1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 84 bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 87 Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByVal*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case IndirectAliased: 261 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 262 << " AadrSpace=" << getIndirectAddrSpace() 263 << " Realign=" << getIndirectRealign(); 264 break; 265 case Expand: 266 OS << "Expand"; 267 break; 268 case CoerceAndExpand: 269 OS << "CoerceAndExpand Type="; 270 getCoerceAndExpandType()->print(OS); 271 break; 272 } 273 OS << ")\n"; 274 } 275 276 // Dynamically round a pointer up to a multiple of the given alignment. 277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 278 llvm::Value *Ptr, 279 CharUnits Align) { 280 llvm::Value *PtrAsInt = Ptr; 281 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 282 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 283 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 284 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 285 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 287 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 288 Ptr->getType(), 289 Ptr->getName() + ".aligned"); 290 return PtrAsInt; 291 } 292 293 /// Emit va_arg for a platform using the common void* representation, 294 /// where arguments are simply emitted in an array of slots on the stack. 295 /// 296 /// This version implements the core direct-value passing rules. 297 /// 298 /// \param SlotSize - The size and alignment of a stack slot. 299 /// Each argument will be allocated to a multiple of this number of 300 /// slots, and all the slots will be aligned to this value. 301 /// \param AllowHigherAlign - The slot alignment is not a cap; 302 /// an argument type with an alignment greater than the slot size 303 /// will be emitted on a higher-alignment address, potentially 304 /// leaving one or more empty slots behind as padding. If this 305 /// is false, the returned address might be less-aligned than 306 /// DirectAlign. 307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 308 Address VAListAddr, 309 llvm::Type *DirectTy, 310 CharUnits DirectSize, 311 CharUnits DirectAlign, 312 CharUnits SlotSize, 313 bool AllowHigherAlign) { 314 // Cast the element type to i8* if necessary. Some platforms define 315 // va_list as a struct containing an i8* instead of just an i8*. 316 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 317 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 318 319 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 320 321 // If the CC aligns values higher than the slot size, do so if needed. 322 Address Addr = Address::invalid(); 323 if (AllowHigherAlign && DirectAlign > SlotSize) { 324 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 325 DirectAlign); 326 } else { 327 Addr = Address(Ptr, SlotSize); 328 } 329 330 // Advance the pointer past the argument, then store that back. 331 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 332 Address NextPtr = 333 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 334 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 335 336 // If the argument is smaller than a slot, and this is a big-endian 337 // target, the argument will be right-adjusted in its slot. 338 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 339 !DirectTy->isStructTy()) { 340 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 341 } 342 343 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 344 return Addr; 345 } 346 347 /// Emit va_arg for a platform using the common void* representation, 348 /// where arguments are simply emitted in an array of slots on the stack. 349 /// 350 /// \param IsIndirect - Values of this type are passed indirectly. 351 /// \param ValueInfo - The size and alignment of this type, generally 352 /// computed with getContext().getTypeInfoInChars(ValueTy). 353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 354 /// Each argument will be allocated to a multiple of this number of 355 /// slots, and all the slots will be aligned to this value. 356 /// \param AllowHigherAlign - The slot alignment is not a cap; 357 /// an argument type with an alignment greater than the slot size 358 /// will be emitted on a higher-alignment address, potentially 359 /// leaving one or more empty slots behind as padding. 360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 361 QualType ValueTy, bool IsIndirect, 362 TypeInfoChars ValueInfo, 363 CharUnits SlotSizeAndAlign, 364 bool AllowHigherAlign) { 365 // The size and alignment of the value that was passed directly. 366 CharUnits DirectSize, DirectAlign; 367 if (IsIndirect) { 368 DirectSize = CGF.getPointerSize(); 369 DirectAlign = CGF.getPointerAlign(); 370 } else { 371 DirectSize = ValueInfo.Width; 372 DirectAlign = ValueInfo.Align; 373 } 374 375 // Cast the address we've calculated to the right type. 376 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 377 if (IsIndirect) 378 DirectTy = DirectTy->getPointerTo(0); 379 380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 381 DirectSize, DirectAlign, 382 SlotSizeAndAlign, 383 AllowHigherAlign); 384 385 if (IsIndirect) { 386 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 387 } 388 389 return Addr; 390 391 } 392 393 static Address emitMergePHI(CodeGenFunction &CGF, 394 Address Addr1, llvm::BasicBlock *Block1, 395 Address Addr2, llvm::BasicBlock *Block2, 396 const llvm::Twine &Name = "") { 397 assert(Addr1.getType() == Addr2.getType()); 398 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 399 PHI->addIncoming(Addr1.getPointer(), Block1); 400 PHI->addIncoming(Addr2.getPointer(), Block2); 401 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 402 return Address(PHI, Align); 403 } 404 405 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 406 407 // If someone can figure out a general rule for this, that would be great. 408 // It's probably just doomed to be platform-dependent, though. 409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 410 // Verified for: 411 // x86-64 FreeBSD, Linux, Darwin 412 // x86-32 FreeBSD, Linux, Darwin 413 // PowerPC Linux, Darwin 414 // ARM Darwin (*not* EABI) 415 // AArch64 Linux 416 return 32; 417 } 418 419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 420 const FunctionNoProtoType *fnType) const { 421 // The following conventions are known to require this to be false: 422 // x86_stdcall 423 // MIPS 424 // For everything else, we just prefer false unless we opt out. 425 return false; 426 } 427 428 void 429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 430 llvm::SmallString<24> &Opt) const { 431 // This assumes the user is passing a library name like "rt" instead of a 432 // filename like "librt.a/so", and that they don't care whether it's static or 433 // dynamic. 434 Opt = "-l"; 435 Opt += Lib; 436 } 437 438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 439 // OpenCL kernels are called via an explicit runtime API with arguments 440 // set with clSetKernelArg(), not as normal sub-functions. 441 // Return SPIR_KERNEL by default as the kernel calling convention to 442 // ensure the fingerprint is fixed such way that each OpenCL argument 443 // gets one matching argument in the produced kernel function argument 444 // list to enable feasible implementation of clSetKernelArg() with 445 // aggregates etc. In case we would use the default C calling conv here, 446 // clSetKernelArg() might break depending on the target-specific 447 // conventions; different targets might split structs passed as values 448 // to multiple function arguments etc. 449 return llvm::CallingConv::SPIR_KERNEL; 450 } 451 452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 453 llvm::PointerType *T, QualType QT) const { 454 return llvm::ConstantPointerNull::get(T); 455 } 456 457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 458 const VarDecl *D) const { 459 assert(!CGM.getLangOpts().OpenCL && 460 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 461 "Address space agnostic languages only"); 462 return D ? D->getType().getAddressSpace() : LangAS::Default; 463 } 464 465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 466 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 467 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 468 // Since target may map different address spaces in AST to the same address 469 // space, an address space conversion may end up as a bitcast. 470 if (auto *C = dyn_cast<llvm::Constant>(Src)) 471 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 472 // Try to preserve the source's name to make IR more readable. 473 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 474 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 475 } 476 477 llvm::Constant * 478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 479 LangAS SrcAddr, LangAS DestAddr, 480 llvm::Type *DestTy) const { 481 // Since target may map different address spaces in AST to the same address 482 // space, an address space conversion may end up as a bitcast. 483 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 484 } 485 486 llvm::SyncScope::ID 487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 488 SyncScope Scope, 489 llvm::AtomicOrdering Ordering, 490 llvm::LLVMContext &Ctx) const { 491 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 492 } 493 494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 495 496 /// isEmptyField - Return true iff a the field is "empty", that is it 497 /// is an unnamed bit-field or an (array of) empty record(s). 498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 499 bool AllowArrays) { 500 if (FD->isUnnamedBitfield()) 501 return true; 502 503 QualType FT = FD->getType(); 504 505 // Constant arrays of empty records count as empty, strip them off. 506 // Constant arrays of zero length always count as empty. 507 bool WasArray = false; 508 if (AllowArrays) 509 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 510 if (AT->getSize() == 0) 511 return true; 512 FT = AT->getElementType(); 513 // The [[no_unique_address]] special case below does not apply to 514 // arrays of C++ empty records, so we need to remember this fact. 515 WasArray = true; 516 } 517 518 const RecordType *RT = FT->getAs<RecordType>(); 519 if (!RT) 520 return false; 521 522 // C++ record fields are never empty, at least in the Itanium ABI. 523 // 524 // FIXME: We should use a predicate for whether this behavior is true in the 525 // current ABI. 526 // 527 // The exception to the above rule are fields marked with the 528 // [[no_unique_address]] attribute (since C++20). Those do count as empty 529 // according to the Itanium ABI. The exception applies only to records, 530 // not arrays of records, so we must also check whether we stripped off an 531 // array type above. 532 if (isa<CXXRecordDecl>(RT->getDecl()) && 533 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 534 return false; 535 536 return isEmptyRecord(Context, FT, AllowArrays); 537 } 538 539 /// isEmptyRecord - Return true iff a structure contains only empty 540 /// fields. Note that a structure with a flexible array member is not 541 /// considered empty. 542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 543 const RecordType *RT = T->getAs<RecordType>(); 544 if (!RT) 545 return false; 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return false; 549 550 // If this is a C++ record, check the bases first. 551 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 552 for (const auto &I : CXXRD->bases()) 553 if (!isEmptyRecord(Context, I.getType(), true)) 554 return false; 555 556 for (const auto *I : RD->fields()) 557 if (!isEmptyField(Context, I, AllowArrays)) 558 return false; 559 return true; 560 } 561 562 /// isSingleElementStruct - Determine if a structure is a "single 563 /// element struct", i.e. it has exactly one non-empty field or 564 /// exactly one field which is itself a single element 565 /// struct. Structures with flexible array members are never 566 /// considered single element structs. 567 /// 568 /// \return The field declaration for the single non-empty field, if 569 /// it exists. 570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 571 const RecordType *RT = T->getAs<RecordType>(); 572 if (!RT) 573 return nullptr; 574 575 const RecordDecl *RD = RT->getDecl(); 576 if (RD->hasFlexibleArrayMember()) 577 return nullptr; 578 579 const Type *Found = nullptr; 580 581 // If this is a C++ record, check the bases first. 582 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 583 for (const auto &I : CXXRD->bases()) { 584 // Ignore empty records. 585 if (isEmptyRecord(Context, I.getType(), true)) 586 continue; 587 588 // If we already found an element then this isn't a single-element struct. 589 if (Found) 590 return nullptr; 591 592 // If this is non-empty and not a single element struct, the composite 593 // cannot be a single element struct. 594 Found = isSingleElementStruct(I.getType(), Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // Check for single element. 601 for (const auto *FD : RD->fields()) { 602 QualType FT = FD->getType(); 603 604 // Ignore empty fields. 605 if (isEmptyField(Context, FD, true)) 606 continue; 607 608 // If we already found an element then this isn't a single-element 609 // struct. 610 if (Found) 611 return nullptr; 612 613 // Treat single element arrays as the element. 614 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 615 if (AT->getSize().getZExtValue() != 1) 616 break; 617 FT = AT->getElementType(); 618 } 619 620 if (!isAggregateTypeForABI(FT)) { 621 Found = FT.getTypePtr(); 622 } else { 623 Found = isSingleElementStruct(FT, Context); 624 if (!Found) 625 return nullptr; 626 } 627 } 628 629 // We don't consider a struct a single-element struct if it has 630 // padding beyond the element type. 631 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 632 return nullptr; 633 634 return Found; 635 } 636 637 namespace { 638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 639 const ABIArgInfo &AI) { 640 // This default implementation defers to the llvm backend's va_arg 641 // instruction. It can handle only passing arguments directly 642 // (typically only handled in the backend for primitive types), or 643 // aggregates passed indirectly by pointer (NOTE: if the "byval" 644 // flag has ABI impact in the callee, this implementation cannot 645 // work.) 646 647 // Only a few cases are covered here at the moment -- those needed 648 // by the default abi. 649 llvm::Value *Val; 650 651 if (AI.isIndirect()) { 652 assert(!AI.getPaddingType() && 653 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 654 assert( 655 !AI.getIndirectRealign() && 656 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 657 658 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 659 CharUnits TyAlignForABI = TyInfo.Align; 660 661 llvm::Type *BaseTy = 662 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 663 llvm::Value *Addr = 664 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 665 return Address(Addr, TyAlignForABI); 666 } else { 667 assert((AI.isDirect() || AI.isExtend()) && 668 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 669 670 assert(!AI.getInReg() && 671 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 672 assert(!AI.getPaddingType() && 673 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getDirectOffset() && 675 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getCoerceToType() && 677 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 678 679 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 680 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 681 CGF.Builder.CreateStore(Val, Temp); 682 return Temp; 683 } 684 } 685 686 /// DefaultABIInfo - The default implementation for ABI specific 687 /// details. This implementation provides information which results in 688 /// self-consistent and sensible LLVM IR generation, but does not 689 /// conform to any particular ABI. 690 class DefaultABIInfo : public ABIInfo { 691 public: 692 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 693 694 ABIArgInfo classifyReturnType(QualType RetTy) const; 695 ABIArgInfo classifyArgumentType(QualType RetTy) const; 696 697 void computeInfo(CGFunctionInfo &FI) const override { 698 if (!getCXXABI().classifyReturnType(FI)) 699 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 700 for (auto &I : FI.arguments()) 701 I.info = classifyArgumentType(I.type); 702 } 703 704 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 705 QualType Ty) const override { 706 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 707 } 708 }; 709 710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 711 public: 712 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 713 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 714 }; 715 716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 717 Ty = useFirstFieldIfTransparentUnion(Ty); 718 719 if (isAggregateTypeForABI(Ty)) { 720 // Records with non-trivial destructors/copy-constructors should not be 721 // passed by value. 722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 723 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 724 725 return getNaturalAlignIndirect(Ty); 726 } 727 728 // Treat an enum type as its underlying type. 729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 730 Ty = EnumTy->getDecl()->getIntegerType(); 731 732 ASTContext &Context = getContext(); 733 if (const auto *EIT = Ty->getAs<ExtIntType>()) 734 if (EIT->getNumBits() > 735 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 736 ? Context.Int128Ty 737 : Context.LongLongTy)) 738 return getNaturalAlignIndirect(Ty); 739 740 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 741 : ABIArgInfo::getDirect()); 742 } 743 744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 745 if (RetTy->isVoidType()) 746 return ABIArgInfo::getIgnore(); 747 748 if (isAggregateTypeForABI(RetTy)) 749 return getNaturalAlignIndirect(RetTy); 750 751 // Treat an enum type as its underlying type. 752 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 753 RetTy = EnumTy->getDecl()->getIntegerType(); 754 755 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 756 if (EIT->getNumBits() > 757 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 758 ? getContext().Int128Ty 759 : getContext().LongLongTy)) 760 return getNaturalAlignIndirect(RetTy); 761 762 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 763 : ABIArgInfo::getDirect()); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // WebAssembly ABI Implementation 768 // 769 // This is a very simple ABI that relies a lot on DefaultABIInfo. 770 //===----------------------------------------------------------------------===// 771 772 class WebAssemblyABIInfo final : public SwiftABIInfo { 773 public: 774 enum ABIKind { 775 MVP = 0, 776 ExperimentalMV = 1, 777 }; 778 779 private: 780 DefaultABIInfo defaultInfo; 781 ABIKind Kind; 782 783 public: 784 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 785 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 786 787 private: 788 ABIArgInfo classifyReturnType(QualType RetTy) const; 789 ABIArgInfo classifyArgumentType(QualType Ty) const; 790 791 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 792 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 793 // overload them. 794 void computeInfo(CGFunctionInfo &FI) const override { 795 if (!getCXXABI().classifyReturnType(FI)) 796 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 797 for (auto &Arg : FI.arguments()) 798 Arg.info = classifyArgumentType(Arg.type); 799 } 800 801 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 802 QualType Ty) const override; 803 804 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 805 bool asReturnValue) const override { 806 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 807 } 808 809 bool isSwiftErrorInRegister() const override { 810 return false; 811 } 812 }; 813 814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 815 public: 816 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 817 WebAssemblyABIInfo::ABIKind K) 818 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 819 820 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 821 CodeGen::CodeGenModule &CGM) const override { 822 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 824 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 825 llvm::Function *Fn = cast<llvm::Function>(GV); 826 llvm::AttrBuilder B; 827 B.addAttribute("wasm-import-module", Attr->getImportModule()); 828 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 829 } 830 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 831 llvm::Function *Fn = cast<llvm::Function>(GV); 832 llvm::AttrBuilder B; 833 B.addAttribute("wasm-import-name", Attr->getImportName()); 834 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 835 } 836 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 837 llvm::Function *Fn = cast<llvm::Function>(GV); 838 llvm::AttrBuilder B; 839 B.addAttribute("wasm-export-name", Attr->getExportName()); 840 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 841 } 842 } 843 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 845 llvm::Function *Fn = cast<llvm::Function>(GV); 846 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 847 Fn->addFnAttr("no-prototype"); 848 } 849 } 850 }; 851 852 /// Classify argument of given type \p Ty. 853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 854 Ty = useFirstFieldIfTransparentUnion(Ty); 855 856 if (isAggregateTypeForABI(Ty)) { 857 // Records with non-trivial destructors/copy-constructors should not be 858 // passed by value. 859 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 // Ignore empty structs/unions. 862 if (isEmptyRecord(getContext(), Ty, true)) 863 return ABIArgInfo::getIgnore(); 864 // Lower single-element structs to just pass a regular value. TODO: We 865 // could do reasonable-size multiple-element structs too, using getExpand(), 866 // though watch out for things like bitfields. 867 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 868 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 869 // For the experimental multivalue ABI, fully expand all other aggregates 870 if (Kind == ABIKind::ExperimentalMV) { 871 const RecordType *RT = Ty->getAs<RecordType>(); 872 assert(RT); 873 bool HasBitField = false; 874 for (auto *Field : RT->getDecl()->fields()) { 875 if (Field->isBitField()) { 876 HasBitField = true; 877 break; 878 } 879 } 880 if (!HasBitField) 881 return ABIArgInfo::getExpand(); 882 } 883 } 884 885 // Otherwise just do the default thing. 886 return defaultInfo.classifyArgumentType(Ty); 887 } 888 889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 890 if (isAggregateTypeForABI(RetTy)) { 891 // Records with non-trivial destructors/copy-constructors should not be 892 // returned by value. 893 if (!getRecordArgABI(RetTy, getCXXABI())) { 894 // Ignore empty structs/unions. 895 if (isEmptyRecord(getContext(), RetTy, true)) 896 return ABIArgInfo::getIgnore(); 897 // Lower single-element structs to just return a regular value. TODO: We 898 // could do reasonable-size multiple-element structs too, using 899 // ABIArgInfo::getDirect(). 900 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 901 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 902 // For the experimental multivalue ABI, return all other aggregates 903 if (Kind == ABIKind::ExperimentalMV) 904 return ABIArgInfo::getDirect(); 905 } 906 } 907 908 // Otherwise just do the default thing. 909 return defaultInfo.classifyReturnType(RetTy); 910 } 911 912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 913 QualType Ty) const { 914 bool IsIndirect = isAggregateTypeForABI(Ty) && 915 !isEmptyRecord(getContext(), Ty, true) && 916 !isSingleElementStruct(Ty, getContext()); 917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 918 getContext().getTypeInfoInChars(Ty), 919 CharUnits::fromQuantity(4), 920 /*AllowHigherAlign=*/true); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // le32/PNaCl bitcode ABI Implementation 925 // 926 // This is a simplified version of the x86_32 ABI. Arguments and return values 927 // are always passed on the stack. 928 //===----------------------------------------------------------------------===// 929 930 class PNaClABIInfo : public ABIInfo { 931 public: 932 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 933 934 ABIArgInfo classifyReturnType(QualType RetTy) const; 935 ABIArgInfo classifyArgumentType(QualType RetTy) const; 936 937 void computeInfo(CGFunctionInfo &FI) const override; 938 Address EmitVAArg(CodeGenFunction &CGF, 939 Address VAListAddr, QualType Ty) const override; 940 }; 941 942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 943 public: 944 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 945 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 946 }; 947 948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 949 if (!getCXXABI().classifyReturnType(FI)) 950 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 951 952 for (auto &I : FI.arguments()) 953 I.info = classifyArgumentType(I.type); 954 } 955 956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 957 QualType Ty) const { 958 // The PNaCL ABI is a bit odd, in that varargs don't use normal 959 // function classification. Structs get passed directly for varargs 960 // functions, through a rewriting transform in 961 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 962 // this target to actually support a va_arg instructions with an 963 // aggregate type, unlike other targets. 964 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 965 } 966 967 /// Classify argument of given type \p Ty. 968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 969 if (isAggregateTypeForABI(Ty)) { 970 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 971 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 972 return getNaturalAlignIndirect(Ty); 973 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 974 // Treat an enum type as its underlying type. 975 Ty = EnumTy->getDecl()->getIntegerType(); 976 } else if (Ty->isFloatingType()) { 977 // Floating-point types don't go inreg. 978 return ABIArgInfo::getDirect(); 979 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 980 // Treat extended integers as integers if <=64, otherwise pass indirectly. 981 if (EIT->getNumBits() > 64) 982 return getNaturalAlignIndirect(Ty); 983 return ABIArgInfo::getDirect(); 984 } 985 986 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 987 : ABIArgInfo::getDirect()); 988 } 989 990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 991 if (RetTy->isVoidType()) 992 return ABIArgInfo::getIgnore(); 993 994 // In the PNaCl ABI we always return records/structures on the stack. 995 if (isAggregateTypeForABI(RetTy)) 996 return getNaturalAlignIndirect(RetTy); 997 998 // Treat extended integers as integers if <=64, otherwise pass indirectly. 999 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1000 if (EIT->getNumBits() > 64) 1001 return getNaturalAlignIndirect(RetTy); 1002 return ABIArgInfo::getDirect(); 1003 } 1004 1005 // Treat an enum type as its underlying type. 1006 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1007 RetTy = EnumTy->getDecl()->getIntegerType(); 1008 1009 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1010 : ABIArgInfo::getDirect()); 1011 } 1012 1013 /// IsX86_MMXType - Return true if this is an MMX type. 1014 bool IsX86_MMXType(llvm::Type *IRType) { 1015 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1016 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1017 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1018 IRType->getScalarSizeInBits() != 64; 1019 } 1020 1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1022 StringRef Constraint, 1023 llvm::Type* Ty) { 1024 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1025 .Cases("y", "&y", "^Ym", true) 1026 .Default(false); 1027 if (IsMMXCons && Ty->isVectorTy()) { 1028 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1029 64) { 1030 // Invalid MMX constraint 1031 return nullptr; 1032 } 1033 1034 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1035 } 1036 1037 // No operation needed 1038 return Ty; 1039 } 1040 1041 /// Returns true if this type can be passed in SSE registers with the 1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1044 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1045 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1046 if (BT->getKind() == BuiltinType::LongDouble) { 1047 if (&Context.getTargetInfo().getLongDoubleFormat() == 1048 &llvm::APFloat::x87DoubleExtended()) 1049 return false; 1050 } 1051 return true; 1052 } 1053 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1054 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1055 // registers specially. 1056 unsigned VecSize = Context.getTypeSize(VT); 1057 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1058 return true; 1059 } 1060 return false; 1061 } 1062 1063 /// Returns true if this aggregate is small enough to be passed in SSE registers 1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1066 return NumMembers <= 4; 1067 } 1068 1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1071 auto AI = ABIArgInfo::getDirect(T); 1072 AI.setInReg(true); 1073 AI.setCanBeFlattened(false); 1074 return AI; 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // X86-32 ABI Implementation 1079 //===----------------------------------------------------------------------===// 1080 1081 /// Similar to llvm::CCState, but for Clang. 1082 struct CCState { 1083 CCState(CGFunctionInfo &FI) 1084 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1085 1086 llvm::SmallBitVector IsPreassigned; 1087 unsigned CC = CallingConv::CC_C; 1088 unsigned FreeRegs = 0; 1089 unsigned FreeSSERegs = 0; 1090 }; 1091 1092 enum { 1093 // Vectorcall only allows the first 6 parameters to be passed in registers. 1094 VectorcallMaxParamNumAsReg = 6 1095 }; 1096 1097 /// X86_32ABIInfo - The X86-32 ABI information. 1098 class X86_32ABIInfo : public SwiftABIInfo { 1099 enum Class { 1100 Integer, 1101 Float 1102 }; 1103 1104 static const unsigned MinABIStackAlignInBytes = 4; 1105 1106 bool IsDarwinVectorABI; 1107 bool IsRetSmallStructInRegABI; 1108 bool IsWin32StructABI; 1109 bool IsSoftFloatABI; 1110 bool IsMCUABI; 1111 unsigned DefaultNumRegisterParameters; 1112 1113 static bool isRegisterSize(unsigned Size) { 1114 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1115 } 1116 1117 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1118 // FIXME: Assumes vectorcall is in use. 1119 return isX86VectorTypeForVectorCall(getContext(), Ty); 1120 } 1121 1122 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1123 uint64_t NumMembers) const override { 1124 // FIXME: Assumes vectorcall is in use. 1125 return isX86VectorCallAggregateSmallEnough(NumMembers); 1126 } 1127 1128 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1129 1130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1131 /// such that the argument will be passed in memory. 1132 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1133 1134 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1135 1136 /// Return the alignment to use for the given type on the stack. 1137 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1138 1139 Class classify(QualType Ty) const; 1140 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1141 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1142 1143 /// Updates the number of available free registers, returns 1144 /// true if any registers were allocated. 1145 bool updateFreeRegs(QualType Ty, CCState &State) const; 1146 1147 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1148 bool &NeedsPadding) const; 1149 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1150 1151 bool canExpandIndirectArgument(QualType Ty) const; 1152 1153 /// Rewrite the function info so that all memory arguments use 1154 /// inalloca. 1155 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1156 1157 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1158 CharUnits &StackOffset, ABIArgInfo &Info, 1159 QualType Type) const; 1160 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1161 1162 public: 1163 1164 void computeInfo(CGFunctionInfo &FI) const override; 1165 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1166 QualType Ty) const override; 1167 1168 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1169 bool RetSmallStructInRegABI, bool Win32StructABI, 1170 unsigned NumRegisterParameters, bool SoftFloatABI) 1171 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1172 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1173 IsWin32StructABI(Win32StructABI), 1174 IsSoftFloatABI(SoftFloatABI), 1175 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1176 DefaultNumRegisterParameters(NumRegisterParameters) {} 1177 1178 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1179 bool asReturnValue) const override { 1180 // LLVM's x86-32 lowering currently only assigns up to three 1181 // integer registers and three fp registers. Oddly, it'll use up to 1182 // four vector registers for vectors, but those can overlap with the 1183 // scalar registers. 1184 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1185 } 1186 1187 bool isSwiftErrorInRegister() const override { 1188 // x86-32 lowering does not support passing swifterror in a register. 1189 return false; 1190 } 1191 }; 1192 1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1194 public: 1195 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1196 bool RetSmallStructInRegABI, bool Win32StructABI, 1197 unsigned NumRegisterParameters, bool SoftFloatABI) 1198 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1199 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1200 NumRegisterParameters, SoftFloatABI)) {} 1201 1202 static bool isStructReturnInRegABI( 1203 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1204 1205 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1206 CodeGen::CodeGenModule &CGM) const override; 1207 1208 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1209 // Darwin uses different dwarf register numbers for EH. 1210 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1211 return 4; 1212 } 1213 1214 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1215 llvm::Value *Address) const override; 1216 1217 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1218 StringRef Constraint, 1219 llvm::Type* Ty) const override { 1220 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1221 } 1222 1223 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1224 std::string &Constraints, 1225 std::vector<llvm::Type *> &ResultRegTypes, 1226 std::vector<llvm::Type *> &ResultTruncRegTypes, 1227 std::vector<LValue> &ResultRegDests, 1228 std::string &AsmString, 1229 unsigned NumOutputs) const override; 1230 1231 llvm::Constant * 1232 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1233 unsigned Sig = (0xeb << 0) | // jmp rel8 1234 (0x06 << 8) | // .+0x08 1235 ('v' << 16) | 1236 ('2' << 24); 1237 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1238 } 1239 1240 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1241 return "movl\t%ebp, %ebp" 1242 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1243 } 1244 }; 1245 1246 } 1247 1248 /// Rewrite input constraint references after adding some output constraints. 1249 /// In the case where there is one output and one input and we add one output, 1250 /// we need to replace all operand references greater than or equal to 1: 1251 /// mov $0, $1 1252 /// mov eax, $1 1253 /// The result will be: 1254 /// mov $0, $2 1255 /// mov eax, $2 1256 static void rewriteInputConstraintReferences(unsigned FirstIn, 1257 unsigned NumNewOuts, 1258 std::string &AsmString) { 1259 std::string Buf; 1260 llvm::raw_string_ostream OS(Buf); 1261 size_t Pos = 0; 1262 while (Pos < AsmString.size()) { 1263 size_t DollarStart = AsmString.find('$', Pos); 1264 if (DollarStart == std::string::npos) 1265 DollarStart = AsmString.size(); 1266 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1267 if (DollarEnd == std::string::npos) 1268 DollarEnd = AsmString.size(); 1269 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1270 Pos = DollarEnd; 1271 size_t NumDollars = DollarEnd - DollarStart; 1272 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1273 // We have an operand reference. 1274 size_t DigitStart = Pos; 1275 if (AsmString[DigitStart] == '{') { 1276 OS << '{'; 1277 ++DigitStart; 1278 } 1279 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1280 if (DigitEnd == std::string::npos) 1281 DigitEnd = AsmString.size(); 1282 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1283 unsigned OperandIndex; 1284 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1285 if (OperandIndex >= FirstIn) 1286 OperandIndex += NumNewOuts; 1287 OS << OperandIndex; 1288 } else { 1289 OS << OperandStr; 1290 } 1291 Pos = DigitEnd; 1292 } 1293 } 1294 AsmString = std::move(OS.str()); 1295 } 1296 1297 /// Add output constraints for EAX:EDX because they are return registers. 1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1299 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1300 std::vector<llvm::Type *> &ResultRegTypes, 1301 std::vector<llvm::Type *> &ResultTruncRegTypes, 1302 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1303 unsigned NumOutputs) const { 1304 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1305 1306 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1307 // larger. 1308 if (!Constraints.empty()) 1309 Constraints += ','; 1310 if (RetWidth <= 32) { 1311 Constraints += "={eax}"; 1312 ResultRegTypes.push_back(CGF.Int32Ty); 1313 } else { 1314 // Use the 'A' constraint for EAX:EDX. 1315 Constraints += "=A"; 1316 ResultRegTypes.push_back(CGF.Int64Ty); 1317 } 1318 1319 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1320 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1321 ResultTruncRegTypes.push_back(CoerceTy); 1322 1323 // Coerce the integer by bitcasting the return slot pointer. 1324 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1325 CoerceTy->getPointerTo())); 1326 ResultRegDests.push_back(ReturnSlot); 1327 1328 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1329 } 1330 1331 /// shouldReturnTypeInRegister - Determine if the given type should be 1332 /// returned in a register (for the Darwin and MCU ABI). 1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1334 ASTContext &Context) const { 1335 uint64_t Size = Context.getTypeSize(Ty); 1336 1337 // For i386, type must be register sized. 1338 // For the MCU ABI, it only needs to be <= 8-byte 1339 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1340 return false; 1341 1342 if (Ty->isVectorType()) { 1343 // 64- and 128- bit vectors inside structures are not returned in 1344 // registers. 1345 if (Size == 64 || Size == 128) 1346 return false; 1347 1348 return true; 1349 } 1350 1351 // If this is a builtin, pointer, enum, complex type, member pointer, or 1352 // member function pointer it is ok. 1353 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1354 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1355 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1356 return true; 1357 1358 // Arrays are treated like records. 1359 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1360 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1361 1362 // Otherwise, it must be a record type. 1363 const RecordType *RT = Ty->getAs<RecordType>(); 1364 if (!RT) return false; 1365 1366 // FIXME: Traverse bases here too. 1367 1368 // Structure types are passed in register if all fields would be 1369 // passed in a register. 1370 for (const auto *FD : RT->getDecl()->fields()) { 1371 // Empty fields are ignored. 1372 if (isEmptyField(Context, FD, true)) 1373 continue; 1374 1375 // Check fields recursively. 1376 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1377 return false; 1378 } 1379 return true; 1380 } 1381 1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1383 // Treat complex types as the element type. 1384 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1385 Ty = CTy->getElementType(); 1386 1387 // Check for a type which we know has a simple scalar argument-passing 1388 // convention without any padding. (We're specifically looking for 32 1389 // and 64-bit integer and integer-equivalents, float, and double.) 1390 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1391 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1392 return false; 1393 1394 uint64_t Size = Context.getTypeSize(Ty); 1395 return Size == 32 || Size == 64; 1396 } 1397 1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1399 uint64_t &Size) { 1400 for (const auto *FD : RD->fields()) { 1401 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1402 // argument is smaller than 32-bits, expanding the struct will create 1403 // alignment padding. 1404 if (!is32Or64BitBasicType(FD->getType(), Context)) 1405 return false; 1406 1407 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1408 // how to expand them yet, and the predicate for telling if a bitfield still 1409 // counts as "basic" is more complicated than what we were doing previously. 1410 if (FD->isBitField()) 1411 return false; 1412 1413 Size += Context.getTypeSize(FD->getType()); 1414 } 1415 return true; 1416 } 1417 1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1419 uint64_t &Size) { 1420 // Don't do this if there are any non-empty bases. 1421 for (const CXXBaseSpecifier &Base : RD->bases()) { 1422 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1423 Size)) 1424 return false; 1425 } 1426 if (!addFieldSizes(Context, RD, Size)) 1427 return false; 1428 return true; 1429 } 1430 1431 /// Test whether an argument type which is to be passed indirectly (on the 1432 /// stack) would have the equivalent layout if it was expanded into separate 1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1434 /// optimizations. 1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1436 // We can only expand structure types. 1437 const RecordType *RT = Ty->getAs<RecordType>(); 1438 if (!RT) 1439 return false; 1440 const RecordDecl *RD = RT->getDecl(); 1441 uint64_t Size = 0; 1442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1443 if (!IsWin32StructABI) { 1444 // On non-Windows, we have to conservatively match our old bitcode 1445 // prototypes in order to be ABI-compatible at the bitcode level. 1446 if (!CXXRD->isCLike()) 1447 return false; 1448 } else { 1449 // Don't do this for dynamic classes. 1450 if (CXXRD->isDynamicClass()) 1451 return false; 1452 } 1453 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1454 return false; 1455 } else { 1456 if (!addFieldSizes(getContext(), RD, Size)) 1457 return false; 1458 } 1459 1460 // We can do this if there was no alignment padding. 1461 return Size == getContext().getTypeSize(Ty); 1462 } 1463 1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1465 // If the return value is indirect, then the hidden argument is consuming one 1466 // integer register. 1467 if (State.FreeRegs) { 1468 --State.FreeRegs; 1469 if (!IsMCUABI) 1470 return getNaturalAlignIndirectInReg(RetTy); 1471 } 1472 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1473 } 1474 1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1476 CCState &State) const { 1477 if (RetTy->isVoidType()) 1478 return ABIArgInfo::getIgnore(); 1479 1480 const Type *Base = nullptr; 1481 uint64_t NumElts = 0; 1482 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1483 State.CC == llvm::CallingConv::X86_RegCall) && 1484 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1485 // The LLVM struct type for such an aggregate should lower properly. 1486 return ABIArgInfo::getDirect(); 1487 } 1488 1489 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1490 // On Darwin, some vectors are returned in registers. 1491 if (IsDarwinVectorABI) { 1492 uint64_t Size = getContext().getTypeSize(RetTy); 1493 1494 // 128-bit vectors are a special case; they are returned in 1495 // registers and we need to make sure to pick a type the LLVM 1496 // backend will like. 1497 if (Size == 128) 1498 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1499 llvm::Type::getInt64Ty(getVMContext()), 2)); 1500 1501 // Always return in register if it fits in a general purpose 1502 // register, or if it is 64 bits and has a single element. 1503 if ((Size == 8 || Size == 16 || Size == 32) || 1504 (Size == 64 && VT->getNumElements() == 1)) 1505 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1506 Size)); 1507 1508 return getIndirectReturnResult(RetTy, State); 1509 } 1510 1511 return ABIArgInfo::getDirect(); 1512 } 1513 1514 if (isAggregateTypeForABI(RetTy)) { 1515 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1516 // Structures with flexible arrays are always indirect. 1517 if (RT->getDecl()->hasFlexibleArrayMember()) 1518 return getIndirectReturnResult(RetTy, State); 1519 } 1520 1521 // If specified, structs and unions are always indirect. 1522 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1523 return getIndirectReturnResult(RetTy, State); 1524 1525 // Ignore empty structs/unions. 1526 if (isEmptyRecord(getContext(), RetTy, true)) 1527 return ABIArgInfo::getIgnore(); 1528 1529 // Small structures which are register sized are generally returned 1530 // in a register. 1531 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1532 uint64_t Size = getContext().getTypeSize(RetTy); 1533 1534 // As a special-case, if the struct is a "single-element" struct, and 1535 // the field is of type "float" or "double", return it in a 1536 // floating-point register. (MSVC does not apply this special case.) 1537 // We apply a similar transformation for pointer types to improve the 1538 // quality of the generated IR. 1539 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1540 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1541 || SeltTy->hasPointerRepresentation()) 1542 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1543 1544 // FIXME: We should be able to narrow this integer in cases with dead 1545 // padding. 1546 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1547 } 1548 1549 return getIndirectReturnResult(RetTy, State); 1550 } 1551 1552 // Treat an enum type as its underlying type. 1553 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1554 RetTy = EnumTy->getDecl()->getIntegerType(); 1555 1556 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1557 if (EIT->getNumBits() > 64) 1558 return getIndirectReturnResult(RetTy, State); 1559 1560 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1561 : ABIArgInfo::getDirect()); 1562 } 1563 1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1565 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1566 } 1567 1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1569 const RecordType *RT = Ty->getAs<RecordType>(); 1570 if (!RT) 1571 return 0; 1572 const RecordDecl *RD = RT->getDecl(); 1573 1574 // If this is a C++ record, check the bases first. 1575 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1576 for (const auto &I : CXXRD->bases()) 1577 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1578 return false; 1579 1580 for (const auto *i : RD->fields()) { 1581 QualType FT = i->getType(); 1582 1583 if (isSIMDVectorType(Context, FT)) 1584 return true; 1585 1586 if (isRecordWithSIMDVectorType(Context, FT)) 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1594 unsigned Align) const { 1595 // Otherwise, if the alignment is less than or equal to the minimum ABI 1596 // alignment, just use the default; the backend will handle this. 1597 if (Align <= MinABIStackAlignInBytes) 1598 return 0; // Use default alignment. 1599 1600 // On non-Darwin, the stack type alignment is always 4. 1601 if (!IsDarwinVectorABI) { 1602 // Set explicit alignment, since we may need to realign the top. 1603 return MinABIStackAlignInBytes; 1604 } 1605 1606 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1607 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1608 isRecordWithSIMDVectorType(getContext(), Ty))) 1609 return 16; 1610 1611 return MinABIStackAlignInBytes; 1612 } 1613 1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1615 CCState &State) const { 1616 if (!ByVal) { 1617 if (State.FreeRegs) { 1618 --State.FreeRegs; // Non-byval indirects just use one pointer. 1619 if (!IsMCUABI) 1620 return getNaturalAlignIndirectInReg(Ty); 1621 } 1622 return getNaturalAlignIndirect(Ty, false); 1623 } 1624 1625 // Compute the byval alignment. 1626 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1627 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1628 if (StackAlign == 0) 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1630 1631 // If the stack alignment is less than the type alignment, realign the 1632 // argument. 1633 bool Realign = TypeAlign > StackAlign; 1634 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1635 /*ByVal=*/true, Realign); 1636 } 1637 1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1639 const Type *T = isSingleElementStruct(Ty, getContext()); 1640 if (!T) 1641 T = Ty.getTypePtr(); 1642 1643 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1644 BuiltinType::Kind K = BT->getKind(); 1645 if (K == BuiltinType::Float || K == BuiltinType::Double) 1646 return Float; 1647 } 1648 return Integer; 1649 } 1650 1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1652 if (!IsSoftFloatABI) { 1653 Class C = classify(Ty); 1654 if (C == Float) 1655 return false; 1656 } 1657 1658 unsigned Size = getContext().getTypeSize(Ty); 1659 unsigned SizeInRegs = (Size + 31) / 32; 1660 1661 if (SizeInRegs == 0) 1662 return false; 1663 1664 if (!IsMCUABI) { 1665 if (SizeInRegs > State.FreeRegs) { 1666 State.FreeRegs = 0; 1667 return false; 1668 } 1669 } else { 1670 // The MCU psABI allows passing parameters in-reg even if there are 1671 // earlier parameters that are passed on the stack. Also, 1672 // it does not allow passing >8-byte structs in-register, 1673 // even if there are 3 free registers available. 1674 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1675 return false; 1676 } 1677 1678 State.FreeRegs -= SizeInRegs; 1679 return true; 1680 } 1681 1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1683 bool &InReg, 1684 bool &NeedsPadding) const { 1685 // On Windows, aggregates other than HFAs are never passed in registers, and 1686 // they do not consume register slots. Homogenous floating-point aggregates 1687 // (HFAs) have already been dealt with at this point. 1688 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1689 return false; 1690 1691 NeedsPadding = false; 1692 InReg = !IsMCUABI; 1693 1694 if (!updateFreeRegs(Ty, State)) 1695 return false; 1696 1697 if (IsMCUABI) 1698 return true; 1699 1700 if (State.CC == llvm::CallingConv::X86_FastCall || 1701 State.CC == llvm::CallingConv::X86_VectorCall || 1702 State.CC == llvm::CallingConv::X86_RegCall) { 1703 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1704 NeedsPadding = true; 1705 1706 return false; 1707 } 1708 1709 return true; 1710 } 1711 1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1713 if (!updateFreeRegs(Ty, State)) 1714 return false; 1715 1716 if (IsMCUABI) 1717 return false; 1718 1719 if (State.CC == llvm::CallingConv::X86_FastCall || 1720 State.CC == llvm::CallingConv::X86_VectorCall || 1721 State.CC == llvm::CallingConv::X86_RegCall) { 1722 if (getContext().getTypeSize(Ty) > 32) 1723 return false; 1724 1725 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1726 Ty->isReferenceType()); 1727 } 1728 1729 return true; 1730 } 1731 1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1733 // Vectorcall x86 works subtly different than in x64, so the format is 1734 // a bit different than the x64 version. First, all vector types (not HVAs) 1735 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1736 // This differs from the x64 implementation, where the first 6 by INDEX get 1737 // registers. 1738 // In the second pass over the arguments, HVAs are passed in the remaining 1739 // vector registers if possible, or indirectly by address. The address will be 1740 // passed in ECX/EDX if available. Any other arguments are passed according to 1741 // the usual fastcall rules. 1742 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1743 for (int I = 0, E = Args.size(); I < E; ++I) { 1744 const Type *Base = nullptr; 1745 uint64_t NumElts = 0; 1746 const QualType &Ty = Args[I].type; 1747 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1748 isHomogeneousAggregate(Ty, Base, NumElts)) { 1749 if (State.FreeSSERegs >= NumElts) { 1750 State.FreeSSERegs -= NumElts; 1751 Args[I].info = ABIArgInfo::getDirectInReg(); 1752 State.IsPreassigned.set(I); 1753 } 1754 } 1755 } 1756 } 1757 1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1759 CCState &State) const { 1760 // FIXME: Set alignment on indirect arguments. 1761 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1762 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1763 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1764 1765 Ty = useFirstFieldIfTransparentUnion(Ty); 1766 TypeInfo TI = getContext().getTypeInfo(Ty); 1767 1768 // Check with the C++ ABI first. 1769 const RecordType *RT = Ty->getAs<RecordType>(); 1770 if (RT) { 1771 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1772 if (RAA == CGCXXABI::RAA_Indirect) { 1773 return getIndirectResult(Ty, false, State); 1774 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1775 // The field index doesn't matter, we'll fix it up later. 1776 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1777 } 1778 } 1779 1780 // Regcall uses the concept of a homogenous vector aggregate, similar 1781 // to other targets. 1782 const Type *Base = nullptr; 1783 uint64_t NumElts = 0; 1784 if ((IsRegCall || IsVectorCall) && 1785 isHomogeneousAggregate(Ty, Base, NumElts)) { 1786 if (State.FreeSSERegs >= NumElts) { 1787 State.FreeSSERegs -= NumElts; 1788 1789 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1790 // does. 1791 if (IsVectorCall) 1792 return getDirectX86Hva(); 1793 1794 if (Ty->isBuiltinType() || Ty->isVectorType()) 1795 return ABIArgInfo::getDirect(); 1796 return ABIArgInfo::getExpand(); 1797 } 1798 return getIndirectResult(Ty, /*ByVal=*/false, State); 1799 } 1800 1801 if (isAggregateTypeForABI(Ty)) { 1802 // Structures with flexible arrays are always indirect. 1803 // FIXME: This should not be byval! 1804 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1805 return getIndirectResult(Ty, true, State); 1806 1807 // Ignore empty structs/unions on non-Windows. 1808 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1809 return ABIArgInfo::getIgnore(); 1810 1811 llvm::LLVMContext &LLVMContext = getVMContext(); 1812 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1813 bool NeedsPadding = false; 1814 bool InReg; 1815 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1816 unsigned SizeInRegs = (TI.Width + 31) / 32; 1817 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1818 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1819 if (InReg) 1820 return ABIArgInfo::getDirectInReg(Result); 1821 else 1822 return ABIArgInfo::getDirect(Result); 1823 } 1824 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1825 1826 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1827 // added in MSVC 2015. 1828 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1829 return getIndirectResult(Ty, /*ByVal=*/false, State); 1830 1831 // Expand small (<= 128-bit) record types when we know that the stack layout 1832 // of those arguments will match the struct. This is important because the 1833 // LLVM backend isn't smart enough to remove byval, which inhibits many 1834 // optimizations. 1835 // Don't do this for the MCU if there are still free integer registers 1836 // (see X86_64 ABI for full explanation). 1837 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1838 canExpandIndirectArgument(Ty)) 1839 return ABIArgInfo::getExpandWithPadding( 1840 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1841 1842 return getIndirectResult(Ty, true, State); 1843 } 1844 1845 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1846 // On Windows, vectors are passed directly if registers are available, or 1847 // indirectly if not. This avoids the need to align argument memory. Pass 1848 // user-defined vector types larger than 512 bits indirectly for simplicity. 1849 if (IsWin32StructABI) { 1850 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1851 --State.FreeSSERegs; 1852 return ABIArgInfo::getDirectInReg(); 1853 } 1854 return getIndirectResult(Ty, /*ByVal=*/false, State); 1855 } 1856 1857 // On Darwin, some vectors are passed in memory, we handle this by passing 1858 // it as an i8/i16/i32/i64. 1859 if (IsDarwinVectorABI) { 1860 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1861 (TI.Width == 64 && VT->getNumElements() == 1)) 1862 return ABIArgInfo::getDirect( 1863 llvm::IntegerType::get(getVMContext(), TI.Width)); 1864 } 1865 1866 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1867 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1868 1869 return ABIArgInfo::getDirect(); 1870 } 1871 1872 1873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1874 Ty = EnumTy->getDecl()->getIntegerType(); 1875 1876 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1877 1878 if (isPromotableIntegerTypeForABI(Ty)) { 1879 if (InReg) 1880 return ABIArgInfo::getExtendInReg(Ty); 1881 return ABIArgInfo::getExtend(Ty); 1882 } 1883 1884 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1885 if (EIT->getNumBits() <= 64) { 1886 if (InReg) 1887 return ABIArgInfo::getDirectInReg(); 1888 return ABIArgInfo::getDirect(); 1889 } 1890 return getIndirectResult(Ty, /*ByVal=*/false, State); 1891 } 1892 1893 if (InReg) 1894 return ABIArgInfo::getDirectInReg(); 1895 return ABIArgInfo::getDirect(); 1896 } 1897 1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1899 CCState State(FI); 1900 if (IsMCUABI) 1901 State.FreeRegs = 3; 1902 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1903 State.FreeRegs = 2; 1904 State.FreeSSERegs = 3; 1905 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1906 State.FreeRegs = 2; 1907 State.FreeSSERegs = 6; 1908 } else if (FI.getHasRegParm()) 1909 State.FreeRegs = FI.getRegParm(); 1910 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1911 State.FreeRegs = 5; 1912 State.FreeSSERegs = 8; 1913 } else if (IsWin32StructABI) { 1914 // Since MSVC 2015, the first three SSE vectors have been passed in 1915 // registers. The rest are passed indirectly. 1916 State.FreeRegs = DefaultNumRegisterParameters; 1917 State.FreeSSERegs = 3; 1918 } else 1919 State.FreeRegs = DefaultNumRegisterParameters; 1920 1921 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1922 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1923 } else if (FI.getReturnInfo().isIndirect()) { 1924 // The C++ ABI is not aware of register usage, so we have to check if the 1925 // return value was sret and put it in a register ourselves if appropriate. 1926 if (State.FreeRegs) { 1927 --State.FreeRegs; // The sret parameter consumes a register. 1928 if (!IsMCUABI) 1929 FI.getReturnInfo().setInReg(true); 1930 } 1931 } 1932 1933 // The chain argument effectively gives us another free register. 1934 if (FI.isChainCall()) 1935 ++State.FreeRegs; 1936 1937 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1938 // arguments to XMM registers as available. 1939 if (State.CC == llvm::CallingConv::X86_VectorCall) 1940 runVectorCallFirstPass(FI, State); 1941 1942 bool UsedInAlloca = false; 1943 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1944 for (int I = 0, E = Args.size(); I < E; ++I) { 1945 // Skip arguments that have already been assigned. 1946 if (State.IsPreassigned.test(I)) 1947 continue; 1948 1949 Args[I].info = classifyArgumentType(Args[I].type, State); 1950 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1951 } 1952 1953 // If we needed to use inalloca for any argument, do a second pass and rewrite 1954 // all the memory arguments to use inalloca. 1955 if (UsedInAlloca) 1956 rewriteWithInAlloca(FI); 1957 } 1958 1959 void 1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1961 CharUnits &StackOffset, ABIArgInfo &Info, 1962 QualType Type) const { 1963 // Arguments are always 4-byte-aligned. 1964 CharUnits WordSize = CharUnits::fromQuantity(4); 1965 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1966 1967 // sret pointers and indirect things will require an extra pointer 1968 // indirection, unless they are byval. Most things are byval, and will not 1969 // require this indirection. 1970 bool IsIndirect = false; 1971 if (Info.isIndirect() && !Info.getIndirectByVal()) 1972 IsIndirect = true; 1973 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1974 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1975 if (IsIndirect) 1976 LLTy = LLTy->getPointerTo(0); 1977 FrameFields.push_back(LLTy); 1978 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1979 1980 // Insert padding bytes to respect alignment. 1981 CharUnits FieldEnd = StackOffset; 1982 StackOffset = FieldEnd.alignTo(WordSize); 1983 if (StackOffset != FieldEnd) { 1984 CharUnits NumBytes = StackOffset - FieldEnd; 1985 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1986 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1987 FrameFields.push_back(Ty); 1988 } 1989 } 1990 1991 static bool isArgInAlloca(const ABIArgInfo &Info) { 1992 // Leave ignored and inreg arguments alone. 1993 switch (Info.getKind()) { 1994 case ABIArgInfo::InAlloca: 1995 return true; 1996 case ABIArgInfo::Ignore: 1997 case ABIArgInfo::IndirectAliased: 1998 return false; 1999 case ABIArgInfo::Indirect: 2000 case ABIArgInfo::Direct: 2001 case ABIArgInfo::Extend: 2002 return !Info.getInReg(); 2003 case ABIArgInfo::Expand: 2004 case ABIArgInfo::CoerceAndExpand: 2005 // These are aggregate types which are never passed in registers when 2006 // inalloca is involved. 2007 return true; 2008 } 2009 llvm_unreachable("invalid enum"); 2010 } 2011 2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2013 assert(IsWin32StructABI && "inalloca only supported on win32"); 2014 2015 // Build a packed struct type for all of the arguments in memory. 2016 SmallVector<llvm::Type *, 6> FrameFields; 2017 2018 // The stack alignment is always 4. 2019 CharUnits StackAlign = CharUnits::fromQuantity(4); 2020 2021 CharUnits StackOffset; 2022 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2023 2024 // Put 'this' into the struct before 'sret', if necessary. 2025 bool IsThisCall = 2026 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2027 ABIArgInfo &Ret = FI.getReturnInfo(); 2028 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2029 isArgInAlloca(I->info)) { 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 ++I; 2032 } 2033 2034 // Put the sret parameter into the inalloca struct if it's in memory. 2035 if (Ret.isIndirect() && !Ret.getInReg()) { 2036 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2037 // On Windows, the hidden sret parameter is always returned in eax. 2038 Ret.setInAllocaSRet(IsWin32StructABI); 2039 } 2040 2041 // Skip the 'this' parameter in ecx. 2042 if (IsThisCall) 2043 ++I; 2044 2045 // Put arguments passed in memory into the struct. 2046 for (; I != E; ++I) { 2047 if (isArgInAlloca(I->info)) 2048 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2049 } 2050 2051 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2052 /*isPacked=*/true), 2053 StackAlign); 2054 } 2055 2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2057 Address VAListAddr, QualType Ty) const { 2058 2059 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2060 2061 // x86-32 changes the alignment of certain arguments on the stack. 2062 // 2063 // Just messing with TypeInfo like this works because we never pass 2064 // anything indirectly. 2065 TypeInfo.Align = CharUnits::fromQuantity( 2066 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2067 2068 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2069 TypeInfo, CharUnits::fromQuantity(4), 2070 /*AllowHigherAlign*/ true); 2071 } 2072 2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2074 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2075 assert(Triple.getArch() == llvm::Triple::x86); 2076 2077 switch (Opts.getStructReturnConvention()) { 2078 case CodeGenOptions::SRCK_Default: 2079 break; 2080 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2081 return false; 2082 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2083 return true; 2084 } 2085 2086 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2087 return true; 2088 2089 switch (Triple.getOS()) { 2090 case llvm::Triple::DragonFly: 2091 case llvm::Triple::FreeBSD: 2092 case llvm::Triple::OpenBSD: 2093 case llvm::Triple::Win32: 2094 return true; 2095 default: 2096 return false; 2097 } 2098 } 2099 2100 void X86_32TargetCodeGenInfo::setTargetAttributes( 2101 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2102 if (GV->isDeclaration()) 2103 return; 2104 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2105 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2106 llvm::Function *Fn = cast<llvm::Function>(GV); 2107 Fn->addFnAttr("stackrealign"); 2108 } 2109 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2110 llvm::Function *Fn = cast<llvm::Function>(GV); 2111 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2112 } 2113 } 2114 } 2115 2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2117 CodeGen::CodeGenFunction &CGF, 2118 llvm::Value *Address) const { 2119 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2120 2121 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2122 2123 // 0-7 are the eight integer registers; the order is different 2124 // on Darwin (for EH), but the range is the same. 2125 // 8 is %eip. 2126 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2127 2128 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2129 // 12-16 are st(0..4). Not sure why we stop at 4. 2130 // These have size 16, which is sizeof(long double) on 2131 // platforms with 8-byte alignment for that type. 2132 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2133 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2134 2135 } else { 2136 // 9 is %eflags, which doesn't get a size on Darwin for some 2137 // reason. 2138 Builder.CreateAlignedStore( 2139 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2140 CharUnits::One()); 2141 2142 // 11-16 are st(0..5). Not sure why we stop at 5. 2143 // These have size 12, which is sizeof(long double) on 2144 // platforms with 4-byte alignment for that type. 2145 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2146 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2147 } 2148 2149 return false; 2150 } 2151 2152 //===----------------------------------------------------------------------===// 2153 // X86-64 ABI Implementation 2154 //===----------------------------------------------------------------------===// 2155 2156 2157 namespace { 2158 /// The AVX ABI level for X86 targets. 2159 enum class X86AVXABILevel { 2160 None, 2161 AVX, 2162 AVX512 2163 }; 2164 2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2167 switch (AVXLevel) { 2168 case X86AVXABILevel::AVX512: 2169 return 512; 2170 case X86AVXABILevel::AVX: 2171 return 256; 2172 case X86AVXABILevel::None: 2173 return 128; 2174 } 2175 llvm_unreachable("Unknown AVXLevel"); 2176 } 2177 2178 /// X86_64ABIInfo - The X86_64 ABI information. 2179 class X86_64ABIInfo : public SwiftABIInfo { 2180 enum Class { 2181 Integer = 0, 2182 SSE, 2183 SSEUp, 2184 X87, 2185 X87Up, 2186 ComplexX87, 2187 NoClass, 2188 Memory 2189 }; 2190 2191 /// merge - Implement the X86_64 ABI merging algorithm. 2192 /// 2193 /// Merge an accumulating classification \arg Accum with a field 2194 /// classification \arg Field. 2195 /// 2196 /// \param Accum - The accumulating classification. This should 2197 /// always be either NoClass or the result of a previous merge 2198 /// call. In addition, this should never be Memory (the caller 2199 /// should just return Memory for the aggregate). 2200 static Class merge(Class Accum, Class Field); 2201 2202 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2203 /// 2204 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2205 /// final MEMORY or SSE classes when necessary. 2206 /// 2207 /// \param AggregateSize - The size of the current aggregate in 2208 /// the classification process. 2209 /// 2210 /// \param Lo - The classification for the parts of the type 2211 /// residing in the low word of the containing object. 2212 /// 2213 /// \param Hi - The classification for the parts of the type 2214 /// residing in the higher words of the containing object. 2215 /// 2216 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2217 2218 /// classify - Determine the x86_64 register classes in which the 2219 /// given type T should be passed. 2220 /// 2221 /// \param Lo - The classification for the parts of the type 2222 /// residing in the low word of the containing object. 2223 /// 2224 /// \param Hi - The classification for the parts of the type 2225 /// residing in the high word of the containing object. 2226 /// 2227 /// \param OffsetBase - The bit offset of this type in the 2228 /// containing object. Some parameters are classified different 2229 /// depending on whether they straddle an eightbyte boundary. 2230 /// 2231 /// \param isNamedArg - Whether the argument in question is a "named" 2232 /// argument, as used in AMD64-ABI 3.5.7. 2233 /// 2234 /// If a word is unused its result will be NoClass; if a type should 2235 /// be passed in Memory then at least the classification of \arg Lo 2236 /// will be Memory. 2237 /// 2238 /// The \arg Lo class will be NoClass iff the argument is ignored. 2239 /// 2240 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2241 /// also be ComplexX87. 2242 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2243 bool isNamedArg) const; 2244 2245 llvm::Type *GetByteVectorType(QualType Ty) const; 2246 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2247 unsigned IROffset, QualType SourceTy, 2248 unsigned SourceOffset) const; 2249 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2250 unsigned IROffset, QualType SourceTy, 2251 unsigned SourceOffset) const; 2252 2253 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2254 /// such that the argument will be returned in memory. 2255 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2256 2257 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2258 /// such that the argument will be passed in memory. 2259 /// 2260 /// \param freeIntRegs - The number of free integer registers remaining 2261 /// available. 2262 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2263 2264 ABIArgInfo classifyReturnType(QualType RetTy) const; 2265 2266 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2267 unsigned &neededInt, unsigned &neededSSE, 2268 bool isNamedArg) const; 2269 2270 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2271 unsigned &NeededSSE) const; 2272 2273 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2274 unsigned &NeededSSE) const; 2275 2276 bool IsIllegalVectorType(QualType Ty) const; 2277 2278 /// The 0.98 ABI revision clarified a lot of ambiguities, 2279 /// unfortunately in ways that were not always consistent with 2280 /// certain previous compilers. In particular, platforms which 2281 /// required strict binary compatibility with older versions of GCC 2282 /// may need to exempt themselves. 2283 bool honorsRevision0_98() const { 2284 return !getTarget().getTriple().isOSDarwin(); 2285 } 2286 2287 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2288 /// classify it as INTEGER (for compatibility with older clang compilers). 2289 bool classifyIntegerMMXAsSSE() const { 2290 // Clang <= 3.8 did not do this. 2291 if (getContext().getLangOpts().getClangABICompat() <= 2292 LangOptions::ClangABI::Ver3_8) 2293 return false; 2294 2295 const llvm::Triple &Triple = getTarget().getTriple(); 2296 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2297 return false; 2298 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2299 return false; 2300 return true; 2301 } 2302 2303 // GCC classifies vectors of __int128 as memory. 2304 bool passInt128VectorsInMem() const { 2305 // Clang <= 9.0 did not do this. 2306 if (getContext().getLangOpts().getClangABICompat() <= 2307 LangOptions::ClangABI::Ver9) 2308 return false; 2309 2310 const llvm::Triple &T = getTarget().getTriple(); 2311 return T.isOSLinux() || T.isOSNetBSD(); 2312 } 2313 2314 X86AVXABILevel AVXLevel; 2315 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2316 // 64-bit hardware. 2317 bool Has64BitPointers; 2318 2319 public: 2320 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2321 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2322 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2323 } 2324 2325 bool isPassedUsingAVXType(QualType type) const { 2326 unsigned neededInt, neededSSE; 2327 // The freeIntRegs argument doesn't matter here. 2328 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2329 /*isNamedArg*/true); 2330 if (info.isDirect()) { 2331 llvm::Type *ty = info.getCoerceToType(); 2332 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2333 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2334 } 2335 return false; 2336 } 2337 2338 void computeInfo(CGFunctionInfo &FI) const override; 2339 2340 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2341 QualType Ty) const override; 2342 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2343 QualType Ty) const override; 2344 2345 bool has64BitPointers() const { 2346 return Has64BitPointers; 2347 } 2348 2349 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2350 bool asReturnValue) const override { 2351 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2352 } 2353 bool isSwiftErrorInRegister() const override { 2354 return true; 2355 } 2356 }; 2357 2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2359 class WinX86_64ABIInfo : public SwiftABIInfo { 2360 public: 2361 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2362 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2363 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2364 2365 void computeInfo(CGFunctionInfo &FI) const override; 2366 2367 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2368 QualType Ty) const override; 2369 2370 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2371 // FIXME: Assumes vectorcall is in use. 2372 return isX86VectorTypeForVectorCall(getContext(), Ty); 2373 } 2374 2375 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2376 uint64_t NumMembers) const override { 2377 // FIXME: Assumes vectorcall is in use. 2378 return isX86VectorCallAggregateSmallEnough(NumMembers); 2379 } 2380 2381 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2382 bool asReturnValue) const override { 2383 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2384 } 2385 2386 bool isSwiftErrorInRegister() const override { 2387 return true; 2388 } 2389 2390 private: 2391 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2392 bool IsVectorCall, bool IsRegCall) const; 2393 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2394 const ABIArgInfo ¤t) const; 2395 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2396 bool IsVectorCall, bool IsRegCall) const; 2397 2398 X86AVXABILevel AVXLevel; 2399 2400 bool IsMingw64; 2401 }; 2402 2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2404 public: 2405 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2406 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2407 2408 const X86_64ABIInfo &getABIInfo() const { 2409 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2410 } 2411 2412 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2413 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2414 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2415 2416 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2417 return 7; 2418 } 2419 2420 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2421 llvm::Value *Address) const override { 2422 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2423 2424 // 0-15 are the 16 integer registers. 2425 // 16 is %rip. 2426 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2427 return false; 2428 } 2429 2430 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2431 StringRef Constraint, 2432 llvm::Type* Ty) const override { 2433 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2434 } 2435 2436 bool isNoProtoCallVariadic(const CallArgList &args, 2437 const FunctionNoProtoType *fnType) const override { 2438 // The default CC on x86-64 sets %al to the number of SSA 2439 // registers used, and GCC sets this when calling an unprototyped 2440 // function, so we override the default behavior. However, don't do 2441 // that when AVX types are involved: the ABI explicitly states it is 2442 // undefined, and it doesn't work in practice because of how the ABI 2443 // defines varargs anyway. 2444 if (fnType->getCallConv() == CC_C) { 2445 bool HasAVXType = false; 2446 for (CallArgList::const_iterator 2447 it = args.begin(), ie = args.end(); it != ie; ++it) { 2448 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2449 HasAVXType = true; 2450 break; 2451 } 2452 } 2453 2454 if (!HasAVXType) 2455 return true; 2456 } 2457 2458 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2459 } 2460 2461 llvm::Constant * 2462 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2463 unsigned Sig = (0xeb << 0) | // jmp rel8 2464 (0x06 << 8) | // .+0x08 2465 ('v' << 16) | 2466 ('2' << 24); 2467 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2468 } 2469 2470 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2471 CodeGen::CodeGenModule &CGM) const override { 2472 if (GV->isDeclaration()) 2473 return; 2474 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2475 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2476 llvm::Function *Fn = cast<llvm::Function>(GV); 2477 Fn->addFnAttr("stackrealign"); 2478 } 2479 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2480 llvm::Function *Fn = cast<llvm::Function>(GV); 2481 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2482 } 2483 } 2484 } 2485 2486 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2487 const FunctionDecl *Caller, 2488 const FunctionDecl *Callee, 2489 const CallArgList &Args) const override; 2490 }; 2491 2492 static void initFeatureMaps(const ASTContext &Ctx, 2493 llvm::StringMap<bool> &CallerMap, 2494 const FunctionDecl *Caller, 2495 llvm::StringMap<bool> &CalleeMap, 2496 const FunctionDecl *Callee) { 2497 if (CalleeMap.empty() && CallerMap.empty()) { 2498 // The caller is potentially nullptr in the case where the call isn't in a 2499 // function. In this case, the getFunctionFeatureMap ensures we just get 2500 // the TU level setting (since it cannot be modified by 'target'.. 2501 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2502 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2503 } 2504 } 2505 2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2507 SourceLocation CallLoc, 2508 const llvm::StringMap<bool> &CallerMap, 2509 const llvm::StringMap<bool> &CalleeMap, 2510 QualType Ty, StringRef Feature, 2511 bool IsArgument) { 2512 bool CallerHasFeat = CallerMap.lookup(Feature); 2513 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2514 if (!CallerHasFeat && !CalleeHasFeat) 2515 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2516 << IsArgument << Ty << Feature; 2517 2518 // Mixing calling conventions here is very clearly an error. 2519 if (!CallerHasFeat || !CalleeHasFeat) 2520 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2521 << IsArgument << Ty << Feature; 2522 2523 // Else, both caller and callee have the required feature, so there is no need 2524 // to diagnose. 2525 return false; 2526 } 2527 2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2529 SourceLocation CallLoc, 2530 const llvm::StringMap<bool> &CallerMap, 2531 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2532 bool IsArgument) { 2533 uint64_t Size = Ctx.getTypeSize(Ty); 2534 if (Size > 256) 2535 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2536 "avx512f", IsArgument); 2537 2538 if (Size > 128) 2539 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2540 IsArgument); 2541 2542 return false; 2543 } 2544 2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2546 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2547 const FunctionDecl *Callee, const CallArgList &Args) const { 2548 llvm::StringMap<bool> CallerMap; 2549 llvm::StringMap<bool> CalleeMap; 2550 unsigned ArgIndex = 0; 2551 2552 // We need to loop through the actual call arguments rather than the the 2553 // function's parameters, in case this variadic. 2554 for (const CallArg &Arg : Args) { 2555 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2556 // additionally changes how vectors >256 in size are passed. Like GCC, we 2557 // warn when a function is called with an argument where this will change. 2558 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2559 // the caller and callee features are mismatched. 2560 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2561 // change its ABI with attribute-target after this call. 2562 if (Arg.getType()->isVectorType() && 2563 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2564 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2565 QualType Ty = Arg.getType(); 2566 // The CallArg seems to have desugared the type already, so for clearer 2567 // diagnostics, replace it with the type in the FunctionDecl if possible. 2568 if (ArgIndex < Callee->getNumParams()) 2569 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2570 2571 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2572 CalleeMap, Ty, /*IsArgument*/ true)) 2573 return; 2574 } 2575 ++ArgIndex; 2576 } 2577 2578 // Check return always, as we don't have a good way of knowing in codegen 2579 // whether this value is used, tail-called, etc. 2580 if (Callee->getReturnType()->isVectorType() && 2581 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2582 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2583 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2584 CalleeMap, Callee->getReturnType(), 2585 /*IsArgument*/ false); 2586 } 2587 } 2588 2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2590 // If the argument does not end in .lib, automatically add the suffix. 2591 // If the argument contains a space, enclose it in quotes. 2592 // This matches the behavior of MSVC. 2593 bool Quote = (Lib.find(" ") != StringRef::npos); 2594 std::string ArgStr = Quote ? "\"" : ""; 2595 ArgStr += Lib; 2596 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2597 ArgStr += ".lib"; 2598 ArgStr += Quote ? "\"" : ""; 2599 return ArgStr; 2600 } 2601 2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2603 public: 2604 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2605 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2606 unsigned NumRegisterParameters) 2607 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2608 Win32StructABI, NumRegisterParameters, false) {} 2609 2610 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2611 CodeGen::CodeGenModule &CGM) const override; 2612 2613 void getDependentLibraryOption(llvm::StringRef Lib, 2614 llvm::SmallString<24> &Opt) const override { 2615 Opt = "/DEFAULTLIB:"; 2616 Opt += qualifyWindowsLibrary(Lib); 2617 } 2618 2619 void getDetectMismatchOption(llvm::StringRef Name, 2620 llvm::StringRef Value, 2621 llvm::SmallString<32> &Opt) const override { 2622 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2623 } 2624 }; 2625 2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2627 CodeGen::CodeGenModule &CGM) { 2628 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2629 2630 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2631 Fn->addFnAttr("stack-probe-size", 2632 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2633 if (CGM.getCodeGenOpts().NoStackArgProbe) 2634 Fn->addFnAttr("no-stack-arg-probe"); 2635 } 2636 } 2637 2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2639 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2640 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2641 if (GV->isDeclaration()) 2642 return; 2643 addStackProbeTargetAttributes(D, GV, CGM); 2644 } 2645 2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2647 public: 2648 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2649 X86AVXABILevel AVXLevel) 2650 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2651 2652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2653 CodeGen::CodeGenModule &CGM) const override; 2654 2655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2656 return 7; 2657 } 2658 2659 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2660 llvm::Value *Address) const override { 2661 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2662 2663 // 0-15 are the 16 integer registers. 2664 // 16 is %rip. 2665 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2666 return false; 2667 } 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2683 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2684 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2685 if (GV->isDeclaration()) 2686 return; 2687 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2688 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2689 llvm::Function *Fn = cast<llvm::Function>(GV); 2690 Fn->addFnAttr("stackrealign"); 2691 } 2692 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2693 llvm::Function *Fn = cast<llvm::Function>(GV); 2694 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2695 } 2696 } 2697 2698 addStackProbeTargetAttributes(D, GV, CGM); 2699 } 2700 } 2701 2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2703 Class &Hi) const { 2704 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2705 // 2706 // (a) If one of the classes is Memory, the whole argument is passed in 2707 // memory. 2708 // 2709 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2710 // memory. 2711 // 2712 // (c) If the size of the aggregate exceeds two eightbytes and the first 2713 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2714 // argument is passed in memory. NOTE: This is necessary to keep the 2715 // ABI working for processors that don't support the __m256 type. 2716 // 2717 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2718 // 2719 // Some of these are enforced by the merging logic. Others can arise 2720 // only with unions; for example: 2721 // union { _Complex double; unsigned; } 2722 // 2723 // Note that clauses (b) and (c) were added in 0.98. 2724 // 2725 if (Hi == Memory) 2726 Lo = Memory; 2727 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2728 Lo = Memory; 2729 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2730 Lo = Memory; 2731 if (Hi == SSEUp && Lo != SSE) 2732 Hi = SSE; 2733 } 2734 2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2736 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2737 // classified recursively so that always two fields are 2738 // considered. The resulting class is calculated according to 2739 // the classes of the fields in the eightbyte: 2740 // 2741 // (a) If both classes are equal, this is the resulting class. 2742 // 2743 // (b) If one of the classes is NO_CLASS, the resulting class is 2744 // the other class. 2745 // 2746 // (c) If one of the classes is MEMORY, the result is the MEMORY 2747 // class. 2748 // 2749 // (d) If one of the classes is INTEGER, the result is the 2750 // INTEGER. 2751 // 2752 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2753 // MEMORY is used as class. 2754 // 2755 // (f) Otherwise class SSE is used. 2756 2757 // Accum should never be memory (we should have returned) or 2758 // ComplexX87 (because this cannot be passed in a structure). 2759 assert((Accum != Memory && Accum != ComplexX87) && 2760 "Invalid accumulated classification during merge."); 2761 if (Accum == Field || Field == NoClass) 2762 return Accum; 2763 if (Field == Memory) 2764 return Memory; 2765 if (Accum == NoClass) 2766 return Field; 2767 if (Accum == Integer || Field == Integer) 2768 return Integer; 2769 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2770 Accum == X87 || Accum == X87Up) 2771 return Memory; 2772 return SSE; 2773 } 2774 2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2776 Class &Lo, Class &Hi, bool isNamedArg) const { 2777 // FIXME: This code can be simplified by introducing a simple value class for 2778 // Class pairs with appropriate constructor methods for the various 2779 // situations. 2780 2781 // FIXME: Some of the split computations are wrong; unaligned vectors 2782 // shouldn't be passed in registers for example, so there is no chance they 2783 // can straddle an eightbyte. Verify & simplify. 2784 2785 Lo = Hi = NoClass; 2786 2787 Class &Current = OffsetBase < 64 ? Lo : Hi; 2788 Current = Memory; 2789 2790 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2791 BuiltinType::Kind k = BT->getKind(); 2792 2793 if (k == BuiltinType::Void) { 2794 Current = NoClass; 2795 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2796 Lo = Integer; 2797 Hi = Integer; 2798 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2799 Current = Integer; 2800 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2801 Current = SSE; 2802 } else if (k == BuiltinType::LongDouble) { 2803 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2804 if (LDF == &llvm::APFloat::IEEEquad()) { 2805 Lo = SSE; 2806 Hi = SSEUp; 2807 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2808 Lo = X87; 2809 Hi = X87Up; 2810 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2811 Current = SSE; 2812 } else 2813 llvm_unreachable("unexpected long double representation!"); 2814 } 2815 // FIXME: _Decimal32 and _Decimal64 are SSE. 2816 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2817 return; 2818 } 2819 2820 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2821 // Classify the underlying integer type. 2822 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2823 return; 2824 } 2825 2826 if (Ty->hasPointerRepresentation()) { 2827 Current = Integer; 2828 return; 2829 } 2830 2831 if (Ty->isMemberPointerType()) { 2832 if (Ty->isMemberFunctionPointerType()) { 2833 if (Has64BitPointers) { 2834 // If Has64BitPointers, this is an {i64, i64}, so classify both 2835 // Lo and Hi now. 2836 Lo = Hi = Integer; 2837 } else { 2838 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2839 // straddles an eightbyte boundary, Hi should be classified as well. 2840 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2841 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2842 if (EB_FuncPtr != EB_ThisAdj) { 2843 Lo = Hi = Integer; 2844 } else { 2845 Current = Integer; 2846 } 2847 } 2848 } else { 2849 Current = Integer; 2850 } 2851 return; 2852 } 2853 2854 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2855 uint64_t Size = getContext().getTypeSize(VT); 2856 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2857 // gcc passes the following as integer: 2858 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2859 // 2 bytes - <2 x char>, <1 x short> 2860 // 1 byte - <1 x char> 2861 Current = Integer; 2862 2863 // If this type crosses an eightbyte boundary, it should be 2864 // split. 2865 uint64_t EB_Lo = (OffsetBase) / 64; 2866 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2867 if (EB_Lo != EB_Hi) 2868 Hi = Lo; 2869 } else if (Size == 64) { 2870 QualType ElementType = VT->getElementType(); 2871 2872 // gcc passes <1 x double> in memory. :( 2873 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2874 return; 2875 2876 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2877 // pass them as integer. For platforms where clang is the de facto 2878 // platform compiler, we must continue to use integer. 2879 if (!classifyIntegerMMXAsSSE() && 2880 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2881 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2882 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2883 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2884 Current = Integer; 2885 else 2886 Current = SSE; 2887 2888 // If this type crosses an eightbyte boundary, it should be 2889 // split. 2890 if (OffsetBase && OffsetBase != 64) 2891 Hi = Lo; 2892 } else if (Size == 128 || 2893 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2894 QualType ElementType = VT->getElementType(); 2895 2896 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2897 if (passInt128VectorsInMem() && Size != 128 && 2898 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2899 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2900 return; 2901 2902 // Arguments of 256-bits are split into four eightbyte chunks. The 2903 // least significant one belongs to class SSE and all the others to class 2904 // SSEUP. The original Lo and Hi design considers that types can't be 2905 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2906 // This design isn't correct for 256-bits, but since there're no cases 2907 // where the upper parts would need to be inspected, avoid adding 2908 // complexity and just consider Hi to match the 64-256 part. 2909 // 2910 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2911 // registers if they are "named", i.e. not part of the "..." of a 2912 // variadic function. 2913 // 2914 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2915 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2916 Lo = SSE; 2917 Hi = SSEUp; 2918 } 2919 return; 2920 } 2921 2922 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2923 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2924 2925 uint64_t Size = getContext().getTypeSize(Ty); 2926 if (ET->isIntegralOrEnumerationType()) { 2927 if (Size <= 64) 2928 Current = Integer; 2929 else if (Size <= 128) 2930 Lo = Hi = Integer; 2931 } else if (ET == getContext().FloatTy) { 2932 Current = SSE; 2933 } else if (ET == getContext().DoubleTy) { 2934 Lo = Hi = SSE; 2935 } else if (ET == getContext().LongDoubleTy) { 2936 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2937 if (LDF == &llvm::APFloat::IEEEquad()) 2938 Current = Memory; 2939 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2940 Current = ComplexX87; 2941 else if (LDF == &llvm::APFloat::IEEEdouble()) 2942 Lo = Hi = SSE; 2943 else 2944 llvm_unreachable("unexpected long double representation!"); 2945 } 2946 2947 // If this complex type crosses an eightbyte boundary then it 2948 // should be split. 2949 uint64_t EB_Real = (OffsetBase) / 64; 2950 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2951 if (Hi == NoClass && EB_Real != EB_Imag) 2952 Hi = Lo; 2953 2954 return; 2955 } 2956 2957 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2958 if (EITy->getNumBits() <= 64) 2959 Current = Integer; 2960 else if (EITy->getNumBits() <= 128) 2961 Lo = Hi = Integer; 2962 // Larger values need to get passed in memory. 2963 return; 2964 } 2965 2966 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2967 // Arrays are treated like structures. 2968 2969 uint64_t Size = getContext().getTypeSize(Ty); 2970 2971 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2972 // than eight eightbytes, ..., it has class MEMORY. 2973 if (Size > 512) 2974 return; 2975 2976 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2977 // fields, it has class MEMORY. 2978 // 2979 // Only need to check alignment of array base. 2980 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2981 return; 2982 2983 // Otherwise implement simplified merge. We could be smarter about 2984 // this, but it isn't worth it and would be harder to verify. 2985 Current = NoClass; 2986 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2987 uint64_t ArraySize = AT->getSize().getZExtValue(); 2988 2989 // The only case a 256-bit wide vector could be used is when the array 2990 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2991 // to work for sizes wider than 128, early check and fallback to memory. 2992 // 2993 if (Size > 128 && 2994 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2995 return; 2996 2997 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2998 Class FieldLo, FieldHi; 2999 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3000 Lo = merge(Lo, FieldLo); 3001 Hi = merge(Hi, FieldHi); 3002 if (Lo == Memory || Hi == Memory) 3003 break; 3004 } 3005 3006 postMerge(Size, Lo, Hi); 3007 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3008 return; 3009 } 3010 3011 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3012 uint64_t Size = getContext().getTypeSize(Ty); 3013 3014 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3015 // than eight eightbytes, ..., it has class MEMORY. 3016 if (Size > 512) 3017 return; 3018 3019 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3020 // copy constructor or a non-trivial destructor, it is passed by invisible 3021 // reference. 3022 if (getRecordArgABI(RT, getCXXABI())) 3023 return; 3024 3025 const RecordDecl *RD = RT->getDecl(); 3026 3027 // Assume variable sized types are passed in memory. 3028 if (RD->hasFlexibleArrayMember()) 3029 return; 3030 3031 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3032 3033 // Reset Lo class, this will be recomputed. 3034 Current = NoClass; 3035 3036 // If this is a C++ record, classify the bases first. 3037 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3038 for (const auto &I : CXXRD->bases()) { 3039 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3040 "Unexpected base class!"); 3041 const auto *Base = 3042 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3043 3044 // Classify this field. 3045 // 3046 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3047 // single eightbyte, each is classified separately. Each eightbyte gets 3048 // initialized to class NO_CLASS. 3049 Class FieldLo, FieldHi; 3050 uint64_t Offset = 3051 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3052 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3053 Lo = merge(Lo, FieldLo); 3054 Hi = merge(Hi, FieldHi); 3055 if (Lo == Memory || Hi == Memory) { 3056 postMerge(Size, Lo, Hi); 3057 return; 3058 } 3059 } 3060 } 3061 3062 // Classify the fields one at a time, merging the results. 3063 unsigned idx = 0; 3064 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3065 LangOptions::ClangABI::Ver11 || 3066 getContext().getTargetInfo().getTriple().isPS4(); 3067 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3068 3069 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3070 i != e; ++i, ++idx) { 3071 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3072 bool BitField = i->isBitField(); 3073 3074 // Ignore padding bit-fields. 3075 if (BitField && i->isUnnamedBitfield()) 3076 continue; 3077 3078 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3079 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3080 // 3081 // The only case a 256-bit or a 512-bit wide vector could be used is when 3082 // the struct contains a single 256-bit or 512-bit element. Early check 3083 // and fallback to memory. 3084 // 3085 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3086 // than 128. 3087 if (Size > 128 && 3088 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3089 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3090 Lo = Memory; 3091 postMerge(Size, Lo, Hi); 3092 return; 3093 } 3094 // Note, skip this test for bit-fields, see below. 3095 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3096 Lo = Memory; 3097 postMerge(Size, Lo, Hi); 3098 return; 3099 } 3100 3101 // Classify this field. 3102 // 3103 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3104 // exceeds a single eightbyte, each is classified 3105 // separately. Each eightbyte gets initialized to class 3106 // NO_CLASS. 3107 Class FieldLo, FieldHi; 3108 3109 // Bit-fields require special handling, they do not force the 3110 // structure to be passed in memory even if unaligned, and 3111 // therefore they can straddle an eightbyte. 3112 if (BitField) { 3113 assert(!i->isUnnamedBitfield()); 3114 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3115 uint64_t Size = i->getBitWidthValue(getContext()); 3116 3117 uint64_t EB_Lo = Offset / 64; 3118 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3119 3120 if (EB_Lo) { 3121 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3122 FieldLo = NoClass; 3123 FieldHi = Integer; 3124 } else { 3125 FieldLo = Integer; 3126 FieldHi = EB_Hi ? Integer : NoClass; 3127 } 3128 } else 3129 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3130 Lo = merge(Lo, FieldLo); 3131 Hi = merge(Hi, FieldHi); 3132 if (Lo == Memory || Hi == Memory) 3133 break; 3134 } 3135 3136 postMerge(Size, Lo, Hi); 3137 } 3138 } 3139 3140 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3141 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3142 // place naturally. 3143 if (!isAggregateTypeForABI(Ty)) { 3144 // Treat an enum type as its underlying type. 3145 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3146 Ty = EnumTy->getDecl()->getIntegerType(); 3147 3148 if (Ty->isExtIntType()) 3149 return getNaturalAlignIndirect(Ty); 3150 3151 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3152 : ABIArgInfo::getDirect()); 3153 } 3154 3155 return getNaturalAlignIndirect(Ty); 3156 } 3157 3158 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3159 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3160 uint64_t Size = getContext().getTypeSize(VecTy); 3161 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3162 if (Size <= 64 || Size > LargestVector) 3163 return true; 3164 QualType EltTy = VecTy->getElementType(); 3165 if (passInt128VectorsInMem() && 3166 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3167 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3168 return true; 3169 } 3170 3171 return false; 3172 } 3173 3174 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3175 unsigned freeIntRegs) const { 3176 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3177 // place naturally. 3178 // 3179 // This assumption is optimistic, as there could be free registers available 3180 // when we need to pass this argument in memory, and LLVM could try to pass 3181 // the argument in the free register. This does not seem to happen currently, 3182 // but this code would be much safer if we could mark the argument with 3183 // 'onstack'. See PR12193. 3184 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3185 !Ty->isExtIntType()) { 3186 // Treat an enum type as its underlying type. 3187 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3188 Ty = EnumTy->getDecl()->getIntegerType(); 3189 3190 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3191 : ABIArgInfo::getDirect()); 3192 } 3193 3194 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3195 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3196 3197 // Compute the byval alignment. We specify the alignment of the byval in all 3198 // cases so that the mid-level optimizer knows the alignment of the byval. 3199 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3200 3201 // Attempt to avoid passing indirect results using byval when possible. This 3202 // is important for good codegen. 3203 // 3204 // We do this by coercing the value into a scalar type which the backend can 3205 // handle naturally (i.e., without using byval). 3206 // 3207 // For simplicity, we currently only do this when we have exhausted all of the 3208 // free integer registers. Doing this when there are free integer registers 3209 // would require more care, as we would have to ensure that the coerced value 3210 // did not claim the unused register. That would require either reording the 3211 // arguments to the function (so that any subsequent inreg values came first), 3212 // or only doing this optimization when there were no following arguments that 3213 // might be inreg. 3214 // 3215 // We currently expect it to be rare (particularly in well written code) for 3216 // arguments to be passed on the stack when there are still free integer 3217 // registers available (this would typically imply large structs being passed 3218 // by value), so this seems like a fair tradeoff for now. 3219 // 3220 // We can revisit this if the backend grows support for 'onstack' parameter 3221 // attributes. See PR12193. 3222 if (freeIntRegs == 0) { 3223 uint64_t Size = getContext().getTypeSize(Ty); 3224 3225 // If this type fits in an eightbyte, coerce it into the matching integral 3226 // type, which will end up on the stack (with alignment 8). 3227 if (Align == 8 && Size <= 64) 3228 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3229 Size)); 3230 } 3231 3232 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3233 } 3234 3235 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3236 /// register. Pick an LLVM IR type that will be passed as a vector register. 3237 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3238 // Wrapper structs/arrays that only contain vectors are passed just like 3239 // vectors; strip them off if present. 3240 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3241 Ty = QualType(InnerTy, 0); 3242 3243 llvm::Type *IRType = CGT.ConvertType(Ty); 3244 if (isa<llvm::VectorType>(IRType)) { 3245 // Don't pass vXi128 vectors in their native type, the backend can't 3246 // legalize them. 3247 if (passInt128VectorsInMem() && 3248 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3249 // Use a vXi64 vector. 3250 uint64_t Size = getContext().getTypeSize(Ty); 3251 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3252 Size / 64); 3253 } 3254 3255 return IRType; 3256 } 3257 3258 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3259 return IRType; 3260 3261 // We couldn't find the preferred IR vector type for 'Ty'. 3262 uint64_t Size = getContext().getTypeSize(Ty); 3263 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3264 3265 3266 // Return a LLVM IR vector type based on the size of 'Ty'. 3267 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3268 Size / 64); 3269 } 3270 3271 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3272 /// is known to either be off the end of the specified type or being in 3273 /// alignment padding. The user type specified is known to be at most 128 bits 3274 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3275 /// classification that put one of the two halves in the INTEGER class. 3276 /// 3277 /// It is conservatively correct to return false. 3278 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3279 unsigned EndBit, ASTContext &Context) { 3280 // If the bytes being queried are off the end of the type, there is no user 3281 // data hiding here. This handles analysis of builtins, vectors and other 3282 // types that don't contain interesting padding. 3283 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3284 if (TySize <= StartBit) 3285 return true; 3286 3287 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3288 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3289 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3290 3291 // Check each element to see if the element overlaps with the queried range. 3292 for (unsigned i = 0; i != NumElts; ++i) { 3293 // If the element is after the span we care about, then we're done.. 3294 unsigned EltOffset = i*EltSize; 3295 if (EltOffset >= EndBit) break; 3296 3297 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3298 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3299 EndBit-EltOffset, Context)) 3300 return false; 3301 } 3302 // If it overlaps no elements, then it is safe to process as padding. 3303 return true; 3304 } 3305 3306 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3307 const RecordDecl *RD = RT->getDecl(); 3308 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3309 3310 // If this is a C++ record, check the bases first. 3311 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3312 for (const auto &I : CXXRD->bases()) { 3313 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3314 "Unexpected base class!"); 3315 const auto *Base = 3316 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3317 3318 // If the base is after the span we care about, ignore it. 3319 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3320 if (BaseOffset >= EndBit) continue; 3321 3322 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3323 if (!BitsContainNoUserData(I.getType(), BaseStart, 3324 EndBit-BaseOffset, Context)) 3325 return false; 3326 } 3327 } 3328 3329 // Verify that no field has data that overlaps the region of interest. Yes 3330 // this could be sped up a lot by being smarter about queried fields, 3331 // however we're only looking at structs up to 16 bytes, so we don't care 3332 // much. 3333 unsigned idx = 0; 3334 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3335 i != e; ++i, ++idx) { 3336 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3337 3338 // If we found a field after the region we care about, then we're done. 3339 if (FieldOffset >= EndBit) break; 3340 3341 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3342 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3343 Context)) 3344 return false; 3345 } 3346 3347 // If nothing in this record overlapped the area of interest, then we're 3348 // clean. 3349 return true; 3350 } 3351 3352 return false; 3353 } 3354 3355 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3356 /// float member at the specified offset. For example, {int,{float}} has a 3357 /// float at offset 4. It is conservatively correct for this routine to return 3358 /// false. 3359 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3360 const llvm::DataLayout &TD) { 3361 // Base case if we find a float. 3362 if (IROffset == 0 && IRType->isFloatTy()) 3363 return true; 3364 3365 // If this is a struct, recurse into the field at the specified offset. 3366 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3367 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3368 unsigned Elt = SL->getElementContainingOffset(IROffset); 3369 IROffset -= SL->getElementOffset(Elt); 3370 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3371 } 3372 3373 // If this is an array, recurse into the field at the specified offset. 3374 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3375 llvm::Type *EltTy = ATy->getElementType(); 3376 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3377 IROffset -= IROffset/EltSize*EltSize; 3378 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3379 } 3380 3381 return false; 3382 } 3383 3384 3385 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3386 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3387 llvm::Type *X86_64ABIInfo:: 3388 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3389 QualType SourceTy, unsigned SourceOffset) const { 3390 // The only three choices we have are either double, <2 x float>, or float. We 3391 // pass as float if the last 4 bytes is just padding. This happens for 3392 // structs that contain 3 floats. 3393 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3394 SourceOffset*8+64, getContext())) 3395 return llvm::Type::getFloatTy(getVMContext()); 3396 3397 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3398 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3399 // case. 3400 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3401 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3402 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3403 2); 3404 3405 return llvm::Type::getDoubleTy(getVMContext()); 3406 } 3407 3408 3409 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3410 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3411 /// about the high or low part of an up-to-16-byte struct. This routine picks 3412 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3413 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3414 /// etc). 3415 /// 3416 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3417 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3418 /// the 8-byte value references. PrefType may be null. 3419 /// 3420 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3421 /// an offset into this that we're processing (which is always either 0 or 8). 3422 /// 3423 llvm::Type *X86_64ABIInfo:: 3424 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3425 QualType SourceTy, unsigned SourceOffset) const { 3426 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3427 // returning an 8-byte unit starting with it. See if we can safely use it. 3428 if (IROffset == 0) { 3429 // Pointers and int64's always fill the 8-byte unit. 3430 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3431 IRType->isIntegerTy(64)) 3432 return IRType; 3433 3434 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3435 // goodness in the source type is just tail padding. This is allowed to 3436 // kick in for struct {double,int} on the int, but not on 3437 // struct{double,int,int} because we wouldn't return the second int. We 3438 // have to do this analysis on the source type because we can't depend on 3439 // unions being lowered a specific way etc. 3440 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3441 IRType->isIntegerTy(32) || 3442 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3443 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3444 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3445 3446 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3447 SourceOffset*8+64, getContext())) 3448 return IRType; 3449 } 3450 } 3451 3452 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3453 // If this is a struct, recurse into the field at the specified offset. 3454 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3455 if (IROffset < SL->getSizeInBytes()) { 3456 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3457 IROffset -= SL->getElementOffset(FieldIdx); 3458 3459 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3460 SourceTy, SourceOffset); 3461 } 3462 } 3463 3464 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3465 llvm::Type *EltTy = ATy->getElementType(); 3466 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3467 unsigned EltOffset = IROffset/EltSize*EltSize; 3468 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3469 SourceOffset); 3470 } 3471 3472 // Okay, we don't have any better idea of what to pass, so we pass this in an 3473 // integer register that isn't too big to fit the rest of the struct. 3474 unsigned TySizeInBytes = 3475 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3476 3477 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3478 3479 // It is always safe to classify this as an integer type up to i64 that 3480 // isn't larger than the structure. 3481 return llvm::IntegerType::get(getVMContext(), 3482 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3483 } 3484 3485 3486 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3487 /// be used as elements of a two register pair to pass or return, return a 3488 /// first class aggregate to represent them. For example, if the low part of 3489 /// a by-value argument should be passed as i32* and the high part as float, 3490 /// return {i32*, float}. 3491 static llvm::Type * 3492 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3493 const llvm::DataLayout &TD) { 3494 // In order to correctly satisfy the ABI, we need to the high part to start 3495 // at offset 8. If the high and low parts we inferred are both 4-byte types 3496 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3497 // the second element at offset 8. Check for this: 3498 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3499 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3500 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3501 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3502 3503 // To handle this, we have to increase the size of the low part so that the 3504 // second element will start at an 8 byte offset. We can't increase the size 3505 // of the second element because it might make us access off the end of the 3506 // struct. 3507 if (HiStart != 8) { 3508 // There are usually two sorts of types the ABI generation code can produce 3509 // for the low part of a pair that aren't 8 bytes in size: float or 3510 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3511 // NaCl). 3512 // Promote these to a larger type. 3513 if (Lo->isFloatTy()) 3514 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3515 else { 3516 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3517 && "Invalid/unknown lo type"); 3518 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3519 } 3520 } 3521 3522 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3523 3524 // Verify that the second element is at an 8-byte offset. 3525 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3526 "Invalid x86-64 argument pair!"); 3527 return Result; 3528 } 3529 3530 ABIArgInfo X86_64ABIInfo:: 3531 classifyReturnType(QualType RetTy) const { 3532 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3533 // classification algorithm. 3534 X86_64ABIInfo::Class Lo, Hi; 3535 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3536 3537 // Check some invariants. 3538 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3539 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3540 3541 llvm::Type *ResType = nullptr; 3542 switch (Lo) { 3543 case NoClass: 3544 if (Hi == NoClass) 3545 return ABIArgInfo::getIgnore(); 3546 // If the low part is just padding, it takes no register, leave ResType 3547 // null. 3548 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3549 "Unknown missing lo part"); 3550 break; 3551 3552 case SSEUp: 3553 case X87Up: 3554 llvm_unreachable("Invalid classification for lo word."); 3555 3556 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3557 // hidden argument. 3558 case Memory: 3559 return getIndirectReturnResult(RetTy); 3560 3561 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3562 // available register of the sequence %rax, %rdx is used. 3563 case Integer: 3564 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3565 3566 // If we have a sign or zero extended integer, make sure to return Extend 3567 // so that the parameter gets the right LLVM IR attributes. 3568 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3569 // Treat an enum type as its underlying type. 3570 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3571 RetTy = EnumTy->getDecl()->getIntegerType(); 3572 3573 if (RetTy->isIntegralOrEnumerationType() && 3574 isPromotableIntegerTypeForABI(RetTy)) 3575 return ABIArgInfo::getExtend(RetTy); 3576 } 3577 break; 3578 3579 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3580 // available SSE register of the sequence %xmm0, %xmm1 is used. 3581 case SSE: 3582 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3583 break; 3584 3585 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3586 // returned on the X87 stack in %st0 as 80-bit x87 number. 3587 case X87: 3588 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3589 break; 3590 3591 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3592 // part of the value is returned in %st0 and the imaginary part in 3593 // %st1. 3594 case ComplexX87: 3595 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3596 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3597 llvm::Type::getX86_FP80Ty(getVMContext())); 3598 break; 3599 } 3600 3601 llvm::Type *HighPart = nullptr; 3602 switch (Hi) { 3603 // Memory was handled previously and X87 should 3604 // never occur as a hi class. 3605 case Memory: 3606 case X87: 3607 llvm_unreachable("Invalid classification for hi word."); 3608 3609 case ComplexX87: // Previously handled. 3610 case NoClass: 3611 break; 3612 3613 case Integer: 3614 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3615 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3616 return ABIArgInfo::getDirect(HighPart, 8); 3617 break; 3618 case SSE: 3619 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3620 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3621 return ABIArgInfo::getDirect(HighPart, 8); 3622 break; 3623 3624 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3625 // is passed in the next available eightbyte chunk if the last used 3626 // vector register. 3627 // 3628 // SSEUP should always be preceded by SSE, just widen. 3629 case SSEUp: 3630 assert(Lo == SSE && "Unexpected SSEUp classification."); 3631 ResType = GetByteVectorType(RetTy); 3632 break; 3633 3634 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3635 // returned together with the previous X87 value in %st0. 3636 case X87Up: 3637 // If X87Up is preceded by X87, we don't need to do 3638 // anything. However, in some cases with unions it may not be 3639 // preceded by X87. In such situations we follow gcc and pass the 3640 // extra bits in an SSE reg. 3641 if (Lo != X87) { 3642 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3643 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3644 return ABIArgInfo::getDirect(HighPart, 8); 3645 } 3646 break; 3647 } 3648 3649 // If a high part was specified, merge it together with the low part. It is 3650 // known to pass in the high eightbyte of the result. We do this by forming a 3651 // first class struct aggregate with the high and low part: {low, high} 3652 if (HighPart) 3653 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3654 3655 return ABIArgInfo::getDirect(ResType); 3656 } 3657 3658 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3659 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3660 bool isNamedArg) 3661 const 3662 { 3663 Ty = useFirstFieldIfTransparentUnion(Ty); 3664 3665 X86_64ABIInfo::Class Lo, Hi; 3666 classify(Ty, 0, Lo, Hi, isNamedArg); 3667 3668 // Check some invariants. 3669 // FIXME: Enforce these by construction. 3670 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3671 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3672 3673 neededInt = 0; 3674 neededSSE = 0; 3675 llvm::Type *ResType = nullptr; 3676 switch (Lo) { 3677 case NoClass: 3678 if (Hi == NoClass) 3679 return ABIArgInfo::getIgnore(); 3680 // If the low part is just padding, it takes no register, leave ResType 3681 // null. 3682 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3683 "Unknown missing lo part"); 3684 break; 3685 3686 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3687 // on the stack. 3688 case Memory: 3689 3690 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3691 // COMPLEX_X87, it is passed in memory. 3692 case X87: 3693 case ComplexX87: 3694 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3695 ++neededInt; 3696 return getIndirectResult(Ty, freeIntRegs); 3697 3698 case SSEUp: 3699 case X87Up: 3700 llvm_unreachable("Invalid classification for lo word."); 3701 3702 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3703 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3704 // and %r9 is used. 3705 case Integer: 3706 ++neededInt; 3707 3708 // Pick an 8-byte type based on the preferred type. 3709 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3710 3711 // If we have a sign or zero extended integer, make sure to return Extend 3712 // so that the parameter gets the right LLVM IR attributes. 3713 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3714 // Treat an enum type as its underlying type. 3715 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3716 Ty = EnumTy->getDecl()->getIntegerType(); 3717 3718 if (Ty->isIntegralOrEnumerationType() && 3719 isPromotableIntegerTypeForABI(Ty)) 3720 return ABIArgInfo::getExtend(Ty); 3721 } 3722 3723 break; 3724 3725 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3726 // available SSE register is used, the registers are taken in the 3727 // order from %xmm0 to %xmm7. 3728 case SSE: { 3729 llvm::Type *IRType = CGT.ConvertType(Ty); 3730 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3731 ++neededSSE; 3732 break; 3733 } 3734 } 3735 3736 llvm::Type *HighPart = nullptr; 3737 switch (Hi) { 3738 // Memory was handled previously, ComplexX87 and X87 should 3739 // never occur as hi classes, and X87Up must be preceded by X87, 3740 // which is passed in memory. 3741 case Memory: 3742 case X87: 3743 case ComplexX87: 3744 llvm_unreachable("Invalid classification for hi word."); 3745 3746 case NoClass: break; 3747 3748 case Integer: 3749 ++neededInt; 3750 // Pick an 8-byte type based on the preferred type. 3751 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3752 3753 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3754 return ABIArgInfo::getDirect(HighPart, 8); 3755 break; 3756 3757 // X87Up generally doesn't occur here (long double is passed in 3758 // memory), except in situations involving unions. 3759 case X87Up: 3760 case SSE: 3761 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3762 3763 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3764 return ABIArgInfo::getDirect(HighPart, 8); 3765 3766 ++neededSSE; 3767 break; 3768 3769 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3770 // eightbyte is passed in the upper half of the last used SSE 3771 // register. This only happens when 128-bit vectors are passed. 3772 case SSEUp: 3773 assert(Lo == SSE && "Unexpected SSEUp classification"); 3774 ResType = GetByteVectorType(Ty); 3775 break; 3776 } 3777 3778 // If a high part was specified, merge it together with the low part. It is 3779 // known to pass in the high eightbyte of the result. We do this by forming a 3780 // first class struct aggregate with the high and low part: {low, high} 3781 if (HighPart) 3782 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3783 3784 return ABIArgInfo::getDirect(ResType); 3785 } 3786 3787 ABIArgInfo 3788 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3789 unsigned &NeededSSE) const { 3790 auto RT = Ty->getAs<RecordType>(); 3791 assert(RT && "classifyRegCallStructType only valid with struct types"); 3792 3793 if (RT->getDecl()->hasFlexibleArrayMember()) 3794 return getIndirectReturnResult(Ty); 3795 3796 // Sum up bases 3797 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3798 if (CXXRD->isDynamicClass()) { 3799 NeededInt = NeededSSE = 0; 3800 return getIndirectReturnResult(Ty); 3801 } 3802 3803 for (const auto &I : CXXRD->bases()) 3804 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3805 .isIndirect()) { 3806 NeededInt = NeededSSE = 0; 3807 return getIndirectReturnResult(Ty); 3808 } 3809 } 3810 3811 // Sum up members 3812 for (const auto *FD : RT->getDecl()->fields()) { 3813 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3814 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3815 .isIndirect()) { 3816 NeededInt = NeededSSE = 0; 3817 return getIndirectReturnResult(Ty); 3818 } 3819 } else { 3820 unsigned LocalNeededInt, LocalNeededSSE; 3821 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3822 LocalNeededSSE, true) 3823 .isIndirect()) { 3824 NeededInt = NeededSSE = 0; 3825 return getIndirectReturnResult(Ty); 3826 } 3827 NeededInt += LocalNeededInt; 3828 NeededSSE += LocalNeededSSE; 3829 } 3830 } 3831 3832 return ABIArgInfo::getDirect(); 3833 } 3834 3835 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3836 unsigned &NeededInt, 3837 unsigned &NeededSSE) const { 3838 3839 NeededInt = 0; 3840 NeededSSE = 0; 3841 3842 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3843 } 3844 3845 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3846 3847 const unsigned CallingConv = FI.getCallingConvention(); 3848 // It is possible to force Win64 calling convention on any x86_64 target by 3849 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3850 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3851 if (CallingConv == llvm::CallingConv::Win64) { 3852 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3853 Win64ABIInfo.computeInfo(FI); 3854 return; 3855 } 3856 3857 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3858 3859 // Keep track of the number of assigned registers. 3860 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3861 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3862 unsigned NeededInt, NeededSSE; 3863 3864 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3865 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3866 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3867 FI.getReturnInfo() = 3868 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3869 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3870 FreeIntRegs -= NeededInt; 3871 FreeSSERegs -= NeededSSE; 3872 } else { 3873 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3874 } 3875 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3876 getContext().getCanonicalType(FI.getReturnType() 3877 ->getAs<ComplexType>() 3878 ->getElementType()) == 3879 getContext().LongDoubleTy) 3880 // Complex Long Double Type is passed in Memory when Regcall 3881 // calling convention is used. 3882 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3883 else 3884 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3885 } 3886 3887 // If the return value is indirect, then the hidden argument is consuming one 3888 // integer register. 3889 if (FI.getReturnInfo().isIndirect()) 3890 --FreeIntRegs; 3891 3892 // The chain argument effectively gives us another free register. 3893 if (FI.isChainCall()) 3894 ++FreeIntRegs; 3895 3896 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3897 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3898 // get assigned (in left-to-right order) for passing as follows... 3899 unsigned ArgNo = 0; 3900 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3901 it != ie; ++it, ++ArgNo) { 3902 bool IsNamedArg = ArgNo < NumRequiredArgs; 3903 3904 if (IsRegCall && it->type->isStructureOrClassType()) 3905 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3906 else 3907 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3908 NeededSSE, IsNamedArg); 3909 3910 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3911 // eightbyte of an argument, the whole argument is passed on the 3912 // stack. If registers have already been assigned for some 3913 // eightbytes of such an argument, the assignments get reverted. 3914 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3915 FreeIntRegs -= NeededInt; 3916 FreeSSERegs -= NeededSSE; 3917 } else { 3918 it->info = getIndirectResult(it->type, FreeIntRegs); 3919 } 3920 } 3921 } 3922 3923 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3924 Address VAListAddr, QualType Ty) { 3925 Address overflow_arg_area_p = 3926 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3927 llvm::Value *overflow_arg_area = 3928 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3929 3930 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3931 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3932 // It isn't stated explicitly in the standard, but in practice we use 3933 // alignment greater than 16 where necessary. 3934 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3935 if (Align > CharUnits::fromQuantity(8)) { 3936 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3937 Align); 3938 } 3939 3940 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3941 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3942 llvm::Value *Res = 3943 CGF.Builder.CreateBitCast(overflow_arg_area, 3944 llvm::PointerType::getUnqual(LTy)); 3945 3946 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3947 // l->overflow_arg_area + sizeof(type). 3948 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3949 // an 8 byte boundary. 3950 3951 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3952 llvm::Value *Offset = 3953 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3954 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3955 "overflow_arg_area.next"); 3956 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3957 3958 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3959 return Address(Res, Align); 3960 } 3961 3962 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3963 QualType Ty) const { 3964 // Assume that va_list type is correct; should be pointer to LLVM type: 3965 // struct { 3966 // i32 gp_offset; 3967 // i32 fp_offset; 3968 // i8* overflow_arg_area; 3969 // i8* reg_save_area; 3970 // }; 3971 unsigned neededInt, neededSSE; 3972 3973 Ty = getContext().getCanonicalType(Ty); 3974 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3975 /*isNamedArg*/false); 3976 3977 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3978 // in the registers. If not go to step 7. 3979 if (!neededInt && !neededSSE) 3980 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3981 3982 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3983 // general purpose registers needed to pass type and num_fp to hold 3984 // the number of floating point registers needed. 3985 3986 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3987 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3988 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3989 // 3990 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3991 // register save space). 3992 3993 llvm::Value *InRegs = nullptr; 3994 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3995 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3996 if (neededInt) { 3997 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3998 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3999 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4000 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4001 } 4002 4003 if (neededSSE) { 4004 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4005 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4006 llvm::Value *FitsInFP = 4007 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4008 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4009 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4010 } 4011 4012 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4013 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4014 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4015 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4016 4017 // Emit code to load the value if it was passed in registers. 4018 4019 CGF.EmitBlock(InRegBlock); 4020 4021 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4022 // an offset of l->gp_offset and/or l->fp_offset. This may require 4023 // copying to a temporary location in case the parameter is passed 4024 // in different register classes or requires an alignment greater 4025 // than 8 for general purpose registers and 16 for XMM registers. 4026 // 4027 // FIXME: This really results in shameful code when we end up needing to 4028 // collect arguments from different places; often what should result in a 4029 // simple assembling of a structure from scattered addresses has many more 4030 // loads than necessary. Can we clean this up? 4031 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4032 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4033 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4034 4035 Address RegAddr = Address::invalid(); 4036 if (neededInt && neededSSE) { 4037 // FIXME: Cleanup. 4038 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4039 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4040 Address Tmp = CGF.CreateMemTemp(Ty); 4041 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4042 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4043 llvm::Type *TyLo = ST->getElementType(0); 4044 llvm::Type *TyHi = ST->getElementType(1); 4045 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4046 "Unexpected ABI info for mixed regs"); 4047 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4048 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4049 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4050 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4051 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4052 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4053 4054 // Copy the first element. 4055 // FIXME: Our choice of alignment here and below is probably pessimistic. 4056 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4057 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4058 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4059 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4060 4061 // Copy the second element. 4062 V = CGF.Builder.CreateAlignedLoad( 4063 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4064 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4065 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4066 4067 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4068 } else if (neededInt) { 4069 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4070 CharUnits::fromQuantity(8)); 4071 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4072 4073 // Copy to a temporary if necessary to ensure the appropriate alignment. 4074 auto TInfo = getContext().getTypeInfoInChars(Ty); 4075 uint64_t TySize = TInfo.Width.getQuantity(); 4076 CharUnits TyAlign = TInfo.Align; 4077 4078 // Copy into a temporary if the type is more aligned than the 4079 // register save area. 4080 if (TyAlign.getQuantity() > 8) { 4081 Address Tmp = CGF.CreateMemTemp(Ty); 4082 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4083 RegAddr = Tmp; 4084 } 4085 4086 } else if (neededSSE == 1) { 4087 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4088 CharUnits::fromQuantity(16)); 4089 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4090 } else { 4091 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4092 // SSE registers are spaced 16 bytes apart in the register save 4093 // area, we need to collect the two eightbytes together. 4094 // The ABI isn't explicit about this, but it seems reasonable 4095 // to assume that the slots are 16-byte aligned, since the stack is 4096 // naturally 16-byte aligned and the prologue is expected to store 4097 // all the SSE registers to the RSA. 4098 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4099 CharUnits::fromQuantity(16)); 4100 Address RegAddrHi = 4101 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4102 CharUnits::fromQuantity(16)); 4103 llvm::Type *ST = AI.canHaveCoerceToType() 4104 ? AI.getCoerceToType() 4105 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4106 llvm::Value *V; 4107 Address Tmp = CGF.CreateMemTemp(Ty); 4108 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4109 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4110 RegAddrLo, ST->getStructElementType(0))); 4111 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4112 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4113 RegAddrHi, ST->getStructElementType(1))); 4114 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4115 4116 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4117 } 4118 4119 // AMD64-ABI 3.5.7p5: Step 5. Set: 4120 // l->gp_offset = l->gp_offset + num_gp * 8 4121 // l->fp_offset = l->fp_offset + num_fp * 16. 4122 if (neededInt) { 4123 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4124 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4125 gp_offset_p); 4126 } 4127 if (neededSSE) { 4128 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4129 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4130 fp_offset_p); 4131 } 4132 CGF.EmitBranch(ContBlock); 4133 4134 // Emit code to load the value if it was passed in memory. 4135 4136 CGF.EmitBlock(InMemBlock); 4137 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4138 4139 // Return the appropriate result. 4140 4141 CGF.EmitBlock(ContBlock); 4142 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4143 "vaarg.addr"); 4144 return ResAddr; 4145 } 4146 4147 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4148 QualType Ty) const { 4149 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4150 CGF.getContext().getTypeInfoInChars(Ty), 4151 CharUnits::fromQuantity(8), 4152 /*allowHigherAlign*/ false); 4153 } 4154 4155 ABIArgInfo 4156 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4157 const ABIArgInfo ¤t) const { 4158 // Assumes vectorCall calling convention. 4159 const Type *Base = nullptr; 4160 uint64_t NumElts = 0; 4161 4162 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4163 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4164 FreeSSERegs -= NumElts; 4165 return getDirectX86Hva(); 4166 } 4167 return current; 4168 } 4169 4170 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4171 bool IsReturnType, bool IsVectorCall, 4172 bool IsRegCall) const { 4173 4174 if (Ty->isVoidType()) 4175 return ABIArgInfo::getIgnore(); 4176 4177 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4178 Ty = EnumTy->getDecl()->getIntegerType(); 4179 4180 TypeInfo Info = getContext().getTypeInfo(Ty); 4181 uint64_t Width = Info.Width; 4182 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4183 4184 const RecordType *RT = Ty->getAs<RecordType>(); 4185 if (RT) { 4186 if (!IsReturnType) { 4187 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4188 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4189 } 4190 4191 if (RT->getDecl()->hasFlexibleArrayMember()) 4192 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4193 4194 } 4195 4196 const Type *Base = nullptr; 4197 uint64_t NumElts = 0; 4198 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4199 // other targets. 4200 if ((IsVectorCall || IsRegCall) && 4201 isHomogeneousAggregate(Ty, Base, NumElts)) { 4202 if (IsRegCall) { 4203 if (FreeSSERegs >= NumElts) { 4204 FreeSSERegs -= NumElts; 4205 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4206 return ABIArgInfo::getDirect(); 4207 return ABIArgInfo::getExpand(); 4208 } 4209 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4210 } else if (IsVectorCall) { 4211 if (FreeSSERegs >= NumElts && 4212 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4213 FreeSSERegs -= NumElts; 4214 return ABIArgInfo::getDirect(); 4215 } else if (IsReturnType) { 4216 return ABIArgInfo::getExpand(); 4217 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4218 // HVAs are delayed and reclassified in the 2nd step. 4219 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4220 } 4221 } 4222 } 4223 4224 if (Ty->isMemberPointerType()) { 4225 // If the member pointer is represented by an LLVM int or ptr, pass it 4226 // directly. 4227 llvm::Type *LLTy = CGT.ConvertType(Ty); 4228 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4229 return ABIArgInfo::getDirect(); 4230 } 4231 4232 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4233 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4234 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4235 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4236 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4237 4238 // Otherwise, coerce it to a small integer. 4239 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4240 } 4241 4242 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4243 switch (BT->getKind()) { 4244 case BuiltinType::Bool: 4245 // Bool type is always extended to the ABI, other builtin types are not 4246 // extended. 4247 return ABIArgInfo::getExtend(Ty); 4248 4249 case BuiltinType::LongDouble: 4250 // Mingw64 GCC uses the old 80 bit extended precision floating point 4251 // unit. It passes them indirectly through memory. 4252 if (IsMingw64) { 4253 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4254 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4255 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4256 } 4257 break; 4258 4259 case BuiltinType::Int128: 4260 case BuiltinType::UInt128: 4261 // If it's a parameter type, the normal ABI rule is that arguments larger 4262 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4263 // even though it isn't particularly efficient. 4264 if (!IsReturnType) 4265 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4266 4267 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4268 // Clang matches them for compatibility. 4269 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4270 llvm::Type::getInt64Ty(getVMContext()), 2)); 4271 4272 default: 4273 break; 4274 } 4275 } 4276 4277 if (Ty->isExtIntType()) { 4278 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4279 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4280 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4281 // anyway as long is it fits in them, so we don't have to check the power of 4282 // 2. 4283 if (Width <= 64) 4284 return ABIArgInfo::getDirect(); 4285 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4286 } 4287 4288 return ABIArgInfo::getDirect(); 4289 } 4290 4291 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4292 unsigned FreeSSERegs, 4293 bool IsVectorCall, 4294 bool IsRegCall) const { 4295 unsigned Count = 0; 4296 for (auto &I : FI.arguments()) { 4297 // Vectorcall in x64 only permits the first 6 arguments to be passed 4298 // as XMM/YMM registers. 4299 if (Count < VectorcallMaxParamNumAsReg) 4300 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4301 else { 4302 // Since these cannot be passed in registers, pretend no registers 4303 // are left. 4304 unsigned ZeroSSERegsAvail = 0; 4305 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4306 IsVectorCall, IsRegCall); 4307 } 4308 ++Count; 4309 } 4310 4311 for (auto &I : FI.arguments()) { 4312 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4313 } 4314 } 4315 4316 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4317 const unsigned CC = FI.getCallingConvention(); 4318 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4319 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4320 4321 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4322 // classification rules. 4323 if (CC == llvm::CallingConv::X86_64_SysV) { 4324 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4325 SysVABIInfo.computeInfo(FI); 4326 return; 4327 } 4328 4329 unsigned FreeSSERegs = 0; 4330 if (IsVectorCall) { 4331 // We can use up to 4 SSE return registers with vectorcall. 4332 FreeSSERegs = 4; 4333 } else if (IsRegCall) { 4334 // RegCall gives us 16 SSE registers. 4335 FreeSSERegs = 16; 4336 } 4337 4338 if (!getCXXABI().classifyReturnType(FI)) 4339 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4340 IsVectorCall, IsRegCall); 4341 4342 if (IsVectorCall) { 4343 // We can use up to 6 SSE register parameters with vectorcall. 4344 FreeSSERegs = 6; 4345 } else if (IsRegCall) { 4346 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4347 FreeSSERegs = 16; 4348 } 4349 4350 if (IsVectorCall) { 4351 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4352 } else { 4353 for (auto &I : FI.arguments()) 4354 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4355 } 4356 4357 } 4358 4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4360 QualType Ty) const { 4361 4362 bool IsIndirect = false; 4363 4364 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4365 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4366 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4367 uint64_t Width = getContext().getTypeSize(Ty); 4368 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4369 } 4370 4371 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4372 CGF.getContext().getTypeInfoInChars(Ty), 4373 CharUnits::fromQuantity(8), 4374 /*allowHigherAlign*/ false); 4375 } 4376 4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4378 llvm::Value *Address, bool Is64Bit, 4379 bool IsAIX) { 4380 // This is calculated from the LLVM and GCC tables and verified 4381 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4382 4383 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4384 4385 llvm::IntegerType *i8 = CGF.Int8Ty; 4386 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4387 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4388 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4389 4390 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4391 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4392 4393 // 32-63: fp0-31, the 8-byte floating-point registers 4394 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4395 4396 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4397 // 64: mq 4398 // 65: lr 4399 // 66: ctr 4400 // 67: ap 4401 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4402 4403 // 68-76 are various 4-byte special-purpose registers: 4404 // 68-75 cr0-7 4405 // 76: xer 4406 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4407 4408 // 77-108: v0-31, the 16-byte vector registers 4409 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4410 4411 // 109: vrsave 4412 // 110: vscr 4413 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4414 4415 // AIX does not utilize the rest of the registers. 4416 if (IsAIX) 4417 return false; 4418 4419 // 111: spe_acc 4420 // 112: spefscr 4421 // 113: sfp 4422 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4423 4424 if (!Is64Bit) 4425 return false; 4426 4427 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4428 // or above CPU. 4429 // 64-bit only registers: 4430 // 114: tfhar 4431 // 115: tfiar 4432 // 116: texasr 4433 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4434 4435 return false; 4436 } 4437 4438 // AIX 4439 namespace { 4440 /// AIXABIInfo - The AIX XCOFF ABI information. 4441 class AIXABIInfo : public ABIInfo { 4442 const bool Is64Bit; 4443 const unsigned PtrByteSize; 4444 CharUnits getParamTypeAlignment(QualType Ty) const; 4445 4446 public: 4447 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4448 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4449 4450 bool isPromotableTypeForABI(QualType Ty) const; 4451 4452 ABIArgInfo classifyReturnType(QualType RetTy) const; 4453 ABIArgInfo classifyArgumentType(QualType Ty) const; 4454 4455 void computeInfo(CGFunctionInfo &FI) const override { 4456 if (!getCXXABI().classifyReturnType(FI)) 4457 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4458 4459 for (auto &I : FI.arguments()) 4460 I.info = classifyArgumentType(I.type); 4461 } 4462 4463 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4464 QualType Ty) const override; 4465 }; 4466 4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4468 const bool Is64Bit; 4469 4470 public: 4471 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4472 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4473 Is64Bit(Is64Bit) {} 4474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4475 return 1; // r1 is the dedicated stack pointer 4476 } 4477 4478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4479 llvm::Value *Address) const override; 4480 }; 4481 } // namespace 4482 4483 // Return true if the ABI requires Ty to be passed sign- or zero- 4484 // extended to 32/64 bits. 4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4486 // Treat an enum type as its underlying type. 4487 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4488 Ty = EnumTy->getDecl()->getIntegerType(); 4489 4490 // Promotable integer types are required to be promoted by the ABI. 4491 if (Ty->isPromotableIntegerType()) 4492 return true; 4493 4494 if (!Is64Bit) 4495 return false; 4496 4497 // For 64 bit mode, in addition to the usual promotable integer types, we also 4498 // need to extend all 32-bit types, since the ABI requires promotion to 64 4499 // bits. 4500 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4501 switch (BT->getKind()) { 4502 case BuiltinType::Int: 4503 case BuiltinType::UInt: 4504 return true; 4505 default: 4506 break; 4507 } 4508 4509 return false; 4510 } 4511 4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4513 if (RetTy->isAnyComplexType()) 4514 return ABIArgInfo::getDirect(); 4515 4516 if (RetTy->isVectorType()) 4517 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4518 4519 if (RetTy->isVoidType()) 4520 return ABIArgInfo::getIgnore(); 4521 4522 if (isAggregateTypeForABI(RetTy)) 4523 return getNaturalAlignIndirect(RetTy); 4524 4525 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4526 : ABIArgInfo::getDirect()); 4527 } 4528 4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4530 Ty = useFirstFieldIfTransparentUnion(Ty); 4531 4532 if (Ty->isAnyComplexType()) 4533 return ABIArgInfo::getDirect(); 4534 4535 if (Ty->isVectorType()) 4536 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4537 4538 if (isAggregateTypeForABI(Ty)) { 4539 // Records with non-trivial destructors/copy-constructors should not be 4540 // passed by value. 4541 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4542 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4543 4544 CharUnits CCAlign = getParamTypeAlignment(Ty); 4545 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4546 4547 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4548 /*Realign*/ TyAlign > CCAlign); 4549 } 4550 4551 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4552 : ABIArgInfo::getDirect()); 4553 } 4554 4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4556 // Complex types are passed just like their elements. 4557 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4558 Ty = CTy->getElementType(); 4559 4560 if (Ty->isVectorType()) 4561 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4562 4563 // If the structure contains a vector type, the alignment is 16. 4564 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4565 return CharUnits::fromQuantity(16); 4566 4567 return CharUnits::fromQuantity(PtrByteSize); 4568 } 4569 4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4571 QualType Ty) const { 4572 if (Ty->isAnyComplexType()) 4573 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4574 4575 if (Ty->isVectorType()) 4576 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4577 4578 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4579 TypeInfo.Align = getParamTypeAlignment(Ty); 4580 4581 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4582 4583 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4584 SlotSize, /*AllowHigher*/ true); 4585 } 4586 4587 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4588 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4589 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4590 } 4591 4592 // PowerPC-32 4593 namespace { 4594 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4595 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4596 bool IsSoftFloatABI; 4597 bool IsRetSmallStructInRegABI; 4598 4599 CharUnits getParamTypeAlignment(QualType Ty) const; 4600 4601 public: 4602 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4603 bool RetSmallStructInRegABI) 4604 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4605 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4606 4607 ABIArgInfo classifyReturnType(QualType RetTy) const; 4608 4609 void computeInfo(CGFunctionInfo &FI) const override { 4610 if (!getCXXABI().classifyReturnType(FI)) 4611 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4612 for (auto &I : FI.arguments()) 4613 I.info = classifyArgumentType(I.type); 4614 } 4615 4616 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4617 QualType Ty) const override; 4618 }; 4619 4620 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4621 public: 4622 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4623 bool RetSmallStructInRegABI) 4624 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4625 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4626 4627 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4628 const CodeGenOptions &Opts); 4629 4630 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4631 // This is recovered from gcc output. 4632 return 1; // r1 is the dedicated stack pointer 4633 } 4634 4635 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4636 llvm::Value *Address) const override; 4637 }; 4638 } 4639 4640 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4641 // Complex types are passed just like their elements. 4642 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4643 Ty = CTy->getElementType(); 4644 4645 if (Ty->isVectorType()) 4646 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4647 : 4); 4648 4649 // For single-element float/vector structs, we consider the whole type 4650 // to have the same alignment requirements as its single element. 4651 const Type *AlignTy = nullptr; 4652 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4653 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4654 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4655 (BT && BT->isFloatingPoint())) 4656 AlignTy = EltType; 4657 } 4658 4659 if (AlignTy) 4660 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4661 return CharUnits::fromQuantity(4); 4662 } 4663 4664 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4665 uint64_t Size; 4666 4667 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4668 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4669 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4670 // System V ABI (1995), page 3-22, specified: 4671 // > A structure or union whose size is less than or equal to 8 bytes 4672 // > shall be returned in r3 and r4, as if it were first stored in the 4673 // > 8-byte aligned memory area and then the low addressed word were 4674 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4675 // > the last member of the structure or union are not defined. 4676 // 4677 // GCC for big-endian PPC32 inserts the pad before the first member, 4678 // not "beyond the last member" of the struct. To stay compatible 4679 // with GCC, we coerce the struct to an integer of the same size. 4680 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4681 if (Size == 0) 4682 return ABIArgInfo::getIgnore(); 4683 else { 4684 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4685 return ABIArgInfo::getDirect(CoerceTy); 4686 } 4687 } 4688 4689 return DefaultABIInfo::classifyReturnType(RetTy); 4690 } 4691 4692 // TODO: this implementation is now likely redundant with 4693 // DefaultABIInfo::EmitVAArg. 4694 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4695 QualType Ty) const { 4696 if (getTarget().getTriple().isOSDarwin()) { 4697 auto TI = getContext().getTypeInfoInChars(Ty); 4698 TI.Align = getParamTypeAlignment(Ty); 4699 4700 CharUnits SlotSize = CharUnits::fromQuantity(4); 4701 return emitVoidPtrVAArg(CGF, VAList, Ty, 4702 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4703 /*AllowHigherAlign=*/true); 4704 } 4705 4706 const unsigned OverflowLimit = 8; 4707 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4708 // TODO: Implement this. For now ignore. 4709 (void)CTy; 4710 return Address::invalid(); // FIXME? 4711 } 4712 4713 // struct __va_list_tag { 4714 // unsigned char gpr; 4715 // unsigned char fpr; 4716 // unsigned short reserved; 4717 // void *overflow_arg_area; 4718 // void *reg_save_area; 4719 // }; 4720 4721 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4722 bool isInt = 4723 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4724 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4725 4726 // All aggregates are passed indirectly? That doesn't seem consistent 4727 // with the argument-lowering code. 4728 bool isIndirect = Ty->isAggregateType(); 4729 4730 CGBuilderTy &Builder = CGF.Builder; 4731 4732 // The calling convention either uses 1-2 GPRs or 1 FPR. 4733 Address NumRegsAddr = Address::invalid(); 4734 if (isInt || IsSoftFloatABI) { 4735 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4736 } else { 4737 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4738 } 4739 4740 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4741 4742 // "Align" the register count when TY is i64. 4743 if (isI64 || (isF64 && IsSoftFloatABI)) { 4744 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4745 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4746 } 4747 4748 llvm::Value *CC = 4749 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4750 4751 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4752 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4753 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4754 4755 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4756 4757 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4758 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4759 4760 // Case 1: consume registers. 4761 Address RegAddr = Address::invalid(); 4762 { 4763 CGF.EmitBlock(UsingRegs); 4764 4765 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4766 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4767 CharUnits::fromQuantity(8)); 4768 assert(RegAddr.getElementType() == CGF.Int8Ty); 4769 4770 // Floating-point registers start after the general-purpose registers. 4771 if (!(isInt || IsSoftFloatABI)) { 4772 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4773 CharUnits::fromQuantity(32)); 4774 } 4775 4776 // Get the address of the saved value by scaling the number of 4777 // registers we've used by the number of 4778 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4779 llvm::Value *RegOffset = 4780 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4781 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4782 RegAddr.getPointer(), RegOffset), 4783 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4784 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4785 4786 // Increase the used-register count. 4787 NumRegs = 4788 Builder.CreateAdd(NumRegs, 4789 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4790 Builder.CreateStore(NumRegs, NumRegsAddr); 4791 4792 CGF.EmitBranch(Cont); 4793 } 4794 4795 // Case 2: consume space in the overflow area. 4796 Address MemAddr = Address::invalid(); 4797 { 4798 CGF.EmitBlock(UsingOverflow); 4799 4800 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4801 4802 // Everything in the overflow area is rounded up to a size of at least 4. 4803 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4804 4805 CharUnits Size; 4806 if (!isIndirect) { 4807 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4808 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4809 } else { 4810 Size = CGF.getPointerSize(); 4811 } 4812 4813 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4814 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4815 OverflowAreaAlign); 4816 // Round up address of argument to alignment 4817 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4818 if (Align > OverflowAreaAlign) { 4819 llvm::Value *Ptr = OverflowArea.getPointer(); 4820 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4821 Align); 4822 } 4823 4824 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4825 4826 // Increase the overflow area. 4827 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4828 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4829 CGF.EmitBranch(Cont); 4830 } 4831 4832 CGF.EmitBlock(Cont); 4833 4834 // Merge the cases with a phi. 4835 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4836 "vaarg.addr"); 4837 4838 // Load the pointer if the argument was passed indirectly. 4839 if (isIndirect) { 4840 Result = Address(Builder.CreateLoad(Result, "aggr"), 4841 getContext().getTypeAlignInChars(Ty)); 4842 } 4843 4844 return Result; 4845 } 4846 4847 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4848 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4849 assert(Triple.getArch() == llvm::Triple::ppc); 4850 4851 switch (Opts.getStructReturnConvention()) { 4852 case CodeGenOptions::SRCK_Default: 4853 break; 4854 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4855 return false; 4856 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4857 return true; 4858 } 4859 4860 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4861 return true; 4862 4863 return false; 4864 } 4865 4866 bool 4867 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4868 llvm::Value *Address) const { 4869 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4870 /*IsAIX*/ false); 4871 } 4872 4873 // PowerPC-64 4874 4875 namespace { 4876 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4877 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4878 public: 4879 enum ABIKind { 4880 ELFv1 = 0, 4881 ELFv2 4882 }; 4883 4884 private: 4885 static const unsigned GPRBits = 64; 4886 ABIKind Kind; 4887 bool HasQPX; 4888 bool IsSoftFloatABI; 4889 4890 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4891 // will be passed in a QPX register. 4892 bool IsQPXVectorTy(const Type *Ty) const { 4893 if (!HasQPX) 4894 return false; 4895 4896 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4897 unsigned NumElements = VT->getNumElements(); 4898 if (NumElements == 1) 4899 return false; 4900 4901 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4902 if (getContext().getTypeSize(Ty) <= 256) 4903 return true; 4904 } else if (VT->getElementType()-> 4905 isSpecificBuiltinType(BuiltinType::Float)) { 4906 if (getContext().getTypeSize(Ty) <= 128) 4907 return true; 4908 } 4909 } 4910 4911 return false; 4912 } 4913 4914 bool IsQPXVectorTy(QualType Ty) const { 4915 return IsQPXVectorTy(Ty.getTypePtr()); 4916 } 4917 4918 public: 4919 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4920 bool SoftFloatABI) 4921 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4922 IsSoftFloatABI(SoftFloatABI) {} 4923 4924 bool isPromotableTypeForABI(QualType Ty) const; 4925 CharUnits getParamTypeAlignment(QualType Ty) const; 4926 4927 ABIArgInfo classifyReturnType(QualType RetTy) const; 4928 ABIArgInfo classifyArgumentType(QualType Ty) const; 4929 4930 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4931 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4932 uint64_t Members) const override; 4933 4934 // TODO: We can add more logic to computeInfo to improve performance. 4935 // Example: For aggregate arguments that fit in a register, we could 4936 // use getDirectInReg (as is done below for structs containing a single 4937 // floating-point value) to avoid pushing them to memory on function 4938 // entry. This would require changing the logic in PPCISelLowering 4939 // when lowering the parameters in the caller and args in the callee. 4940 void computeInfo(CGFunctionInfo &FI) const override { 4941 if (!getCXXABI().classifyReturnType(FI)) 4942 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4943 for (auto &I : FI.arguments()) { 4944 // We rely on the default argument classification for the most part. 4945 // One exception: An aggregate containing a single floating-point 4946 // or vector item must be passed in a register if one is available. 4947 const Type *T = isSingleElementStruct(I.type, getContext()); 4948 if (T) { 4949 const BuiltinType *BT = T->getAs<BuiltinType>(); 4950 if (IsQPXVectorTy(T) || 4951 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4952 (BT && BT->isFloatingPoint())) { 4953 QualType QT(T, 0); 4954 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4955 continue; 4956 } 4957 } 4958 I.info = classifyArgumentType(I.type); 4959 } 4960 } 4961 4962 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4963 QualType Ty) const override; 4964 4965 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4966 bool asReturnValue) const override { 4967 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4968 } 4969 4970 bool isSwiftErrorInRegister() const override { 4971 return false; 4972 } 4973 }; 4974 4975 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4976 4977 public: 4978 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4979 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4980 bool SoftFloatABI) 4981 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4982 CGT, Kind, HasQPX, SoftFloatABI)) {} 4983 4984 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4985 // This is recovered from gcc output. 4986 return 1; // r1 is the dedicated stack pointer 4987 } 4988 4989 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4990 llvm::Value *Address) const override; 4991 }; 4992 4993 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4994 public: 4995 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4996 4997 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4998 // This is recovered from gcc output. 4999 return 1; // r1 is the dedicated stack pointer 5000 } 5001 5002 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5003 llvm::Value *Address) const override; 5004 }; 5005 5006 } 5007 5008 // Return true if the ABI requires Ty to be passed sign- or zero- 5009 // extended to 64 bits. 5010 bool 5011 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5012 // Treat an enum type as its underlying type. 5013 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5014 Ty = EnumTy->getDecl()->getIntegerType(); 5015 5016 // Promotable integer types are required to be promoted by the ABI. 5017 if (isPromotableIntegerTypeForABI(Ty)) 5018 return true; 5019 5020 // In addition to the usual promotable integer types, we also need to 5021 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5022 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5023 switch (BT->getKind()) { 5024 case BuiltinType::Int: 5025 case BuiltinType::UInt: 5026 return true; 5027 default: 5028 break; 5029 } 5030 5031 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5032 if (EIT->getNumBits() < 64) 5033 return true; 5034 5035 return false; 5036 } 5037 5038 /// isAlignedParamType - Determine whether a type requires 16-byte or 5039 /// higher alignment in the parameter area. Always returns at least 8. 5040 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5041 // Complex types are passed just like their elements. 5042 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5043 Ty = CTy->getElementType(); 5044 5045 // Only vector types of size 16 bytes need alignment (larger types are 5046 // passed via reference, smaller types are not aligned). 5047 if (IsQPXVectorTy(Ty)) { 5048 if (getContext().getTypeSize(Ty) > 128) 5049 return CharUnits::fromQuantity(32); 5050 5051 return CharUnits::fromQuantity(16); 5052 } else if (Ty->isVectorType()) { 5053 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5054 } else if (Ty->isRealFloatingType() && getContext().getTypeSize(Ty) == 128) { 5055 // IEEE 128-bit floating numbers are also stored in vector registers. 5056 // And both IEEE quad-precision and IBM extended double (ppc_fp128) should 5057 // be quad-word aligned. 5058 return CharUnits::fromQuantity(16); 5059 } 5060 5061 // For single-element float/vector structs, we consider the whole type 5062 // to have the same alignment requirements as its single element. 5063 const Type *AlignAsType = nullptr; 5064 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5065 if (EltType) { 5066 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5067 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 5068 getContext().getTypeSize(EltType) == 128) || 5069 (BT && BT->isFloatingPoint())) 5070 AlignAsType = EltType; 5071 } 5072 5073 // Likewise for ELFv2 homogeneous aggregates. 5074 const Type *Base = nullptr; 5075 uint64_t Members = 0; 5076 if (!AlignAsType && Kind == ELFv2 && 5077 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5078 AlignAsType = Base; 5079 5080 // With special case aggregates, only vector base types need alignment. 5081 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 5082 if (getContext().getTypeSize(AlignAsType) > 128) 5083 return CharUnits::fromQuantity(32); 5084 5085 return CharUnits::fromQuantity(16); 5086 } else if (AlignAsType) { 5087 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5088 } 5089 5090 // Otherwise, we only need alignment for any aggregate type that 5091 // has an alignment requirement of >= 16 bytes. 5092 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5093 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 5094 return CharUnits::fromQuantity(32); 5095 return CharUnits::fromQuantity(16); 5096 } 5097 5098 return CharUnits::fromQuantity(8); 5099 } 5100 5101 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5102 /// aggregate. Base is set to the base element type, and Members is set 5103 /// to the number of base elements. 5104 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5105 uint64_t &Members) const { 5106 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5107 uint64_t NElements = AT->getSize().getZExtValue(); 5108 if (NElements == 0) 5109 return false; 5110 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5111 return false; 5112 Members *= NElements; 5113 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5114 const RecordDecl *RD = RT->getDecl(); 5115 if (RD->hasFlexibleArrayMember()) 5116 return false; 5117 5118 Members = 0; 5119 5120 // If this is a C++ record, check the bases first. 5121 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5122 for (const auto &I : CXXRD->bases()) { 5123 // Ignore empty records. 5124 if (isEmptyRecord(getContext(), I.getType(), true)) 5125 continue; 5126 5127 uint64_t FldMembers; 5128 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5129 return false; 5130 5131 Members += FldMembers; 5132 } 5133 } 5134 5135 for (const auto *FD : RD->fields()) { 5136 // Ignore (non-zero arrays of) empty records. 5137 QualType FT = FD->getType(); 5138 while (const ConstantArrayType *AT = 5139 getContext().getAsConstantArrayType(FT)) { 5140 if (AT->getSize().getZExtValue() == 0) 5141 return false; 5142 FT = AT->getElementType(); 5143 } 5144 if (isEmptyRecord(getContext(), FT, true)) 5145 continue; 5146 5147 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5148 if (getContext().getLangOpts().CPlusPlus && 5149 FD->isZeroLengthBitField(getContext())) 5150 continue; 5151 5152 uint64_t FldMembers; 5153 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5154 return false; 5155 5156 Members = (RD->isUnion() ? 5157 std::max(Members, FldMembers) : Members + FldMembers); 5158 } 5159 5160 if (!Base) 5161 return false; 5162 5163 // Ensure there is no padding. 5164 if (getContext().getTypeSize(Base) * Members != 5165 getContext().getTypeSize(Ty)) 5166 return false; 5167 } else { 5168 Members = 1; 5169 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5170 Members = 2; 5171 Ty = CT->getElementType(); 5172 } 5173 5174 // Most ABIs only support float, double, and some vector type widths. 5175 if (!isHomogeneousAggregateBaseType(Ty)) 5176 return false; 5177 5178 // The base type must be the same for all members. Types that 5179 // agree in both total size and mode (float vs. vector) are 5180 // treated as being equivalent here. 5181 const Type *TyPtr = Ty.getTypePtr(); 5182 if (!Base) { 5183 Base = TyPtr; 5184 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5185 // so make sure to widen it explicitly. 5186 if (const VectorType *VT = Base->getAs<VectorType>()) { 5187 QualType EltTy = VT->getElementType(); 5188 unsigned NumElements = 5189 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5190 Base = getContext() 5191 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5192 .getTypePtr(); 5193 } 5194 } 5195 5196 if (Base->isVectorType() != TyPtr->isVectorType() || 5197 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5198 return false; 5199 } 5200 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5201 } 5202 5203 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5204 // Homogeneous aggregates for ELFv2 must have base types of float, 5205 // double, long double, or 128-bit vectors. 5206 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5207 if (BT->getKind() == BuiltinType::Float || 5208 BT->getKind() == BuiltinType::Double || 5209 BT->getKind() == BuiltinType::LongDouble || 5210 (getContext().getTargetInfo().hasFloat128Type() && 5211 (BT->getKind() == BuiltinType::Float128))) { 5212 if (IsSoftFloatABI) 5213 return false; 5214 return true; 5215 } 5216 } 5217 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5218 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5219 return true; 5220 } 5221 return false; 5222 } 5223 5224 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5225 const Type *Base, uint64_t Members) const { 5226 // Vector and fp128 types require one register, other floating point types 5227 // require one or two registers depending on their size. 5228 uint32_t NumRegs = 5229 ((getContext().getTargetInfo().hasFloat128Type() && 5230 Base->isFloat128Type()) || 5231 Base->isVectorType()) ? 1 5232 : (getContext().getTypeSize(Base) + 63) / 64; 5233 5234 // Homogeneous Aggregates may occupy at most 8 registers. 5235 return Members * NumRegs <= 8; 5236 } 5237 5238 ABIArgInfo 5239 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5240 Ty = useFirstFieldIfTransparentUnion(Ty); 5241 5242 if (Ty->isAnyComplexType()) 5243 return ABIArgInfo::getDirect(); 5244 5245 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5246 // or via reference (larger than 16 bytes). 5247 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5248 uint64_t Size = getContext().getTypeSize(Ty); 5249 if (Size > 128) 5250 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5251 else if (Size < 128) { 5252 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5253 return ABIArgInfo::getDirect(CoerceTy); 5254 } 5255 } 5256 5257 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5258 if (EIT->getNumBits() > 128) 5259 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5260 5261 if (isAggregateTypeForABI(Ty)) { 5262 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5263 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5264 5265 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5266 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5267 5268 // ELFv2 homogeneous aggregates are passed as array types. 5269 const Type *Base = nullptr; 5270 uint64_t Members = 0; 5271 if (Kind == ELFv2 && 5272 isHomogeneousAggregate(Ty, Base, Members)) { 5273 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5274 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5275 return ABIArgInfo::getDirect(CoerceTy); 5276 } 5277 5278 // If an aggregate may end up fully in registers, we do not 5279 // use the ByVal method, but pass the aggregate as array. 5280 // This is usually beneficial since we avoid forcing the 5281 // back-end to store the argument to memory. 5282 uint64_t Bits = getContext().getTypeSize(Ty); 5283 if (Bits > 0 && Bits <= 8 * GPRBits) { 5284 llvm::Type *CoerceTy; 5285 5286 // Types up to 8 bytes are passed as integer type (which will be 5287 // properly aligned in the argument save area doubleword). 5288 if (Bits <= GPRBits) 5289 CoerceTy = 5290 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5291 // Larger types are passed as arrays, with the base type selected 5292 // according to the required alignment in the save area. 5293 else { 5294 uint64_t RegBits = ABIAlign * 8; 5295 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5296 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5297 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5298 } 5299 5300 return ABIArgInfo::getDirect(CoerceTy); 5301 } 5302 5303 // All other aggregates are passed ByVal. 5304 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5305 /*ByVal=*/true, 5306 /*Realign=*/TyAlign > ABIAlign); 5307 } 5308 5309 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5310 : ABIArgInfo::getDirect()); 5311 } 5312 5313 ABIArgInfo 5314 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5315 if (RetTy->isVoidType()) 5316 return ABIArgInfo::getIgnore(); 5317 5318 if (RetTy->isAnyComplexType()) 5319 return ABIArgInfo::getDirect(); 5320 5321 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5322 // or via reference (larger than 16 bytes). 5323 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5324 uint64_t Size = getContext().getTypeSize(RetTy); 5325 if (Size > 128) 5326 return getNaturalAlignIndirect(RetTy); 5327 else if (Size < 128) { 5328 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5329 return ABIArgInfo::getDirect(CoerceTy); 5330 } 5331 } 5332 5333 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5334 if (EIT->getNumBits() > 128) 5335 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5336 5337 if (isAggregateTypeForABI(RetTy)) { 5338 // ELFv2 homogeneous aggregates are returned as array types. 5339 const Type *Base = nullptr; 5340 uint64_t Members = 0; 5341 if (Kind == ELFv2 && 5342 isHomogeneousAggregate(RetTy, Base, Members)) { 5343 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5344 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5345 return ABIArgInfo::getDirect(CoerceTy); 5346 } 5347 5348 // ELFv2 small aggregates are returned in up to two registers. 5349 uint64_t Bits = getContext().getTypeSize(RetTy); 5350 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5351 if (Bits == 0) 5352 return ABIArgInfo::getIgnore(); 5353 5354 llvm::Type *CoerceTy; 5355 if (Bits > GPRBits) { 5356 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5357 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5358 } else 5359 CoerceTy = 5360 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5361 return ABIArgInfo::getDirect(CoerceTy); 5362 } 5363 5364 // All other aggregates are returned indirectly. 5365 return getNaturalAlignIndirect(RetTy); 5366 } 5367 5368 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5369 : ABIArgInfo::getDirect()); 5370 } 5371 5372 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5373 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5374 QualType Ty) const { 5375 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5376 TypeInfo.Align = getParamTypeAlignment(Ty); 5377 5378 CharUnits SlotSize = CharUnits::fromQuantity(8); 5379 5380 // If we have a complex type and the base type is smaller than 8 bytes, 5381 // the ABI calls for the real and imaginary parts to be right-adjusted 5382 // in separate doublewords. However, Clang expects us to produce a 5383 // pointer to a structure with the two parts packed tightly. So generate 5384 // loads of the real and imaginary parts relative to the va_list pointer, 5385 // and store them to a temporary structure. 5386 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5387 CharUnits EltSize = TypeInfo.Width / 2; 5388 if (EltSize < SlotSize) { 5389 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5390 SlotSize * 2, SlotSize, 5391 SlotSize, /*AllowHigher*/ true); 5392 5393 Address RealAddr = Addr; 5394 Address ImagAddr = RealAddr; 5395 if (CGF.CGM.getDataLayout().isBigEndian()) { 5396 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5397 SlotSize - EltSize); 5398 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5399 2 * SlotSize - EltSize); 5400 } else { 5401 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5402 } 5403 5404 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5405 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5406 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5407 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5408 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5409 5410 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5411 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5412 /*init*/ true); 5413 return Temp; 5414 } 5415 } 5416 5417 // Otherwise, just use the general rule. 5418 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5419 TypeInfo, SlotSize, /*AllowHigher*/ true); 5420 } 5421 5422 bool 5423 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5424 CodeGen::CodeGenFunction &CGF, 5425 llvm::Value *Address) const { 5426 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5427 /*IsAIX*/ false); 5428 } 5429 5430 bool 5431 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5432 llvm::Value *Address) const { 5433 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5434 /*IsAIX*/ false); 5435 } 5436 5437 //===----------------------------------------------------------------------===// 5438 // AArch64 ABI Implementation 5439 //===----------------------------------------------------------------------===// 5440 5441 namespace { 5442 5443 class AArch64ABIInfo : public SwiftABIInfo { 5444 public: 5445 enum ABIKind { 5446 AAPCS = 0, 5447 DarwinPCS, 5448 Win64 5449 }; 5450 5451 private: 5452 ABIKind Kind; 5453 5454 public: 5455 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5456 : SwiftABIInfo(CGT), Kind(Kind) {} 5457 5458 private: 5459 ABIKind getABIKind() const { return Kind; } 5460 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5461 5462 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5463 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5464 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5465 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5466 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5467 uint64_t Members) const override; 5468 5469 bool isIllegalVectorType(QualType Ty) const; 5470 5471 void computeInfo(CGFunctionInfo &FI) const override { 5472 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5473 FI.getReturnInfo() = 5474 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5475 5476 for (auto &it : FI.arguments()) 5477 it.info = classifyArgumentType(it.type); 5478 } 5479 5480 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5481 CodeGenFunction &CGF) const; 5482 5483 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5484 CodeGenFunction &CGF) const; 5485 5486 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5487 QualType Ty) const override { 5488 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5489 if (isa<llvm::ScalableVectorType>(BaseTy)) 5490 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5491 "currently not supported"); 5492 5493 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5494 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5495 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5496 } 5497 5498 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5499 QualType Ty) const override; 5500 5501 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5502 bool asReturnValue) const override { 5503 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5504 } 5505 bool isSwiftErrorInRegister() const override { 5506 return true; 5507 } 5508 5509 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5510 unsigned elts) const override; 5511 5512 bool allowBFloatArgsAndRet() const override { 5513 return getTarget().hasBFloat16Type(); 5514 } 5515 }; 5516 5517 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5518 public: 5519 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5520 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5521 5522 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5523 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5524 } 5525 5526 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5527 return 31; 5528 } 5529 5530 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5531 5532 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5533 CodeGen::CodeGenModule &CGM) const override { 5534 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5535 if (!FD) 5536 return; 5537 5538 const auto *TA = FD->getAttr<TargetAttr>(); 5539 if (TA == nullptr) 5540 return; 5541 5542 ParsedTargetAttr Attr = TA->parse(); 5543 if (Attr.BranchProtection.empty()) 5544 return; 5545 5546 TargetInfo::BranchProtectionInfo BPI; 5547 StringRef Error; 5548 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5549 BPI, Error); 5550 assert(Error.empty()); 5551 5552 auto *Fn = cast<llvm::Function>(GV); 5553 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5554 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5555 5556 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5557 Fn->addFnAttr("sign-return-address-key", 5558 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5559 ? "a_key" 5560 : "b_key"); 5561 } 5562 5563 Fn->addFnAttr("branch-target-enforcement", 5564 BPI.BranchTargetEnforcement ? "true" : "false"); 5565 } 5566 }; 5567 5568 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5569 public: 5570 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5571 : AArch64TargetCodeGenInfo(CGT, K) {} 5572 5573 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5574 CodeGen::CodeGenModule &CGM) const override; 5575 5576 void getDependentLibraryOption(llvm::StringRef Lib, 5577 llvm::SmallString<24> &Opt) const override { 5578 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5579 } 5580 5581 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5582 llvm::SmallString<32> &Opt) const override { 5583 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5584 } 5585 }; 5586 5587 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5588 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5589 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5590 if (GV->isDeclaration()) 5591 return; 5592 addStackProbeTargetAttributes(D, GV, CGM); 5593 } 5594 } 5595 5596 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5597 assert(Ty->isVectorType() && "expected vector type!"); 5598 5599 const auto *VT = Ty->castAs<VectorType>(); 5600 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5601 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5602 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5603 BuiltinType::UChar && 5604 "unexpected builtin type for SVE predicate!"); 5605 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5606 llvm::Type::getInt1Ty(getVMContext()), 16)); 5607 } 5608 5609 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5610 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5611 5612 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5613 llvm::ScalableVectorType *ResType = nullptr; 5614 switch (BT->getKind()) { 5615 default: 5616 llvm_unreachable("unexpected builtin type for SVE vector!"); 5617 case BuiltinType::SChar: 5618 case BuiltinType::UChar: 5619 ResType = llvm::ScalableVectorType::get( 5620 llvm::Type::getInt8Ty(getVMContext()), 16); 5621 break; 5622 case BuiltinType::Short: 5623 case BuiltinType::UShort: 5624 ResType = llvm::ScalableVectorType::get( 5625 llvm::Type::getInt16Ty(getVMContext()), 8); 5626 break; 5627 case BuiltinType::Int: 5628 case BuiltinType::UInt: 5629 ResType = llvm::ScalableVectorType::get( 5630 llvm::Type::getInt32Ty(getVMContext()), 4); 5631 break; 5632 case BuiltinType::Long: 5633 case BuiltinType::ULong: 5634 ResType = llvm::ScalableVectorType::get( 5635 llvm::Type::getInt64Ty(getVMContext()), 2); 5636 break; 5637 case BuiltinType::Half: 5638 ResType = llvm::ScalableVectorType::get( 5639 llvm::Type::getHalfTy(getVMContext()), 8); 5640 break; 5641 case BuiltinType::Float: 5642 ResType = llvm::ScalableVectorType::get( 5643 llvm::Type::getFloatTy(getVMContext()), 4); 5644 break; 5645 case BuiltinType::Double: 5646 ResType = llvm::ScalableVectorType::get( 5647 llvm::Type::getDoubleTy(getVMContext()), 2); 5648 break; 5649 case BuiltinType::BFloat16: 5650 ResType = llvm::ScalableVectorType::get( 5651 llvm::Type::getBFloatTy(getVMContext()), 8); 5652 break; 5653 } 5654 return ABIArgInfo::getDirect(ResType); 5655 } 5656 5657 uint64_t Size = getContext().getTypeSize(Ty); 5658 // Android promotes <2 x i8> to i16, not i32 5659 if (isAndroid() && (Size <= 16)) { 5660 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5661 return ABIArgInfo::getDirect(ResType); 5662 } 5663 if (Size <= 32) { 5664 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5665 return ABIArgInfo::getDirect(ResType); 5666 } 5667 if (Size == 64) { 5668 auto *ResType = 5669 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5670 return ABIArgInfo::getDirect(ResType); 5671 } 5672 if (Size == 128) { 5673 auto *ResType = 5674 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5675 return ABIArgInfo::getDirect(ResType); 5676 } 5677 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5678 } 5679 5680 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5681 Ty = useFirstFieldIfTransparentUnion(Ty); 5682 5683 // Handle illegal vector types here. 5684 if (isIllegalVectorType(Ty)) 5685 return coerceIllegalVector(Ty); 5686 5687 if (!isAggregateTypeForABI(Ty)) { 5688 // Treat an enum type as its underlying type. 5689 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5690 Ty = EnumTy->getDecl()->getIntegerType(); 5691 5692 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5693 if (EIT->getNumBits() > 128) 5694 return getNaturalAlignIndirect(Ty); 5695 5696 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5697 ? ABIArgInfo::getExtend(Ty) 5698 : ABIArgInfo::getDirect()); 5699 } 5700 5701 // Structures with either a non-trivial destructor or a non-trivial 5702 // copy constructor are always indirect. 5703 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5704 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5705 CGCXXABI::RAA_DirectInMemory); 5706 } 5707 5708 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5709 // elsewhere for GNU compatibility. 5710 uint64_t Size = getContext().getTypeSize(Ty); 5711 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5712 if (IsEmpty || Size == 0) { 5713 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5714 return ABIArgInfo::getIgnore(); 5715 5716 // GNU C mode. The only argument that gets ignored is an empty one with size 5717 // 0. 5718 if (IsEmpty && Size == 0) 5719 return ABIArgInfo::getIgnore(); 5720 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5721 } 5722 5723 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5724 const Type *Base = nullptr; 5725 uint64_t Members = 0; 5726 if (isHomogeneousAggregate(Ty, Base, Members)) { 5727 return ABIArgInfo::getDirect( 5728 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5729 } 5730 5731 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5732 if (Size <= 128) { 5733 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5734 // same size and alignment. 5735 if (getTarget().isRenderScriptTarget()) { 5736 return coerceToIntArray(Ty, getContext(), getVMContext()); 5737 } 5738 unsigned Alignment; 5739 if (Kind == AArch64ABIInfo::AAPCS) { 5740 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5741 Alignment = Alignment < 128 ? 64 : 128; 5742 } else { 5743 Alignment = std::max(getContext().getTypeAlign(Ty), 5744 (unsigned)getTarget().getPointerWidth(0)); 5745 } 5746 Size = llvm::alignTo(Size, Alignment); 5747 5748 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5749 // For aggregates with 16-byte alignment, we use i128. 5750 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5751 return ABIArgInfo::getDirect( 5752 Size == Alignment ? BaseTy 5753 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5754 } 5755 5756 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5757 } 5758 5759 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5760 bool IsVariadic) const { 5761 if (RetTy->isVoidType()) 5762 return ABIArgInfo::getIgnore(); 5763 5764 if (const auto *VT = RetTy->getAs<VectorType>()) { 5765 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5766 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5767 return coerceIllegalVector(RetTy); 5768 } 5769 5770 // Large vector types should be returned via memory. 5771 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5772 return getNaturalAlignIndirect(RetTy); 5773 5774 if (!isAggregateTypeForABI(RetTy)) { 5775 // Treat an enum type as its underlying type. 5776 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5777 RetTy = EnumTy->getDecl()->getIntegerType(); 5778 5779 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5780 if (EIT->getNumBits() > 128) 5781 return getNaturalAlignIndirect(RetTy); 5782 5783 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5784 ? ABIArgInfo::getExtend(RetTy) 5785 : ABIArgInfo::getDirect()); 5786 } 5787 5788 uint64_t Size = getContext().getTypeSize(RetTy); 5789 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5790 return ABIArgInfo::getIgnore(); 5791 5792 const Type *Base = nullptr; 5793 uint64_t Members = 0; 5794 if (isHomogeneousAggregate(RetTy, Base, Members) && 5795 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5796 IsVariadic)) 5797 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5798 return ABIArgInfo::getDirect(); 5799 5800 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5801 if (Size <= 128) { 5802 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5803 // same size and alignment. 5804 if (getTarget().isRenderScriptTarget()) { 5805 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5806 } 5807 unsigned Alignment = getContext().getTypeAlign(RetTy); 5808 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5809 5810 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5811 // For aggregates with 16-byte alignment, we use i128. 5812 if (Alignment < 128 && Size == 128) { 5813 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5814 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5815 } 5816 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5817 } 5818 5819 return getNaturalAlignIndirect(RetTy); 5820 } 5821 5822 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5823 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5824 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5825 // Check whether VT is a fixed-length SVE vector. These types are 5826 // represented as scalable vectors in function args/return and must be 5827 // coerced from fixed vectors. 5828 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5829 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5830 return true; 5831 5832 // Check whether VT is legal. 5833 unsigned NumElements = VT->getNumElements(); 5834 uint64_t Size = getContext().getTypeSize(VT); 5835 // NumElements should be power of 2. 5836 if (!llvm::isPowerOf2_32(NumElements)) 5837 return true; 5838 5839 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5840 // vectors for some reason. 5841 llvm::Triple Triple = getTarget().getTriple(); 5842 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5843 Triple.isOSBinFormatMachO()) 5844 return Size <= 32; 5845 5846 return Size != 64 && (Size != 128 || NumElements == 1); 5847 } 5848 return false; 5849 } 5850 5851 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5852 llvm::Type *eltTy, 5853 unsigned elts) const { 5854 if (!llvm::isPowerOf2_32(elts)) 5855 return false; 5856 if (totalSize.getQuantity() != 8 && 5857 (totalSize.getQuantity() != 16 || elts == 1)) 5858 return false; 5859 return true; 5860 } 5861 5862 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5863 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5864 // point type or a short-vector type. This is the same as the 32-bit ABI, 5865 // but with the difference that any floating-point type is allowed, 5866 // including __fp16. 5867 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5868 if (BT->isFloatingPoint()) 5869 return true; 5870 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5871 unsigned VecSize = getContext().getTypeSize(VT); 5872 if (VecSize == 64 || VecSize == 128) 5873 return true; 5874 } 5875 return false; 5876 } 5877 5878 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5879 uint64_t Members) const { 5880 return Members <= 4; 5881 } 5882 5883 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5884 QualType Ty, 5885 CodeGenFunction &CGF) const { 5886 ABIArgInfo AI = classifyArgumentType(Ty); 5887 bool IsIndirect = AI.isIndirect(); 5888 5889 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5890 if (IsIndirect) 5891 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5892 else if (AI.getCoerceToType()) 5893 BaseTy = AI.getCoerceToType(); 5894 5895 unsigned NumRegs = 1; 5896 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5897 BaseTy = ArrTy->getElementType(); 5898 NumRegs = ArrTy->getNumElements(); 5899 } 5900 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5901 5902 // The AArch64 va_list type and handling is specified in the Procedure Call 5903 // Standard, section B.4: 5904 // 5905 // struct { 5906 // void *__stack; 5907 // void *__gr_top; 5908 // void *__vr_top; 5909 // int __gr_offs; 5910 // int __vr_offs; 5911 // }; 5912 5913 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5914 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5915 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5916 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5917 5918 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5919 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5920 5921 Address reg_offs_p = Address::invalid(); 5922 llvm::Value *reg_offs = nullptr; 5923 int reg_top_index; 5924 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5925 if (!IsFPR) { 5926 // 3 is the field number of __gr_offs 5927 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5928 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5929 reg_top_index = 1; // field number for __gr_top 5930 RegSize = llvm::alignTo(RegSize, 8); 5931 } else { 5932 // 4 is the field number of __vr_offs. 5933 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5934 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5935 reg_top_index = 2; // field number for __vr_top 5936 RegSize = 16 * NumRegs; 5937 } 5938 5939 //======================================= 5940 // Find out where argument was passed 5941 //======================================= 5942 5943 // If reg_offs >= 0 we're already using the stack for this type of 5944 // argument. We don't want to keep updating reg_offs (in case it overflows, 5945 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5946 // whatever they get). 5947 llvm::Value *UsingStack = nullptr; 5948 UsingStack = CGF.Builder.CreateICmpSGE( 5949 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5950 5951 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5952 5953 // Otherwise, at least some kind of argument could go in these registers, the 5954 // question is whether this particular type is too big. 5955 CGF.EmitBlock(MaybeRegBlock); 5956 5957 // Integer arguments may need to correct register alignment (for example a 5958 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5959 // align __gr_offs to calculate the potential address. 5960 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5961 int Align = TyAlign.getQuantity(); 5962 5963 reg_offs = CGF.Builder.CreateAdd( 5964 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5965 "align_regoffs"); 5966 reg_offs = CGF.Builder.CreateAnd( 5967 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5968 "aligned_regoffs"); 5969 } 5970 5971 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5972 // The fact that this is done unconditionally reflects the fact that 5973 // allocating an argument to the stack also uses up all the remaining 5974 // registers of the appropriate kind. 5975 llvm::Value *NewOffset = nullptr; 5976 NewOffset = CGF.Builder.CreateAdd( 5977 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5978 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5979 5980 // Now we're in a position to decide whether this argument really was in 5981 // registers or not. 5982 llvm::Value *InRegs = nullptr; 5983 InRegs = CGF.Builder.CreateICmpSLE( 5984 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5985 5986 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5987 5988 //======================================= 5989 // Argument was in registers 5990 //======================================= 5991 5992 // Now we emit the code for if the argument was originally passed in 5993 // registers. First start the appropriate block: 5994 CGF.EmitBlock(InRegBlock); 5995 5996 llvm::Value *reg_top = nullptr; 5997 Address reg_top_p = 5998 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5999 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6000 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 6001 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6002 Address RegAddr = Address::invalid(); 6003 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 6004 6005 if (IsIndirect) { 6006 // If it's been passed indirectly (actually a struct), whatever we find from 6007 // stored registers or on the stack will actually be a struct **. 6008 MemTy = llvm::PointerType::getUnqual(MemTy); 6009 } 6010 6011 const Type *Base = nullptr; 6012 uint64_t NumMembers = 0; 6013 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6014 if (IsHFA && NumMembers > 1) { 6015 // Homogeneous aggregates passed in registers will have their elements split 6016 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6017 // qN+1, ...). We reload and store into a temporary local variable 6018 // contiguously. 6019 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6020 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6021 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6022 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6023 Address Tmp = CGF.CreateTempAlloca(HFATy, 6024 std::max(TyAlign, BaseTyInfo.Align)); 6025 6026 // On big-endian platforms, the value will be right-aligned in its slot. 6027 int Offset = 0; 6028 if (CGF.CGM.getDataLayout().isBigEndian() && 6029 BaseTyInfo.Width.getQuantity() < 16) 6030 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6031 6032 for (unsigned i = 0; i < NumMembers; ++i) { 6033 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6034 Address LoadAddr = 6035 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6036 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6037 6038 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6039 6040 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6041 CGF.Builder.CreateStore(Elem, StoreAddr); 6042 } 6043 6044 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6045 } else { 6046 // Otherwise the object is contiguous in memory. 6047 6048 // It might be right-aligned in its slot. 6049 CharUnits SlotSize = BaseAddr.getAlignment(); 6050 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6051 (IsHFA || !isAggregateTypeForABI(Ty)) && 6052 TySize < SlotSize) { 6053 CharUnits Offset = SlotSize - TySize; 6054 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6055 } 6056 6057 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6058 } 6059 6060 CGF.EmitBranch(ContBlock); 6061 6062 //======================================= 6063 // Argument was on the stack 6064 //======================================= 6065 CGF.EmitBlock(OnStackBlock); 6066 6067 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6068 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6069 6070 // Again, stack arguments may need realignment. In this case both integer and 6071 // floating-point ones might be affected. 6072 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6073 int Align = TyAlign.getQuantity(); 6074 6075 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6076 6077 OnStackPtr = CGF.Builder.CreateAdd( 6078 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6079 "align_stack"); 6080 OnStackPtr = CGF.Builder.CreateAnd( 6081 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6082 "align_stack"); 6083 6084 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6085 } 6086 Address OnStackAddr(OnStackPtr, 6087 std::max(CharUnits::fromQuantity(8), TyAlign)); 6088 6089 // All stack slots are multiples of 8 bytes. 6090 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6091 CharUnits StackSize; 6092 if (IsIndirect) 6093 StackSize = StackSlotSize; 6094 else 6095 StackSize = TySize.alignTo(StackSlotSize); 6096 6097 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6098 llvm::Value *NewStack = 6099 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6100 6101 // Write the new value of __stack for the next call to va_arg 6102 CGF.Builder.CreateStore(NewStack, stack_p); 6103 6104 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6105 TySize < StackSlotSize) { 6106 CharUnits Offset = StackSlotSize - TySize; 6107 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6108 } 6109 6110 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6111 6112 CGF.EmitBranch(ContBlock); 6113 6114 //======================================= 6115 // Tidy up 6116 //======================================= 6117 CGF.EmitBlock(ContBlock); 6118 6119 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6120 OnStackAddr, OnStackBlock, "vaargs.addr"); 6121 6122 if (IsIndirect) 6123 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6124 TyAlign); 6125 6126 return ResAddr; 6127 } 6128 6129 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6130 CodeGenFunction &CGF) const { 6131 // The backend's lowering doesn't support va_arg for aggregates or 6132 // illegal vector types. Lower VAArg here for these cases and use 6133 // the LLVM va_arg instruction for everything else. 6134 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6135 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6136 6137 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6138 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6139 6140 // Empty records are ignored for parameter passing purposes. 6141 if (isEmptyRecord(getContext(), Ty, true)) { 6142 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6143 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6144 return Addr; 6145 } 6146 6147 // The size of the actual thing passed, which might end up just 6148 // being a pointer for indirect types. 6149 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6150 6151 // Arguments bigger than 16 bytes which aren't homogeneous 6152 // aggregates should be passed indirectly. 6153 bool IsIndirect = false; 6154 if (TyInfo.Width.getQuantity() > 16) { 6155 const Type *Base = nullptr; 6156 uint64_t Members = 0; 6157 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6158 } 6159 6160 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6161 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6162 } 6163 6164 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6165 QualType Ty) const { 6166 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6167 CGF.getContext().getTypeInfoInChars(Ty), 6168 CharUnits::fromQuantity(8), 6169 /*allowHigherAlign*/ false); 6170 } 6171 6172 //===----------------------------------------------------------------------===// 6173 // ARM ABI Implementation 6174 //===----------------------------------------------------------------------===// 6175 6176 namespace { 6177 6178 class ARMABIInfo : public SwiftABIInfo { 6179 public: 6180 enum ABIKind { 6181 APCS = 0, 6182 AAPCS = 1, 6183 AAPCS_VFP = 2, 6184 AAPCS16_VFP = 3, 6185 }; 6186 6187 private: 6188 ABIKind Kind; 6189 bool IsFloatABISoftFP; 6190 6191 public: 6192 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6193 : SwiftABIInfo(CGT), Kind(_Kind) { 6194 setCCs(); 6195 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6196 CGT.getCodeGenOpts().FloatABI == ""; // default 6197 } 6198 6199 bool isEABI() const { 6200 switch (getTarget().getTriple().getEnvironment()) { 6201 case llvm::Triple::Android: 6202 case llvm::Triple::EABI: 6203 case llvm::Triple::EABIHF: 6204 case llvm::Triple::GNUEABI: 6205 case llvm::Triple::GNUEABIHF: 6206 case llvm::Triple::MuslEABI: 6207 case llvm::Triple::MuslEABIHF: 6208 return true; 6209 default: 6210 return false; 6211 } 6212 } 6213 6214 bool isEABIHF() const { 6215 switch (getTarget().getTriple().getEnvironment()) { 6216 case llvm::Triple::EABIHF: 6217 case llvm::Triple::GNUEABIHF: 6218 case llvm::Triple::MuslEABIHF: 6219 return true; 6220 default: 6221 return false; 6222 } 6223 } 6224 6225 ABIKind getABIKind() const { return Kind; } 6226 6227 bool allowBFloatArgsAndRet() const override { 6228 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6229 } 6230 6231 private: 6232 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6233 unsigned functionCallConv) const; 6234 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6235 unsigned functionCallConv) const; 6236 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6237 uint64_t Members) const; 6238 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6239 bool isIllegalVectorType(QualType Ty) const; 6240 bool containsAnyFP16Vectors(QualType Ty) const; 6241 6242 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6243 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6244 uint64_t Members) const override; 6245 6246 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6247 6248 void computeInfo(CGFunctionInfo &FI) const override; 6249 6250 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6251 QualType Ty) const override; 6252 6253 llvm::CallingConv::ID getLLVMDefaultCC() const; 6254 llvm::CallingConv::ID getABIDefaultCC() const; 6255 void setCCs(); 6256 6257 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6258 bool asReturnValue) const override { 6259 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6260 } 6261 bool isSwiftErrorInRegister() const override { 6262 return true; 6263 } 6264 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6265 unsigned elts) const override; 6266 }; 6267 6268 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6269 public: 6270 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6271 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6272 6273 const ARMABIInfo &getABIInfo() const { 6274 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6275 } 6276 6277 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6278 return 13; 6279 } 6280 6281 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6282 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6283 } 6284 6285 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6286 llvm::Value *Address) const override { 6287 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6288 6289 // 0-15 are the 16 integer registers. 6290 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6291 return false; 6292 } 6293 6294 unsigned getSizeOfUnwindException() const override { 6295 if (getABIInfo().isEABI()) return 88; 6296 return TargetCodeGenInfo::getSizeOfUnwindException(); 6297 } 6298 6299 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6300 CodeGen::CodeGenModule &CGM) const override { 6301 if (GV->isDeclaration()) 6302 return; 6303 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6304 if (!FD) 6305 return; 6306 6307 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6308 if (!Attr) 6309 return; 6310 6311 const char *Kind; 6312 switch (Attr->getInterrupt()) { 6313 case ARMInterruptAttr::Generic: Kind = ""; break; 6314 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6315 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6316 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6317 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6318 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6319 } 6320 6321 llvm::Function *Fn = cast<llvm::Function>(GV); 6322 6323 Fn->addFnAttr("interrupt", Kind); 6324 6325 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6326 if (ABI == ARMABIInfo::APCS) 6327 return; 6328 6329 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6330 // however this is not necessarily true on taking any interrupt. Instruct 6331 // the backend to perform a realignment as part of the function prologue. 6332 llvm::AttrBuilder B; 6333 B.addStackAlignmentAttr(8); 6334 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6335 } 6336 }; 6337 6338 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6339 public: 6340 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6341 : ARMTargetCodeGenInfo(CGT, K) {} 6342 6343 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6344 CodeGen::CodeGenModule &CGM) const override; 6345 6346 void getDependentLibraryOption(llvm::StringRef Lib, 6347 llvm::SmallString<24> &Opt) const override { 6348 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6349 } 6350 6351 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6352 llvm::SmallString<32> &Opt) const override { 6353 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6354 } 6355 }; 6356 6357 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6358 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6359 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6360 if (GV->isDeclaration()) 6361 return; 6362 addStackProbeTargetAttributes(D, GV, CGM); 6363 } 6364 } 6365 6366 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6367 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6368 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6369 FI.getCallingConvention()); 6370 6371 for (auto &I : FI.arguments()) 6372 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6373 FI.getCallingConvention()); 6374 6375 6376 // Always honor user-specified calling convention. 6377 if (FI.getCallingConvention() != llvm::CallingConv::C) 6378 return; 6379 6380 llvm::CallingConv::ID cc = getRuntimeCC(); 6381 if (cc != llvm::CallingConv::C) 6382 FI.setEffectiveCallingConvention(cc); 6383 } 6384 6385 /// Return the default calling convention that LLVM will use. 6386 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6387 // The default calling convention that LLVM will infer. 6388 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6389 return llvm::CallingConv::ARM_AAPCS_VFP; 6390 else if (isEABI()) 6391 return llvm::CallingConv::ARM_AAPCS; 6392 else 6393 return llvm::CallingConv::ARM_APCS; 6394 } 6395 6396 /// Return the calling convention that our ABI would like us to use 6397 /// as the C calling convention. 6398 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6399 switch (getABIKind()) { 6400 case APCS: return llvm::CallingConv::ARM_APCS; 6401 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6402 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6403 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6404 } 6405 llvm_unreachable("bad ABI kind"); 6406 } 6407 6408 void ARMABIInfo::setCCs() { 6409 assert(getRuntimeCC() == llvm::CallingConv::C); 6410 6411 // Don't muddy up the IR with a ton of explicit annotations if 6412 // they'd just match what LLVM will infer from the triple. 6413 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6414 if (abiCC != getLLVMDefaultCC()) 6415 RuntimeCC = abiCC; 6416 } 6417 6418 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6419 uint64_t Size = getContext().getTypeSize(Ty); 6420 if (Size <= 32) { 6421 llvm::Type *ResType = 6422 llvm::Type::getInt32Ty(getVMContext()); 6423 return ABIArgInfo::getDirect(ResType); 6424 } 6425 if (Size == 64 || Size == 128) { 6426 auto *ResType = llvm::FixedVectorType::get( 6427 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6428 return ABIArgInfo::getDirect(ResType); 6429 } 6430 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6431 } 6432 6433 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6434 const Type *Base, 6435 uint64_t Members) const { 6436 assert(Base && "Base class should be set for homogeneous aggregate"); 6437 // Base can be a floating-point or a vector. 6438 if (const VectorType *VT = Base->getAs<VectorType>()) { 6439 // FP16 vectors should be converted to integer vectors 6440 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6441 uint64_t Size = getContext().getTypeSize(VT); 6442 auto *NewVecTy = llvm::FixedVectorType::get( 6443 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6444 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6445 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6446 } 6447 } 6448 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6449 } 6450 6451 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6452 unsigned functionCallConv) const { 6453 // 6.1.2.1 The following argument types are VFP CPRCs: 6454 // A single-precision floating-point type (including promoted 6455 // half-precision types); A double-precision floating-point type; 6456 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6457 // with a Base Type of a single- or double-precision floating-point type, 6458 // 64-bit containerized vectors or 128-bit containerized vectors with one 6459 // to four Elements. 6460 // Variadic functions should always marshal to the base standard. 6461 bool IsAAPCS_VFP = 6462 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6463 6464 Ty = useFirstFieldIfTransparentUnion(Ty); 6465 6466 // Handle illegal vector types here. 6467 if (isIllegalVectorType(Ty)) 6468 return coerceIllegalVector(Ty); 6469 6470 if (!isAggregateTypeForABI(Ty)) { 6471 // Treat an enum type as its underlying type. 6472 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6473 Ty = EnumTy->getDecl()->getIntegerType(); 6474 } 6475 6476 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6477 if (EIT->getNumBits() > 64) 6478 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6479 6480 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6481 : ABIArgInfo::getDirect()); 6482 } 6483 6484 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6485 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6486 } 6487 6488 // Ignore empty records. 6489 if (isEmptyRecord(getContext(), Ty, true)) 6490 return ABIArgInfo::getIgnore(); 6491 6492 if (IsAAPCS_VFP) { 6493 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6494 // into VFP registers. 6495 const Type *Base = nullptr; 6496 uint64_t Members = 0; 6497 if (isHomogeneousAggregate(Ty, Base, Members)) 6498 return classifyHomogeneousAggregate(Ty, Base, Members); 6499 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6500 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6501 // this convention even for a variadic function: the backend will use GPRs 6502 // if needed. 6503 const Type *Base = nullptr; 6504 uint64_t Members = 0; 6505 if (isHomogeneousAggregate(Ty, Base, Members)) { 6506 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6507 llvm::Type *Ty = 6508 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6509 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6510 } 6511 } 6512 6513 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6514 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6515 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6516 // bigger than 128-bits, they get placed in space allocated by the caller, 6517 // and a pointer is passed. 6518 return ABIArgInfo::getIndirect( 6519 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6520 } 6521 6522 // Support byval for ARM. 6523 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6524 // most 8-byte. We realign the indirect argument if type alignment is bigger 6525 // than ABI alignment. 6526 uint64_t ABIAlign = 4; 6527 uint64_t TyAlign; 6528 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6529 getABIKind() == ARMABIInfo::AAPCS) { 6530 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6531 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6532 } else { 6533 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6534 } 6535 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6536 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6537 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6538 /*ByVal=*/true, 6539 /*Realign=*/TyAlign > ABIAlign); 6540 } 6541 6542 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6543 // same size and alignment. 6544 if (getTarget().isRenderScriptTarget()) { 6545 return coerceToIntArray(Ty, getContext(), getVMContext()); 6546 } 6547 6548 // Otherwise, pass by coercing to a structure of the appropriate size. 6549 llvm::Type* ElemTy; 6550 unsigned SizeRegs; 6551 // FIXME: Try to match the types of the arguments more accurately where 6552 // we can. 6553 if (TyAlign <= 4) { 6554 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6555 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6556 } else { 6557 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6558 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6559 } 6560 6561 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6562 } 6563 6564 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6565 llvm::LLVMContext &VMContext) { 6566 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6567 // is called integer-like if its size is less than or equal to one word, and 6568 // the offset of each of its addressable sub-fields is zero. 6569 6570 uint64_t Size = Context.getTypeSize(Ty); 6571 6572 // Check that the type fits in a word. 6573 if (Size > 32) 6574 return false; 6575 6576 // FIXME: Handle vector types! 6577 if (Ty->isVectorType()) 6578 return false; 6579 6580 // Float types are never treated as "integer like". 6581 if (Ty->isRealFloatingType()) 6582 return false; 6583 6584 // If this is a builtin or pointer type then it is ok. 6585 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6586 return true; 6587 6588 // Small complex integer types are "integer like". 6589 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6590 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6591 6592 // Single element and zero sized arrays should be allowed, by the definition 6593 // above, but they are not. 6594 6595 // Otherwise, it must be a record type. 6596 const RecordType *RT = Ty->getAs<RecordType>(); 6597 if (!RT) return false; 6598 6599 // Ignore records with flexible arrays. 6600 const RecordDecl *RD = RT->getDecl(); 6601 if (RD->hasFlexibleArrayMember()) 6602 return false; 6603 6604 // Check that all sub-fields are at offset 0, and are themselves "integer 6605 // like". 6606 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6607 6608 bool HadField = false; 6609 unsigned idx = 0; 6610 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6611 i != e; ++i, ++idx) { 6612 const FieldDecl *FD = *i; 6613 6614 // Bit-fields are not addressable, we only need to verify they are "integer 6615 // like". We still have to disallow a subsequent non-bitfield, for example: 6616 // struct { int : 0; int x } 6617 // is non-integer like according to gcc. 6618 if (FD->isBitField()) { 6619 if (!RD->isUnion()) 6620 HadField = true; 6621 6622 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6623 return false; 6624 6625 continue; 6626 } 6627 6628 // Check if this field is at offset 0. 6629 if (Layout.getFieldOffset(idx) != 0) 6630 return false; 6631 6632 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6633 return false; 6634 6635 // Only allow at most one field in a structure. This doesn't match the 6636 // wording above, but follows gcc in situations with a field following an 6637 // empty structure. 6638 if (!RD->isUnion()) { 6639 if (HadField) 6640 return false; 6641 6642 HadField = true; 6643 } 6644 } 6645 6646 return true; 6647 } 6648 6649 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6650 unsigned functionCallConv) const { 6651 6652 // Variadic functions should always marshal to the base standard. 6653 bool IsAAPCS_VFP = 6654 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6655 6656 if (RetTy->isVoidType()) 6657 return ABIArgInfo::getIgnore(); 6658 6659 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6660 // Large vector types should be returned via memory. 6661 if (getContext().getTypeSize(RetTy) > 128) 6662 return getNaturalAlignIndirect(RetTy); 6663 // TODO: FP16/BF16 vectors should be converted to integer vectors 6664 // This check is similar to isIllegalVectorType - refactor? 6665 if ((!getTarget().hasLegalHalfType() && 6666 (VT->getElementType()->isFloat16Type() || 6667 VT->getElementType()->isHalfType())) || 6668 (IsFloatABISoftFP && 6669 VT->getElementType()->isBFloat16Type())) 6670 return coerceIllegalVector(RetTy); 6671 } 6672 6673 if (!isAggregateTypeForABI(RetTy)) { 6674 // Treat an enum type as its underlying type. 6675 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6676 RetTy = EnumTy->getDecl()->getIntegerType(); 6677 6678 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6679 if (EIT->getNumBits() > 64) 6680 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6681 6682 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6683 : ABIArgInfo::getDirect(); 6684 } 6685 6686 // Are we following APCS? 6687 if (getABIKind() == APCS) { 6688 if (isEmptyRecord(getContext(), RetTy, false)) 6689 return ABIArgInfo::getIgnore(); 6690 6691 // Complex types are all returned as packed integers. 6692 // 6693 // FIXME: Consider using 2 x vector types if the back end handles them 6694 // correctly. 6695 if (RetTy->isAnyComplexType()) 6696 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6697 getVMContext(), getContext().getTypeSize(RetTy))); 6698 6699 // Integer like structures are returned in r0. 6700 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6701 // Return in the smallest viable integer type. 6702 uint64_t Size = getContext().getTypeSize(RetTy); 6703 if (Size <= 8) 6704 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6705 if (Size <= 16) 6706 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6707 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6708 } 6709 6710 // Otherwise return in memory. 6711 return getNaturalAlignIndirect(RetTy); 6712 } 6713 6714 // Otherwise this is an AAPCS variant. 6715 6716 if (isEmptyRecord(getContext(), RetTy, true)) 6717 return ABIArgInfo::getIgnore(); 6718 6719 // Check for homogeneous aggregates with AAPCS-VFP. 6720 if (IsAAPCS_VFP) { 6721 const Type *Base = nullptr; 6722 uint64_t Members = 0; 6723 if (isHomogeneousAggregate(RetTy, Base, Members)) 6724 return classifyHomogeneousAggregate(RetTy, Base, Members); 6725 } 6726 6727 // Aggregates <= 4 bytes are returned in r0; other aggregates 6728 // are returned indirectly. 6729 uint64_t Size = getContext().getTypeSize(RetTy); 6730 if (Size <= 32) { 6731 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6732 // same size and alignment. 6733 if (getTarget().isRenderScriptTarget()) { 6734 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6735 } 6736 if (getDataLayout().isBigEndian()) 6737 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6738 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6739 6740 // Return in the smallest viable integer type. 6741 if (Size <= 8) 6742 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6743 if (Size <= 16) 6744 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6745 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6746 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6747 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6748 llvm::Type *CoerceTy = 6749 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6750 return ABIArgInfo::getDirect(CoerceTy); 6751 } 6752 6753 return getNaturalAlignIndirect(RetTy); 6754 } 6755 6756 /// isIllegalVector - check whether Ty is an illegal vector type. 6757 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6758 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6759 // On targets that don't support half, fp16 or bfloat, they are expanded 6760 // into float, and we don't want the ABI to depend on whether or not they 6761 // are supported in hardware. Thus return false to coerce vectors of these 6762 // types into integer vectors. 6763 // We do not depend on hasLegalHalfType for bfloat as it is a 6764 // separate IR type. 6765 if ((!getTarget().hasLegalHalfType() && 6766 (VT->getElementType()->isFloat16Type() || 6767 VT->getElementType()->isHalfType())) || 6768 (IsFloatABISoftFP && 6769 VT->getElementType()->isBFloat16Type())) 6770 return true; 6771 if (isAndroid()) { 6772 // Android shipped using Clang 3.1, which supported a slightly different 6773 // vector ABI. The primary differences were that 3-element vector types 6774 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6775 // accepts that legacy behavior for Android only. 6776 // Check whether VT is legal. 6777 unsigned NumElements = VT->getNumElements(); 6778 // NumElements should be power of 2 or equal to 3. 6779 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6780 return true; 6781 } else { 6782 // Check whether VT is legal. 6783 unsigned NumElements = VT->getNumElements(); 6784 uint64_t Size = getContext().getTypeSize(VT); 6785 // NumElements should be power of 2. 6786 if (!llvm::isPowerOf2_32(NumElements)) 6787 return true; 6788 // Size should be greater than 32 bits. 6789 return Size <= 32; 6790 } 6791 } 6792 return false; 6793 } 6794 6795 /// Return true if a type contains any 16-bit floating point vectors 6796 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6797 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6798 uint64_t NElements = AT->getSize().getZExtValue(); 6799 if (NElements == 0) 6800 return false; 6801 return containsAnyFP16Vectors(AT->getElementType()); 6802 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6803 const RecordDecl *RD = RT->getDecl(); 6804 6805 // If this is a C++ record, check the bases first. 6806 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6807 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6808 return containsAnyFP16Vectors(B.getType()); 6809 })) 6810 return true; 6811 6812 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6813 return FD && containsAnyFP16Vectors(FD->getType()); 6814 })) 6815 return true; 6816 6817 return false; 6818 } else { 6819 if (const VectorType *VT = Ty->getAs<VectorType>()) 6820 return (VT->getElementType()->isFloat16Type() || 6821 VT->getElementType()->isBFloat16Type() || 6822 VT->getElementType()->isHalfType()); 6823 return false; 6824 } 6825 } 6826 6827 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6828 llvm::Type *eltTy, 6829 unsigned numElts) const { 6830 if (!llvm::isPowerOf2_32(numElts)) 6831 return false; 6832 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6833 if (size > 64) 6834 return false; 6835 if (vectorSize.getQuantity() != 8 && 6836 (vectorSize.getQuantity() != 16 || numElts == 1)) 6837 return false; 6838 return true; 6839 } 6840 6841 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6842 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6843 // double, or 64-bit or 128-bit vectors. 6844 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6845 if (BT->getKind() == BuiltinType::Float || 6846 BT->getKind() == BuiltinType::Double || 6847 BT->getKind() == BuiltinType::LongDouble) 6848 return true; 6849 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6850 unsigned VecSize = getContext().getTypeSize(VT); 6851 if (VecSize == 64 || VecSize == 128) 6852 return true; 6853 } 6854 return false; 6855 } 6856 6857 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6858 uint64_t Members) const { 6859 return Members <= 4; 6860 } 6861 6862 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6863 bool acceptHalf) const { 6864 // Give precedence to user-specified calling conventions. 6865 if (callConvention != llvm::CallingConv::C) 6866 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6867 else 6868 return (getABIKind() == AAPCS_VFP) || 6869 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6870 } 6871 6872 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6873 QualType Ty) const { 6874 CharUnits SlotSize = CharUnits::fromQuantity(4); 6875 6876 // Empty records are ignored for parameter passing purposes. 6877 if (isEmptyRecord(getContext(), Ty, true)) { 6878 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6879 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6880 return Addr; 6881 } 6882 6883 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6884 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6885 6886 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6887 bool IsIndirect = false; 6888 const Type *Base = nullptr; 6889 uint64_t Members = 0; 6890 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6891 IsIndirect = true; 6892 6893 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6894 // allocated by the caller. 6895 } else if (TySize > CharUnits::fromQuantity(16) && 6896 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6897 !isHomogeneousAggregate(Ty, Base, Members)) { 6898 IsIndirect = true; 6899 6900 // Otherwise, bound the type's ABI alignment. 6901 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6902 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6903 // Our callers should be prepared to handle an under-aligned address. 6904 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6905 getABIKind() == ARMABIInfo::AAPCS) { 6906 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6907 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6908 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6909 // ARMv7k allows type alignment up to 16 bytes. 6910 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6911 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6912 } else { 6913 TyAlignForABI = CharUnits::fromQuantity(4); 6914 } 6915 6916 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6918 SlotSize, /*AllowHigherAlign*/ true); 6919 } 6920 6921 //===----------------------------------------------------------------------===// 6922 // NVPTX ABI Implementation 6923 //===----------------------------------------------------------------------===// 6924 6925 namespace { 6926 6927 class NVPTXTargetCodeGenInfo; 6928 6929 class NVPTXABIInfo : public ABIInfo { 6930 NVPTXTargetCodeGenInfo &CGInfo; 6931 6932 public: 6933 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6934 : ABIInfo(CGT), CGInfo(Info) {} 6935 6936 ABIArgInfo classifyReturnType(QualType RetTy) const; 6937 ABIArgInfo classifyArgumentType(QualType Ty) const; 6938 6939 void computeInfo(CGFunctionInfo &FI) const override; 6940 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6941 QualType Ty) const override; 6942 bool isUnsupportedType(QualType T) const; 6943 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6944 }; 6945 6946 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6947 public: 6948 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6949 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6950 6951 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6952 CodeGen::CodeGenModule &M) const override; 6953 bool shouldEmitStaticExternCAliases() const override; 6954 6955 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6956 // On the device side, surface reference is represented as an object handle 6957 // in 64-bit integer. 6958 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6959 } 6960 6961 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6962 // On the device side, texture reference is represented as an object handle 6963 // in 64-bit integer. 6964 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6965 } 6966 6967 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6968 LValue Src) const override { 6969 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6970 return true; 6971 } 6972 6973 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6974 LValue Src) const override { 6975 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6976 return true; 6977 } 6978 6979 private: 6980 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6981 // resulting MDNode to the nvvm.annotations MDNode. 6982 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6983 int Operand); 6984 6985 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6986 LValue Src) { 6987 llvm::Value *Handle = nullptr; 6988 llvm::Constant *C = 6989 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6990 // Lookup `addrspacecast` through the constant pointer if any. 6991 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6992 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6993 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6994 // Load the handle from the specific global variable using 6995 // `nvvm.texsurf.handle.internal` intrinsic. 6996 Handle = CGF.EmitRuntimeCall( 6997 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6998 {GV->getType()}), 6999 {GV}, "texsurf_handle"); 7000 } else 7001 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7002 CGF.EmitStoreOfScalar(Handle, Dst); 7003 } 7004 }; 7005 7006 /// Checks if the type is unsupported directly by the current target. 7007 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7008 ASTContext &Context = getContext(); 7009 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7010 return true; 7011 if (!Context.getTargetInfo().hasFloat128Type() && 7012 (T->isFloat128Type() || 7013 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7014 return true; 7015 if (const auto *EIT = T->getAs<ExtIntType>()) 7016 return EIT->getNumBits() > 7017 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7018 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7019 Context.getTypeSize(T) > 64U) 7020 return true; 7021 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7022 return isUnsupportedType(AT->getElementType()); 7023 const auto *RT = T->getAs<RecordType>(); 7024 if (!RT) 7025 return false; 7026 const RecordDecl *RD = RT->getDecl(); 7027 7028 // If this is a C++ record, check the bases first. 7029 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7030 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7031 if (isUnsupportedType(I.getType())) 7032 return true; 7033 7034 for (const FieldDecl *I : RD->fields()) 7035 if (isUnsupportedType(I->getType())) 7036 return true; 7037 return false; 7038 } 7039 7040 /// Coerce the given type into an array with maximum allowed size of elements. 7041 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7042 unsigned MaxSize) const { 7043 // Alignment and Size are measured in bits. 7044 const uint64_t Size = getContext().getTypeSize(Ty); 7045 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7046 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7047 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7048 const uint64_t NumElements = (Size + Div - 1) / Div; 7049 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7050 } 7051 7052 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7053 if (RetTy->isVoidType()) 7054 return ABIArgInfo::getIgnore(); 7055 7056 if (getContext().getLangOpts().OpenMP && 7057 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7058 return coerceToIntArrayWithLimit(RetTy, 64); 7059 7060 // note: this is different from default ABI 7061 if (!RetTy->isScalarType()) 7062 return ABIArgInfo::getDirect(); 7063 7064 // Treat an enum type as its underlying type. 7065 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7066 RetTy = EnumTy->getDecl()->getIntegerType(); 7067 7068 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7069 : ABIArgInfo::getDirect()); 7070 } 7071 7072 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7073 // Treat an enum type as its underlying type. 7074 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7075 Ty = EnumTy->getDecl()->getIntegerType(); 7076 7077 // Return aggregates type as indirect by value 7078 if (isAggregateTypeForABI(Ty)) { 7079 // Under CUDA device compilation, tex/surf builtin types are replaced with 7080 // object types and passed directly. 7081 if (getContext().getLangOpts().CUDAIsDevice) { 7082 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7083 return ABIArgInfo::getDirect( 7084 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7085 if (Ty->isCUDADeviceBuiltinTextureType()) 7086 return ABIArgInfo::getDirect( 7087 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7088 } 7089 return getNaturalAlignIndirect(Ty, /* byval */ true); 7090 } 7091 7092 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7093 if ((EIT->getNumBits() > 128) || 7094 (!getContext().getTargetInfo().hasInt128Type() && 7095 EIT->getNumBits() > 64)) 7096 return getNaturalAlignIndirect(Ty, /* byval */ true); 7097 } 7098 7099 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7100 : ABIArgInfo::getDirect()); 7101 } 7102 7103 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7104 if (!getCXXABI().classifyReturnType(FI)) 7105 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7106 for (auto &I : FI.arguments()) 7107 I.info = classifyArgumentType(I.type); 7108 7109 // Always honor user-specified calling convention. 7110 if (FI.getCallingConvention() != llvm::CallingConv::C) 7111 return; 7112 7113 FI.setEffectiveCallingConvention(getRuntimeCC()); 7114 } 7115 7116 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7117 QualType Ty) const { 7118 llvm_unreachable("NVPTX does not support varargs"); 7119 } 7120 7121 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7122 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7123 if (GV->isDeclaration()) 7124 return; 7125 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7126 if (VD) { 7127 if (M.getLangOpts().CUDA) { 7128 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7129 addNVVMMetadata(GV, "surface", 1); 7130 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7131 addNVVMMetadata(GV, "texture", 1); 7132 return; 7133 } 7134 } 7135 7136 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7137 if (!FD) return; 7138 7139 llvm::Function *F = cast<llvm::Function>(GV); 7140 7141 // Perform special handling in OpenCL mode 7142 if (M.getLangOpts().OpenCL) { 7143 // Use OpenCL function attributes to check for kernel functions 7144 // By default, all functions are device functions 7145 if (FD->hasAttr<OpenCLKernelAttr>()) { 7146 // OpenCL __kernel functions get kernel metadata 7147 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7148 addNVVMMetadata(F, "kernel", 1); 7149 // And kernel functions are not subject to inlining 7150 F->addFnAttr(llvm::Attribute::NoInline); 7151 } 7152 } 7153 7154 // Perform special handling in CUDA mode. 7155 if (M.getLangOpts().CUDA) { 7156 // CUDA __global__ functions get a kernel metadata entry. Since 7157 // __global__ functions cannot be called from the device, we do not 7158 // need to set the noinline attribute. 7159 if (FD->hasAttr<CUDAGlobalAttr>()) { 7160 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7161 addNVVMMetadata(F, "kernel", 1); 7162 } 7163 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7164 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7165 llvm::APSInt MaxThreads(32); 7166 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7167 if (MaxThreads > 0) 7168 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7169 7170 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7171 // not specified in __launch_bounds__ or if the user specified a 0 value, 7172 // we don't have to add a PTX directive. 7173 if (Attr->getMinBlocks()) { 7174 llvm::APSInt MinBlocks(32); 7175 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7176 if (MinBlocks > 0) 7177 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7178 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7179 } 7180 } 7181 } 7182 } 7183 7184 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7185 StringRef Name, int Operand) { 7186 llvm::Module *M = GV->getParent(); 7187 llvm::LLVMContext &Ctx = M->getContext(); 7188 7189 // Get "nvvm.annotations" metadata node 7190 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7191 7192 llvm::Metadata *MDVals[] = { 7193 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7194 llvm::ConstantAsMetadata::get( 7195 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7196 // Append metadata to nvvm.annotations 7197 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7198 } 7199 7200 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7201 return false; 7202 } 7203 } 7204 7205 //===----------------------------------------------------------------------===// 7206 // SystemZ ABI Implementation 7207 //===----------------------------------------------------------------------===// 7208 7209 namespace { 7210 7211 class SystemZABIInfo : public SwiftABIInfo { 7212 bool HasVector; 7213 bool IsSoftFloatABI; 7214 7215 public: 7216 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7217 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7218 7219 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7220 bool isCompoundType(QualType Ty) const; 7221 bool isVectorArgumentType(QualType Ty) const; 7222 bool isFPArgumentType(QualType Ty) const; 7223 QualType GetSingleElementType(QualType Ty) const; 7224 7225 ABIArgInfo classifyReturnType(QualType RetTy) const; 7226 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7227 7228 void computeInfo(CGFunctionInfo &FI) const override { 7229 if (!getCXXABI().classifyReturnType(FI)) 7230 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7231 for (auto &I : FI.arguments()) 7232 I.info = classifyArgumentType(I.type); 7233 } 7234 7235 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7236 QualType Ty) const override; 7237 7238 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7239 bool asReturnValue) const override { 7240 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7241 } 7242 bool isSwiftErrorInRegister() const override { 7243 return false; 7244 } 7245 }; 7246 7247 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7248 public: 7249 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7250 : TargetCodeGenInfo( 7251 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7252 }; 7253 7254 } 7255 7256 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7257 // Treat an enum type as its underlying type. 7258 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7259 Ty = EnumTy->getDecl()->getIntegerType(); 7260 7261 // Promotable integer types are required to be promoted by the ABI. 7262 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7263 return true; 7264 7265 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7266 if (EIT->getNumBits() < 64) 7267 return true; 7268 7269 // 32-bit values must also be promoted. 7270 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7271 switch (BT->getKind()) { 7272 case BuiltinType::Int: 7273 case BuiltinType::UInt: 7274 return true; 7275 default: 7276 return false; 7277 } 7278 return false; 7279 } 7280 7281 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7282 return (Ty->isAnyComplexType() || 7283 Ty->isVectorType() || 7284 isAggregateTypeForABI(Ty)); 7285 } 7286 7287 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7288 return (HasVector && 7289 Ty->isVectorType() && 7290 getContext().getTypeSize(Ty) <= 128); 7291 } 7292 7293 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7294 if (IsSoftFloatABI) 7295 return false; 7296 7297 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7298 switch (BT->getKind()) { 7299 case BuiltinType::Float: 7300 case BuiltinType::Double: 7301 return true; 7302 default: 7303 return false; 7304 } 7305 7306 return false; 7307 } 7308 7309 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7310 const RecordType *RT = Ty->getAs<RecordType>(); 7311 7312 if (RT && RT->isStructureOrClassType()) { 7313 const RecordDecl *RD = RT->getDecl(); 7314 QualType Found; 7315 7316 // If this is a C++ record, check the bases first. 7317 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7318 for (const auto &I : CXXRD->bases()) { 7319 QualType Base = I.getType(); 7320 7321 // Empty bases don't affect things either way. 7322 if (isEmptyRecord(getContext(), Base, true)) 7323 continue; 7324 7325 if (!Found.isNull()) 7326 return Ty; 7327 Found = GetSingleElementType(Base); 7328 } 7329 7330 // Check the fields. 7331 for (const auto *FD : RD->fields()) { 7332 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7333 // Unlike isSingleElementStruct(), empty structure and array fields 7334 // do count. So do anonymous bitfields that aren't zero-sized. 7335 if (getContext().getLangOpts().CPlusPlus && 7336 FD->isZeroLengthBitField(getContext())) 7337 continue; 7338 // Like isSingleElementStruct(), ignore C++20 empty data members. 7339 if (FD->hasAttr<NoUniqueAddressAttr>() && 7340 isEmptyRecord(getContext(), FD->getType(), true)) 7341 continue; 7342 7343 // Unlike isSingleElementStruct(), arrays do not count. 7344 // Nested structures still do though. 7345 if (!Found.isNull()) 7346 return Ty; 7347 Found = GetSingleElementType(FD->getType()); 7348 } 7349 7350 // Unlike isSingleElementStruct(), trailing padding is allowed. 7351 // An 8-byte aligned struct s { float f; } is passed as a double. 7352 if (!Found.isNull()) 7353 return Found; 7354 } 7355 7356 return Ty; 7357 } 7358 7359 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7360 QualType Ty) const { 7361 // Assume that va_list type is correct; should be pointer to LLVM type: 7362 // struct { 7363 // i64 __gpr; 7364 // i64 __fpr; 7365 // i8 *__overflow_arg_area; 7366 // i8 *__reg_save_area; 7367 // }; 7368 7369 // Every non-vector argument occupies 8 bytes and is passed by preference 7370 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7371 // always passed on the stack. 7372 Ty = getContext().getCanonicalType(Ty); 7373 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7374 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7375 llvm::Type *DirectTy = ArgTy; 7376 ABIArgInfo AI = classifyArgumentType(Ty); 7377 bool IsIndirect = AI.isIndirect(); 7378 bool InFPRs = false; 7379 bool IsVector = false; 7380 CharUnits UnpaddedSize; 7381 CharUnits DirectAlign; 7382 if (IsIndirect) { 7383 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7384 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7385 } else { 7386 if (AI.getCoerceToType()) 7387 ArgTy = AI.getCoerceToType(); 7388 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7389 IsVector = ArgTy->isVectorTy(); 7390 UnpaddedSize = TyInfo.Width; 7391 DirectAlign = TyInfo.Align; 7392 } 7393 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7394 if (IsVector && UnpaddedSize > PaddedSize) 7395 PaddedSize = CharUnits::fromQuantity(16); 7396 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7397 7398 CharUnits Padding = (PaddedSize - UnpaddedSize); 7399 7400 llvm::Type *IndexTy = CGF.Int64Ty; 7401 llvm::Value *PaddedSizeV = 7402 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7403 7404 if (IsVector) { 7405 // Work out the address of a vector argument on the stack. 7406 // Vector arguments are always passed in the high bits of a 7407 // single (8 byte) or double (16 byte) stack slot. 7408 Address OverflowArgAreaPtr = 7409 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7410 Address OverflowArgArea = 7411 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7412 TyInfo.Align); 7413 Address MemAddr = 7414 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7415 7416 // Update overflow_arg_area_ptr pointer 7417 llvm::Value *NewOverflowArgArea = 7418 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7419 "overflow_arg_area"); 7420 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7421 7422 return MemAddr; 7423 } 7424 7425 assert(PaddedSize.getQuantity() == 8); 7426 7427 unsigned MaxRegs, RegCountField, RegSaveIndex; 7428 CharUnits RegPadding; 7429 if (InFPRs) { 7430 MaxRegs = 4; // Maximum of 4 FPR arguments 7431 RegCountField = 1; // __fpr 7432 RegSaveIndex = 16; // save offset for f0 7433 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7434 } else { 7435 MaxRegs = 5; // Maximum of 5 GPR arguments 7436 RegCountField = 0; // __gpr 7437 RegSaveIndex = 2; // save offset for r2 7438 RegPadding = Padding; // values are passed in the low bits of a GPR 7439 } 7440 7441 Address RegCountPtr = 7442 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7443 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7444 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7445 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7446 "fits_in_regs"); 7447 7448 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7449 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7450 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7451 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7452 7453 // Emit code to load the value if it was passed in registers. 7454 CGF.EmitBlock(InRegBlock); 7455 7456 // Work out the address of an argument register. 7457 llvm::Value *ScaledRegCount = 7458 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7459 llvm::Value *RegBase = 7460 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7461 + RegPadding.getQuantity()); 7462 llvm::Value *RegOffset = 7463 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7464 Address RegSaveAreaPtr = 7465 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7466 llvm::Value *RegSaveArea = 7467 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7468 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7469 "raw_reg_addr"), 7470 PaddedSize); 7471 Address RegAddr = 7472 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7473 7474 // Update the register count 7475 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7476 llvm::Value *NewRegCount = 7477 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7478 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7479 CGF.EmitBranch(ContBlock); 7480 7481 // Emit code to load the value if it was passed in memory. 7482 CGF.EmitBlock(InMemBlock); 7483 7484 // Work out the address of a stack argument. 7485 Address OverflowArgAreaPtr = 7486 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7487 Address OverflowArgArea = 7488 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7489 PaddedSize); 7490 Address RawMemAddr = 7491 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7492 Address MemAddr = 7493 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7494 7495 // Update overflow_arg_area_ptr pointer 7496 llvm::Value *NewOverflowArgArea = 7497 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7498 "overflow_arg_area"); 7499 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7500 CGF.EmitBranch(ContBlock); 7501 7502 // Return the appropriate result. 7503 CGF.EmitBlock(ContBlock); 7504 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7505 MemAddr, InMemBlock, "va_arg.addr"); 7506 7507 if (IsIndirect) 7508 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7509 TyInfo.Align); 7510 7511 return ResAddr; 7512 } 7513 7514 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7515 if (RetTy->isVoidType()) 7516 return ABIArgInfo::getIgnore(); 7517 if (isVectorArgumentType(RetTy)) 7518 return ABIArgInfo::getDirect(); 7519 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7520 return getNaturalAlignIndirect(RetTy); 7521 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7522 : ABIArgInfo::getDirect()); 7523 } 7524 7525 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7526 // Handle the generic C++ ABI. 7527 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7528 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7529 7530 // Integers and enums are extended to full register width. 7531 if (isPromotableIntegerTypeForABI(Ty)) 7532 return ABIArgInfo::getExtend(Ty); 7533 7534 // Handle vector types and vector-like structure types. Note that 7535 // as opposed to float-like structure types, we do not allow any 7536 // padding for vector-like structures, so verify the sizes match. 7537 uint64_t Size = getContext().getTypeSize(Ty); 7538 QualType SingleElementTy = GetSingleElementType(Ty); 7539 if (isVectorArgumentType(SingleElementTy) && 7540 getContext().getTypeSize(SingleElementTy) == Size) 7541 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7542 7543 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7544 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7545 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7546 7547 // Handle small structures. 7548 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7549 // Structures with flexible arrays have variable length, so really 7550 // fail the size test above. 7551 const RecordDecl *RD = RT->getDecl(); 7552 if (RD->hasFlexibleArrayMember()) 7553 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7554 7555 // The structure is passed as an unextended integer, a float, or a double. 7556 llvm::Type *PassTy; 7557 if (isFPArgumentType(SingleElementTy)) { 7558 assert(Size == 32 || Size == 64); 7559 if (Size == 32) 7560 PassTy = llvm::Type::getFloatTy(getVMContext()); 7561 else 7562 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7563 } else 7564 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7565 return ABIArgInfo::getDirect(PassTy); 7566 } 7567 7568 // Non-structure compounds are passed indirectly. 7569 if (isCompoundType(Ty)) 7570 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7571 7572 return ABIArgInfo::getDirect(nullptr); 7573 } 7574 7575 //===----------------------------------------------------------------------===// 7576 // MSP430 ABI Implementation 7577 //===----------------------------------------------------------------------===// 7578 7579 namespace { 7580 7581 class MSP430ABIInfo : public DefaultABIInfo { 7582 static ABIArgInfo complexArgInfo() { 7583 ABIArgInfo Info = ABIArgInfo::getDirect(); 7584 Info.setCanBeFlattened(false); 7585 return Info; 7586 } 7587 7588 public: 7589 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7590 7591 ABIArgInfo classifyReturnType(QualType RetTy) const { 7592 if (RetTy->isAnyComplexType()) 7593 return complexArgInfo(); 7594 7595 return DefaultABIInfo::classifyReturnType(RetTy); 7596 } 7597 7598 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7599 if (RetTy->isAnyComplexType()) 7600 return complexArgInfo(); 7601 7602 return DefaultABIInfo::classifyArgumentType(RetTy); 7603 } 7604 7605 // Just copy the original implementations because 7606 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7607 void computeInfo(CGFunctionInfo &FI) const override { 7608 if (!getCXXABI().classifyReturnType(FI)) 7609 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7610 for (auto &I : FI.arguments()) 7611 I.info = classifyArgumentType(I.type); 7612 } 7613 7614 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7615 QualType Ty) const override { 7616 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7617 } 7618 }; 7619 7620 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7621 public: 7622 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7623 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7624 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7625 CodeGen::CodeGenModule &M) const override; 7626 }; 7627 7628 } 7629 7630 void MSP430TargetCodeGenInfo::setTargetAttributes( 7631 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7632 if (GV->isDeclaration()) 7633 return; 7634 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7635 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7636 if (!InterruptAttr) 7637 return; 7638 7639 // Handle 'interrupt' attribute: 7640 llvm::Function *F = cast<llvm::Function>(GV); 7641 7642 // Step 1: Set ISR calling convention. 7643 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7644 7645 // Step 2: Add attributes goodness. 7646 F->addFnAttr(llvm::Attribute::NoInline); 7647 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7648 } 7649 } 7650 7651 //===----------------------------------------------------------------------===// 7652 // MIPS ABI Implementation. This works for both little-endian and 7653 // big-endian variants. 7654 //===----------------------------------------------------------------------===// 7655 7656 namespace { 7657 class MipsABIInfo : public ABIInfo { 7658 bool IsO32; 7659 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7660 void CoerceToIntArgs(uint64_t TySize, 7661 SmallVectorImpl<llvm::Type *> &ArgList) const; 7662 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7663 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7664 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7665 public: 7666 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7667 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7668 StackAlignInBytes(IsO32 ? 8 : 16) {} 7669 7670 ABIArgInfo classifyReturnType(QualType RetTy) const; 7671 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7672 void computeInfo(CGFunctionInfo &FI) const override; 7673 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7674 QualType Ty) const override; 7675 ABIArgInfo extendType(QualType Ty) const; 7676 }; 7677 7678 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7679 unsigned SizeOfUnwindException; 7680 public: 7681 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7682 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7683 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7684 7685 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7686 return 29; 7687 } 7688 7689 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7690 CodeGen::CodeGenModule &CGM) const override { 7691 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7692 if (!FD) return; 7693 llvm::Function *Fn = cast<llvm::Function>(GV); 7694 7695 if (FD->hasAttr<MipsLongCallAttr>()) 7696 Fn->addFnAttr("long-call"); 7697 else if (FD->hasAttr<MipsShortCallAttr>()) 7698 Fn->addFnAttr("short-call"); 7699 7700 // Other attributes do not have a meaning for declarations. 7701 if (GV->isDeclaration()) 7702 return; 7703 7704 if (FD->hasAttr<Mips16Attr>()) { 7705 Fn->addFnAttr("mips16"); 7706 } 7707 else if (FD->hasAttr<NoMips16Attr>()) { 7708 Fn->addFnAttr("nomips16"); 7709 } 7710 7711 if (FD->hasAttr<MicroMipsAttr>()) 7712 Fn->addFnAttr("micromips"); 7713 else if (FD->hasAttr<NoMicroMipsAttr>()) 7714 Fn->addFnAttr("nomicromips"); 7715 7716 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7717 if (!Attr) 7718 return; 7719 7720 const char *Kind; 7721 switch (Attr->getInterrupt()) { 7722 case MipsInterruptAttr::eic: Kind = "eic"; break; 7723 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7724 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7725 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7726 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7727 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7728 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7729 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7730 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7731 } 7732 7733 Fn->addFnAttr("interrupt", Kind); 7734 7735 } 7736 7737 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7738 llvm::Value *Address) const override; 7739 7740 unsigned getSizeOfUnwindException() const override { 7741 return SizeOfUnwindException; 7742 } 7743 }; 7744 } 7745 7746 void MipsABIInfo::CoerceToIntArgs( 7747 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7748 llvm::IntegerType *IntTy = 7749 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7750 7751 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7752 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7753 ArgList.push_back(IntTy); 7754 7755 // If necessary, add one more integer type to ArgList. 7756 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7757 7758 if (R) 7759 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7760 } 7761 7762 // In N32/64, an aligned double precision floating point field is passed in 7763 // a register. 7764 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7765 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7766 7767 if (IsO32) { 7768 CoerceToIntArgs(TySize, ArgList); 7769 return llvm::StructType::get(getVMContext(), ArgList); 7770 } 7771 7772 if (Ty->isComplexType()) 7773 return CGT.ConvertType(Ty); 7774 7775 const RecordType *RT = Ty->getAs<RecordType>(); 7776 7777 // Unions/vectors are passed in integer registers. 7778 if (!RT || !RT->isStructureOrClassType()) { 7779 CoerceToIntArgs(TySize, ArgList); 7780 return llvm::StructType::get(getVMContext(), ArgList); 7781 } 7782 7783 const RecordDecl *RD = RT->getDecl(); 7784 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7785 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7786 7787 uint64_t LastOffset = 0; 7788 unsigned idx = 0; 7789 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7790 7791 // Iterate over fields in the struct/class and check if there are any aligned 7792 // double fields. 7793 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7794 i != e; ++i, ++idx) { 7795 const QualType Ty = i->getType(); 7796 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7797 7798 if (!BT || BT->getKind() != BuiltinType::Double) 7799 continue; 7800 7801 uint64_t Offset = Layout.getFieldOffset(idx); 7802 if (Offset % 64) // Ignore doubles that are not aligned. 7803 continue; 7804 7805 // Add ((Offset - LastOffset) / 64) args of type i64. 7806 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7807 ArgList.push_back(I64); 7808 7809 // Add double type. 7810 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7811 LastOffset = Offset + 64; 7812 } 7813 7814 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7815 ArgList.append(IntArgList.begin(), IntArgList.end()); 7816 7817 return llvm::StructType::get(getVMContext(), ArgList); 7818 } 7819 7820 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7821 uint64_t Offset) const { 7822 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7823 return nullptr; 7824 7825 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7826 } 7827 7828 ABIArgInfo 7829 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7830 Ty = useFirstFieldIfTransparentUnion(Ty); 7831 7832 uint64_t OrigOffset = Offset; 7833 uint64_t TySize = getContext().getTypeSize(Ty); 7834 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7835 7836 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7837 (uint64_t)StackAlignInBytes); 7838 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7839 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7840 7841 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7842 // Ignore empty aggregates. 7843 if (TySize == 0) 7844 return ABIArgInfo::getIgnore(); 7845 7846 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7847 Offset = OrigOffset + MinABIStackAlignInBytes; 7848 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7849 } 7850 7851 // If we have reached here, aggregates are passed directly by coercing to 7852 // another structure type. Padding is inserted if the offset of the 7853 // aggregate is unaligned. 7854 ABIArgInfo ArgInfo = 7855 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7856 getPaddingType(OrigOffset, CurrOffset)); 7857 ArgInfo.setInReg(true); 7858 return ArgInfo; 7859 } 7860 7861 // Treat an enum type as its underlying type. 7862 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7863 Ty = EnumTy->getDecl()->getIntegerType(); 7864 7865 // Make sure we pass indirectly things that are too large. 7866 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7867 if (EIT->getNumBits() > 128 || 7868 (EIT->getNumBits() > 64 && 7869 !getContext().getTargetInfo().hasInt128Type())) 7870 return getNaturalAlignIndirect(Ty); 7871 7872 // All integral types are promoted to the GPR width. 7873 if (Ty->isIntegralOrEnumerationType()) 7874 return extendType(Ty); 7875 7876 return ABIArgInfo::getDirect( 7877 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7878 } 7879 7880 llvm::Type* 7881 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7882 const RecordType *RT = RetTy->getAs<RecordType>(); 7883 SmallVector<llvm::Type*, 8> RTList; 7884 7885 if (RT && RT->isStructureOrClassType()) { 7886 const RecordDecl *RD = RT->getDecl(); 7887 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7888 unsigned FieldCnt = Layout.getFieldCount(); 7889 7890 // N32/64 returns struct/classes in floating point registers if the 7891 // following conditions are met: 7892 // 1. The size of the struct/class is no larger than 128-bit. 7893 // 2. The struct/class has one or two fields all of which are floating 7894 // point types. 7895 // 3. The offset of the first field is zero (this follows what gcc does). 7896 // 7897 // Any other composite results are returned in integer registers. 7898 // 7899 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7900 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7901 for (; b != e; ++b) { 7902 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7903 7904 if (!BT || !BT->isFloatingPoint()) 7905 break; 7906 7907 RTList.push_back(CGT.ConvertType(b->getType())); 7908 } 7909 7910 if (b == e) 7911 return llvm::StructType::get(getVMContext(), RTList, 7912 RD->hasAttr<PackedAttr>()); 7913 7914 RTList.clear(); 7915 } 7916 } 7917 7918 CoerceToIntArgs(Size, RTList); 7919 return llvm::StructType::get(getVMContext(), RTList); 7920 } 7921 7922 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7923 uint64_t Size = getContext().getTypeSize(RetTy); 7924 7925 if (RetTy->isVoidType()) 7926 return ABIArgInfo::getIgnore(); 7927 7928 // O32 doesn't treat zero-sized structs differently from other structs. 7929 // However, N32/N64 ignores zero sized return values. 7930 if (!IsO32 && Size == 0) 7931 return ABIArgInfo::getIgnore(); 7932 7933 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7934 if (Size <= 128) { 7935 if (RetTy->isAnyComplexType()) 7936 return ABIArgInfo::getDirect(); 7937 7938 // O32 returns integer vectors in registers and N32/N64 returns all small 7939 // aggregates in registers. 7940 if (!IsO32 || 7941 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7942 ABIArgInfo ArgInfo = 7943 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7944 ArgInfo.setInReg(true); 7945 return ArgInfo; 7946 } 7947 } 7948 7949 return getNaturalAlignIndirect(RetTy); 7950 } 7951 7952 // Treat an enum type as its underlying type. 7953 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7954 RetTy = EnumTy->getDecl()->getIntegerType(); 7955 7956 // Make sure we pass indirectly things that are too large. 7957 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7958 if (EIT->getNumBits() > 128 || 7959 (EIT->getNumBits() > 64 && 7960 !getContext().getTargetInfo().hasInt128Type())) 7961 return getNaturalAlignIndirect(RetTy); 7962 7963 if (isPromotableIntegerTypeForABI(RetTy)) 7964 return ABIArgInfo::getExtend(RetTy); 7965 7966 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7967 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7968 return ABIArgInfo::getSignExtend(RetTy); 7969 7970 return ABIArgInfo::getDirect(); 7971 } 7972 7973 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7974 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7975 if (!getCXXABI().classifyReturnType(FI)) 7976 RetInfo = classifyReturnType(FI.getReturnType()); 7977 7978 // Check if a pointer to an aggregate is passed as a hidden argument. 7979 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7980 7981 for (auto &I : FI.arguments()) 7982 I.info = classifyArgumentType(I.type, Offset); 7983 } 7984 7985 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7986 QualType OrigTy) const { 7987 QualType Ty = OrigTy; 7988 7989 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7990 // Pointers are also promoted in the same way but this only matters for N32. 7991 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7992 unsigned PtrWidth = getTarget().getPointerWidth(0); 7993 bool DidPromote = false; 7994 if ((Ty->isIntegerType() && 7995 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7996 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7997 DidPromote = true; 7998 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7999 Ty->isSignedIntegerType()); 8000 } 8001 8002 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8003 8004 // The alignment of things in the argument area is never larger than 8005 // StackAlignInBytes. 8006 TyInfo.Align = 8007 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8008 8009 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8010 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8011 8012 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8013 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8014 8015 8016 // If there was a promotion, "unpromote" into a temporary. 8017 // TODO: can we just use a pointer into a subset of the original slot? 8018 if (DidPromote) { 8019 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8020 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8021 8022 // Truncate down to the right width. 8023 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8024 : CGF.IntPtrTy); 8025 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8026 if (OrigTy->isPointerType()) 8027 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8028 8029 CGF.Builder.CreateStore(V, Temp); 8030 Addr = Temp; 8031 } 8032 8033 return Addr; 8034 } 8035 8036 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8037 int TySize = getContext().getTypeSize(Ty); 8038 8039 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8040 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8041 return ABIArgInfo::getSignExtend(Ty); 8042 8043 return ABIArgInfo::getExtend(Ty); 8044 } 8045 8046 bool 8047 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8048 llvm::Value *Address) const { 8049 // This information comes from gcc's implementation, which seems to 8050 // as canonical as it gets. 8051 8052 // Everything on MIPS is 4 bytes. Double-precision FP registers 8053 // are aliased to pairs of single-precision FP registers. 8054 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8055 8056 // 0-31 are the general purpose registers, $0 - $31. 8057 // 32-63 are the floating-point registers, $f0 - $f31. 8058 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8059 // 66 is the (notional, I think) register for signal-handler return. 8060 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8061 8062 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8063 // They are one bit wide and ignored here. 8064 8065 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8066 // (coprocessor 1 is the FP unit) 8067 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8068 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8069 // 176-181 are the DSP accumulator registers. 8070 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8071 return false; 8072 } 8073 8074 //===----------------------------------------------------------------------===// 8075 // AVR ABI Implementation. 8076 //===----------------------------------------------------------------------===// 8077 8078 namespace { 8079 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8080 public: 8081 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8082 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8083 8084 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8085 CodeGen::CodeGenModule &CGM) const override { 8086 if (GV->isDeclaration()) 8087 return; 8088 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8089 if (!FD) return; 8090 auto *Fn = cast<llvm::Function>(GV); 8091 8092 if (FD->getAttr<AVRInterruptAttr>()) 8093 Fn->addFnAttr("interrupt"); 8094 8095 if (FD->getAttr<AVRSignalAttr>()) 8096 Fn->addFnAttr("signal"); 8097 } 8098 }; 8099 } 8100 8101 //===----------------------------------------------------------------------===// 8102 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8103 // Currently subclassed only to implement custom OpenCL C function attribute 8104 // handling. 8105 //===----------------------------------------------------------------------===// 8106 8107 namespace { 8108 8109 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8110 public: 8111 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8112 : DefaultTargetCodeGenInfo(CGT) {} 8113 8114 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8115 CodeGen::CodeGenModule &M) const override; 8116 }; 8117 8118 void TCETargetCodeGenInfo::setTargetAttributes( 8119 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8120 if (GV->isDeclaration()) 8121 return; 8122 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8123 if (!FD) return; 8124 8125 llvm::Function *F = cast<llvm::Function>(GV); 8126 8127 if (M.getLangOpts().OpenCL) { 8128 if (FD->hasAttr<OpenCLKernelAttr>()) { 8129 // OpenCL C Kernel functions are not subject to inlining 8130 F->addFnAttr(llvm::Attribute::NoInline); 8131 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8132 if (Attr) { 8133 // Convert the reqd_work_group_size() attributes to metadata. 8134 llvm::LLVMContext &Context = F->getContext(); 8135 llvm::NamedMDNode *OpenCLMetadata = 8136 M.getModule().getOrInsertNamedMetadata( 8137 "opencl.kernel_wg_size_info"); 8138 8139 SmallVector<llvm::Metadata *, 5> Operands; 8140 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8141 8142 Operands.push_back( 8143 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8144 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8145 Operands.push_back( 8146 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8147 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8148 Operands.push_back( 8149 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8150 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8151 8152 // Add a boolean constant operand for "required" (true) or "hint" 8153 // (false) for implementing the work_group_size_hint attr later. 8154 // Currently always true as the hint is not yet implemented. 8155 Operands.push_back( 8156 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8157 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8158 } 8159 } 8160 } 8161 } 8162 8163 } 8164 8165 //===----------------------------------------------------------------------===// 8166 // Hexagon ABI Implementation 8167 //===----------------------------------------------------------------------===// 8168 8169 namespace { 8170 8171 class HexagonABIInfo : public DefaultABIInfo { 8172 public: 8173 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8174 8175 private: 8176 ABIArgInfo classifyReturnType(QualType RetTy) const; 8177 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8178 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8179 8180 void computeInfo(CGFunctionInfo &FI) const override; 8181 8182 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8183 QualType Ty) const override; 8184 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8185 QualType Ty) const; 8186 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8187 QualType Ty) const; 8188 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8189 QualType Ty) const; 8190 }; 8191 8192 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8193 public: 8194 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8195 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8196 8197 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8198 return 29; 8199 } 8200 8201 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8202 CodeGen::CodeGenModule &GCM) const override { 8203 if (GV->isDeclaration()) 8204 return; 8205 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8206 if (!FD) 8207 return; 8208 } 8209 }; 8210 8211 } // namespace 8212 8213 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8214 unsigned RegsLeft = 6; 8215 if (!getCXXABI().classifyReturnType(FI)) 8216 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8217 for (auto &I : FI.arguments()) 8218 I.info = classifyArgumentType(I.type, &RegsLeft); 8219 } 8220 8221 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8222 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8223 " through registers"); 8224 8225 if (*RegsLeft == 0) 8226 return false; 8227 8228 if (Size <= 32) { 8229 (*RegsLeft)--; 8230 return true; 8231 } 8232 8233 if (2 <= (*RegsLeft & (~1U))) { 8234 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8235 return true; 8236 } 8237 8238 // Next available register was r5 but candidate was greater than 32-bits so it 8239 // has to go on the stack. However we still consume r5 8240 if (*RegsLeft == 1) 8241 *RegsLeft = 0; 8242 8243 return false; 8244 } 8245 8246 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8247 unsigned *RegsLeft) const { 8248 if (!isAggregateTypeForABI(Ty)) { 8249 // Treat an enum type as its underlying type. 8250 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8251 Ty = EnumTy->getDecl()->getIntegerType(); 8252 8253 uint64_t Size = getContext().getTypeSize(Ty); 8254 if (Size <= 64) 8255 HexagonAdjustRegsLeft(Size, RegsLeft); 8256 8257 if (Size > 64 && Ty->isExtIntType()) 8258 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8259 8260 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8261 : ABIArgInfo::getDirect(); 8262 } 8263 8264 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8265 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8266 8267 // Ignore empty records. 8268 if (isEmptyRecord(getContext(), Ty, true)) 8269 return ABIArgInfo::getIgnore(); 8270 8271 uint64_t Size = getContext().getTypeSize(Ty); 8272 unsigned Align = getContext().getTypeAlign(Ty); 8273 8274 if (Size > 64) 8275 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8276 8277 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8278 Align = Size <= 32 ? 32 : 64; 8279 if (Size <= Align) { 8280 // Pass in the smallest viable integer type. 8281 if (!llvm::isPowerOf2_64(Size)) 8282 Size = llvm::NextPowerOf2(Size); 8283 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8284 } 8285 return DefaultABIInfo::classifyArgumentType(Ty); 8286 } 8287 8288 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8289 if (RetTy->isVoidType()) 8290 return ABIArgInfo::getIgnore(); 8291 8292 const TargetInfo &T = CGT.getTarget(); 8293 uint64_t Size = getContext().getTypeSize(RetTy); 8294 8295 if (RetTy->getAs<VectorType>()) { 8296 // HVX vectors are returned in vector registers or register pairs. 8297 if (T.hasFeature("hvx")) { 8298 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8299 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8300 if (Size == VecSize || Size == 2*VecSize) 8301 return ABIArgInfo::getDirectInReg(); 8302 } 8303 // Large vector types should be returned via memory. 8304 if (Size > 64) 8305 return getNaturalAlignIndirect(RetTy); 8306 } 8307 8308 if (!isAggregateTypeForABI(RetTy)) { 8309 // Treat an enum type as its underlying type. 8310 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8311 RetTy = EnumTy->getDecl()->getIntegerType(); 8312 8313 if (Size > 64 && RetTy->isExtIntType()) 8314 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8315 8316 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8317 : ABIArgInfo::getDirect(); 8318 } 8319 8320 if (isEmptyRecord(getContext(), RetTy, true)) 8321 return ABIArgInfo::getIgnore(); 8322 8323 // Aggregates <= 8 bytes are returned in registers, other aggregates 8324 // are returned indirectly. 8325 if (Size <= 64) { 8326 // Return in the smallest viable integer type. 8327 if (!llvm::isPowerOf2_64(Size)) 8328 Size = llvm::NextPowerOf2(Size); 8329 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8330 } 8331 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8332 } 8333 8334 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8335 Address VAListAddr, 8336 QualType Ty) const { 8337 // Load the overflow area pointer. 8338 Address __overflow_area_pointer_p = 8339 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8340 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8341 __overflow_area_pointer_p, "__overflow_area_pointer"); 8342 8343 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8344 if (Align > 4) { 8345 // Alignment should be a power of 2. 8346 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8347 8348 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8349 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8350 8351 // Add offset to the current pointer to access the argument. 8352 __overflow_area_pointer = 8353 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8354 llvm::Value *AsInt = 8355 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8356 8357 // Create a mask which should be "AND"ed 8358 // with (overflow_arg_area + align - 1) 8359 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8360 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8361 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8362 "__overflow_area_pointer.align"); 8363 } 8364 8365 // Get the type of the argument from memory and bitcast 8366 // overflow area pointer to the argument type. 8367 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8368 Address AddrTyped = CGF.Builder.CreateBitCast( 8369 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8370 llvm::PointerType::getUnqual(PTy)); 8371 8372 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8373 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8374 8375 __overflow_area_pointer = CGF.Builder.CreateGEP( 8376 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8377 "__overflow_area_pointer.next"); 8378 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8379 8380 return AddrTyped; 8381 } 8382 8383 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8384 Address VAListAddr, 8385 QualType Ty) const { 8386 // FIXME: Need to handle alignment 8387 llvm::Type *BP = CGF.Int8PtrTy; 8388 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8389 CGBuilderTy &Builder = CGF.Builder; 8390 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8391 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8392 // Handle address alignment for type alignment > 32 bits 8393 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8394 if (TyAlign > 4) { 8395 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8396 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8397 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8398 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8399 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8400 } 8401 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8402 Address AddrTyped = Builder.CreateBitCast( 8403 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8404 8405 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8406 llvm::Value *NextAddr = Builder.CreateGEP( 8407 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8408 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8409 8410 return AddrTyped; 8411 } 8412 8413 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8414 Address VAListAddr, 8415 QualType Ty) const { 8416 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8417 8418 if (ArgSize > 8) 8419 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8420 8421 // Here we have check if the argument is in register area or 8422 // in overflow area. 8423 // If the saved register area pointer + argsize rounded up to alignment > 8424 // saved register area end pointer, argument is in overflow area. 8425 unsigned RegsLeft = 6; 8426 Ty = CGF.getContext().getCanonicalType(Ty); 8427 (void)classifyArgumentType(Ty, &RegsLeft); 8428 8429 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8430 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8431 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8432 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8433 8434 // Get rounded size of the argument.GCC does not allow vararg of 8435 // size < 4 bytes. We follow the same logic here. 8436 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8437 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8438 8439 // Argument may be in saved register area 8440 CGF.EmitBlock(MaybeRegBlock); 8441 8442 // Load the current saved register area pointer. 8443 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8444 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8445 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8446 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8447 8448 // Load the saved register area end pointer. 8449 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8450 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8451 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8452 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8453 8454 // If the size of argument is > 4 bytes, check if the stack 8455 // location is aligned to 8 bytes 8456 if (ArgAlign > 4) { 8457 8458 llvm::Value *__current_saved_reg_area_pointer_int = 8459 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8460 CGF.Int32Ty); 8461 8462 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8463 __current_saved_reg_area_pointer_int, 8464 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8465 "align_current_saved_reg_area_pointer"); 8466 8467 __current_saved_reg_area_pointer_int = 8468 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8469 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8470 "align_current_saved_reg_area_pointer"); 8471 8472 __current_saved_reg_area_pointer = 8473 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8474 __current_saved_reg_area_pointer->getType(), 8475 "align_current_saved_reg_area_pointer"); 8476 } 8477 8478 llvm::Value *__new_saved_reg_area_pointer = 8479 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8480 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8481 "__new_saved_reg_area_pointer"); 8482 8483 llvm::Value *UsingStack = 0; 8484 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8485 __saved_reg_area_end_pointer); 8486 8487 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8488 8489 // Argument in saved register area 8490 // Implement the block where argument is in register saved area 8491 CGF.EmitBlock(InRegBlock); 8492 8493 llvm::Type *PTy = CGF.ConvertType(Ty); 8494 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8495 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8496 8497 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8498 __current_saved_reg_area_pointer_p); 8499 8500 CGF.EmitBranch(ContBlock); 8501 8502 // Argument in overflow area 8503 // Implement the block where the argument is in overflow area. 8504 CGF.EmitBlock(OnStackBlock); 8505 8506 // Load the overflow area pointer 8507 Address __overflow_area_pointer_p = 8508 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8509 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8510 __overflow_area_pointer_p, "__overflow_area_pointer"); 8511 8512 // Align the overflow area pointer according to the alignment of the argument 8513 if (ArgAlign > 4) { 8514 llvm::Value *__overflow_area_pointer_int = 8515 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8516 8517 __overflow_area_pointer_int = 8518 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8519 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8520 "align_overflow_area_pointer"); 8521 8522 __overflow_area_pointer_int = 8523 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8524 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8525 "align_overflow_area_pointer"); 8526 8527 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8528 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8529 "align_overflow_area_pointer"); 8530 } 8531 8532 // Get the pointer for next argument in overflow area and store it 8533 // to overflow area pointer. 8534 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8535 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8536 "__overflow_area_pointer.next"); 8537 8538 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8539 __overflow_area_pointer_p); 8540 8541 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8542 __current_saved_reg_area_pointer_p); 8543 8544 // Bitcast the overflow area pointer to the type of argument. 8545 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8546 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8547 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8548 8549 CGF.EmitBranch(ContBlock); 8550 8551 // Get the correct pointer to load the variable argument 8552 // Implement the ContBlock 8553 CGF.EmitBlock(ContBlock); 8554 8555 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8556 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8557 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8558 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8559 8560 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8561 } 8562 8563 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8564 QualType Ty) const { 8565 8566 if (getTarget().getTriple().isMusl()) 8567 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8568 8569 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8570 } 8571 8572 //===----------------------------------------------------------------------===// 8573 // Lanai ABI Implementation 8574 //===----------------------------------------------------------------------===// 8575 8576 namespace { 8577 class LanaiABIInfo : public DefaultABIInfo { 8578 public: 8579 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8580 8581 bool shouldUseInReg(QualType Ty, CCState &State) const; 8582 8583 void computeInfo(CGFunctionInfo &FI) const override { 8584 CCState State(FI); 8585 // Lanai uses 4 registers to pass arguments unless the function has the 8586 // regparm attribute set. 8587 if (FI.getHasRegParm()) { 8588 State.FreeRegs = FI.getRegParm(); 8589 } else { 8590 State.FreeRegs = 4; 8591 } 8592 8593 if (!getCXXABI().classifyReturnType(FI)) 8594 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8595 for (auto &I : FI.arguments()) 8596 I.info = classifyArgumentType(I.type, State); 8597 } 8598 8599 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8600 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8601 }; 8602 } // end anonymous namespace 8603 8604 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8605 unsigned Size = getContext().getTypeSize(Ty); 8606 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8607 8608 if (SizeInRegs == 0) 8609 return false; 8610 8611 if (SizeInRegs > State.FreeRegs) { 8612 State.FreeRegs = 0; 8613 return false; 8614 } 8615 8616 State.FreeRegs -= SizeInRegs; 8617 8618 return true; 8619 } 8620 8621 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8622 CCState &State) const { 8623 if (!ByVal) { 8624 if (State.FreeRegs) { 8625 --State.FreeRegs; // Non-byval indirects just use one pointer. 8626 return getNaturalAlignIndirectInReg(Ty); 8627 } 8628 return getNaturalAlignIndirect(Ty, false); 8629 } 8630 8631 // Compute the byval alignment. 8632 const unsigned MinABIStackAlignInBytes = 4; 8633 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8634 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8635 /*Realign=*/TypeAlign > 8636 MinABIStackAlignInBytes); 8637 } 8638 8639 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8640 CCState &State) const { 8641 // Check with the C++ ABI first. 8642 const RecordType *RT = Ty->getAs<RecordType>(); 8643 if (RT) { 8644 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8645 if (RAA == CGCXXABI::RAA_Indirect) { 8646 return getIndirectResult(Ty, /*ByVal=*/false, State); 8647 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8648 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8649 } 8650 } 8651 8652 if (isAggregateTypeForABI(Ty)) { 8653 // Structures with flexible arrays are always indirect. 8654 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8655 return getIndirectResult(Ty, /*ByVal=*/true, State); 8656 8657 // Ignore empty structs/unions. 8658 if (isEmptyRecord(getContext(), Ty, true)) 8659 return ABIArgInfo::getIgnore(); 8660 8661 llvm::LLVMContext &LLVMContext = getVMContext(); 8662 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8663 if (SizeInRegs <= State.FreeRegs) { 8664 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8665 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8666 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8667 State.FreeRegs -= SizeInRegs; 8668 return ABIArgInfo::getDirectInReg(Result); 8669 } else { 8670 State.FreeRegs = 0; 8671 } 8672 return getIndirectResult(Ty, true, State); 8673 } 8674 8675 // Treat an enum type as its underlying type. 8676 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8677 Ty = EnumTy->getDecl()->getIntegerType(); 8678 8679 bool InReg = shouldUseInReg(Ty, State); 8680 8681 // Don't pass >64 bit integers in registers. 8682 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8683 if (EIT->getNumBits() > 64) 8684 return getIndirectResult(Ty, /*ByVal=*/true, State); 8685 8686 if (isPromotableIntegerTypeForABI(Ty)) { 8687 if (InReg) 8688 return ABIArgInfo::getDirectInReg(); 8689 return ABIArgInfo::getExtend(Ty); 8690 } 8691 if (InReg) 8692 return ABIArgInfo::getDirectInReg(); 8693 return ABIArgInfo::getDirect(); 8694 } 8695 8696 namespace { 8697 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8698 public: 8699 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8700 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8701 }; 8702 } 8703 8704 //===----------------------------------------------------------------------===// 8705 // AMDGPU ABI Implementation 8706 //===----------------------------------------------------------------------===// 8707 8708 namespace { 8709 8710 class AMDGPUABIInfo final : public DefaultABIInfo { 8711 private: 8712 static const unsigned MaxNumRegsForArgsRet = 16; 8713 8714 unsigned numRegsForType(QualType Ty) const; 8715 8716 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8717 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8718 uint64_t Members) const override; 8719 8720 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8721 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8722 unsigned ToAS) const { 8723 // Single value types. 8724 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8725 return llvm::PointerType::get( 8726 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8727 return Ty; 8728 } 8729 8730 public: 8731 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8732 DefaultABIInfo(CGT) {} 8733 8734 ABIArgInfo classifyReturnType(QualType RetTy) const; 8735 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8736 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8737 8738 void computeInfo(CGFunctionInfo &FI) const override; 8739 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8740 QualType Ty) const override; 8741 }; 8742 8743 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8744 return true; 8745 } 8746 8747 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8748 const Type *Base, uint64_t Members) const { 8749 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8750 8751 // Homogeneous Aggregates may occupy at most 16 registers. 8752 return Members * NumRegs <= MaxNumRegsForArgsRet; 8753 } 8754 8755 /// Estimate number of registers the type will use when passed in registers. 8756 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8757 unsigned NumRegs = 0; 8758 8759 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8760 // Compute from the number of elements. The reported size is based on the 8761 // in-memory size, which includes the padding 4th element for 3-vectors. 8762 QualType EltTy = VT->getElementType(); 8763 unsigned EltSize = getContext().getTypeSize(EltTy); 8764 8765 // 16-bit element vectors should be passed as packed. 8766 if (EltSize == 16) 8767 return (VT->getNumElements() + 1) / 2; 8768 8769 unsigned EltNumRegs = (EltSize + 31) / 32; 8770 return EltNumRegs * VT->getNumElements(); 8771 } 8772 8773 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8774 const RecordDecl *RD = RT->getDecl(); 8775 assert(!RD->hasFlexibleArrayMember()); 8776 8777 for (const FieldDecl *Field : RD->fields()) { 8778 QualType FieldTy = Field->getType(); 8779 NumRegs += numRegsForType(FieldTy); 8780 } 8781 8782 return NumRegs; 8783 } 8784 8785 return (getContext().getTypeSize(Ty) + 31) / 32; 8786 } 8787 8788 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8789 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8790 8791 if (!getCXXABI().classifyReturnType(FI)) 8792 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8793 8794 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8795 for (auto &Arg : FI.arguments()) { 8796 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8797 Arg.info = classifyKernelArgumentType(Arg.type); 8798 } else { 8799 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8800 } 8801 } 8802 } 8803 8804 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8805 QualType Ty) const { 8806 llvm_unreachable("AMDGPU does not support varargs"); 8807 } 8808 8809 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8810 if (isAggregateTypeForABI(RetTy)) { 8811 // Records with non-trivial destructors/copy-constructors should not be 8812 // returned by value. 8813 if (!getRecordArgABI(RetTy, getCXXABI())) { 8814 // Ignore empty structs/unions. 8815 if (isEmptyRecord(getContext(), RetTy, true)) 8816 return ABIArgInfo::getIgnore(); 8817 8818 // Lower single-element structs to just return a regular value. 8819 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8820 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8821 8822 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8823 const RecordDecl *RD = RT->getDecl(); 8824 if (RD->hasFlexibleArrayMember()) 8825 return DefaultABIInfo::classifyReturnType(RetTy); 8826 } 8827 8828 // Pack aggregates <= 4 bytes into single VGPR or pair. 8829 uint64_t Size = getContext().getTypeSize(RetTy); 8830 if (Size <= 16) 8831 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8832 8833 if (Size <= 32) 8834 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8835 8836 if (Size <= 64) { 8837 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8838 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8839 } 8840 8841 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8842 return ABIArgInfo::getDirect(); 8843 } 8844 } 8845 8846 // Otherwise just do the default thing. 8847 return DefaultABIInfo::classifyReturnType(RetTy); 8848 } 8849 8850 /// For kernels all parameters are really passed in a special buffer. It doesn't 8851 /// make sense to pass anything byval, so everything must be direct. 8852 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8853 Ty = useFirstFieldIfTransparentUnion(Ty); 8854 8855 // TODO: Can we omit empty structs? 8856 8857 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8858 Ty = QualType(SeltTy, 0); 8859 8860 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8861 llvm::Type *LTy = OrigLTy; 8862 if (getContext().getLangOpts().HIP) { 8863 LTy = coerceKernelArgumentType( 8864 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8865 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8866 } 8867 8868 // FIXME: Should also use this for OpenCL, but it requires addressing the 8869 // problem of kernels being called. 8870 // 8871 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8872 // to global address space when using byref. This would require implementing a 8873 // new kind of coercion of the in-memory type when for indirect arguments. 8874 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8875 isAggregateTypeForABI(Ty)) { 8876 return ABIArgInfo::getIndirectAliased( 8877 getContext().getTypeAlignInChars(Ty), 8878 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8879 false /*Realign*/, nullptr /*Padding*/); 8880 } 8881 8882 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8883 // individual elements, which confuses the Clover OpenCL backend; therefore we 8884 // have to set it to false here. Other args of getDirect() are just defaults. 8885 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8886 } 8887 8888 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8889 unsigned &NumRegsLeft) const { 8890 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8891 8892 Ty = useFirstFieldIfTransparentUnion(Ty); 8893 8894 if (isAggregateTypeForABI(Ty)) { 8895 // Records with non-trivial destructors/copy-constructors should not be 8896 // passed by value. 8897 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8898 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8899 8900 // Ignore empty structs/unions. 8901 if (isEmptyRecord(getContext(), Ty, true)) 8902 return ABIArgInfo::getIgnore(); 8903 8904 // Lower single-element structs to just pass a regular value. TODO: We 8905 // could do reasonable-size multiple-element structs too, using getExpand(), 8906 // though watch out for things like bitfields. 8907 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8908 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8909 8910 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8911 const RecordDecl *RD = RT->getDecl(); 8912 if (RD->hasFlexibleArrayMember()) 8913 return DefaultABIInfo::classifyArgumentType(Ty); 8914 } 8915 8916 // Pack aggregates <= 8 bytes into single VGPR or pair. 8917 uint64_t Size = getContext().getTypeSize(Ty); 8918 if (Size <= 64) { 8919 unsigned NumRegs = (Size + 31) / 32; 8920 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8921 8922 if (Size <= 16) 8923 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8924 8925 if (Size <= 32) 8926 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8927 8928 // XXX: Should this be i64 instead, and should the limit increase? 8929 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8930 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8931 } 8932 8933 if (NumRegsLeft > 0) { 8934 unsigned NumRegs = numRegsForType(Ty); 8935 if (NumRegsLeft >= NumRegs) { 8936 NumRegsLeft -= NumRegs; 8937 return ABIArgInfo::getDirect(); 8938 } 8939 } 8940 } 8941 8942 // Otherwise just do the default thing. 8943 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8944 if (!ArgInfo.isIndirect()) { 8945 unsigned NumRegs = numRegsForType(Ty); 8946 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8947 } 8948 8949 return ArgInfo; 8950 } 8951 8952 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8953 public: 8954 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8955 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8956 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8957 CodeGen::CodeGenModule &M) const override; 8958 unsigned getOpenCLKernelCallingConv() const override; 8959 8960 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8961 llvm::PointerType *T, QualType QT) const override; 8962 8963 LangAS getASTAllocaAddressSpace() const override { 8964 return getLangASFromTargetAS( 8965 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8966 } 8967 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8968 const VarDecl *D) const override; 8969 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8970 SyncScope Scope, 8971 llvm::AtomicOrdering Ordering, 8972 llvm::LLVMContext &Ctx) const override; 8973 llvm::Function * 8974 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8975 llvm::Function *BlockInvokeFunc, 8976 llvm::Value *BlockLiteral) const override; 8977 bool shouldEmitStaticExternCAliases() const override; 8978 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8979 }; 8980 } 8981 8982 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8983 llvm::GlobalValue *GV) { 8984 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8985 return false; 8986 8987 return D->hasAttr<OpenCLKernelAttr>() || 8988 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8989 (isa<VarDecl>(D) && 8990 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8991 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8992 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8993 } 8994 8995 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8996 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8997 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8998 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8999 GV->setDSOLocal(true); 9000 } 9001 9002 if (GV->isDeclaration()) 9003 return; 9004 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9005 if (!FD) 9006 return; 9007 9008 llvm::Function *F = cast<llvm::Function>(GV); 9009 9010 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9011 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9012 9013 9014 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9015 FD->hasAttr<OpenCLKernelAttr>(); 9016 const bool IsHIPKernel = M.getLangOpts().HIP && 9017 FD->hasAttr<CUDAGlobalAttr>(); 9018 if ((IsOpenCLKernel || IsHIPKernel) && 9019 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9020 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9021 9022 if (IsHIPKernel) 9023 F->addFnAttr("uniform-work-group-size", "true"); 9024 9025 9026 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9027 if (ReqdWGS || FlatWGS) { 9028 unsigned Min = 0; 9029 unsigned Max = 0; 9030 if (FlatWGS) { 9031 Min = FlatWGS->getMin() 9032 ->EvaluateKnownConstInt(M.getContext()) 9033 .getExtValue(); 9034 Max = FlatWGS->getMax() 9035 ->EvaluateKnownConstInt(M.getContext()) 9036 .getExtValue(); 9037 } 9038 if (ReqdWGS && Min == 0 && Max == 0) 9039 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9040 9041 if (Min != 0) { 9042 assert(Min <= Max && "Min must be less than or equal Max"); 9043 9044 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9045 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9046 } else 9047 assert(Max == 0 && "Max must be zero"); 9048 } else if (IsOpenCLKernel || IsHIPKernel) { 9049 // By default, restrict the maximum size to a value specified by 9050 // --gpu-max-threads-per-block=n or its default value. 9051 std::string AttrVal = 9052 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 9053 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9054 } 9055 9056 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9057 unsigned Min = 9058 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9059 unsigned Max = Attr->getMax() ? Attr->getMax() 9060 ->EvaluateKnownConstInt(M.getContext()) 9061 .getExtValue() 9062 : 0; 9063 9064 if (Min != 0) { 9065 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9066 9067 std::string AttrVal = llvm::utostr(Min); 9068 if (Max != 0) 9069 AttrVal = AttrVal + "," + llvm::utostr(Max); 9070 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9071 } else 9072 assert(Max == 0 && "Max must be zero"); 9073 } 9074 9075 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9076 unsigned NumSGPR = Attr->getNumSGPR(); 9077 9078 if (NumSGPR != 0) 9079 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9080 } 9081 9082 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9083 uint32_t NumVGPR = Attr->getNumVGPR(); 9084 9085 if (NumVGPR != 0) 9086 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9087 } 9088 9089 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9090 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9091 } 9092 9093 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9094 return llvm::CallingConv::AMDGPU_KERNEL; 9095 } 9096 9097 // Currently LLVM assumes null pointers always have value 0, 9098 // which results in incorrectly transformed IR. Therefore, instead of 9099 // emitting null pointers in private and local address spaces, a null 9100 // pointer in generic address space is emitted which is casted to a 9101 // pointer in local or private address space. 9102 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9103 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9104 QualType QT) const { 9105 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9106 return llvm::ConstantPointerNull::get(PT); 9107 9108 auto &Ctx = CGM.getContext(); 9109 auto NPT = llvm::PointerType::get(PT->getElementType(), 9110 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9111 return llvm::ConstantExpr::getAddrSpaceCast( 9112 llvm::ConstantPointerNull::get(NPT), PT); 9113 } 9114 9115 LangAS 9116 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9117 const VarDecl *D) const { 9118 assert(!CGM.getLangOpts().OpenCL && 9119 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9120 "Address space agnostic languages only"); 9121 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9122 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9123 if (!D) 9124 return DefaultGlobalAS; 9125 9126 LangAS AddrSpace = D->getType().getAddressSpace(); 9127 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9128 if (AddrSpace != LangAS::Default) 9129 return AddrSpace; 9130 9131 if (CGM.isTypeConstant(D->getType(), false)) { 9132 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9133 return ConstAS.getValue(); 9134 } 9135 return DefaultGlobalAS; 9136 } 9137 9138 llvm::SyncScope::ID 9139 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9140 SyncScope Scope, 9141 llvm::AtomicOrdering Ordering, 9142 llvm::LLVMContext &Ctx) const { 9143 std::string Name; 9144 switch (Scope) { 9145 case SyncScope::OpenCLWorkGroup: 9146 Name = "workgroup"; 9147 break; 9148 case SyncScope::OpenCLDevice: 9149 Name = "agent"; 9150 break; 9151 case SyncScope::OpenCLAllSVMDevices: 9152 Name = ""; 9153 break; 9154 case SyncScope::OpenCLSubGroup: 9155 Name = "wavefront"; 9156 } 9157 9158 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9159 if (!Name.empty()) 9160 Name = Twine(Twine(Name) + Twine("-")).str(); 9161 9162 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9163 } 9164 9165 return Ctx.getOrInsertSyncScopeID(Name); 9166 } 9167 9168 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9169 return false; 9170 } 9171 9172 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9173 const FunctionType *&FT) const { 9174 FT = getABIInfo().getContext().adjustFunctionType( 9175 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9176 } 9177 9178 //===----------------------------------------------------------------------===// 9179 // SPARC v8 ABI Implementation. 9180 // Based on the SPARC Compliance Definition version 2.4.1. 9181 // 9182 // Ensures that complex values are passed in registers. 9183 // 9184 namespace { 9185 class SparcV8ABIInfo : public DefaultABIInfo { 9186 public: 9187 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9188 9189 private: 9190 ABIArgInfo classifyReturnType(QualType RetTy) const; 9191 void computeInfo(CGFunctionInfo &FI) const override; 9192 }; 9193 } // end anonymous namespace 9194 9195 9196 ABIArgInfo 9197 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9198 if (Ty->isAnyComplexType()) { 9199 return ABIArgInfo::getDirect(); 9200 } 9201 else { 9202 return DefaultABIInfo::classifyReturnType(Ty); 9203 } 9204 } 9205 9206 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9207 9208 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9209 for (auto &Arg : FI.arguments()) 9210 Arg.info = classifyArgumentType(Arg.type); 9211 } 9212 9213 namespace { 9214 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9215 public: 9216 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9217 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9218 }; 9219 } // end anonymous namespace 9220 9221 //===----------------------------------------------------------------------===// 9222 // SPARC v9 ABI Implementation. 9223 // Based on the SPARC Compliance Definition version 2.4.1. 9224 // 9225 // Function arguments a mapped to a nominal "parameter array" and promoted to 9226 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9227 // the array, structs larger than 16 bytes are passed indirectly. 9228 // 9229 // One case requires special care: 9230 // 9231 // struct mixed { 9232 // int i; 9233 // float f; 9234 // }; 9235 // 9236 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9237 // parameter array, but the int is passed in an integer register, and the float 9238 // is passed in a floating point register. This is represented as two arguments 9239 // with the LLVM IR inreg attribute: 9240 // 9241 // declare void f(i32 inreg %i, float inreg %f) 9242 // 9243 // The code generator will only allocate 4 bytes from the parameter array for 9244 // the inreg arguments. All other arguments are allocated a multiple of 8 9245 // bytes. 9246 // 9247 namespace { 9248 class SparcV9ABIInfo : public ABIInfo { 9249 public: 9250 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9251 9252 private: 9253 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9254 void computeInfo(CGFunctionInfo &FI) const override; 9255 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9256 QualType Ty) const override; 9257 9258 // Coercion type builder for structs passed in registers. The coercion type 9259 // serves two purposes: 9260 // 9261 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9262 // in registers. 9263 // 2. Expose aligned floating point elements as first-level elements, so the 9264 // code generator knows to pass them in floating point registers. 9265 // 9266 // We also compute the InReg flag which indicates that the struct contains 9267 // aligned 32-bit floats. 9268 // 9269 struct CoerceBuilder { 9270 llvm::LLVMContext &Context; 9271 const llvm::DataLayout &DL; 9272 SmallVector<llvm::Type*, 8> Elems; 9273 uint64_t Size; 9274 bool InReg; 9275 9276 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9277 : Context(c), DL(dl), Size(0), InReg(false) {} 9278 9279 // Pad Elems with integers until Size is ToSize. 9280 void pad(uint64_t ToSize) { 9281 assert(ToSize >= Size && "Cannot remove elements"); 9282 if (ToSize == Size) 9283 return; 9284 9285 // Finish the current 64-bit word. 9286 uint64_t Aligned = llvm::alignTo(Size, 64); 9287 if (Aligned > Size && Aligned <= ToSize) { 9288 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9289 Size = Aligned; 9290 } 9291 9292 // Add whole 64-bit words. 9293 while (Size + 64 <= ToSize) { 9294 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9295 Size += 64; 9296 } 9297 9298 // Final in-word padding. 9299 if (Size < ToSize) { 9300 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9301 Size = ToSize; 9302 } 9303 } 9304 9305 // Add a floating point element at Offset. 9306 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9307 // Unaligned floats are treated as integers. 9308 if (Offset % Bits) 9309 return; 9310 // The InReg flag is only required if there are any floats < 64 bits. 9311 if (Bits < 64) 9312 InReg = true; 9313 pad(Offset); 9314 Elems.push_back(Ty); 9315 Size = Offset + Bits; 9316 } 9317 9318 // Add a struct type to the coercion type, starting at Offset (in bits). 9319 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9320 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9321 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9322 llvm::Type *ElemTy = StrTy->getElementType(i); 9323 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9324 switch (ElemTy->getTypeID()) { 9325 case llvm::Type::StructTyID: 9326 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9327 break; 9328 case llvm::Type::FloatTyID: 9329 addFloat(ElemOffset, ElemTy, 32); 9330 break; 9331 case llvm::Type::DoubleTyID: 9332 addFloat(ElemOffset, ElemTy, 64); 9333 break; 9334 case llvm::Type::FP128TyID: 9335 addFloat(ElemOffset, ElemTy, 128); 9336 break; 9337 case llvm::Type::PointerTyID: 9338 if (ElemOffset % 64 == 0) { 9339 pad(ElemOffset); 9340 Elems.push_back(ElemTy); 9341 Size += 64; 9342 } 9343 break; 9344 default: 9345 break; 9346 } 9347 } 9348 } 9349 9350 // Check if Ty is a usable substitute for the coercion type. 9351 bool isUsableType(llvm::StructType *Ty) const { 9352 return llvm::makeArrayRef(Elems) == Ty->elements(); 9353 } 9354 9355 // Get the coercion type as a literal struct type. 9356 llvm::Type *getType() const { 9357 if (Elems.size() == 1) 9358 return Elems.front(); 9359 else 9360 return llvm::StructType::get(Context, Elems); 9361 } 9362 }; 9363 }; 9364 } // end anonymous namespace 9365 9366 ABIArgInfo 9367 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9368 if (Ty->isVoidType()) 9369 return ABIArgInfo::getIgnore(); 9370 9371 uint64_t Size = getContext().getTypeSize(Ty); 9372 9373 // Anything too big to fit in registers is passed with an explicit indirect 9374 // pointer / sret pointer. 9375 if (Size > SizeLimit) 9376 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9377 9378 // Treat an enum type as its underlying type. 9379 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9380 Ty = EnumTy->getDecl()->getIntegerType(); 9381 9382 // Integer types smaller than a register are extended. 9383 if (Size < 64 && Ty->isIntegerType()) 9384 return ABIArgInfo::getExtend(Ty); 9385 9386 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9387 if (EIT->getNumBits() < 64) 9388 return ABIArgInfo::getExtend(Ty); 9389 9390 // Other non-aggregates go in registers. 9391 if (!isAggregateTypeForABI(Ty)) 9392 return ABIArgInfo::getDirect(); 9393 9394 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9395 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9396 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9397 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9398 9399 // This is a small aggregate type that should be passed in registers. 9400 // Build a coercion type from the LLVM struct type. 9401 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9402 if (!StrTy) 9403 return ABIArgInfo::getDirect(); 9404 9405 CoerceBuilder CB(getVMContext(), getDataLayout()); 9406 CB.addStruct(0, StrTy); 9407 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9408 9409 // Try to use the original type for coercion. 9410 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9411 9412 if (CB.InReg) 9413 return ABIArgInfo::getDirectInReg(CoerceTy); 9414 else 9415 return ABIArgInfo::getDirect(CoerceTy); 9416 } 9417 9418 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9419 QualType Ty) const { 9420 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9421 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9422 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9423 AI.setCoerceToType(ArgTy); 9424 9425 CharUnits SlotSize = CharUnits::fromQuantity(8); 9426 9427 CGBuilderTy &Builder = CGF.Builder; 9428 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9429 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9430 9431 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9432 9433 Address ArgAddr = Address::invalid(); 9434 CharUnits Stride; 9435 switch (AI.getKind()) { 9436 case ABIArgInfo::Expand: 9437 case ABIArgInfo::CoerceAndExpand: 9438 case ABIArgInfo::InAlloca: 9439 llvm_unreachable("Unsupported ABI kind for va_arg"); 9440 9441 case ABIArgInfo::Extend: { 9442 Stride = SlotSize; 9443 CharUnits Offset = SlotSize - TypeInfo.Width; 9444 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9445 break; 9446 } 9447 9448 case ABIArgInfo::Direct: { 9449 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9450 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9451 ArgAddr = Addr; 9452 break; 9453 } 9454 9455 case ABIArgInfo::Indirect: 9456 case ABIArgInfo::IndirectAliased: 9457 Stride = SlotSize; 9458 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9459 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9460 TypeInfo.Align); 9461 break; 9462 9463 case ABIArgInfo::Ignore: 9464 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9465 } 9466 9467 // Update VAList. 9468 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9469 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9470 9471 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9472 } 9473 9474 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9475 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9476 for (auto &I : FI.arguments()) 9477 I.info = classifyType(I.type, 16 * 8); 9478 } 9479 9480 namespace { 9481 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9482 public: 9483 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9484 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9485 9486 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9487 return 14; 9488 } 9489 9490 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9491 llvm::Value *Address) const override; 9492 }; 9493 } // end anonymous namespace 9494 9495 bool 9496 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9497 llvm::Value *Address) const { 9498 // This is calculated from the LLVM and GCC tables and verified 9499 // against gcc output. AFAIK all ABIs use the same encoding. 9500 9501 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9502 9503 llvm::IntegerType *i8 = CGF.Int8Ty; 9504 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9505 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9506 9507 // 0-31: the 8-byte general-purpose registers 9508 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9509 9510 // 32-63: f0-31, the 4-byte floating-point registers 9511 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9512 9513 // Y = 64 9514 // PSR = 65 9515 // WIM = 66 9516 // TBR = 67 9517 // PC = 68 9518 // NPC = 69 9519 // FSR = 70 9520 // CSR = 71 9521 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9522 9523 // 72-87: d0-15, the 8-byte floating-point registers 9524 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9525 9526 return false; 9527 } 9528 9529 // ARC ABI implementation. 9530 namespace { 9531 9532 class ARCABIInfo : public DefaultABIInfo { 9533 public: 9534 using DefaultABIInfo::DefaultABIInfo; 9535 9536 private: 9537 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9538 QualType Ty) const override; 9539 9540 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9541 if (!State.FreeRegs) 9542 return; 9543 if (Info.isIndirect() && Info.getInReg()) 9544 State.FreeRegs--; 9545 else if (Info.isDirect() && Info.getInReg()) { 9546 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9547 if (sz < State.FreeRegs) 9548 State.FreeRegs -= sz; 9549 else 9550 State.FreeRegs = 0; 9551 } 9552 } 9553 9554 void computeInfo(CGFunctionInfo &FI) const override { 9555 CCState State(FI); 9556 // ARC uses 8 registers to pass arguments. 9557 State.FreeRegs = 8; 9558 9559 if (!getCXXABI().classifyReturnType(FI)) 9560 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9561 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9562 for (auto &I : FI.arguments()) { 9563 I.info = classifyArgumentType(I.type, State.FreeRegs); 9564 updateState(I.info, I.type, State); 9565 } 9566 } 9567 9568 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9569 ABIArgInfo getIndirectByValue(QualType Ty) const; 9570 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9571 ABIArgInfo classifyReturnType(QualType RetTy) const; 9572 }; 9573 9574 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9575 public: 9576 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9577 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9578 }; 9579 9580 9581 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9582 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9583 getNaturalAlignIndirect(Ty, false); 9584 } 9585 9586 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9587 // Compute the byval alignment. 9588 const unsigned MinABIStackAlignInBytes = 4; 9589 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9590 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9591 TypeAlign > MinABIStackAlignInBytes); 9592 } 9593 9594 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9595 QualType Ty) const { 9596 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9597 getContext().getTypeInfoInChars(Ty), 9598 CharUnits::fromQuantity(4), true); 9599 } 9600 9601 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9602 uint8_t FreeRegs) const { 9603 // Handle the generic C++ ABI. 9604 const RecordType *RT = Ty->getAs<RecordType>(); 9605 if (RT) { 9606 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9607 if (RAA == CGCXXABI::RAA_Indirect) 9608 return getIndirectByRef(Ty, FreeRegs > 0); 9609 9610 if (RAA == CGCXXABI::RAA_DirectInMemory) 9611 return getIndirectByValue(Ty); 9612 } 9613 9614 // Treat an enum type as its underlying type. 9615 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9616 Ty = EnumTy->getDecl()->getIntegerType(); 9617 9618 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9619 9620 if (isAggregateTypeForABI(Ty)) { 9621 // Structures with flexible arrays are always indirect. 9622 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9623 return getIndirectByValue(Ty); 9624 9625 // Ignore empty structs/unions. 9626 if (isEmptyRecord(getContext(), Ty, true)) 9627 return ABIArgInfo::getIgnore(); 9628 9629 llvm::LLVMContext &LLVMContext = getVMContext(); 9630 9631 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9632 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9633 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9634 9635 return FreeRegs >= SizeInRegs ? 9636 ABIArgInfo::getDirectInReg(Result) : 9637 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9638 } 9639 9640 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9641 if (EIT->getNumBits() > 64) 9642 return getIndirectByValue(Ty); 9643 9644 return isPromotableIntegerTypeForABI(Ty) 9645 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9646 : ABIArgInfo::getExtend(Ty)) 9647 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9648 : ABIArgInfo::getDirect()); 9649 } 9650 9651 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9652 if (RetTy->isAnyComplexType()) 9653 return ABIArgInfo::getDirectInReg(); 9654 9655 // Arguments of size > 4 registers are indirect. 9656 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9657 if (RetSize > 4) 9658 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9659 9660 return DefaultABIInfo::classifyReturnType(RetTy); 9661 } 9662 9663 } // End anonymous namespace. 9664 9665 //===----------------------------------------------------------------------===// 9666 // XCore ABI Implementation 9667 //===----------------------------------------------------------------------===// 9668 9669 namespace { 9670 9671 /// A SmallStringEnc instance is used to build up the TypeString by passing 9672 /// it by reference between functions that append to it. 9673 typedef llvm::SmallString<128> SmallStringEnc; 9674 9675 /// TypeStringCache caches the meta encodings of Types. 9676 /// 9677 /// The reason for caching TypeStrings is two fold: 9678 /// 1. To cache a type's encoding for later uses; 9679 /// 2. As a means to break recursive member type inclusion. 9680 /// 9681 /// A cache Entry can have a Status of: 9682 /// NonRecursive: The type encoding is not recursive; 9683 /// Recursive: The type encoding is recursive; 9684 /// Incomplete: An incomplete TypeString; 9685 /// IncompleteUsed: An incomplete TypeString that has been used in a 9686 /// Recursive type encoding. 9687 /// 9688 /// A NonRecursive entry will have all of its sub-members expanded as fully 9689 /// as possible. Whilst it may contain types which are recursive, the type 9690 /// itself is not recursive and thus its encoding may be safely used whenever 9691 /// the type is encountered. 9692 /// 9693 /// A Recursive entry will have all of its sub-members expanded as fully as 9694 /// possible. The type itself is recursive and it may contain other types which 9695 /// are recursive. The Recursive encoding must not be used during the expansion 9696 /// of a recursive type's recursive branch. For simplicity the code uses 9697 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9698 /// 9699 /// An Incomplete entry is always a RecordType and only encodes its 9700 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9701 /// are placed into the cache during type expansion as a means to identify and 9702 /// handle recursive inclusion of types as sub-members. If there is recursion 9703 /// the entry becomes IncompleteUsed. 9704 /// 9705 /// During the expansion of a RecordType's members: 9706 /// 9707 /// If the cache contains a NonRecursive encoding for the member type, the 9708 /// cached encoding is used; 9709 /// 9710 /// If the cache contains a Recursive encoding for the member type, the 9711 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9712 /// 9713 /// If the member is a RecordType, an Incomplete encoding is placed into the 9714 /// cache to break potential recursive inclusion of itself as a sub-member; 9715 /// 9716 /// Once a member RecordType has been expanded, its temporary incomplete 9717 /// entry is removed from the cache. If a Recursive encoding was swapped out 9718 /// it is swapped back in; 9719 /// 9720 /// If an incomplete entry is used to expand a sub-member, the incomplete 9721 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9722 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9723 /// 9724 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9725 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9726 /// Else the member is part of a recursive type and thus the recursion has 9727 /// been exited too soon for the encoding to be correct for the member. 9728 /// 9729 class TypeStringCache { 9730 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9731 struct Entry { 9732 std::string Str; // The encoded TypeString for the type. 9733 enum Status State; // Information about the encoding in 'Str'. 9734 std::string Swapped; // A temporary place holder for a Recursive encoding 9735 // during the expansion of RecordType's members. 9736 }; 9737 std::map<const IdentifierInfo *, struct Entry> Map; 9738 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9739 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9740 public: 9741 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9742 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9743 bool removeIncomplete(const IdentifierInfo *ID); 9744 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9745 bool IsRecursive); 9746 StringRef lookupStr(const IdentifierInfo *ID); 9747 }; 9748 9749 /// TypeString encodings for enum & union fields must be order. 9750 /// FieldEncoding is a helper for this ordering process. 9751 class FieldEncoding { 9752 bool HasName; 9753 std::string Enc; 9754 public: 9755 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9756 StringRef str() { return Enc; } 9757 bool operator<(const FieldEncoding &rhs) const { 9758 if (HasName != rhs.HasName) return HasName; 9759 return Enc < rhs.Enc; 9760 } 9761 }; 9762 9763 class XCoreABIInfo : public DefaultABIInfo { 9764 public: 9765 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9766 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9767 QualType Ty) const override; 9768 }; 9769 9770 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9771 mutable TypeStringCache TSC; 9772 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9773 const CodeGen::CodeGenModule &M) const; 9774 9775 public: 9776 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9777 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9778 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9779 const llvm::MapVector<GlobalDecl, StringRef> 9780 &MangledDeclNames) const override; 9781 }; 9782 9783 } // End anonymous namespace. 9784 9785 // TODO: this implementation is likely now redundant with the default 9786 // EmitVAArg. 9787 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9788 QualType Ty) const { 9789 CGBuilderTy &Builder = CGF.Builder; 9790 9791 // Get the VAList. 9792 CharUnits SlotSize = CharUnits::fromQuantity(4); 9793 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9794 9795 // Handle the argument. 9796 ABIArgInfo AI = classifyArgumentType(Ty); 9797 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9798 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9799 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9800 AI.setCoerceToType(ArgTy); 9801 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9802 9803 Address Val = Address::invalid(); 9804 CharUnits ArgSize = CharUnits::Zero(); 9805 switch (AI.getKind()) { 9806 case ABIArgInfo::Expand: 9807 case ABIArgInfo::CoerceAndExpand: 9808 case ABIArgInfo::InAlloca: 9809 llvm_unreachable("Unsupported ABI kind for va_arg"); 9810 case ABIArgInfo::Ignore: 9811 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9812 ArgSize = CharUnits::Zero(); 9813 break; 9814 case ABIArgInfo::Extend: 9815 case ABIArgInfo::Direct: 9816 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9817 ArgSize = CharUnits::fromQuantity( 9818 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9819 ArgSize = ArgSize.alignTo(SlotSize); 9820 break; 9821 case ABIArgInfo::Indirect: 9822 case ABIArgInfo::IndirectAliased: 9823 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9824 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9825 ArgSize = SlotSize; 9826 break; 9827 } 9828 9829 // Increment the VAList. 9830 if (!ArgSize.isZero()) { 9831 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9832 Builder.CreateStore(APN.getPointer(), VAListAddr); 9833 } 9834 9835 return Val; 9836 } 9837 9838 /// During the expansion of a RecordType, an incomplete TypeString is placed 9839 /// into the cache as a means to identify and break recursion. 9840 /// If there is a Recursive encoding in the cache, it is swapped out and will 9841 /// be reinserted by removeIncomplete(). 9842 /// All other types of encoding should have been used rather than arriving here. 9843 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9844 std::string StubEnc) { 9845 if (!ID) 9846 return; 9847 Entry &E = Map[ID]; 9848 assert( (E.Str.empty() || E.State == Recursive) && 9849 "Incorrectly use of addIncomplete"); 9850 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9851 E.Swapped.swap(E.Str); // swap out the Recursive 9852 E.Str.swap(StubEnc); 9853 E.State = Incomplete; 9854 ++IncompleteCount; 9855 } 9856 9857 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9858 /// must be removed from the cache. 9859 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9860 /// Returns true if the RecordType was defined recursively. 9861 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9862 if (!ID) 9863 return false; 9864 auto I = Map.find(ID); 9865 assert(I != Map.end() && "Entry not present"); 9866 Entry &E = I->second; 9867 assert( (E.State == Incomplete || 9868 E.State == IncompleteUsed) && 9869 "Entry must be an incomplete type"); 9870 bool IsRecursive = false; 9871 if (E.State == IncompleteUsed) { 9872 // We made use of our Incomplete encoding, thus we are recursive. 9873 IsRecursive = true; 9874 --IncompleteUsedCount; 9875 } 9876 if (E.Swapped.empty()) 9877 Map.erase(I); 9878 else { 9879 // Swap the Recursive back. 9880 E.Swapped.swap(E.Str); 9881 E.Swapped.clear(); 9882 E.State = Recursive; 9883 } 9884 --IncompleteCount; 9885 return IsRecursive; 9886 } 9887 9888 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9889 /// Recursive (viz: all sub-members were expanded as fully as possible). 9890 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9891 bool IsRecursive) { 9892 if (!ID || IncompleteUsedCount) 9893 return; // No key or it is is an incomplete sub-type so don't add. 9894 Entry &E = Map[ID]; 9895 if (IsRecursive && !E.Str.empty()) { 9896 assert(E.State==Recursive && E.Str.size() == Str.size() && 9897 "This is not the same Recursive entry"); 9898 // The parent container was not recursive after all, so we could have used 9899 // this Recursive sub-member entry after all, but we assumed the worse when 9900 // we started viz: IncompleteCount!=0. 9901 return; 9902 } 9903 assert(E.Str.empty() && "Entry already present"); 9904 E.Str = Str.str(); 9905 E.State = IsRecursive? Recursive : NonRecursive; 9906 } 9907 9908 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9909 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9910 /// encoding is Recursive, return an empty StringRef. 9911 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9912 if (!ID) 9913 return StringRef(); // We have no key. 9914 auto I = Map.find(ID); 9915 if (I == Map.end()) 9916 return StringRef(); // We have no encoding. 9917 Entry &E = I->second; 9918 if (E.State == Recursive && IncompleteCount) 9919 return StringRef(); // We don't use Recursive encodings for member types. 9920 9921 if (E.State == Incomplete) { 9922 // The incomplete type is being used to break out of recursion. 9923 E.State = IncompleteUsed; 9924 ++IncompleteUsedCount; 9925 } 9926 return E.Str; 9927 } 9928 9929 /// The XCore ABI includes a type information section that communicates symbol 9930 /// type information to the linker. The linker uses this information to verify 9931 /// safety/correctness of things such as array bound and pointers et al. 9932 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9933 /// This type information (TypeString) is emitted into meta data for all global 9934 /// symbols: definitions, declarations, functions & variables. 9935 /// 9936 /// The TypeString carries type, qualifier, name, size & value details. 9937 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9938 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9939 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9940 /// 9941 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9942 const CodeGen::CodeGenModule &CGM, 9943 TypeStringCache &TSC); 9944 9945 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9946 void XCoreTargetCodeGenInfo::emitTargetMD( 9947 const Decl *D, llvm::GlobalValue *GV, 9948 const CodeGen::CodeGenModule &CGM) const { 9949 SmallStringEnc Enc; 9950 if (getTypeString(Enc, D, CGM, TSC)) { 9951 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9952 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9953 llvm::MDString::get(Ctx, Enc.str())}; 9954 llvm::NamedMDNode *MD = 9955 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9956 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9957 } 9958 } 9959 9960 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9961 CodeGen::CodeGenModule &CGM, 9962 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9963 // Warning, new MangledDeclNames may be appended within this loop. 9964 // We rely on MapVector insertions adding new elements to the end 9965 // of the container. 9966 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9967 auto Val = *(MangledDeclNames.begin() + I); 9968 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9969 if (GV) { 9970 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9971 emitTargetMD(D, GV, CGM); 9972 } 9973 } 9974 } 9975 //===----------------------------------------------------------------------===// 9976 // SPIR ABI Implementation 9977 //===----------------------------------------------------------------------===// 9978 9979 namespace { 9980 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9981 public: 9982 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9983 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9984 unsigned getOpenCLKernelCallingConv() const override; 9985 }; 9986 9987 } // End anonymous namespace. 9988 9989 namespace clang { 9990 namespace CodeGen { 9991 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9992 DefaultABIInfo SPIRABI(CGM.getTypes()); 9993 SPIRABI.computeInfo(FI); 9994 } 9995 } 9996 } 9997 9998 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9999 return llvm::CallingConv::SPIR_KERNEL; 10000 } 10001 10002 static bool appendType(SmallStringEnc &Enc, QualType QType, 10003 const CodeGen::CodeGenModule &CGM, 10004 TypeStringCache &TSC); 10005 10006 /// Helper function for appendRecordType(). 10007 /// Builds a SmallVector containing the encoded field types in declaration 10008 /// order. 10009 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10010 const RecordDecl *RD, 10011 const CodeGen::CodeGenModule &CGM, 10012 TypeStringCache &TSC) { 10013 for (const auto *Field : RD->fields()) { 10014 SmallStringEnc Enc; 10015 Enc += "m("; 10016 Enc += Field->getName(); 10017 Enc += "){"; 10018 if (Field->isBitField()) { 10019 Enc += "b("; 10020 llvm::raw_svector_ostream OS(Enc); 10021 OS << Field->getBitWidthValue(CGM.getContext()); 10022 Enc += ':'; 10023 } 10024 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10025 return false; 10026 if (Field->isBitField()) 10027 Enc += ')'; 10028 Enc += '}'; 10029 FE.emplace_back(!Field->getName().empty(), Enc); 10030 } 10031 return true; 10032 } 10033 10034 /// Appends structure and union types to Enc and adds encoding to cache. 10035 /// Recursively calls appendType (via extractFieldType) for each field. 10036 /// Union types have their fields ordered according to the ABI. 10037 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10038 const CodeGen::CodeGenModule &CGM, 10039 TypeStringCache &TSC, const IdentifierInfo *ID) { 10040 // Append the cached TypeString if we have one. 10041 StringRef TypeString = TSC.lookupStr(ID); 10042 if (!TypeString.empty()) { 10043 Enc += TypeString; 10044 return true; 10045 } 10046 10047 // Start to emit an incomplete TypeString. 10048 size_t Start = Enc.size(); 10049 Enc += (RT->isUnionType()? 'u' : 's'); 10050 Enc += '('; 10051 if (ID) 10052 Enc += ID->getName(); 10053 Enc += "){"; 10054 10055 // We collect all encoded fields and order as necessary. 10056 bool IsRecursive = false; 10057 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10058 if (RD && !RD->field_empty()) { 10059 // An incomplete TypeString stub is placed in the cache for this RecordType 10060 // so that recursive calls to this RecordType will use it whilst building a 10061 // complete TypeString for this RecordType. 10062 SmallVector<FieldEncoding, 16> FE; 10063 std::string StubEnc(Enc.substr(Start).str()); 10064 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10065 TSC.addIncomplete(ID, std::move(StubEnc)); 10066 if (!extractFieldType(FE, RD, CGM, TSC)) { 10067 (void) TSC.removeIncomplete(ID); 10068 return false; 10069 } 10070 IsRecursive = TSC.removeIncomplete(ID); 10071 // The ABI requires unions to be sorted but not structures. 10072 // See FieldEncoding::operator< for sort algorithm. 10073 if (RT->isUnionType()) 10074 llvm::sort(FE); 10075 // We can now complete the TypeString. 10076 unsigned E = FE.size(); 10077 for (unsigned I = 0; I != E; ++I) { 10078 if (I) 10079 Enc += ','; 10080 Enc += FE[I].str(); 10081 } 10082 } 10083 Enc += '}'; 10084 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10085 return true; 10086 } 10087 10088 /// Appends enum types to Enc and adds the encoding to the cache. 10089 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10090 TypeStringCache &TSC, 10091 const IdentifierInfo *ID) { 10092 // Append the cached TypeString if we have one. 10093 StringRef TypeString = TSC.lookupStr(ID); 10094 if (!TypeString.empty()) { 10095 Enc += TypeString; 10096 return true; 10097 } 10098 10099 size_t Start = Enc.size(); 10100 Enc += "e("; 10101 if (ID) 10102 Enc += ID->getName(); 10103 Enc += "){"; 10104 10105 // We collect all encoded enumerations and order them alphanumerically. 10106 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10107 SmallVector<FieldEncoding, 16> FE; 10108 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10109 ++I) { 10110 SmallStringEnc EnumEnc; 10111 EnumEnc += "m("; 10112 EnumEnc += I->getName(); 10113 EnumEnc += "){"; 10114 I->getInitVal().toString(EnumEnc); 10115 EnumEnc += '}'; 10116 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10117 } 10118 llvm::sort(FE); 10119 unsigned E = FE.size(); 10120 for (unsigned I = 0; I != E; ++I) { 10121 if (I) 10122 Enc += ','; 10123 Enc += FE[I].str(); 10124 } 10125 } 10126 Enc += '}'; 10127 TSC.addIfComplete(ID, Enc.substr(Start), false); 10128 return true; 10129 } 10130 10131 /// Appends type's qualifier to Enc. 10132 /// This is done prior to appending the type's encoding. 10133 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10134 // Qualifiers are emitted in alphabetical order. 10135 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10136 int Lookup = 0; 10137 if (QT.isConstQualified()) 10138 Lookup += 1<<0; 10139 if (QT.isRestrictQualified()) 10140 Lookup += 1<<1; 10141 if (QT.isVolatileQualified()) 10142 Lookup += 1<<2; 10143 Enc += Table[Lookup]; 10144 } 10145 10146 /// Appends built-in types to Enc. 10147 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10148 const char *EncType; 10149 switch (BT->getKind()) { 10150 case BuiltinType::Void: 10151 EncType = "0"; 10152 break; 10153 case BuiltinType::Bool: 10154 EncType = "b"; 10155 break; 10156 case BuiltinType::Char_U: 10157 EncType = "uc"; 10158 break; 10159 case BuiltinType::UChar: 10160 EncType = "uc"; 10161 break; 10162 case BuiltinType::SChar: 10163 EncType = "sc"; 10164 break; 10165 case BuiltinType::UShort: 10166 EncType = "us"; 10167 break; 10168 case BuiltinType::Short: 10169 EncType = "ss"; 10170 break; 10171 case BuiltinType::UInt: 10172 EncType = "ui"; 10173 break; 10174 case BuiltinType::Int: 10175 EncType = "si"; 10176 break; 10177 case BuiltinType::ULong: 10178 EncType = "ul"; 10179 break; 10180 case BuiltinType::Long: 10181 EncType = "sl"; 10182 break; 10183 case BuiltinType::ULongLong: 10184 EncType = "ull"; 10185 break; 10186 case BuiltinType::LongLong: 10187 EncType = "sll"; 10188 break; 10189 case BuiltinType::Float: 10190 EncType = "ft"; 10191 break; 10192 case BuiltinType::Double: 10193 EncType = "d"; 10194 break; 10195 case BuiltinType::LongDouble: 10196 EncType = "ld"; 10197 break; 10198 default: 10199 return false; 10200 } 10201 Enc += EncType; 10202 return true; 10203 } 10204 10205 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10206 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10207 const CodeGen::CodeGenModule &CGM, 10208 TypeStringCache &TSC) { 10209 Enc += "p("; 10210 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10211 return false; 10212 Enc += ')'; 10213 return true; 10214 } 10215 10216 /// Appends array encoding to Enc before calling appendType for the element. 10217 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10218 const ArrayType *AT, 10219 const CodeGen::CodeGenModule &CGM, 10220 TypeStringCache &TSC, StringRef NoSizeEnc) { 10221 if (AT->getSizeModifier() != ArrayType::Normal) 10222 return false; 10223 Enc += "a("; 10224 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10225 CAT->getSize().toStringUnsigned(Enc); 10226 else 10227 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10228 Enc += ':'; 10229 // The Qualifiers should be attached to the type rather than the array. 10230 appendQualifier(Enc, QT); 10231 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10232 return false; 10233 Enc += ')'; 10234 return true; 10235 } 10236 10237 /// Appends a function encoding to Enc, calling appendType for the return type 10238 /// and the arguments. 10239 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10240 const CodeGen::CodeGenModule &CGM, 10241 TypeStringCache &TSC) { 10242 Enc += "f{"; 10243 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10244 return false; 10245 Enc += "}("; 10246 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10247 // N.B. we are only interested in the adjusted param types. 10248 auto I = FPT->param_type_begin(); 10249 auto E = FPT->param_type_end(); 10250 if (I != E) { 10251 do { 10252 if (!appendType(Enc, *I, CGM, TSC)) 10253 return false; 10254 ++I; 10255 if (I != E) 10256 Enc += ','; 10257 } while (I != E); 10258 if (FPT->isVariadic()) 10259 Enc += ",va"; 10260 } else { 10261 if (FPT->isVariadic()) 10262 Enc += "va"; 10263 else 10264 Enc += '0'; 10265 } 10266 } 10267 Enc += ')'; 10268 return true; 10269 } 10270 10271 /// Handles the type's qualifier before dispatching a call to handle specific 10272 /// type encodings. 10273 static bool appendType(SmallStringEnc &Enc, QualType QType, 10274 const CodeGen::CodeGenModule &CGM, 10275 TypeStringCache &TSC) { 10276 10277 QualType QT = QType.getCanonicalType(); 10278 10279 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10280 // The Qualifiers should be attached to the type rather than the array. 10281 // Thus we don't call appendQualifier() here. 10282 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10283 10284 appendQualifier(Enc, QT); 10285 10286 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10287 return appendBuiltinType(Enc, BT); 10288 10289 if (const PointerType *PT = QT->getAs<PointerType>()) 10290 return appendPointerType(Enc, PT, CGM, TSC); 10291 10292 if (const EnumType *ET = QT->getAs<EnumType>()) 10293 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10294 10295 if (const RecordType *RT = QT->getAsStructureType()) 10296 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10297 10298 if (const RecordType *RT = QT->getAsUnionType()) 10299 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10300 10301 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10302 return appendFunctionType(Enc, FT, CGM, TSC); 10303 10304 return false; 10305 } 10306 10307 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10308 const CodeGen::CodeGenModule &CGM, 10309 TypeStringCache &TSC) { 10310 if (!D) 10311 return false; 10312 10313 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10314 if (FD->getLanguageLinkage() != CLanguageLinkage) 10315 return false; 10316 return appendType(Enc, FD->getType(), CGM, TSC); 10317 } 10318 10319 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10320 if (VD->getLanguageLinkage() != CLanguageLinkage) 10321 return false; 10322 QualType QT = VD->getType().getCanonicalType(); 10323 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10324 // Global ArrayTypes are given a size of '*' if the size is unknown. 10325 // The Qualifiers should be attached to the type rather than the array. 10326 // Thus we don't call appendQualifier() here. 10327 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10328 } 10329 return appendType(Enc, QT, CGM, TSC); 10330 } 10331 return false; 10332 } 10333 10334 //===----------------------------------------------------------------------===// 10335 // RISCV ABI Implementation 10336 //===----------------------------------------------------------------------===// 10337 10338 namespace { 10339 class RISCVABIInfo : public DefaultABIInfo { 10340 private: 10341 // Size of the integer ('x') registers in bits. 10342 unsigned XLen; 10343 // Size of the floating point ('f') registers in bits. Note that the target 10344 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10345 // with soft float ABI has FLen==0). 10346 unsigned FLen; 10347 static const int NumArgGPRs = 8; 10348 static const int NumArgFPRs = 8; 10349 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10350 llvm::Type *&Field1Ty, 10351 CharUnits &Field1Off, 10352 llvm::Type *&Field2Ty, 10353 CharUnits &Field2Off) const; 10354 10355 public: 10356 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10357 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10358 10359 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10360 // non-virtual, but computeInfo is virtual, so we overload it. 10361 void computeInfo(CGFunctionInfo &FI) const override; 10362 10363 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10364 int &ArgFPRsLeft) const; 10365 ABIArgInfo classifyReturnType(QualType RetTy) const; 10366 10367 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10368 QualType Ty) const override; 10369 10370 ABIArgInfo extendType(QualType Ty) const; 10371 10372 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10373 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10374 CharUnits &Field2Off, int &NeededArgGPRs, 10375 int &NeededArgFPRs) const; 10376 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10377 CharUnits Field1Off, 10378 llvm::Type *Field2Ty, 10379 CharUnits Field2Off) const; 10380 }; 10381 } // end anonymous namespace 10382 10383 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10384 QualType RetTy = FI.getReturnType(); 10385 if (!getCXXABI().classifyReturnType(FI)) 10386 FI.getReturnInfo() = classifyReturnType(RetTy); 10387 10388 // IsRetIndirect is true if classifyArgumentType indicated the value should 10389 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10390 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10391 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10392 // list and pass indirectly on RV32. 10393 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10394 if (!IsRetIndirect && RetTy->isScalarType() && 10395 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10396 if (RetTy->isComplexType() && FLen) { 10397 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10398 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10399 } else { 10400 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10401 IsRetIndirect = true; 10402 } 10403 } 10404 10405 // We must track the number of GPRs used in order to conform to the RISC-V 10406 // ABI, as integer scalars passed in registers should have signext/zeroext 10407 // when promoted, but are anyext if passed on the stack. As GPR usage is 10408 // different for variadic arguments, we must also track whether we are 10409 // examining a vararg or not. 10410 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10411 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10412 int NumFixedArgs = FI.getNumRequiredArgs(); 10413 10414 int ArgNum = 0; 10415 for (auto &ArgInfo : FI.arguments()) { 10416 bool IsFixed = ArgNum < NumFixedArgs; 10417 ArgInfo.info = 10418 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10419 ArgNum++; 10420 } 10421 } 10422 10423 // Returns true if the struct is a potential candidate for the floating point 10424 // calling convention. If this function returns true, the caller is 10425 // responsible for checking that if there is only a single field then that 10426 // field is a float. 10427 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10428 llvm::Type *&Field1Ty, 10429 CharUnits &Field1Off, 10430 llvm::Type *&Field2Ty, 10431 CharUnits &Field2Off) const { 10432 bool IsInt = Ty->isIntegralOrEnumerationType(); 10433 bool IsFloat = Ty->isRealFloatingType(); 10434 10435 if (IsInt || IsFloat) { 10436 uint64_t Size = getContext().getTypeSize(Ty); 10437 if (IsInt && Size > XLen) 10438 return false; 10439 // Can't be eligible if larger than the FP registers. Half precision isn't 10440 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10441 // default to the integer ABI in that case. 10442 if (IsFloat && (Size > FLen || Size < 32)) 10443 return false; 10444 // Can't be eligible if an integer type was already found (int+int pairs 10445 // are not eligible). 10446 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10447 return false; 10448 if (!Field1Ty) { 10449 Field1Ty = CGT.ConvertType(Ty); 10450 Field1Off = CurOff; 10451 return true; 10452 } 10453 if (!Field2Ty) { 10454 Field2Ty = CGT.ConvertType(Ty); 10455 Field2Off = CurOff; 10456 return true; 10457 } 10458 return false; 10459 } 10460 10461 if (auto CTy = Ty->getAs<ComplexType>()) { 10462 if (Field1Ty) 10463 return false; 10464 QualType EltTy = CTy->getElementType(); 10465 if (getContext().getTypeSize(EltTy) > FLen) 10466 return false; 10467 Field1Ty = CGT.ConvertType(EltTy); 10468 Field1Off = CurOff; 10469 assert(CurOff.isZero() && "Unexpected offset for first field"); 10470 Field2Ty = Field1Ty; 10471 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10472 return true; 10473 } 10474 10475 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10476 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10477 QualType EltTy = ATy->getElementType(); 10478 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10479 for (uint64_t i = 0; i < ArraySize; ++i) { 10480 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10481 Field1Off, Field2Ty, Field2Off); 10482 if (!Ret) 10483 return false; 10484 CurOff += EltSize; 10485 } 10486 return true; 10487 } 10488 10489 if (const auto *RTy = Ty->getAs<RecordType>()) { 10490 // Structures with either a non-trivial destructor or a non-trivial 10491 // copy constructor are not eligible for the FP calling convention. 10492 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10493 return false; 10494 if (isEmptyRecord(getContext(), Ty, true)) 10495 return true; 10496 const RecordDecl *RD = RTy->getDecl(); 10497 // Unions aren't eligible unless they're empty (which is caught above). 10498 if (RD->isUnion()) 10499 return false; 10500 int ZeroWidthBitFieldCount = 0; 10501 for (const FieldDecl *FD : RD->fields()) { 10502 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10503 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10504 QualType QTy = FD->getType(); 10505 if (FD->isBitField()) { 10506 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10507 // Allow a bitfield with a type greater than XLen as long as the 10508 // bitwidth is XLen or less. 10509 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10510 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10511 if (BitWidth == 0) { 10512 ZeroWidthBitFieldCount++; 10513 continue; 10514 } 10515 } 10516 10517 bool Ret = detectFPCCEligibleStructHelper( 10518 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10519 Field1Ty, Field1Off, Field2Ty, Field2Off); 10520 if (!Ret) 10521 return false; 10522 10523 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10524 // or int+fp structs, but are ignored for a struct with an fp field and 10525 // any number of zero-width bitfields. 10526 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10527 return false; 10528 } 10529 return Field1Ty != nullptr; 10530 } 10531 10532 return false; 10533 } 10534 10535 // Determine if a struct is eligible for passing according to the floating 10536 // point calling convention (i.e., when flattened it contains a single fp 10537 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10538 // NeededArgGPRs are incremented appropriately. 10539 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10540 CharUnits &Field1Off, 10541 llvm::Type *&Field2Ty, 10542 CharUnits &Field2Off, 10543 int &NeededArgGPRs, 10544 int &NeededArgFPRs) const { 10545 Field1Ty = nullptr; 10546 Field2Ty = nullptr; 10547 NeededArgGPRs = 0; 10548 NeededArgFPRs = 0; 10549 bool IsCandidate = detectFPCCEligibleStructHelper( 10550 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10551 // Not really a candidate if we have a single int but no float. 10552 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10553 return false; 10554 if (!IsCandidate) 10555 return false; 10556 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10557 NeededArgFPRs++; 10558 else if (Field1Ty) 10559 NeededArgGPRs++; 10560 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10561 NeededArgFPRs++; 10562 else if (Field2Ty) 10563 NeededArgGPRs++; 10564 return IsCandidate; 10565 } 10566 10567 // Call getCoerceAndExpand for the two-element flattened struct described by 10568 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10569 // appropriate coerceToType and unpaddedCoerceToType. 10570 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10571 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10572 CharUnits Field2Off) const { 10573 SmallVector<llvm::Type *, 3> CoerceElts; 10574 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10575 if (!Field1Off.isZero()) 10576 CoerceElts.push_back(llvm::ArrayType::get( 10577 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10578 10579 CoerceElts.push_back(Field1Ty); 10580 UnpaddedCoerceElts.push_back(Field1Ty); 10581 10582 if (!Field2Ty) { 10583 return ABIArgInfo::getCoerceAndExpand( 10584 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10585 UnpaddedCoerceElts[0]); 10586 } 10587 10588 CharUnits Field2Align = 10589 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10590 CharUnits Field1Size = 10591 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10592 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 10593 10594 CharUnits Padding = CharUnits::Zero(); 10595 if (Field2Off > Field2OffNoPadNoPack) 10596 Padding = Field2Off - Field2OffNoPadNoPack; 10597 else if (Field2Off != Field2Align && Field2Off > Field1Size) 10598 Padding = Field2Off - Field1Size; 10599 10600 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10601 10602 if (!Padding.isZero()) 10603 CoerceElts.push_back(llvm::ArrayType::get( 10604 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10605 10606 CoerceElts.push_back(Field2Ty); 10607 UnpaddedCoerceElts.push_back(Field2Ty); 10608 10609 auto CoerceToType = 10610 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10611 auto UnpaddedCoerceToType = 10612 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10613 10614 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10615 } 10616 10617 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10618 int &ArgGPRsLeft, 10619 int &ArgFPRsLeft) const { 10620 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10621 Ty = useFirstFieldIfTransparentUnion(Ty); 10622 10623 // Structures with either a non-trivial destructor or a non-trivial 10624 // copy constructor are always passed indirectly. 10625 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10626 if (ArgGPRsLeft) 10627 ArgGPRsLeft -= 1; 10628 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10629 CGCXXABI::RAA_DirectInMemory); 10630 } 10631 10632 // Ignore empty structs/unions. 10633 if (isEmptyRecord(getContext(), Ty, true)) 10634 return ABIArgInfo::getIgnore(); 10635 10636 uint64_t Size = getContext().getTypeSize(Ty); 10637 10638 // Pass floating point values via FPRs if possible. 10639 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10640 FLen >= Size && ArgFPRsLeft) { 10641 ArgFPRsLeft--; 10642 return ABIArgInfo::getDirect(); 10643 } 10644 10645 // Complex types for the hard float ABI must be passed direct rather than 10646 // using CoerceAndExpand. 10647 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10648 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10649 if (getContext().getTypeSize(EltTy) <= FLen) { 10650 ArgFPRsLeft -= 2; 10651 return ABIArgInfo::getDirect(); 10652 } 10653 } 10654 10655 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10656 llvm::Type *Field1Ty = nullptr; 10657 llvm::Type *Field2Ty = nullptr; 10658 CharUnits Field1Off = CharUnits::Zero(); 10659 CharUnits Field2Off = CharUnits::Zero(); 10660 int NeededArgGPRs; 10661 int NeededArgFPRs; 10662 bool IsCandidate = 10663 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10664 NeededArgGPRs, NeededArgFPRs); 10665 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10666 NeededArgFPRs <= ArgFPRsLeft) { 10667 ArgGPRsLeft -= NeededArgGPRs; 10668 ArgFPRsLeft -= NeededArgFPRs; 10669 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10670 Field2Off); 10671 } 10672 } 10673 10674 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10675 bool MustUseStack = false; 10676 // Determine the number of GPRs needed to pass the current argument 10677 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10678 // register pairs, so may consume 3 registers. 10679 int NeededArgGPRs = 1; 10680 if (!IsFixed && NeededAlign == 2 * XLen) 10681 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10682 else if (Size > XLen && Size <= 2 * XLen) 10683 NeededArgGPRs = 2; 10684 10685 if (NeededArgGPRs > ArgGPRsLeft) { 10686 MustUseStack = true; 10687 NeededArgGPRs = ArgGPRsLeft; 10688 } 10689 10690 ArgGPRsLeft -= NeededArgGPRs; 10691 10692 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10693 // Treat an enum type as its underlying type. 10694 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10695 Ty = EnumTy->getDecl()->getIntegerType(); 10696 10697 // All integral types are promoted to XLen width, unless passed on the 10698 // stack. 10699 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10700 return extendType(Ty); 10701 } 10702 10703 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10704 if (EIT->getNumBits() < XLen && !MustUseStack) 10705 return extendType(Ty); 10706 if (EIT->getNumBits() > 128 || 10707 (!getContext().getTargetInfo().hasInt128Type() && 10708 EIT->getNumBits() > 64)) 10709 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10710 } 10711 10712 return ABIArgInfo::getDirect(); 10713 } 10714 10715 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10716 // so coerce to integers. 10717 if (Size <= 2 * XLen) { 10718 unsigned Alignment = getContext().getTypeAlign(Ty); 10719 10720 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10721 // required, and a 2-element XLen array if only XLen alignment is required. 10722 if (Size <= XLen) { 10723 return ABIArgInfo::getDirect( 10724 llvm::IntegerType::get(getVMContext(), XLen)); 10725 } else if (Alignment == 2 * XLen) { 10726 return ABIArgInfo::getDirect( 10727 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10728 } else { 10729 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10730 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10731 } 10732 } 10733 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10734 } 10735 10736 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10737 if (RetTy->isVoidType()) 10738 return ABIArgInfo::getIgnore(); 10739 10740 int ArgGPRsLeft = 2; 10741 int ArgFPRsLeft = FLen ? 2 : 0; 10742 10743 // The rules for return and argument types are the same, so defer to 10744 // classifyArgumentType. 10745 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10746 ArgFPRsLeft); 10747 } 10748 10749 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10750 QualType Ty) const { 10751 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10752 10753 // Empty records are ignored for parameter passing purposes. 10754 if (isEmptyRecord(getContext(), Ty, true)) { 10755 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10756 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10757 return Addr; 10758 } 10759 10760 auto TInfo = getContext().getTypeInfoInChars(Ty); 10761 10762 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10763 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10764 10765 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10766 SlotSize, /*AllowHigherAlign=*/true); 10767 } 10768 10769 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10770 int TySize = getContext().getTypeSize(Ty); 10771 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10772 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10773 return ABIArgInfo::getSignExtend(Ty); 10774 return ABIArgInfo::getExtend(Ty); 10775 } 10776 10777 namespace { 10778 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10779 public: 10780 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10781 unsigned FLen) 10782 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10783 10784 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10785 CodeGen::CodeGenModule &CGM) const override { 10786 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10787 if (!FD) return; 10788 10789 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10790 if (!Attr) 10791 return; 10792 10793 const char *Kind; 10794 switch (Attr->getInterrupt()) { 10795 case RISCVInterruptAttr::user: Kind = "user"; break; 10796 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10797 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10798 } 10799 10800 auto *Fn = cast<llvm::Function>(GV); 10801 10802 Fn->addFnAttr("interrupt", Kind); 10803 } 10804 }; 10805 } // namespace 10806 10807 //===----------------------------------------------------------------------===// 10808 // VE ABI Implementation. 10809 // 10810 namespace { 10811 class VEABIInfo : public DefaultABIInfo { 10812 public: 10813 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10814 10815 private: 10816 ABIArgInfo classifyReturnType(QualType RetTy) const; 10817 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10818 void computeInfo(CGFunctionInfo &FI) const override; 10819 }; 10820 } // end anonymous namespace 10821 10822 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10823 if (Ty->isAnyComplexType()) 10824 return ABIArgInfo::getDirect(); 10825 uint64_t Size = getContext().getTypeSize(Ty); 10826 if (Size < 64 && Ty->isIntegerType()) 10827 return ABIArgInfo::getExtend(Ty); 10828 return DefaultABIInfo::classifyReturnType(Ty); 10829 } 10830 10831 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10832 if (Ty->isAnyComplexType()) 10833 return ABIArgInfo::getDirect(); 10834 uint64_t Size = getContext().getTypeSize(Ty); 10835 if (Size < 64 && Ty->isIntegerType()) 10836 return ABIArgInfo::getExtend(Ty); 10837 return DefaultABIInfo::classifyArgumentType(Ty); 10838 } 10839 10840 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10841 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10842 for (auto &Arg : FI.arguments()) 10843 Arg.info = classifyArgumentType(Arg.type); 10844 } 10845 10846 namespace { 10847 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10848 public: 10849 VETargetCodeGenInfo(CodeGenTypes &CGT) 10850 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10851 // VE ABI requires the arguments of variadic and prototype-less functions 10852 // are passed in both registers and memory. 10853 bool isNoProtoCallVariadic(const CallArgList &args, 10854 const FunctionNoProtoType *fnType) const override { 10855 return true; 10856 } 10857 }; 10858 } // end anonymous namespace 10859 10860 //===----------------------------------------------------------------------===// 10861 // Driver code 10862 //===----------------------------------------------------------------------===// 10863 10864 bool CodeGenModule::supportsCOMDAT() const { 10865 return getTriple().supportsCOMDAT(); 10866 } 10867 10868 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10869 if (TheTargetCodeGenInfo) 10870 return *TheTargetCodeGenInfo; 10871 10872 // Helper to set the unique_ptr while still keeping the return value. 10873 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10874 this->TheTargetCodeGenInfo.reset(P); 10875 return *P; 10876 }; 10877 10878 const llvm::Triple &Triple = getTarget().getTriple(); 10879 switch (Triple.getArch()) { 10880 default: 10881 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10882 10883 case llvm::Triple::le32: 10884 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10885 case llvm::Triple::mips: 10886 case llvm::Triple::mipsel: 10887 if (Triple.getOS() == llvm::Triple::NaCl) 10888 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10889 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10890 10891 case llvm::Triple::mips64: 10892 case llvm::Triple::mips64el: 10893 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10894 10895 case llvm::Triple::avr: 10896 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10897 10898 case llvm::Triple::aarch64: 10899 case llvm::Triple::aarch64_32: 10900 case llvm::Triple::aarch64_be: { 10901 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10902 if (getTarget().getABI() == "darwinpcs") 10903 Kind = AArch64ABIInfo::DarwinPCS; 10904 else if (Triple.isOSWindows()) 10905 return SetCGInfo( 10906 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10907 10908 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10909 } 10910 10911 case llvm::Triple::wasm32: 10912 case llvm::Triple::wasm64: { 10913 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10914 if (getTarget().getABI() == "experimental-mv") 10915 Kind = WebAssemblyABIInfo::ExperimentalMV; 10916 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10917 } 10918 10919 case llvm::Triple::arm: 10920 case llvm::Triple::armeb: 10921 case llvm::Triple::thumb: 10922 case llvm::Triple::thumbeb: { 10923 if (Triple.getOS() == llvm::Triple::Win32) { 10924 return SetCGInfo( 10925 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10926 } 10927 10928 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10929 StringRef ABIStr = getTarget().getABI(); 10930 if (ABIStr == "apcs-gnu") 10931 Kind = ARMABIInfo::APCS; 10932 else if (ABIStr == "aapcs16") 10933 Kind = ARMABIInfo::AAPCS16_VFP; 10934 else if (CodeGenOpts.FloatABI == "hard" || 10935 (CodeGenOpts.FloatABI != "soft" && 10936 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10937 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10938 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10939 Kind = ARMABIInfo::AAPCS_VFP; 10940 10941 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10942 } 10943 10944 case llvm::Triple::ppc: { 10945 if (Triple.isOSAIX()) 10946 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10947 10948 bool IsSoftFloat = 10949 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10950 bool RetSmallStructInRegABI = 10951 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10952 return SetCGInfo( 10953 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10954 } 10955 case llvm::Triple::ppc64: 10956 if (Triple.isOSAIX()) 10957 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10958 10959 if (Triple.isOSBinFormatELF()) { 10960 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10961 if (getTarget().getABI() == "elfv2") 10962 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10963 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10964 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10965 10966 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10967 IsSoftFloat)); 10968 } 10969 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10970 case llvm::Triple::ppc64le: { 10971 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10972 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10973 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10974 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10975 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10976 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10977 10978 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10979 IsSoftFloat)); 10980 } 10981 10982 case llvm::Triple::nvptx: 10983 case llvm::Triple::nvptx64: 10984 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10985 10986 case llvm::Triple::msp430: 10987 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10988 10989 case llvm::Triple::riscv32: 10990 case llvm::Triple::riscv64: { 10991 StringRef ABIStr = getTarget().getABI(); 10992 unsigned XLen = getTarget().getPointerWidth(0); 10993 unsigned ABIFLen = 0; 10994 if (ABIStr.endswith("f")) 10995 ABIFLen = 32; 10996 else if (ABIStr.endswith("d")) 10997 ABIFLen = 64; 10998 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10999 } 11000 11001 case llvm::Triple::systemz: { 11002 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11003 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11004 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11005 } 11006 11007 case llvm::Triple::tce: 11008 case llvm::Triple::tcele: 11009 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11010 11011 case llvm::Triple::x86: { 11012 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11013 bool RetSmallStructInRegABI = 11014 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11015 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11016 11017 if (Triple.getOS() == llvm::Triple::Win32) { 11018 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11019 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11020 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11021 } else { 11022 return SetCGInfo(new X86_32TargetCodeGenInfo( 11023 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11024 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11025 CodeGenOpts.FloatABI == "soft")); 11026 } 11027 } 11028 11029 case llvm::Triple::x86_64: { 11030 StringRef ABI = getTarget().getABI(); 11031 X86AVXABILevel AVXLevel = 11032 (ABI == "avx512" 11033 ? X86AVXABILevel::AVX512 11034 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11035 11036 switch (Triple.getOS()) { 11037 case llvm::Triple::Win32: 11038 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11039 default: 11040 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11041 } 11042 } 11043 case llvm::Triple::hexagon: 11044 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11045 case llvm::Triple::lanai: 11046 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11047 case llvm::Triple::r600: 11048 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11049 case llvm::Triple::amdgcn: 11050 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11051 case llvm::Triple::sparc: 11052 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11053 case llvm::Triple::sparcv9: 11054 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11055 case llvm::Triple::xcore: 11056 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11057 case llvm::Triple::arc: 11058 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11059 case llvm::Triple::spir: 11060 case llvm::Triple::spir64: 11061 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11062 case llvm::Triple::ve: 11063 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11064 } 11065 } 11066 11067 /// Create an OpenCL kernel for an enqueued block. 11068 /// 11069 /// The kernel has the same function type as the block invoke function. Its 11070 /// name is the name of the block invoke function postfixed with "_kernel". 11071 /// It simply calls the block invoke function then returns. 11072 llvm::Function * 11073 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11074 llvm::Function *Invoke, 11075 llvm::Value *BlockLiteral) const { 11076 auto *InvokeFT = Invoke->getFunctionType(); 11077 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11078 for (auto &P : InvokeFT->params()) 11079 ArgTys.push_back(P); 11080 auto &C = CGF.getLLVMContext(); 11081 std::string Name = Invoke->getName().str() + "_kernel"; 11082 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11083 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11084 &CGF.CGM.getModule()); 11085 auto IP = CGF.Builder.saveIP(); 11086 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11087 auto &Builder = CGF.Builder; 11088 Builder.SetInsertPoint(BB); 11089 llvm::SmallVector<llvm::Value *, 2> Args; 11090 for (auto &A : F->args()) 11091 Args.push_back(&A); 11092 Builder.CreateCall(Invoke, Args); 11093 Builder.CreateRetVoid(); 11094 Builder.restoreIP(IP); 11095 return F; 11096 } 11097 11098 /// Create an OpenCL kernel for an enqueued block. 11099 /// 11100 /// The type of the first argument (the block literal) is the struct type 11101 /// of the block literal instead of a pointer type. The first argument 11102 /// (block literal) is passed directly by value to the kernel. The kernel 11103 /// allocates the same type of struct on stack and stores the block literal 11104 /// to it and passes its pointer to the block invoke function. The kernel 11105 /// has "enqueued-block" function attribute and kernel argument metadata. 11106 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11107 CodeGenFunction &CGF, llvm::Function *Invoke, 11108 llvm::Value *BlockLiteral) const { 11109 auto &Builder = CGF.Builder; 11110 auto &C = CGF.getLLVMContext(); 11111 11112 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11113 auto *InvokeFT = Invoke->getFunctionType(); 11114 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11115 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11116 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11117 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11118 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11119 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11120 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11121 11122 ArgTys.push_back(BlockTy); 11123 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11124 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11125 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11126 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11127 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11128 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11129 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11130 ArgTys.push_back(InvokeFT->getParamType(I)); 11131 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11132 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11133 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11134 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11135 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11136 ArgNames.push_back( 11137 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11138 } 11139 std::string Name = Invoke->getName().str() + "_kernel"; 11140 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11141 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11142 &CGF.CGM.getModule()); 11143 F->addFnAttr("enqueued-block"); 11144 auto IP = CGF.Builder.saveIP(); 11145 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11146 Builder.SetInsertPoint(BB); 11147 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11148 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11149 BlockPtr->setAlignment(BlockAlign); 11150 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11151 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11152 llvm::SmallVector<llvm::Value *, 2> Args; 11153 Args.push_back(Cast); 11154 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11155 Args.push_back(I); 11156 Builder.CreateCall(Invoke, Args); 11157 Builder.CreateRetVoid(); 11158 Builder.restoreIP(IP); 11159 11160 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11161 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11162 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11163 F->setMetadata("kernel_arg_base_type", 11164 llvm::MDNode::get(C, ArgBaseTypeNames)); 11165 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11166 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11167 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11168 11169 return F; 11170 } 11171