     Opt = "/DEFAULTLIB:";
1938     Opt += qualifyWindowsLibrary(Lib);
1939   }
1940 
1941   void getDetectMismatchOption(llvm::StringRef Name,
1942                                llvm::StringRef Value,
1943                                llvm::SmallString<32> &Opt) const override {
1944     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1945   }
1946 };
1947 
1948 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1949                                                      llvm::GlobalValue *GV,
1950                                             CodeGen::CodeGenModule &CGM) const {
1951   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1952 
1953   addStackProbeSizeTargetAttribute(D, GV, CGM);
1954 }
1955 }
1956 
1957 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1958                               Class &Hi) const {
1959   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1960   //
1961   // (a) If one of the classes is Memory, the whole argument is passed in
1962   //     memory.
1963   //
1964   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1965   //     memory.
1966   //
1967   // (c) If the size of the aggregate exceeds two eightbytes and the first
1968   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1969   //     argument is passed in memory. NOTE: This is necessary to keep the
1970   //     ABI working for processors that don't support the __m256 type.
1971   //
1972   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1973   //
1974   // Some of these are enforced by the merging logic.  Others can arise
1975   // only with unions; for example:
1976   //   union { _Complex double; unsigned; }
1977   //
1978   // Note that clauses (b) and (c) were added in 0.98.
1979   //
1980   if (Hi == Memory)
1981     Lo = Memory;
1982   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1983     Lo = Memory;
1984   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1985     Lo = Memory;
1986   if (Hi == SSEUp && Lo != SSE)
1987     Hi = SSE;
1988 }
1989 
1990 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1991   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1992   // classified recursively so that always two fields are
1993   // considered. The resulting class is calculated according to
1994   // the classes of the fields in the eightbyte:
1995   //
1996   // (a) If both classes are equal, this is the resulting class.
1997   //
1998   // (b) If one of the classes is NO_CLASS, the resulting class is
1999   // the other class.
2000   //
2001   // (c) If one of the classes is MEMORY, the result is the MEMORY
2002   // class.
2003   //
2004   // (d) If one of the classes is INTEGER, the result is the
2005   // INTEGER.
2006   //
2007   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2008   // MEMORY is used as class.
2009   //
2010   // (f) Otherwise class SSE is used.
2011 
2012   // Accum should never be memory (we should have returned) or
2013   // ComplexX87 (because this cannot be passed in a structure).
2014   assert((Accum != Memory && Accum != ComplexX87) &&
2015          "Invalid accumulated classification during merge.");
2016   if (Accum == Field || Field == NoClass)
2017     return Accum;
2018   if (Field == Memory)
2019     return Memory;
2020   if (Accum == NoClass)
2021     return Field;
2022   if (Accum == Integer || Field == Integer)
2023     return Integer;
2024   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2025       Accum == X87 || Accum == X87Up)
2026     return Memory;
2027   return SSE;
2028 }
2029 
2030 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2031                              Class &Lo, Class &Hi, bool isNamedArg) const {
2032   // FIXME: This code can be simplified by introducing a simple value class for
2033   // Class pairs with appropriate constructor methods for the various
2034   // situations.
2035 
2036   // FIXME: Some of the split computations are wrong; unaligned vectors
2037   // shouldn't be passed in registers for example, so there is no chance they
2038   // can straddle an eightbyte. Verify & simplify.
2039 
2040   Lo = Hi = NoClass;
2041 
2042   Class &Current = OffsetBase < 64 ? Lo : Hi;
2043   Current = Memory;
2044 
2045   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2046     BuiltinType::Kind k = BT->getKind();
2047 
2048     if (k == BuiltinType::Void) {
2049       Current = NoClass;
2050     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2051       Lo = Integer;
2052       Hi = Integer;
2053     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2054       Current = Integer;
2055     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2056       Current = SSE;
2057     } else if (k == BuiltinType::LongDouble) {
2058       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2059       if (LDF == &llvm::APFloat::IEEEquad) {
2060         Lo = SSE;
2061         Hi = SSEUp;
2062       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2063         Lo = X87;
2064         Hi = X87Up;
2065       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2066         Current = SSE;
2067       } else
2068         llvm_unreachable("unexpected long double representation!");
2069     }
2070     // FIXME: _Decimal32 and _Decimal64 are SSE.
2071     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2072     return;
2073   }
2074 
2075   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2076     // Classify the underlying integer type.
2077     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2078     return;
2079   }
2080 
2081   if (Ty->hasPointerRepresentation()) {
2082     Current = Integer;
2083     return;
2084   }
2085 
2086   if (Ty->isMemberPointerType()) {
2087     if (Ty->isMemberFunctionPointerType()) {
2088       if (Has64BitPointers) {
2089         // If Has64BitPointers, this is an {i64, i64}, so classify both
2090         // Lo and Hi now.
2091         Lo = Hi = Integer;
2092       } else {
2093         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2094         // straddles an eightbyte boundary, Hi should be classified as well.
2095         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2096         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2097         if (EB_FuncPtr != EB_ThisAdj) {
2098           Lo = Hi = Integer;
2099         } else {
2100           Current = Integer;
2101         }
2102       }
2103     } else {
2104       Current = Integer;
2105     }
2106     return;
2107   }
2108 
2109   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2110     uint64_t Size = getContext().getTypeSize(VT);
2111     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2112       // gcc passes the following as integer:
2113       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2114       // 2 bytes - <2 x char>, <1 x short>
2115       // 1 byte  - <1 x char>
2116       Current = Integer;
2117 
2118       // If this type crosses an eightbyte boundary, it should be
2119       // split.
2120       uint64_t EB_Lo = (OffsetBase) / 64;
2121       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2122       if (EB_Lo != EB_Hi)
2123         Hi = Lo;
2124     } else if (Size == 64) {
2125       // gcc passes <1 x double> in memory. :(
2126       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
2127         return;
2128 
2129       // gcc passes <1 x long long> as INTEGER.
2130       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
2131           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2132           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
2133           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
2134         Current = Integer;
2135       else
2136         Current = SSE;
2137 
2138       // If this type crosses an eightbyte boundary, it should be
2139       // split.
2140       if (OffsetBase && OffsetBase != 64)
2141         Hi = Lo;
2142     } else if (Size == 128 ||
2143                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2144       // Arguments of 256-bits are split into four eightbyte chunks. The
2145       // least significant one belongs to class SSE and all the others to class
2146       // SSEUP. The original Lo and Hi design considers that types can't be
2147       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2148       // This design isn't correct for 256-bits, but since there're no cases
2149       // where the upper parts would need to be inspected, avoid adding
2150       // complexity and just consider Hi to match the 64-256 part.
2151       //
2152       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2153       // registers if they are "named", i.e. not part of the "..." of a
2154       // variadic function.
2155       //
2156       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2157       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2158       Lo = SSE;
2159       Hi = SSEUp;
2160     }
2161     return;
2162   }
2163 
2164   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2165     QualType ET = getContext().getCanonicalType(CT->getElementType());
2166 
2167     uint64_t Size = getContext().getTypeSize(Ty);
2168     if (ET->isIntegralOrEnumerationType()) {
2169       if (Size <= 64)
2170         Current = Integer;
2171       else if (Size <= 128)
2172         Lo = Hi = Integer;
2173     } else if (ET == getContext().FloatTy) {
2174       Current = SSE;
2175     } else if (ET == getContext().DoubleTy) {
2176       Lo = Hi = SSE;
2177     } else if (ET == getContext().LongDoubleTy) {
2178       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2179       if (LDF == &llvm::APFloat::IEEEquad)
2180         Current = Memory;
2181       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2182         Current = ComplexX87;
2183       else if (LDF == &llvm::APFloat::IEEEdouble)
2184         Lo = Hi = SSE;
2185       else
2186         llvm_unreachable("unexpected long double representation!");
2187     }
2188 
2189     // If this complex type crosses an eightbyte boundary then it
2190     // should be split.
2191     uint64_t EB_Real = (OffsetBase) / 64;
2192     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2193     if (Hi == NoClass && EB_Real != EB_Imag)
2194       Hi = Lo;
2195 
2196     return;
2197   }
2198 
2199   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2200     // Arrays are treated like structures.
2201 
2202     uint64_t Size = getContext().getTypeSize(Ty);
2203 
2204     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2205     // than four eightbytes, ..., it has class MEMORY.
2206     if (Size > 256)
2207       return;
2208 
2209     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2210     // fields, it has class MEMORY.
2211     //
2212     // Only need to check alignment of array base.
2213     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2214       return;
2215 
2216     // Otherwise implement simplified merge. We could be smarter about
2217     // this, but it isn't worth it and would be harder to verify.
2218     Current = NoClass;
2219     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2220     uint64_t ArraySize = AT->getSize().getZExtValue();
2221 
2222     // The only case a 256-bit wide vector could be used is when the array
2223     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2224     // to work for sizes wider than 128, early check and fallback to memory.
2225     if (Size > 128 && EltSize != 256)
2226       return;
2227 
2228     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2229       Class FieldLo, FieldHi;
2230       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2231       Lo = merge(Lo, FieldLo);
2232       Hi = merge(Hi, FieldHi);
2233       if (Lo == Memory || Hi == Memory)
2234         break;
2235     }
2236 
2237     postMerge(Size, Lo, Hi);
2238     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2239     return;
2240   }
2241 
2242   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2243     uint64_t Size = getContext().getTypeSize(Ty);
2244 
2245     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2246     // than four eightbytes, ..., it has class MEMORY.
2247     if (Size > 256)
2248       return;
2249 
2250     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2251     // copy constructor or a non-trivial destructor, it is passed by invisible
2252     // reference.
2253     if (getRecordArgABI(RT, getCXXABI()))
2254       return;
2255 
2256     const RecordDecl *RD = RT->getDecl();
2257 
2258     // Assume variable sized types are passed in memory.
2259     if (RD->hasFlexibleArrayMember())
2260       return;
2261 
2262     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2263 
2264     // Reset Lo class, this will be recomputed.
2265     Current = NoClass;
2266 
2267     // If this is a C++ record, classify the bases first.
2268     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2269       for (const auto &I : CXXRD->bases()) {
2270         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2271                "Unexpected base class!");
2272         const CXXRecordDecl *Base =
2273           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2274 
2275         // Classify this field.
2276         //
2277         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2278         // single eightbyte, each is classified separately. Each eightbyte gets
2279         // initialized to class NO_CLASS.
2280         Class FieldLo, FieldHi;
2281         uint64_t Offset =
2282           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2283         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2284         Lo = merge(Lo, FieldLo);
2285         Hi = merge(Hi, FieldHi);
2286         if (Lo == Memory || Hi == Memory) {
2287           postMerge(Size, Lo, Hi);
2288           return;
2289         }
2290       }
2291     }
2292 
2293     // Classify the fields one at a time, merging the results.
2294     unsigned idx = 0;
2295     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2296            i != e; ++i, ++idx) {
2297       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2298       bool BitField = i->isBitField();
2299 
2300       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2301       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2302       //
2303       // The only case a 256-bit wide vector could be used is when the struct
2304       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2305       // to work for sizes wider than 128, early check and fallback to memory.
2306       //
2307       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2308         Lo = Memory;
2309         postMerge(Size, Lo, Hi);
2310         return;
2311       }
2312       // Note, skip this test for bit-fields, see below.
2313       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2314         Lo = Memory;
2315         postMerge(Size, Lo, Hi);
2316         return;
2317       }
2318 
2319       // Classify this field.
2320       //
2321       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2322       // exceeds a single eightbyte, each is classified
2323       // separately. Each eightbyte gets initialized to class
2324       // NO_CLASS.
2325       Class FieldLo, FieldHi;
2326 
2327       // Bit-fields require special handling, they do not force the
2328       // structure to be passed in memory even if unaligned, and
2329       // therefore they can straddle an eightbyte.
2330       if (BitField) {
2331         // Ignore padding bit-fields.
2332         if (i->isUnnamedBitfield())
2333           continue;
2334 
2335         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2336         uint64_t Size = i->getBitWidthValue(getContext());
2337 
2338         uint64_t EB_Lo = Offset / 64;
2339         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2340 
2341         if (EB_Lo) {
2342           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2343           FieldLo = NoClass;
2344           FieldHi = Integer;
2345         } else {
2346           FieldLo = Integer;
2347           FieldHi = EB_Hi ? Integer : NoClass;
2348         }
2349       } else
2350         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2351       Lo = merge(Lo, FieldLo);
2352       Hi = merge(Hi, FieldHi);
2353       if (Lo == Memory || Hi == Memory)
2354         break;
2355     }
2356 
2357     postMerge(Size, Lo, Hi);
2358   }
2359 }
2360 
2361 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2362   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2363   // place naturally.
2364   if (!isAggregateTypeForABI(Ty)) {
2365     // Treat an enum type as its underlying type.
2366     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2367       Ty = EnumTy->getDecl()->getIntegerType();
2368 
2369     return (Ty->isPromotableIntegerType() ?
2370             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2371   }
2372 
2373   return getNaturalAlignIndirect(Ty);
2374 }
2375 
2376 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2377   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2378     uint64_t Size = getContext().getTypeSize(VecTy);
2379     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2380     if (Size <= 64 || Size > LargestVector)
2381       return true;
2382   }
2383 
2384   return false;
2385 }
2386 
2387 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2388                                             unsigned freeIntRegs) const {
2389   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2390   // place naturally.
2391   //
2392   // This assumption is optimistic, as there could be free registers available
2393   // when we need to pass this argument in memory, and LLVM could try to pass
2394   // the argument in the free register. This does not seem to happen currently,
2395   // but this code would be much safer if we could mark the argument with
2396   // 'onstack'. See PR12193.
2397   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2398     // Treat an enum type as its underlying type.
2399     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2400       Ty = EnumTy->getDecl()->getIntegerType();
2401 
2402     return (Ty->isPromotableIntegerType() ?
2403             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2404   }
2405 
2406   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2407     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2408 
2409   // Compute the byval alignment. We specify the alignment of the byval in all
2410   // cases so that the mid-level optimizer knows the alignment of the byval.
2411   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2412 
2413   // Attempt to avoid passing indirect results using byval when possible. This
2414   // is important for good codegen.
2415   //
2416   // We do this by coercing the value into a scalar type which the backend can
2417   // handle naturally (i.e., without using byval).
2418   //
2419   // For simplicity, we currently only do this when we have exhausted all of the
2420   // free integer registers. Doing this when there are free integer registers
2421   // would require more care, as we would have to ensure that the coerced value
2422   // did not claim the unused register. That would require either reording the
2423   // arguments to the function (so that any subsequent inreg values came first),
2424   // or only doing this optimization when there were no following arguments that
2425   // might be inreg.
2426   //
2427   // We currently expect it to be rare (particularly in well written code) for
2428   // arguments to be passed on the stack when there are still free integer
2429   // registers available (this would typically imply large structs being passed
2430   // by value), so this seems like a fair tradeoff for now.
2431   //
2432   // We can revisit this if the backend grows support for 'onstack' parameter
2433   // attributes. See PR12193.
2434   if (freeIntRegs == 0) {
2435     uint64_t Size = getContext().getTypeSize(Ty);
2436 
2437     // If this type fits in an eightbyte, coerce it into the matching integral
2438     // type, which will end up on the stack (with alignment 8).
2439     if (Align == 8 && Size <= 64)
2440       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2441                                                           Size));
2442   }
2443 
2444   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2445 }
2446 
2447 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2448 /// register. Pick an LLVM IR type that will be passed as a vector register.
2449 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2450   // Wrapper structs/arrays that only contain vectors are passed just like
2451   // vectors; strip them off if present.
2452   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2453     Ty = QualType(InnerTy, 0);
2454 
2455   llvm::Type *IRType = CGT.ConvertType(Ty);
2456   if (isa<llvm::VectorType>(IRType) ||
2457       IRType->getTypeID() == llvm::Type::FP128TyID)
2458     return IRType;
2459 
2460   // We couldn't find the preferred IR vector type for 'Ty'.
2461   uint64_t Size = getContext().getTypeSize(Ty);
2462   assert((Size == 128 || Size == 256) && "Invalid type found!");
2463 
2464   // Return a LLVM IR vector type based on the size of 'Ty'.
2465   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2466                                Size / 64);
2467 }
2468 
2469 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2470 /// is known to either be off the end of the specified type or being in
2471 /// alignment padding.  The user type specified is known to be at most 128 bits
2472 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2473 /// classification that put one of the two halves in the INTEGER class.
2474 ///
2475 /// It is conservatively correct to return false.
2476 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2477                                   unsigned EndBit, ASTContext &Context) {
2478   // If the bytes being queried are off the end of the type, there is no user
2479   // data hiding here.  This handles analysis of builtins, vectors and other
2480   // types that don't contain interesting padding.
2481   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2482   if (TySize <= StartBit)
2483     return true;
2484 
2485   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2486     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2487     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2488 
2489     // Check each element to see if the element overlaps with the queried range.
2490     for (unsigned i = 0; i != NumElts; ++i) {
2491       // If the element is after the span we care about, then we're done..
2492       unsigned EltOffset = i*EltSize;
2493       if (EltOffset >= EndBit) break;
2494 
2495       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2496       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2497                                  EndBit-EltOffset, Context))
2498         return false;
2499     }
2500     // If it overlaps no elements, then it is safe to process as padding.
2501     return true;
2502   }
2503 
2504   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2505     const RecordDecl *RD = RT->getDecl();
2506     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2507 
2508     // If this is a C++ record, check the bases first.
2509     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2510       for (const auto &I : CXXRD->bases()) {
2511         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2512                "Unexpected base class!");
2513         const CXXRecordDecl *Base =
2514           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2515 
2516         // If the base is after the span we care about, ignore it.
2517         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2518         if (BaseOffset >= EndBit) continue;
2519 
2520         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2521         if (!BitsContainNoUserData(I.getType(), BaseStart,
2522                                    EndBit-BaseOffset, Context))
2523           return false;
2524       }
2525     }
2526 
2527     // Verify that no field has data that overlaps the region of interest.  Yes
2528     // this could be sped up a lot by being smarter about queried fields,
2529     // however we're only looking at structs up to 16 bytes, so we don't care
2530     // much.
2531     unsigned idx = 0;
2532     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2533          i != e; ++i, ++idx) {
2534       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2535 
2536       // If we found a field after the region we care about, then we're done.
2537       if (FieldOffset >= EndBit) break;
2538 
2539       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2540       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2541                                  Context))
2542         return false;
2543     }
2544 
2545     // If nothing in this record overlapped the area of interest, then we're
2546     // clean.
2547     return true;
2548   }
2549 
2550   return false;
2551 }
2552 
2553 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2554 /// float member at the specified offset.  For example, {int,{float}} has a
2555 /// float at offset 4.  It is conservatively correct for this routine to return
2556 /// false.
2557 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2558                                   const llvm::DataLayout &TD) {
2559   // Base case if we find a float.
2560   if (IROffset == 0 && IRType->isFloatTy())
2561     return true;
2562 
2563   // If this is a struct, recurse into the field at the specified offset.
2564   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2565     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2566     unsigned Elt = SL->getElementContainingOffset(IROffset);
2567     IROffset -= SL->getElementOffset(Elt);
2568     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2569   }
2570 
2571   // If this is an array, recurse into the field at the specified offset.
2572   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2573     llvm::Type *EltTy = ATy->getElementType();
2574     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2575     IROffset -= IROffset/EltSize*EltSize;
2576     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2577   }
2578 
2579   return false;
2580 }
2581 
2582 
2583 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2584 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2585 llvm::Type *X86_64ABIInfo::
2586 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2587                    QualType SourceTy, unsigned SourceOffset) const {
2588   // The only three choices we have are either double, <2 x float>, or float. We
2589   // pass as float if the last 4 bytes is just padding.  This happens for
2590   // structs that contain 3 floats.
2591   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2592                             SourceOffset*8+64, getContext()))
2593     return llvm::Type::getFloatTy(getVMContext());
2594 
2595   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2596   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2597   // case.
2598   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2599       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2600     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2601 
2602   return llvm::Type::getDoubleTy(getVMContext());
2603 }
2604 
2605 
2606 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2607 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2608 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2609 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2610 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2611 /// etc).
2612 ///
2613 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2614 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2615 /// the 8-byte value references.  PrefType may be null.
2616 ///
2617 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2618 /// an offset into this that we're processing (which is always either 0 or 8).
2619 ///
2620 llvm::Type *X86_64ABIInfo::
2621 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2622                        QualType SourceTy, unsigned SourceOffset) const {
2623   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2624   // returning an 8-byte unit starting with it.  See if we can safely use it.
2625   if (IROffset == 0) {
2626     // Pointers and int64's always fill the 8-byte unit.
2627     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2628         IRType->isIntegerTy(64))
2629       return IRType;
2630 
2631     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2632     // goodness in the source type is just tail padding.  This is allowed to
2633     // kick in for struct {double,int} on the int, but not on
2634     // struct{double,int,int} because we wouldn't return the second int.  We
2635     // have to do this analysis on the source type because we can't depend on
2636     // unions being lowered a specific way etc.
2637     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2638         IRType->isIntegerTy(32) ||
2639         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2640       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2641           cast<llvm::IntegerType>(IRType)->getBitWidth();
2642 
2643       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2644                                 SourceOffset*8+64, getContext()))
2645         return IRType;
2646     }
2647   }
2648 
2649   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2650     // If this is a struct, recurse into the field at the specified offset.
2651     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2652     if (IROffset < SL->getSizeInBytes()) {
2653       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2654       IROffset -= SL->getElementOffset(FieldIdx);
2655 
2656       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2657                                     SourceTy, SourceOffset);
2658     }
2659   }
2660 
2661   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2662     llvm::Type *EltTy = ATy->getElementType();
2663     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2664     unsigned EltOffset = IROffset/EltSize*EltSize;
2665     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2666                                   SourceOffset);
2667   }
2668 
2669   // Okay, we don't have any better idea of what to pass, so we pass this in an
2670   // integer register that isn't too big to fit the rest of the struct.
2671   unsigned TySizeInBytes =
2672     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2673 
2674   assert(TySizeInBytes != SourceOffset && "Empty field?");
2675 
2676   // It is always safe to classify this as an integer type up to i64 that
2677   // isn't larger than the structure.
2678   return llvm::IntegerType::get(getVMContext(),
2679                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2680 }
2681 
2682 
2683 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2684 /// be used as elements of a two register pair to pass or return, return a
2685 /// first class aggregate to represent them.  For example, if the low part of
2686 /// a by-value argument should be passed as i32* and the high part as float,
2687 /// return {i32*, float}.
2688 static llvm::Type *
2689 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2690                            const llvm::DataLayout &TD) {
2691   // In order to correctly satisfy the ABI, we need to the high part to start
2692   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2693   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2694   // the second element at offset 8.  Check for this:
2695   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2696   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2697   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2698   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2699 
2700   // To handle this, we have to increase the size of the low part so that the
2701   // second element will start at an 8 byte offset.  We can't increase the size
2702   // of the second element because it might make us access off the end of the
2703   // struct.
2704   if (HiStart != 8) {
2705     // There are usually two sorts of types the ABI generation code can produce
2706     // for the low part of a pair that aren't 8 bytes in size: float or
2707     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2708     // NaCl).
2709     // Promote these to a larger type.
2710     if (Lo->isFloatTy())
2711       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2712     else {
2713       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2714              && "Invalid/unknown lo type");
2715       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2716     }
2717   }
2718 
2719   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2720 
2721 
2722   // Verify that the second element is at an 8-byte offset.
2723   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2724          "Invalid x86-64 argument pair!");
2725   return Result;
2726 }
2727 
2728 ABIArgInfo X86_64ABIInfo::
2729 classifyReturnType(QualType RetTy) const {
2730   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2731   // classification algorithm.
2732   X86_64ABIInfo::Class Lo, Hi;
2733   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2734 
2735   // Check some invariants.
2736   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2737   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2738 
2739   llvm::Type *ResType = nullptr;
2740   switch (Lo) {
2741   case NoClass:
2742     if (Hi == NoClass)
2743       return ABIArgInfo::getIgnore();
2744     // If the low part is just padding, it takes no register, leave ResType
2745     // null.
2746     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2747            "Unknown missing lo part");
2748     break;
2749 
2750   case SSEUp:
2751   case X87Up:
2752     llvm_unreachable("Invalid classification for lo word.");
2753 
2754     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2755     // hidden argument.
2756   case Memory:
2757     return getIndirectReturnResult(RetTy);
2758 
2759     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2760     // available register of the sequence %rax, %rdx is used.
2761   case Integer:
2762     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2763 
2764     // If we have a sign or zero extended integer, make sure to return Extend
2765     // so that the parameter gets the right LLVM IR attributes.
2766     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2767       // Treat an enum type as its underlying type.
2768       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2769         RetTy = EnumTy->getDecl()->getIntegerType();
2770 
2771       if (RetTy->isIntegralOrEnumerationType() &&
2772           RetTy->isPromotableIntegerType())
2773         return ABIArgInfo::getExtend();
2774     }
2775     break;
2776 
2777     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2778     // available SSE register of the sequence %xmm0, %xmm1 is used.
2779   case SSE:
2780     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2781     break;
2782 
2783     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2784     // returned on the X87 stack in %st0 as 80-bit x87 number.
2785   case X87:
2786     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2787     break;
2788 
2789     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2790     // part of the value is returned in %st0 and the imaginary part in
2791     // %st1.
2792   case ComplexX87:
2793     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2794     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2795                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2796                                     nullptr);
2797     break;
2798   }
2799 
2800   llvm::Type *HighPart = nullptr;
2801   switch (Hi) {
2802     // Memory was handled previously and X87 should
2803     // never occur as a hi class.
2804   case Memory:
2805   case X87:
2806     llvm_unreachable("Invalid classification for hi word.");
2807 
2808   case ComplexX87: // Previously handled.
2809   case NoClass:
2810     break;
2811 
2812   case Integer:
2813     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2814     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2815       return ABIArgInfo::getDirect(HighPart, 8);
2816     break;
2817   case SSE:
2818     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2819     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2820       return ABIArgInfo::getDirect(HighPart, 8);
2821     break;
2822 
2823     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2824     // is passed in the next available eightbyte chunk if the last used
2825     // vector register.
2826     //
2827     // SSEUP should always be preceded by SSE, just widen.
2828   case SSEUp:
2829     assert(Lo == SSE && "Unexpected SSEUp classification.");
2830     ResType = GetByteVectorType(RetTy);
2831     break;
2832 
2833     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2834     // returned together with the previous X87 value in %st0.
2835   case X87Up:
2836     // If X87Up is preceded by X87, we don't need to do
2837     // anything. However, in some cases with unions it may not be
2838     // preceded by X87. In such situations we follow gcc and pass the
2839     // extra bits in an SSE reg.
2840     if (Lo != X87) {
2841       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2842       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2843         return ABIArgInfo::getDirect(HighPart, 8);
2844     }
2845     break;
2846   }
2847 
2848   // If a high part was specified, merge it together with the low part.  It is
2849   // known to pass in the high eightbyte of the result.  We do this by forming a
2850   // first class struct aggregate with the high and low part: {low, high}
2851   if (HighPart)
2852     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2853 
2854   return ABIArgInfo::getDirect(ResType);
2855 }
2856 
2857 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2858   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2859   bool isNamedArg)
2860   const
2861 {
2862   Ty = useFirstFieldIfTransparentUnion(Ty);
2863 
2864   X86_64ABIInfo::Class Lo, Hi;
2865   classify(Ty, 0, Lo, Hi, isNamedArg);
2866 
2867   // Check some invariants.
2868   // FIXME: Enforce these by construction.
2869   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2870   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2871 
2872   neededInt = 0;
2873   neededSSE = 0;
2874   llvm::Type *ResType = nullptr;
2875   switch (Lo) {
2876   case NoClass:
2877     if (Hi == NoClass)
2878       return ABIArgInfo::getIgnore();
2879     // If the low part is just padding, it takes no register, leave ResType
2880     // null.
2881     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2882            "Unknown missing lo part");
2883     break;
2884 
2885     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2886     // on the stack.
2887   case Memory:
2888 
2889     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2890     // COMPLEX_X87, it is passed in memory.
2891   case X87:
2892   case ComplexX87:
2893     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2894       ++neededInt;
2895     return getIndirectResult(Ty, freeIntRegs);
2896 
2897   case SSEUp:
2898   case X87Up:
2899     llvm_unreachable("Invalid classification for lo word.");
2900 
2901     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2902     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2903     // and %r9 is used.
2904   case Integer:
2905     ++neededInt;
2906 
2907     // Pick an 8-byte type based on the preferred type.
2908     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2909 
2910     // If we have a sign or zero extended integer, make sure to return Extend
2911     // so that the parameter gets the right LLVM IR attributes.
2912     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2913       // Treat an enum type as its underlying type.
2914       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2915         Ty = EnumTy->getDecl()->getIntegerType();
2916 
2917       if (Ty->isIntegralOrEnumerationType() &&
2918           Ty->isPromotableIntegerType())
2919         return ABIArgInfo::getExtend();
2920     }
2921 
2922     break;
2923 
2924     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2925     // available SSE register is used, the registers are taken in the
2926     // order from %xmm0 to %xmm7.
2927   case SSE: {
2928     llvm::Type *IRType = CGT.ConvertType(Ty);
2929     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2930     ++neededSSE;
2931     break;
2932   }
2933   }
2934 
2935   llvm::Type *HighPart = nullptr;
2936   switch (Hi) {
2937     // Memory was handled previously, ComplexX87 and X87 should
2938     // never occur as hi classes, and X87Up must be preceded by X87,
2939     // which is passed in memory.
2940   case Memory:
2941   case X87:
2942   case ComplexX87:
2943     llvm_unreachable("Invalid classification for hi word.");
2944 
2945   case NoClass: break;
2946 
2947   case Integer:
2948     ++neededInt;
2949     // Pick an 8-byte type based on the preferred type.
2950     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2951 
2952     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2953       return ABIArgInfo::getDirect(HighPart, 8);
2954     break;
2955 
2956     // X87Up generally doesn't occur here (long double is passed in
2957     // memory), except in situations involving unions.
2958   case X87Up:
2959   case SSE:
2960     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2961 
2962     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2963       return ABIArgInfo::getDirect(HighPart, 8);
2964 
2965     ++neededSSE;
2966     break;
2967 
2968     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2969     // eightbyte is passed in the upper half of the last used SSE
2970     // register.  This only happens when 128-bit vectors are passed.
2971   case SSEUp:
2972     assert(Lo == SSE && "Unexpected SSEUp classification");
2973     ResType = GetByteVectorType(Ty);
2974     break;
2975   }
2976 
2977   // If a high part was specified, merge it together with the low part.  It is
2978   // known to pass in the high eightbyte of the result.  We do this by forming a
2979   // first class struct aggregate with the high and low part: {low, high}
2980   if (HighPart)
2981     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2982 
2983   return ABIArgInfo::getDirect(ResType);
2984 }
2985 
2986 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2987 
2988   if (!getCXXABI().classifyReturnType(FI))
2989     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2990 
2991   // Keep track of the number of assigned registers.
2992   unsigned freeIntRegs = 6, freeSSERegs = 8;
2993 
2994   // If the return value is indirect, then the hidden argument is consuming one
2995   // integer register.
2996   if (FI.getReturnInfo().isIndirect())
2997     --freeIntRegs;
2998 
2999   // The chain argument effectively gives us another free register.
3000   if (FI.isChainCall())
3001     ++freeIntRegs;
3002 
3003   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3004   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3005   // get assigned (in left-to-right order) for passing as follows...
3006   unsigned ArgNo = 0;
3007   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3008        it != ie; ++it, ++ArgNo) {
3009     bool IsNamedArg = ArgNo < NumRequiredArgs;
3010 
3011     unsigned neededInt, neededSSE;
3012     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3013                                     neededSSE, IsNamedArg);
3014 
3015     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3016     // eightbyte of an argument, the whole argument is passed on the
3017     // stack. If registers have already been assigned for some
3018     // eightbytes of such an argument, the assignments get reverted.
3019     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3020       freeIntRegs -= neededInt;
3021       freeSSERegs -= neededSSE;
3022     } else {
3023       it->info = getIndirectResult(it->type, freeIntRegs);
3024     }
3025   }
3026 }
3027 
3028 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3029                                          Address VAListAddr, QualType Ty) {
3030   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3031       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3032   llvm::Value *overflow_arg_area =
3033     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3034 
3035   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3036   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3037   // It isn't stated explicitly in the standard, but in practice we use
3038   // alignment greater than 16 where necessary.
3039   uint64_t Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
3040   if (Align > 8) {
3041     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
3042     llvm::Value *Offset =
3043       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
3044     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
3045     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
3046                                                     CGF.Int64Ty);
3047     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
3048     overflow_arg_area =
3049       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
3050                                  overflow_arg_area->getType(),
3051                                  "overflow_arg_area.align");
3052   }
3053 
3054   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3055   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3056   llvm::Value *Res =
3057     CGF.Builder.CreateBitCast(overflow_arg_area,
3058                               llvm::PointerType::getUnqual(LTy));
3059 
3060   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3061   // l->overflow_arg_area + sizeof(type).
3062   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3063   // an 8 byte boundary.
3064 
3065   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3066   llvm::Value *Offset =
3067       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3068   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3069                                             "overflow_arg_area.next");
3070   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3071 
3072   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3073   return Address(Res, CharUnits::fromQuantity(Align));
3074 }
3075 
3076 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3077                                  QualType Ty) const {
3078   // Assume that va_list type is correct; should be pointer to LLVM type:
3079   // struct {
3080   //   i32 gp_offset;
3081   //   i32 fp_offset;
3082   //   i8* overflow_arg_area;
3083   //   i8* reg_save_area;
3084   // };
3085   unsigned neededInt, neededSSE;
3086 
3087   Ty = getContext().getCanonicalType(Ty);
3088   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3089                                        /*isNamedArg*/false);
3090 
3091   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3092   // in the registers. If not go to step 7.
3093   if (!neededInt && !neededSSE)
3094     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3095 
3096   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3097   // general purpose registers needed to pass type and num_fp to hold
3098   // the number of floating point registers needed.
3099 
3100   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3101   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3102   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3103   //
3104   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3105   // register save space).
3106 
3107   llvm::Value *InRegs = nullptr;
3108   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3109   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3110   if (neededInt) {
3111     gp_offset_p =
3112         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3113                                     "gp_offset_p");
3114     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3115     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3116     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3117   }
3118 
3119   if (neededSSE) {
3120     fp_offset_p =
3121         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3122                                     "fp_offset_p");
3123     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3124     llvm::Value *FitsInFP =
3125       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3126     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3127     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3128   }
3129 
3130   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3131   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3132   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3133   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3134 
3135   // Emit code to load the value if it was passed in registers.
3136 
3137   CGF.EmitBlock(InRegBlock);
3138 
3139   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3140   // an offset of l->gp_offset and/or l->fp_offset. This may require
3141   // copying to a temporary location in case the parameter is passed
3142   // in different register classes or requires an alignment greater
3143   // than 8 for general purpose registers and 16 for XMM registers.
3144   //
3145   // FIXME: This really results in shameful code when we end up needing to
3146   // collect arguments from different places; often what should result in a
3147   // simple assembling of a structure from scattered addresses has many more
3148   // loads than necessary. Can we clean this up?
3149   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3150   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3151       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3152                                   "reg_save_area");
3153 
3154   Address RegAddr = Address::invalid();
3155   if (neededInt && neededSSE) {
3156     // FIXME: Cleanup.
3157     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3158     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3159     Address Tmp = CGF.CreateMemTemp(Ty);
3160     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3161     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3162     llvm::Type *TyLo = ST->getElementType(0);
3163     llvm::Type *TyHi = ST->getElementType(1);
3164     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3165            "Unexpected ABI info for mixed regs");
3166     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3167     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3168     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3169     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3170     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3171     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3172 
3173     // Copy the first element.
3174     llvm::Value *V =
3175       CGF.Builder.CreateDefaultAlignedLoad(
3176                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3177     CGF.Builder.CreateStore(V,
3178                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3179 
3180     // Copy the second element.
3181     V = CGF.Builder.CreateDefaultAlignedLoad(
3182                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3183     CharUnits Offset = CharUnits::fromQuantity(
3184                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3185     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3186 
3187     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3188   } else if (neededInt) {
3189     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3190                       CharUnits::fromQuantity(8));
3191     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3192 
3193     // Copy to a temporary if necessary to ensure the appropriate alignment.
3194     std::pair<CharUnits, CharUnits> SizeAlign =
3195         getContext().getTypeInfoInChars(Ty);
3196     uint64_t TySize = SizeAlign.first.getQuantity();
3197     CharUnits TyAlign = SizeAlign.second;
3198 
3199     // Copy into a temporary if the type is more aligned than the
3200     // register save area.
3201     if (TyAlign.getQuantity() > 8) {
3202       Address Tmp = CGF.CreateMemTemp(Ty);
3203       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3204       RegAddr = Tmp;
3205     }
3206 
3207   } else if (neededSSE == 1) {
3208     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3209                       CharUnits::fromQuantity(16));
3210     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3211   } else {
3212     assert(neededSSE == 2 && "Invalid number of needed registers!");
3213     // SSE registers are spaced 16 bytes apart in the register save
3214     // area, we need to collect the two eightbytes together.
3215     // The ABI isn't explicit about this, but it seems reasonable
3216     // to assume that the slots are 16-byte aligned, since the stack is
3217     // naturally 16-byte aligned and the prologue is expected to store
3218     // all the SSE registers to the RSA.
3219     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3220                                 CharUnits::fromQuantity(16));
3221     Address RegAddrHi =
3222       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3223                                              CharUnits::fromQuantity(16));
3224     llvm::Type *DoubleTy = CGF.DoubleTy;
3225     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3226     llvm::Value *V;
3227     Address Tmp = CGF.CreateMemTemp(Ty);
3228     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3229     V = CGF.Builder.CreateLoad(
3230                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3231     CGF.Builder.CreateStore(V,
3232                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3233     V = CGF.Builder.CreateLoad(
3234                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3235     CGF.Builder.CreateStore(V,
3236           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3237 
3238     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3239   }
3240 
3241   // AMD64-ABI 3.5.7p5: Step 5. Set:
3242   // l->gp_offset = l->gp_offset + num_gp * 8
3243   // l->fp_offset = l->fp_offset + num_fp * 16.
3244   if (neededInt) {
3245     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3246     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3247                             gp_offset_p);
3248   }
3249   if (neededSSE) {
3250     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3251     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3252                             fp_offset_p);
3253   }
3254   CGF.EmitBranch(ContBlock);
3255 
3256   // Emit code to load the value if it was passed in memory.
3257 
3258   CGF.EmitBlock(InMemBlock);
3259   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3260 
3261   // Return the appropriate result.
3262 
3263   CGF.EmitBlock(ContBlock);
3264   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3265                                  "vaarg.addr");
3266   return ResAddr;
3267 }
3268 
3269 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3270                                       bool IsReturnType) const {
3271 
3272   if (Ty->isVoidType())
3273     return ABIArgInfo::getIgnore();
3274 
3275   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3276     Ty = EnumTy->getDecl()->getIntegerType();
3277 
3278   TypeInfo Info = getContext().getTypeInfo(Ty);
3279   uint64_t Width = Info.Width;
3280   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3281 
3282   const RecordType *RT = Ty->getAs<RecordType>();
3283   if (RT) {
3284     if (!IsReturnType) {
3285       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3286         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3287     }
3288 
3289     if (RT->getDecl()->hasFlexibleArrayMember())
3290       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3291 
3292     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3293     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3294       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3295                                                           Width));
3296   }
3297 
3298   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3299   // other targets.
3300   const Type *Base = nullptr;
3301   uint64_t NumElts = 0;
3302   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3303     if (FreeSSERegs >= NumElts) {
3304       FreeSSERegs -= NumElts;
3305       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3306         return ABIArgInfo::getDirect();
3307       return ABIArgInfo::getExpand();
3308     }
3309     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align),
3310                                    /*ByVal=*/false);
3311   }
3312 
3313 
3314   if (Ty->isMemberPointerType()) {
3315     // If the member pointer is represented by an LLVM int or ptr, pass it
3316     // directly.
3317     llvm::Type *LLTy = CGT.ConvertType(Ty);
3318     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3319       return ABIArgInfo::getDirect();
3320   }
3321 
3322   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3323     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3324     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3325     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3326       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3327 
3328     // Otherwise, coerce it to a small integer.
3329     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3330   }
3331 
3332   // Bool type is always extended to the ABI, other builtin types are not
3333   // extended.
3334   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3335   if (BT && BT->getKind() == BuiltinType::Bool)
3336     return ABIArgInfo::getExtend();
3337 
3338   return ABIArgInfo::getDirect();
3339 }
3340 
3341 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3342   bool IsVectorCall =
3343       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3344 
3345   // We can use up to 4 SSE return registers with vectorcall.
3346   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3347   if (!getCXXABI().classifyReturnType(FI))
3348     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3349 
3350   // We can use up to 6 SSE register parameters with vectorcall.
3351   FreeSSERegs = IsVectorCall ? 6 : 0;
3352   for (auto &I : FI.arguments())
3353     I.info = classify(I.type, FreeSSERegs, false);
3354 }
3355 
3356 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3357                                     QualType Ty) const {
3358   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3359                           CGF.getContext().getTypeInfoInChars(Ty),
3360                           CharUnits::fromQuantity(8),
3361                           /*allowHigherAlign*/ false);
3362 }
3363 
3364 // PowerPC-32
3365 namespace {
3366 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3367 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3368 public:
3369   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3370 
3371   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3372                     QualType Ty) const override;
3373 };
3374 
3375 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3376 public:
3377   PPC32TargetCodeGenInfo(CodeGenTypes &CGT)
3378       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3379 
3380   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3381     // This is recovered from gcc output.
3382     return 1; // r1 is the dedicated stack pointer
3383   }
3384 
3385   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3386                                llvm::Value *Address) const override;
3387 };
3388 
3389 }
3390 
3391 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3392                                       QualType Ty) const {
3393   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3394     // TODO: Implement this. For now ignore.
3395     (void)CTy;
3396     return Address::invalid();
3397   }
3398 
3399   // struct __va_list_tag {
3400   //   unsigned char gpr;
3401   //   unsigned char fpr;
3402   //   unsigned short reserved;
3403   //   void *overflow_arg_area;
3404   //   void *reg_save_area;
3405   // };
3406 
3407   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3408   bool isInt =
3409       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3410 
3411   // All aggregates are passed indirectly?  That doesn't seem consistent
3412   // with the argument-lowering code.
3413   bool isIndirect = Ty->isAggregateType();
3414 
3415   CGBuilderTy &Builder = CGF.Builder;
3416 
3417   // The calling convention either uses 1-2 GPRs or 1 FPR.
3418   Address NumRegsAddr = Address::invalid();
3419   if (isInt) {
3420     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3421   } else {
3422     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3423   }
3424 
3425   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3426 
3427   // "Align" the register count when TY is i64.
3428   if (isI64) {
3429     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3430     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3431   }
3432 
3433   llvm::Value *CC =
3434       Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
3435 
3436   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3437   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3438   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3439 
3440   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3441 
3442   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3443   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3444 
3445   // Case 1: consume registers.
3446   Address RegAddr = Address::invalid();
3447   {
3448     CGF.EmitBlock(UsingRegs);
3449 
3450     Address RegSaveAreaPtr =
3451       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3452     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3453                       CharUnits::fromQuantity(8));
3454     assert(RegAddr.getElementType() == CGF.Int8Ty);
3455 
3456     // Floating-point registers start after the general-purpose registers.
3457     if (!isInt) {
3458       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3459                                                    CharUnits::fromQuantity(32));
3460     }
3461 
3462     // Get the address of the saved value by scaling the number of
3463     // registers we've used by the number of
3464     CharUnits RegSize = CharUnits::fromQuantity(isInt ? 4 : 8);
3465     llvm::Value *RegOffset =
3466       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3467     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3468                                             RegAddr.getPointer(), RegOffset),
3469                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3470     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3471 
3472     // Increase the used-register count.
3473     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(isI64 ? 2 : 1));
3474     Builder.CreateStore(NumRegs, NumRegsAddr);
3475 
3476     CGF.EmitBranch(Cont);
3477   }
3478 
3479   // Case 2: consume space in the overflow area.
3480   Address MemAddr = Address::invalid();
3481   {
3482     CGF.EmitBlock(UsingOverflow);
3483 
3484     // Everything in the overflow area is rounded up to a size of at least 4.
3485     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3486 
3487     CharUnits Size;
3488     if (!isIndirect) {
3489       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3490       Size = TypeInfo.first.RoundUpToAlignment(OverflowAreaAlign);
3491     } else {
3492       Size = CGF.getPointerSize();
3493     }
3494 
3495     Address OverflowAreaAddr =
3496       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3497     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr),
3498                          OverflowAreaAlign);
3499 
3500     // The current address is the address of the varargs element.
3501     // FIXME: do we not need to round up to alignment?
3502     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3503 
3504     // Increase the overflow area.
3505     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3506     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3507     CGF.EmitBranch(Cont);
3508   }
3509 
3510   CGF.EmitBlock(Cont);
3511 
3512   // Merge the cases with a phi.
3513   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3514                                 "vaarg.addr");
3515 
3516   // Load the pointer if the argument was passed indirectly.
3517   if (isIndirect) {
3518     Result = Address(Builder.CreateLoad(Result, "aggr"),
3519                      getContext().getTypeAlignInChars(Ty));
3520   }
3521 
3522   return Result;
3523 }
3524 
3525 bool
3526 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3527                                                 llvm::Value *Address) const {
3528   // This is calculated from the LLVM and GCC tables and verified
3529   // against gcc output.  AFAIK all ABIs use the same encoding.
3530 
3531   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3532 
3533   llvm::IntegerType *i8 = CGF.Int8Ty;
3534   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3535   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3536   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3537 
3538   // 0-31: r0-31, the 4-byte general-purpose registers
3539   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3540 
3541   // 32-63: fp0-31, the 8-byte floating-point registers
3542   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3543 
3544   // 64-76 are various 4-byte special-purpose registers:
3545   // 64: mq
3546   // 65: lr
3547   // 66: ctr
3548   // 67: ap
3549   // 68-75 cr0-7
3550   // 76: xer
3551   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3552 
3553   // 77-108: v0-31, the 16-byte vector registers
3554   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3555 
3556   // 109: vrsave
3557   // 110: vscr
3558   // 111: spe_acc
3559   // 112: spefscr
3560   // 113: sfp
3561   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3562 
3563   return false;
3564 }
3565 
3566 // PowerPC-64
3567 
3568 namespace {
3569 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3570 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3571 public:
3572   enum ABIKind {
3573     ELFv1 = 0,
3574     ELFv2
3575   };
3576 
3577 private:
3578   static const unsigned GPRBits = 64;
3579   ABIKind Kind;
3580   bool HasQPX;
3581 
3582   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3583   // will be passed in a QPX register.
3584   bool IsQPXVectorTy(const Type *Ty) const {
3585     if (!HasQPX)
3586       return false;
3587 
3588     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3589       unsigned NumElements = VT->getNumElements();
3590       if (NumElements == 1)
3591         return false;
3592 
3593       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3594         if (getContext().getTypeSize(Ty) <= 256)
3595           return true;
3596       } else if (VT->getElementType()->
3597                    isSpecificBuiltinType(BuiltinType::Float)) {
3598         if (getContext().getTypeSize(Ty) <= 128)
3599           return true;
3600       }
3601     }
3602 
3603     return false;
3604   }
3605 
3606   bool IsQPXVectorTy(QualType Ty) const {
3607     return IsQPXVectorTy(Ty.getTypePtr());
3608   }
3609 
3610 public:
3611   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3612     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3613 
3614   bool isPromotableTypeForABI(QualType Ty) const;
3615   CharUnits getParamTypeAlignment(QualType Ty) const;
3616 
3617   ABIArgInfo classifyReturnType(QualType RetTy) const;
3618   ABIArgInfo classifyArgumentType(QualType Ty) const;
3619 
3620   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3621   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3622                                          uint64_t Members) const override;
3623 
3624   // TODO: We can add more logic to computeInfo to improve performance.
3625   // Example: For aggregate arguments that fit in a register, we could
3626   // use getDirectInReg (as is done below for structs containing a single
3627   // floating-point value) to avoid pushing them to memory on function
3628   // entry.  This would require changing the logic in PPCISelLowering
3629   // when lowering the parameters in the caller and args in the callee.
3630   void computeInfo(CGFunctionInfo &FI) const override {
3631     if (!getCXXABI().classifyReturnType(FI))
3632       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3633     for (auto &I : FI.arguments()) {
3634       // We rely on the default argument classification for the most part.
3635       // One exception:  An aggregate containing a single floating-point
3636       // or vector item must be passed in a register if one is available.
3637       const Type *T = isSingleElementStruct(I.type, getContext());
3638       if (T) {
3639         const BuiltinType *BT = T->getAs<BuiltinType>();
3640         if (IsQPXVectorTy(T) ||
3641             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3642             (BT && BT->isFloatingPoint())) {
3643           QualType QT(T, 0);
3644           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3645           continue;
3646         }
3647       }
3648       I.info = classifyArgumentType(I.type);
3649     }
3650   }
3651 
3652   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3653                     QualType Ty) const override;
3654 };
3655 
3656 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3657 
3658 public:
3659   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3660                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3661       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3662 
3663   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3664     // This is recovered from gcc output.
3665     return 1; // r1 is the dedicated stack pointer
3666   }
3667 
3668   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3669                                llvm::Value *Address) const override;
3670 };
3671 
3672 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3673 public:
3674   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3675 
3676   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3677     // This is recovered from gcc output.
3678     return 1; // r1 is the dedicated stack pointer
3679   }
3680 
3681   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3682                                llvm::Value *Address) const override;
3683 };
3684 
3685 }
3686 
3687 // Return true if the ABI requires Ty to be passed sign- or zero-
3688 // extended to 64 bits.
3689 bool
3690 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3691   // Treat an enum type as its underlying type.
3692   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3693     Ty = EnumTy->getDecl()->getIntegerType();
3694 
3695   // Promotable integer types are required to be promoted by the ABI.
3696   if (Ty->isPromotableIntegerType())
3697     return true;
3698 
3699   // In addition to the usual promotable integer types, we also need to
3700   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3701   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3702     switch (BT->getKind()) {
3703     case BuiltinType::Int:
3704     case BuiltinType::UInt:
3705       return true;
3706     default:
3707       break;
3708     }
3709 
3710   return false;
3711 }
3712 
3713 /// isAlignedParamType - Determine whether a type requires 16-byte or
3714 /// higher alignment in the parameter area.  Always returns at least 8.
3715 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3716   // Complex types are passed just like their elements.
3717   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3718     Ty = CTy->getElementType();
3719 
3720   // Only vector types of size 16 bytes need alignment (larger types are
3721   // passed via reference, smaller types are not aligned).
3722   if (IsQPXVectorTy(Ty)) {
3723     if (getContext().getTypeSize(Ty) > 128)
3724       return CharUnits::fromQuantity(32);
3725 
3726     return CharUnits::fromQuantity(16);
3727   } else if (Ty->isVectorType()) {
3728     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
3729   }
3730 
3731   // For single-element float/vector structs, we consider the whole type
3732   // to have the same alignment requirements as its single element.
3733   const Type *AlignAsType = nullptr;
3734   const Type *EltType = isSingleElementStruct(Ty, getContext());
3735   if (EltType) {
3736     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3737     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3738          getContext().getTypeSize(EltType) == 128) ||
3739         (BT && BT->isFloatingPoint()))
3740       AlignAsType = EltType;
3741   }
3742 
3743   // Likewise for ELFv2 homogeneous aggregates.
3744   const Type *Base = nullptr;
3745   uint64_t Members = 0;
3746   if (!AlignAsType && Kind == ELFv2 &&
3747       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3748     AlignAsType = Base;
3749 
3750   // With special case aggregates, only vector base types need alignment.
3751   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3752     if (getContext().getTypeSize(AlignAsType) > 128)
3753       return CharUnits::fromQuantity(32);
3754 
3755     return CharUnits::fromQuantity(16);
3756   } else if (AlignAsType) {
3757     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
3758   }
3759 
3760   // Otherwise, we only need alignment for any aggregate type that
3761   // has an alignment requirement of >= 16 bytes.
3762   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3763     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3764       return CharUnits::fromQuantity(32);
3765     return CharUnits::fromQuantity(16);
3766   }
3767 
3768   return CharUnits::fromQuantity(8);
3769 }
3770 
3771 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3772 /// aggregate.  Base is set to the base element type, and Members is set
3773 /// to the number of base elements.
3774 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3775                                      uint64_t &Members) const {
3776   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3777     uint64_t NElements = AT->getSize().getZExtValue();
3778     if (NElements == 0)
3779       return false;
3780     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3781       return false;
3782     Members *= NElements;
3783   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3784     const RecordDecl *RD = RT->getDecl();
3785     if (RD->hasFlexibleArrayMember())
3786       return false;
3787 
3788     Members = 0;
3789 
3790     // If this is a C++ record, check the bases first.
3791     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3792       for (const auto &I : CXXRD->bases()) {
3793         // Ignore empty records.
3794         if (isEmptyRecord(getContext(), I.getType(), true))
3795           continue;
3796 
3797         uint64_t FldMembers;
3798         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3799           return false;
3800 
3801         Members += FldMembers;
3802       }
3803     }
3804 
3805     for (const auto *FD : RD->fields()) {
3806       // Ignore (non-zero arrays of) empty records.
3807       QualType FT = FD->getType();
3808       while (const ConstantArrayType *AT =
3809              getContext().getAsConstantArrayType(FT)) {
3810         if (AT->getSize().getZExtValue() == 0)
3811           return false;
3812         FT = AT->getElementType();
3813       }
3814       if (isEmptyRecord(getContext(), FT, true))
3815         continue;
3816 
3817       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3818       if (getContext().getLangOpts().CPlusPlus &&
3819           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3820         continue;
3821 
3822       uint64_t FldMembers;
3823       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3824         return false;
3825 
3826       Members = (RD->isUnion() ?
3827                  std::max(Members, FldMembers) : Members + FldMembers);
3828     }
3829 
3830     if (!Base)
3831       return false;
3832 
3833     // Ensure there is no padding.
3834     if (getContext().getTypeSize(Base) * Members !=
3835         getContext().getTypeSize(Ty))
3836       return false;
3837   } else {
3838     Members = 1;
3839     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3840       Members = 2;
3841       Ty = CT->getElementType();
3842     }
3843 
3844     // Most ABIs only support float, double, and some vector type widths.
3845     if (!isHomogeneousAggregateBaseType(Ty))
3846       return false;
3847 
3848     // The base type must be the same for all members.  Types that
3849     // agree in both total size and mode (float vs. vector) are
3850     // treated as being equivalent here.
3851     const Type *TyPtr = Ty.getTypePtr();
3852     if (!Base)
3853       Base = TyPtr;
3854 
3855     if (Base->isVectorType() != TyPtr->isVectorType() ||
3856         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3857       return false;
3858   }
3859   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3860 }
3861 
3862 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3863   // Homogeneous aggregates for ELFv2 must have base types of float,
3864   // double, long double, or 128-bit vectors.
3865   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3866     if (BT->getKind() == BuiltinType::Float ||
3867         BT->getKind() == BuiltinType::Double ||
3868         BT->getKind() == BuiltinType::LongDouble)
3869       return true;
3870   }
3871   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3872     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3873       return true;
3874   }
3875   return false;
3876 }
3877 
3878 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3879     const Type *Base, uint64_t Members) const {
3880   // Vector types require one register, floating point types require one
3881   // or two registers depending on their size.
3882   uint32_t NumRegs =
3883       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3884 
3885   // Homogeneous Aggregates may occupy at most 8 registers.
3886   return Members * NumRegs <= 8;
3887 }
3888 
3889 ABIArgInfo
3890 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3891   Ty = useFirstFieldIfTransparentUnion(Ty);
3892 
3893   if (Ty->isAnyComplexType())
3894     return ABIArgInfo::getDirect();
3895 
3896   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3897   // or via reference (larger than 16 bytes).
3898   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3899     uint64_t Size = getContext().getTypeSize(Ty);
3900     if (Size > 128)
3901       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3902     else if (Size < 128) {
3903       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3904       return ABIArgInfo::getDirect(CoerceTy);
3905     }
3906   }
3907 
3908   if (isAggregateTypeForABI(Ty)) {
3909     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3910       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3911 
3912     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
3913     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
3914 
3915     // ELFv2 homogeneous aggregates are passed as array types.
3916     const Type *Base = nullptr;
3917     uint64_t Members = 0;
3918     if (Kind == ELFv2 &&
3919         isHomogeneousAggregate(Ty, Base, Members)) {
3920       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3921       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3922       return ABIArgInfo::getDirect(CoerceTy);
3923     }
3924 
3925     // If an aggregate may end up fully in registers, we do not
3926     // use the ByVal method, but pass the aggregate as array.
3927     // This is usually beneficial since we avoid forcing the
3928     // back-end to store the argument to memory.
3929     uint64_t Bits = getContext().getTypeSize(Ty);
3930     if (Bits > 0 && Bits <= 8 * GPRBits) {
3931       llvm::Type *CoerceTy;
3932 
3933       // Types up to 8 bytes are passed as integer type (which will be
3934       // properly aligned in the argument save area doubleword).
3935       if (Bits <= GPRBits)
3936         CoerceTy = llvm::IntegerType::get(getVMContext(),
3937                                           llvm::RoundUpToAlignment(Bits, 8));
3938       // Larger types are passed as arrays, with the base type selected
3939       // according to the required alignment in the save area.
3940       else {
3941         uint64_t RegBits = ABIAlign * 8;
3942         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3943         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3944         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3945       }
3946 
3947       return ABIArgInfo::getDirect(CoerceTy);
3948     }
3949 
3950     // All other aggregates are passed ByVal.
3951     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
3952                                    /*ByVal=*/true,
3953                                    /*Realign=*/TyAlign > ABIAlign);
3954   }
3955 
3956   return (isPromotableTypeForABI(Ty) ?
3957           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3958 }
3959 
3960 ABIArgInfo
3961 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3962   if (RetTy->isVoidType())
3963     return ABIArgInfo::getIgnore();
3964 
3965   if (RetTy->isAnyComplexType())
3966     return ABIArgInfo::getDirect();
3967 
3968   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3969   // or via reference (larger than 16 bytes).
3970   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
3971     uint64_t Size = getContext().getTypeSize(RetTy);
3972     if (Size > 128)
3973       return getNaturalAlignIndirect(RetTy);
3974     else if (Size < 128) {
3975       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3976       return ABIArgInfo::getDirect(CoerceTy);
3977     }
3978   }
3979 
3980   if (isAggregateTypeForABI(RetTy)) {
3981     // ELFv2 homogeneous aggregates are returned as array types.
3982     const Type *Base = nullptr;
3983     uint64_t Members = 0;
3984     if (Kind == ELFv2 &&
3985         isHomogeneousAggregate(RetTy, Base, Members)) {
3986       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3987       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3988       return ABIArgInfo::getDirect(CoerceTy);
3989     }
3990 
3991     // ELFv2 small aggregates are returned in up to two registers.
3992     uint64_t Bits = getContext().getTypeSize(RetTy);
3993     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3994       if (Bits == 0)
3995         return ABIArgInfo::getIgnore();
3996 
3997       llvm::Type *CoerceTy;
3998       if (Bits > GPRBits) {
3999         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4000         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4001       } else
4002         CoerceTy = llvm::IntegerType::get(getVMContext(),
4003                                           llvm::RoundUpToAlignment(Bits, 8));
4004       return ABIArgInfo::getDirect(CoerceTy);
4005     }
4006 
4007     // All other aggregates are returned indirectly.
4008     return getNaturalAlignIndirect(RetTy);
4009   }
4010 
4011   return (isPromotableTypeForABI(RetTy) ?
4012           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4013 }
4014 
4015 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4016 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4017                                       QualType Ty) const {
4018   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4019   TypeInfo.second = getParamTypeAlignment(Ty);
4020 
4021   CharUnits SlotSize = CharUnits::fromQuantity(8);
4022 
4023   // If we have a complex type and the base type is smaller than 8 bytes,
4024   // the ABI calls for the real and imaginary parts to be right-adjusted
4025   // in separate doublewords.  However, Clang expects us to produce a
4026   // pointer to a structure with the two parts packed tightly.  So generate
4027   // loads of the real and imaginary parts relative to the va_list pointer,
4028   // and store them to a temporary structure.
4029   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4030     CharUnits EltSize = TypeInfo.first / 2;
4031     if (EltSize < SlotSize) {
4032       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4033                                             SlotSize * 2, SlotSize,
4034                                             SlotSize, /*AllowHigher*/ true);
4035 
4036       Address RealAddr = Addr;
4037       Address ImagAddr = RealAddr;
4038       if (CGF.CGM.getDataLayout().isBigEndian()) {
4039         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4040                                                           SlotSize - EltSize);
4041         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4042                                                       2 * SlotSize - EltSize);
4043       } else {
4044         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4045       }
4046 
4047       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4048       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4049       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4050       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4051       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4052 
4053       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4054       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4055                              /*init*/ true);
4056       return Temp;
4057     }
4058   }
4059 
4060   // Otherwise, just use the general rule.
4061   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4062                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4063 }
4064 
4065 static bool
4066 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4067                               llvm::Value *Address) {
4068   // This is calculated from the LLVM and GCC tables and verified
4069   // against gcc output.  AFAIK all ABIs use the same encoding.
4070 
4071   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4072 
4073   llvm::IntegerType *i8 = CGF.Int8Ty;
4074   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4075   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4076   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4077 
4078   // 0-31: r0-31, the 8-byte general-purpose registers
4079   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4080 
4081   // 32-63: fp0-31, the 8-byte floating-point registers
4082   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4083 
4084   // 64-76 are various 4-byte special-purpose registers:
4085   // 64: mq
4086   // 65: lr
4087   // 66: ctr
4088   // 67: ap
4089   // 68-75 cr0-7
4090   // 76: xer
4091   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4092 
4093   // 77-108: v0-31, the 16-byte vector registers
4094   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4095 
4096   // 109: vrsave
4097   // 110: vscr
4098   // 111: spe_acc
4099   // 112: spefscr
4100   // 113: sfp
4101   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4102 
4103   return false;
4104 }
4105 
4106 bool
4107 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4108   CodeGen::CodeGenFunction &CGF,
4109   llvm::Value *Address) const {
4110 
4111   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4112 }
4113 
4114 bool
4115 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4116                                                 llvm::Value *Address) const {
4117 
4118   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4119 }
4120 
4121 //===----------------------------------------------------------------------===//
4122 // AArch64 ABI Implementation
4123 //===----------------------------------------------------------------------===//
4124 
4125 namespace {
4126 
4127 class AArch64ABIInfo : public ABIInfo {
4128 public:
4129   enum ABIKind {
4130     AAPCS = 0,
4131     DarwinPCS
4132   };
4133 
4134 private:
4135   ABIKind Kind;
4136 
4137 public:
4138   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
4139 
4140 private:
4141   ABIKind getABIKind() const { return Kind; }
4142   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4143 
4144   ABIArgInfo classifyReturnType(QualType RetTy) const;
4145   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4146   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4147   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4148                                          uint64_t Members) const override;
4149 
4150   bool isIllegalVectorType(QualType Ty) const;
4151 
4152   void computeInfo(CGFunctionInfo &FI) const override {
4153     if (!getCXXABI().classifyReturnType(FI))
4154       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4155 
4156     for (auto &it : FI.arguments())
4157       it.info = classifyArgumentType(it.type);
4158   }
4159 
4160   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4161                           CodeGenFunction &CGF) const;
4162 
4163   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4164                          CodeGenFunction &CGF) const;
4165 
4166   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4167                     QualType Ty) const override {
4168     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4169                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4170   }
4171 };
4172 
4173 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4174 public:
4175   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4176       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4177 
4178   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4179     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4180   }
4181 
4182   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4183     return 31;
4184   }
4185 
4186   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4187 };
4188 }
4189 
4190 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4191   Ty = useFirstFieldIfTransparentUnion(Ty);
4192 
4193   // Handle illegal vector types here.
4194   if (isIllegalVectorType(Ty)) {
4195     uint64_t Size = getContext().getTypeSize(Ty);
4196     if (Size <= 32) {
4197       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4198       return ABIArgInfo::getDirect(ResType);
4199     }
4200     if (Size == 64) {
4201       llvm::Type *ResType =
4202           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4203       return ABIArgInfo::getDirect(ResType);
4204     }
4205     if (Size == 128) {
4206       llvm::Type *ResType =
4207           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4208       return ABIArgInfo::getDirect(ResType);
4209     }
4210     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4211   }
4212 
4213   if (!isAggregateTypeForABI(Ty)) {
4214     // Treat an enum type as its underlying type.
4215     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4216       Ty = EnumTy->getDecl()->getIntegerType();
4217 
4218     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4219                 ? ABIArgInfo::getExtend()
4220                 : ABIArgInfo::getDirect());
4221   }
4222 
4223   // Structures with either a non-trivial destructor or a non-trivial
4224   // copy constructor are always indirect.
4225   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4226     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4227                                      CGCXXABI::RAA_DirectInMemory);
4228   }
4229 
4230   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4231   // elsewhere for GNU compatibility.
4232   if (isEmptyRecord(getContext(), Ty, true)) {
4233     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4234       return ABIArgInfo::getIgnore();
4235 
4236     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4237   }
4238 
4239   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4240   const Type *Base = nullptr;
4241   uint64_t Members = 0;
4242   if (isHomogeneousAggregate(Ty, Base, Members)) {
4243     return ABIArgInfo::getDirect(
4244         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4245   }
4246 
4247   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4248   uint64_t Size = getContext().getTypeSize(Ty);
4249   if (Size <= 128) {
4250     unsigned Alignment = getContext().getTypeAlign(Ty);
4251     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4252 
4253     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4254     // For aggregates with 16-byte alignment, we use i128.
4255     if (Alignment < 128 && Size == 128) {
4256       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4257       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4258     }
4259     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4260   }
4261 
4262   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4263 }
4264 
4265 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4266   if (RetTy->isVoidType())
4267     return ABIArgInfo::getIgnore();
4268 
4269   // Large vector types should be returned via memory.
4270   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4271     return getNaturalAlignIndirect(RetTy);
4272 
4273   if (!isAggregateTypeForABI(RetTy)) {
4274     // Treat an enum type as its underlying type.
4275     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4276       RetTy = EnumTy->getDecl()->getIntegerType();
4277 
4278     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4279                 ? ABIArgInfo::getExtend()
4280                 : ABIArgInfo::getDirect());
4281   }
4282 
4283   if (isEmptyRecord(getContext(), RetTy, true))
4284     return ABIArgInfo::getIgnore();
4285 
4286   const Type *Base = nullptr;
4287   uint64_t Members = 0;
4288   if (isHomogeneousAggregate(RetTy, Base, Members))
4289     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4290     return ABIArgInfo::getDirect();
4291 
4292   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4293   uint64_t Size = getContext().getTypeSize(RetTy);
4294   if (Size <= 128) {
4295     unsigned Alignment = getContext().getTypeAlign(RetTy);
4296     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4297 
4298     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4299     // For aggregates with 16-byte alignment, we use i128.
4300     if (Alignment < 128 && Size == 128) {
4301       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4302       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4303     }
4304     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4305   }
4306 
4307   return getNaturalAlignIndirect(RetTy);
4308 }
4309 
4310 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4311 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4312   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4313     // Check whether VT is legal.
4314     unsigned NumElements = VT->getNumElements();
4315     uint64_t Size = getContext().getTypeSize(VT);
4316     // NumElements should be power of 2 between 1 and 16.
4317     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4318       return true;
4319     return Size != 64 && (Size != 128 || NumElements == 1);
4320   }
4321   return false;
4322 }
4323 
4324 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4325   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4326   // point type or a short-vector type. This is the same as the 32-bit ABI,
4327   // but with the difference that any floating-point type is allowed,
4328   // including __fp16.
4329   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4330     if (BT->isFloatingPoint())
4331       return true;
4332   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4333     unsigned VecSize = getContext().getTypeSize(VT);
4334     if (VecSize == 64 || VecSize == 128)
4335       return true;
4336   }
4337   return false;
4338 }
4339 
4340 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4341                                                        uint64_t Members) const {
4342   return Members <= 4;
4343 }
4344 
4345 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4346                                             QualType Ty,
4347                                             CodeGenFunction &CGF) const {
4348   ABIArgInfo AI = classifyArgumentType(Ty);
4349   bool IsIndirect = AI.isIndirect();
4350 
4351   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4352   if (IsIndirect)
4353     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4354   else if (AI.getCoerceToType())
4355     BaseTy = AI.getCoerceToType();
4356 
4357   unsigned NumRegs = 1;
4358   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4359     BaseTy = ArrTy->getElementType();
4360     NumRegs = ArrTy->getNumElements();
4361   }
4362   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4363 
4364   // The AArch64 va_list type and handling is specified in the Procedure Call
4365   // Standard, section B.4:
4366   //
4367   // struct {
4368   //   void *__stack;
4369   //   void *__gr_top;
4370   //   void *__vr_top;
4371   //   int __gr_offs;
4372   //   int __vr_offs;
4373   // };
4374 
4375   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4376   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4377   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4378   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4379 
4380   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4381   CharUnits TyAlign = TyInfo.second;
4382 
4383   Address reg_offs_p = Address::invalid();
4384   llvm::Value *reg_offs = nullptr;
4385   int reg_top_index;
4386   CharUnits reg_top_offset;
4387   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4388   if (!IsFPR) {
4389     // 3 is the field number of __gr_offs
4390     reg_offs_p =
4391         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4392                                     "gr_offs_p");
4393     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4394     reg_top_index = 1; // field number for __gr_top
4395     reg_top_offset = CharUnits::fromQuantity(8);
4396     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4397   } else {
4398     // 4 is the field number of __vr_offs.
4399     reg_offs_p =
4400         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4401                                     "vr_offs_p");
4402     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4403     reg_top_index = 2; // field number for __vr_top
4404     reg_top_offset = CharUnits::fromQuantity(16);
4405     RegSize = 16 * NumRegs;
4406   }
4407 
4408   //=======================================
4409   // Find out where argument was passed
4410   //=======================================
4411 
4412   // If reg_offs >= 0 we're already using the stack for this type of
4413   // argument. We don't want to keep updating reg_offs (in case it overflows,
4414   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4415   // whatever they get).
4416   llvm::Value *UsingStack = nullptr;
4417   UsingStack = CGF.Builder.CreateICmpSGE(
4418       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4419 
4420   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4421 
4422   // Otherwise, at least some kind of argument could go in these registers, the
4423   // question is whether this particular type is too big.
4424   CGF.EmitBlock(MaybeRegBlock);
4425 
4426   // Integer arguments may need to correct register alignment (for example a
4427   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4428   // align __gr_offs to calculate the potential address.
4429   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4430     int Align = TyAlign.getQuantity();
4431 
4432     reg_offs = CGF.Builder.CreateAdd(
4433         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4434         "align_regoffs");
4435     reg_offs = CGF.Builder.CreateAnd(
4436         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4437         "aligned_regoffs");
4438   }
4439 
4440   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4441   // The fact that this is done unconditionally reflects the fact that
4442   // allocating an argument to the stack also uses up all the remaining
4443   // registers of the appropriate kind.
4444   llvm::Value *NewOffset = nullptr;
4445   NewOffset = CGF.Builder.CreateAdd(
4446       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4447   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4448 
4449   // Now we're in a position to decide whether this argument really was in
4450   // registers or not.
4451   llvm::Value *InRegs = nullptr;
4452   InRegs = CGF.Builder.CreateICmpSLE(
4453       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4454 
4455   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4456 
4457   //=======================================
4458   // Argument was in registers
4459   //=======================================
4460 
4461   // Now we emit the code for if the argument was originally passed in
4462   // registers. First start the appropriate block:
4463   CGF.EmitBlock(InRegBlock);
4464 
4465   llvm::Value *reg_top = nullptr;
4466   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4467                                                   reg_top_offset, "reg_top_p");
4468   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4469   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4470                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4471   Address RegAddr = Address::invalid();
4472   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4473 
4474   if (IsIndirect) {
4475     // If it's been passed indirectly (actually a struct), whatever we find from
4476     // stored registers or on the stack will actually be a struct **.
4477     MemTy = llvm::PointerType::getUnqual(MemTy);
4478   }
4479 
4480   const Type *Base = nullptr;
4481   uint64_t NumMembers = 0;
4482   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4483   if (IsHFA && NumMembers > 1) {
4484     // Homogeneous aggregates passed in registers will have their elements split
4485     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4486     // qN+1, ...). We reload and store into a temporary local variable
4487     // contiguously.
4488     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4489     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4490     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4491     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4492     Address Tmp = CGF.CreateTempAlloca(HFATy,
4493                                        std::max(TyAlign, BaseTyInfo.second));
4494 
4495     // On big-endian platforms, the value will be right-aligned in its slot.
4496     int Offset = 0;
4497     if (CGF.CGM.getDataLayout().isBigEndian() &&
4498         BaseTyInfo.first.getQuantity() < 16)
4499       Offset = 16 - BaseTyInfo.first.getQuantity();
4500 
4501     for (unsigned i = 0; i < NumMembers; ++i) {
4502       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4503       Address LoadAddr =
4504         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4505       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4506 
4507       Address StoreAddr =
4508         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4509 
4510       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4511       CGF.Builder.CreateStore(Elem, StoreAddr);
4512     }
4513 
4514     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4515   } else {
4516     // Otherwise the object is contiguous in memory.
4517 
4518     // It might be right-aligned in its slot.
4519     CharUnits SlotSize = BaseAddr.getAlignment();
4520     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4521         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4522         TyInfo.first < SlotSize) {
4523       CharUnits Offset = SlotSize - TyInfo.first;
4524       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4525     }
4526 
4527     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4528   }
4529 
4530   CGF.EmitBranch(ContBlock);
4531 
4532   //=======================================
4533   // Argument was on the stack
4534   //=======================================
4535   CGF.EmitBlock(OnStackBlock);
4536 
4537   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4538                                                 CharUnits::Zero(), "stack_p");
4539   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4540 
4541   // Again, stack arguments may need realignment. In this case both integer and
4542   // floating-point ones might be affected.
4543   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4544     int Align = TyAlign.getQuantity();
4545 
4546     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4547 
4548     OnStackPtr = CGF.Builder.CreateAdd(
4549         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4550         "align_stack");
4551     OnStackPtr = CGF.Builder.CreateAnd(
4552         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4553         "align_stack");
4554 
4555     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4556   }
4557   Address OnStackAddr(OnStackPtr,
4558                       std::max(CharUnits::fromQuantity(8), TyAlign));
4559 
4560   // All stack slots are multiples of 8 bytes.
4561   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4562   CharUnits StackSize;
4563   if (IsIndirect)
4564     StackSize = StackSlotSize;
4565   else
4566     StackSize = TyInfo.first.RoundUpToAlignment(StackSlotSize);
4567 
4568   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4569   llvm::Value *NewStack =
4570       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4571 
4572   // Write the new value of __stack for the next call to va_arg
4573   CGF.Builder.CreateStore(NewStack, stack_p);
4574 
4575   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4576       TyInfo.first < StackSlotSize) {
4577     CharUnits Offset = StackSlotSize - TyInfo.first;
4578     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4579   }
4580 
4581   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4582 
4583   CGF.EmitBranch(ContBlock);
4584 
4585   //=======================================
4586   // Tidy up
4587   //=======================================
4588   CGF.EmitBlock(ContBlock);
4589 
4590   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4591                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4592 
4593   if (IsIndirect)
4594     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4595                    TyInfo.second);
4596 
4597   return ResAddr;
4598 }
4599 
4600 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4601                                         CodeGenFunction &CGF) const {
4602   // The backend's lowering doesn't support va_arg for aggregates or
4603   // illegal vector types.  Lower VAArg here for these cases and use
4604   // the LLVM va_arg instruction for everything else.
4605   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4606     return Address::invalid();
4607 
4608   CharUnits SlotSize = CharUnits::fromQuantity(8);
4609 
4610   // Empty records are ignored for parameter passing purposes.
4611   if (isEmptyRecord(getContext(), Ty, true)) {
4612     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4613     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4614     return Addr;
4615   }
4616 
4617   // The size of the actual thing passed, which might end up just
4618   // being a pointer for indirect types.
4619   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4620 
4621   // Arguments bigger than 16 bytes which aren't homogeneous
4622   // aggregates should be passed indirectly.
4623   bool IsIndirect = false;
4624   if (TyInfo.first.getQuantity() > 16) {
4625     const Type *Base = nullptr;
4626     uint64_t Members = 0;
4627     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4628   }
4629 
4630   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4631                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4632 }
4633 
4634 //===----------------------------------------------------------------------===//
4635 // ARM ABI Implementation
4636 //===----------------------------------------------------------------------===//
4637 
4638 namespace {
4639 
4640 class ARMABIInfo : public ABIInfo {
4641 public:
4642   enum ABIKind {
4643     APCS = 0,
4644     AAPCS = 1,
4645     AAPCS_VFP
4646   };
4647 
4648 private:
4649   ABIKind Kind;
4650 
4651 public:
4652   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4653     setCCs();
4654   }
4655 
4656   bool isEABI() const {
4657     switch (getTarget().getTriple().getEnvironment()) {
4658     case llvm::Triple::Android:
4659     case llvm::Triple::EABI:
4660     case llvm::Triple::EABIHF:
4661     case llvm::Triple::GNUEABI:
4662     case llvm::Triple::GNUEABIHF:
4663       return true;
4664     default:
4665       return false;
4666     }
4667   }
4668 
4669   bool isEABIHF() const {
4670     switch (getTarget().getTriple().getEnvironment()) {
4671     case llvm::Triple::EABIHF:
4672     case llvm::Triple::GNUEABIHF:
4673       return true;
4674     default:
4675       return false;
4676     }
4677   }
4678 
4679   ABIKind getABIKind() const { return Kind; }
4680 
4681 private:
4682   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4683   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4684   bool isIllegalVectorType(QualType Ty) const;
4685 
4686   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4687   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4688                                          uint64_t Members) const override;
4689 
4690   void computeInfo(CGFunctionInfo &FI) const override;
4691 
4692   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4693                     QualType Ty) const override;
4694 
4695   llvm::CallingConv::ID getLLVMDefaultCC() const;
4696   llvm::CallingConv::ID getABIDefaultCC() const;
4697   void setCCs();
4698 };
4699 
4700 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4701 public:
4702   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4703     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4704 
4705   const ARMABIInfo &getABIInfo() const {
4706     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4707   }
4708 
4709   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4710     return 13;
4711   }
4712 
4713   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4714     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4715   }
4716 
4717   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4718                                llvm::Value *Address) const override {
4719     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4720 
4721     // 0-15 are the 16 integer registers.
4722     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4723     return false;
4724   }
4725 
4726   unsigned getSizeOfUnwindException() const override {
4727     if (getABIInfo().isEABI()) return 88;
4728     return TargetCodeGenInfo::getSizeOfUnwindException();
4729   }
4730 
4731   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4732                            CodeGen::CodeGenModule &CGM) const override {
4733     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4734     if (!FD)
4735       return;
4736 
4737     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4738     if (!Attr)
4739       return;
4740 
4741     const char *Kind;
4742     switch (Attr->getInterrupt()) {
4743     case ARMInterruptAttr::Generic: Kind = ""; break;
4744     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4745     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4746     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4747     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4748     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4749     }
4750 
4751     llvm::Function *Fn = cast<llvm::Function>(GV);
4752 
4753     Fn->addFnAttr("interrupt", Kind);
4754 
4755     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4756       return;
4757 
4758     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4759     // however this is not necessarily true on taking any interrupt. Instruct
4760     // the backend to perform a realignment as part of the function prologue.
4761     llvm::AttrBuilder B;
4762     B.addStackAlignmentAttr(8);
4763     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4764                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4765                                               llvm::AttributeSet::FunctionIndex,
4766                                               B));
4767   }
4768 };
4769 
4770 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4771   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4772                                         CodeGen::CodeGenModule &CGM) const;
4773 
4774 public:
4775   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4776       : ARMTargetCodeGenInfo(CGT, K) {}
4777 
4778   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4779                            CodeGen::CodeGenModule &CGM) const override;
4780 };
4781 
4782 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4783     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4784   if (!isa<FunctionDecl>(D))
4785     return;
4786   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4787     return;
4788 
4789   llvm::Function *F = cast<llvm::Function>(GV);
4790   F->addFnAttr("stack-probe-size",
4791                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4792 }
4793 
4794 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4795     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4796   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4797   addStackProbeSizeTargetAttribute(D, GV, CGM);
4798 }
4799 }
4800 
4801 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4802   if (!getCXXABI().classifyReturnType(FI))
4803     FI.getReturnInfo() =
4804         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4805 
4806   for (auto &I : FI.arguments())
4807     I.info = classifyArgumentType(I.type, FI.isVariadic());
4808 
4809   // Always honor user-specified calling convention.
4810   if (FI.getCallingConvention() != llvm::CallingConv::C)
4811     return;
4812 
4813   llvm::CallingConv::ID cc = getRuntimeCC();
4814   if (cc != llvm::CallingConv::C)
4815     FI.setEffectiveCallingConvention(cc);
4816 }
4817 
4818 /// Return the default calling convention that LLVM will use.
4819 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4820   // The default calling convention that LLVM will infer.
4821   if (isEABIHF())
4822     return llvm::CallingConv::ARM_AAPCS_VFP;
4823   else if (isEABI())
4824     return llvm::CallingConv::ARM_AAPCS;
4825   else
4826     return llvm::CallingConv::ARM_APCS;
4827 }
4828 
4829 /// Return the calling convention that our ABI would like us to use
4830 /// as the C calling convention.
4831 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4832   switch (getABIKind()) {
4833   case APCS: return llvm::CallingConv::ARM_APCS;
4834   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4835   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4836   }
4837   llvm_unreachable("bad ABI kind");
4838 }
4839 
4840 void ARMABIInfo::setCCs() {
4841   assert(getRuntimeCC() == llvm::CallingConv::C);
4842 
4843   // Don't muddy up the IR with a ton of explicit annotations if
4844   // they'd just match what LLVM will infer from the triple.
4845   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4846   if (abiCC != getLLVMDefaultCC())
4847     RuntimeCC = abiCC;
4848 
4849   BuiltinCC = (getABIKind() == APCS ?
4850                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4851 }
4852 
4853 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4854                                             bool isVariadic) const {
4855   // 6.1.2.1 The following argument types are VFP CPRCs:
4856   //   A single-precision floating-point type (including promoted
4857   //   half-precision types); A double-precision floating-point type;
4858   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4859   //   with a Base Type of a single- or double-precision floating-point type,
4860   //   64-bit containerized vectors or 128-bit containerized vectors with one
4861   //   to four Elements.
4862   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4863 
4864   Ty = useFirstFieldIfTransparentUnion(Ty);
4865 
4866   // Handle illegal vector types here.
4867   if (isIllegalVectorType(Ty)) {
4868     uint64_t Size = getContext().getTypeSize(Ty);
4869     if (Size <= 32) {
4870       llvm::Type *ResType =
4871           llvm::Type::getInt32Ty(getVMContext());
4872       return ABIArgInfo::getDirect(ResType);
4873     }
4874     if (Size == 64) {
4875       llvm::Type *ResType = llvm::VectorType::get(
4876           llvm::Type::getInt32Ty(getVMContext()), 2);
4877       return ABIArgInfo::getDirect(ResType);
4878     }
4879     if (Size == 128) {
4880       llvm::Type *ResType = llvm::VectorType::get(
4881           llvm::Type::getInt32Ty(getVMContext()), 4);
4882       return ABIArgInfo::getDirect(ResType);
4883     }
4884     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4885   }
4886 
4887   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
4888   // unspecified. This is not done for OpenCL as it handles the half type
4889   // natively, and does not need to interwork with AAPCS code.
4890   if (Ty->isHalfType() && !getContext().getLangOpts().OpenCL) {
4891     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
4892       llvm::Type::getFloatTy(getVMContext()) :
4893       llvm::Type::getInt32Ty(getVMContext());
4894     return ABIArgInfo::getDirect(ResType);
4895   }
4896 
4897   if (!isAggregateTypeForABI(Ty)) {
4898     // Treat an enum type as its underlying type.
4899     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4900       Ty = EnumTy->getDecl()->getIntegerType();
4901     }
4902 
4903     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4904                                           : ABIArgInfo::getDirect());
4905   }
4906 
4907   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4908     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4909   }
4910 
4911   // Ignore empty records.
4912   if (isEmptyRecord(getContext(), Ty, true))
4913     return ABIArgInfo::getIgnore();
4914 
4915   if (IsEffectivelyAAPCS_VFP) {
4916     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4917     // into VFP registers.
4918     const Type *Base = nullptr;
4919     uint64_t Members = 0;
4920     if (isHomogeneousAggregate(Ty, Base, Members)) {
4921       assert(Base && "Base class should be set for homogeneous aggregate");
4922       // Base can be a floating-point or a vector.
4923       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4924     }
4925   }
4926 
4927   // Support byval for ARM.
4928   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4929   // most 8-byte. We realign the indirect argument if type alignment is bigger
4930   // than ABI alignment.
4931   uint64_t ABIAlign = 4;
4932   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4933   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4934        getABIKind() == ARMABIInfo::AAPCS)
4935     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4936 
4937   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4938     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4939                                    /*ByVal=*/true,
4940                                    /*Realign=*/TyAlign > ABIAlign);
4941   }
4942 
4943   // Otherwise, pass by coercing to a structure of the appropriate size.
4944   llvm::Type* ElemTy;
4945   unsigned SizeRegs;
4946   // FIXME: Try to match the types of the arguments more accurately where
4947   // we can.
4948   if (getContext().getTypeAlign(Ty) <= 32) {
4949     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4950     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4951   } else {
4952     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4953     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4954   }
4955 
4956   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4957 }
4958 
4959 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4960                               llvm::LLVMContext &VMContext) {
4961   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4962   // is called integer-like if its size is less than or equal to one word, and
4963   // the offset of each of its addressable sub-fields is zero.
4964 
4965   uint64_t Size = Context.getTypeSize(Ty);
4966 
4967   // Check that the type fits in a word.
4968   if (Size > 32)
4969     return false;
4970 
4971   // FIXME: Handle vector types!
4972   if (Ty->isVectorType())
4973     return false;
4974 
4975   // Float types are never treated as "integer like".
4976   if (Ty->isRealFloatingType())
4977     return false;
4978 
4979   // If this is a builtin or pointer type then it is ok.
4980   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4981     return true;
4982 
4983   // Small complex integer types are "integer like".
4984   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4985     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4986 
4987   // Single element and zero sized arrays should be allowed, by the definition
4988   // above, but they are not.
4989 
4990   // Otherwise, it must be a record type.
4991   const RecordType *RT = Ty->getAs<RecordType>();
4992   if (!RT) return false;
4993 
4994   // Ignore records with flexible arrays.
4995   const RecordDecl *RD = RT->getDecl();
4996   if (RD->hasFlexibleArrayMember())
4997     return false;
4998 
4999   // Check that all sub-fields are at offset 0, and are themselves "integer
5000   // like".
5001   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5002 
5003   bool HadField = false;
5004   unsigned idx = 0;
5005   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5006        i != e; ++i, ++idx) {
5007     const FieldDecl *FD = *i;
5008 
5009     // Bit-fields are not addressable, we only need to verify they are "integer
5010     // like". We still have to disallow a subsequent non-bitfield, for example:
5011     //   struct { int : 0; int x }
5012     // is non-integer like according to gcc.
5013     if (FD->isBitField()) {
5014       if (!RD->isUnion())
5015         HadField = true;
5016 
5017       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5018         return false;
5019 
5020       continue;
5021     }
5022 
5023     // Check if this field is at offset 0.
5024     if (Layout.getFieldOffset(idx) != 0)
5025       return false;
5026 
5027     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5028       return false;
5029 
5030     // Only allow at most one field in a structure. This doesn't match the
5031     // wording above, but follows gcc in situations with a field following an
5032     // empty structure.
5033     if (!RD->isUnion()) {
5034       if (HadField)
5035         return false;
5036 
5037       HadField = true;
5038     }
5039   }
5040 
5041   return true;
5042 }
5043 
5044 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5045                                           bool isVariadic) const {
5046   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5047 
5048   if (RetTy->isVoidType())
5049     return ABIArgInfo::getIgnore();
5050 
5051   // Large vector types should be returned via memory.
5052   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5053     return getNaturalAlignIndirect(RetTy);
5054   }
5055 
5056   // __fp16 gets returned as if it were an int or float, but with the top 16
5057   // bits unspecified. This is not done for OpenCL as it handles the half type
5058   // natively, and does not need to interwork with AAPCS code.
5059   if (RetTy->isHalfType() && !getContext().getLangOpts().OpenCL) {
5060     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5061       llvm::Type::getFloatTy(getVMContext()) :
5062       llvm::Type::getInt32Ty(getVMContext());
5063     return ABIArgInfo::getDirect(ResType);
5064   }
5065 
5066   if (!isAggregateTypeForABI(RetTy)) {
5067     // Treat an enum type as its underlying type.
5068     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5069       RetTy = EnumTy->getDecl()->getIntegerType();
5070 
5071     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5072                                             : ABIArgInfo::getDirect();
5073   }
5074 
5075   // Are we following APCS?
5076   if (getABIKind() == APCS) {
5077     if (isEmptyRecord(getContext(), RetTy, false))
5078       return ABIArgInfo::getIgnore();
5079 
5080     // Complex types are all returned as packed integers.
5081     //
5082     // FIXME: Consider using 2 x vector types if the back end handles them
5083     // correctly.
5084     if (RetTy->isAnyComplexType())
5085       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5086           getVMContext(), getContext().getTypeSize(RetTy)));
5087 
5088     // Integer like structures are returned in r0.
5089     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5090       // Return in the smallest viable integer type.
5091       uint64_t Size = getContext().getTypeSize(RetTy);
5092       if (Size <= 8)
5093         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5094       if (Size <= 16)
5095         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5096       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5097     }
5098 
5099     // Otherwise return in memory.
5100     return getNaturalAlignIndirect(RetTy);
5101   }
5102 
5103   // Otherwise this is an AAPCS variant.
5104 
5105   if (isEmptyRecord(getContext(), RetTy, true))
5106     return ABIArgInfo::getIgnore();
5107 
5108   // Check for homogeneous aggregates with AAPCS-VFP.
5109   if (IsEffectivelyAAPCS_VFP) {
5110     const Type *Base = nullptr;
5111     uint64_t Members;
5112     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5113       assert(Base && "Base class should be set for homogeneous aggregate");
5114       // Homogeneous Aggregates are returned directly.
5115       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5116     }
5117   }
5118 
5119   // Aggregates <= 4 bytes are returned in r0; other aggregates
5120   // are returned indirectly.
5121   uint64_t Size = getContext().getTypeSize(RetTy);
5122   if (Size <= 32) {
5123     if (getDataLayout().isBigEndian())
5124       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5125       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5126 
5127     // Return in the smallest viable integer type.
5128     if (Size <= 8)
5129       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5130     if (Size <= 16)
5131       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5132     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5133   }
5134 
5135   return getNaturalAlignIndirect(RetTy);
5136 }
5137 
5138 /// isIllegalVector - check whether Ty is an illegal vector type.
5139 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5140   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5141     // Check whether VT is legal.
5142     unsigned NumElements = VT->getNumElements();
5143     uint64_t Size = getContext().getTypeSize(VT);
5144     // NumElements should be power of 2.
5145     if ((NumElements & (NumElements - 1)) != 0)
5146       return true;
5147     // Size should be greater than 32 bits.
5148     return Size <= 32;
5149   }
5150   return false;
5151 }
5152 
5153 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5154   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5155   // double, or 64-bit or 128-bit vectors.
5156   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5157     if (BT->getKind() == BuiltinType::Float ||
5158         BT->getKind() == BuiltinType::Double ||
5159         BT->getKind() == BuiltinType::LongDouble)
5160       return true;
5161   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5162     unsigned VecSize = getContext().getTypeSize(VT);
5163     if (VecSize == 64 || VecSize == 128)
5164       return true;
5165   }
5166   return false;
5167 }
5168 
5169 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5170                                                    uint64_t Members) const {
5171   return Members <= 4;
5172 }
5173 
5174 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5175                               QualType Ty) const {
5176   CharUnits SlotSize = CharUnits::fromQuantity(4);
5177 
5178   // Empty records are ignored for parameter passing purposes.
5179   if (isEmptyRecord(getContext(), Ty, true)) {
5180     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5181     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5182     return Addr;
5183   }
5184 
5185   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5186   CharUnits TyAlignForABI = TyInfo.second;
5187 
5188   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5189   bool IsIndirect = false;
5190   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5191     IsIndirect = true;
5192 
5193   // Otherwise, bound the type's ABI alignment.
5194   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5195   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5196   // Our callers should be prepared to handle an under-aligned address.
5197   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5198              getABIKind() == ARMABIInfo::AAPCS) {
5199     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5200     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5201   } else {
5202     TyAlignForABI = CharUnits::fromQuantity(4);
5203   }
5204   TyInfo.second = TyAlignForABI;
5205 
5206   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5207                           SlotSize, /*AllowHigherAlign*/ true);
5208 }
5209 
5210 //===----------------------------------------------------------------------===//
5211 // NVPTX ABI Implementation
5212 //===----------------------------------------------------------------------===//
5213 
5214 namespace {
5215 
5216 class NVPTXABIInfo : public ABIInfo {
5217 public:
5218   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5219 
5220   ABIArgInfo classifyReturnType(QualType RetTy) const;
5221   ABIArgInfo classifyArgumentType(QualType Ty) const;
5222 
5223   void computeInfo(CGFunctionInfo &FI) const override;
5224   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5225                     QualType Ty) const override;
5226 };
5227 
5228 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5229 public:
5230   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5231     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5232 
5233   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5234                            CodeGen::CodeGenModule &M) const override;
5235 private:
5236   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5237   // resulting MDNode to the nvvm.annotations MDNode.
5238   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5239 };
5240 
5241 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5242   if (RetTy->isVoidType())
5243     return ABIArgInfo::getIgnore();
5244 
5245   // note: this is different from default ABI
5246   if (!RetTy->isScalarType())
5247     return ABIArgInfo::getDirect();
5248 
5249   // Treat an enum type as its underlying type.
5250   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5251     RetTy = EnumTy->getDecl()->getIntegerType();
5252 
5253   return (RetTy->isPromotableIntegerType() ?
5254           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5255 }
5256 
5257 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5258   // Treat an enum type as its underlying type.
5259   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5260     Ty = EnumTy->getDecl()->getIntegerType();
5261 
5262   // Return aggregates type as indirect by value
5263   if (isAggregateTypeForABI(Ty))
5264     return getNaturalAlignIndirect(Ty, /* byval */ true);
5265 
5266   return (Ty->isPromotableIntegerType() ?
5267           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5268 }
5269 
5270 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5271   if (!getCXXABI().classifyReturnType(FI))
5272     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5273   for (auto &I : FI.arguments())
5274     I.info = classifyArgumentType(I.type);
5275 
5276   // Always honor user-specified calling convention.
5277   if (FI.getCallingConvention() != llvm::CallingConv::C)
5278     return;
5279 
5280   FI.setEffectiveCallingConvention(getRuntimeCC());
5281 }
5282 
5283 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5284                                 QualType Ty) const {
5285   llvm_unreachable("NVPTX does not support varargs");
5286 }
5287 
5288 void NVPTXTargetCodeGenInfo::
5289 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5290                     CodeGen::CodeGenModule &M) const{
5291   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5292   if (!FD) return;
5293 
5294   llvm::Function *F = cast<llvm::Function>(GV);
5295 
5296   // Perform special handling in OpenCL mode
5297   if (M.getLangOpts().OpenCL) {
5298     // Use OpenCL function attributes to check for kernel functions
5299     // By default, all functions are device functions
5300     if (FD->hasAttr<OpenCLKernelAttr>()) {
5301       // OpenCL __kernel functions get kernel metadata
5302       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5303       addNVVMMetadata(F, "kernel", 1);
5304       // And kernel functions are not subject to inlining
5305       F->addFnAttr(llvm::Attribute::NoInline);
5306     }
5307   }
5308 
5309   // Perform special handling in CUDA mode.
5310   if (M.getLangOpts().CUDA) {
5311     // CUDA __global__ functions get a kernel metadata entry.  Since
5312     // __global__ functions cannot be called from the device, we do not
5313     // need to set the noinline attribute.
5314     if (FD->hasAttr<CUDAGlobalAttr>()) {
5315       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5316       addNVVMMetadata(F, "kernel", 1);
5317     }
5318     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5319       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5320       llvm::APSInt MaxThreads(32);
5321       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5322       if (MaxThreads > 0)
5323         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5324 
5325       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5326       // not specified in __launch_bounds__ or if the user specified a 0 value,
5327       // we don't have to add a PTX directive.
5328       if (Attr->getMinBlocks()) {
5329         llvm::APSInt MinBlocks(32);
5330         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5331         if (MinBlocks > 0)
5332           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5333           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5334       }
5335     }
5336   }
5337 }
5338 
5339 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5340                                              int Operand) {
5341   llvm::Module *M = F->getParent();
5342   llvm::LLVMContext &Ctx = M->getContext();
5343 
5344   // Get "nvvm.annotations" metadata node
5345   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5346 
5347   llvm::Metadata *MDVals[] = {
5348       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5349       llvm::ConstantAsMetadata::get(
5350           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5351   // Append metadata to nvvm.annotations
5352   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5353 }
5354 }
5355 
5356 //===----------------------------------------------------------------------===//
5357 // SystemZ ABI Implementation
5358 //===----------------------------------------------------------------------===//
5359 
5360 namespace {
5361 
5362 class SystemZABIInfo : public ABIInfo {
5363   bool HasVector;
5364 
5365 public:
5366   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5367     : ABIInfo(CGT), HasVector(HV) {}
5368 
5369   bool isPromotableIntegerType(QualType Ty) const;
5370   bool isCompoundType(QualType Ty) const;
5371   bool isVectorArgumentType(QualType Ty) const;
5372   bool isFPArgumentType(QualType Ty) const;
5373   QualType GetSingleElementType(QualType Ty) const;
5374 
5375   ABIArgInfo classifyReturnType(QualType RetTy) const;
5376   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5377 
5378   void computeInfo(CGFunctionInfo &FI) const override {
5379     if (!getCXXABI().classifyReturnType(FI))
5380       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5381     for (auto &I : FI.arguments())
5382       I.info = classifyArgumentType(I.type);
5383   }
5384 
5385   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5386                     QualType Ty) const override;
5387 };
5388 
5389 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5390 public:
5391   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5392     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5393 };
5394 
5395 }
5396 
5397 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5398   // Treat an enum type as its underlying type.
5399   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5400     Ty = EnumTy->getDecl()->getIntegerType();
5401 
5402   // Promotable integer types are required to be promoted by the ABI.
5403   if (Ty->isPromotableIntegerType())
5404     return true;
5405 
5406   // 32-bit values must also be promoted.
5407   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5408     switch (BT->getKind()) {
5409     case BuiltinType::Int:
5410     case BuiltinType::UInt:
5411       return true;
5412     default:
5413       return false;
5414     }
5415   return false;
5416 }
5417 
5418 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5419   return (Ty->isAnyComplexType() ||
5420           Ty->isVectorType() ||
5421           isAggregateTypeForABI(Ty));
5422 }
5423 
5424 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5425   return (HasVector &&
5426           Ty->isVectorType() &&
5427           getContext().getTypeSize(Ty) <= 128);
5428 }
5429 
5430 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5431   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5432     switch (BT->getKind()) {
5433     case BuiltinType::Float:
5434     case BuiltinType::Double:
5435       return true;
5436     default:
5437       return false;
5438     }
5439 
5440   return false;
5441 }
5442 
5443 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5444   if (const RecordType *RT = Ty->getAsStructureType()) {
5445     const RecordDecl *RD = RT->getDecl();
5446     QualType Found;
5447 
5448     // If this is a C++ record, check the bases first.
5449     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5450       for (const auto &I : CXXRD->bases()) {
5451         QualType Base = I.getType();
5452 
5453         // Empty bases don't affect things either way.
5454         if (isEmptyRecord(getContext(), Base, true))
5455           continue;
5456 
5457         if (!Found.isNull())
5458           return Ty;
5459         Found = GetSingleElementType(Base);
5460       }
5461 
5462     // Check the fields.
5463     for (const auto *FD : RD->fields()) {
5464       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5465       // Unlike isSingleElementStruct(), empty structure and array fields
5466       // do count.  So do anonymous bitfields that aren't zero-sized.
5467       if (getContext().getLangOpts().CPlusPlus &&
5468           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5469         continue;
5470 
5471       // Unlike isSingleElementStruct(), arrays do not count.
5472       // Nested structures still do though.
5473       if (!Found.isNull())
5474         return Ty;
5475       Found = GetSingleElementType(FD->getType());
5476     }
5477 
5478     // Unlike isSingleElementStruct(), trailing padding is allowed.
5479     // An 8-byte aligned struct s { float f; } is passed as a double.
5480     if (!Found.isNull())
5481       return Found;
5482   }
5483 
5484   return Ty;
5485 }
5486 
5487 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5488                                   QualType Ty) const {
5489   // Assume that va_list type is correct; should be pointer to LLVM type:
5490   // struct {
5491   //   i64 __gpr;
5492   //   i64 __fpr;
5493   //   i8 *__overflow_arg_area;
5494   //   i8 *__reg_save_area;
5495   // };
5496 
5497   // Every non-vector argument occupies 8 bytes and is passed by preference
5498   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5499   // always passed on the stack.
5500   Ty = getContext().getCanonicalType(Ty);
5501   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5502   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5503   llvm::Type *DirectTy = ArgTy;
5504   ABIArgInfo AI = classifyArgumentType(Ty);
5505   bool IsIndirect = AI.isIndirect();
5506   bool InFPRs = false;
5507   bool IsVector = false;
5508   CharUnits UnpaddedSize;
5509   CharUnits DirectAlign;
5510   if (IsIndirect) {
5511     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5512     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5513   } else {
5514     if (AI.getCoerceToType())
5515       ArgTy = AI.getCoerceToType();
5516     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5517     IsVector = ArgTy->isVectorTy();
5518     UnpaddedSize = TyInfo.first;
5519     DirectAlign = TyInfo.second;
5520   }
5521   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5522   if (IsVector && UnpaddedSize > PaddedSize)
5523     PaddedSize = CharUnits::fromQuantity(16);
5524   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5525 
5526   CharUnits Padding = (PaddedSize - UnpaddedSize);
5527 
5528   llvm::Type *IndexTy = CGF.Int64Ty;
5529   llvm::Value *PaddedSizeV =
5530     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5531 
5532   if (IsVector) {
5533     // Work out the address of a vector argument on the stack.
5534     // Vector arguments are always passed in the high bits of a
5535     // single (8 byte) or double (16 byte) stack slot.
5536     Address OverflowArgAreaPtr =
5537       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5538                                   "overflow_arg_area_ptr");
5539     Address OverflowArgArea =
5540       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5541               TyInfo.second);
5542     Address MemAddr =
5543       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5544 
5545     // Update overflow_arg_area_ptr pointer
5546     llvm::Value *NewOverflowArgArea =
5547       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5548                             "overflow_arg_area");
5549     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5550 
5551     return MemAddr;
5552   }
5553 
5554   assert(PaddedSize.getQuantity() == 8);
5555 
5556   unsigned MaxRegs, RegCountField, RegSaveIndex;
5557   CharUnits RegPadding;
5558   if (InFPRs) {
5559     MaxRegs = 4; // Maximum of 4 FPR arguments
5560     RegCountField = 1; // __fpr
5561     RegSaveIndex = 16; // save offset for f0
5562     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5563   } else {
5564     MaxRegs = 5; // Maximum of 5 GPR arguments
5565     RegCountField = 0; // __gpr
5566     RegSaveIndex = 2; // save offset for r2
5567     RegPadding = Padding; // values are passed in the low bits of a GPR
5568   }
5569 
5570   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5571       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5572       "reg_count_ptr");
5573   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5574   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5575   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5576                                                  "fits_in_regs");
5577 
5578   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5579   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5580   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5581   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5582 
5583   // Emit code to load the value if it was passed in registers.
5584   CGF.EmitBlock(InRegBlock);
5585 
5586   // Work out the address of an argument register.
5587   llvm::Value *ScaledRegCount =
5588     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5589   llvm::Value *RegBase =
5590     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5591                                       + RegPadding.getQuantity());
5592   llvm::Value *RegOffset =
5593     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5594   Address RegSaveAreaPtr =
5595       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5596                                   "reg_save_area_ptr");
5597   llvm::Value *RegSaveArea =
5598     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5599   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5600                                            "raw_reg_addr"),
5601                      PaddedSize);
5602   Address RegAddr =
5603     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5604 
5605   // Update the register count
5606   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5607   llvm::Value *NewRegCount =
5608     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5609   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5610   CGF.EmitBranch(ContBlock);
5611 
5612   // Emit code to load the value if it was passed in memory.
5613   CGF.EmitBlock(InMemBlock);
5614 
5615   // Work out the address of a stack argument.
5616   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5617       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5618   Address OverflowArgArea =
5619     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5620             PaddedSize);
5621   Address RawMemAddr =
5622     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5623   Address MemAddr =
5624     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5625 
5626   // Update overflow_arg_area_ptr pointer
5627   llvm::Value *NewOverflowArgArea =
5628     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5629                           "overflow_arg_area");
5630   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5631   CGF.EmitBranch(ContBlock);
5632 
5633   // Return the appropriate result.
5634   CGF.EmitBlock(ContBlock);
5635   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5636                                  MemAddr, InMemBlock, "va_arg.addr");
5637 
5638   if (IsIndirect)
5639     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
5640                       TyInfo.second);
5641 
5642   return ResAddr;
5643 }
5644 
5645 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5646   if (RetTy->isVoidType())
5647     return ABIArgInfo::getIgnore();
5648   if (isVectorArgumentType(RetTy))
5649     return ABIArgInfo::getDirect();
5650   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5651     return getNaturalAlignIndirect(RetTy);
5652   return (isPromotableIntegerType(RetTy) ?
5653           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5654 }
5655 
5656 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5657   // Handle the generic C++ ABI.
5658   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5659     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5660 
5661   // Integers and enums are extended to full register width.
5662   if (isPromotableIntegerType(Ty))
5663     return ABIArgInfo::getExtend();
5664 
5665   // Handle vector types and vector-like structure types.  Note that
5666   // as opposed to float-like structure types, we do not allow any
5667   // padding for vector-like structures, so verify the sizes match.
5668   uint64_t Size = getContext().getTypeSize(Ty);
5669   QualType SingleElementTy = GetSingleElementType(Ty);
5670   if (isVectorArgumentType(SingleElementTy) &&
5671       getContext().getTypeSize(SingleElementTy) == Size)
5672     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5673 
5674   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5675   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5676     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5677 
5678   // Handle small structures.
5679   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5680     // Structures with flexible arrays have variable length, so really
5681     // fail the size test above.
5682     const RecordDecl *RD = RT->getDecl();
5683     if (RD->hasFlexibleArrayMember())
5684       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5685 
5686     // The structure is passed as an unextended integer, a float, or a double.
5687     llvm::Type *PassTy;
5688     if (isFPArgumentType(SingleElementTy)) {
5689       assert(Size == 32 || Size == 64);
5690       if (Size == 32)
5691         PassTy = llvm::Type::getFloatTy(getVMContext());
5692       else
5693         PassTy = llvm::Type::getDoubleTy(getVMContext());
5694     } else
5695       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5696     return ABIArgInfo::getDirect(PassTy);
5697   }
5698 
5699   // Non-structure compounds are passed indirectly.
5700   if (isCompoundType(Ty))
5701     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5702 
5703   return ABIArgInfo::getDirect(nullptr);
5704 }
5705 
5706 //===----------------------------------------------------------------------===//
5707 // MSP430 ABI Implementation
5708 //===----------------------------------------------------------------------===//
5709 
5710 namespace {
5711 
5712 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5713 public:
5714   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5715     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5716   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5717                            CodeGen::CodeGenModule &M) const override;
5718 };
5719 
5720 }
5721 
5722 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5723                                                   llvm::GlobalValue *GV,
5724                                              CodeGen::CodeGenModule &M) const {
5725   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5726     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5727       // Handle 'interrupt' attribute:
5728       llvm::Function *F = cast<llvm::Function>(GV);
5729 
5730       // Step 1: Set ISR calling convention.
5731       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5732 
5733       // Step 2: Add attributes goodness.
5734       F->addFnAttr(llvm::Attribute::NoInline);
5735 
5736       // Step 3: Emit ISR vector alias.
5737       unsigned Num = attr->getNumber() / 2;
5738       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5739                                 "__isr_" + Twine(Num), F);
5740     }
5741   }
5742 }
5743 
5744 //===----------------------------------------------------------------------===//
5745 // MIPS ABI Implementation.  This works for both little-endian and
5746 // big-endian variants.
5747 //===----------------------------------------------------------------------===//
5748 
5749 namespace {
5750 class MipsABIInfo : public ABIInfo {
5751   bool IsO32;
5752   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5753   void CoerceToIntArgs(uint64_t TySize,
5754                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5755   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5756   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5757   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5758 public:
5759   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5760     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5761     StackAlignInBytes(IsO32 ? 8 : 16) {}
5762 
5763   ABIArgInfo classifyReturnType(QualType RetTy) const;
5764   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5765   void computeInfo(CGFunctionInfo &FI) const override;
5766   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5767                     QualType Ty) const override;
5768   bool shouldSignExtUnsignedType(QualType Ty) const override;
5769 };
5770 
5771 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5772   unsigned SizeOfUnwindException;
5773 public:
5774   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5775     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5776       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5777 
5778   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5779     return 29;
5780   }
5781 
5782   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5783                            CodeGen::CodeGenModule &CGM) const override {
5784     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5785     if (!FD) return;
5786     llvm::Function *Fn = cast<llvm::Function>(GV);
5787     if (FD->hasAttr<Mips16Attr>()) {
5788       Fn->addFnAttr("mips16");
5789     }
5790     else if (FD->hasAttr<NoMips16Attr>()) {
5791       Fn->addFnAttr("nomips16");
5792     }
5793   }
5794 
5795   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5796                                llvm::Value *Address) const override;
5797 
5798   unsigned getSizeOfUnwindException() const override {
5799     return SizeOfUnwindException;
5800   }
5801 };
5802 }
5803 
5804 void MipsABIInfo::CoerceToIntArgs(
5805     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
5806   llvm::IntegerType *IntTy =
5807     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5808 
5809   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5810   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5811     ArgList.push_back(IntTy);
5812 
5813   // If necessary, add one more integer type to ArgList.
5814   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5815 
5816   if (R)
5817     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5818 }
5819 
5820 // In N32/64, an aligned double precision floating point field is passed in
5821 // a register.
5822 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5823   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5824 
5825   if (IsO32) {
5826     CoerceToIntArgs(TySize, ArgList);
5827     return llvm::StructType::get(getVMContext(), ArgList);
5828   }
5829 
5830   if (Ty->isComplexType())
5831     return CGT.ConvertType(Ty);
5832 
5833   const RecordType *RT = Ty->getAs<RecordType>();
5834 
5835   // Unions/vectors are passed in integer registers.
5836   if (!RT || !RT->isStructureOrClassType()) {
5837     CoerceToIntArgs(TySize, ArgList);
5838     return llvm::StructType::get(getVMContext(), ArgList);
5839   }
5840 
5841   const RecordDecl *RD = RT->getDecl();
5842   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5843   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5844 
5845   uint64_t LastOffset = 0;
5846   unsigned idx = 0;
5847   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5848 
5849   // Iterate over fields in the struct/class and check if there are any aligned
5850   // double fields.
5851   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5852        i != e; ++i, ++idx) {
5853     const QualType Ty = i->getType();
5854     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5855 
5856     if (!BT || BT->getKind() != BuiltinType::Double)
5857       continue;
5858 
5859     uint64_t Offset = Layout.getFieldOffset(idx);
5860     if (Offset % 64) // Ignore doubles that are not aligned.
5861       continue;
5862 
5863     // Add ((Offset - LastOffset) / 64) args of type i64.
5864     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5865       ArgList.push_back(I64);
5866 
5867     // Add double type.
5868     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5869     LastOffset = Offset + 64;
5870   }
5871 
5872   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5873   ArgList.append(IntArgList.begin(), IntArgList.end());
5874 
5875   return llvm::StructType::get(getVMContext(), ArgList);
5876 }
5877 
5878 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5879                                         uint64_t Offset) const {
5880   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5881     return nullptr;
5882 
5883   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5884 }
5885 
5886 ABIArgInfo
5887 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5888   Ty = useFirstFieldIfTransparentUnion(Ty);
5889 
5890   uint64_t OrigOffset = Offset;
5891   uint64_t TySize = getContext().getTypeSize(Ty);
5892   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5893 
5894   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5895                    (uint64_t)StackAlignInBytes);
5896   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5897   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5898 
5899   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5900     // Ignore empty aggregates.
5901     if (TySize == 0)
5902       return ABIArgInfo::getIgnore();
5903 
5904     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5905       Offset = OrigOffset + MinABIStackAlignInBytes;
5906       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5907     }
5908 
5909     // If we have reached here, aggregates are passed directly by coercing to
5910     // another structure type. Padding is inserted if the offset of the
5911     // aggregate is unaligned.
5912     ABIArgInfo ArgInfo =
5913         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5914                               getPaddingType(OrigOffset, CurrOffset));
5915     ArgInfo.setInReg(true);
5916     return ArgInfo;
5917   }
5918 
5919   // Treat an enum type as its underlying type.
5920   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5921     Ty = EnumTy->getDecl()->getIntegerType();
5922 
5923   // All integral types are promoted to the GPR width.
5924   if (Ty->isIntegralOrEnumerationType())
5925     return ABIArgInfo::getExtend();
5926 
5927   return ABIArgInfo::getDirect(
5928       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5929 }
5930 
5931 llvm::Type*
5932 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5933   const RecordType *RT = RetTy->getAs<RecordType>();
5934   SmallVector<llvm::Type*, 8> RTList;
5935 
5936   if (RT && RT->isStructureOrClassType()) {
5937     const RecordDecl *RD = RT->getDecl();
5938     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5939     unsigned FieldCnt = Layout.getFieldCount();
5940 
5941     // N32/64 returns struct/classes in floating point registers if the
5942     // following conditions are met:
5943     // 1. The size of the struct/class is no larger than 128-bit.
5944     // 2. The struct/class has one or two fields all of which are floating
5945     //    point types.
5946     // 3. The offset of the first field is zero (this follows what gcc does).
5947     //
5948     // Any other composite results are returned in integer registers.
5949     //
5950     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5951       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5952       for (; b != e; ++b) {
5953         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5954 
5955         if (!BT || !BT->isFloatingPoint())
5956           break;
5957 
5958         RTList.push_back(CGT.ConvertType(b->getType()));
5959       }
5960 
5961       if (b == e)
5962         return llvm::StructType::get(getVMContext(), RTList,
5963                                      RD->hasAttr<PackedAttr>());
5964 
5965       RTList.clear();
5966     }
5967   }
5968 
5969   CoerceToIntArgs(Size, RTList);
5970   return llvm::StructType::get(getVMContext(), RTList);
5971 }
5972 
5973 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5974   uint64_t Size = getContext().getTypeSize(RetTy);
5975 
5976   if (RetTy->isVoidType())
5977     return ABIArgInfo::getIgnore();
5978 
5979   // O32 doesn't treat zero-sized structs differently from other structs.
5980   // However, N32/N64 ignores zero sized return values.
5981   if (!IsO32 && Size == 0)
5982     return ABIArgInfo::getIgnore();
5983 
5984   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5985     if (Size <= 128) {
5986       if (RetTy->isAnyComplexType())
5987         return ABIArgInfo::getDirect();
5988 
5989       // O32 returns integer vectors in registers and N32/N64 returns all small
5990       // aggregates in registers.
5991       if (!IsO32 ||
5992           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5993         ABIArgInfo ArgInfo =
5994             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5995         ArgInfo.setInReg(true);
5996         return ArgInfo;
5997       }
5998     }
5999 
6000     return getNaturalAlignIndirect(RetTy);
6001   }
6002 
6003   // Treat an enum type as its underlying type.
6004   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6005     RetTy = EnumTy->getDecl()->getIntegerType();
6006 
6007   return (RetTy->isPromotableIntegerType() ?
6008           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6009 }
6010 
6011 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6012   ABIArgInfo &RetInfo = FI.getReturnInfo();
6013   if (!getCXXABI().classifyReturnType(FI))
6014     RetInfo = classifyReturnType(FI.getReturnType());
6015 
6016   // Check if a pointer to an aggregate is passed as a hidden argument.
6017   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6018 
6019   for (auto &I : FI.arguments())
6020     I.info = classifyArgumentType(I.type, Offset);
6021 }
6022 
6023 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6024                                QualType OrigTy) const {
6025   QualType Ty = OrigTy;
6026 
6027   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6028   // Pointers are also promoted in the same way but this only matters for N32.
6029   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6030   unsigned PtrWidth = getTarget().getPointerWidth(0);
6031   bool DidPromote = false;
6032   if ((Ty->isIntegerType() &&
6033           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6034       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6035     DidPromote = true;
6036     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6037                                             Ty->isSignedIntegerType());
6038   }
6039 
6040   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6041 
6042   // The alignment of things in the argument area is never larger than
6043   // StackAlignInBytes.
6044   TyInfo.second =
6045     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6046 
6047   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6048   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6049 
6050   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6051                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6052 
6053 
6054   // If there was a promotion, "unpromote" into a temporary.
6055   // TODO: can we just use a pointer into a subset of the original slot?
6056   if (DidPromote) {
6057     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6058     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6059 
6060     // Truncate down to the right width.
6061     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6062                                                  : CGF.IntPtrTy);
6063     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6064     if (OrigTy->isPointerType())
6065       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6066 
6067     CGF.Builder.CreateStore(V, Temp);
6068     Addr = Temp;
6069   }
6070 
6071   return Addr;
6072 }
6073 
6074 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6075   int TySize = getContext().getTypeSize(Ty);
6076 
6077   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6078   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6079     return true;
6080 
6081   return false;
6082 }
6083 
6084 bool
6085 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6086                                                llvm::Value *Address) const {
6087   // This information comes from gcc's implementation, which seems to
6088   // as canonical as it gets.
6089 
6090   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6091   // are aliased to pairs of single-precision FP registers.
6092   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6093 
6094   // 0-31 are the general purpose registers, $0 - $31.
6095   // 32-63 are the floating-point registers, $f0 - $f31.
6096   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6097   // 66 is the (notional, I think) register for signal-handler return.
6098   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6099 
6100   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6101   // They are one bit wide and ignored here.
6102 
6103   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6104   // (coprocessor 1 is the FP unit)
6105   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6106   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6107   // 176-181 are the DSP accumulator registers.
6108   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6109   return false;
6110 }
6111 
6112 //===----------------------------------------------------------------------===//
6113 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6114 // Currently subclassed only to implement custom OpenCL C function attribute
6115 // handling.
6116 //===----------------------------------------------------------------------===//
6117 
6118 namespace {
6119 
6120 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6121 public:
6122   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6123     : DefaultTargetCodeGenInfo(CGT) {}
6124 
6125   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6126                            CodeGen::CodeGenModule &M) const override;
6127 };
6128 
6129 void TCETargetCodeGenInfo::setTargetAttributes(
6130     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6131   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6132   if (!FD) return;
6133 
6134   llvm::Function *F = cast<llvm::Function>(GV);
6135 
6136   if (M.getLangOpts().OpenCL) {
6137     if (FD->hasAttr<OpenCLKernelAttr>()) {
6138       // OpenCL C Kernel functions are not subject to inlining
6139       F->addFnAttr(llvm::Attribute::NoInline);
6140       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6141       if (Attr) {
6142         // Convert the reqd_work_group_size() attributes to metadata.
6143         llvm::LLVMContext &Context = F->getContext();
6144         llvm::NamedMDNode *OpenCLMetadata =
6145             M.getModule().getOrInsertNamedMetadata(
6146                 "opencl.kernel_wg_size_info");
6147 
6148         SmallVector<llvm::Metadata *, 5> Operands;
6149         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6150 
6151         Operands.push_back(
6152             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6153                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6154         Operands.push_back(
6155             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6156                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6157         Operands.push_back(
6158             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6159                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6160 
6161         // Add a boolean constant operand for "required" (true) or "hint"
6162         // (false) for implementing the work_group_size_hint attr later.
6163         // Currently always true as the hint is not yet implemented.
6164         Operands.push_back(
6165             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6166         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6167       }
6168     }
6169   }
6170 }
6171 
6172 }
6173 
6174 //===----------------------------------------------------------------------===//
6175 // Hexagon ABI Implementation
6176 //===----------------------------------------------------------------------===//
6177 
6178 namespace {
6179 
6180 class HexagonABIInfo : public ABIInfo {
6181 
6182 
6183 public:
6184   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6185 
6186 private:
6187 
6188   ABIArgInfo classifyReturnType(QualType RetTy) const;
6189   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6190 
6191   void computeInfo(CGFunctionInfo &FI) const override;
6192 
6193   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6194                     QualType Ty) const override;
6195 };
6196 
6197 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6198 public:
6199   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6200     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6201 
6202   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6203     return 29;
6204   }
6205 };
6206 
6207 }
6208 
6209 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6210   if (!getCXXABI().classifyReturnType(FI))
6211     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6212   for (auto &I : FI.arguments())
6213     I.info = classifyArgumentType(I.type);
6214 }
6215 
6216 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6217   if (!isAggregateTypeForABI(Ty)) {
6218     // Treat an enum type as its underlying type.
6219     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6220       Ty = EnumTy->getDecl()->getIntegerType();
6221 
6222     return (Ty->isPromotableIntegerType() ?
6223             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6224   }
6225 
6226   // Ignore empty records.
6227   if (isEmptyRecord(getContext(), Ty, true))
6228     return ABIArgInfo::getIgnore();
6229 
6230   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6231     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6232 
6233   uint64_t Size = getContext().getTypeSize(Ty);
6234   if (Size > 64)
6235     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6236     // Pass in the smallest viable integer type.
6237   else if (Size > 32)
6238       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6239   else if (Size > 16)
6240       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6241   else if (Size > 8)
6242       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6243   else
6244       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6245 }
6246 
6247 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6248   if (RetTy->isVoidType())
6249     return ABIArgInfo::getIgnore();
6250 
6251   // Large vector types should be returned via memory.
6252   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6253     return getNaturalAlignIndirect(RetTy);
6254 
6255   if (!isAggregateTypeForABI(RetTy)) {
6256     // Treat an enum type as its underlying type.
6257     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6258       RetTy = EnumTy->getDecl()->getIntegerType();
6259 
6260     return (RetTy->isPromotableIntegerType() ?
6261             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6262   }
6263 
6264   if (isEmptyRecord(getContext(), RetTy, true))
6265     return ABIArgInfo::getIgnore();
6266 
6267   // Aggregates <= 8 bytes are returned in r0; other aggregates
6268   // are returned indirectly.
6269   uint64_t Size = getContext().getTypeSize(RetTy);
6270   if (Size <= 64) {
6271     // Return in the smallest viable integer type.
6272     if (Size <= 8)
6273       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6274     if (Size <= 16)
6275       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6276     if (Size <= 32)
6277       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6278     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6279   }
6280 
6281   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6282 }
6283 
6284 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6285                                   QualType Ty) const {
6286   // FIXME: Someone needs to audit that this handle alignment correctly.
6287   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6288                           getContext().getTypeInfoInChars(Ty),
6289                           CharUnits::fromQuantity(4),
6290                           /*AllowHigherAlign*/ true);
6291 }
6292 
6293 //===----------------------------------------------------------------------===//
6294 // AMDGPU ABI Implementation
6295 //===----------------------------------------------------------------------===//
6296 
6297 namespace {
6298 
6299 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6300 public:
6301   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6302     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6303   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6304                            CodeGen::CodeGenModule &M) const override;
6305 };
6306 
6307 }
6308 
6309 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6310   const Decl *D,
6311   llvm::GlobalValue *GV,
6312   CodeGen::CodeGenModule &M) const {
6313   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6314   if (!FD)
6315     return;
6316 
6317   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6318     llvm::Function *F = cast<llvm::Function>(GV);
6319     uint32_t NumVGPR = Attr->getNumVGPR();
6320     if (NumVGPR != 0)
6321       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6322   }
6323 
6324   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6325     llvm::Function *F = cast<llvm::Function>(GV);
6326     unsigned NumSGPR = Attr->getNumSGPR();
6327     if (NumSGPR != 0)
6328       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6329   }
6330 }
6331 
6332 
6333 //===----------------------------------------------------------------------===//
6334 // SPARC v9 ABI Implementation.
6335 // Based on the SPARC Compliance Definition version 2.4.1.
6336 //
6337 // Function arguments a mapped to a nominal "parameter array" and promoted to
6338 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6339 // the array, structs larger than 16 bytes are passed indirectly.
6340 //
6341 // One case requires special care:
6342 //
6343 //   struct mixed {
6344 //     int i;
6345 //     float f;
6346 //   };
6347 //
6348 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6349 // parameter array, but the int is passed in an integer register, and the float
6350 // is passed in a floating point register. This is represented as two arguments
6351 // with the LLVM IR inreg attribute:
6352 //
6353 //   declare void f(i32 inreg %i, float inreg %f)
6354 //
6355 // The code generator will only allocate 4 bytes from the parameter array for
6356 // the inreg arguments. All other arguments are allocated a multiple of 8
6357 // bytes.
6358 //
6359 namespace {
6360 class SparcV9ABIInfo : public ABIInfo {
6361 public:
6362   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6363 
6364 private:
6365   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6366   void computeInfo(CGFunctionInfo &FI) const override;
6367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6368                     QualType Ty) const override;
6369 
6370   // Coercion type builder for structs passed in registers. The coercion type
6371   // serves two purposes:
6372   //
6373   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6374   //    in registers.
6375   // 2. Expose aligned floating point elements as first-level elements, so the
6376   //    code generator knows to pass them in floating point registers.
6377   //
6378   // We also compute the InReg flag which indicates that the struct contains
6379   // aligned 32-bit floats.
6380   //
6381   struct CoerceBuilder {
6382     llvm::LLVMContext &Context;
6383     const llvm::DataLayout &DL;
6384     SmallVector<llvm::Type*, 8> Elems;
6385     uint64_t Size;
6386     bool InReg;
6387 
6388     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6389       : Context(c), DL(dl), Size(0), InReg(false) {}
6390 
6391     // Pad Elems with integers until Size is ToSize.
6392     void pad(uint64_t ToSize) {
6393       assert(ToSize >= Size && "Cannot remove elements");
6394       if (ToSize == Size)
6395         return;
6396 
6397       // Finish the current 64-bit word.
6398       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6399       if (Aligned > Size && Aligned <= ToSize) {
6400         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6401         Size = Aligned;
6402       }
6403 
6404       // Add whole 64-bit words.
6405       while (Size + 64 <= ToSize) {
6406         Elems.push_back(llvm::Type::getInt64Ty(Context));
6407         Size += 64;
6408       }
6409 
6410       // Final in-word padding.
6411       if (Size < ToSize) {
6412         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6413         Size = ToSize;
6414       }
6415     }
6416 
6417     // Add a floating point element at Offset.
6418     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6419       // Unaligned floats are treated as integers.
6420       if (Offset % Bits)
6421         return;
6422       // The InReg flag is only required if there are any floats < 64 bits.
6423       if (Bits < 64)
6424         InReg = true;
6425       pad(Offset);
6426       Elems.push_back(Ty);
6427       Size = Offset + Bits;
6428     }
6429 
6430     // Add a struct type to the coercion type, starting at Offset (in bits).
6431     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6432       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6433       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6434         llvm::Type *ElemTy = StrTy->getElementType(i);
6435         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6436         switch (ElemTy->getTypeID()) {
6437         case llvm::Type::StructTyID:
6438           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6439           break;
6440         case llvm::Type::FloatTyID:
6441           addFloat(ElemOffset, ElemTy, 32);
6442           break;
6443         case llvm::Type::DoubleTyID:
6444           addFloat(ElemOffset, ElemTy, 64);
6445           break;
6446         case llvm::Type::FP128TyID:
6447           addFloat(ElemOffset, ElemTy, 128);
6448           break;
6449         case llvm::Type::PointerTyID:
6450           if (ElemOffset % 64 == 0) {
6451             pad(ElemOffset);
6452             Elems.push_back(ElemTy);
6453             Size += 64;
6454           }
6455           break;
6456         default:
6457           break;
6458         }
6459       }
6460     }
6461 
6462     // Check if Ty is a usable substitute for the coercion type.
6463     bool isUsableType(llvm::StructType *Ty) const {
6464       return llvm::makeArrayRef(Elems) == Ty->elements();
6465     }
6466 
6467     // Get the coercion type as a literal struct type.
6468     llvm::Type *getType() const {
6469       if (Elems.size() == 1)
6470         return Elems.front();
6471       else
6472         return llvm::StructType::get(Context, Elems);
6473     }
6474   };
6475 };
6476 } // end anonymous namespace
6477 
6478 ABIArgInfo
6479 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6480   if (Ty->isVoidType())
6481     return ABIArgInfo::getIgnore();
6482 
6483   uint64_t Size = getContext().getTypeSize(Ty);
6484 
6485   // Anything too big to fit in registers is passed with an explicit indirect
6486   // pointer / sret pointer.
6487   if (Size > SizeLimit)
6488     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6489 
6490   // Treat an enum type as its underlying type.
6491   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6492     Ty = EnumTy->getDecl()->getIntegerType();
6493 
6494   // Integer types smaller than a register are extended.
6495   if (Size < 64 && Ty->isIntegerType())
6496     return ABIArgInfo::getExtend();
6497 
6498   // Other non-aggregates go in registers.
6499   if (!isAggregateTypeForABI(Ty))
6500     return ABIArgInfo::getDirect();
6501 
6502   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6503   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6504   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6505     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6506 
6507   // This is a small aggregate type that should be passed in registers.
6508   // Build a coercion type from the LLVM struct type.
6509   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6510   if (!StrTy)
6511     return ABIArgInfo::getDirect();
6512 
6513   CoerceBuilder CB(getVMContext(), getDataLayout());
6514   CB.addStruct(0, StrTy);
6515   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6516 
6517   // Try to use the original type for coercion.
6518   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6519 
6520   if (CB.InReg)
6521     return ABIArgInfo::getDirectInReg(CoerceTy);
6522   else
6523     return ABIArgInfo::getDirect(CoerceTy);
6524 }
6525 
6526 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6527                                   QualType Ty) const {
6528   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6529   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6530   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6531     AI.setCoerceToType(ArgTy);
6532 
6533   CharUnits SlotSize = CharUnits::fromQuantity(8);
6534 
6535   CGBuilderTy &Builder = CGF.Builder;
6536   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6537   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6538 
6539   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
6540 
6541   Address ArgAddr = Address::invalid();
6542   CharUnits Stride;
6543   switch (AI.getKind()) {
6544   case ABIArgInfo::Expand:
6545   case ABIArgInfo::InAlloca:
6546     llvm_unreachable("Unsupported ABI kind for va_arg");
6547 
6548   case ABIArgInfo::Extend: {
6549     Stride = SlotSize;
6550     CharUnits Offset = SlotSize - TypeInfo.first;
6551     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
6552     break;
6553   }
6554 
6555   case ABIArgInfo::Direct: {
6556     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6557     Stride = CharUnits::fromQuantity(AllocSize).RoundUpToAlignment(SlotSize);
6558     ArgAddr = Addr;
6559     break;
6560   }
6561 
6562   case ABIArgInfo::Indirect:
6563     Stride = SlotSize;
6564     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
6565     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
6566                       TypeInfo.second);
6567     break;
6568 
6569   case ABIArgInfo::Ignore:
6570     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
6571   }
6572 
6573   // Update VAList.
6574   llvm::Value *NextPtr =
6575     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
6576   Builder.CreateStore(NextPtr, VAListAddr);
6577 
6578   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
6579 }
6580 
6581 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6582   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6583   for (auto &I : FI.arguments())
6584     I.info = classifyType(I.type, 16 * 8);
6585 }
6586 
6587 namespace {
6588 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6589 public:
6590   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6591     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6592 
6593   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6594     return 14;
6595   }
6596 
6597   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6598                                llvm::Value *Address) const override;
6599 };
6600 } // end anonymous namespace
6601 
6602 bool
6603 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6604                                                 llvm::Value *Address) const {
6605   // This is calculated from the LLVM and GCC tables and verified
6606   // against gcc output.  AFAIK all ABIs use the same encoding.
6607 
6608   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6609 
6610   llvm::IntegerType *i8 = CGF.Int8Ty;
6611   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6612   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6613 
6614   // 0-31: the 8-byte general-purpose registers
6615   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6616 
6617   // 32-63: f0-31, the 4-byte floating-point registers
6618   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6619 
6620   //   Y   = 64
6621   //   PSR = 65
6622   //   WIM = 66
6623   //   TBR = 67
6624   //   PC  = 68
6625   //   NPC = 69
6626   //   FSR = 70
6627   //   CSR = 71
6628   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6629 
6630   // 72-87: d0-15, the 8-byte floating-point registers
6631   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6632 
6633   return false;
6634 }
6635 
6636 
6637 //===----------------------------------------------------------------------===//
6638 // XCore ABI Implementation
6639 //===----------------------------------------------------------------------===//
6640 
6641 namespace {
6642 
6643 /// A SmallStringEnc instance is used to build up the TypeString by passing
6644 /// it by reference between functions that append to it.
6645 typedef llvm::SmallString<128> SmallStringEnc;
6646 
6647 /// TypeStringCache caches the meta encodings of Types.
6648 ///
6649 /// The reason for caching TypeStrings is two fold:
6650 ///   1. To cache a type's encoding for later uses;
6651 ///   2. As a means to break recursive member type inclusion.
6652 ///
6653 /// A cache Entry can have a Status of:
6654 ///   NonRecursive:   The type encoding is not recursive;
6655 ///   Recursive:      The type encoding is recursive;
6656 ///   Incomplete:     An incomplete TypeString;
6657 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6658 ///                   Recursive type encoding.
6659 ///
6660 /// A NonRecursive entry will have all of its sub-members expanded as fully
6661 /// as possible. Whilst it may contain types which are recursive, the type
6662 /// itself is not recursive and thus its encoding may be safely used whenever
6663 /// the type is encountered.
6664 ///
6665 /// A Recursive entry will have all of its sub-members expanded as fully as
6666 /// possible. The type itself is recursive and it may contain other types which
6667 /// are recursive. The Recursive encoding must not be used during the expansion
6668 /// of a recursive type's recursive branch. For simplicity the code uses
6669 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6670 ///
6671 /// An Incomplete entry is always a RecordType and only encodes its
6672 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6673 /// are placed into the cache during type expansion as a means to identify and
6674 /// handle recursive inclusion of types as sub-members. If there is recursion
6675 /// the entry becomes IncompleteUsed.
6676 ///
6677 /// During the expansion of a RecordType's members:
6678 ///
6679 ///   If the cache contains a NonRecursive encoding for the member type, the
6680 ///   cached encoding is used;
6681 ///
6682 ///   If the cache contains a Recursive encoding for the member type, the
6683 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6684 ///
6685 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6686 ///   cache to break potential recursive inclusion of itself as a sub-member;
6687 ///
6688 ///   Once a member RecordType has been expanded, its temporary incomplete
6689 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6690 ///   it is swapped back in;
6691 ///
6692 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6693 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6694 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6695 ///
6696 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6697 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6698 ///   Else the member is part of a recursive type and thus the recursion has
6699 ///   been exited too soon for the encoding to be correct for the member.
6700 ///
6701 class TypeStringCache {
6702   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6703   struct Entry {
6704     std::string Str;     // The encoded TypeString for the type.
6705     enum Status State;   // Information about the encoding in 'Str'.
6706     std::string Swapped; // A temporary place holder for a Recursive encoding
6707                          // during the expansion of RecordType's members.
6708   };
6709   std::map<const IdentifierInfo *, struct Entry> Map;
6710   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6711   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6712 public:
6713   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6714   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6715   bool removeIncomplete(const IdentifierInfo *ID);
6716   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6717                      bool IsRecursive);
6718   StringRef lookupStr(const IdentifierInfo *ID);
6719 };
6720 
6721 /// TypeString encodings for enum & union fields must be order.
6722 /// FieldEncoding is a helper for this ordering process.
6723 class FieldEncoding {
6724   bool HasName;
6725   std::string Enc;
6726 public:
6727   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
6728   StringRef str() {return Enc.c_str();}
6729   bool operator<(const FieldEncoding &rhs) const {
6730     if (HasName != rhs.HasName) return HasName;
6731     return Enc < rhs.Enc;
6732   }
6733 };
6734 
6735 class XCoreABIInfo : public DefaultABIInfo {
6736 public:
6737   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6738   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6739                     QualType Ty) const override;
6740 };
6741 
6742 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6743   mutable TypeStringCache TSC;
6744 public:
6745   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6746     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6747   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6748                     CodeGen::CodeGenModule &M) const override;
6749 };
6750 
6751 } // End anonymous namespace.
6752 
6753 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6754                                 QualType Ty) const {
6755   CGBuilderTy &Builder = CGF.Builder;
6756 
6757   // Get the VAList.
6758   CharUnits SlotSize = CharUnits::fromQuantity(4);
6759   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
6760 
6761   // Handle the argument.
6762   ABIArgInfo AI = classifyArgumentType(Ty);
6763   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
6764   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6765   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6766     AI.setCoerceToType(ArgTy);
6767   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6768 
6769   Address Val = Address::invalid();
6770   CharUnits ArgSize = CharUnits::Zero();
6771   switch (AI.getKind()) {
6772   case ABIArgInfo::Expand:
6773   case ABIArgInfo::InAlloca:
6774     llvm_unreachable("Unsupported ABI kind for va_arg");
6775   case ABIArgInfo::Ignore:
6776     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
6777     ArgSize = CharUnits::Zero();
6778     break;
6779   case ABIArgInfo::Extend:
6780   case ABIArgInfo::Direct:
6781     Val = Builder.CreateBitCast(AP, ArgPtrTy);
6782     ArgSize = CharUnits::fromQuantity(
6783                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
6784     ArgSize = ArgSize.RoundUpToAlignment(SlotSize);
6785     break;
6786   case ABIArgInfo::Indirect:
6787     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
6788     Val = Address(Builder.CreateLoad(Val), TypeAlign);
6789     ArgSize = SlotSize;
6790     break;
6791   }
6792 
6793   // Increment the VAList.
6794   if (!ArgSize.isZero()) {
6795     llvm::Value *APN =
6796       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
6797     Builder.CreateStore(APN, VAListAddr);
6798   }
6799 
6800   return Val;
6801 }
6802 
6803 /// During the expansion of a RecordType, an incomplete TypeString is placed
6804 /// into the cache as a means to identify and break recursion.
6805 /// If there is a Recursive encoding in the cache, it is swapped out and will
6806 /// be reinserted by removeIncomplete().
6807 /// All other types of encoding should have been used rather than arriving here.
6808 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6809                                     std::string StubEnc) {
6810   if (!ID)
6811     return;
6812   Entry &E = Map[ID];
6813   assert( (E.Str.empty() || E.State == Recursive) &&
6814          "Incorrectly use of addIncomplete");
6815   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6816   E.Swapped.swap(E.Str); // swap out the Recursive
6817   E.Str.swap(StubEnc);
6818   E.State = Incomplete;
6819   ++IncompleteCount;
6820 }
6821 
6822 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6823 /// must be removed from the cache.
6824 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6825 /// Returns true if the RecordType was defined recursively.
6826 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6827   if (!ID)
6828     return false;
6829   auto I = Map.find(ID);
6830   assert(I != Map.end() && "Entry not present");
6831   Entry &E = I->second;
6832   assert( (E.State == Incomplete ||
6833            E.State == IncompleteUsed) &&
6834          "Entry must be an incomplete type");
6835   bool IsRecursive = false;
6836   if (E.State == IncompleteUsed) {
6837     // We made use of our Incomplete encoding, thus we are recursive.
6838     IsRecursive = true;
6839     --IncompleteUsedCount;
6840   }
6841   if (E.Swapped.empty())
6842     Map.erase(I);
6843   else {
6844     // Swap the Recursive back.
6845     E.Swapped.swap(E.Str);
6846     E.Swapped.clear();
6847     E.State = Recursive;
6848   }
6849   --IncompleteCount;
6850   return IsRecursive;
6851 }
6852 
6853 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6854 /// Recursive (viz: all sub-members were expanded as fully as possible).
6855 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6856                                     bool IsRecursive) {
6857   if (!ID || IncompleteUsedCount)
6858     return; // No key or it is is an incomplete sub-type so don't add.
6859   Entry &E = Map[ID];
6860   if (IsRecursive && !E.Str.empty()) {
6861     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6862            "This is not the same Recursive entry");
6863     // The parent container was not recursive after all, so we could have used
6864     // this Recursive sub-member entry after all, but we assumed the worse when
6865     // we started viz: IncompleteCount!=0.
6866     return;
6867   }
6868   assert(E.Str.empty() && "Entry already present");
6869   E.Str = Str.str();
6870   E.State = IsRecursive? Recursive : NonRecursive;
6871 }
6872 
6873 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6874 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6875 /// encoding is Recursive, return an empty StringRef.
6876 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6877   if (!ID)
6878     return StringRef();   // We have no key.
6879   auto I = Map.find(ID);
6880   if (I == Map.end())
6881     return StringRef();   // We have no encoding.
6882   Entry &E = I->second;
6883   if (E.State == Recursive && IncompleteCount)
6884     return StringRef();   // We don't use Recursive encodings for member types.
6885 
6886   if (E.State == Incomplete) {
6887     // The incomplete type is being used to break out of recursion.
6888     E.State = IncompleteUsed;
6889     ++IncompleteUsedCount;
6890   }
6891   return E.Str.c_str();
6892 }
6893 
6894 /// The XCore ABI includes a type information section that communicates symbol
6895 /// type information to the linker. The linker uses this information to verify
6896 /// safety/correctness of things such as array bound and pointers et al.
6897 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6898 /// This type information (TypeString) is emitted into meta data for all global
6899 /// symbols: definitions, declarations, functions & variables.
6900 ///
6901 /// The TypeString carries type, qualifier, name, size & value details.
6902 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6903 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
6904 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6905 ///
6906 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6907                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6908 
6909 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6910 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6911                                           CodeGen::CodeGenModule &CGM) const {
6912   SmallStringEnc Enc;
6913   if (getTypeString(Enc, D, CGM, TSC)) {
6914     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6915     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6916     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6917     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6918     llvm::NamedMDNode *MD =
6919       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6920     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6921   }
6922 }
6923 
6924 static bool appendType(SmallStringEnc &Enc, QualType QType,
6925                        const CodeGen::CodeGenModule &CGM,
6926                        TypeStringCache &TSC);
6927 
6928 /// Helper function for appendRecordType().
6929 /// Builds a SmallVector containing the encoded field types in declaration
6930 /// order.
6931 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6932                              const RecordDecl *RD,
6933                              const CodeGen::CodeGenModule &CGM,
6934                              TypeStringCache &TSC) {
6935   for (const auto *Field : RD->fields()) {
6936     SmallStringEnc Enc;
6937     Enc += "m(";
6938     Enc += Field->getName();
6939     Enc += "){";
6940     if (Field->isBitField()) {
6941       Enc += "b(";
6942       llvm::raw_svector_ostream OS(Enc);
6943       OS << Field->getBitWidthValue(CGM.getContext());
6944       Enc += ':';
6945     }
6946     if (!appendType(Enc, Field->getType(), CGM, TSC))
6947       return false;
6948     if (Field->isBitField())
6949       Enc += ')';
6950     Enc += '}';
6951     FE.emplace_back(!Field->getName().empty(), Enc);
6952   }
6953   return true;
6954 }
6955 
6956 /// Appends structure and union types to Enc and adds encoding to cache.
6957 /// Recursively calls appendType (via extractFieldType) for each field.
6958 /// Union types have their fields ordered according to the ABI.
6959 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6960                              const CodeGen::CodeGenModule &CGM,
6961                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6962   // Append the cached TypeString if we have one.
6963   StringRef TypeString = TSC.lookupStr(ID);
6964   if (!TypeString.empty()) {
6965     Enc += TypeString;
6966     return true;
6967   }
6968 
6969   // Start to emit an incomplete TypeString.
6970   size_t Start = Enc.size();
6971   Enc += (RT->isUnionType()? 'u' : 's');
6972   Enc += '(';
6973   if (ID)
6974     Enc += ID->getName();
6975   Enc += "){";
6976 
6977   // We collect all encoded fields and order as necessary.
6978   bool IsRecursive = false;
6979   const RecordDecl *RD = RT->getDecl()->getDefinition();
6980   if (RD && !RD->field_empty()) {
6981     // An incomplete TypeString stub is placed in the cache for this RecordType
6982     // so that recursive calls to this RecordType will use it whilst building a
6983     // complete TypeString for this RecordType.
6984     SmallVector<FieldEncoding, 16> FE;
6985     std::string StubEnc(Enc.substr(Start).str());
6986     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6987     TSC.addIncomplete(ID, std::move(StubEnc));
6988     if (!extractFieldType(FE, RD, CGM, TSC)) {
6989       (void) TSC.removeIncomplete(ID);
6990       return false;
6991     }
6992     IsRecursive = TSC.removeIncomplete(ID);
6993     // The ABI requires unions to be sorted but not structures.
6994     // See FieldEncoding::operator< for sort algorithm.
6995     if (RT->isUnionType())
6996       std::sort(FE.begin(), FE.end());
6997     // We can now complete the TypeString.
6998     unsigned E = FE.size();
6999     for (unsigned I = 0; I != E; ++I) {
7000       if (I)
7001         Enc += ',';
7002       Enc += FE[I].str();
7003     }
7004   }
7005   Enc += '}';
7006   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7007   return true;
7008 }
7009 
7010 /// Appends enum types to Enc and adds the encoding to the cache.
7011 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7012                            TypeStringCache &TSC,
7013                            const IdentifierInfo *ID) {
7014   // Append the cached TypeString if we have one.
7015   StringRef TypeString = TSC.lookupStr(ID);
7016   if (!TypeString.empty()) {
7017     Enc += TypeString;
7018     return true;
7019   }
7020 
7021   size_t Start = Enc.size();
7022   Enc += "e(";
7023   if (ID)
7024     Enc += ID->getName();
7025   Enc += "){";
7026 
7027   // We collect all encoded enumerations and order them alphanumerically.
7028   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7029     SmallVector<FieldEncoding, 16> FE;
7030     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7031          ++I) {
7032       SmallStringEnc EnumEnc;
7033       EnumEnc += "m(";
7034       EnumEnc += I->getName();
7035       EnumEnc += "){";
7036       I->getInitVal().toString(EnumEnc);
7037       EnumEnc += '}';
7038       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7039     }
7040     std::sort(FE.begin(), FE.end());
7041     unsigned E = FE.size();
7042     for (unsigned I = 0; I != E; ++I) {
7043       if (I)
7044         Enc += ',';
7045       Enc += FE[I].str();
7046     }
7047   }
7048   Enc += '}';
7049   TSC.addIfComplete(ID, Enc.substr(Start), false);
7050   return true;
7051 }
7052 
7053 /// Appends type's qualifier to Enc.
7054 /// This is done prior to appending the type's encoding.
7055 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7056   // Qualifiers are emitted in alphabetical order.
7057   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7058   int Lookup = 0;
7059   if (QT.isConstQualified())
7060     Lookup += 1<<0;
7061   if (QT.isRestrictQualified())
7062     Lookup += 1<<1;
7063   if (QT.isVolatileQualified())
7064     Lookup += 1<<2;
7065   Enc += Table[Lookup];
7066 }
7067 
7068 /// Appends built-in types to Enc.
7069 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7070   const char *EncType;
7071   switch (BT->getKind()) {
7072     case BuiltinType::Void:
7073       EncType = "0";
7074       break;
7075     case BuiltinType::Bool:
7076       EncType = "b";
7077       break;
7078     case BuiltinType::Char_U:
7079       EncType = "uc";
7080       break;
7081     case BuiltinType::UChar:
7082       EncType = "uc";
7083       break;
7084     case BuiltinType::SChar:
7085       EncType = "sc";
7086       break;
7087     case BuiltinType::UShort:
7088       EncType = "us";
7089       break;
7090     case BuiltinType::Short:
7091       EncType = "ss";
7092       break;
7093     case BuiltinType::UInt:
7094       EncType = "ui";
7095       break;
7096     case BuiltinType::Int:
7097       EncType = "si";
7098       break;
7099     case BuiltinType::ULong:
7100       EncType = "ul";
7101       break;
7102     case BuiltinType::Long:
7103       EncType = "sl";
7104       break;
7105     case BuiltinType::ULongLong:
7106       EncType = "ull";
7107       break;
7108     case BuiltinType::LongLong:
7109       EncType = "sll";
7110       break;
7111     case BuiltinType::Float:
7112       EncType = "ft";
7113       break;
7114     case BuiltinType::Double:
7115       EncType = "d";
7116       break;
7117     case BuiltinType::LongDouble:
7118       EncType = "ld";
7119       break;
7120     default:
7121       return false;
7122   }
7123   Enc += EncType;
7124   return true;
7125 }
7126 
7127 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7128 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7129                               const CodeGen::CodeGenModule &CGM,
7130                               TypeStringCache &TSC) {
7131   Enc += "p(";
7132   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7133     return false;
7134   Enc += ')';
7135   return true;
7136 }
7137 
7138 /// Appends array encoding to Enc before calling appendType for the element.
7139 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7140                             const ArrayType *AT,
7141                             const CodeGen::CodeGenModule &CGM,
7142                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7143   if (AT->getSizeModifier() != ArrayType::Normal)
7144     return false;
7145   Enc += "a(";
7146   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7147     CAT->getSize().toStringUnsigned(Enc);
7148   else
7149     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7150   Enc += ':';
7151   // The Qualifiers should be attached to the type rather than the array.
7152   appendQualifier(Enc, QT);
7153   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7154     return false;
7155   Enc += ')';
7156   return true;
7157 }
7158 
7159 /// Appends a function encoding to Enc, calling appendType for the return type
7160 /// and the arguments.
7161 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7162                              const CodeGen::CodeGenModule &CGM,
7163                              TypeStringCache &TSC) {
7164   Enc += "f{";
7165   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7166     return false;
7167   Enc += "}(";
7168   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7169     // N.B. we are only interested in the adjusted param types.
7170     auto I = FPT->param_type_begin();
7171     auto E = FPT->param_type_end();
7172     if (I != E) {
7173       do {
7174         if (!appendType(Enc, *I, CGM, TSC))
7175           return false;
7176         ++I;
7177         if (I != E)
7178           Enc += ',';
7179       } while (I != E);
7180       if (FPT->isVariadic())
7181         Enc += ",va";
7182     } else {
7183       if (FPT->isVariadic())
7184         Enc += "va";
7185       else
7186         Enc += '0';
7187     }
7188   }
7189   Enc += ')';
7190   return true;
7191 }
7192 
7193 /// Handles the type's qualifier before dispatching a call to handle specific
7194 /// type encodings.
7195 static bool appendType(SmallStringEnc &Enc, QualType QType,
7196                        const CodeGen::CodeGenModule &CGM,
7197                        TypeStringCache &TSC) {
7198 
7199   QualType QT = QType.getCanonicalType();
7200 
7201   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7202     // The Qualifiers should be attached to the type rather than the array.
7203     // Thus we don't call appendQualifier() here.
7204     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7205 
7206   appendQualifier(Enc, QT);
7207 
7208   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7209     return appendBuiltinType(Enc, BT);
7210 
7211   if (const PointerType *PT = QT->getAs<PointerType>())
7212     return appendPointerType(Enc, PT, CGM, TSC);
7213 
7214   if (const EnumType *ET = QT->getAs<EnumType>())
7215     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7216 
7217   if (const RecordType *RT = QT->getAsStructureType())
7218     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7219 
7220   if (const RecordType *RT = QT->getAsUnionType())
7221     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7222 
7223   if (const FunctionType *FT = QT->getAs<FunctionType>())
7224     return appendFunctionType(Enc, FT, CGM, TSC);
7225 
7226   return false;
7227 }
7228 
7229 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7230                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7231   if (!D)
7232     return false;
7233 
7234   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7235     if (FD->getLanguageLinkage() != CLanguageLinkage)
7236       return false;
7237     return appendType(Enc, FD->getType(), CGM, TSC);
7238   }
7239 
7240   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7241     if (VD->getLanguageLinkage() != CLanguageLinkage)
7242       return false;
7243     QualType QT = VD->getType().getCanonicalType();
7244     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7245       // Global ArrayTypes are given a size of '*' if the size is unknown.
7246       // The Qualifiers should be attached to the type rather than the array.
7247       // Thus we don't call appendQualifier() here.
7248       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7249     }
7250     return appendType(Enc, QT, CGM, TSC);
7251   }
7252   return false;
7253 }
7254 
7255 
7256 //===----------------------------------------------------------------------===//
7257 // Driver code
7258 //===----------------------------------------------------------------------===//
7259 
7260 const llvm::Triple &CodeGenModule::getTriple() const {
7261   return getTarget().getTriple();
7262 }
7263 
7264 bool CodeGenModule::supportsCOMDAT() const {
7265   return !getTriple().isOSBinFormatMachO();
7266 }
7267 
7268 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7269   if (TheTargetCodeGenInfo)
7270     return *TheTargetCodeGenInfo;
7271 
7272   const llvm::Triple &Triple = getTarget().getTriple();
7273   switch (Triple.getArch()) {
7274   default:
7275     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7276 
7277   case llvm::Triple::le32:
7278     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7279   case llvm::Triple::mips:
7280   case llvm::Triple::mipsel:
7281     if (Triple.getOS() == llvm::Triple::NaCl)
7282       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7283     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7284 
7285   case llvm::Triple::mips64:
7286   case llvm::Triple::mips64el:
7287     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7288 
7289   case llvm::Triple::aarch64:
7290   case llvm::Triple::aarch64_be: {
7291     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7292     if (getTarget().getABI() == "darwinpcs")
7293       Kind = AArch64ABIInfo::DarwinPCS;
7294 
7295     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7296   }
7297 
7298   case llvm::Triple::wasm32:
7299   case llvm::Triple::wasm64:
7300     return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
7301 
7302   case llvm::Triple::arm:
7303   case llvm::Triple::armeb:
7304   case llvm::Triple::thumb:
7305   case llvm::Triple::thumbeb:
7306     {
7307       if (Triple.getOS() == llvm::Triple::Win32) {
7308         TheTargetCodeGenInfo =
7309             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7310         return *TheTargetCodeGenInfo;
7311       }
7312 
7313       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7314       if (getTarget().getABI() == "apcs-gnu")
7315         Kind = ARMABIInfo::APCS;
7316       else if (CodeGenOpts.FloatABI == "hard" ||
7317                (CodeGenOpts.FloatABI != "soft" &&
7318                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7319         Kind = ARMABIInfo::AAPCS_VFP;
7320 
7321       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7322     }
7323 
7324   case llvm::Triple::ppc:
7325     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7326   case llvm::Triple::ppc64:
7327     if (Triple.isOSBinFormatELF()) {
7328       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7329       if (getTarget().getABI() == "elfv2")
7330         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7331       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7332 
7333       return *(TheTargetCodeGenInfo =
7334                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7335     } else
7336       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7337   case llvm::Triple::ppc64le: {
7338     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7339     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7340     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7341       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7342     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7343 
7344     return *(TheTargetCodeGenInfo =
7345              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7346   }
7347 
7348   case llvm::Triple::nvptx:
7349   case llvm::Triple::nvptx64:
7350     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7351 
7352   case llvm::Triple::msp430:
7353     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7354 
7355   case llvm::Triple::systemz: {
7356     bool HasVector = getTarget().getABI() == "vector";
7357     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7358                                                                  HasVector));
7359   }
7360 
7361   case llvm::Triple::tce:
7362     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7363 
7364   case llvm::Triple::x86: {
7365     bool IsDarwinVectorABI = Triple.isOSDarwin();
7366     bool IsSmallStructInRegABI =
7367         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7368     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7369 
7370     if (Triple.getOS() == llvm::Triple::Win32) {
7371       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7372                    Types, IsDarwinVectorABI, IsSmallStructInRegABI,
7373                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7374     } else {
7375       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7376                    Types, IsDarwinVectorABI, IsSmallStructInRegABI,
7377                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7378     }
7379   }
7380 
7381   case llvm::Triple::x86_64: {
7382     StringRef ABI = getTarget().getABI();
7383     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7384                                ABI == "avx" ? X86AVXABILevel::AVX :
7385                                X86AVXABILevel::None);
7386 
7387     switch (Triple.getOS()) {
7388     case llvm::Triple::Win32:
7389       return *(TheTargetCodeGenInfo =
7390                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7391     case llvm::Triple::PS4:
7392       return *(TheTargetCodeGenInfo =
7393                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7394     default:
7395       return *(TheTargetCodeGenInfo =
7396                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7397     }
7398   }
7399   case llvm::Triple::hexagon:
7400     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7401   case llvm::Triple::r600:
7402     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7403   case llvm::Triple::amdgcn:
7404     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7405   case llvm::Triple::sparcv9:
7406     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7407   case llvm::Triple::xcore:
7408     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7409   }
7410 }
7411