1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
84                                             bool Realign,
85                                             llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
87                                  Realign, Padding);
88 }
89 
90 ABIArgInfo
91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByVal*/ false, Realign);
94 }
95 
96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case IndirectAliased:
261     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
262        << " AadrSpace=" << getIndirectAddrSpace()
263        << " Realign=" << getIndirectRealign();
264     break;
265   case Expand:
266     OS << "Expand";
267     break;
268   case CoerceAndExpand:
269     OS << "CoerceAndExpand Type=";
270     getCoerceAndExpandType()->print(OS);
271     break;
272   }
273   OS << ")\n";
274 }
275 
276 // Dynamically round a pointer up to a multiple of the given alignment.
277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
278                                                   llvm::Value *Ptr,
279                                                   CharUnits Align) {
280   llvm::Value *PtrAsInt = Ptr;
281   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
282   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
283   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
284         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
285   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
286            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
287   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
288                                         Ptr->getType(),
289                                         Ptr->getName() + ".aligned");
290   return PtrAsInt;
291 }
292 
293 /// Emit va_arg for a platform using the common void* representation,
294 /// where arguments are simply emitted in an array of slots on the stack.
295 ///
296 /// This version implements the core direct-value passing rules.
297 ///
298 /// \param SlotSize - The size and alignment of a stack slot.
299 ///   Each argument will be allocated to a multiple of this number of
300 ///   slots, and all the slots will be aligned to this value.
301 /// \param AllowHigherAlign - The slot alignment is not a cap;
302 ///   an argument type with an alignment greater than the slot size
303 ///   will be emitted on a higher-alignment address, potentially
304 ///   leaving one or more empty slots behind as padding.  If this
305 ///   is false, the returned address might be less-aligned than
306 ///   DirectAlign.
307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
308                                       Address VAListAddr,
309                                       llvm::Type *DirectTy,
310                                       CharUnits DirectSize,
311                                       CharUnits DirectAlign,
312                                       CharUnits SlotSize,
313                                       bool AllowHigherAlign) {
314   // Cast the element type to i8* if necessary.  Some platforms define
315   // va_list as a struct containing an i8* instead of just an i8*.
316   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
317     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
318 
319   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
320 
321   // If the CC aligns values higher than the slot size, do so if needed.
322   Address Addr = Address::invalid();
323   if (AllowHigherAlign && DirectAlign > SlotSize) {
324     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
325                                                  DirectAlign);
326   } else {
327     Addr = Address(Ptr, SlotSize);
328   }
329 
330   // Advance the pointer past the argument, then store that back.
331   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
332   Address NextPtr =
333       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
334   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
335 
336   // If the argument is smaller than a slot, and this is a big-endian
337   // target, the argument will be right-adjusted in its slot.
338   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
339       !DirectTy->isStructTy()) {
340     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
341   }
342 
343   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
344   return Addr;
345 }
346 
347 /// Emit va_arg for a platform using the common void* representation,
348 /// where arguments are simply emitted in an array of slots on the stack.
349 ///
350 /// \param IsIndirect - Values of this type are passed indirectly.
351 /// \param ValueInfo - The size and alignment of this type, generally
352 ///   computed with getContext().getTypeInfoInChars(ValueTy).
353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
354 ///   Each argument will be allocated to a multiple of this number of
355 ///   slots, and all the slots will be aligned to this value.
356 /// \param AllowHigherAlign - The slot alignment is not a cap;
357 ///   an argument type with an alignment greater than the slot size
358 ///   will be emitted on a higher-alignment address, potentially
359 ///   leaving one or more empty slots behind as padding.
360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
361                                 QualType ValueTy, bool IsIndirect,
362                                 TypeInfoChars ValueInfo,
363                                 CharUnits SlotSizeAndAlign,
364                                 bool AllowHigherAlign) {
365   // The size and alignment of the value that was passed directly.
366   CharUnits DirectSize, DirectAlign;
367   if (IsIndirect) {
368     DirectSize = CGF.getPointerSize();
369     DirectAlign = CGF.getPointerAlign();
370   } else {
371     DirectSize = ValueInfo.Width;
372     DirectAlign = ValueInfo.Align;
373   }
374 
375   // Cast the address we've calculated to the right type.
376   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
377   if (IsIndirect)
378     DirectTy = DirectTy->getPointerTo(0);
379 
380   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
381                                         DirectSize, DirectAlign,
382                                         SlotSizeAndAlign,
383                                         AllowHigherAlign);
384 
385   if (IsIndirect) {
386     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
387   }
388 
389   return Addr;
390 
391 }
392 
393 static Address emitMergePHI(CodeGenFunction &CGF,
394                             Address Addr1, llvm::BasicBlock *Block1,
395                             Address Addr2, llvm::BasicBlock *Block2,
396                             const llvm::Twine &Name = "") {
397   assert(Addr1.getType() == Addr2.getType());
398   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
399   PHI->addIncoming(Addr1.getPointer(), Block1);
400   PHI->addIncoming(Addr2.getPointer(), Block2);
401   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
402   return Address(PHI, Align);
403 }
404 
405 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
406 
407 // If someone can figure out a general rule for this, that would be great.
408 // It's probably just doomed to be platform-dependent, though.
409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
410   // Verified for:
411   //   x86-64     FreeBSD, Linux, Darwin
412   //   x86-32     FreeBSD, Linux, Darwin
413   //   PowerPC    Linux, Darwin
414   //   ARM        Darwin (*not* EABI)
415   //   AArch64    Linux
416   return 32;
417 }
418 
419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
420                                      const FunctionNoProtoType *fnType) const {
421   // The following conventions are known to require this to be false:
422   //   x86_stdcall
423   //   MIPS
424   // For everything else, we just prefer false unless we opt out.
425   return false;
426 }
427 
428 void
429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
430                                              llvm::SmallString<24> &Opt) const {
431   // This assumes the user is passing a library name like "rt" instead of a
432   // filename like "librt.a/so", and that they don't care whether it's static or
433   // dynamic.
434   Opt = "-l";
435   Opt += Lib;
436 }
437 
438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
439   // OpenCL kernels are called via an explicit runtime API with arguments
440   // set with clSetKernelArg(), not as normal sub-functions.
441   // Return SPIR_KERNEL by default as the kernel calling convention to
442   // ensure the fingerprint is fixed such way that each OpenCL argument
443   // gets one matching argument in the produced kernel function argument
444   // list to enable feasible implementation of clSetKernelArg() with
445   // aggregates etc. In case we would use the default C calling conv here,
446   // clSetKernelArg() might break depending on the target-specific
447   // conventions; different targets might split structs passed as values
448   // to multiple function arguments etc.
449   return llvm::CallingConv::SPIR_KERNEL;
450 }
451 
452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
453     llvm::PointerType *T, QualType QT) const {
454   return llvm::ConstantPointerNull::get(T);
455 }
456 
457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
458                                                    const VarDecl *D) const {
459   assert(!CGM.getLangOpts().OpenCL &&
460          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
461          "Address space agnostic languages only");
462   return D ? D->getType().getAddressSpace() : LangAS::Default;
463 }
464 
465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
466     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
467     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
468   // Since target may map different address spaces in AST to the same address
469   // space, an address space conversion may end up as a bitcast.
470   if (auto *C = dyn_cast<llvm::Constant>(Src))
471     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
472   // Try to preserve the source's name to make IR more readable.
473   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
474       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
475 }
476 
477 llvm::Constant *
478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
479                                         LangAS SrcAddr, LangAS DestAddr,
480                                         llvm::Type *DestTy) const {
481   // Since target may map different address spaces in AST to the same address
482   // space, an address space conversion may end up as a bitcast.
483   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
484 }
485 
486 llvm::SyncScope::ID
487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
488                                       SyncScope Scope,
489                                       llvm::AtomicOrdering Ordering,
490                                       llvm::LLVMContext &Ctx) const {
491   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
492 }
493 
494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
495 
496 /// isEmptyField - Return true iff a the field is "empty", that is it
497 /// is an unnamed bit-field or an (array of) empty record(s).
498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
499                          bool AllowArrays) {
500   if (FD->isUnnamedBitfield())
501     return true;
502 
503   QualType FT = FD->getType();
504 
505   // Constant arrays of empty records count as empty, strip them off.
506   // Constant arrays of zero length always count as empty.
507   bool WasArray = false;
508   if (AllowArrays)
509     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
510       if (AT->getSize() == 0)
511         return true;
512       FT = AT->getElementType();
513       // The [[no_unique_address]] special case below does not apply to
514       // arrays of C++ empty records, so we need to remember this fact.
515       WasArray = true;
516     }
517 
518   const RecordType *RT = FT->getAs<RecordType>();
519   if (!RT)
520     return false;
521 
522   // C++ record fields are never empty, at least in the Itanium ABI.
523   //
524   // FIXME: We should use a predicate for whether this behavior is true in the
525   // current ABI.
526   //
527   // The exception to the above rule are fields marked with the
528   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
529   // according to the Itanium ABI.  The exception applies only to records,
530   // not arrays of records, so we must also check whether we stripped off an
531   // array type above.
532   if (isa<CXXRecordDecl>(RT->getDecl()) &&
533       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
534     return false;
535 
536   return isEmptyRecord(Context, FT, AllowArrays);
537 }
538 
539 /// isEmptyRecord - Return true iff a structure contains only empty
540 /// fields. Note that a structure with a flexible array member is not
541 /// considered empty.
542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return false;
546   const RecordDecl *RD = RT->getDecl();
547   if (RD->hasFlexibleArrayMember())
548     return false;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
552     for (const auto &I : CXXRD->bases())
553       if (!isEmptyRecord(Context, I.getType(), true))
554         return false;
555 
556   for (const auto *I : RD->fields())
557     if (!isEmptyField(Context, I, AllowArrays))
558       return false;
559   return true;
560 }
561 
562 /// isSingleElementStruct - Determine if a structure is a "single
563 /// element struct", i.e. it has exactly one non-empty field or
564 /// exactly one field which is itself a single element
565 /// struct. Structures with flexible array members are never
566 /// considered single element structs.
567 ///
568 /// \return The field declaration for the single non-empty field, if
569 /// it exists.
570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
571   const RecordType *RT = T->getAs<RecordType>();
572   if (!RT)
573     return nullptr;
574 
575   const RecordDecl *RD = RT->getDecl();
576   if (RD->hasFlexibleArrayMember())
577     return nullptr;
578 
579   const Type *Found = nullptr;
580 
581   // If this is a C++ record, check the bases first.
582   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
583     for (const auto &I : CXXRD->bases()) {
584       // Ignore empty records.
585       if (isEmptyRecord(Context, I.getType(), true))
586         continue;
587 
588       // If we already found an element then this isn't a single-element struct.
589       if (Found)
590         return nullptr;
591 
592       // If this is non-empty and not a single element struct, the composite
593       // cannot be a single element struct.
594       Found = isSingleElementStruct(I.getType(), Context);
595       if (!Found)
596         return nullptr;
597     }
598   }
599 
600   // Check for single element.
601   for (const auto *FD : RD->fields()) {
602     QualType FT = FD->getType();
603 
604     // Ignore empty fields.
605     if (isEmptyField(Context, FD, true))
606       continue;
607 
608     // If we already found an element then this isn't a single-element
609     // struct.
610     if (Found)
611       return nullptr;
612 
613     // Treat single element arrays as the element.
614     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
615       if (AT->getSize().getZExtValue() != 1)
616         break;
617       FT = AT->getElementType();
618     }
619 
620     if (!isAggregateTypeForABI(FT)) {
621       Found = FT.getTypePtr();
622     } else {
623       Found = isSingleElementStruct(FT, Context);
624       if (!Found)
625         return nullptr;
626     }
627   }
628 
629   // We don't consider a struct a single-element struct if it has
630   // padding beyond the element type.
631   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
632     return nullptr;
633 
634   return Found;
635 }
636 
637 namespace {
638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
639                        const ABIArgInfo &AI) {
640   // This default implementation defers to the llvm backend's va_arg
641   // instruction. It can handle only passing arguments directly
642   // (typically only handled in the backend for primitive types), or
643   // aggregates passed indirectly by pointer (NOTE: if the "byval"
644   // flag has ABI impact in the callee, this implementation cannot
645   // work.)
646 
647   // Only a few cases are covered here at the moment -- those needed
648   // by the default abi.
649   llvm::Value *Val;
650 
651   if (AI.isIndirect()) {
652     assert(!AI.getPaddingType() &&
653            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
654     assert(
655         !AI.getIndirectRealign() &&
656         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
657 
658     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
659     CharUnits TyAlignForABI = TyInfo.Align;
660 
661     llvm::Type *BaseTy =
662         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
663     llvm::Value *Addr =
664         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
665     return Address(Addr, TyAlignForABI);
666   } else {
667     assert((AI.isDirect() || AI.isExtend()) &&
668            "Unexpected ArgInfo Kind in generic VAArg emitter!");
669 
670     assert(!AI.getInReg() &&
671            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
672     assert(!AI.getPaddingType() &&
673            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getDirectOffset() &&
675            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getCoerceToType() &&
677            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
678 
679     Address Temp = CGF.CreateMemTemp(Ty, "varet");
680     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
681     CGF.Builder.CreateStore(Val, Temp);
682     return Temp;
683   }
684 }
685 
686 /// DefaultABIInfo - The default implementation for ABI specific
687 /// details. This implementation provides information which results in
688 /// self-consistent and sensible LLVM IR generation, but does not
689 /// conform to any particular ABI.
690 class DefaultABIInfo : public ABIInfo {
691 public:
692   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
693 
694   ABIArgInfo classifyReturnType(QualType RetTy) const;
695   ABIArgInfo classifyArgumentType(QualType RetTy) const;
696 
697   void computeInfo(CGFunctionInfo &FI) const override {
698     if (!getCXXABI().classifyReturnType(FI))
699       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
700     for (auto &I : FI.arguments())
701       I.info = classifyArgumentType(I.type);
702   }
703 
704   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
705                     QualType Ty) const override {
706     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
707   }
708 };
709 
710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
711 public:
712   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
713       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
714 };
715 
716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
717   Ty = useFirstFieldIfTransparentUnion(Ty);
718 
719   if (isAggregateTypeForABI(Ty)) {
720     // Records with non-trivial destructors/copy-constructors should not be
721     // passed by value.
722     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
723       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
724 
725     return getNaturalAlignIndirect(Ty);
726   }
727 
728   // Treat an enum type as its underlying type.
729   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730     Ty = EnumTy->getDecl()->getIntegerType();
731 
732   ASTContext &Context = getContext();
733   if (const auto *EIT = Ty->getAs<ExtIntType>())
734     if (EIT->getNumBits() >
735         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
736                                 ? Context.Int128Ty
737                                 : Context.LongLongTy))
738       return getNaturalAlignIndirect(Ty);
739 
740   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
741                                             : ABIArgInfo::getDirect());
742 }
743 
744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
745   if (RetTy->isVoidType())
746     return ABIArgInfo::getIgnore();
747 
748   if (isAggregateTypeForABI(RetTy))
749     return getNaturalAlignIndirect(RetTy);
750 
751   // Treat an enum type as its underlying type.
752   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
753     RetTy = EnumTy->getDecl()->getIntegerType();
754 
755   if (const auto *EIT = RetTy->getAs<ExtIntType>())
756     if (EIT->getNumBits() >
757         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
758                                      ? getContext().Int128Ty
759                                      : getContext().LongLongTy))
760       return getNaturalAlignIndirect(RetTy);
761 
762   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
763                                                : ABIArgInfo::getDirect());
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // WebAssembly ABI Implementation
768 //
769 // This is a very simple ABI that relies a lot on DefaultABIInfo.
770 //===----------------------------------------------------------------------===//
771 
772 class WebAssemblyABIInfo final : public SwiftABIInfo {
773 public:
774   enum ABIKind {
775     MVP = 0,
776     ExperimentalMV = 1,
777   };
778 
779 private:
780   DefaultABIInfo defaultInfo;
781   ABIKind Kind;
782 
783 public:
784   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
785       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
786 
787 private:
788   ABIArgInfo classifyReturnType(QualType RetTy) const;
789   ABIArgInfo classifyArgumentType(QualType Ty) const;
790 
791   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
792   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
793   // overload them.
794   void computeInfo(CGFunctionInfo &FI) const override {
795     if (!getCXXABI().classifyReturnType(FI))
796       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
797     for (auto &Arg : FI.arguments())
798       Arg.info = classifyArgumentType(Arg.type);
799   }
800 
801   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
802                     QualType Ty) const override;
803 
804   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
805                                     bool asReturnValue) const override {
806     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
807   }
808 
809   bool isSwiftErrorInRegister() const override {
810     return false;
811   }
812 };
813 
814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
815 public:
816   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
817                                         WebAssemblyABIInfo::ABIKind K)
818       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
819 
820   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
821                            CodeGen::CodeGenModule &CGM) const override {
822     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
823     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
824       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
825         llvm::Function *Fn = cast<llvm::Function>(GV);
826         llvm::AttrBuilder B;
827         B.addAttribute("wasm-import-module", Attr->getImportModule());
828         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
829       }
830       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
831         llvm::Function *Fn = cast<llvm::Function>(GV);
832         llvm::AttrBuilder B;
833         B.addAttribute("wasm-import-name", Attr->getImportName());
834         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
835       }
836       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
837         llvm::Function *Fn = cast<llvm::Function>(GV);
838         llvm::AttrBuilder B;
839         B.addAttribute("wasm-export-name", Attr->getExportName());
840         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
841       }
842     }
843 
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
845       llvm::Function *Fn = cast<llvm::Function>(GV);
846       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
847         Fn->addFnAttr("no-prototype");
848     }
849   }
850 };
851 
852 /// Classify argument of given type \p Ty.
853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
854   Ty = useFirstFieldIfTransparentUnion(Ty);
855 
856   if (isAggregateTypeForABI(Ty)) {
857     // Records with non-trivial destructors/copy-constructors should not be
858     // passed by value.
859     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     // Ignore empty structs/unions.
862     if (isEmptyRecord(getContext(), Ty, true))
863       return ABIArgInfo::getIgnore();
864     // Lower single-element structs to just pass a regular value. TODO: We
865     // could do reasonable-size multiple-element structs too, using getExpand(),
866     // though watch out for things like bitfields.
867     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
868       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
869     // For the experimental multivalue ABI, fully expand all other aggregates
870     if (Kind == ABIKind::ExperimentalMV) {
871       const RecordType *RT = Ty->getAs<RecordType>();
872       assert(RT);
873       bool HasBitField = false;
874       for (auto *Field : RT->getDecl()->fields()) {
875         if (Field->isBitField()) {
876           HasBitField = true;
877           break;
878         }
879       }
880       if (!HasBitField)
881         return ABIArgInfo::getExpand();
882     }
883   }
884 
885   // Otherwise just do the default thing.
886   return defaultInfo.classifyArgumentType(Ty);
887 }
888 
889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
890   if (isAggregateTypeForABI(RetTy)) {
891     // Records with non-trivial destructors/copy-constructors should not be
892     // returned by value.
893     if (!getRecordArgABI(RetTy, getCXXABI())) {
894       // Ignore empty structs/unions.
895       if (isEmptyRecord(getContext(), RetTy, true))
896         return ABIArgInfo::getIgnore();
897       // Lower single-element structs to just return a regular value. TODO: We
898       // could do reasonable-size multiple-element structs too, using
899       // ABIArgInfo::getDirect().
900       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
901         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
902       // For the experimental multivalue ABI, return all other aggregates
903       if (Kind == ABIKind::ExperimentalMV)
904         return ABIArgInfo::getDirect();
905     }
906   }
907 
908   // Otherwise just do the default thing.
909   return defaultInfo.classifyReturnType(RetTy);
910 }
911 
912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
913                                       QualType Ty) const {
914   bool IsIndirect = isAggregateTypeForABI(Ty) &&
915                     !isEmptyRecord(getContext(), Ty, true) &&
916                     !isSingleElementStruct(Ty, getContext());
917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
918                           getContext().getTypeInfoInChars(Ty),
919                           CharUnits::fromQuantity(4),
920                           /*AllowHigherAlign=*/true);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 // le32/PNaCl bitcode ABI Implementation
925 //
926 // This is a simplified version of the x86_32 ABI.  Arguments and return values
927 // are always passed on the stack.
928 //===----------------------------------------------------------------------===//
929 
930 class PNaClABIInfo : public ABIInfo {
931  public:
932   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
933 
934   ABIArgInfo classifyReturnType(QualType RetTy) const;
935   ABIArgInfo classifyArgumentType(QualType RetTy) const;
936 
937   void computeInfo(CGFunctionInfo &FI) const override;
938   Address EmitVAArg(CodeGenFunction &CGF,
939                     Address VAListAddr, QualType Ty) const override;
940 };
941 
942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
943  public:
944    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
945        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
946 };
947 
948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
949   if (!getCXXABI().classifyReturnType(FI))
950     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
951 
952   for (auto &I : FI.arguments())
953     I.info = classifyArgumentType(I.type);
954 }
955 
956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
957                                 QualType Ty) const {
958   // The PNaCL ABI is a bit odd, in that varargs don't use normal
959   // function classification. Structs get passed directly for varargs
960   // functions, through a rewriting transform in
961   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
962   // this target to actually support a va_arg instructions with an
963   // aggregate type, unlike other targets.
964   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
965 }
966 
967 /// Classify argument of given type \p Ty.
968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
969   if (isAggregateTypeForABI(Ty)) {
970     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
971       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
972     return getNaturalAlignIndirect(Ty);
973   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
974     // Treat an enum type as its underlying type.
975     Ty = EnumTy->getDecl()->getIntegerType();
976   } else if (Ty->isFloatingType()) {
977     // Floating-point types don't go inreg.
978     return ABIArgInfo::getDirect();
979   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
980     // Treat extended integers as integers if <=64, otherwise pass indirectly.
981     if (EIT->getNumBits() > 64)
982       return getNaturalAlignIndirect(Ty);
983     return ABIArgInfo::getDirect();
984   }
985 
986   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
987                                             : ABIArgInfo::getDirect());
988 }
989 
990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
991   if (RetTy->isVoidType())
992     return ABIArgInfo::getIgnore();
993 
994   // In the PNaCl ABI we always return records/structures on the stack.
995   if (isAggregateTypeForABI(RetTy))
996     return getNaturalAlignIndirect(RetTy);
997 
998   // Treat extended integers as integers if <=64, otherwise pass indirectly.
999   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1000     if (EIT->getNumBits() > 64)
1001       return getNaturalAlignIndirect(RetTy);
1002     return ABIArgInfo::getDirect();
1003   }
1004 
1005   // Treat an enum type as its underlying type.
1006   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1007     RetTy = EnumTy->getDecl()->getIntegerType();
1008 
1009   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1010                                                : ABIArgInfo::getDirect());
1011 }
1012 
1013 /// IsX86_MMXType - Return true if this is an MMX type.
1014 bool IsX86_MMXType(llvm::Type *IRType) {
1015   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1016   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1017     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1018     IRType->getScalarSizeInBits() != 64;
1019 }
1020 
1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1022                                           StringRef Constraint,
1023                                           llvm::Type* Ty) {
1024   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1025                      .Cases("y", "&y", "^Ym", true)
1026                      .Default(false);
1027   if (IsMMXCons && Ty->isVectorTy()) {
1028     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1029         64) {
1030       // Invalid MMX constraint
1031       return nullptr;
1032     }
1033 
1034     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1035   }
1036 
1037   // No operation needed
1038   return Ty;
1039 }
1040 
1041 /// Returns true if this type can be passed in SSE registers with the
1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1044   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1045     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1046       if (BT->getKind() == BuiltinType::LongDouble) {
1047         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1048             &llvm::APFloat::x87DoubleExtended())
1049           return false;
1050       }
1051       return true;
1052     }
1053   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1054     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1055     // registers specially.
1056     unsigned VecSize = Context.getTypeSize(VT);
1057     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1058       return true;
1059   }
1060   return false;
1061 }
1062 
1063 /// Returns true if this aggregate is small enough to be passed in SSE registers
1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1066   return NumMembers <= 4;
1067 }
1068 
1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1071   auto AI = ABIArgInfo::getDirect(T);
1072   AI.setInReg(true);
1073   AI.setCanBeFlattened(false);
1074   return AI;
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 // X86-32 ABI Implementation
1079 //===----------------------------------------------------------------------===//
1080 
1081 /// Similar to llvm::CCState, but for Clang.
1082 struct CCState {
1083   CCState(CGFunctionInfo &FI)
1084       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1085 
1086   llvm::SmallBitVector IsPreassigned;
1087   unsigned CC = CallingConv::CC_C;
1088   unsigned FreeRegs = 0;
1089   unsigned FreeSSERegs = 0;
1090 };
1091 
1092 enum {
1093   // Vectorcall only allows the first 6 parameters to be passed in registers.
1094   VectorcallMaxParamNumAsReg = 6
1095 };
1096 
1097 /// X86_32ABIInfo - The X86-32 ABI information.
1098 class X86_32ABIInfo : public SwiftABIInfo {
1099   enum Class {
1100     Integer,
1101     Float
1102   };
1103 
1104   static const unsigned MinABIStackAlignInBytes = 4;
1105 
1106   bool IsDarwinVectorABI;
1107   bool IsRetSmallStructInRegABI;
1108   bool IsWin32StructABI;
1109   bool IsSoftFloatABI;
1110   bool IsMCUABI;
1111   unsigned DefaultNumRegisterParameters;
1112 
1113   static bool isRegisterSize(unsigned Size) {
1114     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1115   }
1116 
1117   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1118     // FIXME: Assumes vectorcall is in use.
1119     return isX86VectorTypeForVectorCall(getContext(), Ty);
1120   }
1121 
1122   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1123                                          uint64_t NumMembers) const override {
1124     // FIXME: Assumes vectorcall is in use.
1125     return isX86VectorCallAggregateSmallEnough(NumMembers);
1126   }
1127 
1128   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1129 
1130   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1131   /// such that the argument will be passed in memory.
1132   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1133 
1134   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1135 
1136   /// Return the alignment to use for the given type on the stack.
1137   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1138 
1139   Class classify(QualType Ty) const;
1140   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1141   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1142 
1143   /// Updates the number of available free registers, returns
1144   /// true if any registers were allocated.
1145   bool updateFreeRegs(QualType Ty, CCState &State) const;
1146 
1147   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1148                                 bool &NeedsPadding) const;
1149   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1150 
1151   bool canExpandIndirectArgument(QualType Ty) const;
1152 
1153   /// Rewrite the function info so that all memory arguments use
1154   /// inalloca.
1155   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1156 
1157   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1158                            CharUnits &StackOffset, ABIArgInfo &Info,
1159                            QualType Type) const;
1160   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1161 
1162 public:
1163 
1164   void computeInfo(CGFunctionInfo &FI) const override;
1165   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1166                     QualType Ty) const override;
1167 
1168   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1169                 bool RetSmallStructInRegABI, bool Win32StructABI,
1170                 unsigned NumRegisterParameters, bool SoftFloatABI)
1171     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1172       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1173       IsWin32StructABI(Win32StructABI),
1174       IsSoftFloatABI(SoftFloatABI),
1175       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1176       DefaultNumRegisterParameters(NumRegisterParameters) {}
1177 
1178   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1179                                     bool asReturnValue) const override {
1180     // LLVM's x86-32 lowering currently only assigns up to three
1181     // integer registers and three fp registers.  Oddly, it'll use up to
1182     // four vector registers for vectors, but those can overlap with the
1183     // scalar registers.
1184     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1185   }
1186 
1187   bool isSwiftErrorInRegister() const override {
1188     // x86-32 lowering does not support passing swifterror in a register.
1189     return false;
1190   }
1191 };
1192 
1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1194 public:
1195   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1196                           bool RetSmallStructInRegABI, bool Win32StructABI,
1197                           unsigned NumRegisterParameters, bool SoftFloatABI)
1198       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1199             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1200             NumRegisterParameters, SoftFloatABI)) {}
1201 
1202   static bool isStructReturnInRegABI(
1203       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1204 
1205   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1206                            CodeGen::CodeGenModule &CGM) const override;
1207 
1208   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1209     // Darwin uses different dwarf register numbers for EH.
1210     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1211     return 4;
1212   }
1213 
1214   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1215                                llvm::Value *Address) const override;
1216 
1217   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1218                                   StringRef Constraint,
1219                                   llvm::Type* Ty) const override {
1220     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1221   }
1222 
1223   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1224                                 std::string &Constraints,
1225                                 std::vector<llvm::Type *> &ResultRegTypes,
1226                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1227                                 std::vector<LValue> &ResultRegDests,
1228                                 std::string &AsmString,
1229                                 unsigned NumOutputs) const override;
1230 
1231   llvm::Constant *
1232   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1233     unsigned Sig = (0xeb << 0) |  // jmp rel8
1234                    (0x06 << 8) |  //           .+0x08
1235                    ('v' << 16) |
1236                    ('2' << 24);
1237     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1238   }
1239 
1240   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1241     return "movl\t%ebp, %ebp"
1242            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1243   }
1244 };
1245 
1246 }
1247 
1248 /// Rewrite input constraint references after adding some output constraints.
1249 /// In the case where there is one output and one input and we add one output,
1250 /// we need to replace all operand references greater than or equal to 1:
1251 ///     mov $0, $1
1252 ///     mov eax, $1
1253 /// The result will be:
1254 ///     mov $0, $2
1255 ///     mov eax, $2
1256 static void rewriteInputConstraintReferences(unsigned FirstIn,
1257                                              unsigned NumNewOuts,
1258                                              std::string &AsmString) {
1259   std::string Buf;
1260   llvm::raw_string_ostream OS(Buf);
1261   size_t Pos = 0;
1262   while (Pos < AsmString.size()) {
1263     size_t DollarStart = AsmString.find('$', Pos);
1264     if (DollarStart == std::string::npos)
1265       DollarStart = AsmString.size();
1266     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1267     if (DollarEnd == std::string::npos)
1268       DollarEnd = AsmString.size();
1269     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1270     Pos = DollarEnd;
1271     size_t NumDollars = DollarEnd - DollarStart;
1272     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1273       // We have an operand reference.
1274       size_t DigitStart = Pos;
1275       if (AsmString[DigitStart] == '{') {
1276         OS << '{';
1277         ++DigitStart;
1278       }
1279       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1280       if (DigitEnd == std::string::npos)
1281         DigitEnd = AsmString.size();
1282       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1283       unsigned OperandIndex;
1284       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1285         if (OperandIndex >= FirstIn)
1286           OperandIndex += NumNewOuts;
1287         OS << OperandIndex;
1288       } else {
1289         OS << OperandStr;
1290       }
1291       Pos = DigitEnd;
1292     }
1293   }
1294   AsmString = std::move(OS.str());
1295 }
1296 
1297 /// Add output constraints for EAX:EDX because they are return registers.
1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1299     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1300     std::vector<llvm::Type *> &ResultRegTypes,
1301     std::vector<llvm::Type *> &ResultTruncRegTypes,
1302     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1303     unsigned NumOutputs) const {
1304   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1305 
1306   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1307   // larger.
1308   if (!Constraints.empty())
1309     Constraints += ',';
1310   if (RetWidth <= 32) {
1311     Constraints += "={eax}";
1312     ResultRegTypes.push_back(CGF.Int32Ty);
1313   } else {
1314     // Use the 'A' constraint for EAX:EDX.
1315     Constraints += "=A";
1316     ResultRegTypes.push_back(CGF.Int64Ty);
1317   }
1318 
1319   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1320   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1321   ResultTruncRegTypes.push_back(CoerceTy);
1322 
1323   // Coerce the integer by bitcasting the return slot pointer.
1324   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1325                                                   CoerceTy->getPointerTo()));
1326   ResultRegDests.push_back(ReturnSlot);
1327 
1328   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1329 }
1330 
1331 /// shouldReturnTypeInRegister - Determine if the given type should be
1332 /// returned in a register (for the Darwin and MCU ABI).
1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1334                                                ASTContext &Context) const {
1335   uint64_t Size = Context.getTypeSize(Ty);
1336 
1337   // For i386, type must be register sized.
1338   // For the MCU ABI, it only needs to be <= 8-byte
1339   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1340    return false;
1341 
1342   if (Ty->isVectorType()) {
1343     // 64- and 128- bit vectors inside structures are not returned in
1344     // registers.
1345     if (Size == 64 || Size == 128)
1346       return false;
1347 
1348     return true;
1349   }
1350 
1351   // If this is a builtin, pointer, enum, complex type, member pointer, or
1352   // member function pointer it is ok.
1353   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1354       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1355       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1356     return true;
1357 
1358   // Arrays are treated like records.
1359   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1360     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1361 
1362   // Otherwise, it must be a record type.
1363   const RecordType *RT = Ty->getAs<RecordType>();
1364   if (!RT) return false;
1365 
1366   // FIXME: Traverse bases here too.
1367 
1368   // Structure types are passed in register if all fields would be
1369   // passed in a register.
1370   for (const auto *FD : RT->getDecl()->fields()) {
1371     // Empty fields are ignored.
1372     if (isEmptyField(Context, FD, true))
1373       continue;
1374 
1375     // Check fields recursively.
1376     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1377       return false;
1378   }
1379   return true;
1380 }
1381 
1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1383   // Treat complex types as the element type.
1384   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1385     Ty = CTy->getElementType();
1386 
1387   // Check for a type which we know has a simple scalar argument-passing
1388   // convention without any padding.  (We're specifically looking for 32
1389   // and 64-bit integer and integer-equivalents, float, and double.)
1390   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1391       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1392     return false;
1393 
1394   uint64_t Size = Context.getTypeSize(Ty);
1395   return Size == 32 || Size == 64;
1396 }
1397 
1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1399                           uint64_t &Size) {
1400   for (const auto *FD : RD->fields()) {
1401     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1402     // argument is smaller than 32-bits, expanding the struct will create
1403     // alignment padding.
1404     if (!is32Or64BitBasicType(FD->getType(), Context))
1405       return false;
1406 
1407     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1408     // how to expand them yet, and the predicate for telling if a bitfield still
1409     // counts as "basic" is more complicated than what we were doing previously.
1410     if (FD->isBitField())
1411       return false;
1412 
1413     Size += Context.getTypeSize(FD->getType());
1414   }
1415   return true;
1416 }
1417 
1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1419                                  uint64_t &Size) {
1420   // Don't do this if there are any non-empty bases.
1421   for (const CXXBaseSpecifier &Base : RD->bases()) {
1422     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1423                               Size))
1424       return false;
1425   }
1426   if (!addFieldSizes(Context, RD, Size))
1427     return false;
1428   return true;
1429 }
1430 
1431 /// Test whether an argument type which is to be passed indirectly (on the
1432 /// stack) would have the equivalent layout if it was expanded into separate
1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1434 /// optimizations.
1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1436   // We can only expand structure types.
1437   const RecordType *RT = Ty->getAs<RecordType>();
1438   if (!RT)
1439     return false;
1440   const RecordDecl *RD = RT->getDecl();
1441   uint64_t Size = 0;
1442   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1443     if (!IsWin32StructABI) {
1444       // On non-Windows, we have to conservatively match our old bitcode
1445       // prototypes in order to be ABI-compatible at the bitcode level.
1446       if (!CXXRD->isCLike())
1447         return false;
1448     } else {
1449       // Don't do this for dynamic classes.
1450       if (CXXRD->isDynamicClass())
1451         return false;
1452     }
1453     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1454       return false;
1455   } else {
1456     if (!addFieldSizes(getContext(), RD, Size))
1457       return false;
1458   }
1459 
1460   // We can do this if there was no alignment padding.
1461   return Size == getContext().getTypeSize(Ty);
1462 }
1463 
1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1465   // If the return value is indirect, then the hidden argument is consuming one
1466   // integer register.
1467   if (State.FreeRegs) {
1468     --State.FreeRegs;
1469     if (!IsMCUABI)
1470       return getNaturalAlignIndirectInReg(RetTy);
1471   }
1472   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1473 }
1474 
1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1476                                              CCState &State) const {
1477   if (RetTy->isVoidType())
1478     return ABIArgInfo::getIgnore();
1479 
1480   const Type *Base = nullptr;
1481   uint64_t NumElts = 0;
1482   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1483        State.CC == llvm::CallingConv::X86_RegCall) &&
1484       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1485     // The LLVM struct type for such an aggregate should lower properly.
1486     return ABIArgInfo::getDirect();
1487   }
1488 
1489   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1490     // On Darwin, some vectors are returned in registers.
1491     if (IsDarwinVectorABI) {
1492       uint64_t Size = getContext().getTypeSize(RetTy);
1493 
1494       // 128-bit vectors are a special case; they are returned in
1495       // registers and we need to make sure to pick a type the LLVM
1496       // backend will like.
1497       if (Size == 128)
1498         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1499             llvm::Type::getInt64Ty(getVMContext()), 2));
1500 
1501       // Always return in register if it fits in a general purpose
1502       // register, or if it is 64 bits and has a single element.
1503       if ((Size == 8 || Size == 16 || Size == 32) ||
1504           (Size == 64 && VT->getNumElements() == 1))
1505         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1506                                                             Size));
1507 
1508       return getIndirectReturnResult(RetTy, State);
1509     }
1510 
1511     return ABIArgInfo::getDirect();
1512   }
1513 
1514   if (isAggregateTypeForABI(RetTy)) {
1515     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1516       // Structures with flexible arrays are always indirect.
1517       if (RT->getDecl()->hasFlexibleArrayMember())
1518         return getIndirectReturnResult(RetTy, State);
1519     }
1520 
1521     // If specified, structs and unions are always indirect.
1522     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1523       return getIndirectReturnResult(RetTy, State);
1524 
1525     // Ignore empty structs/unions.
1526     if (isEmptyRecord(getContext(), RetTy, true))
1527       return ABIArgInfo::getIgnore();
1528 
1529     // Small structures which are register sized are generally returned
1530     // in a register.
1531     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1532       uint64_t Size = getContext().getTypeSize(RetTy);
1533 
1534       // As a special-case, if the struct is a "single-element" struct, and
1535       // the field is of type "float" or "double", return it in a
1536       // floating-point register. (MSVC does not apply this special case.)
1537       // We apply a similar transformation for pointer types to improve the
1538       // quality of the generated IR.
1539       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1540         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1541             || SeltTy->hasPointerRepresentation())
1542           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1543 
1544       // FIXME: We should be able to narrow this integer in cases with dead
1545       // padding.
1546       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1547     }
1548 
1549     return getIndirectReturnResult(RetTy, State);
1550   }
1551 
1552   // Treat an enum type as its underlying type.
1553   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1554     RetTy = EnumTy->getDecl()->getIntegerType();
1555 
1556   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1557     if (EIT->getNumBits() > 64)
1558       return getIndirectReturnResult(RetTy, State);
1559 
1560   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1561                                                : ABIArgInfo::getDirect());
1562 }
1563 
1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1565   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1566 }
1567 
1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1569   const RecordType *RT = Ty->getAs<RecordType>();
1570   if (!RT)
1571     return 0;
1572   const RecordDecl *RD = RT->getDecl();
1573 
1574   // If this is a C++ record, check the bases first.
1575   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1576     for (const auto &I : CXXRD->bases())
1577       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1578         return false;
1579 
1580   for (const auto *i : RD->fields()) {
1581     QualType FT = i->getType();
1582 
1583     if (isSIMDVectorType(Context, FT))
1584       return true;
1585 
1586     if (isRecordWithSIMDVectorType(Context, FT))
1587       return true;
1588   }
1589 
1590   return false;
1591 }
1592 
1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1594                                                  unsigned Align) const {
1595   // Otherwise, if the alignment is less than or equal to the minimum ABI
1596   // alignment, just use the default; the backend will handle this.
1597   if (Align <= MinABIStackAlignInBytes)
1598     return 0; // Use default alignment.
1599 
1600   // On non-Darwin, the stack type alignment is always 4.
1601   if (!IsDarwinVectorABI) {
1602     // Set explicit alignment, since we may need to realign the top.
1603     return MinABIStackAlignInBytes;
1604   }
1605 
1606   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1607   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1608                       isRecordWithSIMDVectorType(getContext(), Ty)))
1609     return 16;
1610 
1611   return MinABIStackAlignInBytes;
1612 }
1613 
1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1615                                             CCState &State) const {
1616   if (!ByVal) {
1617     if (State.FreeRegs) {
1618       --State.FreeRegs; // Non-byval indirects just use one pointer.
1619       if (!IsMCUABI)
1620         return getNaturalAlignIndirectInReg(Ty);
1621     }
1622     return getNaturalAlignIndirect(Ty, false);
1623   }
1624 
1625   // Compute the byval alignment.
1626   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1627   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1628   if (StackAlign == 0)
1629     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1630 
1631   // If the stack alignment is less than the type alignment, realign the
1632   // argument.
1633   bool Realign = TypeAlign > StackAlign;
1634   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1635                                  /*ByVal=*/true, Realign);
1636 }
1637 
1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1639   const Type *T = isSingleElementStruct(Ty, getContext());
1640   if (!T)
1641     T = Ty.getTypePtr();
1642 
1643   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1644     BuiltinType::Kind K = BT->getKind();
1645     if (K == BuiltinType::Float || K == BuiltinType::Double)
1646       return Float;
1647   }
1648   return Integer;
1649 }
1650 
1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1652   if (!IsSoftFloatABI) {
1653     Class C = classify(Ty);
1654     if (C == Float)
1655       return false;
1656   }
1657 
1658   unsigned Size = getContext().getTypeSize(Ty);
1659   unsigned SizeInRegs = (Size + 31) / 32;
1660 
1661   if (SizeInRegs == 0)
1662     return false;
1663 
1664   if (!IsMCUABI) {
1665     if (SizeInRegs > State.FreeRegs) {
1666       State.FreeRegs = 0;
1667       return false;
1668     }
1669   } else {
1670     // The MCU psABI allows passing parameters in-reg even if there are
1671     // earlier parameters that are passed on the stack. Also,
1672     // it does not allow passing >8-byte structs in-register,
1673     // even if there are 3 free registers available.
1674     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1675       return false;
1676   }
1677 
1678   State.FreeRegs -= SizeInRegs;
1679   return true;
1680 }
1681 
1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1683                                              bool &InReg,
1684                                              bool &NeedsPadding) const {
1685   // On Windows, aggregates other than HFAs are never passed in registers, and
1686   // they do not consume register slots. Homogenous floating-point aggregates
1687   // (HFAs) have already been dealt with at this point.
1688   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1689     return false;
1690 
1691   NeedsPadding = false;
1692   InReg = !IsMCUABI;
1693 
1694   if (!updateFreeRegs(Ty, State))
1695     return false;
1696 
1697   if (IsMCUABI)
1698     return true;
1699 
1700   if (State.CC == llvm::CallingConv::X86_FastCall ||
1701       State.CC == llvm::CallingConv::X86_VectorCall ||
1702       State.CC == llvm::CallingConv::X86_RegCall) {
1703     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1704       NeedsPadding = true;
1705 
1706     return false;
1707   }
1708 
1709   return true;
1710 }
1711 
1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1713   if (!updateFreeRegs(Ty, State))
1714     return false;
1715 
1716   if (IsMCUABI)
1717     return false;
1718 
1719   if (State.CC == llvm::CallingConv::X86_FastCall ||
1720       State.CC == llvm::CallingConv::X86_VectorCall ||
1721       State.CC == llvm::CallingConv::X86_RegCall) {
1722     if (getContext().getTypeSize(Ty) > 32)
1723       return false;
1724 
1725     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1726         Ty->isReferenceType());
1727   }
1728 
1729   return true;
1730 }
1731 
1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1733   // Vectorcall x86 works subtly different than in x64, so the format is
1734   // a bit different than the x64 version.  First, all vector types (not HVAs)
1735   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1736   // This differs from the x64 implementation, where the first 6 by INDEX get
1737   // registers.
1738   // In the second pass over the arguments, HVAs are passed in the remaining
1739   // vector registers if possible, or indirectly by address. The address will be
1740   // passed in ECX/EDX if available. Any other arguments are passed according to
1741   // the usual fastcall rules.
1742   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1743   for (int I = 0, E = Args.size(); I < E; ++I) {
1744     const Type *Base = nullptr;
1745     uint64_t NumElts = 0;
1746     const QualType &Ty = Args[I].type;
1747     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1748         isHomogeneousAggregate(Ty, Base, NumElts)) {
1749       if (State.FreeSSERegs >= NumElts) {
1750         State.FreeSSERegs -= NumElts;
1751         Args[I].info = ABIArgInfo::getDirectInReg();
1752         State.IsPreassigned.set(I);
1753       }
1754     }
1755   }
1756 }
1757 
1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1759                                                CCState &State) const {
1760   // FIXME: Set alignment on indirect arguments.
1761   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1762   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1763   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1764 
1765   Ty = useFirstFieldIfTransparentUnion(Ty);
1766   TypeInfo TI = getContext().getTypeInfo(Ty);
1767 
1768   // Check with the C++ ABI first.
1769   const RecordType *RT = Ty->getAs<RecordType>();
1770   if (RT) {
1771     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1772     if (RAA == CGCXXABI::RAA_Indirect) {
1773       return getIndirectResult(Ty, false, State);
1774     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1775       // The field index doesn't matter, we'll fix it up later.
1776       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1777     }
1778   }
1779 
1780   // Regcall uses the concept of a homogenous vector aggregate, similar
1781   // to other targets.
1782   const Type *Base = nullptr;
1783   uint64_t NumElts = 0;
1784   if ((IsRegCall || IsVectorCall) &&
1785       isHomogeneousAggregate(Ty, Base, NumElts)) {
1786     if (State.FreeSSERegs >= NumElts) {
1787       State.FreeSSERegs -= NumElts;
1788 
1789       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1790       // does.
1791       if (IsVectorCall)
1792         return getDirectX86Hva();
1793 
1794       if (Ty->isBuiltinType() || Ty->isVectorType())
1795         return ABIArgInfo::getDirect();
1796       return ABIArgInfo::getExpand();
1797     }
1798     return getIndirectResult(Ty, /*ByVal=*/false, State);
1799   }
1800 
1801   if (isAggregateTypeForABI(Ty)) {
1802     // Structures with flexible arrays are always indirect.
1803     // FIXME: This should not be byval!
1804     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1805       return getIndirectResult(Ty, true, State);
1806 
1807     // Ignore empty structs/unions on non-Windows.
1808     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1809       return ABIArgInfo::getIgnore();
1810 
1811     llvm::LLVMContext &LLVMContext = getVMContext();
1812     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1813     bool NeedsPadding = false;
1814     bool InReg;
1815     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1816       unsigned SizeInRegs = (TI.Width + 31) / 32;
1817       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1818       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1819       if (InReg)
1820         return ABIArgInfo::getDirectInReg(Result);
1821       else
1822         return ABIArgInfo::getDirect(Result);
1823     }
1824     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1825 
1826     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1827     // added in MSVC 2015.
1828     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1829       return getIndirectResult(Ty, /*ByVal=*/false, State);
1830 
1831     // Expand small (<= 128-bit) record types when we know that the stack layout
1832     // of those arguments will match the struct. This is important because the
1833     // LLVM backend isn't smart enough to remove byval, which inhibits many
1834     // optimizations.
1835     // Don't do this for the MCU if there are still free integer registers
1836     // (see X86_64 ABI for full explanation).
1837     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1838         canExpandIndirectArgument(Ty))
1839       return ABIArgInfo::getExpandWithPadding(
1840           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1841 
1842     return getIndirectResult(Ty, true, State);
1843   }
1844 
1845   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1846     // On Windows, vectors are passed directly if registers are available, or
1847     // indirectly if not. This avoids the need to align argument memory. Pass
1848     // user-defined vector types larger than 512 bits indirectly for simplicity.
1849     if (IsWin32StructABI) {
1850       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1851         --State.FreeSSERegs;
1852         return ABIArgInfo::getDirectInReg();
1853       }
1854       return getIndirectResult(Ty, /*ByVal=*/false, State);
1855     }
1856 
1857     // On Darwin, some vectors are passed in memory, we handle this by passing
1858     // it as an i8/i16/i32/i64.
1859     if (IsDarwinVectorABI) {
1860       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1861           (TI.Width == 64 && VT->getNumElements() == 1))
1862         return ABIArgInfo::getDirect(
1863             llvm::IntegerType::get(getVMContext(), TI.Width));
1864     }
1865 
1866     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1867       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1868 
1869     return ABIArgInfo::getDirect();
1870   }
1871 
1872 
1873   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1874     Ty = EnumTy->getDecl()->getIntegerType();
1875 
1876   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1877 
1878   if (isPromotableIntegerTypeForABI(Ty)) {
1879     if (InReg)
1880       return ABIArgInfo::getExtendInReg(Ty);
1881     return ABIArgInfo::getExtend(Ty);
1882   }
1883 
1884   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1885     if (EIT->getNumBits() <= 64) {
1886       if (InReg)
1887         return ABIArgInfo::getDirectInReg();
1888       return ABIArgInfo::getDirect();
1889     }
1890     return getIndirectResult(Ty, /*ByVal=*/false, State);
1891   }
1892 
1893   if (InReg)
1894     return ABIArgInfo::getDirectInReg();
1895   return ABIArgInfo::getDirect();
1896 }
1897 
1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1899   CCState State(FI);
1900   if (IsMCUABI)
1901     State.FreeRegs = 3;
1902   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1903     State.FreeRegs = 2;
1904     State.FreeSSERegs = 3;
1905   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1906     State.FreeRegs = 2;
1907     State.FreeSSERegs = 6;
1908   } else if (FI.getHasRegParm())
1909     State.FreeRegs = FI.getRegParm();
1910   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1911     State.FreeRegs = 5;
1912     State.FreeSSERegs = 8;
1913   } else if (IsWin32StructABI) {
1914     // Since MSVC 2015, the first three SSE vectors have been passed in
1915     // registers. The rest are passed indirectly.
1916     State.FreeRegs = DefaultNumRegisterParameters;
1917     State.FreeSSERegs = 3;
1918   } else
1919     State.FreeRegs = DefaultNumRegisterParameters;
1920 
1921   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1922     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1923   } else if (FI.getReturnInfo().isIndirect()) {
1924     // The C++ ABI is not aware of register usage, so we have to check if the
1925     // return value was sret and put it in a register ourselves if appropriate.
1926     if (State.FreeRegs) {
1927       --State.FreeRegs;  // The sret parameter consumes a register.
1928       if (!IsMCUABI)
1929         FI.getReturnInfo().setInReg(true);
1930     }
1931   }
1932 
1933   // The chain argument effectively gives us another free register.
1934   if (FI.isChainCall())
1935     ++State.FreeRegs;
1936 
1937   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1938   // arguments to XMM registers as available.
1939   if (State.CC == llvm::CallingConv::X86_VectorCall)
1940     runVectorCallFirstPass(FI, State);
1941 
1942   bool UsedInAlloca = false;
1943   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1944   for (int I = 0, E = Args.size(); I < E; ++I) {
1945     // Skip arguments that have already been assigned.
1946     if (State.IsPreassigned.test(I))
1947       continue;
1948 
1949     Args[I].info = classifyArgumentType(Args[I].type, State);
1950     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1951   }
1952 
1953   // If we needed to use inalloca for any argument, do a second pass and rewrite
1954   // all the memory arguments to use inalloca.
1955   if (UsedInAlloca)
1956     rewriteWithInAlloca(FI);
1957 }
1958 
1959 void
1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1961                                    CharUnits &StackOffset, ABIArgInfo &Info,
1962                                    QualType Type) const {
1963   // Arguments are always 4-byte-aligned.
1964   CharUnits WordSize = CharUnits::fromQuantity(4);
1965   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1966 
1967   // sret pointers and indirect things will require an extra pointer
1968   // indirection, unless they are byval. Most things are byval, and will not
1969   // require this indirection.
1970   bool IsIndirect = false;
1971   if (Info.isIndirect() && !Info.getIndirectByVal())
1972     IsIndirect = true;
1973   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1974   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1975   if (IsIndirect)
1976     LLTy = LLTy->getPointerTo(0);
1977   FrameFields.push_back(LLTy);
1978   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1979 
1980   // Insert padding bytes to respect alignment.
1981   CharUnits FieldEnd = StackOffset;
1982   StackOffset = FieldEnd.alignTo(WordSize);
1983   if (StackOffset != FieldEnd) {
1984     CharUnits NumBytes = StackOffset - FieldEnd;
1985     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1986     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1987     FrameFields.push_back(Ty);
1988   }
1989 }
1990 
1991 static bool isArgInAlloca(const ABIArgInfo &Info) {
1992   // Leave ignored and inreg arguments alone.
1993   switch (Info.getKind()) {
1994   case ABIArgInfo::InAlloca:
1995     return true;
1996   case ABIArgInfo::Ignore:
1997   case ABIArgInfo::IndirectAliased:
1998     return false;
1999   case ABIArgInfo::Indirect:
2000   case ABIArgInfo::Direct:
2001   case ABIArgInfo::Extend:
2002     return !Info.getInReg();
2003   case ABIArgInfo::Expand:
2004   case ABIArgInfo::CoerceAndExpand:
2005     // These are aggregate types which are never passed in registers when
2006     // inalloca is involved.
2007     return true;
2008   }
2009   llvm_unreachable("invalid enum");
2010 }
2011 
2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2013   assert(IsWin32StructABI && "inalloca only supported on win32");
2014 
2015   // Build a packed struct type for all of the arguments in memory.
2016   SmallVector<llvm::Type *, 6> FrameFields;
2017 
2018   // The stack alignment is always 4.
2019   CharUnits StackAlign = CharUnits::fromQuantity(4);
2020 
2021   CharUnits StackOffset;
2022   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2023 
2024   // Put 'this' into the struct before 'sret', if necessary.
2025   bool IsThisCall =
2026       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2027   ABIArgInfo &Ret = FI.getReturnInfo();
2028   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2029       isArgInAlloca(I->info)) {
2030     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2031     ++I;
2032   }
2033 
2034   // Put the sret parameter into the inalloca struct if it's in memory.
2035   if (Ret.isIndirect() && !Ret.getInReg()) {
2036     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2037     // On Windows, the hidden sret parameter is always returned in eax.
2038     Ret.setInAllocaSRet(IsWin32StructABI);
2039   }
2040 
2041   // Skip the 'this' parameter in ecx.
2042   if (IsThisCall)
2043     ++I;
2044 
2045   // Put arguments passed in memory into the struct.
2046   for (; I != E; ++I) {
2047     if (isArgInAlloca(I->info))
2048       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2049   }
2050 
2051   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2052                                         /*isPacked=*/true),
2053                   StackAlign);
2054 }
2055 
2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2057                                  Address VAListAddr, QualType Ty) const {
2058 
2059   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2060 
2061   // x86-32 changes the alignment of certain arguments on the stack.
2062   //
2063   // Just messing with TypeInfo like this works because we never pass
2064   // anything indirectly.
2065   TypeInfo.Align = CharUnits::fromQuantity(
2066                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2067 
2068   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2069                           TypeInfo, CharUnits::fromQuantity(4),
2070                           /*AllowHigherAlign*/ true);
2071 }
2072 
2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2074     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2075   assert(Triple.getArch() == llvm::Triple::x86);
2076 
2077   switch (Opts.getStructReturnConvention()) {
2078   case CodeGenOptions::SRCK_Default:
2079     break;
2080   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2081     return false;
2082   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2083     return true;
2084   }
2085 
2086   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2087     return true;
2088 
2089   switch (Triple.getOS()) {
2090   case llvm::Triple::DragonFly:
2091   case llvm::Triple::FreeBSD:
2092   case llvm::Triple::OpenBSD:
2093   case llvm::Triple::Win32:
2094     return true;
2095   default:
2096     return false;
2097   }
2098 }
2099 
2100 void X86_32TargetCodeGenInfo::setTargetAttributes(
2101     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2102   if (GV->isDeclaration())
2103     return;
2104   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2105     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2106       llvm::Function *Fn = cast<llvm::Function>(GV);
2107       Fn->addFnAttr("stackrealign");
2108     }
2109     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2110       llvm::Function *Fn = cast<llvm::Function>(GV);
2111       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2112     }
2113   }
2114 }
2115 
2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2117                                                CodeGen::CodeGenFunction &CGF,
2118                                                llvm::Value *Address) const {
2119   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2120 
2121   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2122 
2123   // 0-7 are the eight integer registers;  the order is different
2124   //   on Darwin (for EH), but the range is the same.
2125   // 8 is %eip.
2126   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2127 
2128   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2129     // 12-16 are st(0..4).  Not sure why we stop at 4.
2130     // These have size 16, which is sizeof(long double) on
2131     // platforms with 8-byte alignment for that type.
2132     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2133     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2134 
2135   } else {
2136     // 9 is %eflags, which doesn't get a size on Darwin for some
2137     // reason.
2138     Builder.CreateAlignedStore(
2139         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2140                                CharUnits::One());
2141 
2142     // 11-16 are st(0..5).  Not sure why we stop at 5.
2143     // These have size 12, which is sizeof(long double) on
2144     // platforms with 4-byte alignment for that type.
2145     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2146     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2147   }
2148 
2149   return false;
2150 }
2151 
2152 //===----------------------------------------------------------------------===//
2153 // X86-64 ABI Implementation
2154 //===----------------------------------------------------------------------===//
2155 
2156 
2157 namespace {
2158 /// The AVX ABI level for X86 targets.
2159 enum class X86AVXABILevel {
2160   None,
2161   AVX,
2162   AVX512
2163 };
2164 
2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2167   switch (AVXLevel) {
2168   case X86AVXABILevel::AVX512:
2169     return 512;
2170   case X86AVXABILevel::AVX:
2171     return 256;
2172   case X86AVXABILevel::None:
2173     return 128;
2174   }
2175   llvm_unreachable("Unknown AVXLevel");
2176 }
2177 
2178 /// X86_64ABIInfo - The X86_64 ABI information.
2179 class X86_64ABIInfo : public SwiftABIInfo {
2180   enum Class {
2181     Integer = 0,
2182     SSE,
2183     SSEUp,
2184     X87,
2185     X87Up,
2186     ComplexX87,
2187     NoClass,
2188     Memory
2189   };
2190 
2191   /// merge - Implement the X86_64 ABI merging algorithm.
2192   ///
2193   /// Merge an accumulating classification \arg Accum with a field
2194   /// classification \arg Field.
2195   ///
2196   /// \param Accum - The accumulating classification. This should
2197   /// always be either NoClass or the result of a previous merge
2198   /// call. In addition, this should never be Memory (the caller
2199   /// should just return Memory for the aggregate).
2200   static Class merge(Class Accum, Class Field);
2201 
2202   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2203   ///
2204   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2205   /// final MEMORY or SSE classes when necessary.
2206   ///
2207   /// \param AggregateSize - The size of the current aggregate in
2208   /// the classification process.
2209   ///
2210   /// \param Lo - The classification for the parts of the type
2211   /// residing in the low word of the containing object.
2212   ///
2213   /// \param Hi - The classification for the parts of the type
2214   /// residing in the higher words of the containing object.
2215   ///
2216   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2217 
2218   /// classify - Determine the x86_64 register classes in which the
2219   /// given type T should be passed.
2220   ///
2221   /// \param Lo - The classification for the parts of the type
2222   /// residing in the low word of the containing object.
2223   ///
2224   /// \param Hi - The classification for the parts of the type
2225   /// residing in the high word of the containing object.
2226   ///
2227   /// \param OffsetBase - The bit offset of this type in the
2228   /// containing object.  Some parameters are classified different
2229   /// depending on whether they straddle an eightbyte boundary.
2230   ///
2231   /// \param isNamedArg - Whether the argument in question is a "named"
2232   /// argument, as used in AMD64-ABI 3.5.7.
2233   ///
2234   /// If a word is unused its result will be NoClass; if a type should
2235   /// be passed in Memory then at least the classification of \arg Lo
2236   /// will be Memory.
2237   ///
2238   /// The \arg Lo class will be NoClass iff the argument is ignored.
2239   ///
2240   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2241   /// also be ComplexX87.
2242   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2243                 bool isNamedArg) const;
2244 
2245   llvm::Type *GetByteVectorType(QualType Ty) const;
2246   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2247                                  unsigned IROffset, QualType SourceTy,
2248                                  unsigned SourceOffset) const;
2249   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2250                                      unsigned IROffset, QualType SourceTy,
2251                                      unsigned SourceOffset) const;
2252 
2253   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2254   /// such that the argument will be returned in memory.
2255   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2256 
2257   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2258   /// such that the argument will be passed in memory.
2259   ///
2260   /// \param freeIntRegs - The number of free integer registers remaining
2261   /// available.
2262   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2263 
2264   ABIArgInfo classifyReturnType(QualType RetTy) const;
2265 
2266   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2267                                   unsigned &neededInt, unsigned &neededSSE,
2268                                   bool isNamedArg) const;
2269 
2270   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2271                                        unsigned &NeededSSE) const;
2272 
2273   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2274                                            unsigned &NeededSSE) const;
2275 
2276   bool IsIllegalVectorType(QualType Ty) const;
2277 
2278   /// The 0.98 ABI revision clarified a lot of ambiguities,
2279   /// unfortunately in ways that were not always consistent with
2280   /// certain previous compilers.  In particular, platforms which
2281   /// required strict binary compatibility with older versions of GCC
2282   /// may need to exempt themselves.
2283   bool honorsRevision0_98() const {
2284     return !getTarget().getTriple().isOSDarwin();
2285   }
2286 
2287   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2288   /// classify it as INTEGER (for compatibility with older clang compilers).
2289   bool classifyIntegerMMXAsSSE() const {
2290     // Clang <= 3.8 did not do this.
2291     if (getContext().getLangOpts().getClangABICompat() <=
2292         LangOptions::ClangABI::Ver3_8)
2293       return false;
2294 
2295     const llvm::Triple &Triple = getTarget().getTriple();
2296     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2297       return false;
2298     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2299       return false;
2300     return true;
2301   }
2302 
2303   // GCC classifies vectors of __int128 as memory.
2304   bool passInt128VectorsInMem() const {
2305     // Clang <= 9.0 did not do this.
2306     if (getContext().getLangOpts().getClangABICompat() <=
2307         LangOptions::ClangABI::Ver9)
2308       return false;
2309 
2310     const llvm::Triple &T = getTarget().getTriple();
2311     return T.isOSLinux() || T.isOSNetBSD();
2312   }
2313 
2314   X86AVXABILevel AVXLevel;
2315   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2316   // 64-bit hardware.
2317   bool Has64BitPointers;
2318 
2319 public:
2320   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2321       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2322       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2323   }
2324 
2325   bool isPassedUsingAVXType(QualType type) const {
2326     unsigned neededInt, neededSSE;
2327     // The freeIntRegs argument doesn't matter here.
2328     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2329                                            /*isNamedArg*/true);
2330     if (info.isDirect()) {
2331       llvm::Type *ty = info.getCoerceToType();
2332       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2333         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2334     }
2335     return false;
2336   }
2337 
2338   void computeInfo(CGFunctionInfo &FI) const override;
2339 
2340   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2341                     QualType Ty) const override;
2342   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2343                       QualType Ty) const override;
2344 
2345   bool has64BitPointers() const {
2346     return Has64BitPointers;
2347   }
2348 
2349   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2350                                     bool asReturnValue) const override {
2351     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2352   }
2353   bool isSwiftErrorInRegister() const override {
2354     return true;
2355   }
2356 };
2357 
2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2359 class WinX86_64ABIInfo : public SwiftABIInfo {
2360 public:
2361   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2362       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2363         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2364 
2365   void computeInfo(CGFunctionInfo &FI) const override;
2366 
2367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2368                     QualType Ty) const override;
2369 
2370   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2371     // FIXME: Assumes vectorcall is in use.
2372     return isX86VectorTypeForVectorCall(getContext(), Ty);
2373   }
2374 
2375   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2376                                          uint64_t NumMembers) const override {
2377     // FIXME: Assumes vectorcall is in use.
2378     return isX86VectorCallAggregateSmallEnough(NumMembers);
2379   }
2380 
2381   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2382                                     bool asReturnValue) const override {
2383     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2384   }
2385 
2386   bool isSwiftErrorInRegister() const override {
2387     return true;
2388   }
2389 
2390 private:
2391   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2392                       bool IsVectorCall, bool IsRegCall) const;
2393   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2394                                       const ABIArgInfo &current) const;
2395   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2396                              bool IsVectorCall, bool IsRegCall) const;
2397 
2398   X86AVXABILevel AVXLevel;
2399 
2400   bool IsMingw64;
2401 };
2402 
2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2404 public:
2405   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2406       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2407 
2408   const X86_64ABIInfo &getABIInfo() const {
2409     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2410   }
2411 
2412   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2413   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2414   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2415 
2416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2417     return 7;
2418   }
2419 
2420   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2421                                llvm::Value *Address) const override {
2422     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2423 
2424     // 0-15 are the 16 integer registers.
2425     // 16 is %rip.
2426     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2427     return false;
2428   }
2429 
2430   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2431                                   StringRef Constraint,
2432                                   llvm::Type* Ty) const override {
2433     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2434   }
2435 
2436   bool isNoProtoCallVariadic(const CallArgList &args,
2437                              const FunctionNoProtoType *fnType) const override {
2438     // The default CC on x86-64 sets %al to the number of SSA
2439     // registers used, and GCC sets this when calling an unprototyped
2440     // function, so we override the default behavior.  However, don't do
2441     // that when AVX types are involved: the ABI explicitly states it is
2442     // undefined, and it doesn't work in practice because of how the ABI
2443     // defines varargs anyway.
2444     if (fnType->getCallConv() == CC_C) {
2445       bool HasAVXType = false;
2446       for (CallArgList::const_iterator
2447              it = args.begin(), ie = args.end(); it != ie; ++it) {
2448         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2449           HasAVXType = true;
2450           break;
2451         }
2452       }
2453 
2454       if (!HasAVXType)
2455         return true;
2456     }
2457 
2458     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2459   }
2460 
2461   llvm::Constant *
2462   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2463     unsigned Sig = (0xeb << 0) | // jmp rel8
2464                    (0x06 << 8) | //           .+0x08
2465                    ('v' << 16) |
2466                    ('2' << 24);
2467     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2468   }
2469 
2470   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2471                            CodeGen::CodeGenModule &CGM) const override {
2472     if (GV->isDeclaration())
2473       return;
2474     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2475       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2476         llvm::Function *Fn = cast<llvm::Function>(GV);
2477         Fn->addFnAttr("stackrealign");
2478       }
2479       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2480         llvm::Function *Fn = cast<llvm::Function>(GV);
2481         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2482       }
2483     }
2484   }
2485 
2486   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2487                             const FunctionDecl *Caller,
2488                             const FunctionDecl *Callee,
2489                             const CallArgList &Args) const override;
2490 };
2491 
2492 static void initFeatureMaps(const ASTContext &Ctx,
2493                             llvm::StringMap<bool> &CallerMap,
2494                             const FunctionDecl *Caller,
2495                             llvm::StringMap<bool> &CalleeMap,
2496                             const FunctionDecl *Callee) {
2497   if (CalleeMap.empty() && CallerMap.empty()) {
2498     // The caller is potentially nullptr in the case where the call isn't in a
2499     // function.  In this case, the getFunctionFeatureMap ensures we just get
2500     // the TU level setting (since it cannot be modified by 'target'..
2501     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2502     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2503   }
2504 }
2505 
2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2507                                  SourceLocation CallLoc,
2508                                  const llvm::StringMap<bool> &CallerMap,
2509                                  const llvm::StringMap<bool> &CalleeMap,
2510                                  QualType Ty, StringRef Feature,
2511                                  bool IsArgument) {
2512   bool CallerHasFeat = CallerMap.lookup(Feature);
2513   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2514   if (!CallerHasFeat && !CalleeHasFeat)
2515     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2516            << IsArgument << Ty << Feature;
2517 
2518   // Mixing calling conventions here is very clearly an error.
2519   if (!CallerHasFeat || !CalleeHasFeat)
2520     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2521            << IsArgument << Ty << Feature;
2522 
2523   // Else, both caller and callee have the required feature, so there is no need
2524   // to diagnose.
2525   return false;
2526 }
2527 
2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2529                           SourceLocation CallLoc,
2530                           const llvm::StringMap<bool> &CallerMap,
2531                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2532                           bool IsArgument) {
2533   uint64_t Size = Ctx.getTypeSize(Ty);
2534   if (Size > 256)
2535     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2536                                 "avx512f", IsArgument);
2537 
2538   if (Size > 128)
2539     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2540                                 IsArgument);
2541 
2542   return false;
2543 }
2544 
2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2546     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2547     const FunctionDecl *Callee, const CallArgList &Args) const {
2548   llvm::StringMap<bool> CallerMap;
2549   llvm::StringMap<bool> CalleeMap;
2550   unsigned ArgIndex = 0;
2551 
2552   // We need to loop through the actual call arguments rather than the the
2553   // function's parameters, in case this variadic.
2554   for (const CallArg &Arg : Args) {
2555     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2556     // additionally changes how vectors >256 in size are passed. Like GCC, we
2557     // warn when a function is called with an argument where this will change.
2558     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2559     // the caller and callee features are mismatched.
2560     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2561     // change its ABI with attribute-target after this call.
2562     if (Arg.getType()->isVectorType() &&
2563         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2564       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2565       QualType Ty = Arg.getType();
2566       // The CallArg seems to have desugared the type already, so for clearer
2567       // diagnostics, replace it with the type in the FunctionDecl if possible.
2568       if (ArgIndex < Callee->getNumParams())
2569         Ty = Callee->getParamDecl(ArgIndex)->getType();
2570 
2571       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2572                         CalleeMap, Ty, /*IsArgument*/ true))
2573         return;
2574     }
2575     ++ArgIndex;
2576   }
2577 
2578   // Check return always, as we don't have a good way of knowing in codegen
2579   // whether this value is used, tail-called, etc.
2580   if (Callee->getReturnType()->isVectorType() &&
2581       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2582     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2583     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2584                   CalleeMap, Callee->getReturnType(),
2585                   /*IsArgument*/ false);
2586   }
2587 }
2588 
2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2590   // If the argument does not end in .lib, automatically add the suffix.
2591   // If the argument contains a space, enclose it in quotes.
2592   // This matches the behavior of MSVC.
2593   bool Quote = (Lib.find(" ") != StringRef::npos);
2594   std::string ArgStr = Quote ? "\"" : "";
2595   ArgStr += Lib;
2596   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2597     ArgStr += ".lib";
2598   ArgStr += Quote ? "\"" : "";
2599   return ArgStr;
2600 }
2601 
2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2603 public:
2604   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2605         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2606         unsigned NumRegisterParameters)
2607     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2608         Win32StructABI, NumRegisterParameters, false) {}
2609 
2610   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2611                            CodeGen::CodeGenModule &CGM) const override;
2612 
2613   void getDependentLibraryOption(llvm::StringRef Lib,
2614                                  llvm::SmallString<24> &Opt) const override {
2615     Opt = "/DEFAULTLIB:";
2616     Opt += qualifyWindowsLibrary(Lib);
2617   }
2618 
2619   void getDetectMismatchOption(llvm::StringRef Name,
2620                                llvm::StringRef Value,
2621                                llvm::SmallString<32> &Opt) const override {
2622     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2623   }
2624 };
2625 
2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2627                                           CodeGen::CodeGenModule &CGM) {
2628   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2629 
2630     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2631       Fn->addFnAttr("stack-probe-size",
2632                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2633     if (CGM.getCodeGenOpts().NoStackArgProbe)
2634       Fn->addFnAttr("no-stack-arg-probe");
2635   }
2636 }
2637 
2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2639     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2640   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2641   if (GV->isDeclaration())
2642     return;
2643   addStackProbeTargetAttributes(D, GV, CGM);
2644 }
2645 
2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2647 public:
2648   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2649                              X86AVXABILevel AVXLevel)
2650       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2651 
2652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2653                            CodeGen::CodeGenModule &CGM) const override;
2654 
2655   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2656     return 7;
2657   }
2658 
2659   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2660                                llvm::Value *Address) const override {
2661     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2662 
2663     // 0-15 are the 16 integer registers.
2664     // 16 is %rip.
2665     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2666     return false;
2667   }
2668 
2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2683     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2684   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2685   if (GV->isDeclaration())
2686     return;
2687   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2688     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2689       llvm::Function *Fn = cast<llvm::Function>(GV);
2690       Fn->addFnAttr("stackrealign");
2691     }
2692     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2693       llvm::Function *Fn = cast<llvm::Function>(GV);
2694       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2695     }
2696   }
2697 
2698   addStackProbeTargetAttributes(D, GV, CGM);
2699 }
2700 }
2701 
2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2703                               Class &Hi) const {
2704   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2705   //
2706   // (a) If one of the classes is Memory, the whole argument is passed in
2707   //     memory.
2708   //
2709   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2710   //     memory.
2711   //
2712   // (c) If the size of the aggregate exceeds two eightbytes and the first
2713   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2714   //     argument is passed in memory. NOTE: This is necessary to keep the
2715   //     ABI working for processors that don't support the __m256 type.
2716   //
2717   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2718   //
2719   // Some of these are enforced by the merging logic.  Others can arise
2720   // only with unions; for example:
2721   //   union { _Complex double; unsigned; }
2722   //
2723   // Note that clauses (b) and (c) were added in 0.98.
2724   //
2725   if (Hi == Memory)
2726     Lo = Memory;
2727   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2728     Lo = Memory;
2729   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2730     Lo = Memory;
2731   if (Hi == SSEUp && Lo != SSE)
2732     Hi = SSE;
2733 }
2734 
2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2736   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2737   // classified recursively so that always two fields are
2738   // considered. The resulting class is calculated according to
2739   // the classes of the fields in the eightbyte:
2740   //
2741   // (a) If both classes are equal, this is the resulting class.
2742   //
2743   // (b) If one of the classes is NO_CLASS, the resulting class is
2744   // the other class.
2745   //
2746   // (c) If one of the classes is MEMORY, the result is the MEMORY
2747   // class.
2748   //
2749   // (d) If one of the classes is INTEGER, the result is the
2750   // INTEGER.
2751   //
2752   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2753   // MEMORY is used as class.
2754   //
2755   // (f) Otherwise class SSE is used.
2756 
2757   // Accum should never be memory (we should have returned) or
2758   // ComplexX87 (because this cannot be passed in a structure).
2759   assert((Accum != Memory && Accum != ComplexX87) &&
2760          "Invalid accumulated classification during merge.");
2761   if (Accum == Field || Field == NoClass)
2762     return Accum;
2763   if (Field == Memory)
2764     return Memory;
2765   if (Accum == NoClass)
2766     return Field;
2767   if (Accum == Integer || Field == Integer)
2768     return Integer;
2769   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2770       Accum == X87 || Accum == X87Up)
2771     return Memory;
2772   return SSE;
2773 }
2774 
2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2776                              Class &Lo, Class &Hi, bool isNamedArg) const {
2777   // FIXME: This code can be simplified by introducing a simple value class for
2778   // Class pairs with appropriate constructor methods for the various
2779   // situations.
2780 
2781   // FIXME: Some of the split computations are wrong; unaligned vectors
2782   // shouldn't be passed in registers for example, so there is no chance they
2783   // can straddle an eightbyte. Verify & simplify.
2784 
2785   Lo = Hi = NoClass;
2786 
2787   Class &Current = OffsetBase < 64 ? Lo : Hi;
2788   Current = Memory;
2789 
2790   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2791     BuiltinType::Kind k = BT->getKind();
2792 
2793     if (k == BuiltinType::Void) {
2794       Current = NoClass;
2795     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2796       Lo = Integer;
2797       Hi = Integer;
2798     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2799       Current = Integer;
2800     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2801       Current = SSE;
2802     } else if (k == BuiltinType::LongDouble) {
2803       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2804       if (LDF == &llvm::APFloat::IEEEquad()) {
2805         Lo = SSE;
2806         Hi = SSEUp;
2807       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2808         Lo = X87;
2809         Hi = X87Up;
2810       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2811         Current = SSE;
2812       } else
2813         llvm_unreachable("unexpected long double representation!");
2814     }
2815     // FIXME: _Decimal32 and _Decimal64 are SSE.
2816     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2817     return;
2818   }
2819 
2820   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2821     // Classify the underlying integer type.
2822     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2823     return;
2824   }
2825 
2826   if (Ty->hasPointerRepresentation()) {
2827     Current = Integer;
2828     return;
2829   }
2830 
2831   if (Ty->isMemberPointerType()) {
2832     if (Ty->isMemberFunctionPointerType()) {
2833       if (Has64BitPointers) {
2834         // If Has64BitPointers, this is an {i64, i64}, so classify both
2835         // Lo and Hi now.
2836         Lo = Hi = Integer;
2837       } else {
2838         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2839         // straddles an eightbyte boundary, Hi should be classified as well.
2840         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2841         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2842         if (EB_FuncPtr != EB_ThisAdj) {
2843           Lo = Hi = Integer;
2844         } else {
2845           Current = Integer;
2846         }
2847       }
2848     } else {
2849       Current = Integer;
2850     }
2851     return;
2852   }
2853 
2854   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2855     uint64_t Size = getContext().getTypeSize(VT);
2856     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2857       // gcc passes the following as integer:
2858       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2859       // 2 bytes - <2 x char>, <1 x short>
2860       // 1 byte  - <1 x char>
2861       Current = Integer;
2862 
2863       // If this type crosses an eightbyte boundary, it should be
2864       // split.
2865       uint64_t EB_Lo = (OffsetBase) / 64;
2866       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2867       if (EB_Lo != EB_Hi)
2868         Hi = Lo;
2869     } else if (Size == 64) {
2870       QualType ElementType = VT->getElementType();
2871 
2872       // gcc passes <1 x double> in memory. :(
2873       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2874         return;
2875 
2876       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2877       // pass them as integer.  For platforms where clang is the de facto
2878       // platform compiler, we must continue to use integer.
2879       if (!classifyIntegerMMXAsSSE() &&
2880           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2881            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2882            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2883            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2884         Current = Integer;
2885       else
2886         Current = SSE;
2887 
2888       // If this type crosses an eightbyte boundary, it should be
2889       // split.
2890       if (OffsetBase && OffsetBase != 64)
2891         Hi = Lo;
2892     } else if (Size == 128 ||
2893                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2894       QualType ElementType = VT->getElementType();
2895 
2896       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2897       if (passInt128VectorsInMem() && Size != 128 &&
2898           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2899            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2900         return;
2901 
2902       // Arguments of 256-bits are split into four eightbyte chunks. The
2903       // least significant one belongs to class SSE and all the others to class
2904       // SSEUP. The original Lo and Hi design considers that types can't be
2905       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2906       // This design isn't correct for 256-bits, but since there're no cases
2907       // where the upper parts would need to be inspected, avoid adding
2908       // complexity and just consider Hi to match the 64-256 part.
2909       //
2910       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2911       // registers if they are "named", i.e. not part of the "..." of a
2912       // variadic function.
2913       //
2914       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2915       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2916       Lo = SSE;
2917       Hi = SSEUp;
2918     }
2919     return;
2920   }
2921 
2922   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2923     QualType ET = getContext().getCanonicalType(CT->getElementType());
2924 
2925     uint64_t Size = getContext().getTypeSize(Ty);
2926     if (ET->isIntegralOrEnumerationType()) {
2927       if (Size <= 64)
2928         Current = Integer;
2929       else if (Size <= 128)
2930         Lo = Hi = Integer;
2931     } else if (ET == getContext().FloatTy) {
2932       Current = SSE;
2933     } else if (ET == getContext().DoubleTy) {
2934       Lo = Hi = SSE;
2935     } else if (ET == getContext().LongDoubleTy) {
2936       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2937       if (LDF == &llvm::APFloat::IEEEquad())
2938         Current = Memory;
2939       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2940         Current = ComplexX87;
2941       else if (LDF == &llvm::APFloat::IEEEdouble())
2942         Lo = Hi = SSE;
2943       else
2944         llvm_unreachable("unexpected long double representation!");
2945     }
2946 
2947     // If this complex type crosses an eightbyte boundary then it
2948     // should be split.
2949     uint64_t EB_Real = (OffsetBase) / 64;
2950     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2951     if (Hi == NoClass && EB_Real != EB_Imag)
2952       Hi = Lo;
2953 
2954     return;
2955   }
2956 
2957   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2958     if (EITy->getNumBits() <= 64)
2959       Current = Integer;
2960     else if (EITy->getNumBits() <= 128)
2961       Lo = Hi = Integer;
2962     // Larger values need to get passed in memory.
2963     return;
2964   }
2965 
2966   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2967     // Arrays are treated like structures.
2968 
2969     uint64_t Size = getContext().getTypeSize(Ty);
2970 
2971     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2972     // than eight eightbytes, ..., it has class MEMORY.
2973     if (Size > 512)
2974       return;
2975 
2976     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2977     // fields, it has class MEMORY.
2978     //
2979     // Only need to check alignment of array base.
2980     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2981       return;
2982 
2983     // Otherwise implement simplified merge. We could be smarter about
2984     // this, but it isn't worth it and would be harder to verify.
2985     Current = NoClass;
2986     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2987     uint64_t ArraySize = AT->getSize().getZExtValue();
2988 
2989     // The only case a 256-bit wide vector could be used is when the array
2990     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2991     // to work for sizes wider than 128, early check and fallback to memory.
2992     //
2993     if (Size > 128 &&
2994         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2995       return;
2996 
2997     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2998       Class FieldLo, FieldHi;
2999       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3000       Lo = merge(Lo, FieldLo);
3001       Hi = merge(Hi, FieldHi);
3002       if (Lo == Memory || Hi == Memory)
3003         break;
3004     }
3005 
3006     postMerge(Size, Lo, Hi);
3007     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3008     return;
3009   }
3010 
3011   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3012     uint64_t Size = getContext().getTypeSize(Ty);
3013 
3014     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3015     // than eight eightbytes, ..., it has class MEMORY.
3016     if (Size > 512)
3017       return;
3018 
3019     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3020     // copy constructor or a non-trivial destructor, it is passed by invisible
3021     // reference.
3022     if (getRecordArgABI(RT, getCXXABI()))
3023       return;
3024 
3025     const RecordDecl *RD = RT->getDecl();
3026 
3027     // Assume variable sized types are passed in memory.
3028     if (RD->hasFlexibleArrayMember())
3029       return;
3030 
3031     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3032 
3033     // Reset Lo class, this will be recomputed.
3034     Current = NoClass;
3035 
3036     // If this is a C++ record, classify the bases first.
3037     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3038       for (const auto &I : CXXRD->bases()) {
3039         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3040                "Unexpected base class!");
3041         const auto *Base =
3042             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3043 
3044         // Classify this field.
3045         //
3046         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3047         // single eightbyte, each is classified separately. Each eightbyte gets
3048         // initialized to class NO_CLASS.
3049         Class FieldLo, FieldHi;
3050         uint64_t Offset =
3051           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3052         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3053         Lo = merge(Lo, FieldLo);
3054         Hi = merge(Hi, FieldHi);
3055         if (Lo == Memory || Hi == Memory) {
3056           postMerge(Size, Lo, Hi);
3057           return;
3058         }
3059       }
3060     }
3061 
3062     // Classify the fields one at a time, merging the results.
3063     unsigned idx = 0;
3064     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3065                                 LangOptions::ClangABI::Ver11 ||
3066                             getContext().getTargetInfo().getTriple().isPS4();
3067     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3068 
3069     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3070            i != e; ++i, ++idx) {
3071       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3072       bool BitField = i->isBitField();
3073 
3074       // Ignore padding bit-fields.
3075       if (BitField && i->isUnnamedBitfield())
3076         continue;
3077 
3078       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3079       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3080       //
3081       // The only case a 256-bit or a 512-bit wide vector could be used is when
3082       // the struct contains a single 256-bit or 512-bit element. Early check
3083       // and fallback to memory.
3084       //
3085       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3086       // than 128.
3087       if (Size > 128 &&
3088           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3089            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3090         Lo = Memory;
3091         postMerge(Size, Lo, Hi);
3092         return;
3093       }
3094       // Note, skip this test for bit-fields, see below.
3095       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3096         Lo = Memory;
3097         postMerge(Size, Lo, Hi);
3098         return;
3099       }
3100 
3101       // Classify this field.
3102       //
3103       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3104       // exceeds a single eightbyte, each is classified
3105       // separately. Each eightbyte gets initialized to class
3106       // NO_CLASS.
3107       Class FieldLo, FieldHi;
3108 
3109       // Bit-fields require special handling, they do not force the
3110       // structure to be passed in memory even if unaligned, and
3111       // therefore they can straddle an eightbyte.
3112       if (BitField) {
3113         assert(!i->isUnnamedBitfield());
3114         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3115         uint64_t Size = i->getBitWidthValue(getContext());
3116 
3117         uint64_t EB_Lo = Offset / 64;
3118         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3119 
3120         if (EB_Lo) {
3121           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3122           FieldLo = NoClass;
3123           FieldHi = Integer;
3124         } else {
3125           FieldLo = Integer;
3126           FieldHi = EB_Hi ? Integer : NoClass;
3127         }
3128       } else
3129         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3130       Lo = merge(Lo, FieldLo);
3131       Hi = merge(Hi, FieldHi);
3132       if (Lo == Memory || Hi == Memory)
3133         break;
3134     }
3135 
3136     postMerge(Size, Lo, Hi);
3137   }
3138 }
3139 
3140 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3141   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3142   // place naturally.
3143   if (!isAggregateTypeForABI(Ty)) {
3144     // Treat an enum type as its underlying type.
3145     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3146       Ty = EnumTy->getDecl()->getIntegerType();
3147 
3148     if (Ty->isExtIntType())
3149       return getNaturalAlignIndirect(Ty);
3150 
3151     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3152                                               : ABIArgInfo::getDirect());
3153   }
3154 
3155   return getNaturalAlignIndirect(Ty);
3156 }
3157 
3158 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3159   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3160     uint64_t Size = getContext().getTypeSize(VecTy);
3161     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3162     if (Size <= 64 || Size > LargestVector)
3163       return true;
3164     QualType EltTy = VecTy->getElementType();
3165     if (passInt128VectorsInMem() &&
3166         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3167          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3168       return true;
3169   }
3170 
3171   return false;
3172 }
3173 
3174 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3175                                             unsigned freeIntRegs) const {
3176   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3177   // place naturally.
3178   //
3179   // This assumption is optimistic, as there could be free registers available
3180   // when we need to pass this argument in memory, and LLVM could try to pass
3181   // the argument in the free register. This does not seem to happen currently,
3182   // but this code would be much safer if we could mark the argument with
3183   // 'onstack'. See PR12193.
3184   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3185       !Ty->isExtIntType()) {
3186     // Treat an enum type as its underlying type.
3187     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3188       Ty = EnumTy->getDecl()->getIntegerType();
3189 
3190     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3191                                               : ABIArgInfo::getDirect());
3192   }
3193 
3194   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3195     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3196 
3197   // Compute the byval alignment. We specify the alignment of the byval in all
3198   // cases so that the mid-level optimizer knows the alignment of the byval.
3199   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3200 
3201   // Attempt to avoid passing indirect results using byval when possible. This
3202   // is important for good codegen.
3203   //
3204   // We do this by coercing the value into a scalar type which the backend can
3205   // handle naturally (i.e., without using byval).
3206   //
3207   // For simplicity, we currently only do this when we have exhausted all of the
3208   // free integer registers. Doing this when there are free integer registers
3209   // would require more care, as we would have to ensure that the coerced value
3210   // did not claim the unused register. That would require either reording the
3211   // arguments to the function (so that any subsequent inreg values came first),
3212   // or only doing this optimization when there were no following arguments that
3213   // might be inreg.
3214   //
3215   // We currently expect it to be rare (particularly in well written code) for
3216   // arguments to be passed on the stack when there are still free integer
3217   // registers available (this would typically imply large structs being passed
3218   // by value), so this seems like a fair tradeoff for now.
3219   //
3220   // We can revisit this if the backend grows support for 'onstack' parameter
3221   // attributes. See PR12193.
3222   if (freeIntRegs == 0) {
3223     uint64_t Size = getContext().getTypeSize(Ty);
3224 
3225     // If this type fits in an eightbyte, coerce it into the matching integral
3226     // type, which will end up on the stack (with alignment 8).
3227     if (Align == 8 && Size <= 64)
3228       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3229                                                           Size));
3230   }
3231 
3232   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3233 }
3234 
3235 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3236 /// register. Pick an LLVM IR type that will be passed as a vector register.
3237 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3238   // Wrapper structs/arrays that only contain vectors are passed just like
3239   // vectors; strip them off if present.
3240   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3241     Ty = QualType(InnerTy, 0);
3242 
3243   llvm::Type *IRType = CGT.ConvertType(Ty);
3244   if (isa<llvm::VectorType>(IRType)) {
3245     // Don't pass vXi128 vectors in their native type, the backend can't
3246     // legalize them.
3247     if (passInt128VectorsInMem() &&
3248         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3249       // Use a vXi64 vector.
3250       uint64_t Size = getContext().getTypeSize(Ty);
3251       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3252                                         Size / 64);
3253     }
3254 
3255     return IRType;
3256   }
3257 
3258   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3259     return IRType;
3260 
3261   // We couldn't find the preferred IR vector type for 'Ty'.
3262   uint64_t Size = getContext().getTypeSize(Ty);
3263   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3264 
3265 
3266   // Return a LLVM IR vector type based on the size of 'Ty'.
3267   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3268                                     Size / 64);
3269 }
3270 
3271 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3272 /// is known to either be off the end of the specified type or being in
3273 /// alignment padding.  The user type specified is known to be at most 128 bits
3274 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3275 /// classification that put one of the two halves in the INTEGER class.
3276 ///
3277 /// It is conservatively correct to return false.
3278 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3279                                   unsigned EndBit, ASTContext &Context) {
3280   // If the bytes being queried are off the end of the type, there is no user
3281   // data hiding here.  This handles analysis of builtins, vectors and other
3282   // types that don't contain interesting padding.
3283   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3284   if (TySize <= StartBit)
3285     return true;
3286 
3287   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3288     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3289     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3290 
3291     // Check each element to see if the element overlaps with the queried range.
3292     for (unsigned i = 0; i != NumElts; ++i) {
3293       // If the element is after the span we care about, then we're done..
3294       unsigned EltOffset = i*EltSize;
3295       if (EltOffset >= EndBit) break;
3296 
3297       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3298       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3299                                  EndBit-EltOffset, Context))
3300         return false;
3301     }
3302     // If it overlaps no elements, then it is safe to process as padding.
3303     return true;
3304   }
3305 
3306   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3307     const RecordDecl *RD = RT->getDecl();
3308     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3309 
3310     // If this is a C++ record, check the bases first.
3311     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3312       for (const auto &I : CXXRD->bases()) {
3313         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3314                "Unexpected base class!");
3315         const auto *Base =
3316             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3317 
3318         // If the base is after the span we care about, ignore it.
3319         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3320         if (BaseOffset >= EndBit) continue;
3321 
3322         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3323         if (!BitsContainNoUserData(I.getType(), BaseStart,
3324                                    EndBit-BaseOffset, Context))
3325           return false;
3326       }
3327     }
3328 
3329     // Verify that no field has data that overlaps the region of interest.  Yes
3330     // this could be sped up a lot by being smarter about queried fields,
3331     // however we're only looking at structs up to 16 bytes, so we don't care
3332     // much.
3333     unsigned idx = 0;
3334     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3335          i != e; ++i, ++idx) {
3336       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3337 
3338       // If we found a field after the region we care about, then we're done.
3339       if (FieldOffset >= EndBit) break;
3340 
3341       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3342       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3343                                  Context))
3344         return false;
3345     }
3346 
3347     // If nothing in this record overlapped the area of interest, then we're
3348     // clean.
3349     return true;
3350   }
3351 
3352   return false;
3353 }
3354 
3355 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3356 /// float member at the specified offset.  For example, {int,{float}} has a
3357 /// float at offset 4.  It is conservatively correct for this routine to return
3358 /// false.
3359 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3360                                   const llvm::DataLayout &TD) {
3361   // Base case if we find a float.
3362   if (IROffset == 0 && IRType->isFloatTy())
3363     return true;
3364 
3365   // If this is a struct, recurse into the field at the specified offset.
3366   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3367     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3368     unsigned Elt = SL->getElementContainingOffset(IROffset);
3369     IROffset -= SL->getElementOffset(Elt);
3370     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3371   }
3372 
3373   // If this is an array, recurse into the field at the specified offset.
3374   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3375     llvm::Type *EltTy = ATy->getElementType();
3376     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3377     IROffset -= IROffset/EltSize*EltSize;
3378     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3379   }
3380 
3381   return false;
3382 }
3383 
3384 
3385 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3386 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3387 llvm::Type *X86_64ABIInfo::
3388 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3389                    QualType SourceTy, unsigned SourceOffset) const {
3390   // The only three choices we have are either double, <2 x float>, or float. We
3391   // pass as float if the last 4 bytes is just padding.  This happens for
3392   // structs that contain 3 floats.
3393   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3394                             SourceOffset*8+64, getContext()))
3395     return llvm::Type::getFloatTy(getVMContext());
3396 
3397   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3398   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3399   // case.
3400   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3401       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3402     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3403                                       2);
3404 
3405   return llvm::Type::getDoubleTy(getVMContext());
3406 }
3407 
3408 
3409 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3410 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3411 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3412 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3413 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3414 /// etc).
3415 ///
3416 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3417 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3418 /// the 8-byte value references.  PrefType may be null.
3419 ///
3420 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3421 /// an offset into this that we're processing (which is always either 0 or 8).
3422 ///
3423 llvm::Type *X86_64ABIInfo::
3424 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3425                        QualType SourceTy, unsigned SourceOffset) const {
3426   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3427   // returning an 8-byte unit starting with it.  See if we can safely use it.
3428   if (IROffset == 0) {
3429     // Pointers and int64's always fill the 8-byte unit.
3430     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3431         IRType->isIntegerTy(64))
3432       return IRType;
3433 
3434     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3435     // goodness in the source type is just tail padding.  This is allowed to
3436     // kick in for struct {double,int} on the int, but not on
3437     // struct{double,int,int} because we wouldn't return the second int.  We
3438     // have to do this analysis on the source type because we can't depend on
3439     // unions being lowered a specific way etc.
3440     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3441         IRType->isIntegerTy(32) ||
3442         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3443       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3444           cast<llvm::IntegerType>(IRType)->getBitWidth();
3445 
3446       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3447                                 SourceOffset*8+64, getContext()))
3448         return IRType;
3449     }
3450   }
3451 
3452   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3453     // If this is a struct, recurse into the field at the specified offset.
3454     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3455     if (IROffset < SL->getSizeInBytes()) {
3456       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3457       IROffset -= SL->getElementOffset(FieldIdx);
3458 
3459       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3460                                     SourceTy, SourceOffset);
3461     }
3462   }
3463 
3464   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3465     llvm::Type *EltTy = ATy->getElementType();
3466     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3467     unsigned EltOffset = IROffset/EltSize*EltSize;
3468     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3469                                   SourceOffset);
3470   }
3471 
3472   // Okay, we don't have any better idea of what to pass, so we pass this in an
3473   // integer register that isn't too big to fit the rest of the struct.
3474   unsigned TySizeInBytes =
3475     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3476 
3477   assert(TySizeInBytes != SourceOffset && "Empty field?");
3478 
3479   // It is always safe to classify this as an integer type up to i64 that
3480   // isn't larger than the structure.
3481   return llvm::IntegerType::get(getVMContext(),
3482                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3483 }
3484 
3485 
3486 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3487 /// be used as elements of a two register pair to pass or return, return a
3488 /// first class aggregate to represent them.  For example, if the low part of
3489 /// a by-value argument should be passed as i32* and the high part as float,
3490 /// return {i32*, float}.
3491 static llvm::Type *
3492 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3493                            const llvm::DataLayout &TD) {
3494   // In order to correctly satisfy the ABI, we need to the high part to start
3495   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3496   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3497   // the second element at offset 8.  Check for this:
3498   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3499   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3500   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3501   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3502 
3503   // To handle this, we have to increase the size of the low part so that the
3504   // second element will start at an 8 byte offset.  We can't increase the size
3505   // of the second element because it might make us access off the end of the
3506   // struct.
3507   if (HiStart != 8) {
3508     // There are usually two sorts of types the ABI generation code can produce
3509     // for the low part of a pair that aren't 8 bytes in size: float or
3510     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3511     // NaCl).
3512     // Promote these to a larger type.
3513     if (Lo->isFloatTy())
3514       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3515     else {
3516       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3517              && "Invalid/unknown lo type");
3518       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3519     }
3520   }
3521 
3522   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3523 
3524   // Verify that the second element is at an 8-byte offset.
3525   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3526          "Invalid x86-64 argument pair!");
3527   return Result;
3528 }
3529 
3530 ABIArgInfo X86_64ABIInfo::
3531 classifyReturnType(QualType RetTy) const {
3532   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3533   // classification algorithm.
3534   X86_64ABIInfo::Class Lo, Hi;
3535   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3536 
3537   // Check some invariants.
3538   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3539   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3540 
3541   llvm::Type *ResType = nullptr;
3542   switch (Lo) {
3543   case NoClass:
3544     if (Hi == NoClass)
3545       return ABIArgInfo::getIgnore();
3546     // If the low part is just padding, it takes no register, leave ResType
3547     // null.
3548     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3549            "Unknown missing lo part");
3550     break;
3551 
3552   case SSEUp:
3553   case X87Up:
3554     llvm_unreachable("Invalid classification for lo word.");
3555 
3556     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3557     // hidden argument.
3558   case Memory:
3559     return getIndirectReturnResult(RetTy);
3560 
3561     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3562     // available register of the sequence %rax, %rdx is used.
3563   case Integer:
3564     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3565 
3566     // If we have a sign or zero extended integer, make sure to return Extend
3567     // so that the parameter gets the right LLVM IR attributes.
3568     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3569       // Treat an enum type as its underlying type.
3570       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3571         RetTy = EnumTy->getDecl()->getIntegerType();
3572 
3573       if (RetTy->isIntegralOrEnumerationType() &&
3574           isPromotableIntegerTypeForABI(RetTy))
3575         return ABIArgInfo::getExtend(RetTy);
3576     }
3577     break;
3578 
3579     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3580     // available SSE register of the sequence %xmm0, %xmm1 is used.
3581   case SSE:
3582     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3583     break;
3584 
3585     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3586     // returned on the X87 stack in %st0 as 80-bit x87 number.
3587   case X87:
3588     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3589     break;
3590 
3591     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3592     // part of the value is returned in %st0 and the imaginary part in
3593     // %st1.
3594   case ComplexX87:
3595     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3596     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3597                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3598     break;
3599   }
3600 
3601   llvm::Type *HighPart = nullptr;
3602   switch (Hi) {
3603     // Memory was handled previously and X87 should
3604     // never occur as a hi class.
3605   case Memory:
3606   case X87:
3607     llvm_unreachable("Invalid classification for hi word.");
3608 
3609   case ComplexX87: // Previously handled.
3610   case NoClass:
3611     break;
3612 
3613   case Integer:
3614     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3615     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3616       return ABIArgInfo::getDirect(HighPart, 8);
3617     break;
3618   case SSE:
3619     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3620     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3621       return ABIArgInfo::getDirect(HighPart, 8);
3622     break;
3623 
3624     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3625     // is passed in the next available eightbyte chunk if the last used
3626     // vector register.
3627     //
3628     // SSEUP should always be preceded by SSE, just widen.
3629   case SSEUp:
3630     assert(Lo == SSE && "Unexpected SSEUp classification.");
3631     ResType = GetByteVectorType(RetTy);
3632     break;
3633 
3634     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3635     // returned together with the previous X87 value in %st0.
3636   case X87Up:
3637     // If X87Up is preceded by X87, we don't need to do
3638     // anything. However, in some cases with unions it may not be
3639     // preceded by X87. In such situations we follow gcc and pass the
3640     // extra bits in an SSE reg.
3641     if (Lo != X87) {
3642       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3643       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3644         return ABIArgInfo::getDirect(HighPart, 8);
3645     }
3646     break;
3647   }
3648 
3649   // If a high part was specified, merge it together with the low part.  It is
3650   // known to pass in the high eightbyte of the result.  We do this by forming a
3651   // first class struct aggregate with the high and low part: {low, high}
3652   if (HighPart)
3653     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3654 
3655   return ABIArgInfo::getDirect(ResType);
3656 }
3657 
3658 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3659   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3660   bool isNamedArg)
3661   const
3662 {
3663   Ty = useFirstFieldIfTransparentUnion(Ty);
3664 
3665   X86_64ABIInfo::Class Lo, Hi;
3666   classify(Ty, 0, Lo, Hi, isNamedArg);
3667 
3668   // Check some invariants.
3669   // FIXME: Enforce these by construction.
3670   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3671   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3672 
3673   neededInt = 0;
3674   neededSSE = 0;
3675   llvm::Type *ResType = nullptr;
3676   switch (Lo) {
3677   case NoClass:
3678     if (Hi == NoClass)
3679       return ABIArgInfo::getIgnore();
3680     // If the low part is just padding, it takes no register, leave ResType
3681     // null.
3682     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3683            "Unknown missing lo part");
3684     break;
3685 
3686     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3687     // on the stack.
3688   case Memory:
3689 
3690     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3691     // COMPLEX_X87, it is passed in memory.
3692   case X87:
3693   case ComplexX87:
3694     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3695       ++neededInt;
3696     return getIndirectResult(Ty, freeIntRegs);
3697 
3698   case SSEUp:
3699   case X87Up:
3700     llvm_unreachable("Invalid classification for lo word.");
3701 
3702     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3703     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3704     // and %r9 is used.
3705   case Integer:
3706     ++neededInt;
3707 
3708     // Pick an 8-byte type based on the preferred type.
3709     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3710 
3711     // If we have a sign or zero extended integer, make sure to return Extend
3712     // so that the parameter gets the right LLVM IR attributes.
3713     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3714       // Treat an enum type as its underlying type.
3715       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3716         Ty = EnumTy->getDecl()->getIntegerType();
3717 
3718       if (Ty->isIntegralOrEnumerationType() &&
3719           isPromotableIntegerTypeForABI(Ty))
3720         return ABIArgInfo::getExtend(Ty);
3721     }
3722 
3723     break;
3724 
3725     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3726     // available SSE register is used, the registers are taken in the
3727     // order from %xmm0 to %xmm7.
3728   case SSE: {
3729     llvm::Type *IRType = CGT.ConvertType(Ty);
3730     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3731     ++neededSSE;
3732     break;
3733   }
3734   }
3735 
3736   llvm::Type *HighPart = nullptr;
3737   switch (Hi) {
3738     // Memory was handled previously, ComplexX87 and X87 should
3739     // never occur as hi classes, and X87Up must be preceded by X87,
3740     // which is passed in memory.
3741   case Memory:
3742   case X87:
3743   case ComplexX87:
3744     llvm_unreachable("Invalid classification for hi word.");
3745 
3746   case NoClass: break;
3747 
3748   case Integer:
3749     ++neededInt;
3750     // Pick an 8-byte type based on the preferred type.
3751     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3752 
3753     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3754       return ABIArgInfo::getDirect(HighPart, 8);
3755     break;
3756 
3757     // X87Up generally doesn't occur here (long double is passed in
3758     // memory), except in situations involving unions.
3759   case X87Up:
3760   case SSE:
3761     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3762 
3763     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3764       return ABIArgInfo::getDirect(HighPart, 8);
3765 
3766     ++neededSSE;
3767     break;
3768 
3769     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3770     // eightbyte is passed in the upper half of the last used SSE
3771     // register.  This only happens when 128-bit vectors are passed.
3772   case SSEUp:
3773     assert(Lo == SSE && "Unexpected SSEUp classification");
3774     ResType = GetByteVectorType(Ty);
3775     break;
3776   }
3777 
3778   // If a high part was specified, merge it together with the low part.  It is
3779   // known to pass in the high eightbyte of the result.  We do this by forming a
3780   // first class struct aggregate with the high and low part: {low, high}
3781   if (HighPart)
3782     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3783 
3784   return ABIArgInfo::getDirect(ResType);
3785 }
3786 
3787 ABIArgInfo
3788 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3789                                              unsigned &NeededSSE) const {
3790   auto RT = Ty->getAs<RecordType>();
3791   assert(RT && "classifyRegCallStructType only valid with struct types");
3792 
3793   if (RT->getDecl()->hasFlexibleArrayMember())
3794     return getIndirectReturnResult(Ty);
3795 
3796   // Sum up bases
3797   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3798     if (CXXRD->isDynamicClass()) {
3799       NeededInt = NeededSSE = 0;
3800       return getIndirectReturnResult(Ty);
3801     }
3802 
3803     for (const auto &I : CXXRD->bases())
3804       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3805               .isIndirect()) {
3806         NeededInt = NeededSSE = 0;
3807         return getIndirectReturnResult(Ty);
3808       }
3809   }
3810 
3811   // Sum up members
3812   for (const auto *FD : RT->getDecl()->fields()) {
3813     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3814       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3815               .isIndirect()) {
3816         NeededInt = NeededSSE = 0;
3817         return getIndirectReturnResult(Ty);
3818       }
3819     } else {
3820       unsigned LocalNeededInt, LocalNeededSSE;
3821       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3822                                LocalNeededSSE, true)
3823               .isIndirect()) {
3824         NeededInt = NeededSSE = 0;
3825         return getIndirectReturnResult(Ty);
3826       }
3827       NeededInt += LocalNeededInt;
3828       NeededSSE += LocalNeededSSE;
3829     }
3830   }
3831 
3832   return ABIArgInfo::getDirect();
3833 }
3834 
3835 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3836                                                     unsigned &NeededInt,
3837                                                     unsigned &NeededSSE) const {
3838 
3839   NeededInt = 0;
3840   NeededSSE = 0;
3841 
3842   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3843 }
3844 
3845 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3846 
3847   const unsigned CallingConv = FI.getCallingConvention();
3848   // It is possible to force Win64 calling convention on any x86_64 target by
3849   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3850   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3851   if (CallingConv == llvm::CallingConv::Win64) {
3852     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3853     Win64ABIInfo.computeInfo(FI);
3854     return;
3855   }
3856 
3857   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3858 
3859   // Keep track of the number of assigned registers.
3860   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3861   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3862   unsigned NeededInt, NeededSSE;
3863 
3864   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3865     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3866         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3867       FI.getReturnInfo() =
3868           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3869       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3870         FreeIntRegs -= NeededInt;
3871         FreeSSERegs -= NeededSSE;
3872       } else {
3873         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3874       }
3875     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3876                getContext().getCanonicalType(FI.getReturnType()
3877                                                  ->getAs<ComplexType>()
3878                                                  ->getElementType()) ==
3879                    getContext().LongDoubleTy)
3880       // Complex Long Double Type is passed in Memory when Regcall
3881       // calling convention is used.
3882       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3883     else
3884       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3885   }
3886 
3887   // If the return value is indirect, then the hidden argument is consuming one
3888   // integer register.
3889   if (FI.getReturnInfo().isIndirect())
3890     --FreeIntRegs;
3891 
3892   // The chain argument effectively gives us another free register.
3893   if (FI.isChainCall())
3894     ++FreeIntRegs;
3895 
3896   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3897   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3898   // get assigned (in left-to-right order) for passing as follows...
3899   unsigned ArgNo = 0;
3900   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3901        it != ie; ++it, ++ArgNo) {
3902     bool IsNamedArg = ArgNo < NumRequiredArgs;
3903 
3904     if (IsRegCall && it->type->isStructureOrClassType())
3905       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3906     else
3907       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3908                                       NeededSSE, IsNamedArg);
3909 
3910     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3911     // eightbyte of an argument, the whole argument is passed on the
3912     // stack. If registers have already been assigned for some
3913     // eightbytes of such an argument, the assignments get reverted.
3914     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3915       FreeIntRegs -= NeededInt;
3916       FreeSSERegs -= NeededSSE;
3917     } else {
3918       it->info = getIndirectResult(it->type, FreeIntRegs);
3919     }
3920   }
3921 }
3922 
3923 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3924                                          Address VAListAddr, QualType Ty) {
3925   Address overflow_arg_area_p =
3926       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3927   llvm::Value *overflow_arg_area =
3928     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3929 
3930   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3931   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3932   // It isn't stated explicitly in the standard, but in practice we use
3933   // alignment greater than 16 where necessary.
3934   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3935   if (Align > CharUnits::fromQuantity(8)) {
3936     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3937                                                       Align);
3938   }
3939 
3940   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3941   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3942   llvm::Value *Res =
3943     CGF.Builder.CreateBitCast(overflow_arg_area,
3944                               llvm::PointerType::getUnqual(LTy));
3945 
3946   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3947   // l->overflow_arg_area + sizeof(type).
3948   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3949   // an 8 byte boundary.
3950 
3951   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3952   llvm::Value *Offset =
3953       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3954   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3955                                             "overflow_arg_area.next");
3956   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3957 
3958   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3959   return Address(Res, Align);
3960 }
3961 
3962 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3963                                  QualType Ty) const {
3964   // Assume that va_list type is correct; should be pointer to LLVM type:
3965   // struct {
3966   //   i32 gp_offset;
3967   //   i32 fp_offset;
3968   //   i8* overflow_arg_area;
3969   //   i8* reg_save_area;
3970   // };
3971   unsigned neededInt, neededSSE;
3972 
3973   Ty = getContext().getCanonicalType(Ty);
3974   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3975                                        /*isNamedArg*/false);
3976 
3977   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3978   // in the registers. If not go to step 7.
3979   if (!neededInt && !neededSSE)
3980     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3981 
3982   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3983   // general purpose registers needed to pass type and num_fp to hold
3984   // the number of floating point registers needed.
3985 
3986   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3987   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3988   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3989   //
3990   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3991   // register save space).
3992 
3993   llvm::Value *InRegs = nullptr;
3994   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3995   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3996   if (neededInt) {
3997     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3998     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3999     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4000     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4001   }
4002 
4003   if (neededSSE) {
4004     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4005     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4006     llvm::Value *FitsInFP =
4007       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4008     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4009     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4010   }
4011 
4012   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4013   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4014   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4015   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4016 
4017   // Emit code to load the value if it was passed in registers.
4018 
4019   CGF.EmitBlock(InRegBlock);
4020 
4021   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4022   // an offset of l->gp_offset and/or l->fp_offset. This may require
4023   // copying to a temporary location in case the parameter is passed
4024   // in different register classes or requires an alignment greater
4025   // than 8 for general purpose registers and 16 for XMM registers.
4026   //
4027   // FIXME: This really results in shameful code when we end up needing to
4028   // collect arguments from different places; often what should result in a
4029   // simple assembling of a structure from scattered addresses has many more
4030   // loads than necessary. Can we clean this up?
4031   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4032   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4033       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4034 
4035   Address RegAddr = Address::invalid();
4036   if (neededInt && neededSSE) {
4037     // FIXME: Cleanup.
4038     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4039     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4040     Address Tmp = CGF.CreateMemTemp(Ty);
4041     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4042     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4043     llvm::Type *TyLo = ST->getElementType(0);
4044     llvm::Type *TyHi = ST->getElementType(1);
4045     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4046            "Unexpected ABI info for mixed regs");
4047     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4048     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4049     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4050     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4051     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4052     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4053 
4054     // Copy the first element.
4055     // FIXME: Our choice of alignment here and below is probably pessimistic.
4056     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4057         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4058         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4059     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4060 
4061     // Copy the second element.
4062     V = CGF.Builder.CreateAlignedLoad(
4063         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4064         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4065     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4066 
4067     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4068   } else if (neededInt) {
4069     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4070                       CharUnits::fromQuantity(8));
4071     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4072 
4073     // Copy to a temporary if necessary to ensure the appropriate alignment.
4074     auto TInfo = getContext().getTypeInfoInChars(Ty);
4075     uint64_t TySize = TInfo.Width.getQuantity();
4076     CharUnits TyAlign = TInfo.Align;
4077 
4078     // Copy into a temporary if the type is more aligned than the
4079     // register save area.
4080     if (TyAlign.getQuantity() > 8) {
4081       Address Tmp = CGF.CreateMemTemp(Ty);
4082       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4083       RegAddr = Tmp;
4084     }
4085 
4086   } else if (neededSSE == 1) {
4087     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4088                       CharUnits::fromQuantity(16));
4089     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4090   } else {
4091     assert(neededSSE == 2 && "Invalid number of needed registers!");
4092     // SSE registers are spaced 16 bytes apart in the register save
4093     // area, we need to collect the two eightbytes together.
4094     // The ABI isn't explicit about this, but it seems reasonable
4095     // to assume that the slots are 16-byte aligned, since the stack is
4096     // naturally 16-byte aligned and the prologue is expected to store
4097     // all the SSE registers to the RSA.
4098     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4099                                 CharUnits::fromQuantity(16));
4100     Address RegAddrHi =
4101       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4102                                              CharUnits::fromQuantity(16));
4103     llvm::Type *ST = AI.canHaveCoerceToType()
4104                          ? AI.getCoerceToType()
4105                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4106     llvm::Value *V;
4107     Address Tmp = CGF.CreateMemTemp(Ty);
4108     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4109     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4110         RegAddrLo, ST->getStructElementType(0)));
4111     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4112     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4113         RegAddrHi, ST->getStructElementType(1)));
4114     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4115 
4116     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4117   }
4118 
4119   // AMD64-ABI 3.5.7p5: Step 5. Set:
4120   // l->gp_offset = l->gp_offset + num_gp * 8
4121   // l->fp_offset = l->fp_offset + num_fp * 16.
4122   if (neededInt) {
4123     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4124     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4125                             gp_offset_p);
4126   }
4127   if (neededSSE) {
4128     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4129     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4130                             fp_offset_p);
4131   }
4132   CGF.EmitBranch(ContBlock);
4133 
4134   // Emit code to load the value if it was passed in memory.
4135 
4136   CGF.EmitBlock(InMemBlock);
4137   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4138 
4139   // Return the appropriate result.
4140 
4141   CGF.EmitBlock(ContBlock);
4142   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4143                                  "vaarg.addr");
4144   return ResAddr;
4145 }
4146 
4147 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4148                                    QualType Ty) const {
4149   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4150                           CGF.getContext().getTypeInfoInChars(Ty),
4151                           CharUnits::fromQuantity(8),
4152                           /*allowHigherAlign*/ false);
4153 }
4154 
4155 ABIArgInfo
4156 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4157                                     const ABIArgInfo &current) const {
4158   // Assumes vectorCall calling convention.
4159   const Type *Base = nullptr;
4160   uint64_t NumElts = 0;
4161 
4162   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4163       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4164     FreeSSERegs -= NumElts;
4165     return getDirectX86Hva();
4166   }
4167   return current;
4168 }
4169 
4170 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4171                                       bool IsReturnType, bool IsVectorCall,
4172                                       bool IsRegCall) const {
4173 
4174   if (Ty->isVoidType())
4175     return ABIArgInfo::getIgnore();
4176 
4177   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4178     Ty = EnumTy->getDecl()->getIntegerType();
4179 
4180   TypeInfo Info = getContext().getTypeInfo(Ty);
4181   uint64_t Width = Info.Width;
4182   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4183 
4184   const RecordType *RT = Ty->getAs<RecordType>();
4185   if (RT) {
4186     if (!IsReturnType) {
4187       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4188         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4189     }
4190 
4191     if (RT->getDecl()->hasFlexibleArrayMember())
4192       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4193 
4194   }
4195 
4196   const Type *Base = nullptr;
4197   uint64_t NumElts = 0;
4198   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4199   // other targets.
4200   if ((IsVectorCall || IsRegCall) &&
4201       isHomogeneousAggregate(Ty, Base, NumElts)) {
4202     if (IsRegCall) {
4203       if (FreeSSERegs >= NumElts) {
4204         FreeSSERegs -= NumElts;
4205         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4206           return ABIArgInfo::getDirect();
4207         return ABIArgInfo::getExpand();
4208       }
4209       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4210     } else if (IsVectorCall) {
4211       if (FreeSSERegs >= NumElts &&
4212           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4213         FreeSSERegs -= NumElts;
4214         return ABIArgInfo::getDirect();
4215       } else if (IsReturnType) {
4216         return ABIArgInfo::getExpand();
4217       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4218         // HVAs are delayed and reclassified in the 2nd step.
4219         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4220       }
4221     }
4222   }
4223 
4224   if (Ty->isMemberPointerType()) {
4225     // If the member pointer is represented by an LLVM int or ptr, pass it
4226     // directly.
4227     llvm::Type *LLTy = CGT.ConvertType(Ty);
4228     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4229       return ABIArgInfo::getDirect();
4230   }
4231 
4232   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4233     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4234     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4235     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4236       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4237 
4238     // Otherwise, coerce it to a small integer.
4239     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4240   }
4241 
4242   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4243     switch (BT->getKind()) {
4244     case BuiltinType::Bool:
4245       // Bool type is always extended to the ABI, other builtin types are not
4246       // extended.
4247       return ABIArgInfo::getExtend(Ty);
4248 
4249     case BuiltinType::LongDouble:
4250       // Mingw64 GCC uses the old 80 bit extended precision floating point
4251       // unit. It passes them indirectly through memory.
4252       if (IsMingw64) {
4253         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4254         if (LDF == &llvm::APFloat::x87DoubleExtended())
4255           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4256       }
4257       break;
4258 
4259     case BuiltinType::Int128:
4260     case BuiltinType::UInt128:
4261       // If it's a parameter type, the normal ABI rule is that arguments larger
4262       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4263       // even though it isn't particularly efficient.
4264       if (!IsReturnType)
4265         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4266 
4267       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4268       // Clang matches them for compatibility.
4269       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4270           llvm::Type::getInt64Ty(getVMContext()), 2));
4271 
4272     default:
4273       break;
4274     }
4275   }
4276 
4277   if (Ty->isExtIntType()) {
4278     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4279     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4280     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4281     // anyway as long is it fits in them, so we don't have to check the power of
4282     // 2.
4283     if (Width <= 64)
4284       return ABIArgInfo::getDirect();
4285     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4286   }
4287 
4288   return ABIArgInfo::getDirect();
4289 }
4290 
4291 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4292                                              unsigned FreeSSERegs,
4293                                              bool IsVectorCall,
4294                                              bool IsRegCall) const {
4295   unsigned Count = 0;
4296   for (auto &I : FI.arguments()) {
4297     // Vectorcall in x64 only permits the first 6 arguments to be passed
4298     // as XMM/YMM registers.
4299     if (Count < VectorcallMaxParamNumAsReg)
4300       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4301     else {
4302       // Since these cannot be passed in registers, pretend no registers
4303       // are left.
4304       unsigned ZeroSSERegsAvail = 0;
4305       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4306                         IsVectorCall, IsRegCall);
4307     }
4308     ++Count;
4309   }
4310 
4311   for (auto &I : FI.arguments()) {
4312     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4313   }
4314 }
4315 
4316 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4317   const unsigned CC = FI.getCallingConvention();
4318   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4319   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4320 
4321   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4322   // classification rules.
4323   if (CC == llvm::CallingConv::X86_64_SysV) {
4324     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4325     SysVABIInfo.computeInfo(FI);
4326     return;
4327   }
4328 
4329   unsigned FreeSSERegs = 0;
4330   if (IsVectorCall) {
4331     // We can use up to 4 SSE return registers with vectorcall.
4332     FreeSSERegs = 4;
4333   } else if (IsRegCall) {
4334     // RegCall gives us 16 SSE registers.
4335     FreeSSERegs = 16;
4336   }
4337 
4338   if (!getCXXABI().classifyReturnType(FI))
4339     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4340                                   IsVectorCall, IsRegCall);
4341 
4342   if (IsVectorCall) {
4343     // We can use up to 6 SSE register parameters with vectorcall.
4344     FreeSSERegs = 6;
4345   } else if (IsRegCall) {
4346     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4347     FreeSSERegs = 16;
4348   }
4349 
4350   if (IsVectorCall) {
4351     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4352   } else {
4353     for (auto &I : FI.arguments())
4354       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4355   }
4356 
4357 }
4358 
4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4360                                     QualType Ty) const {
4361 
4362   bool IsIndirect = false;
4363 
4364   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4365   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4366   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4367     uint64_t Width = getContext().getTypeSize(Ty);
4368     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4369   }
4370 
4371   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4372                           CGF.getContext().getTypeInfoInChars(Ty),
4373                           CharUnits::fromQuantity(8),
4374                           /*allowHigherAlign*/ false);
4375 }
4376 
4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4378                                         llvm::Value *Address, bool Is64Bit,
4379                                         bool IsAIX) {
4380   // This is calculated from the LLVM and GCC tables and verified
4381   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4382 
4383   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4384 
4385   llvm::IntegerType *i8 = CGF.Int8Ty;
4386   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4387   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4388   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4389 
4390   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4391   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4392 
4393   // 32-63: fp0-31, the 8-byte floating-point registers
4394   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4395 
4396   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4397   // 64: mq
4398   // 65: lr
4399   // 66: ctr
4400   // 67: ap
4401   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4402 
4403   // 68-76 are various 4-byte special-purpose registers:
4404   // 68-75 cr0-7
4405   // 76: xer
4406   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4407 
4408   // 77-108: v0-31, the 16-byte vector registers
4409   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4410 
4411   // 109: vrsave
4412   // 110: vscr
4413   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4414 
4415   // AIX does not utilize the rest of the registers.
4416   if (IsAIX)
4417     return false;
4418 
4419   // 111: spe_acc
4420   // 112: spefscr
4421   // 113: sfp
4422   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4423 
4424   if (!Is64Bit)
4425     return false;
4426 
4427   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4428   // or above CPU.
4429   // 64-bit only registers:
4430   // 114: tfhar
4431   // 115: tfiar
4432   // 116: texasr
4433   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4434 
4435   return false;
4436 }
4437 
4438 // AIX
4439 namespace {
4440 /// AIXABIInfo - The AIX XCOFF ABI information.
4441 class AIXABIInfo : public ABIInfo {
4442   const bool Is64Bit;
4443   const unsigned PtrByteSize;
4444   CharUnits getParamTypeAlignment(QualType Ty) const;
4445 
4446 public:
4447   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4448       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4449 
4450   bool isPromotableTypeForABI(QualType Ty) const;
4451 
4452   ABIArgInfo classifyReturnType(QualType RetTy) const;
4453   ABIArgInfo classifyArgumentType(QualType Ty) const;
4454 
4455   void computeInfo(CGFunctionInfo &FI) const override {
4456     if (!getCXXABI().classifyReturnType(FI))
4457       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4458 
4459     for (auto &I : FI.arguments())
4460       I.info = classifyArgumentType(I.type);
4461   }
4462 
4463   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4464                     QualType Ty) const override;
4465 };
4466 
4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4468   const bool Is64Bit;
4469 
4470 public:
4471   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4472       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4473         Is64Bit(Is64Bit) {}
4474   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4475     return 1; // r1 is the dedicated stack pointer
4476   }
4477 
4478   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4479                                llvm::Value *Address) const override;
4480 };
4481 } // namespace
4482 
4483 // Return true if the ABI requires Ty to be passed sign- or zero-
4484 // extended to 32/64 bits.
4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4486   // Treat an enum type as its underlying type.
4487   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4488     Ty = EnumTy->getDecl()->getIntegerType();
4489 
4490   // Promotable integer types are required to be promoted by the ABI.
4491   if (Ty->isPromotableIntegerType())
4492     return true;
4493 
4494   if (!Is64Bit)
4495     return false;
4496 
4497   // For 64 bit mode, in addition to the usual promotable integer types, we also
4498   // need to extend all 32-bit types, since the ABI requires promotion to 64
4499   // bits.
4500   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4501     switch (BT->getKind()) {
4502     case BuiltinType::Int:
4503     case BuiltinType::UInt:
4504       return true;
4505     default:
4506       break;
4507     }
4508 
4509   return false;
4510 }
4511 
4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4513   if (RetTy->isAnyComplexType())
4514     return ABIArgInfo::getDirect();
4515 
4516   if (RetTy->isVectorType())
4517     llvm::report_fatal_error("vector type is not supported on AIX yet");
4518 
4519   if (RetTy->isVoidType())
4520     return ABIArgInfo::getIgnore();
4521 
4522   if (isAggregateTypeForABI(RetTy))
4523     return getNaturalAlignIndirect(RetTy);
4524 
4525   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4526                                         : ABIArgInfo::getDirect());
4527 }
4528 
4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4530   Ty = useFirstFieldIfTransparentUnion(Ty);
4531 
4532   if (Ty->isAnyComplexType())
4533     return ABIArgInfo::getDirect();
4534 
4535   if (Ty->isVectorType())
4536     llvm::report_fatal_error("vector type is not supported on AIX yet");
4537 
4538   if (isAggregateTypeForABI(Ty)) {
4539     // Records with non-trivial destructors/copy-constructors should not be
4540     // passed by value.
4541     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4542       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4543 
4544     CharUnits CCAlign = getParamTypeAlignment(Ty);
4545     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4546 
4547     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4548                                    /*Realign*/ TyAlign > CCAlign);
4549   }
4550 
4551   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4552                                      : ABIArgInfo::getDirect());
4553 }
4554 
4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4556   // Complex types are passed just like their elements.
4557   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4558     Ty = CTy->getElementType();
4559 
4560   if (Ty->isVectorType())
4561     llvm::report_fatal_error("vector type is not supported on AIX yet");
4562 
4563   // If the structure contains a vector type, the alignment is 16.
4564   if (isRecordWithSIMDVectorType(getContext(), Ty))
4565     return CharUnits::fromQuantity(16);
4566 
4567   return CharUnits::fromQuantity(PtrByteSize);
4568 }
4569 
4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4571                               QualType Ty) const {
4572   if (Ty->isAnyComplexType())
4573     llvm::report_fatal_error("complex type is not supported on AIX yet");
4574 
4575   if (Ty->isVectorType())
4576     llvm::report_fatal_error("vector type is not supported on AIX yet");
4577 
4578   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4579   TypeInfo.Align = getParamTypeAlignment(Ty);
4580 
4581   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4582 
4583   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4584                           SlotSize, /*AllowHigher*/ true);
4585 }
4586 
4587 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4588     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4589   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4590 }
4591 
4592 // PowerPC-32
4593 namespace {
4594 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4595 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4596   bool IsSoftFloatABI;
4597   bool IsRetSmallStructInRegABI;
4598 
4599   CharUnits getParamTypeAlignment(QualType Ty) const;
4600 
4601 public:
4602   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4603                      bool RetSmallStructInRegABI)
4604       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4605         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4606 
4607   ABIArgInfo classifyReturnType(QualType RetTy) const;
4608 
4609   void computeInfo(CGFunctionInfo &FI) const override {
4610     if (!getCXXABI().classifyReturnType(FI))
4611       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4612     for (auto &I : FI.arguments())
4613       I.info = classifyArgumentType(I.type);
4614   }
4615 
4616   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4617                     QualType Ty) const override;
4618 };
4619 
4620 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4621 public:
4622   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4623                          bool RetSmallStructInRegABI)
4624       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4625             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4626 
4627   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4628                                      const CodeGenOptions &Opts);
4629 
4630   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4631     // This is recovered from gcc output.
4632     return 1; // r1 is the dedicated stack pointer
4633   }
4634 
4635   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4636                                llvm::Value *Address) const override;
4637 };
4638 }
4639 
4640 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4641   // Complex types are passed just like their elements.
4642   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4643     Ty = CTy->getElementType();
4644 
4645   if (Ty->isVectorType())
4646     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4647                                                                        : 4);
4648 
4649   // For single-element float/vector structs, we consider the whole type
4650   // to have the same alignment requirements as its single element.
4651   const Type *AlignTy = nullptr;
4652   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4653     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4654     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4655         (BT && BT->isFloatingPoint()))
4656       AlignTy = EltType;
4657   }
4658 
4659   if (AlignTy)
4660     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4661   return CharUnits::fromQuantity(4);
4662 }
4663 
4664 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4665   uint64_t Size;
4666 
4667   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4668   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4669       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4670     // System V ABI (1995), page 3-22, specified:
4671     // > A structure or union whose size is less than or equal to 8 bytes
4672     // > shall be returned in r3 and r4, as if it were first stored in the
4673     // > 8-byte aligned memory area and then the low addressed word were
4674     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4675     // > the last member of the structure or union are not defined.
4676     //
4677     // GCC for big-endian PPC32 inserts the pad before the first member,
4678     // not "beyond the last member" of the struct.  To stay compatible
4679     // with GCC, we coerce the struct to an integer of the same size.
4680     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4681     if (Size == 0)
4682       return ABIArgInfo::getIgnore();
4683     else {
4684       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4685       return ABIArgInfo::getDirect(CoerceTy);
4686     }
4687   }
4688 
4689   return DefaultABIInfo::classifyReturnType(RetTy);
4690 }
4691 
4692 // TODO: this implementation is now likely redundant with
4693 // DefaultABIInfo::EmitVAArg.
4694 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4695                                       QualType Ty) const {
4696   if (getTarget().getTriple().isOSDarwin()) {
4697     auto TI = getContext().getTypeInfoInChars(Ty);
4698     TI.Align = getParamTypeAlignment(Ty);
4699 
4700     CharUnits SlotSize = CharUnits::fromQuantity(4);
4701     return emitVoidPtrVAArg(CGF, VAList, Ty,
4702                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4703                             /*AllowHigherAlign=*/true);
4704   }
4705 
4706   const unsigned OverflowLimit = 8;
4707   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4708     // TODO: Implement this. For now ignore.
4709     (void)CTy;
4710     return Address::invalid(); // FIXME?
4711   }
4712 
4713   // struct __va_list_tag {
4714   //   unsigned char gpr;
4715   //   unsigned char fpr;
4716   //   unsigned short reserved;
4717   //   void *overflow_arg_area;
4718   //   void *reg_save_area;
4719   // };
4720 
4721   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4722   bool isInt =
4723       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4724   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4725 
4726   // All aggregates are passed indirectly?  That doesn't seem consistent
4727   // with the argument-lowering code.
4728   bool isIndirect = Ty->isAggregateType();
4729 
4730   CGBuilderTy &Builder = CGF.Builder;
4731 
4732   // The calling convention either uses 1-2 GPRs or 1 FPR.
4733   Address NumRegsAddr = Address::invalid();
4734   if (isInt || IsSoftFloatABI) {
4735     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4736   } else {
4737     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4738   }
4739 
4740   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4741 
4742   // "Align" the register count when TY is i64.
4743   if (isI64 || (isF64 && IsSoftFloatABI)) {
4744     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4745     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4746   }
4747 
4748   llvm::Value *CC =
4749       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4750 
4751   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4752   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4753   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4754 
4755   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4756 
4757   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4758   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4759 
4760   // Case 1: consume registers.
4761   Address RegAddr = Address::invalid();
4762   {
4763     CGF.EmitBlock(UsingRegs);
4764 
4765     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4766     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4767                       CharUnits::fromQuantity(8));
4768     assert(RegAddr.getElementType() == CGF.Int8Ty);
4769 
4770     // Floating-point registers start after the general-purpose registers.
4771     if (!(isInt || IsSoftFloatABI)) {
4772       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4773                                                    CharUnits::fromQuantity(32));
4774     }
4775 
4776     // Get the address of the saved value by scaling the number of
4777     // registers we've used by the number of
4778     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4779     llvm::Value *RegOffset =
4780       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4781     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4782                                             RegAddr.getPointer(), RegOffset),
4783                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4784     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4785 
4786     // Increase the used-register count.
4787     NumRegs =
4788       Builder.CreateAdd(NumRegs,
4789                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4790     Builder.CreateStore(NumRegs, NumRegsAddr);
4791 
4792     CGF.EmitBranch(Cont);
4793   }
4794 
4795   // Case 2: consume space in the overflow area.
4796   Address MemAddr = Address::invalid();
4797   {
4798     CGF.EmitBlock(UsingOverflow);
4799 
4800     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4801 
4802     // Everything in the overflow area is rounded up to a size of at least 4.
4803     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4804 
4805     CharUnits Size;
4806     if (!isIndirect) {
4807       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4808       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4809     } else {
4810       Size = CGF.getPointerSize();
4811     }
4812 
4813     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4814     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4815                          OverflowAreaAlign);
4816     // Round up address of argument to alignment
4817     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4818     if (Align > OverflowAreaAlign) {
4819       llvm::Value *Ptr = OverflowArea.getPointer();
4820       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4821                                                            Align);
4822     }
4823 
4824     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4825 
4826     // Increase the overflow area.
4827     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4828     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4829     CGF.EmitBranch(Cont);
4830   }
4831 
4832   CGF.EmitBlock(Cont);
4833 
4834   // Merge the cases with a phi.
4835   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4836                                 "vaarg.addr");
4837 
4838   // Load the pointer if the argument was passed indirectly.
4839   if (isIndirect) {
4840     Result = Address(Builder.CreateLoad(Result, "aggr"),
4841                      getContext().getTypeAlignInChars(Ty));
4842   }
4843 
4844   return Result;
4845 }
4846 
4847 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4848     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4849   assert(Triple.getArch() == llvm::Triple::ppc);
4850 
4851   switch (Opts.getStructReturnConvention()) {
4852   case CodeGenOptions::SRCK_Default:
4853     break;
4854   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4855     return false;
4856   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4857     return true;
4858   }
4859 
4860   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4861     return true;
4862 
4863   return false;
4864 }
4865 
4866 bool
4867 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4868                                                 llvm::Value *Address) const {
4869   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4870                                      /*IsAIX*/ false);
4871 }
4872 
4873 // PowerPC-64
4874 
4875 namespace {
4876 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4877 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4878 public:
4879   enum ABIKind {
4880     ELFv1 = 0,
4881     ELFv2
4882   };
4883 
4884 private:
4885   static const unsigned GPRBits = 64;
4886   ABIKind Kind;
4887   bool HasQPX;
4888   bool IsSoftFloatABI;
4889 
4890   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4891   // will be passed in a QPX register.
4892   bool IsQPXVectorTy(const Type *Ty) const {
4893     if (!HasQPX)
4894       return false;
4895 
4896     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4897       unsigned NumElements = VT->getNumElements();
4898       if (NumElements == 1)
4899         return false;
4900 
4901       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4902         if (getContext().getTypeSize(Ty) <= 256)
4903           return true;
4904       } else if (VT->getElementType()->
4905                    isSpecificBuiltinType(BuiltinType::Float)) {
4906         if (getContext().getTypeSize(Ty) <= 128)
4907           return true;
4908       }
4909     }
4910 
4911     return false;
4912   }
4913 
4914   bool IsQPXVectorTy(QualType Ty) const {
4915     return IsQPXVectorTy(Ty.getTypePtr());
4916   }
4917 
4918 public:
4919   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4920                      bool SoftFloatABI)
4921       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4922         IsSoftFloatABI(SoftFloatABI) {}
4923 
4924   bool isPromotableTypeForABI(QualType Ty) const;
4925   CharUnits getParamTypeAlignment(QualType Ty) const;
4926 
4927   ABIArgInfo classifyReturnType(QualType RetTy) const;
4928   ABIArgInfo classifyArgumentType(QualType Ty) const;
4929 
4930   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4931   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4932                                          uint64_t Members) const override;
4933 
4934   // TODO: We can add more logic to computeInfo to improve performance.
4935   // Example: For aggregate arguments that fit in a register, we could
4936   // use getDirectInReg (as is done below for structs containing a single
4937   // floating-point value) to avoid pushing them to memory on function
4938   // entry.  This would require changing the logic in PPCISelLowering
4939   // when lowering the parameters in the caller and args in the callee.
4940   void computeInfo(CGFunctionInfo &FI) const override {
4941     if (!getCXXABI().classifyReturnType(FI))
4942       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4943     for (auto &I : FI.arguments()) {
4944       // We rely on the default argument classification for the most part.
4945       // One exception:  An aggregate containing a single floating-point
4946       // or vector item must be passed in a register if one is available.
4947       const Type *T = isSingleElementStruct(I.type, getContext());
4948       if (T) {
4949         const BuiltinType *BT = T->getAs<BuiltinType>();
4950         if (IsQPXVectorTy(T) ||
4951             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4952             (BT && BT->isFloatingPoint())) {
4953           QualType QT(T, 0);
4954           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4955           continue;
4956         }
4957       }
4958       I.info = classifyArgumentType(I.type);
4959     }
4960   }
4961 
4962   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4963                     QualType Ty) const override;
4964 
4965   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4966                                     bool asReturnValue) const override {
4967     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4968   }
4969 
4970   bool isSwiftErrorInRegister() const override {
4971     return false;
4972   }
4973 };
4974 
4975 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4976 
4977 public:
4978   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4979                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4980                                bool SoftFloatABI)
4981       : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>(
4982             CGT, Kind, HasQPX, SoftFloatABI)) {}
4983 
4984   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4985     // This is recovered from gcc output.
4986     return 1; // r1 is the dedicated stack pointer
4987   }
4988 
4989   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4990                                llvm::Value *Address) const override;
4991 };
4992 
4993 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4994 public:
4995   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4996 
4997   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4998     // This is recovered from gcc output.
4999     return 1; // r1 is the dedicated stack pointer
5000   }
5001 
5002   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5003                                llvm::Value *Address) const override;
5004 };
5005 
5006 }
5007 
5008 // Return true if the ABI requires Ty to be passed sign- or zero-
5009 // extended to 64 bits.
5010 bool
5011 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5012   // Treat an enum type as its underlying type.
5013   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5014     Ty = EnumTy->getDecl()->getIntegerType();
5015 
5016   // Promotable integer types are required to be promoted by the ABI.
5017   if (isPromotableIntegerTypeForABI(Ty))
5018     return true;
5019 
5020   // In addition to the usual promotable integer types, we also need to
5021   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5022   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5023     switch (BT->getKind()) {
5024     case BuiltinType::Int:
5025     case BuiltinType::UInt:
5026       return true;
5027     default:
5028       break;
5029     }
5030 
5031   if (const auto *EIT = Ty->getAs<ExtIntType>())
5032     if (EIT->getNumBits() < 64)
5033       return true;
5034 
5035   return false;
5036 }
5037 
5038 /// isAlignedParamType - Determine whether a type requires 16-byte or
5039 /// higher alignment in the parameter area.  Always returns at least 8.
5040 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5041   // Complex types are passed just like their elements.
5042   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5043     Ty = CTy->getElementType();
5044 
5045   // Only vector types of size 16 bytes need alignment (larger types are
5046   // passed via reference, smaller types are not aligned).
5047   if (IsQPXVectorTy(Ty)) {
5048     if (getContext().getTypeSize(Ty) > 128)
5049       return CharUnits::fromQuantity(32);
5050 
5051     return CharUnits::fromQuantity(16);
5052   } else if (Ty->isVectorType()) {
5053     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5054   } else if (Ty->isRealFloatingType() && getContext().getTypeSize(Ty) == 128) {
5055     // IEEE 128-bit floating numbers are also stored in vector registers.
5056     // And both IEEE quad-precision and IBM extended double (ppc_fp128) should
5057     // be quad-word aligned.
5058     return CharUnits::fromQuantity(16);
5059   }
5060 
5061   // For single-element float/vector structs, we consider the whole type
5062   // to have the same alignment requirements as its single element.
5063   const Type *AlignAsType = nullptr;
5064   const Type *EltType = isSingleElementStruct(Ty, getContext());
5065   if (EltType) {
5066     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5067     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
5068          getContext().getTypeSize(EltType) == 128) ||
5069         (BT && BT->isFloatingPoint()))
5070       AlignAsType = EltType;
5071   }
5072 
5073   // Likewise for ELFv2 homogeneous aggregates.
5074   const Type *Base = nullptr;
5075   uint64_t Members = 0;
5076   if (!AlignAsType && Kind == ELFv2 &&
5077       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5078     AlignAsType = Base;
5079 
5080   // With special case aggregates, only vector base types need alignment.
5081   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
5082     if (getContext().getTypeSize(AlignAsType) > 128)
5083       return CharUnits::fromQuantity(32);
5084 
5085     return CharUnits::fromQuantity(16);
5086   } else if (AlignAsType) {
5087     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5088   }
5089 
5090   // Otherwise, we only need alignment for any aggregate type that
5091   // has an alignment requirement of >= 16 bytes.
5092   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5093     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
5094       return CharUnits::fromQuantity(32);
5095     return CharUnits::fromQuantity(16);
5096   }
5097 
5098   return CharUnits::fromQuantity(8);
5099 }
5100 
5101 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5102 /// aggregate.  Base is set to the base element type, and Members is set
5103 /// to the number of base elements.
5104 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5105                                      uint64_t &Members) const {
5106   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5107     uint64_t NElements = AT->getSize().getZExtValue();
5108     if (NElements == 0)
5109       return false;
5110     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5111       return false;
5112     Members *= NElements;
5113   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5114     const RecordDecl *RD = RT->getDecl();
5115     if (RD->hasFlexibleArrayMember())
5116       return false;
5117 
5118     Members = 0;
5119 
5120     // If this is a C++ record, check the bases first.
5121     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5122       for (const auto &I : CXXRD->bases()) {
5123         // Ignore empty records.
5124         if (isEmptyRecord(getContext(), I.getType(), true))
5125           continue;
5126 
5127         uint64_t FldMembers;
5128         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5129           return false;
5130 
5131         Members += FldMembers;
5132       }
5133     }
5134 
5135     for (const auto *FD : RD->fields()) {
5136       // Ignore (non-zero arrays of) empty records.
5137       QualType FT = FD->getType();
5138       while (const ConstantArrayType *AT =
5139              getContext().getAsConstantArrayType(FT)) {
5140         if (AT->getSize().getZExtValue() == 0)
5141           return false;
5142         FT = AT->getElementType();
5143       }
5144       if (isEmptyRecord(getContext(), FT, true))
5145         continue;
5146 
5147       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5148       if (getContext().getLangOpts().CPlusPlus &&
5149           FD->isZeroLengthBitField(getContext()))
5150         continue;
5151 
5152       uint64_t FldMembers;
5153       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5154         return false;
5155 
5156       Members = (RD->isUnion() ?
5157                  std::max(Members, FldMembers) : Members + FldMembers);
5158     }
5159 
5160     if (!Base)
5161       return false;
5162 
5163     // Ensure there is no padding.
5164     if (getContext().getTypeSize(Base) * Members !=
5165         getContext().getTypeSize(Ty))
5166       return false;
5167   } else {
5168     Members = 1;
5169     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5170       Members = 2;
5171       Ty = CT->getElementType();
5172     }
5173 
5174     // Most ABIs only support float, double, and some vector type widths.
5175     if (!isHomogeneousAggregateBaseType(Ty))
5176       return false;
5177 
5178     // The base type must be the same for all members.  Types that
5179     // agree in both total size and mode (float vs. vector) are
5180     // treated as being equivalent here.
5181     const Type *TyPtr = Ty.getTypePtr();
5182     if (!Base) {
5183       Base = TyPtr;
5184       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5185       // so make sure to widen it explicitly.
5186       if (const VectorType *VT = Base->getAs<VectorType>()) {
5187         QualType EltTy = VT->getElementType();
5188         unsigned NumElements =
5189             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5190         Base = getContext()
5191                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5192                    .getTypePtr();
5193       }
5194     }
5195 
5196     if (Base->isVectorType() != TyPtr->isVectorType() ||
5197         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5198       return false;
5199   }
5200   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5201 }
5202 
5203 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5204   // Homogeneous aggregates for ELFv2 must have base types of float,
5205   // double, long double, or 128-bit vectors.
5206   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5207     if (BT->getKind() == BuiltinType::Float ||
5208         BT->getKind() == BuiltinType::Double ||
5209         BT->getKind() == BuiltinType::LongDouble ||
5210         (getContext().getTargetInfo().hasFloat128Type() &&
5211           (BT->getKind() == BuiltinType::Float128))) {
5212       if (IsSoftFloatABI)
5213         return false;
5214       return true;
5215     }
5216   }
5217   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5218     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
5219       return true;
5220   }
5221   return false;
5222 }
5223 
5224 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5225     const Type *Base, uint64_t Members) const {
5226   // Vector and fp128 types require one register, other floating point types
5227   // require one or two registers depending on their size.
5228   uint32_t NumRegs =
5229       ((getContext().getTargetInfo().hasFloat128Type() &&
5230           Base->isFloat128Type()) ||
5231         Base->isVectorType()) ? 1
5232                               : (getContext().getTypeSize(Base) + 63) / 64;
5233 
5234   // Homogeneous Aggregates may occupy at most 8 registers.
5235   return Members * NumRegs <= 8;
5236 }
5237 
5238 ABIArgInfo
5239 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5240   Ty = useFirstFieldIfTransparentUnion(Ty);
5241 
5242   if (Ty->isAnyComplexType())
5243     return ABIArgInfo::getDirect();
5244 
5245   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5246   // or via reference (larger than 16 bytes).
5247   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
5248     uint64_t Size = getContext().getTypeSize(Ty);
5249     if (Size > 128)
5250       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5251     else if (Size < 128) {
5252       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5253       return ABIArgInfo::getDirect(CoerceTy);
5254     }
5255   }
5256 
5257   if (const auto *EIT = Ty->getAs<ExtIntType>())
5258     if (EIT->getNumBits() > 128)
5259       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5260 
5261   if (isAggregateTypeForABI(Ty)) {
5262     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5263       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5264 
5265     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5266     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5267 
5268     // ELFv2 homogeneous aggregates are passed as array types.
5269     const Type *Base = nullptr;
5270     uint64_t Members = 0;
5271     if (Kind == ELFv2 &&
5272         isHomogeneousAggregate(Ty, Base, Members)) {
5273       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5274       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5275       return ABIArgInfo::getDirect(CoerceTy);
5276     }
5277 
5278     // If an aggregate may end up fully in registers, we do not
5279     // use the ByVal method, but pass the aggregate as array.
5280     // This is usually beneficial since we avoid forcing the
5281     // back-end to store the argument to memory.
5282     uint64_t Bits = getContext().getTypeSize(Ty);
5283     if (Bits > 0 && Bits <= 8 * GPRBits) {
5284       llvm::Type *CoerceTy;
5285 
5286       // Types up to 8 bytes are passed as integer type (which will be
5287       // properly aligned in the argument save area doubleword).
5288       if (Bits <= GPRBits)
5289         CoerceTy =
5290             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5291       // Larger types are passed as arrays, with the base type selected
5292       // according to the required alignment in the save area.
5293       else {
5294         uint64_t RegBits = ABIAlign * 8;
5295         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5296         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5297         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5298       }
5299 
5300       return ABIArgInfo::getDirect(CoerceTy);
5301     }
5302 
5303     // All other aggregates are passed ByVal.
5304     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5305                                    /*ByVal=*/true,
5306                                    /*Realign=*/TyAlign > ABIAlign);
5307   }
5308 
5309   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5310                                      : ABIArgInfo::getDirect());
5311 }
5312 
5313 ABIArgInfo
5314 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5315   if (RetTy->isVoidType())
5316     return ABIArgInfo::getIgnore();
5317 
5318   if (RetTy->isAnyComplexType())
5319     return ABIArgInfo::getDirect();
5320 
5321   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5322   // or via reference (larger than 16 bytes).
5323   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
5324     uint64_t Size = getContext().getTypeSize(RetTy);
5325     if (Size > 128)
5326       return getNaturalAlignIndirect(RetTy);
5327     else if (Size < 128) {
5328       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5329       return ABIArgInfo::getDirect(CoerceTy);
5330     }
5331   }
5332 
5333   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5334     if (EIT->getNumBits() > 128)
5335       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5336 
5337   if (isAggregateTypeForABI(RetTy)) {
5338     // ELFv2 homogeneous aggregates are returned as array types.
5339     const Type *Base = nullptr;
5340     uint64_t Members = 0;
5341     if (Kind == ELFv2 &&
5342         isHomogeneousAggregate(RetTy, Base, Members)) {
5343       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5344       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5345       return ABIArgInfo::getDirect(CoerceTy);
5346     }
5347 
5348     // ELFv2 small aggregates are returned in up to two registers.
5349     uint64_t Bits = getContext().getTypeSize(RetTy);
5350     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5351       if (Bits == 0)
5352         return ABIArgInfo::getIgnore();
5353 
5354       llvm::Type *CoerceTy;
5355       if (Bits > GPRBits) {
5356         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5357         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5358       } else
5359         CoerceTy =
5360             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5361       return ABIArgInfo::getDirect(CoerceTy);
5362     }
5363 
5364     // All other aggregates are returned indirectly.
5365     return getNaturalAlignIndirect(RetTy);
5366   }
5367 
5368   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5369                                         : ABIArgInfo::getDirect());
5370 }
5371 
5372 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5373 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5374                                       QualType Ty) const {
5375   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5376   TypeInfo.Align = getParamTypeAlignment(Ty);
5377 
5378   CharUnits SlotSize = CharUnits::fromQuantity(8);
5379 
5380   // If we have a complex type and the base type is smaller than 8 bytes,
5381   // the ABI calls for the real and imaginary parts to be right-adjusted
5382   // in separate doublewords.  However, Clang expects us to produce a
5383   // pointer to a structure with the two parts packed tightly.  So generate
5384   // loads of the real and imaginary parts relative to the va_list pointer,
5385   // and store them to a temporary structure.
5386   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5387     CharUnits EltSize = TypeInfo.Width / 2;
5388     if (EltSize < SlotSize) {
5389       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5390                                             SlotSize * 2, SlotSize,
5391                                             SlotSize, /*AllowHigher*/ true);
5392 
5393       Address RealAddr = Addr;
5394       Address ImagAddr = RealAddr;
5395       if (CGF.CGM.getDataLayout().isBigEndian()) {
5396         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5397                                                           SlotSize - EltSize);
5398         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5399                                                       2 * SlotSize - EltSize);
5400       } else {
5401         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5402       }
5403 
5404       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5405       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5406       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5407       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5408       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5409 
5410       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5411       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5412                              /*init*/ true);
5413       return Temp;
5414     }
5415   }
5416 
5417   // Otherwise, just use the general rule.
5418   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5419                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5420 }
5421 
5422 bool
5423 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5424   CodeGen::CodeGenFunction &CGF,
5425   llvm::Value *Address) const {
5426   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5427                                      /*IsAIX*/ false);
5428 }
5429 
5430 bool
5431 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5432                                                 llvm::Value *Address) const {
5433   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5434                                      /*IsAIX*/ false);
5435 }
5436 
5437 //===----------------------------------------------------------------------===//
5438 // AArch64 ABI Implementation
5439 //===----------------------------------------------------------------------===//
5440 
5441 namespace {
5442 
5443 class AArch64ABIInfo : public SwiftABIInfo {
5444 public:
5445   enum ABIKind {
5446     AAPCS = 0,
5447     DarwinPCS,
5448     Win64
5449   };
5450 
5451 private:
5452   ABIKind Kind;
5453 
5454 public:
5455   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5456     : SwiftABIInfo(CGT), Kind(Kind) {}
5457 
5458 private:
5459   ABIKind getABIKind() const { return Kind; }
5460   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5461 
5462   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5463   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5464   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5465   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5466   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5467                                          uint64_t Members) const override;
5468 
5469   bool isIllegalVectorType(QualType Ty) const;
5470 
5471   void computeInfo(CGFunctionInfo &FI) const override {
5472     if (!::classifyReturnType(getCXXABI(), FI, *this))
5473       FI.getReturnInfo() =
5474           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5475 
5476     for (auto &it : FI.arguments())
5477       it.info = classifyArgumentType(it.type);
5478   }
5479 
5480   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5481                           CodeGenFunction &CGF) const;
5482 
5483   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5484                          CodeGenFunction &CGF) const;
5485 
5486   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5487                     QualType Ty) const override {
5488     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5489     if (isa<llvm::ScalableVectorType>(BaseTy))
5490       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5491                                "currently not supported");
5492 
5493     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5494                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5495                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5496   }
5497 
5498   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5499                       QualType Ty) const override;
5500 
5501   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5502                                     bool asReturnValue) const override {
5503     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5504   }
5505   bool isSwiftErrorInRegister() const override {
5506     return true;
5507   }
5508 
5509   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5510                                  unsigned elts) const override;
5511 
5512   bool allowBFloatArgsAndRet() const override {
5513     return getTarget().hasBFloat16Type();
5514   }
5515 };
5516 
5517 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5518 public:
5519   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5520       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5521 
5522   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5523     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5524   }
5525 
5526   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5527     return 31;
5528   }
5529 
5530   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5531 
5532   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5533                            CodeGen::CodeGenModule &CGM) const override {
5534     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5535     if (!FD)
5536       return;
5537 
5538     const auto *TA = FD->getAttr<TargetAttr>();
5539     if (TA == nullptr)
5540       return;
5541 
5542     ParsedTargetAttr Attr = TA->parse();
5543     if (Attr.BranchProtection.empty())
5544       return;
5545 
5546     TargetInfo::BranchProtectionInfo BPI;
5547     StringRef Error;
5548     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5549                                                    BPI, Error);
5550     assert(Error.empty());
5551 
5552     auto *Fn = cast<llvm::Function>(GV);
5553     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5554     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5555 
5556     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5557       Fn->addFnAttr("sign-return-address-key",
5558                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5559                         ? "a_key"
5560                         : "b_key");
5561     }
5562 
5563     Fn->addFnAttr("branch-target-enforcement",
5564                   BPI.BranchTargetEnforcement ? "true" : "false");
5565   }
5566 };
5567 
5568 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5569 public:
5570   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5571       : AArch64TargetCodeGenInfo(CGT, K) {}
5572 
5573   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5574                            CodeGen::CodeGenModule &CGM) const override;
5575 
5576   void getDependentLibraryOption(llvm::StringRef Lib,
5577                                  llvm::SmallString<24> &Opt) const override {
5578     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5579   }
5580 
5581   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5582                                llvm::SmallString<32> &Opt) const override {
5583     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5584   }
5585 };
5586 
5587 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5588     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5589   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5590   if (GV->isDeclaration())
5591     return;
5592   addStackProbeTargetAttributes(D, GV, CGM);
5593 }
5594 }
5595 
5596 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5597   assert(Ty->isVectorType() && "expected vector type!");
5598 
5599   const auto *VT = Ty->castAs<VectorType>();
5600   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5601     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5602     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5603                BuiltinType::UChar &&
5604            "unexpected builtin type for SVE predicate!");
5605     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5606         llvm::Type::getInt1Ty(getVMContext()), 16));
5607   }
5608 
5609   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5610     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5611 
5612     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5613     llvm::ScalableVectorType *ResType = nullptr;
5614     switch (BT->getKind()) {
5615     default:
5616       llvm_unreachable("unexpected builtin type for SVE vector!");
5617     case BuiltinType::SChar:
5618     case BuiltinType::UChar:
5619       ResType = llvm::ScalableVectorType::get(
5620           llvm::Type::getInt8Ty(getVMContext()), 16);
5621       break;
5622     case BuiltinType::Short:
5623     case BuiltinType::UShort:
5624       ResType = llvm::ScalableVectorType::get(
5625           llvm::Type::getInt16Ty(getVMContext()), 8);
5626       break;
5627     case BuiltinType::Int:
5628     case BuiltinType::UInt:
5629       ResType = llvm::ScalableVectorType::get(
5630           llvm::Type::getInt32Ty(getVMContext()), 4);
5631       break;
5632     case BuiltinType::Long:
5633     case BuiltinType::ULong:
5634       ResType = llvm::ScalableVectorType::get(
5635           llvm::Type::getInt64Ty(getVMContext()), 2);
5636       break;
5637     case BuiltinType::Half:
5638       ResType = llvm::ScalableVectorType::get(
5639           llvm::Type::getHalfTy(getVMContext()), 8);
5640       break;
5641     case BuiltinType::Float:
5642       ResType = llvm::ScalableVectorType::get(
5643           llvm::Type::getFloatTy(getVMContext()), 4);
5644       break;
5645     case BuiltinType::Double:
5646       ResType = llvm::ScalableVectorType::get(
5647           llvm::Type::getDoubleTy(getVMContext()), 2);
5648       break;
5649     case BuiltinType::BFloat16:
5650       ResType = llvm::ScalableVectorType::get(
5651           llvm::Type::getBFloatTy(getVMContext()), 8);
5652       break;
5653     }
5654     return ABIArgInfo::getDirect(ResType);
5655   }
5656 
5657   uint64_t Size = getContext().getTypeSize(Ty);
5658   // Android promotes <2 x i8> to i16, not i32
5659   if (isAndroid() && (Size <= 16)) {
5660     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5661     return ABIArgInfo::getDirect(ResType);
5662   }
5663   if (Size <= 32) {
5664     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5665     return ABIArgInfo::getDirect(ResType);
5666   }
5667   if (Size == 64) {
5668     auto *ResType =
5669         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5670     return ABIArgInfo::getDirect(ResType);
5671   }
5672   if (Size == 128) {
5673     auto *ResType =
5674         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5675     return ABIArgInfo::getDirect(ResType);
5676   }
5677   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5678 }
5679 
5680 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5681   Ty = useFirstFieldIfTransparentUnion(Ty);
5682 
5683   // Handle illegal vector types here.
5684   if (isIllegalVectorType(Ty))
5685     return coerceIllegalVector(Ty);
5686 
5687   if (!isAggregateTypeForABI(Ty)) {
5688     // Treat an enum type as its underlying type.
5689     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5690       Ty = EnumTy->getDecl()->getIntegerType();
5691 
5692     if (const auto *EIT = Ty->getAs<ExtIntType>())
5693       if (EIT->getNumBits() > 128)
5694         return getNaturalAlignIndirect(Ty);
5695 
5696     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5697                 ? ABIArgInfo::getExtend(Ty)
5698                 : ABIArgInfo::getDirect());
5699   }
5700 
5701   // Structures with either a non-trivial destructor or a non-trivial
5702   // copy constructor are always indirect.
5703   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5704     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5705                                      CGCXXABI::RAA_DirectInMemory);
5706   }
5707 
5708   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5709   // elsewhere for GNU compatibility.
5710   uint64_t Size = getContext().getTypeSize(Ty);
5711   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5712   if (IsEmpty || Size == 0) {
5713     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5714       return ABIArgInfo::getIgnore();
5715 
5716     // GNU C mode. The only argument that gets ignored is an empty one with size
5717     // 0.
5718     if (IsEmpty && Size == 0)
5719       return ABIArgInfo::getIgnore();
5720     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5721   }
5722 
5723   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5724   const Type *Base = nullptr;
5725   uint64_t Members = 0;
5726   if (isHomogeneousAggregate(Ty, Base, Members)) {
5727     return ABIArgInfo::getDirect(
5728         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5729   }
5730 
5731   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5732   if (Size <= 128) {
5733     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5734     // same size and alignment.
5735     if (getTarget().isRenderScriptTarget()) {
5736       return coerceToIntArray(Ty, getContext(), getVMContext());
5737     }
5738     unsigned Alignment;
5739     if (Kind == AArch64ABIInfo::AAPCS) {
5740       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5741       Alignment = Alignment < 128 ? 64 : 128;
5742     } else {
5743       Alignment = std::max(getContext().getTypeAlign(Ty),
5744                            (unsigned)getTarget().getPointerWidth(0));
5745     }
5746     Size = llvm::alignTo(Size, Alignment);
5747 
5748     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5749     // For aggregates with 16-byte alignment, we use i128.
5750     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5751     return ABIArgInfo::getDirect(
5752         Size == Alignment ? BaseTy
5753                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5754   }
5755 
5756   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5757 }
5758 
5759 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5760                                               bool IsVariadic) const {
5761   if (RetTy->isVoidType())
5762     return ABIArgInfo::getIgnore();
5763 
5764   if (const auto *VT = RetTy->getAs<VectorType>()) {
5765     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5766         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5767       return coerceIllegalVector(RetTy);
5768   }
5769 
5770   // Large vector types should be returned via memory.
5771   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5772     return getNaturalAlignIndirect(RetTy);
5773 
5774   if (!isAggregateTypeForABI(RetTy)) {
5775     // Treat an enum type as its underlying type.
5776     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5777       RetTy = EnumTy->getDecl()->getIntegerType();
5778 
5779     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5780       if (EIT->getNumBits() > 128)
5781         return getNaturalAlignIndirect(RetTy);
5782 
5783     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5784                 ? ABIArgInfo::getExtend(RetTy)
5785                 : ABIArgInfo::getDirect());
5786   }
5787 
5788   uint64_t Size = getContext().getTypeSize(RetTy);
5789   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5790     return ABIArgInfo::getIgnore();
5791 
5792   const Type *Base = nullptr;
5793   uint64_t Members = 0;
5794   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5795       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5796         IsVariadic))
5797     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5798     return ABIArgInfo::getDirect();
5799 
5800   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5801   if (Size <= 128) {
5802     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5803     // same size and alignment.
5804     if (getTarget().isRenderScriptTarget()) {
5805       return coerceToIntArray(RetTy, getContext(), getVMContext());
5806     }
5807     unsigned Alignment = getContext().getTypeAlign(RetTy);
5808     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5809 
5810     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5811     // For aggregates with 16-byte alignment, we use i128.
5812     if (Alignment < 128 && Size == 128) {
5813       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5814       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5815     }
5816     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5817   }
5818 
5819   return getNaturalAlignIndirect(RetTy);
5820 }
5821 
5822 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5823 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5824   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5825     // Check whether VT is a fixed-length SVE vector. These types are
5826     // represented as scalable vectors in function args/return and must be
5827     // coerced from fixed vectors.
5828     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5829         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5830       return true;
5831 
5832     // Check whether VT is legal.
5833     unsigned NumElements = VT->getNumElements();
5834     uint64_t Size = getContext().getTypeSize(VT);
5835     // NumElements should be power of 2.
5836     if (!llvm::isPowerOf2_32(NumElements))
5837       return true;
5838 
5839     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5840     // vectors for some reason.
5841     llvm::Triple Triple = getTarget().getTriple();
5842     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5843         Triple.isOSBinFormatMachO())
5844       return Size <= 32;
5845 
5846     return Size != 64 && (Size != 128 || NumElements == 1);
5847   }
5848   return false;
5849 }
5850 
5851 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5852                                                llvm::Type *eltTy,
5853                                                unsigned elts) const {
5854   if (!llvm::isPowerOf2_32(elts))
5855     return false;
5856   if (totalSize.getQuantity() != 8 &&
5857       (totalSize.getQuantity() != 16 || elts == 1))
5858     return false;
5859   return true;
5860 }
5861 
5862 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5863   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5864   // point type or a short-vector type. This is the same as the 32-bit ABI,
5865   // but with the difference that any floating-point type is allowed,
5866   // including __fp16.
5867   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5868     if (BT->isFloatingPoint())
5869       return true;
5870   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5871     unsigned VecSize = getContext().getTypeSize(VT);
5872     if (VecSize == 64 || VecSize == 128)
5873       return true;
5874   }
5875   return false;
5876 }
5877 
5878 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5879                                                        uint64_t Members) const {
5880   return Members <= 4;
5881 }
5882 
5883 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5884                                             QualType Ty,
5885                                             CodeGenFunction &CGF) const {
5886   ABIArgInfo AI = classifyArgumentType(Ty);
5887   bool IsIndirect = AI.isIndirect();
5888 
5889   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5890   if (IsIndirect)
5891     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5892   else if (AI.getCoerceToType())
5893     BaseTy = AI.getCoerceToType();
5894 
5895   unsigned NumRegs = 1;
5896   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5897     BaseTy = ArrTy->getElementType();
5898     NumRegs = ArrTy->getNumElements();
5899   }
5900   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5901 
5902   // The AArch64 va_list type and handling is specified in the Procedure Call
5903   // Standard, section B.4:
5904   //
5905   // struct {
5906   //   void *__stack;
5907   //   void *__gr_top;
5908   //   void *__vr_top;
5909   //   int __gr_offs;
5910   //   int __vr_offs;
5911   // };
5912 
5913   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5914   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5915   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5916   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5917 
5918   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5919   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5920 
5921   Address reg_offs_p = Address::invalid();
5922   llvm::Value *reg_offs = nullptr;
5923   int reg_top_index;
5924   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5925   if (!IsFPR) {
5926     // 3 is the field number of __gr_offs
5927     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5928     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5929     reg_top_index = 1; // field number for __gr_top
5930     RegSize = llvm::alignTo(RegSize, 8);
5931   } else {
5932     // 4 is the field number of __vr_offs.
5933     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5934     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5935     reg_top_index = 2; // field number for __vr_top
5936     RegSize = 16 * NumRegs;
5937   }
5938 
5939   //=======================================
5940   // Find out where argument was passed
5941   //=======================================
5942 
5943   // If reg_offs >= 0 we're already using the stack for this type of
5944   // argument. We don't want to keep updating reg_offs (in case it overflows,
5945   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5946   // whatever they get).
5947   llvm::Value *UsingStack = nullptr;
5948   UsingStack = CGF.Builder.CreateICmpSGE(
5949       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5950 
5951   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5952 
5953   // Otherwise, at least some kind of argument could go in these registers, the
5954   // question is whether this particular type is too big.
5955   CGF.EmitBlock(MaybeRegBlock);
5956 
5957   // Integer arguments may need to correct register alignment (for example a
5958   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5959   // align __gr_offs to calculate the potential address.
5960   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5961     int Align = TyAlign.getQuantity();
5962 
5963     reg_offs = CGF.Builder.CreateAdd(
5964         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5965         "align_regoffs");
5966     reg_offs = CGF.Builder.CreateAnd(
5967         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5968         "aligned_regoffs");
5969   }
5970 
5971   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5972   // The fact that this is done unconditionally reflects the fact that
5973   // allocating an argument to the stack also uses up all the remaining
5974   // registers of the appropriate kind.
5975   llvm::Value *NewOffset = nullptr;
5976   NewOffset = CGF.Builder.CreateAdd(
5977       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5978   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5979 
5980   // Now we're in a position to decide whether this argument really was in
5981   // registers or not.
5982   llvm::Value *InRegs = nullptr;
5983   InRegs = CGF.Builder.CreateICmpSLE(
5984       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5985 
5986   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5987 
5988   //=======================================
5989   // Argument was in registers
5990   //=======================================
5991 
5992   // Now we emit the code for if the argument was originally passed in
5993   // registers. First start the appropriate block:
5994   CGF.EmitBlock(InRegBlock);
5995 
5996   llvm::Value *reg_top = nullptr;
5997   Address reg_top_p =
5998       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5999   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6000   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
6001                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
6002   Address RegAddr = Address::invalid();
6003   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
6004 
6005   if (IsIndirect) {
6006     // If it's been passed indirectly (actually a struct), whatever we find from
6007     // stored registers or on the stack will actually be a struct **.
6008     MemTy = llvm::PointerType::getUnqual(MemTy);
6009   }
6010 
6011   const Type *Base = nullptr;
6012   uint64_t NumMembers = 0;
6013   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6014   if (IsHFA && NumMembers > 1) {
6015     // Homogeneous aggregates passed in registers will have their elements split
6016     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6017     // qN+1, ...). We reload and store into a temporary local variable
6018     // contiguously.
6019     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6020     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6021     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6022     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6023     Address Tmp = CGF.CreateTempAlloca(HFATy,
6024                                        std::max(TyAlign, BaseTyInfo.Align));
6025 
6026     // On big-endian platforms, the value will be right-aligned in its slot.
6027     int Offset = 0;
6028     if (CGF.CGM.getDataLayout().isBigEndian() &&
6029         BaseTyInfo.Width.getQuantity() < 16)
6030       Offset = 16 - BaseTyInfo.Width.getQuantity();
6031 
6032     for (unsigned i = 0; i < NumMembers; ++i) {
6033       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6034       Address LoadAddr =
6035         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6036       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6037 
6038       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6039 
6040       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6041       CGF.Builder.CreateStore(Elem, StoreAddr);
6042     }
6043 
6044     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6045   } else {
6046     // Otherwise the object is contiguous in memory.
6047 
6048     // It might be right-aligned in its slot.
6049     CharUnits SlotSize = BaseAddr.getAlignment();
6050     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6051         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6052         TySize < SlotSize) {
6053       CharUnits Offset = SlotSize - TySize;
6054       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6055     }
6056 
6057     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6058   }
6059 
6060   CGF.EmitBranch(ContBlock);
6061 
6062   //=======================================
6063   // Argument was on the stack
6064   //=======================================
6065   CGF.EmitBlock(OnStackBlock);
6066 
6067   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6068   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6069 
6070   // Again, stack arguments may need realignment. In this case both integer and
6071   // floating-point ones might be affected.
6072   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6073     int Align = TyAlign.getQuantity();
6074 
6075     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6076 
6077     OnStackPtr = CGF.Builder.CreateAdd(
6078         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6079         "align_stack");
6080     OnStackPtr = CGF.Builder.CreateAnd(
6081         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6082         "align_stack");
6083 
6084     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6085   }
6086   Address OnStackAddr(OnStackPtr,
6087                       std::max(CharUnits::fromQuantity(8), TyAlign));
6088 
6089   // All stack slots are multiples of 8 bytes.
6090   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6091   CharUnits StackSize;
6092   if (IsIndirect)
6093     StackSize = StackSlotSize;
6094   else
6095     StackSize = TySize.alignTo(StackSlotSize);
6096 
6097   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6098   llvm::Value *NewStack =
6099       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6100 
6101   // Write the new value of __stack for the next call to va_arg
6102   CGF.Builder.CreateStore(NewStack, stack_p);
6103 
6104   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6105       TySize < StackSlotSize) {
6106     CharUnits Offset = StackSlotSize - TySize;
6107     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6108   }
6109 
6110   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6111 
6112   CGF.EmitBranch(ContBlock);
6113 
6114   //=======================================
6115   // Tidy up
6116   //=======================================
6117   CGF.EmitBlock(ContBlock);
6118 
6119   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6120                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6121 
6122   if (IsIndirect)
6123     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6124                    TyAlign);
6125 
6126   return ResAddr;
6127 }
6128 
6129 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6130                                         CodeGenFunction &CGF) const {
6131   // The backend's lowering doesn't support va_arg for aggregates or
6132   // illegal vector types.  Lower VAArg here for these cases and use
6133   // the LLVM va_arg instruction for everything else.
6134   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6135     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6136 
6137   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6138   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6139 
6140   // Empty records are ignored for parameter passing purposes.
6141   if (isEmptyRecord(getContext(), Ty, true)) {
6142     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6143     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6144     return Addr;
6145   }
6146 
6147   // The size of the actual thing passed, which might end up just
6148   // being a pointer for indirect types.
6149   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6150 
6151   // Arguments bigger than 16 bytes which aren't homogeneous
6152   // aggregates should be passed indirectly.
6153   bool IsIndirect = false;
6154   if (TyInfo.Width.getQuantity() > 16) {
6155     const Type *Base = nullptr;
6156     uint64_t Members = 0;
6157     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6158   }
6159 
6160   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6161                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6162 }
6163 
6164 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6165                                     QualType Ty) const {
6166   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6167                           CGF.getContext().getTypeInfoInChars(Ty),
6168                           CharUnits::fromQuantity(8),
6169                           /*allowHigherAlign*/ false);
6170 }
6171 
6172 //===----------------------------------------------------------------------===//
6173 // ARM ABI Implementation
6174 //===----------------------------------------------------------------------===//
6175 
6176 namespace {
6177 
6178 class ARMABIInfo : public SwiftABIInfo {
6179 public:
6180   enum ABIKind {
6181     APCS = 0,
6182     AAPCS = 1,
6183     AAPCS_VFP = 2,
6184     AAPCS16_VFP = 3,
6185   };
6186 
6187 private:
6188   ABIKind Kind;
6189   bool IsFloatABISoftFP;
6190 
6191 public:
6192   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6193       : SwiftABIInfo(CGT), Kind(_Kind) {
6194     setCCs();
6195     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6196         CGT.getCodeGenOpts().FloatABI == ""; // default
6197   }
6198 
6199   bool isEABI() const {
6200     switch (getTarget().getTriple().getEnvironment()) {
6201     case llvm::Triple::Android:
6202     case llvm::Triple::EABI:
6203     case llvm::Triple::EABIHF:
6204     case llvm::Triple::GNUEABI:
6205     case llvm::Triple::GNUEABIHF:
6206     case llvm::Triple::MuslEABI:
6207     case llvm::Triple::MuslEABIHF:
6208       return true;
6209     default:
6210       return false;
6211     }
6212   }
6213 
6214   bool isEABIHF() const {
6215     switch (getTarget().getTriple().getEnvironment()) {
6216     case llvm::Triple::EABIHF:
6217     case llvm::Triple::GNUEABIHF:
6218     case llvm::Triple::MuslEABIHF:
6219       return true;
6220     default:
6221       return false;
6222     }
6223   }
6224 
6225   ABIKind getABIKind() const { return Kind; }
6226 
6227   bool allowBFloatArgsAndRet() const override {
6228     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6229   }
6230 
6231 private:
6232   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6233                                 unsigned functionCallConv) const;
6234   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6235                                   unsigned functionCallConv) const;
6236   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6237                                           uint64_t Members) const;
6238   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6239   bool isIllegalVectorType(QualType Ty) const;
6240   bool containsAnyFP16Vectors(QualType Ty) const;
6241 
6242   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6243   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6244                                          uint64_t Members) const override;
6245 
6246   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6247 
6248   void computeInfo(CGFunctionInfo &FI) const override;
6249 
6250   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6251                     QualType Ty) const override;
6252 
6253   llvm::CallingConv::ID getLLVMDefaultCC() const;
6254   llvm::CallingConv::ID getABIDefaultCC() const;
6255   void setCCs();
6256 
6257   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6258                                     bool asReturnValue) const override {
6259     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6260   }
6261   bool isSwiftErrorInRegister() const override {
6262     return true;
6263   }
6264   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6265                                  unsigned elts) const override;
6266 };
6267 
6268 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6269 public:
6270   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6271       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6272 
6273   const ARMABIInfo &getABIInfo() const {
6274     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6275   }
6276 
6277   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6278     return 13;
6279   }
6280 
6281   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6282     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6283   }
6284 
6285   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6286                                llvm::Value *Address) const override {
6287     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6288 
6289     // 0-15 are the 16 integer registers.
6290     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6291     return false;
6292   }
6293 
6294   unsigned getSizeOfUnwindException() const override {
6295     if (getABIInfo().isEABI()) return 88;
6296     return TargetCodeGenInfo::getSizeOfUnwindException();
6297   }
6298 
6299   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6300                            CodeGen::CodeGenModule &CGM) const override {
6301     if (GV->isDeclaration())
6302       return;
6303     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6304     if (!FD)
6305       return;
6306 
6307     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6308     if (!Attr)
6309       return;
6310 
6311     const char *Kind;
6312     switch (Attr->getInterrupt()) {
6313     case ARMInterruptAttr::Generic: Kind = ""; break;
6314     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6315     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6316     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6317     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6318     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6319     }
6320 
6321     llvm::Function *Fn = cast<llvm::Function>(GV);
6322 
6323     Fn->addFnAttr("interrupt", Kind);
6324 
6325     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6326     if (ABI == ARMABIInfo::APCS)
6327       return;
6328 
6329     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6330     // however this is not necessarily true on taking any interrupt. Instruct
6331     // the backend to perform a realignment as part of the function prologue.
6332     llvm::AttrBuilder B;
6333     B.addStackAlignmentAttr(8);
6334     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6335   }
6336 };
6337 
6338 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6339 public:
6340   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6341       : ARMTargetCodeGenInfo(CGT, K) {}
6342 
6343   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6344                            CodeGen::CodeGenModule &CGM) const override;
6345 
6346   void getDependentLibraryOption(llvm::StringRef Lib,
6347                                  llvm::SmallString<24> &Opt) const override {
6348     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6349   }
6350 
6351   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6352                                llvm::SmallString<32> &Opt) const override {
6353     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6354   }
6355 };
6356 
6357 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6358     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6359   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6360   if (GV->isDeclaration())
6361     return;
6362   addStackProbeTargetAttributes(D, GV, CGM);
6363 }
6364 }
6365 
6366 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6367   if (!::classifyReturnType(getCXXABI(), FI, *this))
6368     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6369                                             FI.getCallingConvention());
6370 
6371   for (auto &I : FI.arguments())
6372     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6373                                   FI.getCallingConvention());
6374 
6375 
6376   // Always honor user-specified calling convention.
6377   if (FI.getCallingConvention() != llvm::CallingConv::C)
6378     return;
6379 
6380   llvm::CallingConv::ID cc = getRuntimeCC();
6381   if (cc != llvm::CallingConv::C)
6382     FI.setEffectiveCallingConvention(cc);
6383 }
6384 
6385 /// Return the default calling convention that LLVM will use.
6386 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6387   // The default calling convention that LLVM will infer.
6388   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6389     return llvm::CallingConv::ARM_AAPCS_VFP;
6390   else if (isEABI())
6391     return llvm::CallingConv::ARM_AAPCS;
6392   else
6393     return llvm::CallingConv::ARM_APCS;
6394 }
6395 
6396 /// Return the calling convention that our ABI would like us to use
6397 /// as the C calling convention.
6398 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6399   switch (getABIKind()) {
6400   case APCS: return llvm::CallingConv::ARM_APCS;
6401   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6402   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6403   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6404   }
6405   llvm_unreachable("bad ABI kind");
6406 }
6407 
6408 void ARMABIInfo::setCCs() {
6409   assert(getRuntimeCC() == llvm::CallingConv::C);
6410 
6411   // Don't muddy up the IR with a ton of explicit annotations if
6412   // they'd just match what LLVM will infer from the triple.
6413   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6414   if (abiCC != getLLVMDefaultCC())
6415     RuntimeCC = abiCC;
6416 }
6417 
6418 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6419   uint64_t Size = getContext().getTypeSize(Ty);
6420   if (Size <= 32) {
6421     llvm::Type *ResType =
6422         llvm::Type::getInt32Ty(getVMContext());
6423     return ABIArgInfo::getDirect(ResType);
6424   }
6425   if (Size == 64 || Size == 128) {
6426     auto *ResType = llvm::FixedVectorType::get(
6427         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6428     return ABIArgInfo::getDirect(ResType);
6429   }
6430   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6431 }
6432 
6433 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6434                                                     const Type *Base,
6435                                                     uint64_t Members) const {
6436   assert(Base && "Base class should be set for homogeneous aggregate");
6437   // Base can be a floating-point or a vector.
6438   if (const VectorType *VT = Base->getAs<VectorType>()) {
6439     // FP16 vectors should be converted to integer vectors
6440     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6441       uint64_t Size = getContext().getTypeSize(VT);
6442       auto *NewVecTy = llvm::FixedVectorType::get(
6443           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6444       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6445       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6446     }
6447   }
6448   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6449 }
6450 
6451 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6452                                             unsigned functionCallConv) const {
6453   // 6.1.2.1 The following argument types are VFP CPRCs:
6454   //   A single-precision floating-point type (including promoted
6455   //   half-precision types); A double-precision floating-point type;
6456   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6457   //   with a Base Type of a single- or double-precision floating-point type,
6458   //   64-bit containerized vectors or 128-bit containerized vectors with one
6459   //   to four Elements.
6460   // Variadic functions should always marshal to the base standard.
6461   bool IsAAPCS_VFP =
6462       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6463 
6464   Ty = useFirstFieldIfTransparentUnion(Ty);
6465 
6466   // Handle illegal vector types here.
6467   if (isIllegalVectorType(Ty))
6468     return coerceIllegalVector(Ty);
6469 
6470   if (!isAggregateTypeForABI(Ty)) {
6471     // Treat an enum type as its underlying type.
6472     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6473       Ty = EnumTy->getDecl()->getIntegerType();
6474     }
6475 
6476     if (const auto *EIT = Ty->getAs<ExtIntType>())
6477       if (EIT->getNumBits() > 64)
6478         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6479 
6480     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6481                                               : ABIArgInfo::getDirect());
6482   }
6483 
6484   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6485     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6486   }
6487 
6488   // Ignore empty records.
6489   if (isEmptyRecord(getContext(), Ty, true))
6490     return ABIArgInfo::getIgnore();
6491 
6492   if (IsAAPCS_VFP) {
6493     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6494     // into VFP registers.
6495     const Type *Base = nullptr;
6496     uint64_t Members = 0;
6497     if (isHomogeneousAggregate(Ty, Base, Members))
6498       return classifyHomogeneousAggregate(Ty, Base, Members);
6499   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6500     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6501     // this convention even for a variadic function: the backend will use GPRs
6502     // if needed.
6503     const Type *Base = nullptr;
6504     uint64_t Members = 0;
6505     if (isHomogeneousAggregate(Ty, Base, Members)) {
6506       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6507       llvm::Type *Ty =
6508         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6509       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6510     }
6511   }
6512 
6513   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6514       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6515     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6516     // bigger than 128-bits, they get placed in space allocated by the caller,
6517     // and a pointer is passed.
6518     return ABIArgInfo::getIndirect(
6519         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6520   }
6521 
6522   // Support byval for ARM.
6523   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6524   // most 8-byte. We realign the indirect argument if type alignment is bigger
6525   // than ABI alignment.
6526   uint64_t ABIAlign = 4;
6527   uint64_t TyAlign;
6528   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6529       getABIKind() == ARMABIInfo::AAPCS) {
6530     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6531     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6532   } else {
6533     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6534   }
6535   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6536     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6537     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6538                                    /*ByVal=*/true,
6539                                    /*Realign=*/TyAlign > ABIAlign);
6540   }
6541 
6542   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6543   // same size and alignment.
6544   if (getTarget().isRenderScriptTarget()) {
6545     return coerceToIntArray(Ty, getContext(), getVMContext());
6546   }
6547 
6548   // Otherwise, pass by coercing to a structure of the appropriate size.
6549   llvm::Type* ElemTy;
6550   unsigned SizeRegs;
6551   // FIXME: Try to match the types of the arguments more accurately where
6552   // we can.
6553   if (TyAlign <= 4) {
6554     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6555     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6556   } else {
6557     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6558     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6559   }
6560 
6561   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6562 }
6563 
6564 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6565                               llvm::LLVMContext &VMContext) {
6566   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6567   // is called integer-like if its size is less than or equal to one word, and
6568   // the offset of each of its addressable sub-fields is zero.
6569 
6570   uint64_t Size = Context.getTypeSize(Ty);
6571 
6572   // Check that the type fits in a word.
6573   if (Size > 32)
6574     return false;
6575 
6576   // FIXME: Handle vector types!
6577   if (Ty->isVectorType())
6578     return false;
6579 
6580   // Float types are never treated as "integer like".
6581   if (Ty->isRealFloatingType())
6582     return false;
6583 
6584   // If this is a builtin or pointer type then it is ok.
6585   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6586     return true;
6587 
6588   // Small complex integer types are "integer like".
6589   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6590     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6591 
6592   // Single element and zero sized arrays should be allowed, by the definition
6593   // above, but they are not.
6594 
6595   // Otherwise, it must be a record type.
6596   const RecordType *RT = Ty->getAs<RecordType>();
6597   if (!RT) return false;
6598 
6599   // Ignore records with flexible arrays.
6600   const RecordDecl *RD = RT->getDecl();
6601   if (RD->hasFlexibleArrayMember())
6602     return false;
6603 
6604   // Check that all sub-fields are at offset 0, and are themselves "integer
6605   // like".
6606   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6607 
6608   bool HadField = false;
6609   unsigned idx = 0;
6610   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6611        i != e; ++i, ++idx) {
6612     const FieldDecl *FD = *i;
6613 
6614     // Bit-fields are not addressable, we only need to verify they are "integer
6615     // like". We still have to disallow a subsequent non-bitfield, for example:
6616     //   struct { int : 0; int x }
6617     // is non-integer like according to gcc.
6618     if (FD->isBitField()) {
6619       if (!RD->isUnion())
6620         HadField = true;
6621 
6622       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6623         return false;
6624 
6625       continue;
6626     }
6627 
6628     // Check if this field is at offset 0.
6629     if (Layout.getFieldOffset(idx) != 0)
6630       return false;
6631 
6632     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6633       return false;
6634 
6635     // Only allow at most one field in a structure. This doesn't match the
6636     // wording above, but follows gcc in situations with a field following an
6637     // empty structure.
6638     if (!RD->isUnion()) {
6639       if (HadField)
6640         return false;
6641 
6642       HadField = true;
6643     }
6644   }
6645 
6646   return true;
6647 }
6648 
6649 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6650                                           unsigned functionCallConv) const {
6651 
6652   // Variadic functions should always marshal to the base standard.
6653   bool IsAAPCS_VFP =
6654       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6655 
6656   if (RetTy->isVoidType())
6657     return ABIArgInfo::getIgnore();
6658 
6659   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6660     // Large vector types should be returned via memory.
6661     if (getContext().getTypeSize(RetTy) > 128)
6662       return getNaturalAlignIndirect(RetTy);
6663     // TODO: FP16/BF16 vectors should be converted to integer vectors
6664     // This check is similar  to isIllegalVectorType - refactor?
6665     if ((!getTarget().hasLegalHalfType() &&
6666         (VT->getElementType()->isFloat16Type() ||
6667          VT->getElementType()->isHalfType())) ||
6668         (IsFloatABISoftFP &&
6669          VT->getElementType()->isBFloat16Type()))
6670       return coerceIllegalVector(RetTy);
6671   }
6672 
6673   if (!isAggregateTypeForABI(RetTy)) {
6674     // Treat an enum type as its underlying type.
6675     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6676       RetTy = EnumTy->getDecl()->getIntegerType();
6677 
6678     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6679       if (EIT->getNumBits() > 64)
6680         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6681 
6682     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6683                                                 : ABIArgInfo::getDirect();
6684   }
6685 
6686   // Are we following APCS?
6687   if (getABIKind() == APCS) {
6688     if (isEmptyRecord(getContext(), RetTy, false))
6689       return ABIArgInfo::getIgnore();
6690 
6691     // Complex types are all returned as packed integers.
6692     //
6693     // FIXME: Consider using 2 x vector types if the back end handles them
6694     // correctly.
6695     if (RetTy->isAnyComplexType())
6696       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6697           getVMContext(), getContext().getTypeSize(RetTy)));
6698 
6699     // Integer like structures are returned in r0.
6700     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6701       // Return in the smallest viable integer type.
6702       uint64_t Size = getContext().getTypeSize(RetTy);
6703       if (Size <= 8)
6704         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6705       if (Size <= 16)
6706         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6707       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6708     }
6709 
6710     // Otherwise return in memory.
6711     return getNaturalAlignIndirect(RetTy);
6712   }
6713 
6714   // Otherwise this is an AAPCS variant.
6715 
6716   if (isEmptyRecord(getContext(), RetTy, true))
6717     return ABIArgInfo::getIgnore();
6718 
6719   // Check for homogeneous aggregates with AAPCS-VFP.
6720   if (IsAAPCS_VFP) {
6721     const Type *Base = nullptr;
6722     uint64_t Members = 0;
6723     if (isHomogeneousAggregate(RetTy, Base, Members))
6724       return classifyHomogeneousAggregate(RetTy, Base, Members);
6725   }
6726 
6727   // Aggregates <= 4 bytes are returned in r0; other aggregates
6728   // are returned indirectly.
6729   uint64_t Size = getContext().getTypeSize(RetTy);
6730   if (Size <= 32) {
6731     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6732     // same size and alignment.
6733     if (getTarget().isRenderScriptTarget()) {
6734       return coerceToIntArray(RetTy, getContext(), getVMContext());
6735     }
6736     if (getDataLayout().isBigEndian())
6737       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6738       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6739 
6740     // Return in the smallest viable integer type.
6741     if (Size <= 8)
6742       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6743     if (Size <= 16)
6744       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6745     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6746   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6747     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6748     llvm::Type *CoerceTy =
6749         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6750     return ABIArgInfo::getDirect(CoerceTy);
6751   }
6752 
6753   return getNaturalAlignIndirect(RetTy);
6754 }
6755 
6756 /// isIllegalVector - check whether Ty is an illegal vector type.
6757 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6758   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6759     // On targets that don't support half, fp16 or bfloat, they are expanded
6760     // into float, and we don't want the ABI to depend on whether or not they
6761     // are supported in hardware. Thus return false to coerce vectors of these
6762     // types into integer vectors.
6763     // We do not depend on hasLegalHalfType for bfloat as it is a
6764     // separate IR type.
6765     if ((!getTarget().hasLegalHalfType() &&
6766         (VT->getElementType()->isFloat16Type() ||
6767          VT->getElementType()->isHalfType())) ||
6768         (IsFloatABISoftFP &&
6769          VT->getElementType()->isBFloat16Type()))
6770       return true;
6771     if (isAndroid()) {
6772       // Android shipped using Clang 3.1, which supported a slightly different
6773       // vector ABI. The primary differences were that 3-element vector types
6774       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6775       // accepts that legacy behavior for Android only.
6776       // Check whether VT is legal.
6777       unsigned NumElements = VT->getNumElements();
6778       // NumElements should be power of 2 or equal to 3.
6779       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6780         return true;
6781     } else {
6782       // Check whether VT is legal.
6783       unsigned NumElements = VT->getNumElements();
6784       uint64_t Size = getContext().getTypeSize(VT);
6785       // NumElements should be power of 2.
6786       if (!llvm::isPowerOf2_32(NumElements))
6787         return true;
6788       // Size should be greater than 32 bits.
6789       return Size <= 32;
6790     }
6791   }
6792   return false;
6793 }
6794 
6795 /// Return true if a type contains any 16-bit floating point vectors
6796 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6797   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6798     uint64_t NElements = AT->getSize().getZExtValue();
6799     if (NElements == 0)
6800       return false;
6801     return containsAnyFP16Vectors(AT->getElementType());
6802   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6803     const RecordDecl *RD = RT->getDecl();
6804 
6805     // If this is a C++ record, check the bases first.
6806     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6807       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6808             return containsAnyFP16Vectors(B.getType());
6809           }))
6810         return true;
6811 
6812     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6813           return FD && containsAnyFP16Vectors(FD->getType());
6814         }))
6815       return true;
6816 
6817     return false;
6818   } else {
6819     if (const VectorType *VT = Ty->getAs<VectorType>())
6820       return (VT->getElementType()->isFloat16Type() ||
6821               VT->getElementType()->isBFloat16Type() ||
6822               VT->getElementType()->isHalfType());
6823     return false;
6824   }
6825 }
6826 
6827 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6828                                            llvm::Type *eltTy,
6829                                            unsigned numElts) const {
6830   if (!llvm::isPowerOf2_32(numElts))
6831     return false;
6832   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6833   if (size > 64)
6834     return false;
6835   if (vectorSize.getQuantity() != 8 &&
6836       (vectorSize.getQuantity() != 16 || numElts == 1))
6837     return false;
6838   return true;
6839 }
6840 
6841 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6842   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6843   // double, or 64-bit or 128-bit vectors.
6844   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6845     if (BT->getKind() == BuiltinType::Float ||
6846         BT->getKind() == BuiltinType::Double ||
6847         BT->getKind() == BuiltinType::LongDouble)
6848       return true;
6849   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6850     unsigned VecSize = getContext().getTypeSize(VT);
6851     if (VecSize == 64 || VecSize == 128)
6852       return true;
6853   }
6854   return false;
6855 }
6856 
6857 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6858                                                    uint64_t Members) const {
6859   return Members <= 4;
6860 }
6861 
6862 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6863                                         bool acceptHalf) const {
6864   // Give precedence to user-specified calling conventions.
6865   if (callConvention != llvm::CallingConv::C)
6866     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6867   else
6868     return (getABIKind() == AAPCS_VFP) ||
6869            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6870 }
6871 
6872 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6873                               QualType Ty) const {
6874   CharUnits SlotSize = CharUnits::fromQuantity(4);
6875 
6876   // Empty records are ignored for parameter passing purposes.
6877   if (isEmptyRecord(getContext(), Ty, true)) {
6878     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6879     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6880     return Addr;
6881   }
6882 
6883   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6884   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6885 
6886   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6887   bool IsIndirect = false;
6888   const Type *Base = nullptr;
6889   uint64_t Members = 0;
6890   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6891     IsIndirect = true;
6892 
6893   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6894   // allocated by the caller.
6895   } else if (TySize > CharUnits::fromQuantity(16) &&
6896              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6897              !isHomogeneousAggregate(Ty, Base, Members)) {
6898     IsIndirect = true;
6899 
6900   // Otherwise, bound the type's ABI alignment.
6901   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6902   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6903   // Our callers should be prepared to handle an under-aligned address.
6904   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6905              getABIKind() == ARMABIInfo::AAPCS) {
6906     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6907     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6908   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6909     // ARMv7k allows type alignment up to 16 bytes.
6910     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6911     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6912   } else {
6913     TyAlignForABI = CharUnits::fromQuantity(4);
6914   }
6915 
6916   TypeInfoChars TyInfo(TySize, TyAlignForABI, false);
6917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6918                           SlotSize, /*AllowHigherAlign*/ true);
6919 }
6920 
6921 //===----------------------------------------------------------------------===//
6922 // NVPTX ABI Implementation
6923 //===----------------------------------------------------------------------===//
6924 
6925 namespace {
6926 
6927 class NVPTXTargetCodeGenInfo;
6928 
6929 class NVPTXABIInfo : public ABIInfo {
6930   NVPTXTargetCodeGenInfo &CGInfo;
6931 
6932 public:
6933   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6934       : ABIInfo(CGT), CGInfo(Info) {}
6935 
6936   ABIArgInfo classifyReturnType(QualType RetTy) const;
6937   ABIArgInfo classifyArgumentType(QualType Ty) const;
6938 
6939   void computeInfo(CGFunctionInfo &FI) const override;
6940   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6941                     QualType Ty) const override;
6942   bool isUnsupportedType(QualType T) const;
6943   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6944 };
6945 
6946 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6947 public:
6948   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6949       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6950 
6951   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6952                            CodeGen::CodeGenModule &M) const override;
6953   bool shouldEmitStaticExternCAliases() const override;
6954 
6955   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6956     // On the device side, surface reference is represented as an object handle
6957     // in 64-bit integer.
6958     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6959   }
6960 
6961   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6962     // On the device side, texture reference is represented as an object handle
6963     // in 64-bit integer.
6964     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6965   }
6966 
6967   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6968                                               LValue Src) const override {
6969     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6970     return true;
6971   }
6972 
6973   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6974                                               LValue Src) const override {
6975     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6976     return true;
6977   }
6978 
6979 private:
6980   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6981   // resulting MDNode to the nvvm.annotations MDNode.
6982   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6983                               int Operand);
6984 
6985   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6986                                            LValue Src) {
6987     llvm::Value *Handle = nullptr;
6988     llvm::Constant *C =
6989         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6990     // Lookup `addrspacecast` through the constant pointer if any.
6991     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6992       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6993     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6994       // Load the handle from the specific global variable using
6995       // `nvvm.texsurf.handle.internal` intrinsic.
6996       Handle = CGF.EmitRuntimeCall(
6997           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6998                                {GV->getType()}),
6999           {GV}, "texsurf_handle");
7000     } else
7001       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7002     CGF.EmitStoreOfScalar(Handle, Dst);
7003   }
7004 };
7005 
7006 /// Checks if the type is unsupported directly by the current target.
7007 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7008   ASTContext &Context = getContext();
7009   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7010     return true;
7011   if (!Context.getTargetInfo().hasFloat128Type() &&
7012       (T->isFloat128Type() ||
7013        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7014     return true;
7015   if (const auto *EIT = T->getAs<ExtIntType>())
7016     return EIT->getNumBits() >
7017            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7018   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7019       Context.getTypeSize(T) > 64U)
7020     return true;
7021   if (const auto *AT = T->getAsArrayTypeUnsafe())
7022     return isUnsupportedType(AT->getElementType());
7023   const auto *RT = T->getAs<RecordType>();
7024   if (!RT)
7025     return false;
7026   const RecordDecl *RD = RT->getDecl();
7027 
7028   // If this is a C++ record, check the bases first.
7029   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7030     for (const CXXBaseSpecifier &I : CXXRD->bases())
7031       if (isUnsupportedType(I.getType()))
7032         return true;
7033 
7034   for (const FieldDecl *I : RD->fields())
7035     if (isUnsupportedType(I->getType()))
7036       return true;
7037   return false;
7038 }
7039 
7040 /// Coerce the given type into an array with maximum allowed size of elements.
7041 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7042                                                    unsigned MaxSize) const {
7043   // Alignment and Size are measured in bits.
7044   const uint64_t Size = getContext().getTypeSize(Ty);
7045   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7046   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7047   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7048   const uint64_t NumElements = (Size + Div - 1) / Div;
7049   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7050 }
7051 
7052 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7053   if (RetTy->isVoidType())
7054     return ABIArgInfo::getIgnore();
7055 
7056   if (getContext().getLangOpts().OpenMP &&
7057       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7058     return coerceToIntArrayWithLimit(RetTy, 64);
7059 
7060   // note: this is different from default ABI
7061   if (!RetTy->isScalarType())
7062     return ABIArgInfo::getDirect();
7063 
7064   // Treat an enum type as its underlying type.
7065   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7066     RetTy = EnumTy->getDecl()->getIntegerType();
7067 
7068   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7069                                                : ABIArgInfo::getDirect());
7070 }
7071 
7072 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7073   // Treat an enum type as its underlying type.
7074   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7075     Ty = EnumTy->getDecl()->getIntegerType();
7076 
7077   // Return aggregates type as indirect by value
7078   if (isAggregateTypeForABI(Ty)) {
7079     // Under CUDA device compilation, tex/surf builtin types are replaced with
7080     // object types and passed directly.
7081     if (getContext().getLangOpts().CUDAIsDevice) {
7082       if (Ty->isCUDADeviceBuiltinSurfaceType())
7083         return ABIArgInfo::getDirect(
7084             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7085       if (Ty->isCUDADeviceBuiltinTextureType())
7086         return ABIArgInfo::getDirect(
7087             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7088     }
7089     return getNaturalAlignIndirect(Ty, /* byval */ true);
7090   }
7091 
7092   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7093     if ((EIT->getNumBits() > 128) ||
7094         (!getContext().getTargetInfo().hasInt128Type() &&
7095          EIT->getNumBits() > 64))
7096       return getNaturalAlignIndirect(Ty, /* byval */ true);
7097   }
7098 
7099   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7100                                             : ABIArgInfo::getDirect());
7101 }
7102 
7103 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7104   if (!getCXXABI().classifyReturnType(FI))
7105     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7106   for (auto &I : FI.arguments())
7107     I.info = classifyArgumentType(I.type);
7108 
7109   // Always honor user-specified calling convention.
7110   if (FI.getCallingConvention() != llvm::CallingConv::C)
7111     return;
7112 
7113   FI.setEffectiveCallingConvention(getRuntimeCC());
7114 }
7115 
7116 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7117                                 QualType Ty) const {
7118   llvm_unreachable("NVPTX does not support varargs");
7119 }
7120 
7121 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7122     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7123   if (GV->isDeclaration())
7124     return;
7125   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7126   if (VD) {
7127     if (M.getLangOpts().CUDA) {
7128       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7129         addNVVMMetadata(GV, "surface", 1);
7130       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7131         addNVVMMetadata(GV, "texture", 1);
7132       return;
7133     }
7134   }
7135 
7136   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7137   if (!FD) return;
7138 
7139   llvm::Function *F = cast<llvm::Function>(GV);
7140 
7141   // Perform special handling in OpenCL mode
7142   if (M.getLangOpts().OpenCL) {
7143     // Use OpenCL function attributes to check for kernel functions
7144     // By default, all functions are device functions
7145     if (FD->hasAttr<OpenCLKernelAttr>()) {
7146       // OpenCL __kernel functions get kernel metadata
7147       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7148       addNVVMMetadata(F, "kernel", 1);
7149       // And kernel functions are not subject to inlining
7150       F->addFnAttr(llvm::Attribute::NoInline);
7151     }
7152   }
7153 
7154   // Perform special handling in CUDA mode.
7155   if (M.getLangOpts().CUDA) {
7156     // CUDA __global__ functions get a kernel metadata entry.  Since
7157     // __global__ functions cannot be called from the device, we do not
7158     // need to set the noinline attribute.
7159     if (FD->hasAttr<CUDAGlobalAttr>()) {
7160       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7161       addNVVMMetadata(F, "kernel", 1);
7162     }
7163     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7164       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7165       llvm::APSInt MaxThreads(32);
7166       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7167       if (MaxThreads > 0)
7168         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7169 
7170       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7171       // not specified in __launch_bounds__ or if the user specified a 0 value,
7172       // we don't have to add a PTX directive.
7173       if (Attr->getMinBlocks()) {
7174         llvm::APSInt MinBlocks(32);
7175         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7176         if (MinBlocks > 0)
7177           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7178           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7179       }
7180     }
7181   }
7182 }
7183 
7184 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7185                                              StringRef Name, int Operand) {
7186   llvm::Module *M = GV->getParent();
7187   llvm::LLVMContext &Ctx = M->getContext();
7188 
7189   // Get "nvvm.annotations" metadata node
7190   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7191 
7192   llvm::Metadata *MDVals[] = {
7193       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7194       llvm::ConstantAsMetadata::get(
7195           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7196   // Append metadata to nvvm.annotations
7197   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7198 }
7199 
7200 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7201   return false;
7202 }
7203 }
7204 
7205 //===----------------------------------------------------------------------===//
7206 // SystemZ ABI Implementation
7207 //===----------------------------------------------------------------------===//
7208 
7209 namespace {
7210 
7211 class SystemZABIInfo : public SwiftABIInfo {
7212   bool HasVector;
7213   bool IsSoftFloatABI;
7214 
7215 public:
7216   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7217     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7218 
7219   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7220   bool isCompoundType(QualType Ty) const;
7221   bool isVectorArgumentType(QualType Ty) const;
7222   bool isFPArgumentType(QualType Ty) const;
7223   QualType GetSingleElementType(QualType Ty) const;
7224 
7225   ABIArgInfo classifyReturnType(QualType RetTy) const;
7226   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7227 
7228   void computeInfo(CGFunctionInfo &FI) const override {
7229     if (!getCXXABI().classifyReturnType(FI))
7230       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7231     for (auto &I : FI.arguments())
7232       I.info = classifyArgumentType(I.type);
7233   }
7234 
7235   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7236                     QualType Ty) const override;
7237 
7238   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7239                                     bool asReturnValue) const override {
7240     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7241   }
7242   bool isSwiftErrorInRegister() const override {
7243     return false;
7244   }
7245 };
7246 
7247 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7248 public:
7249   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7250       : TargetCodeGenInfo(
7251             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7252 };
7253 
7254 }
7255 
7256 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7257   // Treat an enum type as its underlying type.
7258   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7259     Ty = EnumTy->getDecl()->getIntegerType();
7260 
7261   // Promotable integer types are required to be promoted by the ABI.
7262   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7263     return true;
7264 
7265   if (const auto *EIT = Ty->getAs<ExtIntType>())
7266     if (EIT->getNumBits() < 64)
7267       return true;
7268 
7269   // 32-bit values must also be promoted.
7270   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7271     switch (BT->getKind()) {
7272     case BuiltinType::Int:
7273     case BuiltinType::UInt:
7274       return true;
7275     default:
7276       return false;
7277     }
7278   return false;
7279 }
7280 
7281 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7282   return (Ty->isAnyComplexType() ||
7283           Ty->isVectorType() ||
7284           isAggregateTypeForABI(Ty));
7285 }
7286 
7287 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7288   return (HasVector &&
7289           Ty->isVectorType() &&
7290           getContext().getTypeSize(Ty) <= 128);
7291 }
7292 
7293 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7294   if (IsSoftFloatABI)
7295     return false;
7296 
7297   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7298     switch (BT->getKind()) {
7299     case BuiltinType::Float:
7300     case BuiltinType::Double:
7301       return true;
7302     default:
7303       return false;
7304     }
7305 
7306   return false;
7307 }
7308 
7309 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7310   const RecordType *RT = Ty->getAs<RecordType>();
7311 
7312   if (RT && RT->isStructureOrClassType()) {
7313     const RecordDecl *RD = RT->getDecl();
7314     QualType Found;
7315 
7316     // If this is a C++ record, check the bases first.
7317     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7318       for (const auto &I : CXXRD->bases()) {
7319         QualType Base = I.getType();
7320 
7321         // Empty bases don't affect things either way.
7322         if (isEmptyRecord(getContext(), Base, true))
7323           continue;
7324 
7325         if (!Found.isNull())
7326           return Ty;
7327         Found = GetSingleElementType(Base);
7328       }
7329 
7330     // Check the fields.
7331     for (const auto *FD : RD->fields()) {
7332       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7333       // Unlike isSingleElementStruct(), empty structure and array fields
7334       // do count.  So do anonymous bitfields that aren't zero-sized.
7335       if (getContext().getLangOpts().CPlusPlus &&
7336           FD->isZeroLengthBitField(getContext()))
7337         continue;
7338       // Like isSingleElementStruct(), ignore C++20 empty data members.
7339       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7340           isEmptyRecord(getContext(), FD->getType(), true))
7341         continue;
7342 
7343       // Unlike isSingleElementStruct(), arrays do not count.
7344       // Nested structures still do though.
7345       if (!Found.isNull())
7346         return Ty;
7347       Found = GetSingleElementType(FD->getType());
7348     }
7349 
7350     // Unlike isSingleElementStruct(), trailing padding is allowed.
7351     // An 8-byte aligned struct s { float f; } is passed as a double.
7352     if (!Found.isNull())
7353       return Found;
7354   }
7355 
7356   return Ty;
7357 }
7358 
7359 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7360                                   QualType Ty) const {
7361   // Assume that va_list type is correct; should be pointer to LLVM type:
7362   // struct {
7363   //   i64 __gpr;
7364   //   i64 __fpr;
7365   //   i8 *__overflow_arg_area;
7366   //   i8 *__reg_save_area;
7367   // };
7368 
7369   // Every non-vector argument occupies 8 bytes and is passed by preference
7370   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7371   // always passed on the stack.
7372   Ty = getContext().getCanonicalType(Ty);
7373   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7374   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7375   llvm::Type *DirectTy = ArgTy;
7376   ABIArgInfo AI = classifyArgumentType(Ty);
7377   bool IsIndirect = AI.isIndirect();
7378   bool InFPRs = false;
7379   bool IsVector = false;
7380   CharUnits UnpaddedSize;
7381   CharUnits DirectAlign;
7382   if (IsIndirect) {
7383     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7384     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7385   } else {
7386     if (AI.getCoerceToType())
7387       ArgTy = AI.getCoerceToType();
7388     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7389     IsVector = ArgTy->isVectorTy();
7390     UnpaddedSize = TyInfo.Width;
7391     DirectAlign = TyInfo.Align;
7392   }
7393   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7394   if (IsVector && UnpaddedSize > PaddedSize)
7395     PaddedSize = CharUnits::fromQuantity(16);
7396   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7397 
7398   CharUnits Padding = (PaddedSize - UnpaddedSize);
7399 
7400   llvm::Type *IndexTy = CGF.Int64Ty;
7401   llvm::Value *PaddedSizeV =
7402     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7403 
7404   if (IsVector) {
7405     // Work out the address of a vector argument on the stack.
7406     // Vector arguments are always passed in the high bits of a
7407     // single (8 byte) or double (16 byte) stack slot.
7408     Address OverflowArgAreaPtr =
7409         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7410     Address OverflowArgArea =
7411       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7412               TyInfo.Align);
7413     Address MemAddr =
7414       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7415 
7416     // Update overflow_arg_area_ptr pointer
7417     llvm::Value *NewOverflowArgArea =
7418       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7419                             "overflow_arg_area");
7420     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7421 
7422     return MemAddr;
7423   }
7424 
7425   assert(PaddedSize.getQuantity() == 8);
7426 
7427   unsigned MaxRegs, RegCountField, RegSaveIndex;
7428   CharUnits RegPadding;
7429   if (InFPRs) {
7430     MaxRegs = 4; // Maximum of 4 FPR arguments
7431     RegCountField = 1; // __fpr
7432     RegSaveIndex = 16; // save offset for f0
7433     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7434   } else {
7435     MaxRegs = 5; // Maximum of 5 GPR arguments
7436     RegCountField = 0; // __gpr
7437     RegSaveIndex = 2; // save offset for r2
7438     RegPadding = Padding; // values are passed in the low bits of a GPR
7439   }
7440 
7441   Address RegCountPtr =
7442       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7443   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7444   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7445   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7446                                                  "fits_in_regs");
7447 
7448   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7449   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7450   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7451   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7452 
7453   // Emit code to load the value if it was passed in registers.
7454   CGF.EmitBlock(InRegBlock);
7455 
7456   // Work out the address of an argument register.
7457   llvm::Value *ScaledRegCount =
7458     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7459   llvm::Value *RegBase =
7460     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7461                                       + RegPadding.getQuantity());
7462   llvm::Value *RegOffset =
7463     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7464   Address RegSaveAreaPtr =
7465       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7466   llvm::Value *RegSaveArea =
7467     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7468   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7469                                            "raw_reg_addr"),
7470                      PaddedSize);
7471   Address RegAddr =
7472     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7473 
7474   // Update the register count
7475   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7476   llvm::Value *NewRegCount =
7477     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7478   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7479   CGF.EmitBranch(ContBlock);
7480 
7481   // Emit code to load the value if it was passed in memory.
7482   CGF.EmitBlock(InMemBlock);
7483 
7484   // Work out the address of a stack argument.
7485   Address OverflowArgAreaPtr =
7486       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7487   Address OverflowArgArea =
7488     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7489             PaddedSize);
7490   Address RawMemAddr =
7491     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7492   Address MemAddr =
7493     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7494 
7495   // Update overflow_arg_area_ptr pointer
7496   llvm::Value *NewOverflowArgArea =
7497     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7498                           "overflow_arg_area");
7499   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7500   CGF.EmitBranch(ContBlock);
7501 
7502   // Return the appropriate result.
7503   CGF.EmitBlock(ContBlock);
7504   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7505                                  MemAddr, InMemBlock, "va_arg.addr");
7506 
7507   if (IsIndirect)
7508     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7509                       TyInfo.Align);
7510 
7511   return ResAddr;
7512 }
7513 
7514 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7515   if (RetTy->isVoidType())
7516     return ABIArgInfo::getIgnore();
7517   if (isVectorArgumentType(RetTy))
7518     return ABIArgInfo::getDirect();
7519   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7520     return getNaturalAlignIndirect(RetTy);
7521   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7522                                                : ABIArgInfo::getDirect());
7523 }
7524 
7525 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7526   // Handle the generic C++ ABI.
7527   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7528     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7529 
7530   // Integers and enums are extended to full register width.
7531   if (isPromotableIntegerTypeForABI(Ty))
7532     return ABIArgInfo::getExtend(Ty);
7533 
7534   // Handle vector types and vector-like structure types.  Note that
7535   // as opposed to float-like structure types, we do not allow any
7536   // padding for vector-like structures, so verify the sizes match.
7537   uint64_t Size = getContext().getTypeSize(Ty);
7538   QualType SingleElementTy = GetSingleElementType(Ty);
7539   if (isVectorArgumentType(SingleElementTy) &&
7540       getContext().getTypeSize(SingleElementTy) == Size)
7541     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7542 
7543   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7544   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7545     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7546 
7547   // Handle small structures.
7548   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7549     // Structures with flexible arrays have variable length, so really
7550     // fail the size test above.
7551     const RecordDecl *RD = RT->getDecl();
7552     if (RD->hasFlexibleArrayMember())
7553       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7554 
7555     // The structure is passed as an unextended integer, a float, or a double.
7556     llvm::Type *PassTy;
7557     if (isFPArgumentType(SingleElementTy)) {
7558       assert(Size == 32 || Size == 64);
7559       if (Size == 32)
7560         PassTy = llvm::Type::getFloatTy(getVMContext());
7561       else
7562         PassTy = llvm::Type::getDoubleTy(getVMContext());
7563     } else
7564       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7565     return ABIArgInfo::getDirect(PassTy);
7566   }
7567 
7568   // Non-structure compounds are passed indirectly.
7569   if (isCompoundType(Ty))
7570     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7571 
7572   return ABIArgInfo::getDirect(nullptr);
7573 }
7574 
7575 //===----------------------------------------------------------------------===//
7576 // MSP430 ABI Implementation
7577 //===----------------------------------------------------------------------===//
7578 
7579 namespace {
7580 
7581 class MSP430ABIInfo : public DefaultABIInfo {
7582   static ABIArgInfo complexArgInfo() {
7583     ABIArgInfo Info = ABIArgInfo::getDirect();
7584     Info.setCanBeFlattened(false);
7585     return Info;
7586   }
7587 
7588 public:
7589   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7590 
7591   ABIArgInfo classifyReturnType(QualType RetTy) const {
7592     if (RetTy->isAnyComplexType())
7593       return complexArgInfo();
7594 
7595     return DefaultABIInfo::classifyReturnType(RetTy);
7596   }
7597 
7598   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7599     if (RetTy->isAnyComplexType())
7600       return complexArgInfo();
7601 
7602     return DefaultABIInfo::classifyArgumentType(RetTy);
7603   }
7604 
7605   // Just copy the original implementations because
7606   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7607   void computeInfo(CGFunctionInfo &FI) const override {
7608     if (!getCXXABI().classifyReturnType(FI))
7609       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7610     for (auto &I : FI.arguments())
7611       I.info = classifyArgumentType(I.type);
7612   }
7613 
7614   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7615                     QualType Ty) const override {
7616     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7617   }
7618 };
7619 
7620 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7621 public:
7622   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7623       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7624   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7625                            CodeGen::CodeGenModule &M) const override;
7626 };
7627 
7628 }
7629 
7630 void MSP430TargetCodeGenInfo::setTargetAttributes(
7631     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7632   if (GV->isDeclaration())
7633     return;
7634   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7635     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7636     if (!InterruptAttr)
7637       return;
7638 
7639     // Handle 'interrupt' attribute:
7640     llvm::Function *F = cast<llvm::Function>(GV);
7641 
7642     // Step 1: Set ISR calling convention.
7643     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7644 
7645     // Step 2: Add attributes goodness.
7646     F->addFnAttr(llvm::Attribute::NoInline);
7647     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7648   }
7649 }
7650 
7651 //===----------------------------------------------------------------------===//
7652 // MIPS ABI Implementation.  This works for both little-endian and
7653 // big-endian variants.
7654 //===----------------------------------------------------------------------===//
7655 
7656 namespace {
7657 class MipsABIInfo : public ABIInfo {
7658   bool IsO32;
7659   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7660   void CoerceToIntArgs(uint64_t TySize,
7661                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7662   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7663   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7664   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7665 public:
7666   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7667     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7668     StackAlignInBytes(IsO32 ? 8 : 16) {}
7669 
7670   ABIArgInfo classifyReturnType(QualType RetTy) const;
7671   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7672   void computeInfo(CGFunctionInfo &FI) const override;
7673   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7674                     QualType Ty) const override;
7675   ABIArgInfo extendType(QualType Ty) const;
7676 };
7677 
7678 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7679   unsigned SizeOfUnwindException;
7680 public:
7681   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7682       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7683         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7684 
7685   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7686     return 29;
7687   }
7688 
7689   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7690                            CodeGen::CodeGenModule &CGM) const override {
7691     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7692     if (!FD) return;
7693     llvm::Function *Fn = cast<llvm::Function>(GV);
7694 
7695     if (FD->hasAttr<MipsLongCallAttr>())
7696       Fn->addFnAttr("long-call");
7697     else if (FD->hasAttr<MipsShortCallAttr>())
7698       Fn->addFnAttr("short-call");
7699 
7700     // Other attributes do not have a meaning for declarations.
7701     if (GV->isDeclaration())
7702       return;
7703 
7704     if (FD->hasAttr<Mips16Attr>()) {
7705       Fn->addFnAttr("mips16");
7706     }
7707     else if (FD->hasAttr<NoMips16Attr>()) {
7708       Fn->addFnAttr("nomips16");
7709     }
7710 
7711     if (FD->hasAttr<MicroMipsAttr>())
7712       Fn->addFnAttr("micromips");
7713     else if (FD->hasAttr<NoMicroMipsAttr>())
7714       Fn->addFnAttr("nomicromips");
7715 
7716     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7717     if (!Attr)
7718       return;
7719 
7720     const char *Kind;
7721     switch (Attr->getInterrupt()) {
7722     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7723     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7724     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7725     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7726     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7727     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7728     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7729     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7730     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7731     }
7732 
7733     Fn->addFnAttr("interrupt", Kind);
7734 
7735   }
7736 
7737   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7738                                llvm::Value *Address) const override;
7739 
7740   unsigned getSizeOfUnwindException() const override {
7741     return SizeOfUnwindException;
7742   }
7743 };
7744 }
7745 
7746 void MipsABIInfo::CoerceToIntArgs(
7747     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7748   llvm::IntegerType *IntTy =
7749     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7750 
7751   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7752   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7753     ArgList.push_back(IntTy);
7754 
7755   // If necessary, add one more integer type to ArgList.
7756   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7757 
7758   if (R)
7759     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7760 }
7761 
7762 // In N32/64, an aligned double precision floating point field is passed in
7763 // a register.
7764 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7765   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7766 
7767   if (IsO32) {
7768     CoerceToIntArgs(TySize, ArgList);
7769     return llvm::StructType::get(getVMContext(), ArgList);
7770   }
7771 
7772   if (Ty->isComplexType())
7773     return CGT.ConvertType(Ty);
7774 
7775   const RecordType *RT = Ty->getAs<RecordType>();
7776 
7777   // Unions/vectors are passed in integer registers.
7778   if (!RT || !RT->isStructureOrClassType()) {
7779     CoerceToIntArgs(TySize, ArgList);
7780     return llvm::StructType::get(getVMContext(), ArgList);
7781   }
7782 
7783   const RecordDecl *RD = RT->getDecl();
7784   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7785   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7786 
7787   uint64_t LastOffset = 0;
7788   unsigned idx = 0;
7789   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7790 
7791   // Iterate over fields in the struct/class and check if there are any aligned
7792   // double fields.
7793   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7794        i != e; ++i, ++idx) {
7795     const QualType Ty = i->getType();
7796     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7797 
7798     if (!BT || BT->getKind() != BuiltinType::Double)
7799       continue;
7800 
7801     uint64_t Offset = Layout.getFieldOffset(idx);
7802     if (Offset % 64) // Ignore doubles that are not aligned.
7803       continue;
7804 
7805     // Add ((Offset - LastOffset) / 64) args of type i64.
7806     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7807       ArgList.push_back(I64);
7808 
7809     // Add double type.
7810     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7811     LastOffset = Offset + 64;
7812   }
7813 
7814   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7815   ArgList.append(IntArgList.begin(), IntArgList.end());
7816 
7817   return llvm::StructType::get(getVMContext(), ArgList);
7818 }
7819 
7820 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7821                                         uint64_t Offset) const {
7822   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7823     return nullptr;
7824 
7825   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7826 }
7827 
7828 ABIArgInfo
7829 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7830   Ty = useFirstFieldIfTransparentUnion(Ty);
7831 
7832   uint64_t OrigOffset = Offset;
7833   uint64_t TySize = getContext().getTypeSize(Ty);
7834   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7835 
7836   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7837                    (uint64_t)StackAlignInBytes);
7838   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7839   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7840 
7841   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7842     // Ignore empty aggregates.
7843     if (TySize == 0)
7844       return ABIArgInfo::getIgnore();
7845 
7846     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7847       Offset = OrigOffset + MinABIStackAlignInBytes;
7848       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7849     }
7850 
7851     // If we have reached here, aggregates are passed directly by coercing to
7852     // another structure type. Padding is inserted if the offset of the
7853     // aggregate is unaligned.
7854     ABIArgInfo ArgInfo =
7855         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7856                               getPaddingType(OrigOffset, CurrOffset));
7857     ArgInfo.setInReg(true);
7858     return ArgInfo;
7859   }
7860 
7861   // Treat an enum type as its underlying type.
7862   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7863     Ty = EnumTy->getDecl()->getIntegerType();
7864 
7865   // Make sure we pass indirectly things that are too large.
7866   if (const auto *EIT = Ty->getAs<ExtIntType>())
7867     if (EIT->getNumBits() > 128 ||
7868         (EIT->getNumBits() > 64 &&
7869          !getContext().getTargetInfo().hasInt128Type()))
7870       return getNaturalAlignIndirect(Ty);
7871 
7872   // All integral types are promoted to the GPR width.
7873   if (Ty->isIntegralOrEnumerationType())
7874     return extendType(Ty);
7875 
7876   return ABIArgInfo::getDirect(
7877       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7878 }
7879 
7880 llvm::Type*
7881 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7882   const RecordType *RT = RetTy->getAs<RecordType>();
7883   SmallVector<llvm::Type*, 8> RTList;
7884 
7885   if (RT && RT->isStructureOrClassType()) {
7886     const RecordDecl *RD = RT->getDecl();
7887     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7888     unsigned FieldCnt = Layout.getFieldCount();
7889 
7890     // N32/64 returns struct/classes in floating point registers if the
7891     // following conditions are met:
7892     // 1. The size of the struct/class is no larger than 128-bit.
7893     // 2. The struct/class has one or two fields all of which are floating
7894     //    point types.
7895     // 3. The offset of the first field is zero (this follows what gcc does).
7896     //
7897     // Any other composite results are returned in integer registers.
7898     //
7899     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7900       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7901       for (; b != e; ++b) {
7902         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7903 
7904         if (!BT || !BT->isFloatingPoint())
7905           break;
7906 
7907         RTList.push_back(CGT.ConvertType(b->getType()));
7908       }
7909 
7910       if (b == e)
7911         return llvm::StructType::get(getVMContext(), RTList,
7912                                      RD->hasAttr<PackedAttr>());
7913 
7914       RTList.clear();
7915     }
7916   }
7917 
7918   CoerceToIntArgs(Size, RTList);
7919   return llvm::StructType::get(getVMContext(), RTList);
7920 }
7921 
7922 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7923   uint64_t Size = getContext().getTypeSize(RetTy);
7924 
7925   if (RetTy->isVoidType())
7926     return ABIArgInfo::getIgnore();
7927 
7928   // O32 doesn't treat zero-sized structs differently from other structs.
7929   // However, N32/N64 ignores zero sized return values.
7930   if (!IsO32 && Size == 0)
7931     return ABIArgInfo::getIgnore();
7932 
7933   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7934     if (Size <= 128) {
7935       if (RetTy->isAnyComplexType())
7936         return ABIArgInfo::getDirect();
7937 
7938       // O32 returns integer vectors in registers and N32/N64 returns all small
7939       // aggregates in registers.
7940       if (!IsO32 ||
7941           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7942         ABIArgInfo ArgInfo =
7943             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7944         ArgInfo.setInReg(true);
7945         return ArgInfo;
7946       }
7947     }
7948 
7949     return getNaturalAlignIndirect(RetTy);
7950   }
7951 
7952   // Treat an enum type as its underlying type.
7953   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7954     RetTy = EnumTy->getDecl()->getIntegerType();
7955 
7956   // Make sure we pass indirectly things that are too large.
7957   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7958     if (EIT->getNumBits() > 128 ||
7959         (EIT->getNumBits() > 64 &&
7960          !getContext().getTargetInfo().hasInt128Type()))
7961       return getNaturalAlignIndirect(RetTy);
7962 
7963   if (isPromotableIntegerTypeForABI(RetTy))
7964     return ABIArgInfo::getExtend(RetTy);
7965 
7966   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7967       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7968     return ABIArgInfo::getSignExtend(RetTy);
7969 
7970   return ABIArgInfo::getDirect();
7971 }
7972 
7973 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7974   ABIArgInfo &RetInfo = FI.getReturnInfo();
7975   if (!getCXXABI().classifyReturnType(FI))
7976     RetInfo = classifyReturnType(FI.getReturnType());
7977 
7978   // Check if a pointer to an aggregate is passed as a hidden argument.
7979   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7980 
7981   for (auto &I : FI.arguments())
7982     I.info = classifyArgumentType(I.type, Offset);
7983 }
7984 
7985 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7986                                QualType OrigTy) const {
7987   QualType Ty = OrigTy;
7988 
7989   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7990   // Pointers are also promoted in the same way but this only matters for N32.
7991   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7992   unsigned PtrWidth = getTarget().getPointerWidth(0);
7993   bool DidPromote = false;
7994   if ((Ty->isIntegerType() &&
7995           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7996       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7997     DidPromote = true;
7998     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7999                                             Ty->isSignedIntegerType());
8000   }
8001 
8002   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8003 
8004   // The alignment of things in the argument area is never larger than
8005   // StackAlignInBytes.
8006   TyInfo.Align =
8007     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8008 
8009   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8010   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8011 
8012   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8013                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8014 
8015 
8016   // If there was a promotion, "unpromote" into a temporary.
8017   // TODO: can we just use a pointer into a subset of the original slot?
8018   if (DidPromote) {
8019     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8020     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8021 
8022     // Truncate down to the right width.
8023     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8024                                                  : CGF.IntPtrTy);
8025     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8026     if (OrigTy->isPointerType())
8027       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8028 
8029     CGF.Builder.CreateStore(V, Temp);
8030     Addr = Temp;
8031   }
8032 
8033   return Addr;
8034 }
8035 
8036 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8037   int TySize = getContext().getTypeSize(Ty);
8038 
8039   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8040   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8041     return ABIArgInfo::getSignExtend(Ty);
8042 
8043   return ABIArgInfo::getExtend(Ty);
8044 }
8045 
8046 bool
8047 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8048                                                llvm::Value *Address) const {
8049   // This information comes from gcc's implementation, which seems to
8050   // as canonical as it gets.
8051 
8052   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8053   // are aliased to pairs of single-precision FP registers.
8054   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8055 
8056   // 0-31 are the general purpose registers, $0 - $31.
8057   // 32-63 are the floating-point registers, $f0 - $f31.
8058   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8059   // 66 is the (notional, I think) register for signal-handler return.
8060   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8061 
8062   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8063   // They are one bit wide and ignored here.
8064 
8065   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8066   // (coprocessor 1 is the FP unit)
8067   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8068   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8069   // 176-181 are the DSP accumulator registers.
8070   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8071   return false;
8072 }
8073 
8074 //===----------------------------------------------------------------------===//
8075 // AVR ABI Implementation.
8076 //===----------------------------------------------------------------------===//
8077 
8078 namespace {
8079 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8080 public:
8081   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8082       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8083 
8084   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8085                            CodeGen::CodeGenModule &CGM) const override {
8086     if (GV->isDeclaration())
8087       return;
8088     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8089     if (!FD) return;
8090     auto *Fn = cast<llvm::Function>(GV);
8091 
8092     if (FD->getAttr<AVRInterruptAttr>())
8093       Fn->addFnAttr("interrupt");
8094 
8095     if (FD->getAttr<AVRSignalAttr>())
8096       Fn->addFnAttr("signal");
8097   }
8098 };
8099 }
8100 
8101 //===----------------------------------------------------------------------===//
8102 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8103 // Currently subclassed only to implement custom OpenCL C function attribute
8104 // handling.
8105 //===----------------------------------------------------------------------===//
8106 
8107 namespace {
8108 
8109 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8110 public:
8111   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8112     : DefaultTargetCodeGenInfo(CGT) {}
8113 
8114   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8115                            CodeGen::CodeGenModule &M) const override;
8116 };
8117 
8118 void TCETargetCodeGenInfo::setTargetAttributes(
8119     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8120   if (GV->isDeclaration())
8121     return;
8122   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8123   if (!FD) return;
8124 
8125   llvm::Function *F = cast<llvm::Function>(GV);
8126 
8127   if (M.getLangOpts().OpenCL) {
8128     if (FD->hasAttr<OpenCLKernelAttr>()) {
8129       // OpenCL C Kernel functions are not subject to inlining
8130       F->addFnAttr(llvm::Attribute::NoInline);
8131       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8132       if (Attr) {
8133         // Convert the reqd_work_group_size() attributes to metadata.
8134         llvm::LLVMContext &Context = F->getContext();
8135         llvm::NamedMDNode *OpenCLMetadata =
8136             M.getModule().getOrInsertNamedMetadata(
8137                 "opencl.kernel_wg_size_info");
8138 
8139         SmallVector<llvm::Metadata *, 5> Operands;
8140         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8141 
8142         Operands.push_back(
8143             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8144                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8145         Operands.push_back(
8146             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8147                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8148         Operands.push_back(
8149             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8150                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8151 
8152         // Add a boolean constant operand for "required" (true) or "hint"
8153         // (false) for implementing the work_group_size_hint attr later.
8154         // Currently always true as the hint is not yet implemented.
8155         Operands.push_back(
8156             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8157         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8158       }
8159     }
8160   }
8161 }
8162 
8163 }
8164 
8165 //===----------------------------------------------------------------------===//
8166 // Hexagon ABI Implementation
8167 //===----------------------------------------------------------------------===//
8168 
8169 namespace {
8170 
8171 class HexagonABIInfo : public DefaultABIInfo {
8172 public:
8173   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8174 
8175 private:
8176   ABIArgInfo classifyReturnType(QualType RetTy) const;
8177   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8178   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8179 
8180   void computeInfo(CGFunctionInfo &FI) const override;
8181 
8182   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8183                     QualType Ty) const override;
8184   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8185                               QualType Ty) const;
8186   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8187                               QualType Ty) const;
8188   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8189                                    QualType Ty) const;
8190 };
8191 
8192 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8193 public:
8194   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8195       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8196 
8197   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8198     return 29;
8199   }
8200 
8201   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8202                            CodeGen::CodeGenModule &GCM) const override {
8203     if (GV->isDeclaration())
8204       return;
8205     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8206     if (!FD)
8207       return;
8208   }
8209 };
8210 
8211 } // namespace
8212 
8213 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8214   unsigned RegsLeft = 6;
8215   if (!getCXXABI().classifyReturnType(FI))
8216     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8217   for (auto &I : FI.arguments())
8218     I.info = classifyArgumentType(I.type, &RegsLeft);
8219 }
8220 
8221 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8222   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8223                        " through registers");
8224 
8225   if (*RegsLeft == 0)
8226     return false;
8227 
8228   if (Size <= 32) {
8229     (*RegsLeft)--;
8230     return true;
8231   }
8232 
8233   if (2 <= (*RegsLeft & (~1U))) {
8234     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8235     return true;
8236   }
8237 
8238   // Next available register was r5 but candidate was greater than 32-bits so it
8239   // has to go on the stack. However we still consume r5
8240   if (*RegsLeft == 1)
8241     *RegsLeft = 0;
8242 
8243   return false;
8244 }
8245 
8246 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8247                                                 unsigned *RegsLeft) const {
8248   if (!isAggregateTypeForABI(Ty)) {
8249     // Treat an enum type as its underlying type.
8250     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8251       Ty = EnumTy->getDecl()->getIntegerType();
8252 
8253     uint64_t Size = getContext().getTypeSize(Ty);
8254     if (Size <= 64)
8255       HexagonAdjustRegsLeft(Size, RegsLeft);
8256 
8257     if (Size > 64 && Ty->isExtIntType())
8258       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8259 
8260     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8261                                              : ABIArgInfo::getDirect();
8262   }
8263 
8264   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8265     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8266 
8267   // Ignore empty records.
8268   if (isEmptyRecord(getContext(), Ty, true))
8269     return ABIArgInfo::getIgnore();
8270 
8271   uint64_t Size = getContext().getTypeSize(Ty);
8272   unsigned Align = getContext().getTypeAlign(Ty);
8273 
8274   if (Size > 64)
8275     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8276 
8277   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8278     Align = Size <= 32 ? 32 : 64;
8279   if (Size <= Align) {
8280     // Pass in the smallest viable integer type.
8281     if (!llvm::isPowerOf2_64(Size))
8282       Size = llvm::NextPowerOf2(Size);
8283     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8284   }
8285   return DefaultABIInfo::classifyArgumentType(Ty);
8286 }
8287 
8288 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8289   if (RetTy->isVoidType())
8290     return ABIArgInfo::getIgnore();
8291 
8292   const TargetInfo &T = CGT.getTarget();
8293   uint64_t Size = getContext().getTypeSize(RetTy);
8294 
8295   if (RetTy->getAs<VectorType>()) {
8296     // HVX vectors are returned in vector registers or register pairs.
8297     if (T.hasFeature("hvx")) {
8298       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8299       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8300       if (Size == VecSize || Size == 2*VecSize)
8301         return ABIArgInfo::getDirectInReg();
8302     }
8303     // Large vector types should be returned via memory.
8304     if (Size > 64)
8305       return getNaturalAlignIndirect(RetTy);
8306   }
8307 
8308   if (!isAggregateTypeForABI(RetTy)) {
8309     // Treat an enum type as its underlying type.
8310     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8311       RetTy = EnumTy->getDecl()->getIntegerType();
8312 
8313     if (Size > 64 && RetTy->isExtIntType())
8314       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8315 
8316     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8317                                                 : ABIArgInfo::getDirect();
8318   }
8319 
8320   if (isEmptyRecord(getContext(), RetTy, true))
8321     return ABIArgInfo::getIgnore();
8322 
8323   // Aggregates <= 8 bytes are returned in registers, other aggregates
8324   // are returned indirectly.
8325   if (Size <= 64) {
8326     // Return in the smallest viable integer type.
8327     if (!llvm::isPowerOf2_64(Size))
8328       Size = llvm::NextPowerOf2(Size);
8329     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8330   }
8331   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8332 }
8333 
8334 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8335                                             Address VAListAddr,
8336                                             QualType Ty) const {
8337   // Load the overflow area pointer.
8338   Address __overflow_area_pointer_p =
8339       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8340   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8341       __overflow_area_pointer_p, "__overflow_area_pointer");
8342 
8343   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8344   if (Align > 4) {
8345     // Alignment should be a power of 2.
8346     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8347 
8348     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8349     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8350 
8351     // Add offset to the current pointer to access the argument.
8352     __overflow_area_pointer =
8353         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8354     llvm::Value *AsInt =
8355         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8356 
8357     // Create a mask which should be "AND"ed
8358     // with (overflow_arg_area + align - 1)
8359     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8360     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8361         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8362         "__overflow_area_pointer.align");
8363   }
8364 
8365   // Get the type of the argument from memory and bitcast
8366   // overflow area pointer to the argument type.
8367   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8368   Address AddrTyped = CGF.Builder.CreateBitCast(
8369       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8370       llvm::PointerType::getUnqual(PTy));
8371 
8372   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8373   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8374 
8375   __overflow_area_pointer = CGF.Builder.CreateGEP(
8376       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8377       "__overflow_area_pointer.next");
8378   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8379 
8380   return AddrTyped;
8381 }
8382 
8383 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8384                                             Address VAListAddr,
8385                                             QualType Ty) const {
8386   // FIXME: Need to handle alignment
8387   llvm::Type *BP = CGF.Int8PtrTy;
8388   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8389   CGBuilderTy &Builder = CGF.Builder;
8390   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8391   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8392   // Handle address alignment for type alignment > 32 bits
8393   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8394   if (TyAlign > 4) {
8395     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8396     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8397     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8398     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8399     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8400   }
8401   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8402   Address AddrTyped = Builder.CreateBitCast(
8403       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8404 
8405   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8406   llvm::Value *NextAddr = Builder.CreateGEP(
8407       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8408   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8409 
8410   return AddrTyped;
8411 }
8412 
8413 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8414                                                  Address VAListAddr,
8415                                                  QualType Ty) const {
8416   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8417 
8418   if (ArgSize > 8)
8419     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8420 
8421   // Here we have check if the argument is in register area or
8422   // in overflow area.
8423   // If the saved register area pointer + argsize rounded up to alignment >
8424   // saved register area end pointer, argument is in overflow area.
8425   unsigned RegsLeft = 6;
8426   Ty = CGF.getContext().getCanonicalType(Ty);
8427   (void)classifyArgumentType(Ty, &RegsLeft);
8428 
8429   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8430   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8431   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8432   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8433 
8434   // Get rounded size of the argument.GCC does not allow vararg of
8435   // size < 4 bytes. We follow the same logic here.
8436   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8437   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8438 
8439   // Argument may be in saved register area
8440   CGF.EmitBlock(MaybeRegBlock);
8441 
8442   // Load the current saved register area pointer.
8443   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8444       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8445   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8446       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8447 
8448   // Load the saved register area end pointer.
8449   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8450       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8451   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8452       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8453 
8454   // If the size of argument is > 4 bytes, check if the stack
8455   // location is aligned to 8 bytes
8456   if (ArgAlign > 4) {
8457 
8458     llvm::Value *__current_saved_reg_area_pointer_int =
8459         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8460                                    CGF.Int32Ty);
8461 
8462     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8463         __current_saved_reg_area_pointer_int,
8464         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8465         "align_current_saved_reg_area_pointer");
8466 
8467     __current_saved_reg_area_pointer_int =
8468         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8469                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8470                               "align_current_saved_reg_area_pointer");
8471 
8472     __current_saved_reg_area_pointer =
8473         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8474                                    __current_saved_reg_area_pointer->getType(),
8475                                    "align_current_saved_reg_area_pointer");
8476   }
8477 
8478   llvm::Value *__new_saved_reg_area_pointer =
8479       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8480                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8481                             "__new_saved_reg_area_pointer");
8482 
8483   llvm::Value *UsingStack = 0;
8484   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8485                                          __saved_reg_area_end_pointer);
8486 
8487   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8488 
8489   // Argument in saved register area
8490   // Implement the block where argument is in register saved area
8491   CGF.EmitBlock(InRegBlock);
8492 
8493   llvm::Type *PTy = CGF.ConvertType(Ty);
8494   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8495       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8496 
8497   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8498                           __current_saved_reg_area_pointer_p);
8499 
8500   CGF.EmitBranch(ContBlock);
8501 
8502   // Argument in overflow area
8503   // Implement the block where the argument is in overflow area.
8504   CGF.EmitBlock(OnStackBlock);
8505 
8506   // Load the overflow area pointer
8507   Address __overflow_area_pointer_p =
8508       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8509   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8510       __overflow_area_pointer_p, "__overflow_area_pointer");
8511 
8512   // Align the overflow area pointer according to the alignment of the argument
8513   if (ArgAlign > 4) {
8514     llvm::Value *__overflow_area_pointer_int =
8515         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8516 
8517     __overflow_area_pointer_int =
8518         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8519                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8520                               "align_overflow_area_pointer");
8521 
8522     __overflow_area_pointer_int =
8523         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8524                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8525                               "align_overflow_area_pointer");
8526 
8527     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8528         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8529         "align_overflow_area_pointer");
8530   }
8531 
8532   // Get the pointer for next argument in overflow area and store it
8533   // to overflow area pointer.
8534   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8535       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8536       "__overflow_area_pointer.next");
8537 
8538   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8539                           __overflow_area_pointer_p);
8540 
8541   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8542                           __current_saved_reg_area_pointer_p);
8543 
8544   // Bitcast the overflow area pointer to the type of argument.
8545   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8546   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8547       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8548 
8549   CGF.EmitBranch(ContBlock);
8550 
8551   // Get the correct pointer to load the variable argument
8552   // Implement the ContBlock
8553   CGF.EmitBlock(ContBlock);
8554 
8555   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8556   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8557   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8558   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8559 
8560   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8561 }
8562 
8563 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8564                                   QualType Ty) const {
8565 
8566   if (getTarget().getTriple().isMusl())
8567     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8568 
8569   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8570 }
8571 
8572 //===----------------------------------------------------------------------===//
8573 // Lanai ABI Implementation
8574 //===----------------------------------------------------------------------===//
8575 
8576 namespace {
8577 class LanaiABIInfo : public DefaultABIInfo {
8578 public:
8579   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8580 
8581   bool shouldUseInReg(QualType Ty, CCState &State) const;
8582 
8583   void computeInfo(CGFunctionInfo &FI) const override {
8584     CCState State(FI);
8585     // Lanai uses 4 registers to pass arguments unless the function has the
8586     // regparm attribute set.
8587     if (FI.getHasRegParm()) {
8588       State.FreeRegs = FI.getRegParm();
8589     } else {
8590       State.FreeRegs = 4;
8591     }
8592 
8593     if (!getCXXABI().classifyReturnType(FI))
8594       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8595     for (auto &I : FI.arguments())
8596       I.info = classifyArgumentType(I.type, State);
8597   }
8598 
8599   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8600   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8601 };
8602 } // end anonymous namespace
8603 
8604 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8605   unsigned Size = getContext().getTypeSize(Ty);
8606   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8607 
8608   if (SizeInRegs == 0)
8609     return false;
8610 
8611   if (SizeInRegs > State.FreeRegs) {
8612     State.FreeRegs = 0;
8613     return false;
8614   }
8615 
8616   State.FreeRegs -= SizeInRegs;
8617 
8618   return true;
8619 }
8620 
8621 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8622                                            CCState &State) const {
8623   if (!ByVal) {
8624     if (State.FreeRegs) {
8625       --State.FreeRegs; // Non-byval indirects just use one pointer.
8626       return getNaturalAlignIndirectInReg(Ty);
8627     }
8628     return getNaturalAlignIndirect(Ty, false);
8629   }
8630 
8631   // Compute the byval alignment.
8632   const unsigned MinABIStackAlignInBytes = 4;
8633   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8634   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8635                                  /*Realign=*/TypeAlign >
8636                                      MinABIStackAlignInBytes);
8637 }
8638 
8639 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8640                                               CCState &State) const {
8641   // Check with the C++ ABI first.
8642   const RecordType *RT = Ty->getAs<RecordType>();
8643   if (RT) {
8644     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8645     if (RAA == CGCXXABI::RAA_Indirect) {
8646       return getIndirectResult(Ty, /*ByVal=*/false, State);
8647     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8648       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8649     }
8650   }
8651 
8652   if (isAggregateTypeForABI(Ty)) {
8653     // Structures with flexible arrays are always indirect.
8654     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8655       return getIndirectResult(Ty, /*ByVal=*/true, State);
8656 
8657     // Ignore empty structs/unions.
8658     if (isEmptyRecord(getContext(), Ty, true))
8659       return ABIArgInfo::getIgnore();
8660 
8661     llvm::LLVMContext &LLVMContext = getVMContext();
8662     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8663     if (SizeInRegs <= State.FreeRegs) {
8664       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8665       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8666       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8667       State.FreeRegs -= SizeInRegs;
8668       return ABIArgInfo::getDirectInReg(Result);
8669     } else {
8670       State.FreeRegs = 0;
8671     }
8672     return getIndirectResult(Ty, true, State);
8673   }
8674 
8675   // Treat an enum type as its underlying type.
8676   if (const auto *EnumTy = Ty->getAs<EnumType>())
8677     Ty = EnumTy->getDecl()->getIntegerType();
8678 
8679   bool InReg = shouldUseInReg(Ty, State);
8680 
8681   // Don't pass >64 bit integers in registers.
8682   if (const auto *EIT = Ty->getAs<ExtIntType>())
8683     if (EIT->getNumBits() > 64)
8684       return getIndirectResult(Ty, /*ByVal=*/true, State);
8685 
8686   if (isPromotableIntegerTypeForABI(Ty)) {
8687     if (InReg)
8688       return ABIArgInfo::getDirectInReg();
8689     return ABIArgInfo::getExtend(Ty);
8690   }
8691   if (InReg)
8692     return ABIArgInfo::getDirectInReg();
8693   return ABIArgInfo::getDirect();
8694 }
8695 
8696 namespace {
8697 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8698 public:
8699   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8700       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8701 };
8702 }
8703 
8704 //===----------------------------------------------------------------------===//
8705 // AMDGPU ABI Implementation
8706 //===----------------------------------------------------------------------===//
8707 
8708 namespace {
8709 
8710 class AMDGPUABIInfo final : public DefaultABIInfo {
8711 private:
8712   static const unsigned MaxNumRegsForArgsRet = 16;
8713 
8714   unsigned numRegsForType(QualType Ty) const;
8715 
8716   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8717   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8718                                          uint64_t Members) const override;
8719 
8720   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8721   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8722                                        unsigned ToAS) const {
8723     // Single value types.
8724     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8725       return llvm::PointerType::get(
8726           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8727     return Ty;
8728   }
8729 
8730 public:
8731   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8732     DefaultABIInfo(CGT) {}
8733 
8734   ABIArgInfo classifyReturnType(QualType RetTy) const;
8735   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8736   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8737 
8738   void computeInfo(CGFunctionInfo &FI) const override;
8739   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8740                     QualType Ty) const override;
8741 };
8742 
8743 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8744   return true;
8745 }
8746 
8747 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8748   const Type *Base, uint64_t Members) const {
8749   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8750 
8751   // Homogeneous Aggregates may occupy at most 16 registers.
8752   return Members * NumRegs <= MaxNumRegsForArgsRet;
8753 }
8754 
8755 /// Estimate number of registers the type will use when passed in registers.
8756 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8757   unsigned NumRegs = 0;
8758 
8759   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8760     // Compute from the number of elements. The reported size is based on the
8761     // in-memory size, which includes the padding 4th element for 3-vectors.
8762     QualType EltTy = VT->getElementType();
8763     unsigned EltSize = getContext().getTypeSize(EltTy);
8764 
8765     // 16-bit element vectors should be passed as packed.
8766     if (EltSize == 16)
8767       return (VT->getNumElements() + 1) / 2;
8768 
8769     unsigned EltNumRegs = (EltSize + 31) / 32;
8770     return EltNumRegs * VT->getNumElements();
8771   }
8772 
8773   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8774     const RecordDecl *RD = RT->getDecl();
8775     assert(!RD->hasFlexibleArrayMember());
8776 
8777     for (const FieldDecl *Field : RD->fields()) {
8778       QualType FieldTy = Field->getType();
8779       NumRegs += numRegsForType(FieldTy);
8780     }
8781 
8782     return NumRegs;
8783   }
8784 
8785   return (getContext().getTypeSize(Ty) + 31) / 32;
8786 }
8787 
8788 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8789   llvm::CallingConv::ID CC = FI.getCallingConvention();
8790 
8791   if (!getCXXABI().classifyReturnType(FI))
8792     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8793 
8794   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8795   for (auto &Arg : FI.arguments()) {
8796     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8797       Arg.info = classifyKernelArgumentType(Arg.type);
8798     } else {
8799       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8800     }
8801   }
8802 }
8803 
8804 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8805                                  QualType Ty) const {
8806   llvm_unreachable("AMDGPU does not support varargs");
8807 }
8808 
8809 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8810   if (isAggregateTypeForABI(RetTy)) {
8811     // Records with non-trivial destructors/copy-constructors should not be
8812     // returned by value.
8813     if (!getRecordArgABI(RetTy, getCXXABI())) {
8814       // Ignore empty structs/unions.
8815       if (isEmptyRecord(getContext(), RetTy, true))
8816         return ABIArgInfo::getIgnore();
8817 
8818       // Lower single-element structs to just return a regular value.
8819       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8820         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8821 
8822       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8823         const RecordDecl *RD = RT->getDecl();
8824         if (RD->hasFlexibleArrayMember())
8825           return DefaultABIInfo::classifyReturnType(RetTy);
8826       }
8827 
8828       // Pack aggregates <= 4 bytes into single VGPR or pair.
8829       uint64_t Size = getContext().getTypeSize(RetTy);
8830       if (Size <= 16)
8831         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8832 
8833       if (Size <= 32)
8834         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8835 
8836       if (Size <= 64) {
8837         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8838         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8839       }
8840 
8841       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8842         return ABIArgInfo::getDirect();
8843     }
8844   }
8845 
8846   // Otherwise just do the default thing.
8847   return DefaultABIInfo::classifyReturnType(RetTy);
8848 }
8849 
8850 /// For kernels all parameters are really passed in a special buffer. It doesn't
8851 /// make sense to pass anything byval, so everything must be direct.
8852 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8853   Ty = useFirstFieldIfTransparentUnion(Ty);
8854 
8855   // TODO: Can we omit empty structs?
8856 
8857   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8858     Ty = QualType(SeltTy, 0);
8859 
8860   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
8861   llvm::Type *LTy = OrigLTy;
8862   if (getContext().getLangOpts().HIP) {
8863     LTy = coerceKernelArgumentType(
8864         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8865         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8866   }
8867 
8868   // FIXME: Should also use this for OpenCL, but it requires addressing the
8869   // problem of kernels being called.
8870   //
8871   // FIXME: This doesn't apply the optimization of coercing pointers in structs
8872   // to global address space when using byref. This would require implementing a
8873   // new kind of coercion of the in-memory type when for indirect arguments.
8874   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
8875       isAggregateTypeForABI(Ty)) {
8876     return ABIArgInfo::getIndirectAliased(
8877         getContext().getTypeAlignInChars(Ty),
8878         getContext().getTargetAddressSpace(LangAS::opencl_constant),
8879         false /*Realign*/, nullptr /*Padding*/);
8880   }
8881 
8882   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8883   // individual elements, which confuses the Clover OpenCL backend; therefore we
8884   // have to set it to false here. Other args of getDirect() are just defaults.
8885   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8886 }
8887 
8888 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8889                                                unsigned &NumRegsLeft) const {
8890   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8891 
8892   Ty = useFirstFieldIfTransparentUnion(Ty);
8893 
8894   if (isAggregateTypeForABI(Ty)) {
8895     // Records with non-trivial destructors/copy-constructors should not be
8896     // passed by value.
8897     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8898       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8899 
8900     // Ignore empty structs/unions.
8901     if (isEmptyRecord(getContext(), Ty, true))
8902       return ABIArgInfo::getIgnore();
8903 
8904     // Lower single-element structs to just pass a regular value. TODO: We
8905     // could do reasonable-size multiple-element structs too, using getExpand(),
8906     // though watch out for things like bitfields.
8907     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8908       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8909 
8910     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8911       const RecordDecl *RD = RT->getDecl();
8912       if (RD->hasFlexibleArrayMember())
8913         return DefaultABIInfo::classifyArgumentType(Ty);
8914     }
8915 
8916     // Pack aggregates <= 8 bytes into single VGPR or pair.
8917     uint64_t Size = getContext().getTypeSize(Ty);
8918     if (Size <= 64) {
8919       unsigned NumRegs = (Size + 31) / 32;
8920       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8921 
8922       if (Size <= 16)
8923         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8924 
8925       if (Size <= 32)
8926         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8927 
8928       // XXX: Should this be i64 instead, and should the limit increase?
8929       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8930       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8931     }
8932 
8933     if (NumRegsLeft > 0) {
8934       unsigned NumRegs = numRegsForType(Ty);
8935       if (NumRegsLeft >= NumRegs) {
8936         NumRegsLeft -= NumRegs;
8937         return ABIArgInfo::getDirect();
8938       }
8939     }
8940   }
8941 
8942   // Otherwise just do the default thing.
8943   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8944   if (!ArgInfo.isIndirect()) {
8945     unsigned NumRegs = numRegsForType(Ty);
8946     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8947   }
8948 
8949   return ArgInfo;
8950 }
8951 
8952 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8953 public:
8954   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8955       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8956   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8957                            CodeGen::CodeGenModule &M) const override;
8958   unsigned getOpenCLKernelCallingConv() const override;
8959 
8960   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8961       llvm::PointerType *T, QualType QT) const override;
8962 
8963   LangAS getASTAllocaAddressSpace() const override {
8964     return getLangASFromTargetAS(
8965         getABIInfo().getDataLayout().getAllocaAddrSpace());
8966   }
8967   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8968                                   const VarDecl *D) const override;
8969   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8970                                          SyncScope Scope,
8971                                          llvm::AtomicOrdering Ordering,
8972                                          llvm::LLVMContext &Ctx) const override;
8973   llvm::Function *
8974   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8975                             llvm::Function *BlockInvokeFunc,
8976                             llvm::Value *BlockLiteral) const override;
8977   bool shouldEmitStaticExternCAliases() const override;
8978   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8979 };
8980 }
8981 
8982 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8983                                               llvm::GlobalValue *GV) {
8984   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8985     return false;
8986 
8987   return D->hasAttr<OpenCLKernelAttr>() ||
8988          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8989          (isa<VarDecl>(D) &&
8990           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8991            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
8992            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
8993 }
8994 
8995 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8996     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8997   if (requiresAMDGPUProtectedVisibility(D, GV)) {
8998     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8999     GV->setDSOLocal(true);
9000   }
9001 
9002   if (GV->isDeclaration())
9003     return;
9004   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9005   if (!FD)
9006     return;
9007 
9008   llvm::Function *F = cast<llvm::Function>(GV);
9009 
9010   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9011     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9012 
9013 
9014   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9015                               FD->hasAttr<OpenCLKernelAttr>();
9016   const bool IsHIPKernel = M.getLangOpts().HIP &&
9017                            FD->hasAttr<CUDAGlobalAttr>();
9018   if ((IsOpenCLKernel || IsHIPKernel) &&
9019       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9020     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9021 
9022   if (IsHIPKernel)
9023     F->addFnAttr("uniform-work-group-size", "true");
9024 
9025 
9026   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9027   if (ReqdWGS || FlatWGS) {
9028     unsigned Min = 0;
9029     unsigned Max = 0;
9030     if (FlatWGS) {
9031       Min = FlatWGS->getMin()
9032                 ->EvaluateKnownConstInt(M.getContext())
9033                 .getExtValue();
9034       Max = FlatWGS->getMax()
9035                 ->EvaluateKnownConstInt(M.getContext())
9036                 .getExtValue();
9037     }
9038     if (ReqdWGS && Min == 0 && Max == 0)
9039       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9040 
9041     if (Min != 0) {
9042       assert(Min <= Max && "Min must be less than or equal Max");
9043 
9044       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9045       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9046     } else
9047       assert(Max == 0 && "Max must be zero");
9048   } else if (IsOpenCLKernel || IsHIPKernel) {
9049     // By default, restrict the maximum size to a value specified by
9050     // --gpu-max-threads-per-block=n or its default value.
9051     std::string AttrVal =
9052         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
9053     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9054   }
9055 
9056   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9057     unsigned Min =
9058         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9059     unsigned Max = Attr->getMax() ? Attr->getMax()
9060                                         ->EvaluateKnownConstInt(M.getContext())
9061                                         .getExtValue()
9062                                   : 0;
9063 
9064     if (Min != 0) {
9065       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9066 
9067       std::string AttrVal = llvm::utostr(Min);
9068       if (Max != 0)
9069         AttrVal = AttrVal + "," + llvm::utostr(Max);
9070       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9071     } else
9072       assert(Max == 0 && "Max must be zero");
9073   }
9074 
9075   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9076     unsigned NumSGPR = Attr->getNumSGPR();
9077 
9078     if (NumSGPR != 0)
9079       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9080   }
9081 
9082   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9083     uint32_t NumVGPR = Attr->getNumVGPR();
9084 
9085     if (NumVGPR != 0)
9086       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9087   }
9088 
9089   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9090     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9091 }
9092 
9093 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9094   return llvm::CallingConv::AMDGPU_KERNEL;
9095 }
9096 
9097 // Currently LLVM assumes null pointers always have value 0,
9098 // which results in incorrectly transformed IR. Therefore, instead of
9099 // emitting null pointers in private and local address spaces, a null
9100 // pointer in generic address space is emitted which is casted to a
9101 // pointer in local or private address space.
9102 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9103     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9104     QualType QT) const {
9105   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9106     return llvm::ConstantPointerNull::get(PT);
9107 
9108   auto &Ctx = CGM.getContext();
9109   auto NPT = llvm::PointerType::get(PT->getElementType(),
9110       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9111   return llvm::ConstantExpr::getAddrSpaceCast(
9112       llvm::ConstantPointerNull::get(NPT), PT);
9113 }
9114 
9115 LangAS
9116 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9117                                                   const VarDecl *D) const {
9118   assert(!CGM.getLangOpts().OpenCL &&
9119          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9120          "Address space agnostic languages only");
9121   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9122       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9123   if (!D)
9124     return DefaultGlobalAS;
9125 
9126   LangAS AddrSpace = D->getType().getAddressSpace();
9127   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9128   if (AddrSpace != LangAS::Default)
9129     return AddrSpace;
9130 
9131   if (CGM.isTypeConstant(D->getType(), false)) {
9132     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9133       return ConstAS.getValue();
9134   }
9135   return DefaultGlobalAS;
9136 }
9137 
9138 llvm::SyncScope::ID
9139 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9140                                             SyncScope Scope,
9141                                             llvm::AtomicOrdering Ordering,
9142                                             llvm::LLVMContext &Ctx) const {
9143   std::string Name;
9144   switch (Scope) {
9145   case SyncScope::OpenCLWorkGroup:
9146     Name = "workgroup";
9147     break;
9148   case SyncScope::OpenCLDevice:
9149     Name = "agent";
9150     break;
9151   case SyncScope::OpenCLAllSVMDevices:
9152     Name = "";
9153     break;
9154   case SyncScope::OpenCLSubGroup:
9155     Name = "wavefront";
9156   }
9157 
9158   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9159     if (!Name.empty())
9160       Name = Twine(Twine(Name) + Twine("-")).str();
9161 
9162     Name = Twine(Twine(Name) + Twine("one-as")).str();
9163   }
9164 
9165   return Ctx.getOrInsertSyncScopeID(Name);
9166 }
9167 
9168 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9169   return false;
9170 }
9171 
9172 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9173     const FunctionType *&FT) const {
9174   FT = getABIInfo().getContext().adjustFunctionType(
9175       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9176 }
9177 
9178 //===----------------------------------------------------------------------===//
9179 // SPARC v8 ABI Implementation.
9180 // Based on the SPARC Compliance Definition version 2.4.1.
9181 //
9182 // Ensures that complex values are passed in registers.
9183 //
9184 namespace {
9185 class SparcV8ABIInfo : public DefaultABIInfo {
9186 public:
9187   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9188 
9189 private:
9190   ABIArgInfo classifyReturnType(QualType RetTy) const;
9191   void computeInfo(CGFunctionInfo &FI) const override;
9192 };
9193 } // end anonymous namespace
9194 
9195 
9196 ABIArgInfo
9197 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9198   if (Ty->isAnyComplexType()) {
9199     return ABIArgInfo::getDirect();
9200   }
9201   else {
9202     return DefaultABIInfo::classifyReturnType(Ty);
9203   }
9204 }
9205 
9206 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9207 
9208   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9209   for (auto &Arg : FI.arguments())
9210     Arg.info = classifyArgumentType(Arg.type);
9211 }
9212 
9213 namespace {
9214 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9215 public:
9216   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9217       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9218 };
9219 } // end anonymous namespace
9220 
9221 //===----------------------------------------------------------------------===//
9222 // SPARC v9 ABI Implementation.
9223 // Based on the SPARC Compliance Definition version 2.4.1.
9224 //
9225 // Function arguments a mapped to a nominal "parameter array" and promoted to
9226 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9227 // the array, structs larger than 16 bytes are passed indirectly.
9228 //
9229 // One case requires special care:
9230 //
9231 //   struct mixed {
9232 //     int i;
9233 //     float f;
9234 //   };
9235 //
9236 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9237 // parameter array, but the int is passed in an integer register, and the float
9238 // is passed in a floating point register. This is represented as two arguments
9239 // with the LLVM IR inreg attribute:
9240 //
9241 //   declare void f(i32 inreg %i, float inreg %f)
9242 //
9243 // The code generator will only allocate 4 bytes from the parameter array for
9244 // the inreg arguments. All other arguments are allocated a multiple of 8
9245 // bytes.
9246 //
9247 namespace {
9248 class SparcV9ABIInfo : public ABIInfo {
9249 public:
9250   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9251 
9252 private:
9253   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9254   void computeInfo(CGFunctionInfo &FI) const override;
9255   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9256                     QualType Ty) const override;
9257 
9258   // Coercion type builder for structs passed in registers. The coercion type
9259   // serves two purposes:
9260   //
9261   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9262   //    in registers.
9263   // 2. Expose aligned floating point elements as first-level elements, so the
9264   //    code generator knows to pass them in floating point registers.
9265   //
9266   // We also compute the InReg flag which indicates that the struct contains
9267   // aligned 32-bit floats.
9268   //
9269   struct CoerceBuilder {
9270     llvm::LLVMContext &Context;
9271     const llvm::DataLayout &DL;
9272     SmallVector<llvm::Type*, 8> Elems;
9273     uint64_t Size;
9274     bool InReg;
9275 
9276     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9277       : Context(c), DL(dl), Size(0), InReg(false) {}
9278 
9279     // Pad Elems with integers until Size is ToSize.
9280     void pad(uint64_t ToSize) {
9281       assert(ToSize >= Size && "Cannot remove elements");
9282       if (ToSize == Size)
9283         return;
9284 
9285       // Finish the current 64-bit word.
9286       uint64_t Aligned = llvm::alignTo(Size, 64);
9287       if (Aligned > Size && Aligned <= ToSize) {
9288         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9289         Size = Aligned;
9290       }
9291 
9292       // Add whole 64-bit words.
9293       while (Size + 64 <= ToSize) {
9294         Elems.push_back(llvm::Type::getInt64Ty(Context));
9295         Size += 64;
9296       }
9297 
9298       // Final in-word padding.
9299       if (Size < ToSize) {
9300         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9301         Size = ToSize;
9302       }
9303     }
9304 
9305     // Add a floating point element at Offset.
9306     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9307       // Unaligned floats are treated as integers.
9308       if (Offset % Bits)
9309         return;
9310       // The InReg flag is only required if there are any floats < 64 bits.
9311       if (Bits < 64)
9312         InReg = true;
9313       pad(Offset);
9314       Elems.push_back(Ty);
9315       Size = Offset + Bits;
9316     }
9317 
9318     // Add a struct type to the coercion type, starting at Offset (in bits).
9319     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9320       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9321       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9322         llvm::Type *ElemTy = StrTy->getElementType(i);
9323         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9324         switch (ElemTy->getTypeID()) {
9325         case llvm::Type::StructTyID:
9326           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9327           break;
9328         case llvm::Type::FloatTyID:
9329           addFloat(ElemOffset, ElemTy, 32);
9330           break;
9331         case llvm::Type::DoubleTyID:
9332           addFloat(ElemOffset, ElemTy, 64);
9333           break;
9334         case llvm::Type::FP128TyID:
9335           addFloat(ElemOffset, ElemTy, 128);
9336           break;
9337         case llvm::Type::PointerTyID:
9338           if (ElemOffset % 64 == 0) {
9339             pad(ElemOffset);
9340             Elems.push_back(ElemTy);
9341             Size += 64;
9342           }
9343           break;
9344         default:
9345           break;
9346         }
9347       }
9348     }
9349 
9350     // Check if Ty is a usable substitute for the coercion type.
9351     bool isUsableType(llvm::StructType *Ty) const {
9352       return llvm::makeArrayRef(Elems) == Ty->elements();
9353     }
9354 
9355     // Get the coercion type as a literal struct type.
9356     llvm::Type *getType() const {
9357       if (Elems.size() == 1)
9358         return Elems.front();
9359       else
9360         return llvm::StructType::get(Context, Elems);
9361     }
9362   };
9363 };
9364 } // end anonymous namespace
9365 
9366 ABIArgInfo
9367 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9368   if (Ty->isVoidType())
9369     return ABIArgInfo::getIgnore();
9370 
9371   uint64_t Size = getContext().getTypeSize(Ty);
9372 
9373   // Anything too big to fit in registers is passed with an explicit indirect
9374   // pointer / sret pointer.
9375   if (Size > SizeLimit)
9376     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9377 
9378   // Treat an enum type as its underlying type.
9379   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9380     Ty = EnumTy->getDecl()->getIntegerType();
9381 
9382   // Integer types smaller than a register are extended.
9383   if (Size < 64 && Ty->isIntegerType())
9384     return ABIArgInfo::getExtend(Ty);
9385 
9386   if (const auto *EIT = Ty->getAs<ExtIntType>())
9387     if (EIT->getNumBits() < 64)
9388       return ABIArgInfo::getExtend(Ty);
9389 
9390   // Other non-aggregates go in registers.
9391   if (!isAggregateTypeForABI(Ty))
9392     return ABIArgInfo::getDirect();
9393 
9394   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9395   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9396   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9397     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9398 
9399   // This is a small aggregate type that should be passed in registers.
9400   // Build a coercion type from the LLVM struct type.
9401   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9402   if (!StrTy)
9403     return ABIArgInfo::getDirect();
9404 
9405   CoerceBuilder CB(getVMContext(), getDataLayout());
9406   CB.addStruct(0, StrTy);
9407   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9408 
9409   // Try to use the original type for coercion.
9410   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9411 
9412   if (CB.InReg)
9413     return ABIArgInfo::getDirectInReg(CoerceTy);
9414   else
9415     return ABIArgInfo::getDirect(CoerceTy);
9416 }
9417 
9418 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9419                                   QualType Ty) const {
9420   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9421   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9422   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9423     AI.setCoerceToType(ArgTy);
9424 
9425   CharUnits SlotSize = CharUnits::fromQuantity(8);
9426 
9427   CGBuilderTy &Builder = CGF.Builder;
9428   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9429   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9430 
9431   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9432 
9433   Address ArgAddr = Address::invalid();
9434   CharUnits Stride;
9435   switch (AI.getKind()) {
9436   case ABIArgInfo::Expand:
9437   case ABIArgInfo::CoerceAndExpand:
9438   case ABIArgInfo::InAlloca:
9439     llvm_unreachable("Unsupported ABI kind for va_arg");
9440 
9441   case ABIArgInfo::Extend: {
9442     Stride = SlotSize;
9443     CharUnits Offset = SlotSize - TypeInfo.Width;
9444     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9445     break;
9446   }
9447 
9448   case ABIArgInfo::Direct: {
9449     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9450     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9451     ArgAddr = Addr;
9452     break;
9453   }
9454 
9455   case ABIArgInfo::Indirect:
9456   case ABIArgInfo::IndirectAliased:
9457     Stride = SlotSize;
9458     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9459     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9460                       TypeInfo.Align);
9461     break;
9462 
9463   case ABIArgInfo::Ignore:
9464     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9465   }
9466 
9467   // Update VAList.
9468   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9469   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9470 
9471   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9472 }
9473 
9474 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9475   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9476   for (auto &I : FI.arguments())
9477     I.info = classifyType(I.type, 16 * 8);
9478 }
9479 
9480 namespace {
9481 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9482 public:
9483   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9484       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9485 
9486   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9487     return 14;
9488   }
9489 
9490   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9491                                llvm::Value *Address) const override;
9492 };
9493 } // end anonymous namespace
9494 
9495 bool
9496 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9497                                                 llvm::Value *Address) const {
9498   // This is calculated from the LLVM and GCC tables and verified
9499   // against gcc output.  AFAIK all ABIs use the same encoding.
9500 
9501   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9502 
9503   llvm::IntegerType *i8 = CGF.Int8Ty;
9504   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9505   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9506 
9507   // 0-31: the 8-byte general-purpose registers
9508   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9509 
9510   // 32-63: f0-31, the 4-byte floating-point registers
9511   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9512 
9513   //   Y   = 64
9514   //   PSR = 65
9515   //   WIM = 66
9516   //   TBR = 67
9517   //   PC  = 68
9518   //   NPC = 69
9519   //   FSR = 70
9520   //   CSR = 71
9521   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9522 
9523   // 72-87: d0-15, the 8-byte floating-point registers
9524   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9525 
9526   return false;
9527 }
9528 
9529 // ARC ABI implementation.
9530 namespace {
9531 
9532 class ARCABIInfo : public DefaultABIInfo {
9533 public:
9534   using DefaultABIInfo::DefaultABIInfo;
9535 
9536 private:
9537   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9538                     QualType Ty) const override;
9539 
9540   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9541     if (!State.FreeRegs)
9542       return;
9543     if (Info.isIndirect() && Info.getInReg())
9544       State.FreeRegs--;
9545     else if (Info.isDirect() && Info.getInReg()) {
9546       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9547       if (sz < State.FreeRegs)
9548         State.FreeRegs -= sz;
9549       else
9550         State.FreeRegs = 0;
9551     }
9552   }
9553 
9554   void computeInfo(CGFunctionInfo &FI) const override {
9555     CCState State(FI);
9556     // ARC uses 8 registers to pass arguments.
9557     State.FreeRegs = 8;
9558 
9559     if (!getCXXABI().classifyReturnType(FI))
9560       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9561     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9562     for (auto &I : FI.arguments()) {
9563       I.info = classifyArgumentType(I.type, State.FreeRegs);
9564       updateState(I.info, I.type, State);
9565     }
9566   }
9567 
9568   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9569   ABIArgInfo getIndirectByValue(QualType Ty) const;
9570   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9571   ABIArgInfo classifyReturnType(QualType RetTy) const;
9572 };
9573 
9574 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9575 public:
9576   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9577       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9578 };
9579 
9580 
9581 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9582   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9583                        getNaturalAlignIndirect(Ty, false);
9584 }
9585 
9586 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9587   // Compute the byval alignment.
9588   const unsigned MinABIStackAlignInBytes = 4;
9589   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9590   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9591                                  TypeAlign > MinABIStackAlignInBytes);
9592 }
9593 
9594 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9595                               QualType Ty) const {
9596   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9597                           getContext().getTypeInfoInChars(Ty),
9598                           CharUnits::fromQuantity(4), true);
9599 }
9600 
9601 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9602                                             uint8_t FreeRegs) const {
9603   // Handle the generic C++ ABI.
9604   const RecordType *RT = Ty->getAs<RecordType>();
9605   if (RT) {
9606     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9607     if (RAA == CGCXXABI::RAA_Indirect)
9608       return getIndirectByRef(Ty, FreeRegs > 0);
9609 
9610     if (RAA == CGCXXABI::RAA_DirectInMemory)
9611       return getIndirectByValue(Ty);
9612   }
9613 
9614   // Treat an enum type as its underlying type.
9615   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9616     Ty = EnumTy->getDecl()->getIntegerType();
9617 
9618   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9619 
9620   if (isAggregateTypeForABI(Ty)) {
9621     // Structures with flexible arrays are always indirect.
9622     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9623       return getIndirectByValue(Ty);
9624 
9625     // Ignore empty structs/unions.
9626     if (isEmptyRecord(getContext(), Ty, true))
9627       return ABIArgInfo::getIgnore();
9628 
9629     llvm::LLVMContext &LLVMContext = getVMContext();
9630 
9631     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9632     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9633     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9634 
9635     return FreeRegs >= SizeInRegs ?
9636         ABIArgInfo::getDirectInReg(Result) :
9637         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9638   }
9639 
9640   if (const auto *EIT = Ty->getAs<ExtIntType>())
9641     if (EIT->getNumBits() > 64)
9642       return getIndirectByValue(Ty);
9643 
9644   return isPromotableIntegerTypeForABI(Ty)
9645              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9646                                        : ABIArgInfo::getExtend(Ty))
9647              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9648                                        : ABIArgInfo::getDirect());
9649 }
9650 
9651 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9652   if (RetTy->isAnyComplexType())
9653     return ABIArgInfo::getDirectInReg();
9654 
9655   // Arguments of size > 4 registers are indirect.
9656   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9657   if (RetSize > 4)
9658     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9659 
9660   return DefaultABIInfo::classifyReturnType(RetTy);
9661 }
9662 
9663 } // End anonymous namespace.
9664 
9665 //===----------------------------------------------------------------------===//
9666 // XCore ABI Implementation
9667 //===----------------------------------------------------------------------===//
9668 
9669 namespace {
9670 
9671 /// A SmallStringEnc instance is used to build up the TypeString by passing
9672 /// it by reference between functions that append to it.
9673 typedef llvm::SmallString<128> SmallStringEnc;
9674 
9675 /// TypeStringCache caches the meta encodings of Types.
9676 ///
9677 /// The reason for caching TypeStrings is two fold:
9678 ///   1. To cache a type's encoding for later uses;
9679 ///   2. As a means to break recursive member type inclusion.
9680 ///
9681 /// A cache Entry can have a Status of:
9682 ///   NonRecursive:   The type encoding is not recursive;
9683 ///   Recursive:      The type encoding is recursive;
9684 ///   Incomplete:     An incomplete TypeString;
9685 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9686 ///                   Recursive type encoding.
9687 ///
9688 /// A NonRecursive entry will have all of its sub-members expanded as fully
9689 /// as possible. Whilst it may contain types which are recursive, the type
9690 /// itself is not recursive and thus its encoding may be safely used whenever
9691 /// the type is encountered.
9692 ///
9693 /// A Recursive entry will have all of its sub-members expanded as fully as
9694 /// possible. The type itself is recursive and it may contain other types which
9695 /// are recursive. The Recursive encoding must not be used during the expansion
9696 /// of a recursive type's recursive branch. For simplicity the code uses
9697 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9698 ///
9699 /// An Incomplete entry is always a RecordType and only encodes its
9700 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9701 /// are placed into the cache during type expansion as a means to identify and
9702 /// handle recursive inclusion of types as sub-members. If there is recursion
9703 /// the entry becomes IncompleteUsed.
9704 ///
9705 /// During the expansion of a RecordType's members:
9706 ///
9707 ///   If the cache contains a NonRecursive encoding for the member type, the
9708 ///   cached encoding is used;
9709 ///
9710 ///   If the cache contains a Recursive encoding for the member type, the
9711 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9712 ///
9713 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9714 ///   cache to break potential recursive inclusion of itself as a sub-member;
9715 ///
9716 ///   Once a member RecordType has been expanded, its temporary incomplete
9717 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9718 ///   it is swapped back in;
9719 ///
9720 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9721 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9722 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9723 ///
9724 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9725 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9726 ///   Else the member is part of a recursive type and thus the recursion has
9727 ///   been exited too soon for the encoding to be correct for the member.
9728 ///
9729 class TypeStringCache {
9730   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9731   struct Entry {
9732     std::string Str;     // The encoded TypeString for the type.
9733     enum Status State;   // Information about the encoding in 'Str'.
9734     std::string Swapped; // A temporary place holder for a Recursive encoding
9735                          // during the expansion of RecordType's members.
9736   };
9737   std::map<const IdentifierInfo *, struct Entry> Map;
9738   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9739   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9740 public:
9741   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9742   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9743   bool removeIncomplete(const IdentifierInfo *ID);
9744   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9745                      bool IsRecursive);
9746   StringRef lookupStr(const IdentifierInfo *ID);
9747 };
9748 
9749 /// TypeString encodings for enum & union fields must be order.
9750 /// FieldEncoding is a helper for this ordering process.
9751 class FieldEncoding {
9752   bool HasName;
9753   std::string Enc;
9754 public:
9755   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9756   StringRef str() { return Enc; }
9757   bool operator<(const FieldEncoding &rhs) const {
9758     if (HasName != rhs.HasName) return HasName;
9759     return Enc < rhs.Enc;
9760   }
9761 };
9762 
9763 class XCoreABIInfo : public DefaultABIInfo {
9764 public:
9765   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9766   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9767                     QualType Ty) const override;
9768 };
9769 
9770 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9771   mutable TypeStringCache TSC;
9772   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9773                     const CodeGen::CodeGenModule &M) const;
9774 
9775 public:
9776   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9777       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9778   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9779                           const llvm::MapVector<GlobalDecl, StringRef>
9780                               &MangledDeclNames) const override;
9781 };
9782 
9783 } // End anonymous namespace.
9784 
9785 // TODO: this implementation is likely now redundant with the default
9786 // EmitVAArg.
9787 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9788                                 QualType Ty) const {
9789   CGBuilderTy &Builder = CGF.Builder;
9790 
9791   // Get the VAList.
9792   CharUnits SlotSize = CharUnits::fromQuantity(4);
9793   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9794 
9795   // Handle the argument.
9796   ABIArgInfo AI = classifyArgumentType(Ty);
9797   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9798   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9799   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9800     AI.setCoerceToType(ArgTy);
9801   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9802 
9803   Address Val = Address::invalid();
9804   CharUnits ArgSize = CharUnits::Zero();
9805   switch (AI.getKind()) {
9806   case ABIArgInfo::Expand:
9807   case ABIArgInfo::CoerceAndExpand:
9808   case ABIArgInfo::InAlloca:
9809     llvm_unreachable("Unsupported ABI kind for va_arg");
9810   case ABIArgInfo::Ignore:
9811     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9812     ArgSize = CharUnits::Zero();
9813     break;
9814   case ABIArgInfo::Extend:
9815   case ABIArgInfo::Direct:
9816     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9817     ArgSize = CharUnits::fromQuantity(
9818                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9819     ArgSize = ArgSize.alignTo(SlotSize);
9820     break;
9821   case ABIArgInfo::Indirect:
9822   case ABIArgInfo::IndirectAliased:
9823     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9824     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9825     ArgSize = SlotSize;
9826     break;
9827   }
9828 
9829   // Increment the VAList.
9830   if (!ArgSize.isZero()) {
9831     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9832     Builder.CreateStore(APN.getPointer(), VAListAddr);
9833   }
9834 
9835   return Val;
9836 }
9837 
9838 /// During the expansion of a RecordType, an incomplete TypeString is placed
9839 /// into the cache as a means to identify and break recursion.
9840 /// If there is a Recursive encoding in the cache, it is swapped out and will
9841 /// be reinserted by removeIncomplete().
9842 /// All other types of encoding should have been used rather than arriving here.
9843 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9844                                     std::string StubEnc) {
9845   if (!ID)
9846     return;
9847   Entry &E = Map[ID];
9848   assert( (E.Str.empty() || E.State == Recursive) &&
9849          "Incorrectly use of addIncomplete");
9850   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9851   E.Swapped.swap(E.Str); // swap out the Recursive
9852   E.Str.swap(StubEnc);
9853   E.State = Incomplete;
9854   ++IncompleteCount;
9855 }
9856 
9857 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9858 /// must be removed from the cache.
9859 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9860 /// Returns true if the RecordType was defined recursively.
9861 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9862   if (!ID)
9863     return false;
9864   auto I = Map.find(ID);
9865   assert(I != Map.end() && "Entry not present");
9866   Entry &E = I->second;
9867   assert( (E.State == Incomplete ||
9868            E.State == IncompleteUsed) &&
9869          "Entry must be an incomplete type");
9870   bool IsRecursive = false;
9871   if (E.State == IncompleteUsed) {
9872     // We made use of our Incomplete encoding, thus we are recursive.
9873     IsRecursive = true;
9874     --IncompleteUsedCount;
9875   }
9876   if (E.Swapped.empty())
9877     Map.erase(I);
9878   else {
9879     // Swap the Recursive back.
9880     E.Swapped.swap(E.Str);
9881     E.Swapped.clear();
9882     E.State = Recursive;
9883   }
9884   --IncompleteCount;
9885   return IsRecursive;
9886 }
9887 
9888 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9889 /// Recursive (viz: all sub-members were expanded as fully as possible).
9890 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9891                                     bool IsRecursive) {
9892   if (!ID || IncompleteUsedCount)
9893     return; // No key or it is is an incomplete sub-type so don't add.
9894   Entry &E = Map[ID];
9895   if (IsRecursive && !E.Str.empty()) {
9896     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9897            "This is not the same Recursive entry");
9898     // The parent container was not recursive after all, so we could have used
9899     // this Recursive sub-member entry after all, but we assumed the worse when
9900     // we started viz: IncompleteCount!=0.
9901     return;
9902   }
9903   assert(E.Str.empty() && "Entry already present");
9904   E.Str = Str.str();
9905   E.State = IsRecursive? Recursive : NonRecursive;
9906 }
9907 
9908 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9909 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9910 /// encoding is Recursive, return an empty StringRef.
9911 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9912   if (!ID)
9913     return StringRef();   // We have no key.
9914   auto I = Map.find(ID);
9915   if (I == Map.end())
9916     return StringRef();   // We have no encoding.
9917   Entry &E = I->second;
9918   if (E.State == Recursive && IncompleteCount)
9919     return StringRef();   // We don't use Recursive encodings for member types.
9920 
9921   if (E.State == Incomplete) {
9922     // The incomplete type is being used to break out of recursion.
9923     E.State = IncompleteUsed;
9924     ++IncompleteUsedCount;
9925   }
9926   return E.Str;
9927 }
9928 
9929 /// The XCore ABI includes a type information section that communicates symbol
9930 /// type information to the linker. The linker uses this information to verify
9931 /// safety/correctness of things such as array bound and pointers et al.
9932 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9933 /// This type information (TypeString) is emitted into meta data for all global
9934 /// symbols: definitions, declarations, functions & variables.
9935 ///
9936 /// The TypeString carries type, qualifier, name, size & value details.
9937 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9938 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9939 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9940 ///
9941 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9942                           const CodeGen::CodeGenModule &CGM,
9943                           TypeStringCache &TSC);
9944 
9945 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9946 void XCoreTargetCodeGenInfo::emitTargetMD(
9947     const Decl *D, llvm::GlobalValue *GV,
9948     const CodeGen::CodeGenModule &CGM) const {
9949   SmallStringEnc Enc;
9950   if (getTypeString(Enc, D, CGM, TSC)) {
9951     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9952     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9953                                 llvm::MDString::get(Ctx, Enc.str())};
9954     llvm::NamedMDNode *MD =
9955       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9956     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9957   }
9958 }
9959 
9960 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9961     CodeGen::CodeGenModule &CGM,
9962     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9963   // Warning, new MangledDeclNames may be appended within this loop.
9964   // We rely on MapVector insertions adding new elements to the end
9965   // of the container.
9966   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9967     auto Val = *(MangledDeclNames.begin() + I);
9968     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9969     if (GV) {
9970       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9971       emitTargetMD(D, GV, CGM);
9972     }
9973   }
9974 }
9975 //===----------------------------------------------------------------------===//
9976 // SPIR ABI Implementation
9977 //===----------------------------------------------------------------------===//
9978 
9979 namespace {
9980 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9981 public:
9982   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9983       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
9984   unsigned getOpenCLKernelCallingConv() const override;
9985 };
9986 
9987 } // End anonymous namespace.
9988 
9989 namespace clang {
9990 namespace CodeGen {
9991 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9992   DefaultABIInfo SPIRABI(CGM.getTypes());
9993   SPIRABI.computeInfo(FI);
9994 }
9995 }
9996 }
9997 
9998 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9999   return llvm::CallingConv::SPIR_KERNEL;
10000 }
10001 
10002 static bool appendType(SmallStringEnc &Enc, QualType QType,
10003                        const CodeGen::CodeGenModule &CGM,
10004                        TypeStringCache &TSC);
10005 
10006 /// Helper function for appendRecordType().
10007 /// Builds a SmallVector containing the encoded field types in declaration
10008 /// order.
10009 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10010                              const RecordDecl *RD,
10011                              const CodeGen::CodeGenModule &CGM,
10012                              TypeStringCache &TSC) {
10013   for (const auto *Field : RD->fields()) {
10014     SmallStringEnc Enc;
10015     Enc += "m(";
10016     Enc += Field->getName();
10017     Enc += "){";
10018     if (Field->isBitField()) {
10019       Enc += "b(";
10020       llvm::raw_svector_ostream OS(Enc);
10021       OS << Field->getBitWidthValue(CGM.getContext());
10022       Enc += ':';
10023     }
10024     if (!appendType(Enc, Field->getType(), CGM, TSC))
10025       return false;
10026     if (Field->isBitField())
10027       Enc += ')';
10028     Enc += '}';
10029     FE.emplace_back(!Field->getName().empty(), Enc);
10030   }
10031   return true;
10032 }
10033 
10034 /// Appends structure and union types to Enc and adds encoding to cache.
10035 /// Recursively calls appendType (via extractFieldType) for each field.
10036 /// Union types have their fields ordered according to the ABI.
10037 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10038                              const CodeGen::CodeGenModule &CGM,
10039                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10040   // Append the cached TypeString if we have one.
10041   StringRef TypeString = TSC.lookupStr(ID);
10042   if (!TypeString.empty()) {
10043     Enc += TypeString;
10044     return true;
10045   }
10046 
10047   // Start to emit an incomplete TypeString.
10048   size_t Start = Enc.size();
10049   Enc += (RT->isUnionType()? 'u' : 's');
10050   Enc += '(';
10051   if (ID)
10052     Enc += ID->getName();
10053   Enc += "){";
10054 
10055   // We collect all encoded fields and order as necessary.
10056   bool IsRecursive = false;
10057   const RecordDecl *RD = RT->getDecl()->getDefinition();
10058   if (RD && !RD->field_empty()) {
10059     // An incomplete TypeString stub is placed in the cache for this RecordType
10060     // so that recursive calls to this RecordType will use it whilst building a
10061     // complete TypeString for this RecordType.
10062     SmallVector<FieldEncoding, 16> FE;
10063     std::string StubEnc(Enc.substr(Start).str());
10064     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10065     TSC.addIncomplete(ID, std::move(StubEnc));
10066     if (!extractFieldType(FE, RD, CGM, TSC)) {
10067       (void) TSC.removeIncomplete(ID);
10068       return false;
10069     }
10070     IsRecursive = TSC.removeIncomplete(ID);
10071     // The ABI requires unions to be sorted but not structures.
10072     // See FieldEncoding::operator< for sort algorithm.
10073     if (RT->isUnionType())
10074       llvm::sort(FE);
10075     // We can now complete the TypeString.
10076     unsigned E = FE.size();
10077     for (unsigned I = 0; I != E; ++I) {
10078       if (I)
10079         Enc += ',';
10080       Enc += FE[I].str();
10081     }
10082   }
10083   Enc += '}';
10084   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10085   return true;
10086 }
10087 
10088 /// Appends enum types to Enc and adds the encoding to the cache.
10089 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10090                            TypeStringCache &TSC,
10091                            const IdentifierInfo *ID) {
10092   // Append the cached TypeString if we have one.
10093   StringRef TypeString = TSC.lookupStr(ID);
10094   if (!TypeString.empty()) {
10095     Enc += TypeString;
10096     return true;
10097   }
10098 
10099   size_t Start = Enc.size();
10100   Enc += "e(";
10101   if (ID)
10102     Enc += ID->getName();
10103   Enc += "){";
10104 
10105   // We collect all encoded enumerations and order them alphanumerically.
10106   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10107     SmallVector<FieldEncoding, 16> FE;
10108     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10109          ++I) {
10110       SmallStringEnc EnumEnc;
10111       EnumEnc += "m(";
10112       EnumEnc += I->getName();
10113       EnumEnc += "){";
10114       I->getInitVal().toString(EnumEnc);
10115       EnumEnc += '}';
10116       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10117     }
10118     llvm::sort(FE);
10119     unsigned E = FE.size();
10120     for (unsigned I = 0; I != E; ++I) {
10121       if (I)
10122         Enc += ',';
10123       Enc += FE[I].str();
10124     }
10125   }
10126   Enc += '}';
10127   TSC.addIfComplete(ID, Enc.substr(Start), false);
10128   return true;
10129 }
10130 
10131 /// Appends type's qualifier to Enc.
10132 /// This is done prior to appending the type's encoding.
10133 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10134   // Qualifiers are emitted in alphabetical order.
10135   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10136   int Lookup = 0;
10137   if (QT.isConstQualified())
10138     Lookup += 1<<0;
10139   if (QT.isRestrictQualified())
10140     Lookup += 1<<1;
10141   if (QT.isVolatileQualified())
10142     Lookup += 1<<2;
10143   Enc += Table[Lookup];
10144 }
10145 
10146 /// Appends built-in types to Enc.
10147 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10148   const char *EncType;
10149   switch (BT->getKind()) {
10150     case BuiltinType::Void:
10151       EncType = "0";
10152       break;
10153     case BuiltinType::Bool:
10154       EncType = "b";
10155       break;
10156     case BuiltinType::Char_U:
10157       EncType = "uc";
10158       break;
10159     case BuiltinType::UChar:
10160       EncType = "uc";
10161       break;
10162     case BuiltinType::SChar:
10163       EncType = "sc";
10164       break;
10165     case BuiltinType::UShort:
10166       EncType = "us";
10167       break;
10168     case BuiltinType::Short:
10169       EncType = "ss";
10170       break;
10171     case BuiltinType::UInt:
10172       EncType = "ui";
10173       break;
10174     case BuiltinType::Int:
10175       EncType = "si";
10176       break;
10177     case BuiltinType::ULong:
10178       EncType = "ul";
10179       break;
10180     case BuiltinType::Long:
10181       EncType = "sl";
10182       break;
10183     case BuiltinType::ULongLong:
10184       EncType = "ull";
10185       break;
10186     case BuiltinType::LongLong:
10187       EncType = "sll";
10188       break;
10189     case BuiltinType::Float:
10190       EncType = "ft";
10191       break;
10192     case BuiltinType::Double:
10193       EncType = "d";
10194       break;
10195     case BuiltinType::LongDouble:
10196       EncType = "ld";
10197       break;
10198     default:
10199       return false;
10200   }
10201   Enc += EncType;
10202   return true;
10203 }
10204 
10205 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10206 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10207                               const CodeGen::CodeGenModule &CGM,
10208                               TypeStringCache &TSC) {
10209   Enc += "p(";
10210   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10211     return false;
10212   Enc += ')';
10213   return true;
10214 }
10215 
10216 /// Appends array encoding to Enc before calling appendType for the element.
10217 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10218                             const ArrayType *AT,
10219                             const CodeGen::CodeGenModule &CGM,
10220                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10221   if (AT->getSizeModifier() != ArrayType::Normal)
10222     return false;
10223   Enc += "a(";
10224   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10225     CAT->getSize().toStringUnsigned(Enc);
10226   else
10227     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10228   Enc += ':';
10229   // The Qualifiers should be attached to the type rather than the array.
10230   appendQualifier(Enc, QT);
10231   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10232     return false;
10233   Enc += ')';
10234   return true;
10235 }
10236 
10237 /// Appends a function encoding to Enc, calling appendType for the return type
10238 /// and the arguments.
10239 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10240                              const CodeGen::CodeGenModule &CGM,
10241                              TypeStringCache &TSC) {
10242   Enc += "f{";
10243   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10244     return false;
10245   Enc += "}(";
10246   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10247     // N.B. we are only interested in the adjusted param types.
10248     auto I = FPT->param_type_begin();
10249     auto E = FPT->param_type_end();
10250     if (I != E) {
10251       do {
10252         if (!appendType(Enc, *I, CGM, TSC))
10253           return false;
10254         ++I;
10255         if (I != E)
10256           Enc += ',';
10257       } while (I != E);
10258       if (FPT->isVariadic())
10259         Enc += ",va";
10260     } else {
10261       if (FPT->isVariadic())
10262         Enc += "va";
10263       else
10264         Enc += '0';
10265     }
10266   }
10267   Enc += ')';
10268   return true;
10269 }
10270 
10271 /// Handles the type's qualifier before dispatching a call to handle specific
10272 /// type encodings.
10273 static bool appendType(SmallStringEnc &Enc, QualType QType,
10274                        const CodeGen::CodeGenModule &CGM,
10275                        TypeStringCache &TSC) {
10276 
10277   QualType QT = QType.getCanonicalType();
10278 
10279   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10280     // The Qualifiers should be attached to the type rather than the array.
10281     // Thus we don't call appendQualifier() here.
10282     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10283 
10284   appendQualifier(Enc, QT);
10285 
10286   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10287     return appendBuiltinType(Enc, BT);
10288 
10289   if (const PointerType *PT = QT->getAs<PointerType>())
10290     return appendPointerType(Enc, PT, CGM, TSC);
10291 
10292   if (const EnumType *ET = QT->getAs<EnumType>())
10293     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10294 
10295   if (const RecordType *RT = QT->getAsStructureType())
10296     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10297 
10298   if (const RecordType *RT = QT->getAsUnionType())
10299     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10300 
10301   if (const FunctionType *FT = QT->getAs<FunctionType>())
10302     return appendFunctionType(Enc, FT, CGM, TSC);
10303 
10304   return false;
10305 }
10306 
10307 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10308                           const CodeGen::CodeGenModule &CGM,
10309                           TypeStringCache &TSC) {
10310   if (!D)
10311     return false;
10312 
10313   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10314     if (FD->getLanguageLinkage() != CLanguageLinkage)
10315       return false;
10316     return appendType(Enc, FD->getType(), CGM, TSC);
10317   }
10318 
10319   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10320     if (VD->getLanguageLinkage() != CLanguageLinkage)
10321       return false;
10322     QualType QT = VD->getType().getCanonicalType();
10323     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10324       // Global ArrayTypes are given a size of '*' if the size is unknown.
10325       // The Qualifiers should be attached to the type rather than the array.
10326       // Thus we don't call appendQualifier() here.
10327       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10328     }
10329     return appendType(Enc, QT, CGM, TSC);
10330   }
10331   return false;
10332 }
10333 
10334 //===----------------------------------------------------------------------===//
10335 // RISCV ABI Implementation
10336 //===----------------------------------------------------------------------===//
10337 
10338 namespace {
10339 class RISCVABIInfo : public DefaultABIInfo {
10340 private:
10341   // Size of the integer ('x') registers in bits.
10342   unsigned XLen;
10343   // Size of the floating point ('f') registers in bits. Note that the target
10344   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10345   // with soft float ABI has FLen==0).
10346   unsigned FLen;
10347   static const int NumArgGPRs = 8;
10348   static const int NumArgFPRs = 8;
10349   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10350                                       llvm::Type *&Field1Ty,
10351                                       CharUnits &Field1Off,
10352                                       llvm::Type *&Field2Ty,
10353                                       CharUnits &Field2Off) const;
10354 
10355 public:
10356   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10357       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10358 
10359   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10360   // non-virtual, but computeInfo is virtual, so we overload it.
10361   void computeInfo(CGFunctionInfo &FI) const override;
10362 
10363   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10364                                   int &ArgFPRsLeft) const;
10365   ABIArgInfo classifyReturnType(QualType RetTy) const;
10366 
10367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10368                     QualType Ty) const override;
10369 
10370   ABIArgInfo extendType(QualType Ty) const;
10371 
10372   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10373                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10374                                 CharUnits &Field2Off, int &NeededArgGPRs,
10375                                 int &NeededArgFPRs) const;
10376   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10377                                                CharUnits Field1Off,
10378                                                llvm::Type *Field2Ty,
10379                                                CharUnits Field2Off) const;
10380 };
10381 } // end anonymous namespace
10382 
10383 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10384   QualType RetTy = FI.getReturnType();
10385   if (!getCXXABI().classifyReturnType(FI))
10386     FI.getReturnInfo() = classifyReturnType(RetTy);
10387 
10388   // IsRetIndirect is true if classifyArgumentType indicated the value should
10389   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10390   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10391   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10392   // list and pass indirectly on RV32.
10393   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10394   if (!IsRetIndirect && RetTy->isScalarType() &&
10395       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10396     if (RetTy->isComplexType() && FLen) {
10397       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10398       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10399     } else {
10400       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10401       IsRetIndirect = true;
10402     }
10403   }
10404 
10405   // We must track the number of GPRs used in order to conform to the RISC-V
10406   // ABI, as integer scalars passed in registers should have signext/zeroext
10407   // when promoted, but are anyext if passed on the stack. As GPR usage is
10408   // different for variadic arguments, we must also track whether we are
10409   // examining a vararg or not.
10410   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10411   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10412   int NumFixedArgs = FI.getNumRequiredArgs();
10413 
10414   int ArgNum = 0;
10415   for (auto &ArgInfo : FI.arguments()) {
10416     bool IsFixed = ArgNum < NumFixedArgs;
10417     ArgInfo.info =
10418         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10419     ArgNum++;
10420   }
10421 }
10422 
10423 // Returns true if the struct is a potential candidate for the floating point
10424 // calling convention. If this function returns true, the caller is
10425 // responsible for checking that if there is only a single field then that
10426 // field is a float.
10427 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10428                                                   llvm::Type *&Field1Ty,
10429                                                   CharUnits &Field1Off,
10430                                                   llvm::Type *&Field2Ty,
10431                                                   CharUnits &Field2Off) const {
10432   bool IsInt = Ty->isIntegralOrEnumerationType();
10433   bool IsFloat = Ty->isRealFloatingType();
10434 
10435   if (IsInt || IsFloat) {
10436     uint64_t Size = getContext().getTypeSize(Ty);
10437     if (IsInt && Size > XLen)
10438       return false;
10439     // Can't be eligible if larger than the FP registers. Half precision isn't
10440     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10441     // default to the integer ABI in that case.
10442     if (IsFloat && (Size > FLen || Size < 32))
10443       return false;
10444     // Can't be eligible if an integer type was already found (int+int pairs
10445     // are not eligible).
10446     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10447       return false;
10448     if (!Field1Ty) {
10449       Field1Ty = CGT.ConvertType(Ty);
10450       Field1Off = CurOff;
10451       return true;
10452     }
10453     if (!Field2Ty) {
10454       Field2Ty = CGT.ConvertType(Ty);
10455       Field2Off = CurOff;
10456       return true;
10457     }
10458     return false;
10459   }
10460 
10461   if (auto CTy = Ty->getAs<ComplexType>()) {
10462     if (Field1Ty)
10463       return false;
10464     QualType EltTy = CTy->getElementType();
10465     if (getContext().getTypeSize(EltTy) > FLen)
10466       return false;
10467     Field1Ty = CGT.ConvertType(EltTy);
10468     Field1Off = CurOff;
10469     assert(CurOff.isZero() && "Unexpected offset for first field");
10470     Field2Ty = Field1Ty;
10471     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10472     return true;
10473   }
10474 
10475   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10476     uint64_t ArraySize = ATy->getSize().getZExtValue();
10477     QualType EltTy = ATy->getElementType();
10478     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10479     for (uint64_t i = 0; i < ArraySize; ++i) {
10480       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10481                                                 Field1Off, Field2Ty, Field2Off);
10482       if (!Ret)
10483         return false;
10484       CurOff += EltSize;
10485     }
10486     return true;
10487   }
10488 
10489   if (const auto *RTy = Ty->getAs<RecordType>()) {
10490     // Structures with either a non-trivial destructor or a non-trivial
10491     // copy constructor are not eligible for the FP calling convention.
10492     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10493       return false;
10494     if (isEmptyRecord(getContext(), Ty, true))
10495       return true;
10496     const RecordDecl *RD = RTy->getDecl();
10497     // Unions aren't eligible unless they're empty (which is caught above).
10498     if (RD->isUnion())
10499       return false;
10500     int ZeroWidthBitFieldCount = 0;
10501     for (const FieldDecl *FD : RD->fields()) {
10502       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10503       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10504       QualType QTy = FD->getType();
10505       if (FD->isBitField()) {
10506         unsigned BitWidth = FD->getBitWidthValue(getContext());
10507         // Allow a bitfield with a type greater than XLen as long as the
10508         // bitwidth is XLen or less.
10509         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10510           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10511         if (BitWidth == 0) {
10512           ZeroWidthBitFieldCount++;
10513           continue;
10514         }
10515       }
10516 
10517       bool Ret = detectFPCCEligibleStructHelper(
10518           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10519           Field1Ty, Field1Off, Field2Ty, Field2Off);
10520       if (!Ret)
10521         return false;
10522 
10523       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10524       // or int+fp structs, but are ignored for a struct with an fp field and
10525       // any number of zero-width bitfields.
10526       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10527         return false;
10528     }
10529     return Field1Ty != nullptr;
10530   }
10531 
10532   return false;
10533 }
10534 
10535 // Determine if a struct is eligible for passing according to the floating
10536 // point calling convention (i.e., when flattened it contains a single fp
10537 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10538 // NeededArgGPRs are incremented appropriately.
10539 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10540                                             CharUnits &Field1Off,
10541                                             llvm::Type *&Field2Ty,
10542                                             CharUnits &Field2Off,
10543                                             int &NeededArgGPRs,
10544                                             int &NeededArgFPRs) const {
10545   Field1Ty = nullptr;
10546   Field2Ty = nullptr;
10547   NeededArgGPRs = 0;
10548   NeededArgFPRs = 0;
10549   bool IsCandidate = detectFPCCEligibleStructHelper(
10550       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10551   // Not really a candidate if we have a single int but no float.
10552   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10553     return false;
10554   if (!IsCandidate)
10555     return false;
10556   if (Field1Ty && Field1Ty->isFloatingPointTy())
10557     NeededArgFPRs++;
10558   else if (Field1Ty)
10559     NeededArgGPRs++;
10560   if (Field2Ty && Field2Ty->isFloatingPointTy())
10561     NeededArgFPRs++;
10562   else if (Field2Ty)
10563     NeededArgGPRs++;
10564   return IsCandidate;
10565 }
10566 
10567 // Call getCoerceAndExpand for the two-element flattened struct described by
10568 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10569 // appropriate coerceToType and unpaddedCoerceToType.
10570 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10571     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10572     CharUnits Field2Off) const {
10573   SmallVector<llvm::Type *, 3> CoerceElts;
10574   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10575   if (!Field1Off.isZero())
10576     CoerceElts.push_back(llvm::ArrayType::get(
10577         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10578 
10579   CoerceElts.push_back(Field1Ty);
10580   UnpaddedCoerceElts.push_back(Field1Ty);
10581 
10582   if (!Field2Ty) {
10583     return ABIArgInfo::getCoerceAndExpand(
10584         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10585         UnpaddedCoerceElts[0]);
10586   }
10587 
10588   CharUnits Field2Align =
10589       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10590   CharUnits Field1Size =
10591       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10592   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
10593 
10594   CharUnits Padding = CharUnits::Zero();
10595   if (Field2Off > Field2OffNoPadNoPack)
10596     Padding = Field2Off - Field2OffNoPadNoPack;
10597   else if (Field2Off != Field2Align && Field2Off > Field1Size)
10598     Padding = Field2Off - Field1Size;
10599 
10600   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10601 
10602   if (!Padding.isZero())
10603     CoerceElts.push_back(llvm::ArrayType::get(
10604         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10605 
10606   CoerceElts.push_back(Field2Ty);
10607   UnpaddedCoerceElts.push_back(Field2Ty);
10608 
10609   auto CoerceToType =
10610       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10611   auto UnpaddedCoerceToType =
10612       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10613 
10614   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10615 }
10616 
10617 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10618                                               int &ArgGPRsLeft,
10619                                               int &ArgFPRsLeft) const {
10620   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10621   Ty = useFirstFieldIfTransparentUnion(Ty);
10622 
10623   // Structures with either a non-trivial destructor or a non-trivial
10624   // copy constructor are always passed indirectly.
10625   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10626     if (ArgGPRsLeft)
10627       ArgGPRsLeft -= 1;
10628     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10629                                            CGCXXABI::RAA_DirectInMemory);
10630   }
10631 
10632   // Ignore empty structs/unions.
10633   if (isEmptyRecord(getContext(), Ty, true))
10634     return ABIArgInfo::getIgnore();
10635 
10636   uint64_t Size = getContext().getTypeSize(Ty);
10637 
10638   // Pass floating point values via FPRs if possible.
10639   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10640       FLen >= Size && ArgFPRsLeft) {
10641     ArgFPRsLeft--;
10642     return ABIArgInfo::getDirect();
10643   }
10644 
10645   // Complex types for the hard float ABI must be passed direct rather than
10646   // using CoerceAndExpand.
10647   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10648     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10649     if (getContext().getTypeSize(EltTy) <= FLen) {
10650       ArgFPRsLeft -= 2;
10651       return ABIArgInfo::getDirect();
10652     }
10653   }
10654 
10655   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10656     llvm::Type *Field1Ty = nullptr;
10657     llvm::Type *Field2Ty = nullptr;
10658     CharUnits Field1Off = CharUnits::Zero();
10659     CharUnits Field2Off = CharUnits::Zero();
10660     int NeededArgGPRs;
10661     int NeededArgFPRs;
10662     bool IsCandidate =
10663         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10664                                  NeededArgGPRs, NeededArgFPRs);
10665     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10666         NeededArgFPRs <= ArgFPRsLeft) {
10667       ArgGPRsLeft -= NeededArgGPRs;
10668       ArgFPRsLeft -= NeededArgFPRs;
10669       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10670                                                Field2Off);
10671     }
10672   }
10673 
10674   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10675   bool MustUseStack = false;
10676   // Determine the number of GPRs needed to pass the current argument
10677   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10678   // register pairs, so may consume 3 registers.
10679   int NeededArgGPRs = 1;
10680   if (!IsFixed && NeededAlign == 2 * XLen)
10681     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10682   else if (Size > XLen && Size <= 2 * XLen)
10683     NeededArgGPRs = 2;
10684 
10685   if (NeededArgGPRs > ArgGPRsLeft) {
10686     MustUseStack = true;
10687     NeededArgGPRs = ArgGPRsLeft;
10688   }
10689 
10690   ArgGPRsLeft -= NeededArgGPRs;
10691 
10692   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10693     // Treat an enum type as its underlying type.
10694     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10695       Ty = EnumTy->getDecl()->getIntegerType();
10696 
10697     // All integral types are promoted to XLen width, unless passed on the
10698     // stack.
10699     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10700       return extendType(Ty);
10701     }
10702 
10703     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10704       if (EIT->getNumBits() < XLen && !MustUseStack)
10705         return extendType(Ty);
10706       if (EIT->getNumBits() > 128 ||
10707           (!getContext().getTargetInfo().hasInt128Type() &&
10708            EIT->getNumBits() > 64))
10709         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10710     }
10711 
10712     return ABIArgInfo::getDirect();
10713   }
10714 
10715   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10716   // so coerce to integers.
10717   if (Size <= 2 * XLen) {
10718     unsigned Alignment = getContext().getTypeAlign(Ty);
10719 
10720     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10721     // required, and a 2-element XLen array if only XLen alignment is required.
10722     if (Size <= XLen) {
10723       return ABIArgInfo::getDirect(
10724           llvm::IntegerType::get(getVMContext(), XLen));
10725     } else if (Alignment == 2 * XLen) {
10726       return ABIArgInfo::getDirect(
10727           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10728     } else {
10729       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10730           llvm::IntegerType::get(getVMContext(), XLen), 2));
10731     }
10732   }
10733   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10734 }
10735 
10736 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10737   if (RetTy->isVoidType())
10738     return ABIArgInfo::getIgnore();
10739 
10740   int ArgGPRsLeft = 2;
10741   int ArgFPRsLeft = FLen ? 2 : 0;
10742 
10743   // The rules for return and argument types are the same, so defer to
10744   // classifyArgumentType.
10745   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10746                               ArgFPRsLeft);
10747 }
10748 
10749 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10750                                 QualType Ty) const {
10751   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10752 
10753   // Empty records are ignored for parameter passing purposes.
10754   if (isEmptyRecord(getContext(), Ty, true)) {
10755     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10756     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10757     return Addr;
10758   }
10759 
10760   auto TInfo = getContext().getTypeInfoInChars(Ty);
10761 
10762   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10763   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10764 
10765   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10766                           SlotSize, /*AllowHigherAlign=*/true);
10767 }
10768 
10769 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10770   int TySize = getContext().getTypeSize(Ty);
10771   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10772   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10773     return ABIArgInfo::getSignExtend(Ty);
10774   return ABIArgInfo::getExtend(Ty);
10775 }
10776 
10777 namespace {
10778 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10779 public:
10780   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10781                          unsigned FLen)
10782       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10783 
10784   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10785                            CodeGen::CodeGenModule &CGM) const override {
10786     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10787     if (!FD) return;
10788 
10789     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10790     if (!Attr)
10791       return;
10792 
10793     const char *Kind;
10794     switch (Attr->getInterrupt()) {
10795     case RISCVInterruptAttr::user: Kind = "user"; break;
10796     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10797     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10798     }
10799 
10800     auto *Fn = cast<llvm::Function>(GV);
10801 
10802     Fn->addFnAttr("interrupt", Kind);
10803   }
10804 };
10805 } // namespace
10806 
10807 //===----------------------------------------------------------------------===//
10808 // VE ABI Implementation.
10809 //
10810 namespace {
10811 class VEABIInfo : public DefaultABIInfo {
10812 public:
10813   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10814 
10815 private:
10816   ABIArgInfo classifyReturnType(QualType RetTy) const;
10817   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10818   void computeInfo(CGFunctionInfo &FI) const override;
10819 };
10820 } // end anonymous namespace
10821 
10822 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10823   if (Ty->isAnyComplexType())
10824     return ABIArgInfo::getDirect();
10825   uint64_t Size = getContext().getTypeSize(Ty);
10826   if (Size < 64 && Ty->isIntegerType())
10827     return ABIArgInfo::getExtend(Ty);
10828   return DefaultABIInfo::classifyReturnType(Ty);
10829 }
10830 
10831 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10832   if (Ty->isAnyComplexType())
10833     return ABIArgInfo::getDirect();
10834   uint64_t Size = getContext().getTypeSize(Ty);
10835   if (Size < 64 && Ty->isIntegerType())
10836     return ABIArgInfo::getExtend(Ty);
10837   return DefaultABIInfo::classifyArgumentType(Ty);
10838 }
10839 
10840 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10841   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10842   for (auto &Arg : FI.arguments())
10843     Arg.info = classifyArgumentType(Arg.type);
10844 }
10845 
10846 namespace {
10847 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10848 public:
10849   VETargetCodeGenInfo(CodeGenTypes &CGT)
10850       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10851   // VE ABI requires the arguments of variadic and prototype-less functions
10852   // are passed in both registers and memory.
10853   bool isNoProtoCallVariadic(const CallArgList &args,
10854                              const FunctionNoProtoType *fnType) const override {
10855     return true;
10856   }
10857 };
10858 } // end anonymous namespace
10859 
10860 //===----------------------------------------------------------------------===//
10861 // Driver code
10862 //===----------------------------------------------------------------------===//
10863 
10864 bool CodeGenModule::supportsCOMDAT() const {
10865   return getTriple().supportsCOMDAT();
10866 }
10867 
10868 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10869   if (TheTargetCodeGenInfo)
10870     return *TheTargetCodeGenInfo;
10871 
10872   // Helper to set the unique_ptr while still keeping the return value.
10873   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10874     this->TheTargetCodeGenInfo.reset(P);
10875     return *P;
10876   };
10877 
10878   const llvm::Triple &Triple = getTarget().getTriple();
10879   switch (Triple.getArch()) {
10880   default:
10881     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10882 
10883   case llvm::Triple::le32:
10884     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10885   case llvm::Triple::mips:
10886   case llvm::Triple::mipsel:
10887     if (Triple.getOS() == llvm::Triple::NaCl)
10888       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10889     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10890 
10891   case llvm::Triple::mips64:
10892   case llvm::Triple::mips64el:
10893     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10894 
10895   case llvm::Triple::avr:
10896     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10897 
10898   case llvm::Triple::aarch64:
10899   case llvm::Triple::aarch64_32:
10900   case llvm::Triple::aarch64_be: {
10901     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10902     if (getTarget().getABI() == "darwinpcs")
10903       Kind = AArch64ABIInfo::DarwinPCS;
10904     else if (Triple.isOSWindows())
10905       return SetCGInfo(
10906           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10907 
10908     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10909   }
10910 
10911   case llvm::Triple::wasm32:
10912   case llvm::Triple::wasm64: {
10913     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10914     if (getTarget().getABI() == "experimental-mv")
10915       Kind = WebAssemblyABIInfo::ExperimentalMV;
10916     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10917   }
10918 
10919   case llvm::Triple::arm:
10920   case llvm::Triple::armeb:
10921   case llvm::Triple::thumb:
10922   case llvm::Triple::thumbeb: {
10923     if (Triple.getOS() == llvm::Triple::Win32) {
10924       return SetCGInfo(
10925           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10926     }
10927 
10928     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10929     StringRef ABIStr = getTarget().getABI();
10930     if (ABIStr == "apcs-gnu")
10931       Kind = ARMABIInfo::APCS;
10932     else if (ABIStr == "aapcs16")
10933       Kind = ARMABIInfo::AAPCS16_VFP;
10934     else if (CodeGenOpts.FloatABI == "hard" ||
10935              (CodeGenOpts.FloatABI != "soft" &&
10936               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10937                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10938                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10939       Kind = ARMABIInfo::AAPCS_VFP;
10940 
10941     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10942   }
10943 
10944   case llvm::Triple::ppc: {
10945     if (Triple.isOSAIX())
10946       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10947 
10948     bool IsSoftFloat =
10949         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10950     bool RetSmallStructInRegABI =
10951         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10952     return SetCGInfo(
10953         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10954   }
10955   case llvm::Triple::ppc64:
10956     if (Triple.isOSAIX())
10957       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10958 
10959     if (Triple.isOSBinFormatELF()) {
10960       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10961       if (getTarget().getABI() == "elfv2")
10962         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10963       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10964       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10965 
10966       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10967                                                         IsSoftFloat));
10968     }
10969     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10970   case llvm::Triple::ppc64le: {
10971     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10972     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10973     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10974       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10975     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10976     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10977 
10978     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10979                                                       IsSoftFloat));
10980   }
10981 
10982   case llvm::Triple::nvptx:
10983   case llvm::Triple::nvptx64:
10984     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10985 
10986   case llvm::Triple::msp430:
10987     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10988 
10989   case llvm::Triple::riscv32:
10990   case llvm::Triple::riscv64: {
10991     StringRef ABIStr = getTarget().getABI();
10992     unsigned XLen = getTarget().getPointerWidth(0);
10993     unsigned ABIFLen = 0;
10994     if (ABIStr.endswith("f"))
10995       ABIFLen = 32;
10996     else if (ABIStr.endswith("d"))
10997       ABIFLen = 64;
10998     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10999   }
11000 
11001   case llvm::Triple::systemz: {
11002     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11003     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11004     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11005   }
11006 
11007   case llvm::Triple::tce:
11008   case llvm::Triple::tcele:
11009     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11010 
11011   case llvm::Triple::x86: {
11012     bool IsDarwinVectorABI = Triple.isOSDarwin();
11013     bool RetSmallStructInRegABI =
11014         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11015     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11016 
11017     if (Triple.getOS() == llvm::Triple::Win32) {
11018       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11019           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11020           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11021     } else {
11022       return SetCGInfo(new X86_32TargetCodeGenInfo(
11023           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11024           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11025           CodeGenOpts.FloatABI == "soft"));
11026     }
11027   }
11028 
11029   case llvm::Triple::x86_64: {
11030     StringRef ABI = getTarget().getABI();
11031     X86AVXABILevel AVXLevel =
11032         (ABI == "avx512"
11033              ? X86AVXABILevel::AVX512
11034              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11035 
11036     switch (Triple.getOS()) {
11037     case llvm::Triple::Win32:
11038       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11039     default:
11040       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11041     }
11042   }
11043   case llvm::Triple::hexagon:
11044     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11045   case llvm::Triple::lanai:
11046     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11047   case llvm::Triple::r600:
11048     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11049   case llvm::Triple::amdgcn:
11050     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11051   case llvm::Triple::sparc:
11052     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11053   case llvm::Triple::sparcv9:
11054     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11055   case llvm::Triple::xcore:
11056     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11057   case llvm::Triple::arc:
11058     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11059   case llvm::Triple::spir:
11060   case llvm::Triple::spir64:
11061     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11062   case llvm::Triple::ve:
11063     return SetCGInfo(new VETargetCodeGenInfo(Types));
11064   }
11065 }
11066 
11067 /// Create an OpenCL kernel for an enqueued block.
11068 ///
11069 /// The kernel has the same function type as the block invoke function. Its
11070 /// name is the name of the block invoke function postfixed with "_kernel".
11071 /// It simply calls the block invoke function then returns.
11072 llvm::Function *
11073 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11074                                              llvm::Function *Invoke,
11075                                              llvm::Value *BlockLiteral) const {
11076   auto *InvokeFT = Invoke->getFunctionType();
11077   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11078   for (auto &P : InvokeFT->params())
11079     ArgTys.push_back(P);
11080   auto &C = CGF.getLLVMContext();
11081   std::string Name = Invoke->getName().str() + "_kernel";
11082   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11083   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11084                                    &CGF.CGM.getModule());
11085   auto IP = CGF.Builder.saveIP();
11086   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11087   auto &Builder = CGF.Builder;
11088   Builder.SetInsertPoint(BB);
11089   llvm::SmallVector<llvm::Value *, 2> Args;
11090   for (auto &A : F->args())
11091     Args.push_back(&A);
11092   Builder.CreateCall(Invoke, Args);
11093   Builder.CreateRetVoid();
11094   Builder.restoreIP(IP);
11095   return F;
11096 }
11097 
11098 /// Create an OpenCL kernel for an enqueued block.
11099 ///
11100 /// The type of the first argument (the block literal) is the struct type
11101 /// of the block literal instead of a pointer type. The first argument
11102 /// (block literal) is passed directly by value to the kernel. The kernel
11103 /// allocates the same type of struct on stack and stores the block literal
11104 /// to it and passes its pointer to the block invoke function. The kernel
11105 /// has "enqueued-block" function attribute and kernel argument metadata.
11106 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11107     CodeGenFunction &CGF, llvm::Function *Invoke,
11108     llvm::Value *BlockLiteral) const {
11109   auto &Builder = CGF.Builder;
11110   auto &C = CGF.getLLVMContext();
11111 
11112   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11113   auto *InvokeFT = Invoke->getFunctionType();
11114   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11115   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11116   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11117   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11118   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11119   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11120   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11121 
11122   ArgTys.push_back(BlockTy);
11123   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11124   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11125   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11126   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11127   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11128   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11129   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11130     ArgTys.push_back(InvokeFT->getParamType(I));
11131     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11132     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11133     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11134     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11135     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11136     ArgNames.push_back(
11137         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11138   }
11139   std::string Name = Invoke->getName().str() + "_kernel";
11140   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11141   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11142                                    &CGF.CGM.getModule());
11143   F->addFnAttr("enqueued-block");
11144   auto IP = CGF.Builder.saveIP();
11145   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11146   Builder.SetInsertPoint(BB);
11147   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11148   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11149   BlockPtr->setAlignment(BlockAlign);
11150   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11151   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11152   llvm::SmallVector<llvm::Value *, 2> Args;
11153   Args.push_back(Cast);
11154   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11155     Args.push_back(I);
11156   Builder.CreateCall(Invoke, Args);
11157   Builder.CreateRetVoid();
11158   Builder.restoreIP(IP);
11159 
11160   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11161   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11162   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11163   F->setMetadata("kernel_arg_base_type",
11164                  llvm::MDNode::get(C, ArgBaseTypeNames));
11165   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11166   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11167     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11168 
11169   return F;
11170 }
11171