1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/Basic/CodeGenOptions.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> // std::sort 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 // Helper for coercing an aggregate argument or return value into an integer 37 // array of the same size (including padding) and alignment. This alternate 38 // coercion happens only for the RenderScript ABI and can be removed after 39 // runtimes that rely on it are no longer supported. 40 // 41 // RenderScript assumes that the size of the argument / return value in the IR 42 // is the same as the size of the corresponding qualified type. This helper 43 // coerces the aggregate type into an array of the same size (including 44 // padding). This coercion is used in lieu of expansion of struct members or 45 // other canonical coercions that return a coerced-type of larger size. 46 // 47 // Ty - The argument / return value type 48 // Context - The associated ASTContext 49 // LLVMContext - The associated LLVMContext 50 static ABIArgInfo coerceToIntArray(QualType Ty, 51 ASTContext &Context, 52 llvm::LLVMContext &LLVMContext) { 53 // Alignment and Size are measured in bits. 54 const uint64_t Size = Context.getTypeSize(Ty); 55 const uint64_t Alignment = Context.getTypeAlign(Ty); 56 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 57 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 58 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 59 } 60 61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 62 llvm::Value *Array, 63 llvm::Value *Value, 64 unsigned FirstIndex, 65 unsigned LastIndex) { 66 // Alternatively, we could emit this as a loop in the source. 67 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 68 llvm::Value *Cell = 69 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 70 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 71 } 72 } 73 74 static bool isAggregateTypeForABI(QualType T) { 75 return !CodeGenFunction::hasScalarEvaluationKind(T) || 76 T->isMemberFunctionPointerType(); 77 } 78 79 ABIArgInfo 80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 81 llvm::Type *Padding) const { 82 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 83 ByRef, Realign, Padding); 84 } 85 86 ABIArgInfo 87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 88 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 89 /*ByRef*/ false, Realign); 90 } 91 92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 93 QualType Ty) const { 94 return Address::invalid(); 95 } 96 97 ABIInfo::~ABIInfo() {} 98 99 /// Does the given lowering require more than the given number of 100 /// registers when expanded? 101 /// 102 /// This is intended to be the basis of a reasonable basic implementation 103 /// of should{Pass,Return}IndirectlyForSwift. 104 /// 105 /// For most targets, a limit of four total registers is reasonable; this 106 /// limits the amount of code required in order to move around the value 107 /// in case it wasn't produced immediately prior to the call by the caller 108 /// (or wasn't produced in exactly the right registers) or isn't used 109 /// immediately within the callee. But some targets may need to further 110 /// limit the register count due to an inability to support that many 111 /// return registers. 112 static bool occupiesMoreThan(CodeGenTypes &cgt, 113 ArrayRef<llvm::Type*> scalarTypes, 114 unsigned maxAllRegisters) { 115 unsigned intCount = 0, fpCount = 0; 116 for (llvm::Type *type : scalarTypes) { 117 if (type->isPointerTy()) { 118 intCount++; 119 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 120 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 121 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 122 } else { 123 assert(type->isVectorTy() || type->isFloatingPointTy()); 124 fpCount++; 125 } 126 } 127 128 return (intCount + fpCount > maxAllRegisters); 129 } 130 131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 132 llvm::Type *eltTy, 133 unsigned numElts) const { 134 // The default implementation of this assumes that the target guarantees 135 // 128-bit SIMD support but nothing more. 136 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 137 } 138 139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 140 CGCXXABI &CXXABI) { 141 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 142 if (!RD) { 143 if (!RT->getDecl()->canPassInRegisters()) 144 return CGCXXABI::RAA_Indirect; 145 return CGCXXABI::RAA_Default; 146 } 147 return CXXABI.getRecordArgABI(RD); 148 } 149 150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 151 CGCXXABI &CXXABI) { 152 const RecordType *RT = T->getAs<RecordType>(); 153 if (!RT) 154 return CGCXXABI::RAA_Default; 155 return getRecordArgABI(RT, CXXABI); 156 } 157 158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 159 const ABIInfo &Info) { 160 QualType Ty = FI.getReturnType(); 161 162 if (const auto *RT = Ty->getAs<RecordType>()) 163 if (!isa<CXXRecordDecl>(RT->getDecl()) && 164 !RT->getDecl()->canPassInRegisters()) { 165 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 166 return true; 167 } 168 169 return CXXABI.classifyReturnType(FI); 170 } 171 172 /// Pass transparent unions as if they were the type of the first element. Sema 173 /// should ensure that all elements of the union have the same "machine type". 174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 175 if (const RecordType *UT = Ty->getAsUnionType()) { 176 const RecordDecl *UD = UT->getDecl(); 177 if (UD->hasAttr<TransparentUnionAttr>()) { 178 assert(!UD->field_empty() && "sema created an empty transparent union"); 179 return UD->field_begin()->getType(); 180 } 181 } 182 return Ty; 183 } 184 185 CGCXXABI &ABIInfo::getCXXABI() const { 186 return CGT.getCXXABI(); 187 } 188 189 ASTContext &ABIInfo::getContext() const { 190 return CGT.getContext(); 191 } 192 193 llvm::LLVMContext &ABIInfo::getVMContext() const { 194 return CGT.getLLVMContext(); 195 } 196 197 const llvm::DataLayout &ABIInfo::getDataLayout() const { 198 return CGT.getDataLayout(); 199 } 200 201 const TargetInfo &ABIInfo::getTarget() const { 202 return CGT.getTarget(); 203 } 204 205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 206 return CGT.getCodeGenOpts(); 207 } 208 209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 210 211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 212 return false; 213 } 214 215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 216 uint64_t Members) const { 217 return false; 218 } 219 220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 221 raw_ostream &OS = llvm::errs(); 222 OS << "(ABIArgInfo Kind="; 223 switch (TheKind) { 224 case Direct: 225 OS << "Direct Type="; 226 if (llvm::Type *Ty = getCoerceToType()) 227 Ty->print(OS); 228 else 229 OS << "null"; 230 break; 231 case Extend: 232 OS << "Extend"; 233 break; 234 case Ignore: 235 OS << "Ignore"; 236 break; 237 case InAlloca: 238 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 239 break; 240 case Indirect: 241 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 242 << " ByVal=" << getIndirectByVal() 243 << " Realign=" << getIndirectRealign(); 244 break; 245 case Expand: 246 OS << "Expand"; 247 break; 248 case CoerceAndExpand: 249 OS << "CoerceAndExpand Type="; 250 getCoerceAndExpandType()->print(OS); 251 break; 252 } 253 OS << ")\n"; 254 } 255 256 // Dynamically round a pointer up to a multiple of the given alignment. 257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 258 llvm::Value *Ptr, 259 CharUnits Align) { 260 llvm::Value *PtrAsInt = Ptr; 261 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 262 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 263 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 264 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 265 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 267 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 268 Ptr->getType(), 269 Ptr->getName() + ".aligned"); 270 return PtrAsInt; 271 } 272 273 /// Emit va_arg for a platform using the common void* representation, 274 /// where arguments are simply emitted in an array of slots on the stack. 275 /// 276 /// This version implements the core direct-value passing rules. 277 /// 278 /// \param SlotSize - The size and alignment of a stack slot. 279 /// Each argument will be allocated to a multiple of this number of 280 /// slots, and all the slots will be aligned to this value. 281 /// \param AllowHigherAlign - The slot alignment is not a cap; 282 /// an argument type with an alignment greater than the slot size 283 /// will be emitted on a higher-alignment address, potentially 284 /// leaving one or more empty slots behind as padding. If this 285 /// is false, the returned address might be less-aligned than 286 /// DirectAlign. 287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 288 Address VAListAddr, 289 llvm::Type *DirectTy, 290 CharUnits DirectSize, 291 CharUnits DirectAlign, 292 CharUnits SlotSize, 293 bool AllowHigherAlign) { 294 // Cast the element type to i8* if necessary. Some platforms define 295 // va_list as a struct containing an i8* instead of just an i8*. 296 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 297 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 298 299 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 300 301 // If the CC aligns values higher than the slot size, do so if needed. 302 Address Addr = Address::invalid(); 303 if (AllowHigherAlign && DirectAlign > SlotSize) { 304 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 305 DirectAlign); 306 } else { 307 Addr = Address(Ptr, SlotSize); 308 } 309 310 // Advance the pointer past the argument, then store that back. 311 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 312 Address NextPtr = 313 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 314 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 315 316 // If the argument is smaller than a slot, and this is a big-endian 317 // target, the argument will be right-adjusted in its slot. 318 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 319 !DirectTy->isStructTy()) { 320 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 321 } 322 323 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 324 return Addr; 325 } 326 327 /// Emit va_arg for a platform using the common void* representation, 328 /// where arguments are simply emitted in an array of slots on the stack. 329 /// 330 /// \param IsIndirect - Values of this type are passed indirectly. 331 /// \param ValueInfo - The size and alignment of this type, generally 332 /// computed with getContext().getTypeInfoInChars(ValueTy). 333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 334 /// Each argument will be allocated to a multiple of this number of 335 /// slots, and all the slots will be aligned to this value. 336 /// \param AllowHigherAlign - The slot alignment is not a cap; 337 /// an argument type with an alignment greater than the slot size 338 /// will be emitted on a higher-alignment address, potentially 339 /// leaving one or more empty slots behind as padding. 340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 341 QualType ValueTy, bool IsIndirect, 342 std::pair<CharUnits, CharUnits> ValueInfo, 343 CharUnits SlotSizeAndAlign, 344 bool AllowHigherAlign) { 345 // The size and alignment of the value that was passed directly. 346 CharUnits DirectSize, DirectAlign; 347 if (IsIndirect) { 348 DirectSize = CGF.getPointerSize(); 349 DirectAlign = CGF.getPointerAlign(); 350 } else { 351 DirectSize = ValueInfo.first; 352 DirectAlign = ValueInfo.second; 353 } 354 355 // Cast the address we've calculated to the right type. 356 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 357 if (IsIndirect) 358 DirectTy = DirectTy->getPointerTo(0); 359 360 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 361 DirectSize, DirectAlign, 362 SlotSizeAndAlign, 363 AllowHigherAlign); 364 365 if (IsIndirect) { 366 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 367 } 368 369 return Addr; 370 371 } 372 373 static Address emitMergePHI(CodeGenFunction &CGF, 374 Address Addr1, llvm::BasicBlock *Block1, 375 Address Addr2, llvm::BasicBlock *Block2, 376 const llvm::Twine &Name = "") { 377 assert(Addr1.getType() == Addr2.getType()); 378 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 379 PHI->addIncoming(Addr1.getPointer(), Block1); 380 PHI->addIncoming(Addr2.getPointer(), Block2); 381 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 382 return Address(PHI, Align); 383 } 384 385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 386 387 // If someone can figure out a general rule for this, that would be great. 388 // It's probably just doomed to be platform-dependent, though. 389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 390 // Verified for: 391 // x86-64 FreeBSD, Linux, Darwin 392 // x86-32 FreeBSD, Linux, Darwin 393 // PowerPC Linux, Darwin 394 // ARM Darwin (*not* EABI) 395 // AArch64 Linux 396 return 32; 397 } 398 399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 400 const FunctionNoProtoType *fnType) const { 401 // The following conventions are known to require this to be false: 402 // x86_stdcall 403 // MIPS 404 // For everything else, we just prefer false unless we opt out. 405 return false; 406 } 407 408 void 409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 410 llvm::SmallString<24> &Opt) const { 411 // This assumes the user is passing a library name like "rt" instead of a 412 // filename like "librt.a/so", and that they don't care whether it's static or 413 // dynamic. 414 Opt = "-l"; 415 Opt += Lib; 416 } 417 418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 419 // OpenCL kernels are called via an explicit runtime API with arguments 420 // set with clSetKernelArg(), not as normal sub-functions. 421 // Return SPIR_KERNEL by default as the kernel calling convention to 422 // ensure the fingerprint is fixed such way that each OpenCL argument 423 // gets one matching argument in the produced kernel function argument 424 // list to enable feasible implementation of clSetKernelArg() with 425 // aggregates etc. In case we would use the default C calling conv here, 426 // clSetKernelArg() might break depending on the target-specific 427 // conventions; different targets might split structs passed as values 428 // to multiple function arguments etc. 429 return llvm::CallingConv::SPIR_KERNEL; 430 } 431 432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 433 llvm::PointerType *T, QualType QT) const { 434 return llvm::ConstantPointerNull::get(T); 435 } 436 437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 438 const VarDecl *D) const { 439 assert(!CGM.getLangOpts().OpenCL && 440 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 441 "Address space agnostic languages only"); 442 return D ? D->getType().getAddressSpace() : LangAS::Default; 443 } 444 445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 446 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 447 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 448 // Since target may map different address spaces in AST to the same address 449 // space, an address space conversion may end up as a bitcast. 450 if (auto *C = dyn_cast<llvm::Constant>(Src)) 451 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 452 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 453 } 454 455 llvm::Constant * 456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 457 LangAS SrcAddr, LangAS DestAddr, 458 llvm::Type *DestTy) const { 459 // Since target may map different address spaces in AST to the same address 460 // space, an address space conversion may end up as a bitcast. 461 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 462 } 463 464 llvm::SyncScope::ID 465 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 466 SyncScope Scope, 467 llvm::AtomicOrdering Ordering, 468 llvm::LLVMContext &Ctx) const { 469 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 470 } 471 472 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 473 474 /// isEmptyField - Return true iff a the field is "empty", that is it 475 /// is an unnamed bit-field or an (array of) empty record(s). 476 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 477 bool AllowArrays) { 478 if (FD->isUnnamedBitfield()) 479 return true; 480 481 QualType FT = FD->getType(); 482 483 // Constant arrays of empty records count as empty, strip them off. 484 // Constant arrays of zero length always count as empty. 485 if (AllowArrays) 486 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 487 if (AT->getSize() == 0) 488 return true; 489 FT = AT->getElementType(); 490 } 491 492 const RecordType *RT = FT->getAs<RecordType>(); 493 if (!RT) 494 return false; 495 496 // C++ record fields are never empty, at least in the Itanium ABI. 497 // 498 // FIXME: We should use a predicate for whether this behavior is true in the 499 // current ABI. 500 if (isa<CXXRecordDecl>(RT->getDecl())) 501 return false; 502 503 return isEmptyRecord(Context, FT, AllowArrays); 504 } 505 506 /// isEmptyRecord - Return true iff a structure contains only empty 507 /// fields. Note that a structure with a flexible array member is not 508 /// considered empty. 509 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 510 const RecordType *RT = T->getAs<RecordType>(); 511 if (!RT) 512 return false; 513 const RecordDecl *RD = RT->getDecl(); 514 if (RD->hasFlexibleArrayMember()) 515 return false; 516 517 // If this is a C++ record, check the bases first. 518 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 519 for (const auto &I : CXXRD->bases()) 520 if (!isEmptyRecord(Context, I.getType(), true)) 521 return false; 522 523 for (const auto *I : RD->fields()) 524 if (!isEmptyField(Context, I, AllowArrays)) 525 return false; 526 return true; 527 } 528 529 /// isSingleElementStruct - Determine if a structure is a "single 530 /// element struct", i.e. it has exactly one non-empty field or 531 /// exactly one field which is itself a single element 532 /// struct. Structures with flexible array members are never 533 /// considered single element structs. 534 /// 535 /// \return The field declaration for the single non-empty field, if 536 /// it exists. 537 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 538 const RecordType *RT = T->getAs<RecordType>(); 539 if (!RT) 540 return nullptr; 541 542 const RecordDecl *RD = RT->getDecl(); 543 if (RD->hasFlexibleArrayMember()) 544 return nullptr; 545 546 const Type *Found = nullptr; 547 548 // If this is a C++ record, check the bases first. 549 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 550 for (const auto &I : CXXRD->bases()) { 551 // Ignore empty records. 552 if (isEmptyRecord(Context, I.getType(), true)) 553 continue; 554 555 // If we already found an element then this isn't a single-element struct. 556 if (Found) 557 return nullptr; 558 559 // If this is non-empty and not a single element struct, the composite 560 // cannot be a single element struct. 561 Found = isSingleElementStruct(I.getType(), Context); 562 if (!Found) 563 return nullptr; 564 } 565 } 566 567 // Check for single element. 568 for (const auto *FD : RD->fields()) { 569 QualType FT = FD->getType(); 570 571 // Ignore empty fields. 572 if (isEmptyField(Context, FD, true)) 573 continue; 574 575 // If we already found an element then this isn't a single-element 576 // struct. 577 if (Found) 578 return nullptr; 579 580 // Treat single element arrays as the element. 581 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 582 if (AT->getSize().getZExtValue() != 1) 583 break; 584 FT = AT->getElementType(); 585 } 586 587 if (!isAggregateTypeForABI(FT)) { 588 Found = FT.getTypePtr(); 589 } else { 590 Found = isSingleElementStruct(FT, Context); 591 if (!Found) 592 return nullptr; 593 } 594 } 595 596 // We don't consider a struct a single-element struct if it has 597 // padding beyond the element type. 598 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 599 return nullptr; 600 601 return Found; 602 } 603 604 namespace { 605 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 606 const ABIArgInfo &AI) { 607 // This default implementation defers to the llvm backend's va_arg 608 // instruction. It can handle only passing arguments directly 609 // (typically only handled in the backend for primitive types), or 610 // aggregates passed indirectly by pointer (NOTE: if the "byval" 611 // flag has ABI impact in the callee, this implementation cannot 612 // work.) 613 614 // Only a few cases are covered here at the moment -- those needed 615 // by the default abi. 616 llvm::Value *Val; 617 618 if (AI.isIndirect()) { 619 assert(!AI.getPaddingType() && 620 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 621 assert( 622 !AI.getIndirectRealign() && 623 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 624 625 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 626 CharUnits TyAlignForABI = TyInfo.second; 627 628 llvm::Type *BaseTy = 629 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 630 llvm::Value *Addr = 631 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 632 return Address(Addr, TyAlignForABI); 633 } else { 634 assert((AI.isDirect() || AI.isExtend()) && 635 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 636 637 assert(!AI.getInReg() && 638 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 639 assert(!AI.getPaddingType() && 640 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 641 assert(!AI.getDirectOffset() && 642 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 643 assert(!AI.getCoerceToType() && 644 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 645 646 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 647 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 648 CGF.Builder.CreateStore(Val, Temp); 649 return Temp; 650 } 651 } 652 653 /// DefaultABIInfo - The default implementation for ABI specific 654 /// details. This implementation provides information which results in 655 /// self-consistent and sensible LLVM IR generation, but does not 656 /// conform to any particular ABI. 657 class DefaultABIInfo : public ABIInfo { 658 public: 659 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 660 661 ABIArgInfo classifyReturnType(QualType RetTy) const; 662 ABIArgInfo classifyArgumentType(QualType RetTy) const; 663 664 void computeInfo(CGFunctionInfo &FI) const override { 665 if (!getCXXABI().classifyReturnType(FI)) 666 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 667 for (auto &I : FI.arguments()) 668 I.info = classifyArgumentType(I.type); 669 } 670 671 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 672 QualType Ty) const override { 673 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 674 } 675 }; 676 677 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 678 public: 679 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 680 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 681 }; 682 683 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 684 Ty = useFirstFieldIfTransparentUnion(Ty); 685 686 if (isAggregateTypeForABI(Ty)) { 687 // Records with non-trivial destructors/copy-constructors should not be 688 // passed by value. 689 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 690 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 691 692 return getNaturalAlignIndirect(Ty); 693 } 694 695 // Treat an enum type as its underlying type. 696 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 697 Ty = EnumTy->getDecl()->getIntegerType(); 698 699 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 700 : ABIArgInfo::getDirect()); 701 } 702 703 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 704 if (RetTy->isVoidType()) 705 return ABIArgInfo::getIgnore(); 706 707 if (isAggregateTypeForABI(RetTy)) 708 return getNaturalAlignIndirect(RetTy); 709 710 // Treat an enum type as its underlying type. 711 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 712 RetTy = EnumTy->getDecl()->getIntegerType(); 713 714 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 715 : ABIArgInfo::getDirect()); 716 } 717 718 //===----------------------------------------------------------------------===// 719 // WebAssembly ABI Implementation 720 // 721 // This is a very simple ABI that relies a lot on DefaultABIInfo. 722 //===----------------------------------------------------------------------===// 723 724 class WebAssemblyABIInfo final : public SwiftABIInfo { 725 DefaultABIInfo defaultInfo; 726 727 public: 728 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 729 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 730 731 private: 732 ABIArgInfo classifyReturnType(QualType RetTy) const; 733 ABIArgInfo classifyArgumentType(QualType Ty) const; 734 735 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 736 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 737 // overload them. 738 void computeInfo(CGFunctionInfo &FI) const override { 739 if (!getCXXABI().classifyReturnType(FI)) 740 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 741 for (auto &Arg : FI.arguments()) 742 Arg.info = classifyArgumentType(Arg.type); 743 } 744 745 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 746 QualType Ty) const override; 747 748 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 749 bool asReturnValue) const override { 750 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 751 } 752 753 bool isSwiftErrorInRegister() const override { 754 return false; 755 } 756 }; 757 758 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 759 public: 760 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 761 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 762 763 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 764 CodeGen::CodeGenModule &CGM) const override { 765 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 766 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 767 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 768 llvm::Function *Fn = cast<llvm::Function>(GV); 769 llvm::AttrBuilder B; 770 B.addAttribute("wasm-import-module", Attr->getImportModule()); 771 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 772 } 773 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 774 llvm::Function *Fn = cast<llvm::Function>(GV); 775 llvm::AttrBuilder B; 776 B.addAttribute("wasm-import-name", Attr->getImportName()); 777 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 778 } 779 } 780 781 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 782 llvm::Function *Fn = cast<llvm::Function>(GV); 783 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 784 Fn->addFnAttr("no-prototype"); 785 } 786 } 787 }; 788 789 /// Classify argument of given type \p Ty. 790 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 791 Ty = useFirstFieldIfTransparentUnion(Ty); 792 793 if (isAggregateTypeForABI(Ty)) { 794 // Records with non-trivial destructors/copy-constructors should not be 795 // passed by value. 796 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 797 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 798 // Ignore empty structs/unions. 799 if (isEmptyRecord(getContext(), Ty, true)) 800 return ABIArgInfo::getIgnore(); 801 // Lower single-element structs to just pass a regular value. TODO: We 802 // could do reasonable-size multiple-element structs too, using getExpand(), 803 // though watch out for things like bitfields. 804 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 805 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 806 } 807 808 // Otherwise just do the default thing. 809 return defaultInfo.classifyArgumentType(Ty); 810 } 811 812 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 813 if (isAggregateTypeForABI(RetTy)) { 814 // Records with non-trivial destructors/copy-constructors should not be 815 // returned by value. 816 if (!getRecordArgABI(RetTy, getCXXABI())) { 817 // Ignore empty structs/unions. 818 if (isEmptyRecord(getContext(), RetTy, true)) 819 return ABIArgInfo::getIgnore(); 820 // Lower single-element structs to just return a regular value. TODO: We 821 // could do reasonable-size multiple-element structs too, using 822 // ABIArgInfo::getDirect(). 823 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 824 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 825 } 826 } 827 828 // Otherwise just do the default thing. 829 return defaultInfo.classifyReturnType(RetTy); 830 } 831 832 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 833 QualType Ty) const { 834 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 835 getContext().getTypeInfoInChars(Ty), 836 CharUnits::fromQuantity(4), 837 /*AllowHigherAlign=*/ true); 838 } 839 840 //===----------------------------------------------------------------------===// 841 // le32/PNaCl bitcode ABI Implementation 842 // 843 // This is a simplified version of the x86_32 ABI. Arguments and return values 844 // are always passed on the stack. 845 //===----------------------------------------------------------------------===// 846 847 class PNaClABIInfo : public ABIInfo { 848 public: 849 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 850 851 ABIArgInfo classifyReturnType(QualType RetTy) const; 852 ABIArgInfo classifyArgumentType(QualType RetTy) const; 853 854 void computeInfo(CGFunctionInfo &FI) const override; 855 Address EmitVAArg(CodeGenFunction &CGF, 856 Address VAListAddr, QualType Ty) const override; 857 }; 858 859 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 860 public: 861 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 862 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 863 }; 864 865 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 866 if (!getCXXABI().classifyReturnType(FI)) 867 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 868 869 for (auto &I : FI.arguments()) 870 I.info = classifyArgumentType(I.type); 871 } 872 873 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 874 QualType Ty) const { 875 // The PNaCL ABI is a bit odd, in that varargs don't use normal 876 // function classification. Structs get passed directly for varargs 877 // functions, through a rewriting transform in 878 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 879 // this target to actually support a va_arg instructions with an 880 // aggregate type, unlike other targets. 881 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 882 } 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 886 if (isAggregateTypeForABI(Ty)) { 887 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 888 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 889 return getNaturalAlignIndirect(Ty); 890 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 891 // Treat an enum type as its underlying type. 892 Ty = EnumTy->getDecl()->getIntegerType(); 893 } else if (Ty->isFloatingType()) { 894 // Floating-point types don't go inreg. 895 return ABIArgInfo::getDirect(); 896 } 897 898 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 899 : ABIArgInfo::getDirect()); 900 } 901 902 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 903 if (RetTy->isVoidType()) 904 return ABIArgInfo::getIgnore(); 905 906 // In the PNaCl ABI we always return records/structures on the stack. 907 if (isAggregateTypeForABI(RetTy)) 908 return getNaturalAlignIndirect(RetTy); 909 910 // Treat an enum type as its underlying type. 911 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 912 RetTy = EnumTy->getDecl()->getIntegerType(); 913 914 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 915 : ABIArgInfo::getDirect()); 916 } 917 918 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 919 StringRef Constraint, 920 llvm::Type* Ty) { 921 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 922 .Cases("y", "&y", "^Ym", true) 923 .Default(false); 924 if (IsMMXCons && Ty->isVectorTy()) { 925 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 926 // Invalid MMX constraint 927 return nullptr; 928 } 929 930 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 931 } 932 933 // No operation needed 934 return Ty; 935 } 936 937 /// Returns true if this type can be passed in SSE registers with the 938 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 939 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 940 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 941 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 942 if (BT->getKind() == BuiltinType::LongDouble) { 943 if (&Context.getTargetInfo().getLongDoubleFormat() == 944 &llvm::APFloat::x87DoubleExtended()) 945 return false; 946 } 947 return true; 948 } 949 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 950 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 951 // registers specially. 952 unsigned VecSize = Context.getTypeSize(VT); 953 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 954 return true; 955 } 956 return false; 957 } 958 959 /// Returns true if this aggregate is small enough to be passed in SSE registers 960 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 961 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 962 return NumMembers <= 4; 963 } 964 965 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 966 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 967 auto AI = ABIArgInfo::getDirect(T); 968 AI.setInReg(true); 969 AI.setCanBeFlattened(false); 970 return AI; 971 } 972 973 //===----------------------------------------------------------------------===// 974 // X86-32 ABI Implementation 975 //===----------------------------------------------------------------------===// 976 977 /// Similar to llvm::CCState, but for Clang. 978 struct CCState { 979 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 980 981 unsigned CC; 982 unsigned FreeRegs; 983 unsigned FreeSSERegs; 984 }; 985 986 enum { 987 // Vectorcall only allows the first 6 parameters to be passed in registers. 988 VectorcallMaxParamNumAsReg = 6 989 }; 990 991 /// X86_32ABIInfo - The X86-32 ABI information. 992 class X86_32ABIInfo : public SwiftABIInfo { 993 enum Class { 994 Integer, 995 Float 996 }; 997 998 static const unsigned MinABIStackAlignInBytes = 4; 999 1000 bool IsDarwinVectorABI; 1001 bool IsRetSmallStructInRegABI; 1002 bool IsWin32StructABI; 1003 bool IsSoftFloatABI; 1004 bool IsMCUABI; 1005 unsigned DefaultNumRegisterParameters; 1006 bool IsMMXEnabled; 1007 1008 static bool isRegisterSize(unsigned Size) { 1009 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1010 } 1011 1012 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1013 // FIXME: Assumes vectorcall is in use. 1014 return isX86VectorTypeForVectorCall(getContext(), Ty); 1015 } 1016 1017 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1018 uint64_t NumMembers) const override { 1019 // FIXME: Assumes vectorcall is in use. 1020 return isX86VectorCallAggregateSmallEnough(NumMembers); 1021 } 1022 1023 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1024 1025 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1026 /// such that the argument will be passed in memory. 1027 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1028 1029 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1030 1031 /// Return the alignment to use for the given type on the stack. 1032 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1033 1034 Class classify(QualType Ty) const; 1035 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1036 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1037 1038 /// Updates the number of available free registers, returns 1039 /// true if any registers were allocated. 1040 bool updateFreeRegs(QualType Ty, CCState &State) const; 1041 1042 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1043 bool &NeedsPadding) const; 1044 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1045 1046 bool canExpandIndirectArgument(QualType Ty) const; 1047 1048 /// Rewrite the function info so that all memory arguments use 1049 /// inalloca. 1050 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1051 1052 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1053 CharUnits &StackOffset, ABIArgInfo &Info, 1054 QualType Type) const; 1055 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1056 bool &UsedInAlloca) const; 1057 1058 public: 1059 1060 void computeInfo(CGFunctionInfo &FI) const override; 1061 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1062 QualType Ty) const override; 1063 1064 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1065 bool RetSmallStructInRegABI, bool Win32StructABI, 1066 unsigned NumRegisterParameters, bool SoftFloatABI, 1067 bool MMXEnabled) 1068 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1069 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1070 IsWin32StructABI(Win32StructABI), 1071 IsSoftFloatABI(SoftFloatABI), 1072 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1073 DefaultNumRegisterParameters(NumRegisterParameters), 1074 IsMMXEnabled(MMXEnabled) {} 1075 1076 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1077 bool asReturnValue) const override { 1078 // LLVM's x86-32 lowering currently only assigns up to three 1079 // integer registers and three fp registers. Oddly, it'll use up to 1080 // four vector registers for vectors, but those can overlap with the 1081 // scalar registers. 1082 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1083 } 1084 1085 bool isSwiftErrorInRegister() const override { 1086 // x86-32 lowering does not support passing swifterror in a register. 1087 return false; 1088 } 1089 1090 bool isPassInMMXRegABI() const { 1091 // The System V i386 psABI requires __m64 to be passed in MMX registers. 1092 // Clang historically had a bug where it failed to apply this rule, and 1093 // some platforms (e.g. Darwin, PS4, and FreeBSD) have opted to maintain 1094 // compatibility with the old Clang behavior, so we only apply it on 1095 // platforms that have specifically requested it (currently just Linux and 1096 // NetBSD). 1097 const llvm::Triple &T = getTarget().getTriple(); 1098 if (IsMMXEnabled && (T.isOSLinux() || T.isOSNetBSD())) 1099 return true; 1100 return false; 1101 } 1102 }; 1103 1104 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1105 public: 1106 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1107 bool RetSmallStructInRegABI, bool Win32StructABI, 1108 unsigned NumRegisterParameters, bool SoftFloatABI, 1109 bool MMXEnabled = false) 1110 : TargetCodeGenInfo(new X86_32ABIInfo( 1111 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1112 NumRegisterParameters, SoftFloatABI, MMXEnabled)) {} 1113 1114 static bool isStructReturnInRegABI( 1115 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1116 1117 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1118 CodeGen::CodeGenModule &CGM) const override; 1119 1120 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1121 // Darwin uses different dwarf register numbers for EH. 1122 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1123 return 4; 1124 } 1125 1126 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1127 llvm::Value *Address) const override; 1128 1129 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1130 StringRef Constraint, 1131 llvm::Type* Ty) const override { 1132 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1133 } 1134 1135 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1136 std::string &Constraints, 1137 std::vector<llvm::Type *> &ResultRegTypes, 1138 std::vector<llvm::Type *> &ResultTruncRegTypes, 1139 std::vector<LValue> &ResultRegDests, 1140 std::string &AsmString, 1141 unsigned NumOutputs) const override; 1142 1143 llvm::Constant * 1144 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1145 unsigned Sig = (0xeb << 0) | // jmp rel8 1146 (0x06 << 8) | // .+0x08 1147 ('v' << 16) | 1148 ('2' << 24); 1149 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1150 } 1151 1152 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1153 return "movl\t%ebp, %ebp" 1154 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1155 } 1156 }; 1157 1158 } 1159 1160 /// Rewrite input constraint references after adding some output constraints. 1161 /// In the case where there is one output and one input and we add one output, 1162 /// we need to replace all operand references greater than or equal to 1: 1163 /// mov $0, $1 1164 /// mov eax, $1 1165 /// The result will be: 1166 /// mov $0, $2 1167 /// mov eax, $2 1168 static void rewriteInputConstraintReferences(unsigned FirstIn, 1169 unsigned NumNewOuts, 1170 std::string &AsmString) { 1171 std::string Buf; 1172 llvm::raw_string_ostream OS(Buf); 1173 size_t Pos = 0; 1174 while (Pos < AsmString.size()) { 1175 size_t DollarStart = AsmString.find('$', Pos); 1176 if (DollarStart == std::string::npos) 1177 DollarStart = AsmString.size(); 1178 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1179 if (DollarEnd == std::string::npos) 1180 DollarEnd = AsmString.size(); 1181 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1182 Pos = DollarEnd; 1183 size_t NumDollars = DollarEnd - DollarStart; 1184 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1185 // We have an operand reference. 1186 size_t DigitStart = Pos; 1187 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1188 if (DigitEnd == std::string::npos) 1189 DigitEnd = AsmString.size(); 1190 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1191 unsigned OperandIndex; 1192 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1193 if (OperandIndex >= FirstIn) 1194 OperandIndex += NumNewOuts; 1195 OS << OperandIndex; 1196 } else { 1197 OS << OperandStr; 1198 } 1199 Pos = DigitEnd; 1200 } 1201 } 1202 AsmString = std::move(OS.str()); 1203 } 1204 1205 /// Add output constraints for EAX:EDX because they are return registers. 1206 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1207 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1208 std::vector<llvm::Type *> &ResultRegTypes, 1209 std::vector<llvm::Type *> &ResultTruncRegTypes, 1210 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1211 unsigned NumOutputs) const { 1212 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1213 1214 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1215 // larger. 1216 if (!Constraints.empty()) 1217 Constraints += ','; 1218 if (RetWidth <= 32) { 1219 Constraints += "={eax}"; 1220 ResultRegTypes.push_back(CGF.Int32Ty); 1221 } else { 1222 // Use the 'A' constraint for EAX:EDX. 1223 Constraints += "=A"; 1224 ResultRegTypes.push_back(CGF.Int64Ty); 1225 } 1226 1227 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1228 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1229 ResultTruncRegTypes.push_back(CoerceTy); 1230 1231 // Coerce the integer by bitcasting the return slot pointer. 1232 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1233 CoerceTy->getPointerTo())); 1234 ResultRegDests.push_back(ReturnSlot); 1235 1236 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1237 } 1238 1239 /// shouldReturnTypeInRegister - Determine if the given type should be 1240 /// returned in a register (for the Darwin and MCU ABI). 1241 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1242 ASTContext &Context) const { 1243 uint64_t Size = Context.getTypeSize(Ty); 1244 1245 // For i386, type must be register sized. 1246 // For the MCU ABI, it only needs to be <= 8-byte 1247 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1248 return false; 1249 1250 if (Ty->isVectorType()) { 1251 // 64- and 128- bit vectors inside structures are not returned in 1252 // registers. 1253 if (Size == 64 || Size == 128) 1254 return false; 1255 1256 return true; 1257 } 1258 1259 // If this is a builtin, pointer, enum, complex type, member pointer, or 1260 // member function pointer it is ok. 1261 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1262 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1263 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1264 return true; 1265 1266 // Arrays are treated like records. 1267 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1268 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1269 1270 // Otherwise, it must be a record type. 1271 const RecordType *RT = Ty->getAs<RecordType>(); 1272 if (!RT) return false; 1273 1274 // FIXME: Traverse bases here too. 1275 1276 // Structure types are passed in register if all fields would be 1277 // passed in a register. 1278 for (const auto *FD : RT->getDecl()->fields()) { 1279 // Empty fields are ignored. 1280 if (isEmptyField(Context, FD, true)) 1281 continue; 1282 1283 // Check fields recursively. 1284 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1285 return false; 1286 } 1287 return true; 1288 } 1289 1290 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1291 // Treat complex types as the element type. 1292 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1293 Ty = CTy->getElementType(); 1294 1295 // Check for a type which we know has a simple scalar argument-passing 1296 // convention without any padding. (We're specifically looking for 32 1297 // and 64-bit integer and integer-equivalents, float, and double.) 1298 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1299 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1300 return false; 1301 1302 uint64_t Size = Context.getTypeSize(Ty); 1303 return Size == 32 || Size == 64; 1304 } 1305 1306 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1307 uint64_t &Size) { 1308 for (const auto *FD : RD->fields()) { 1309 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1310 // argument is smaller than 32-bits, expanding the struct will create 1311 // alignment padding. 1312 if (!is32Or64BitBasicType(FD->getType(), Context)) 1313 return false; 1314 1315 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1316 // how to expand them yet, and the predicate for telling if a bitfield still 1317 // counts as "basic" is more complicated than what we were doing previously. 1318 if (FD->isBitField()) 1319 return false; 1320 1321 Size += Context.getTypeSize(FD->getType()); 1322 } 1323 return true; 1324 } 1325 1326 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1327 uint64_t &Size) { 1328 // Don't do this if there are any non-empty bases. 1329 for (const CXXBaseSpecifier &Base : RD->bases()) { 1330 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1331 Size)) 1332 return false; 1333 } 1334 if (!addFieldSizes(Context, RD, Size)) 1335 return false; 1336 return true; 1337 } 1338 1339 /// Test whether an argument type which is to be passed indirectly (on the 1340 /// stack) would have the equivalent layout if it was expanded into separate 1341 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1342 /// optimizations. 1343 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1344 // We can only expand structure types. 1345 const RecordType *RT = Ty->getAs<RecordType>(); 1346 if (!RT) 1347 return false; 1348 const RecordDecl *RD = RT->getDecl(); 1349 uint64_t Size = 0; 1350 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1351 if (!IsWin32StructABI) { 1352 // On non-Windows, we have to conservatively match our old bitcode 1353 // prototypes in order to be ABI-compatible at the bitcode level. 1354 if (!CXXRD->isCLike()) 1355 return false; 1356 } else { 1357 // Don't do this for dynamic classes. 1358 if (CXXRD->isDynamicClass()) 1359 return false; 1360 } 1361 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1362 return false; 1363 } else { 1364 if (!addFieldSizes(getContext(), RD, Size)) 1365 return false; 1366 } 1367 1368 // We can do this if there was no alignment padding. 1369 return Size == getContext().getTypeSize(Ty); 1370 } 1371 1372 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1373 // If the return value is indirect, then the hidden argument is consuming one 1374 // integer register. 1375 if (State.FreeRegs) { 1376 --State.FreeRegs; 1377 if (!IsMCUABI) 1378 return getNaturalAlignIndirectInReg(RetTy); 1379 } 1380 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1381 } 1382 1383 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1384 CCState &State) const { 1385 if (RetTy->isVoidType()) 1386 return ABIArgInfo::getIgnore(); 1387 1388 const Type *Base = nullptr; 1389 uint64_t NumElts = 0; 1390 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1391 State.CC == llvm::CallingConv::X86_RegCall) && 1392 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1393 // The LLVM struct type for such an aggregate should lower properly. 1394 return ABIArgInfo::getDirect(); 1395 } 1396 1397 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1398 uint64_t Size = getContext().getTypeSize(RetTy); 1399 // On Darwin, some vectors are returned in registers. 1400 if (IsDarwinVectorABI) { 1401 // 128-bit vectors are a special case; they are returned in 1402 // registers and we need to make sure to pick a type the LLVM 1403 // backend will like. 1404 if (Size == 128) 1405 return ABIArgInfo::getDirect(llvm::VectorType::get( 1406 llvm::Type::getInt64Ty(getVMContext()), 2)); 1407 1408 // Always return in register if it fits in a general purpose 1409 // register, or if it is 64 bits and has a single element. 1410 if ((Size == 8 || Size == 16 || Size == 32) || 1411 (Size == 64 && VT->getNumElements() == 1)) 1412 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1413 Size)); 1414 1415 return getIndirectReturnResult(RetTy, State); 1416 } 1417 1418 if (VT->getElementType()->isIntegerType() && Size == 64 && 1419 isPassInMMXRegABI()) 1420 return ABIArgInfo::getDirect(llvm::Type::getX86_MMXTy(getVMContext())); 1421 1422 return ABIArgInfo::getDirect(); 1423 } 1424 1425 if (isAggregateTypeForABI(RetTy)) { 1426 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1427 // Structures with flexible arrays are always indirect. 1428 if (RT->getDecl()->hasFlexibleArrayMember()) 1429 return getIndirectReturnResult(RetTy, State); 1430 } 1431 1432 // If specified, structs and unions are always indirect. 1433 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1434 return getIndirectReturnResult(RetTy, State); 1435 1436 // Ignore empty structs/unions. 1437 if (isEmptyRecord(getContext(), RetTy, true)) 1438 return ABIArgInfo::getIgnore(); 1439 1440 // Small structures which are register sized are generally returned 1441 // in a register. 1442 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1443 uint64_t Size = getContext().getTypeSize(RetTy); 1444 1445 // As a special-case, if the struct is a "single-element" struct, and 1446 // the field is of type "float" or "double", return it in a 1447 // floating-point register. (MSVC does not apply this special case.) 1448 // We apply a similar transformation for pointer types to improve the 1449 // quality of the generated IR. 1450 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1451 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1452 || SeltTy->hasPointerRepresentation()) 1453 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1454 1455 // FIXME: We should be able to narrow this integer in cases with dead 1456 // padding. 1457 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1458 } 1459 1460 return getIndirectReturnResult(RetTy, State); 1461 } 1462 1463 // Treat an enum type as its underlying type. 1464 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1465 RetTy = EnumTy->getDecl()->getIntegerType(); 1466 1467 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1468 : ABIArgInfo::getDirect()); 1469 } 1470 1471 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1472 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1473 } 1474 1475 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1476 const RecordType *RT = Ty->getAs<RecordType>(); 1477 if (!RT) 1478 return 0; 1479 const RecordDecl *RD = RT->getDecl(); 1480 1481 // If this is a C++ record, check the bases first. 1482 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1483 for (const auto &I : CXXRD->bases()) 1484 if (!isRecordWithSSEVectorType(Context, I.getType())) 1485 return false; 1486 1487 for (const auto *i : RD->fields()) { 1488 QualType FT = i->getType(); 1489 1490 if (isSSEVectorType(Context, FT)) 1491 return true; 1492 1493 if (isRecordWithSSEVectorType(Context, FT)) 1494 return true; 1495 } 1496 1497 return false; 1498 } 1499 1500 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1501 unsigned Align) const { 1502 // Otherwise, if the alignment is less than or equal to the minimum ABI 1503 // alignment, just use the default; the backend will handle this. 1504 if (Align <= MinABIStackAlignInBytes) 1505 return 0; // Use default alignment. 1506 1507 // On non-Darwin, the stack type alignment is always 4. 1508 if (!IsDarwinVectorABI) { 1509 // Set explicit alignment, since we may need to realign the top. 1510 return MinABIStackAlignInBytes; 1511 } 1512 1513 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1514 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1515 isRecordWithSSEVectorType(getContext(), Ty))) 1516 return 16; 1517 1518 return MinABIStackAlignInBytes; 1519 } 1520 1521 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1522 CCState &State) const { 1523 if (!ByVal) { 1524 if (State.FreeRegs) { 1525 --State.FreeRegs; // Non-byval indirects just use one pointer. 1526 if (!IsMCUABI) 1527 return getNaturalAlignIndirectInReg(Ty); 1528 } 1529 return getNaturalAlignIndirect(Ty, false); 1530 } 1531 1532 // Compute the byval alignment. 1533 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1534 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1535 if (StackAlign == 0) 1536 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1537 1538 // If the stack alignment is less than the type alignment, realign the 1539 // argument. 1540 bool Realign = TypeAlign > StackAlign; 1541 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1542 /*ByVal=*/true, Realign); 1543 } 1544 1545 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1546 const Type *T = isSingleElementStruct(Ty, getContext()); 1547 if (!T) 1548 T = Ty.getTypePtr(); 1549 1550 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1551 BuiltinType::Kind K = BT->getKind(); 1552 if (K == BuiltinType::Float || K == BuiltinType::Double) 1553 return Float; 1554 } 1555 return Integer; 1556 } 1557 1558 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1559 if (!IsSoftFloatABI) { 1560 Class C = classify(Ty); 1561 if (C == Float) 1562 return false; 1563 } 1564 1565 unsigned Size = getContext().getTypeSize(Ty); 1566 unsigned SizeInRegs = (Size + 31) / 32; 1567 1568 if (SizeInRegs == 0) 1569 return false; 1570 1571 if (!IsMCUABI) { 1572 if (SizeInRegs > State.FreeRegs) { 1573 State.FreeRegs = 0; 1574 return false; 1575 } 1576 } else { 1577 // The MCU psABI allows passing parameters in-reg even if there are 1578 // earlier parameters that are passed on the stack. Also, 1579 // it does not allow passing >8-byte structs in-register, 1580 // even if there are 3 free registers available. 1581 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1582 return false; 1583 } 1584 1585 State.FreeRegs -= SizeInRegs; 1586 return true; 1587 } 1588 1589 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1590 bool &InReg, 1591 bool &NeedsPadding) const { 1592 // On Windows, aggregates other than HFAs are never passed in registers, and 1593 // they do not consume register slots. Homogenous floating-point aggregates 1594 // (HFAs) have already been dealt with at this point. 1595 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1596 return false; 1597 1598 NeedsPadding = false; 1599 InReg = !IsMCUABI; 1600 1601 if (!updateFreeRegs(Ty, State)) 1602 return false; 1603 1604 if (IsMCUABI) 1605 return true; 1606 1607 if (State.CC == llvm::CallingConv::X86_FastCall || 1608 State.CC == llvm::CallingConv::X86_VectorCall || 1609 State.CC == llvm::CallingConv::X86_RegCall) { 1610 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1611 NeedsPadding = true; 1612 1613 return false; 1614 } 1615 1616 return true; 1617 } 1618 1619 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1620 if (!updateFreeRegs(Ty, State)) 1621 return false; 1622 1623 if (IsMCUABI) 1624 return false; 1625 1626 if (State.CC == llvm::CallingConv::X86_FastCall || 1627 State.CC == llvm::CallingConv::X86_VectorCall || 1628 State.CC == llvm::CallingConv::X86_RegCall) { 1629 if (getContext().getTypeSize(Ty) > 32) 1630 return false; 1631 1632 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1633 Ty->isReferenceType()); 1634 } 1635 1636 return true; 1637 } 1638 1639 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1640 CCState &State) const { 1641 // FIXME: Set alignment on indirect arguments. 1642 1643 Ty = useFirstFieldIfTransparentUnion(Ty); 1644 1645 // Check with the C++ ABI first. 1646 const RecordType *RT = Ty->getAs<RecordType>(); 1647 if (RT) { 1648 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1649 if (RAA == CGCXXABI::RAA_Indirect) { 1650 return getIndirectResult(Ty, false, State); 1651 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1652 // The field index doesn't matter, we'll fix it up later. 1653 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1654 } 1655 } 1656 1657 // Regcall uses the concept of a homogenous vector aggregate, similar 1658 // to other targets. 1659 const Type *Base = nullptr; 1660 uint64_t NumElts = 0; 1661 if (State.CC == llvm::CallingConv::X86_RegCall && 1662 isHomogeneousAggregate(Ty, Base, NumElts)) { 1663 1664 if (State.FreeSSERegs >= NumElts) { 1665 State.FreeSSERegs -= NumElts; 1666 if (Ty->isBuiltinType() || Ty->isVectorType()) 1667 return ABIArgInfo::getDirect(); 1668 return ABIArgInfo::getExpand(); 1669 } 1670 return getIndirectResult(Ty, /*ByVal=*/false, State); 1671 } 1672 1673 if (isAggregateTypeForABI(Ty)) { 1674 // Structures with flexible arrays are always indirect. 1675 // FIXME: This should not be byval! 1676 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1677 return getIndirectResult(Ty, true, State); 1678 1679 // Ignore empty structs/unions on non-Windows. 1680 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1681 return ABIArgInfo::getIgnore(); 1682 1683 llvm::LLVMContext &LLVMContext = getVMContext(); 1684 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1685 bool NeedsPadding = false; 1686 bool InReg; 1687 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1688 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1689 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1690 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1691 if (InReg) 1692 return ABIArgInfo::getDirectInReg(Result); 1693 else 1694 return ABIArgInfo::getDirect(Result); 1695 } 1696 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1697 1698 // Expand small (<= 128-bit) record types when we know that the stack layout 1699 // of those arguments will match the struct. This is important because the 1700 // LLVM backend isn't smart enough to remove byval, which inhibits many 1701 // optimizations. 1702 // Don't do this for the MCU if there are still free integer registers 1703 // (see X86_64 ABI for full explanation). 1704 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1705 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1706 return ABIArgInfo::getExpandWithPadding( 1707 State.CC == llvm::CallingConv::X86_FastCall || 1708 State.CC == llvm::CallingConv::X86_VectorCall || 1709 State.CC == llvm::CallingConv::X86_RegCall, 1710 PaddingType); 1711 1712 return getIndirectResult(Ty, true, State); 1713 } 1714 1715 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1716 uint64_t Size = getContext().getTypeSize(Ty); 1717 // On Darwin, some vectors are passed in memory, we handle this by passing 1718 // it as an i8/i16/i32/i64. 1719 if (IsDarwinVectorABI) { 1720 if ((Size == 8 || Size == 16 || Size == 32) || 1721 (Size == 64 && VT->getNumElements() == 1)) 1722 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1723 Size)); 1724 } 1725 1726 if (VT->getElementType()->isIntegerType() && Size == 64) { 1727 if (isPassInMMXRegABI()) 1728 return ABIArgInfo::getDirect(llvm::Type::getX86_MMXTy(getVMContext())); 1729 else 1730 return ABIArgInfo::getDirect( 1731 llvm::IntegerType::get(getVMContext(), 64)); 1732 } 1733 return ABIArgInfo::getDirect(); 1734 } 1735 1736 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1737 Ty = EnumTy->getDecl()->getIntegerType(); 1738 1739 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1740 1741 if (Ty->isPromotableIntegerType()) { 1742 if (InReg) 1743 return ABIArgInfo::getExtendInReg(Ty); 1744 return ABIArgInfo::getExtend(Ty); 1745 } 1746 1747 if (InReg) 1748 return ABIArgInfo::getDirectInReg(); 1749 return ABIArgInfo::getDirect(); 1750 } 1751 1752 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1753 bool &UsedInAlloca) const { 1754 // Vectorcall x86 works subtly different than in x64, so the format is 1755 // a bit different than the x64 version. First, all vector types (not HVAs) 1756 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1757 // This differs from the x64 implementation, where the first 6 by INDEX get 1758 // registers. 1759 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1760 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1761 // first take up the remaining YMM/XMM registers. If insufficient registers 1762 // remain but an integer register (ECX/EDX) is available, it will be passed 1763 // in that, else, on the stack. 1764 for (auto &I : FI.arguments()) { 1765 // First pass do all the vector types. 1766 const Type *Base = nullptr; 1767 uint64_t NumElts = 0; 1768 const QualType& Ty = I.type; 1769 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1770 isHomogeneousAggregate(Ty, Base, NumElts)) { 1771 if (State.FreeSSERegs >= NumElts) { 1772 State.FreeSSERegs -= NumElts; 1773 I.info = ABIArgInfo::getDirect(); 1774 } else { 1775 I.info = classifyArgumentType(Ty, State); 1776 } 1777 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1778 } 1779 } 1780 1781 for (auto &I : FI.arguments()) { 1782 // Second pass, do the rest! 1783 const Type *Base = nullptr; 1784 uint64_t NumElts = 0; 1785 const QualType& Ty = I.type; 1786 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1787 1788 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1789 // Assign true HVAs (non vector/native FP types). 1790 if (State.FreeSSERegs >= NumElts) { 1791 State.FreeSSERegs -= NumElts; 1792 I.info = getDirectX86Hva(); 1793 } else { 1794 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1795 } 1796 } else if (!IsHva) { 1797 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1798 I.info = classifyArgumentType(Ty, State); 1799 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1800 } 1801 } 1802 } 1803 1804 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1805 CCState State(FI.getCallingConvention()); 1806 if (IsMCUABI) 1807 State.FreeRegs = 3; 1808 else if (State.CC == llvm::CallingConv::X86_FastCall) 1809 State.FreeRegs = 2; 1810 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1811 State.FreeRegs = 2; 1812 State.FreeSSERegs = 6; 1813 } else if (FI.getHasRegParm()) 1814 State.FreeRegs = FI.getRegParm(); 1815 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1816 State.FreeRegs = 5; 1817 State.FreeSSERegs = 8; 1818 } else 1819 State.FreeRegs = DefaultNumRegisterParameters; 1820 1821 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1822 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1823 } else if (FI.getReturnInfo().isIndirect()) { 1824 // The C++ ABI is not aware of register usage, so we have to check if the 1825 // return value was sret and put it in a register ourselves if appropriate. 1826 if (State.FreeRegs) { 1827 --State.FreeRegs; // The sret parameter consumes a register. 1828 if (!IsMCUABI) 1829 FI.getReturnInfo().setInReg(true); 1830 } 1831 } 1832 1833 // The chain argument effectively gives us another free register. 1834 if (FI.isChainCall()) 1835 ++State.FreeRegs; 1836 1837 bool UsedInAlloca = false; 1838 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1839 computeVectorCallArgs(FI, State, UsedInAlloca); 1840 } else { 1841 // If not vectorcall, revert to normal behavior. 1842 for (auto &I : FI.arguments()) { 1843 I.info = classifyArgumentType(I.type, State); 1844 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1845 } 1846 } 1847 1848 // If we needed to use inalloca for any argument, do a second pass and rewrite 1849 // all the memory arguments to use inalloca. 1850 if (UsedInAlloca) 1851 rewriteWithInAlloca(FI); 1852 } 1853 1854 void 1855 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1856 CharUnits &StackOffset, ABIArgInfo &Info, 1857 QualType Type) const { 1858 // Arguments are always 4-byte-aligned. 1859 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1860 1861 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1862 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1863 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1864 StackOffset += getContext().getTypeSizeInChars(Type); 1865 1866 // Insert padding bytes to respect alignment. 1867 CharUnits FieldEnd = StackOffset; 1868 StackOffset = FieldEnd.alignTo(FieldAlign); 1869 if (StackOffset != FieldEnd) { 1870 CharUnits NumBytes = StackOffset - FieldEnd; 1871 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1872 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1873 FrameFields.push_back(Ty); 1874 } 1875 } 1876 1877 static bool isArgInAlloca(const ABIArgInfo &Info) { 1878 // Leave ignored and inreg arguments alone. 1879 switch (Info.getKind()) { 1880 case ABIArgInfo::InAlloca: 1881 return true; 1882 case ABIArgInfo::Indirect: 1883 assert(Info.getIndirectByVal()); 1884 return true; 1885 case ABIArgInfo::Ignore: 1886 return false; 1887 case ABIArgInfo::Direct: 1888 case ABIArgInfo::Extend: 1889 if (Info.getInReg()) 1890 return false; 1891 return true; 1892 case ABIArgInfo::Expand: 1893 case ABIArgInfo::CoerceAndExpand: 1894 // These are aggregate types which are never passed in registers when 1895 // inalloca is involved. 1896 return true; 1897 } 1898 llvm_unreachable("invalid enum"); 1899 } 1900 1901 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1902 assert(IsWin32StructABI && "inalloca only supported on win32"); 1903 1904 // Build a packed struct type for all of the arguments in memory. 1905 SmallVector<llvm::Type *, 6> FrameFields; 1906 1907 // The stack alignment is always 4. 1908 CharUnits StackAlign = CharUnits::fromQuantity(4); 1909 1910 CharUnits StackOffset; 1911 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1912 1913 // Put 'this' into the struct before 'sret', if necessary. 1914 bool IsThisCall = 1915 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1916 ABIArgInfo &Ret = FI.getReturnInfo(); 1917 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1918 isArgInAlloca(I->info)) { 1919 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1920 ++I; 1921 } 1922 1923 // Put the sret parameter into the inalloca struct if it's in memory. 1924 if (Ret.isIndirect() && !Ret.getInReg()) { 1925 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1926 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1927 // On Windows, the hidden sret parameter is always returned in eax. 1928 Ret.setInAllocaSRet(IsWin32StructABI); 1929 } 1930 1931 // Skip the 'this' parameter in ecx. 1932 if (IsThisCall) 1933 ++I; 1934 1935 // Put arguments passed in memory into the struct. 1936 for (; I != E; ++I) { 1937 if (isArgInAlloca(I->info)) 1938 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1939 } 1940 1941 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1942 /*isPacked=*/true), 1943 StackAlign); 1944 } 1945 1946 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1947 Address VAListAddr, QualType Ty) const { 1948 1949 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1950 1951 // x86-32 changes the alignment of certain arguments on the stack. 1952 // 1953 // Just messing with TypeInfo like this works because we never pass 1954 // anything indirectly. 1955 TypeInfo.second = CharUnits::fromQuantity( 1956 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1957 1958 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1959 TypeInfo, CharUnits::fromQuantity(4), 1960 /*AllowHigherAlign*/ true); 1961 } 1962 1963 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1964 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1965 assert(Triple.getArch() == llvm::Triple::x86); 1966 1967 switch (Opts.getStructReturnConvention()) { 1968 case CodeGenOptions::SRCK_Default: 1969 break; 1970 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1971 return false; 1972 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1973 return true; 1974 } 1975 1976 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1977 return true; 1978 1979 switch (Triple.getOS()) { 1980 case llvm::Triple::DragonFly: 1981 case llvm::Triple::FreeBSD: 1982 case llvm::Triple::OpenBSD: 1983 case llvm::Triple::Win32: 1984 return true; 1985 default: 1986 return false; 1987 } 1988 } 1989 1990 void X86_32TargetCodeGenInfo::setTargetAttributes( 1991 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1992 if (GV->isDeclaration()) 1993 return; 1994 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1995 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1996 llvm::Function *Fn = cast<llvm::Function>(GV); 1997 Fn->addFnAttr("stackrealign"); 1998 } 1999 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2000 llvm::Function *Fn = cast<llvm::Function>(GV); 2001 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2002 } 2003 } 2004 } 2005 2006 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2007 CodeGen::CodeGenFunction &CGF, 2008 llvm::Value *Address) const { 2009 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2010 2011 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2012 2013 // 0-7 are the eight integer registers; the order is different 2014 // on Darwin (for EH), but the range is the same. 2015 // 8 is %eip. 2016 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2017 2018 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2019 // 12-16 are st(0..4). Not sure why we stop at 4. 2020 // These have size 16, which is sizeof(long double) on 2021 // platforms with 8-byte alignment for that type. 2022 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2023 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2024 2025 } else { 2026 // 9 is %eflags, which doesn't get a size on Darwin for some 2027 // reason. 2028 Builder.CreateAlignedStore( 2029 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2030 CharUnits::One()); 2031 2032 // 11-16 are st(0..5). Not sure why we stop at 5. 2033 // These have size 12, which is sizeof(long double) on 2034 // platforms with 4-byte alignment for that type. 2035 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2036 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2037 } 2038 2039 return false; 2040 } 2041 2042 //===----------------------------------------------------------------------===// 2043 // X86-64 ABI Implementation 2044 //===----------------------------------------------------------------------===// 2045 2046 2047 namespace { 2048 /// The AVX ABI level for X86 targets. 2049 enum class X86AVXABILevel { 2050 None, 2051 AVX, 2052 AVX512 2053 }; 2054 2055 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2056 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2057 switch (AVXLevel) { 2058 case X86AVXABILevel::AVX512: 2059 return 512; 2060 case X86AVXABILevel::AVX: 2061 return 256; 2062 case X86AVXABILevel::None: 2063 return 128; 2064 } 2065 llvm_unreachable("Unknown AVXLevel"); 2066 } 2067 2068 /// X86_64ABIInfo - The X86_64 ABI information. 2069 class X86_64ABIInfo : public SwiftABIInfo { 2070 enum Class { 2071 Integer = 0, 2072 SSE, 2073 SSEUp, 2074 X87, 2075 X87Up, 2076 ComplexX87, 2077 NoClass, 2078 Memory 2079 }; 2080 2081 /// merge - Implement the X86_64 ABI merging algorithm. 2082 /// 2083 /// Merge an accumulating classification \arg Accum with a field 2084 /// classification \arg Field. 2085 /// 2086 /// \param Accum - The accumulating classification. This should 2087 /// always be either NoClass or the result of a previous merge 2088 /// call. In addition, this should never be Memory (the caller 2089 /// should just return Memory for the aggregate). 2090 static Class merge(Class Accum, Class Field); 2091 2092 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2093 /// 2094 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2095 /// final MEMORY or SSE classes when necessary. 2096 /// 2097 /// \param AggregateSize - The size of the current aggregate in 2098 /// the classification process. 2099 /// 2100 /// \param Lo - The classification for the parts of the type 2101 /// residing in the low word of the containing object. 2102 /// 2103 /// \param Hi - The classification for the parts of the type 2104 /// residing in the higher words of the containing object. 2105 /// 2106 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2107 2108 /// classify - Determine the x86_64 register classes in which the 2109 /// given type T should be passed. 2110 /// 2111 /// \param Lo - The classification for the parts of the type 2112 /// residing in the low word of the containing object. 2113 /// 2114 /// \param Hi - The classification for the parts of the type 2115 /// residing in the high word of the containing object. 2116 /// 2117 /// \param OffsetBase - The bit offset of this type in the 2118 /// containing object. Some parameters are classified different 2119 /// depending on whether they straddle an eightbyte boundary. 2120 /// 2121 /// \param isNamedArg - Whether the argument in question is a "named" 2122 /// argument, as used in AMD64-ABI 3.5.7. 2123 /// 2124 /// If a word is unused its result will be NoClass; if a type should 2125 /// be passed in Memory then at least the classification of \arg Lo 2126 /// will be Memory. 2127 /// 2128 /// The \arg Lo class will be NoClass iff the argument is ignored. 2129 /// 2130 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2131 /// also be ComplexX87. 2132 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2133 bool isNamedArg) const; 2134 2135 llvm::Type *GetByteVectorType(QualType Ty) const; 2136 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2137 unsigned IROffset, QualType SourceTy, 2138 unsigned SourceOffset) const; 2139 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2140 unsigned IROffset, QualType SourceTy, 2141 unsigned SourceOffset) const; 2142 2143 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2144 /// such that the argument will be returned in memory. 2145 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2146 2147 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2148 /// such that the argument will be passed in memory. 2149 /// 2150 /// \param freeIntRegs - The number of free integer registers remaining 2151 /// available. 2152 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2153 2154 ABIArgInfo classifyReturnType(QualType RetTy) const; 2155 2156 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2157 unsigned &neededInt, unsigned &neededSSE, 2158 bool isNamedArg) const; 2159 2160 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2161 unsigned &NeededSSE) const; 2162 2163 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2164 unsigned &NeededSSE) const; 2165 2166 bool IsIllegalVectorType(QualType Ty) const; 2167 2168 /// The 0.98 ABI revision clarified a lot of ambiguities, 2169 /// unfortunately in ways that were not always consistent with 2170 /// certain previous compilers. In particular, platforms which 2171 /// required strict binary compatibility with older versions of GCC 2172 /// may need to exempt themselves. 2173 bool honorsRevision0_98() const { 2174 return !getTarget().getTriple().isOSDarwin(); 2175 } 2176 2177 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2178 /// classify it as INTEGER (for compatibility with older clang compilers). 2179 bool classifyIntegerMMXAsSSE() const { 2180 // Clang <= 3.8 did not do this. 2181 if (getContext().getLangOpts().getClangABICompat() <= 2182 LangOptions::ClangABI::Ver3_8) 2183 return false; 2184 2185 const llvm::Triple &Triple = getTarget().getTriple(); 2186 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2187 return false; 2188 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2189 return false; 2190 return true; 2191 } 2192 2193 X86AVXABILevel AVXLevel; 2194 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2195 // 64-bit hardware. 2196 bool Has64BitPointers; 2197 2198 public: 2199 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2200 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2201 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2202 } 2203 2204 bool isPassedUsingAVXType(QualType type) const { 2205 unsigned neededInt, neededSSE; 2206 // The freeIntRegs argument doesn't matter here. 2207 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2208 /*isNamedArg*/true); 2209 if (info.isDirect()) { 2210 llvm::Type *ty = info.getCoerceToType(); 2211 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2212 return (vectorTy->getBitWidth() > 128); 2213 } 2214 return false; 2215 } 2216 2217 void computeInfo(CGFunctionInfo &FI) const override; 2218 2219 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2220 QualType Ty) const override; 2221 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2222 QualType Ty) const override; 2223 2224 bool has64BitPointers() const { 2225 return Has64BitPointers; 2226 } 2227 2228 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2229 bool asReturnValue) const override { 2230 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2231 } 2232 bool isSwiftErrorInRegister() const override { 2233 return true; 2234 } 2235 }; 2236 2237 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2238 class WinX86_64ABIInfo : public SwiftABIInfo { 2239 public: 2240 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2241 : SwiftABIInfo(CGT), 2242 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2243 2244 void computeInfo(CGFunctionInfo &FI) const override; 2245 2246 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2247 QualType Ty) const override; 2248 2249 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2250 // FIXME: Assumes vectorcall is in use. 2251 return isX86VectorTypeForVectorCall(getContext(), Ty); 2252 } 2253 2254 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2255 uint64_t NumMembers) const override { 2256 // FIXME: Assumes vectorcall is in use. 2257 return isX86VectorCallAggregateSmallEnough(NumMembers); 2258 } 2259 2260 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2261 bool asReturnValue) const override { 2262 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2263 } 2264 2265 bool isSwiftErrorInRegister() const override { 2266 return true; 2267 } 2268 2269 private: 2270 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2271 bool IsVectorCall, bool IsRegCall) const; 2272 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2273 const ABIArgInfo ¤t) const; 2274 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2275 bool IsVectorCall, bool IsRegCall) const; 2276 2277 bool IsMingw64; 2278 }; 2279 2280 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2281 public: 2282 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2283 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2284 2285 const X86_64ABIInfo &getABIInfo() const { 2286 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2287 } 2288 2289 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2290 /// the autoreleaseRV/retainRV optimization. 2291 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2292 return true; 2293 } 2294 2295 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2296 return 7; 2297 } 2298 2299 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2300 llvm::Value *Address) const override { 2301 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2302 2303 // 0-15 are the 16 integer registers. 2304 // 16 is %rip. 2305 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2306 return false; 2307 } 2308 2309 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2310 StringRef Constraint, 2311 llvm::Type* Ty) const override { 2312 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2313 } 2314 2315 bool isNoProtoCallVariadic(const CallArgList &args, 2316 const FunctionNoProtoType *fnType) const override { 2317 // The default CC on x86-64 sets %al to the number of SSA 2318 // registers used, and GCC sets this when calling an unprototyped 2319 // function, so we override the default behavior. However, don't do 2320 // that when AVX types are involved: the ABI explicitly states it is 2321 // undefined, and it doesn't work in practice because of how the ABI 2322 // defines varargs anyway. 2323 if (fnType->getCallConv() == CC_C) { 2324 bool HasAVXType = false; 2325 for (CallArgList::const_iterator 2326 it = args.begin(), ie = args.end(); it != ie; ++it) { 2327 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2328 HasAVXType = true; 2329 break; 2330 } 2331 } 2332 2333 if (!HasAVXType) 2334 return true; 2335 } 2336 2337 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2338 } 2339 2340 llvm::Constant * 2341 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2342 unsigned Sig = (0xeb << 0) | // jmp rel8 2343 (0x06 << 8) | // .+0x08 2344 ('v' << 16) | 2345 ('2' << 24); 2346 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2347 } 2348 2349 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2350 CodeGen::CodeGenModule &CGM) const override { 2351 if (GV->isDeclaration()) 2352 return; 2353 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2354 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2355 llvm::Function *Fn = cast<llvm::Function>(GV); 2356 Fn->addFnAttr("stackrealign"); 2357 } 2358 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2359 llvm::Function *Fn = cast<llvm::Function>(GV); 2360 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2361 } 2362 } 2363 } 2364 }; 2365 2366 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2367 // If the argument does not end in .lib, automatically add the suffix. 2368 // If the argument contains a space, enclose it in quotes. 2369 // This matches the behavior of MSVC. 2370 bool Quote = (Lib.find(" ") != StringRef::npos); 2371 std::string ArgStr = Quote ? "\"" : ""; 2372 ArgStr += Lib; 2373 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2374 ArgStr += ".lib"; 2375 ArgStr += Quote ? "\"" : ""; 2376 return ArgStr; 2377 } 2378 2379 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2380 public: 2381 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2382 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2383 unsigned NumRegisterParameters) 2384 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2385 Win32StructABI, NumRegisterParameters, false) {} 2386 2387 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2388 CodeGen::CodeGenModule &CGM) const override; 2389 2390 void getDependentLibraryOption(llvm::StringRef Lib, 2391 llvm::SmallString<24> &Opt) const override { 2392 Opt = "/DEFAULTLIB:"; 2393 Opt += qualifyWindowsLibrary(Lib); 2394 } 2395 2396 void getDetectMismatchOption(llvm::StringRef Name, 2397 llvm::StringRef Value, 2398 llvm::SmallString<32> &Opt) const override { 2399 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2400 } 2401 }; 2402 2403 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2404 CodeGen::CodeGenModule &CGM) { 2405 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2406 2407 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2408 Fn->addFnAttr("stack-probe-size", 2409 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2410 if (CGM.getCodeGenOpts().NoStackArgProbe) 2411 Fn->addFnAttr("no-stack-arg-probe"); 2412 } 2413 } 2414 2415 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2416 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2417 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2418 if (GV->isDeclaration()) 2419 return; 2420 addStackProbeTargetAttributes(D, GV, CGM); 2421 } 2422 2423 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2424 public: 2425 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2426 X86AVXABILevel AVXLevel) 2427 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2428 2429 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2430 CodeGen::CodeGenModule &CGM) const override; 2431 2432 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2433 return 7; 2434 } 2435 2436 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2437 llvm::Value *Address) const override { 2438 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2439 2440 // 0-15 are the 16 integer registers. 2441 // 16 is %rip. 2442 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2443 return false; 2444 } 2445 2446 void getDependentLibraryOption(llvm::StringRef Lib, 2447 llvm::SmallString<24> &Opt) const override { 2448 Opt = "/DEFAULTLIB:"; 2449 Opt += qualifyWindowsLibrary(Lib); 2450 } 2451 2452 void getDetectMismatchOption(llvm::StringRef Name, 2453 llvm::StringRef Value, 2454 llvm::SmallString<32> &Opt) const override { 2455 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2456 } 2457 }; 2458 2459 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2460 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2461 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2462 if (GV->isDeclaration()) 2463 return; 2464 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2465 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2466 llvm::Function *Fn = cast<llvm::Function>(GV); 2467 Fn->addFnAttr("stackrealign"); 2468 } 2469 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2470 llvm::Function *Fn = cast<llvm::Function>(GV); 2471 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2472 } 2473 } 2474 2475 addStackProbeTargetAttributes(D, GV, CGM); 2476 } 2477 } 2478 2479 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2480 Class &Hi) const { 2481 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2482 // 2483 // (a) If one of the classes is Memory, the whole argument is passed in 2484 // memory. 2485 // 2486 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2487 // memory. 2488 // 2489 // (c) If the size of the aggregate exceeds two eightbytes and the first 2490 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2491 // argument is passed in memory. NOTE: This is necessary to keep the 2492 // ABI working for processors that don't support the __m256 type. 2493 // 2494 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2495 // 2496 // Some of these are enforced by the merging logic. Others can arise 2497 // only with unions; for example: 2498 // union { _Complex double; unsigned; } 2499 // 2500 // Note that clauses (b) and (c) were added in 0.98. 2501 // 2502 if (Hi == Memory) 2503 Lo = Memory; 2504 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2505 Lo = Memory; 2506 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2507 Lo = Memory; 2508 if (Hi == SSEUp && Lo != SSE) 2509 Hi = SSE; 2510 } 2511 2512 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2513 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2514 // classified recursively so that always two fields are 2515 // considered. The resulting class is calculated according to 2516 // the classes of the fields in the eightbyte: 2517 // 2518 // (a) If both classes are equal, this is the resulting class. 2519 // 2520 // (b) If one of the classes is NO_CLASS, the resulting class is 2521 // the other class. 2522 // 2523 // (c) If one of the classes is MEMORY, the result is the MEMORY 2524 // class. 2525 // 2526 // (d) If one of the classes is INTEGER, the result is the 2527 // INTEGER. 2528 // 2529 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2530 // MEMORY is used as class. 2531 // 2532 // (f) Otherwise class SSE is used. 2533 2534 // Accum should never be memory (we should have returned) or 2535 // ComplexX87 (because this cannot be passed in a structure). 2536 assert((Accum != Memory && Accum != ComplexX87) && 2537 "Invalid accumulated classification during merge."); 2538 if (Accum == Field || Field == NoClass) 2539 return Accum; 2540 if (Field == Memory) 2541 return Memory; 2542 if (Accum == NoClass) 2543 return Field; 2544 if (Accum == Integer || Field == Integer) 2545 return Integer; 2546 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2547 Accum == X87 || Accum == X87Up) 2548 return Memory; 2549 return SSE; 2550 } 2551 2552 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2553 Class &Lo, Class &Hi, bool isNamedArg) const { 2554 // FIXME: This code can be simplified by introducing a simple value class for 2555 // Class pairs with appropriate constructor methods for the various 2556 // situations. 2557 2558 // FIXME: Some of the split computations are wrong; unaligned vectors 2559 // shouldn't be passed in registers for example, so there is no chance they 2560 // can straddle an eightbyte. Verify & simplify. 2561 2562 Lo = Hi = NoClass; 2563 2564 Class &Current = OffsetBase < 64 ? Lo : Hi; 2565 Current = Memory; 2566 2567 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2568 BuiltinType::Kind k = BT->getKind(); 2569 2570 if (k == BuiltinType::Void) { 2571 Current = NoClass; 2572 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2573 Lo = Integer; 2574 Hi = Integer; 2575 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2576 Current = Integer; 2577 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2578 Current = SSE; 2579 } else if (k == BuiltinType::LongDouble) { 2580 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2581 if (LDF == &llvm::APFloat::IEEEquad()) { 2582 Lo = SSE; 2583 Hi = SSEUp; 2584 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2585 Lo = X87; 2586 Hi = X87Up; 2587 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2588 Current = SSE; 2589 } else 2590 llvm_unreachable("unexpected long double representation!"); 2591 } 2592 // FIXME: _Decimal32 and _Decimal64 are SSE. 2593 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2594 return; 2595 } 2596 2597 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2598 // Classify the underlying integer type. 2599 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2600 return; 2601 } 2602 2603 if (Ty->hasPointerRepresentation()) { 2604 Current = Integer; 2605 return; 2606 } 2607 2608 if (Ty->isMemberPointerType()) { 2609 if (Ty->isMemberFunctionPointerType()) { 2610 if (Has64BitPointers) { 2611 // If Has64BitPointers, this is an {i64, i64}, so classify both 2612 // Lo and Hi now. 2613 Lo = Hi = Integer; 2614 } else { 2615 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2616 // straddles an eightbyte boundary, Hi should be classified as well. 2617 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2618 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2619 if (EB_FuncPtr != EB_ThisAdj) { 2620 Lo = Hi = Integer; 2621 } else { 2622 Current = Integer; 2623 } 2624 } 2625 } else { 2626 Current = Integer; 2627 } 2628 return; 2629 } 2630 2631 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2632 uint64_t Size = getContext().getTypeSize(VT); 2633 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2634 // gcc passes the following as integer: 2635 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2636 // 2 bytes - <2 x char>, <1 x short> 2637 // 1 byte - <1 x char> 2638 Current = Integer; 2639 2640 // If this type crosses an eightbyte boundary, it should be 2641 // split. 2642 uint64_t EB_Lo = (OffsetBase) / 64; 2643 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2644 if (EB_Lo != EB_Hi) 2645 Hi = Lo; 2646 } else if (Size == 64) { 2647 QualType ElementType = VT->getElementType(); 2648 2649 // gcc passes <1 x double> in memory. :( 2650 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2651 return; 2652 2653 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2654 // pass them as integer. For platforms where clang is the de facto 2655 // platform compiler, we must continue to use integer. 2656 if (!classifyIntegerMMXAsSSE() && 2657 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2658 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2659 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2660 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2661 Current = Integer; 2662 else 2663 Current = SSE; 2664 2665 // If this type crosses an eightbyte boundary, it should be 2666 // split. 2667 if (OffsetBase && OffsetBase != 64) 2668 Hi = Lo; 2669 } else if (Size == 128 || 2670 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2671 // Arguments of 256-bits are split into four eightbyte chunks. The 2672 // least significant one belongs to class SSE and all the others to class 2673 // SSEUP. The original Lo and Hi design considers that types can't be 2674 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2675 // This design isn't correct for 256-bits, but since there're no cases 2676 // where the upper parts would need to be inspected, avoid adding 2677 // complexity and just consider Hi to match the 64-256 part. 2678 // 2679 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2680 // registers if they are "named", i.e. not part of the "..." of a 2681 // variadic function. 2682 // 2683 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2684 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2685 Lo = SSE; 2686 Hi = SSEUp; 2687 } 2688 return; 2689 } 2690 2691 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2692 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2693 2694 uint64_t Size = getContext().getTypeSize(Ty); 2695 if (ET->isIntegralOrEnumerationType()) { 2696 if (Size <= 64) 2697 Current = Integer; 2698 else if (Size <= 128) 2699 Lo = Hi = Integer; 2700 } else if (ET == getContext().FloatTy) { 2701 Current = SSE; 2702 } else if (ET == getContext().DoubleTy) { 2703 Lo = Hi = SSE; 2704 } else if (ET == getContext().LongDoubleTy) { 2705 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2706 if (LDF == &llvm::APFloat::IEEEquad()) 2707 Current = Memory; 2708 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2709 Current = ComplexX87; 2710 else if (LDF == &llvm::APFloat::IEEEdouble()) 2711 Lo = Hi = SSE; 2712 else 2713 llvm_unreachable("unexpected long double representation!"); 2714 } 2715 2716 // If this complex type crosses an eightbyte boundary then it 2717 // should be split. 2718 uint64_t EB_Real = (OffsetBase) / 64; 2719 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2720 if (Hi == NoClass && EB_Real != EB_Imag) 2721 Hi = Lo; 2722 2723 return; 2724 } 2725 2726 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2727 // Arrays are treated like structures. 2728 2729 uint64_t Size = getContext().getTypeSize(Ty); 2730 2731 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2732 // than eight eightbytes, ..., it has class MEMORY. 2733 if (Size > 512) 2734 return; 2735 2736 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2737 // fields, it has class MEMORY. 2738 // 2739 // Only need to check alignment of array base. 2740 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2741 return; 2742 2743 // Otherwise implement simplified merge. We could be smarter about 2744 // this, but it isn't worth it and would be harder to verify. 2745 Current = NoClass; 2746 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2747 uint64_t ArraySize = AT->getSize().getZExtValue(); 2748 2749 // The only case a 256-bit wide vector could be used is when the array 2750 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2751 // to work for sizes wider than 128, early check and fallback to memory. 2752 // 2753 if (Size > 128 && 2754 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2755 return; 2756 2757 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2758 Class FieldLo, FieldHi; 2759 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2760 Lo = merge(Lo, FieldLo); 2761 Hi = merge(Hi, FieldHi); 2762 if (Lo == Memory || Hi == Memory) 2763 break; 2764 } 2765 2766 postMerge(Size, Lo, Hi); 2767 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2768 return; 2769 } 2770 2771 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2772 uint64_t Size = getContext().getTypeSize(Ty); 2773 2774 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2775 // than eight eightbytes, ..., it has class MEMORY. 2776 if (Size > 512) 2777 return; 2778 2779 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2780 // copy constructor or a non-trivial destructor, it is passed by invisible 2781 // reference. 2782 if (getRecordArgABI(RT, getCXXABI())) 2783 return; 2784 2785 const RecordDecl *RD = RT->getDecl(); 2786 2787 // Assume variable sized types are passed in memory. 2788 if (RD->hasFlexibleArrayMember()) 2789 return; 2790 2791 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2792 2793 // Reset Lo class, this will be recomputed. 2794 Current = NoClass; 2795 2796 // If this is a C++ record, classify the bases first. 2797 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2798 for (const auto &I : CXXRD->bases()) { 2799 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2800 "Unexpected base class!"); 2801 const CXXRecordDecl *Base = 2802 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2803 2804 // Classify this field. 2805 // 2806 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2807 // single eightbyte, each is classified separately. Each eightbyte gets 2808 // initialized to class NO_CLASS. 2809 Class FieldLo, FieldHi; 2810 uint64_t Offset = 2811 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2812 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2813 Lo = merge(Lo, FieldLo); 2814 Hi = merge(Hi, FieldHi); 2815 if (Lo == Memory || Hi == Memory) { 2816 postMerge(Size, Lo, Hi); 2817 return; 2818 } 2819 } 2820 } 2821 2822 // Classify the fields one at a time, merging the results. 2823 unsigned idx = 0; 2824 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2825 i != e; ++i, ++idx) { 2826 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2827 bool BitField = i->isBitField(); 2828 2829 // Ignore padding bit-fields. 2830 if (BitField && i->isUnnamedBitfield()) 2831 continue; 2832 2833 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2834 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2835 // 2836 // The only case a 256-bit wide vector could be used is when the struct 2837 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2838 // to work for sizes wider than 128, early check and fallback to memory. 2839 // 2840 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2841 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2842 Lo = Memory; 2843 postMerge(Size, Lo, Hi); 2844 return; 2845 } 2846 // Note, skip this test for bit-fields, see below. 2847 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2848 Lo = Memory; 2849 postMerge(Size, Lo, Hi); 2850 return; 2851 } 2852 2853 // Classify this field. 2854 // 2855 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2856 // exceeds a single eightbyte, each is classified 2857 // separately. Each eightbyte gets initialized to class 2858 // NO_CLASS. 2859 Class FieldLo, FieldHi; 2860 2861 // Bit-fields require special handling, they do not force the 2862 // structure to be passed in memory even if unaligned, and 2863 // therefore they can straddle an eightbyte. 2864 if (BitField) { 2865 assert(!i->isUnnamedBitfield()); 2866 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2867 uint64_t Size = i->getBitWidthValue(getContext()); 2868 2869 uint64_t EB_Lo = Offset / 64; 2870 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2871 2872 if (EB_Lo) { 2873 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2874 FieldLo = NoClass; 2875 FieldHi = Integer; 2876 } else { 2877 FieldLo = Integer; 2878 FieldHi = EB_Hi ? Integer : NoClass; 2879 } 2880 } else 2881 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2882 Lo = merge(Lo, FieldLo); 2883 Hi = merge(Hi, FieldHi); 2884 if (Lo == Memory || Hi == Memory) 2885 break; 2886 } 2887 2888 postMerge(Size, Lo, Hi); 2889 } 2890 } 2891 2892 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2893 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2894 // place naturally. 2895 if (!isAggregateTypeForABI(Ty)) { 2896 // Treat an enum type as its underlying type. 2897 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2898 Ty = EnumTy->getDecl()->getIntegerType(); 2899 2900 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2901 : ABIArgInfo::getDirect()); 2902 } 2903 2904 return getNaturalAlignIndirect(Ty); 2905 } 2906 2907 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2908 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2909 uint64_t Size = getContext().getTypeSize(VecTy); 2910 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2911 if (Size <= 64 || Size > LargestVector) 2912 return true; 2913 } 2914 2915 return false; 2916 } 2917 2918 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2919 unsigned freeIntRegs) const { 2920 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2921 // place naturally. 2922 // 2923 // This assumption is optimistic, as there could be free registers available 2924 // when we need to pass this argument in memory, and LLVM could try to pass 2925 // the argument in the free register. This does not seem to happen currently, 2926 // but this code would be much safer if we could mark the argument with 2927 // 'onstack'. See PR12193. 2928 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2929 // Treat an enum type as its underlying type. 2930 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2931 Ty = EnumTy->getDecl()->getIntegerType(); 2932 2933 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2934 : ABIArgInfo::getDirect()); 2935 } 2936 2937 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2938 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2939 2940 // Compute the byval alignment. We specify the alignment of the byval in all 2941 // cases so that the mid-level optimizer knows the alignment of the byval. 2942 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2943 2944 // Attempt to avoid passing indirect results using byval when possible. This 2945 // is important for good codegen. 2946 // 2947 // We do this by coercing the value into a scalar type which the backend can 2948 // handle naturally (i.e., without using byval). 2949 // 2950 // For simplicity, we currently only do this when we have exhausted all of the 2951 // free integer registers. Doing this when there are free integer registers 2952 // would require more care, as we would have to ensure that the coerced value 2953 // did not claim the unused register. That would require either reording the 2954 // arguments to the function (so that any subsequent inreg values came first), 2955 // or only doing this optimization when there were no following arguments that 2956 // might be inreg. 2957 // 2958 // We currently expect it to be rare (particularly in well written code) for 2959 // arguments to be passed on the stack when there are still free integer 2960 // registers available (this would typically imply large structs being passed 2961 // by value), so this seems like a fair tradeoff for now. 2962 // 2963 // We can revisit this if the backend grows support for 'onstack' parameter 2964 // attributes. See PR12193. 2965 if (freeIntRegs == 0) { 2966 uint64_t Size = getContext().getTypeSize(Ty); 2967 2968 // If this type fits in an eightbyte, coerce it into the matching integral 2969 // type, which will end up on the stack (with alignment 8). 2970 if (Align == 8 && Size <= 64) 2971 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2972 Size)); 2973 } 2974 2975 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2976 } 2977 2978 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2979 /// register. Pick an LLVM IR type that will be passed as a vector register. 2980 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2981 // Wrapper structs/arrays that only contain vectors are passed just like 2982 // vectors; strip them off if present. 2983 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2984 Ty = QualType(InnerTy, 0); 2985 2986 llvm::Type *IRType = CGT.ConvertType(Ty); 2987 if (isa<llvm::VectorType>(IRType) || 2988 IRType->getTypeID() == llvm::Type::FP128TyID) 2989 return IRType; 2990 2991 // We couldn't find the preferred IR vector type for 'Ty'. 2992 uint64_t Size = getContext().getTypeSize(Ty); 2993 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2994 2995 // Return a LLVM IR vector type based on the size of 'Ty'. 2996 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2997 Size / 64); 2998 } 2999 3000 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3001 /// is known to either be off the end of the specified type or being in 3002 /// alignment padding. The user type specified is known to be at most 128 bits 3003 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3004 /// classification that put one of the two halves in the INTEGER class. 3005 /// 3006 /// It is conservatively correct to return false. 3007 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3008 unsigned EndBit, ASTContext &Context) { 3009 // If the bytes being queried are off the end of the type, there is no user 3010 // data hiding here. This handles analysis of builtins, vectors and other 3011 // types that don't contain interesting padding. 3012 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3013 if (TySize <= StartBit) 3014 return true; 3015 3016 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3017 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3018 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3019 3020 // Check each element to see if the element overlaps with the queried range. 3021 for (unsigned i = 0; i != NumElts; ++i) { 3022 // If the element is after the span we care about, then we're done.. 3023 unsigned EltOffset = i*EltSize; 3024 if (EltOffset >= EndBit) break; 3025 3026 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3027 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3028 EndBit-EltOffset, Context)) 3029 return false; 3030 } 3031 // If it overlaps no elements, then it is safe to process as padding. 3032 return true; 3033 } 3034 3035 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3036 const RecordDecl *RD = RT->getDecl(); 3037 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3038 3039 // If this is a C++ record, check the bases first. 3040 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3041 for (const auto &I : CXXRD->bases()) { 3042 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3043 "Unexpected base class!"); 3044 const CXXRecordDecl *Base = 3045 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3046 3047 // If the base is after the span we care about, ignore it. 3048 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3049 if (BaseOffset >= EndBit) continue; 3050 3051 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3052 if (!BitsContainNoUserData(I.getType(), BaseStart, 3053 EndBit-BaseOffset, Context)) 3054 return false; 3055 } 3056 } 3057 3058 // Verify that no field has data that overlaps the region of interest. Yes 3059 // this could be sped up a lot by being smarter about queried fields, 3060 // however we're only looking at structs up to 16 bytes, so we don't care 3061 // much. 3062 unsigned idx = 0; 3063 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3064 i != e; ++i, ++idx) { 3065 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3066 3067 // If we found a field after the region we care about, then we're done. 3068 if (FieldOffset >= EndBit) break; 3069 3070 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3071 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3072 Context)) 3073 return false; 3074 } 3075 3076 // If nothing in this record overlapped the area of interest, then we're 3077 // clean. 3078 return true; 3079 } 3080 3081 return false; 3082 } 3083 3084 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3085 /// float member at the specified offset. For example, {int,{float}} has a 3086 /// float at offset 4. It is conservatively correct for this routine to return 3087 /// false. 3088 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3089 const llvm::DataLayout &TD) { 3090 // Base case if we find a float. 3091 if (IROffset == 0 && IRType->isFloatTy()) 3092 return true; 3093 3094 // If this is a struct, recurse into the field at the specified offset. 3095 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3096 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3097 unsigned Elt = SL->getElementContainingOffset(IROffset); 3098 IROffset -= SL->getElementOffset(Elt); 3099 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3100 } 3101 3102 // If this is an array, recurse into the field at the specified offset. 3103 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3104 llvm::Type *EltTy = ATy->getElementType(); 3105 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3106 IROffset -= IROffset/EltSize*EltSize; 3107 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3108 } 3109 3110 return false; 3111 } 3112 3113 3114 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3115 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3116 llvm::Type *X86_64ABIInfo:: 3117 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3118 QualType SourceTy, unsigned SourceOffset) const { 3119 // The only three choices we have are either double, <2 x float>, or float. We 3120 // pass as float if the last 4 bytes is just padding. This happens for 3121 // structs that contain 3 floats. 3122 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3123 SourceOffset*8+64, getContext())) 3124 return llvm::Type::getFloatTy(getVMContext()); 3125 3126 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3127 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3128 // case. 3129 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3130 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3131 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3132 3133 return llvm::Type::getDoubleTy(getVMContext()); 3134 } 3135 3136 3137 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3138 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3139 /// about the high or low part of an up-to-16-byte struct. This routine picks 3140 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3141 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3142 /// etc). 3143 /// 3144 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3145 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3146 /// the 8-byte value references. PrefType may be null. 3147 /// 3148 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3149 /// an offset into this that we're processing (which is always either 0 or 8). 3150 /// 3151 llvm::Type *X86_64ABIInfo:: 3152 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3153 QualType SourceTy, unsigned SourceOffset) const { 3154 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3155 // returning an 8-byte unit starting with it. See if we can safely use it. 3156 if (IROffset == 0) { 3157 // Pointers and int64's always fill the 8-byte unit. 3158 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3159 IRType->isIntegerTy(64)) 3160 return IRType; 3161 3162 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3163 // goodness in the source type is just tail padding. This is allowed to 3164 // kick in for struct {double,int} on the int, but not on 3165 // struct{double,int,int} because we wouldn't return the second int. We 3166 // have to do this analysis on the source type because we can't depend on 3167 // unions being lowered a specific way etc. 3168 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3169 IRType->isIntegerTy(32) || 3170 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3171 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3172 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3173 3174 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3175 SourceOffset*8+64, getContext())) 3176 return IRType; 3177 } 3178 } 3179 3180 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3181 // If this is a struct, recurse into the field at the specified offset. 3182 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3183 if (IROffset < SL->getSizeInBytes()) { 3184 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3185 IROffset -= SL->getElementOffset(FieldIdx); 3186 3187 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3188 SourceTy, SourceOffset); 3189 } 3190 } 3191 3192 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3193 llvm::Type *EltTy = ATy->getElementType(); 3194 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3195 unsigned EltOffset = IROffset/EltSize*EltSize; 3196 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3197 SourceOffset); 3198 } 3199 3200 // Okay, we don't have any better idea of what to pass, so we pass this in an 3201 // integer register that isn't too big to fit the rest of the struct. 3202 unsigned TySizeInBytes = 3203 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3204 3205 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3206 3207 // It is always safe to classify this as an integer type up to i64 that 3208 // isn't larger than the structure. 3209 return llvm::IntegerType::get(getVMContext(), 3210 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3211 } 3212 3213 3214 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3215 /// be used as elements of a two register pair to pass or return, return a 3216 /// first class aggregate to represent them. For example, if the low part of 3217 /// a by-value argument should be passed as i32* and the high part as float, 3218 /// return {i32*, float}. 3219 static llvm::Type * 3220 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3221 const llvm::DataLayout &TD) { 3222 // In order to correctly satisfy the ABI, we need to the high part to start 3223 // at offset 8. If the high and low parts we inferred are both 4-byte types 3224 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3225 // the second element at offset 8. Check for this: 3226 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3227 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3228 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3229 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3230 3231 // To handle this, we have to increase the size of the low part so that the 3232 // second element will start at an 8 byte offset. We can't increase the size 3233 // of the second element because it might make us access off the end of the 3234 // struct. 3235 if (HiStart != 8) { 3236 // There are usually two sorts of types the ABI generation code can produce 3237 // for the low part of a pair that aren't 8 bytes in size: float or 3238 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3239 // NaCl). 3240 // Promote these to a larger type. 3241 if (Lo->isFloatTy()) 3242 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3243 else { 3244 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3245 && "Invalid/unknown lo type"); 3246 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3247 } 3248 } 3249 3250 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3251 3252 // Verify that the second element is at an 8-byte offset. 3253 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3254 "Invalid x86-64 argument pair!"); 3255 return Result; 3256 } 3257 3258 ABIArgInfo X86_64ABIInfo:: 3259 classifyReturnType(QualType RetTy) const { 3260 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3261 // classification algorithm. 3262 X86_64ABIInfo::Class Lo, Hi; 3263 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3264 3265 // Check some invariants. 3266 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3267 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3268 3269 llvm::Type *ResType = nullptr; 3270 switch (Lo) { 3271 case NoClass: 3272 if (Hi == NoClass) 3273 return ABIArgInfo::getIgnore(); 3274 // If the low part is just padding, it takes no register, leave ResType 3275 // null. 3276 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3277 "Unknown missing lo part"); 3278 break; 3279 3280 case SSEUp: 3281 case X87Up: 3282 llvm_unreachable("Invalid classification for lo word."); 3283 3284 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3285 // hidden argument. 3286 case Memory: 3287 return getIndirectReturnResult(RetTy); 3288 3289 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3290 // available register of the sequence %rax, %rdx is used. 3291 case Integer: 3292 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3293 3294 // If we have a sign or zero extended integer, make sure to return Extend 3295 // so that the parameter gets the right LLVM IR attributes. 3296 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3297 // Treat an enum type as its underlying type. 3298 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3299 RetTy = EnumTy->getDecl()->getIntegerType(); 3300 3301 if (RetTy->isIntegralOrEnumerationType() && 3302 RetTy->isPromotableIntegerType()) 3303 return ABIArgInfo::getExtend(RetTy); 3304 } 3305 break; 3306 3307 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3308 // available SSE register of the sequence %xmm0, %xmm1 is used. 3309 case SSE: 3310 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3311 break; 3312 3313 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3314 // returned on the X87 stack in %st0 as 80-bit x87 number. 3315 case X87: 3316 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3317 break; 3318 3319 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3320 // part of the value is returned in %st0 and the imaginary part in 3321 // %st1. 3322 case ComplexX87: 3323 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3324 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3325 llvm::Type::getX86_FP80Ty(getVMContext())); 3326 break; 3327 } 3328 3329 llvm::Type *HighPart = nullptr; 3330 switch (Hi) { 3331 // Memory was handled previously and X87 should 3332 // never occur as a hi class. 3333 case Memory: 3334 case X87: 3335 llvm_unreachable("Invalid classification for hi word."); 3336 3337 case ComplexX87: // Previously handled. 3338 case NoClass: 3339 break; 3340 3341 case Integer: 3342 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3343 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3344 return ABIArgInfo::getDirect(HighPart, 8); 3345 break; 3346 case SSE: 3347 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3348 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3349 return ABIArgInfo::getDirect(HighPart, 8); 3350 break; 3351 3352 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3353 // is passed in the next available eightbyte chunk if the last used 3354 // vector register. 3355 // 3356 // SSEUP should always be preceded by SSE, just widen. 3357 case SSEUp: 3358 assert(Lo == SSE && "Unexpected SSEUp classification."); 3359 ResType = GetByteVectorType(RetTy); 3360 break; 3361 3362 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3363 // returned together with the previous X87 value in %st0. 3364 case X87Up: 3365 // If X87Up is preceded by X87, we don't need to do 3366 // anything. However, in some cases with unions it may not be 3367 // preceded by X87. In such situations we follow gcc and pass the 3368 // extra bits in an SSE reg. 3369 if (Lo != X87) { 3370 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3371 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3372 return ABIArgInfo::getDirect(HighPart, 8); 3373 } 3374 break; 3375 } 3376 3377 // If a high part was specified, merge it together with the low part. It is 3378 // known to pass in the high eightbyte of the result. We do this by forming a 3379 // first class struct aggregate with the high and low part: {low, high} 3380 if (HighPart) 3381 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3382 3383 return ABIArgInfo::getDirect(ResType); 3384 } 3385 3386 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3387 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3388 bool isNamedArg) 3389 const 3390 { 3391 Ty = useFirstFieldIfTransparentUnion(Ty); 3392 3393 X86_64ABIInfo::Class Lo, Hi; 3394 classify(Ty, 0, Lo, Hi, isNamedArg); 3395 3396 // Check some invariants. 3397 // FIXME: Enforce these by construction. 3398 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3399 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3400 3401 neededInt = 0; 3402 neededSSE = 0; 3403 llvm::Type *ResType = nullptr; 3404 switch (Lo) { 3405 case NoClass: 3406 if (Hi == NoClass) 3407 return ABIArgInfo::getIgnore(); 3408 // If the low part is just padding, it takes no register, leave ResType 3409 // null. 3410 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3411 "Unknown missing lo part"); 3412 break; 3413 3414 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3415 // on the stack. 3416 case Memory: 3417 3418 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3419 // COMPLEX_X87, it is passed in memory. 3420 case X87: 3421 case ComplexX87: 3422 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3423 ++neededInt; 3424 return getIndirectResult(Ty, freeIntRegs); 3425 3426 case SSEUp: 3427 case X87Up: 3428 llvm_unreachable("Invalid classification for lo word."); 3429 3430 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3431 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3432 // and %r9 is used. 3433 case Integer: 3434 ++neededInt; 3435 3436 // Pick an 8-byte type based on the preferred type. 3437 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3438 3439 // If we have a sign or zero extended integer, make sure to return Extend 3440 // so that the parameter gets the right LLVM IR attributes. 3441 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3442 // Treat an enum type as its underlying type. 3443 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3444 Ty = EnumTy->getDecl()->getIntegerType(); 3445 3446 if (Ty->isIntegralOrEnumerationType() && 3447 Ty->isPromotableIntegerType()) 3448 return ABIArgInfo::getExtend(Ty); 3449 } 3450 3451 break; 3452 3453 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3454 // available SSE register is used, the registers are taken in the 3455 // order from %xmm0 to %xmm7. 3456 case SSE: { 3457 llvm::Type *IRType = CGT.ConvertType(Ty); 3458 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3459 ++neededSSE; 3460 break; 3461 } 3462 } 3463 3464 llvm::Type *HighPart = nullptr; 3465 switch (Hi) { 3466 // Memory was handled previously, ComplexX87 and X87 should 3467 // never occur as hi classes, and X87Up must be preceded by X87, 3468 // which is passed in memory. 3469 case Memory: 3470 case X87: 3471 case ComplexX87: 3472 llvm_unreachable("Invalid classification for hi word."); 3473 3474 case NoClass: break; 3475 3476 case Integer: 3477 ++neededInt; 3478 // Pick an 8-byte type based on the preferred type. 3479 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3480 3481 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3482 return ABIArgInfo::getDirect(HighPart, 8); 3483 break; 3484 3485 // X87Up generally doesn't occur here (long double is passed in 3486 // memory), except in situations involving unions. 3487 case X87Up: 3488 case SSE: 3489 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3490 3491 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3492 return ABIArgInfo::getDirect(HighPart, 8); 3493 3494 ++neededSSE; 3495 break; 3496 3497 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3498 // eightbyte is passed in the upper half of the last used SSE 3499 // register. This only happens when 128-bit vectors are passed. 3500 case SSEUp: 3501 assert(Lo == SSE && "Unexpected SSEUp classification"); 3502 ResType = GetByteVectorType(Ty); 3503 break; 3504 } 3505 3506 // If a high part was specified, merge it together with the low part. It is 3507 // known to pass in the high eightbyte of the result. We do this by forming a 3508 // first class struct aggregate with the high and low part: {low, high} 3509 if (HighPart) 3510 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3511 3512 return ABIArgInfo::getDirect(ResType); 3513 } 3514 3515 ABIArgInfo 3516 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3517 unsigned &NeededSSE) const { 3518 auto RT = Ty->getAs<RecordType>(); 3519 assert(RT && "classifyRegCallStructType only valid with struct types"); 3520 3521 if (RT->getDecl()->hasFlexibleArrayMember()) 3522 return getIndirectReturnResult(Ty); 3523 3524 // Sum up bases 3525 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3526 if (CXXRD->isDynamicClass()) { 3527 NeededInt = NeededSSE = 0; 3528 return getIndirectReturnResult(Ty); 3529 } 3530 3531 for (const auto &I : CXXRD->bases()) 3532 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3533 .isIndirect()) { 3534 NeededInt = NeededSSE = 0; 3535 return getIndirectReturnResult(Ty); 3536 } 3537 } 3538 3539 // Sum up members 3540 for (const auto *FD : RT->getDecl()->fields()) { 3541 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3542 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3543 .isIndirect()) { 3544 NeededInt = NeededSSE = 0; 3545 return getIndirectReturnResult(Ty); 3546 } 3547 } else { 3548 unsigned LocalNeededInt, LocalNeededSSE; 3549 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3550 LocalNeededSSE, true) 3551 .isIndirect()) { 3552 NeededInt = NeededSSE = 0; 3553 return getIndirectReturnResult(Ty); 3554 } 3555 NeededInt += LocalNeededInt; 3556 NeededSSE += LocalNeededSSE; 3557 } 3558 } 3559 3560 return ABIArgInfo::getDirect(); 3561 } 3562 3563 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3564 unsigned &NeededInt, 3565 unsigned &NeededSSE) const { 3566 3567 NeededInt = 0; 3568 NeededSSE = 0; 3569 3570 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3571 } 3572 3573 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3574 3575 const unsigned CallingConv = FI.getCallingConvention(); 3576 // It is possible to force Win64 calling convention on any x86_64 target by 3577 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3578 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3579 if (CallingConv == llvm::CallingConv::Win64) { 3580 WinX86_64ABIInfo Win64ABIInfo(CGT); 3581 Win64ABIInfo.computeInfo(FI); 3582 return; 3583 } 3584 3585 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3586 3587 // Keep track of the number of assigned registers. 3588 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3589 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3590 unsigned NeededInt, NeededSSE; 3591 3592 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3593 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3594 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3595 FI.getReturnInfo() = 3596 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3597 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3598 FreeIntRegs -= NeededInt; 3599 FreeSSERegs -= NeededSSE; 3600 } else { 3601 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3602 } 3603 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3604 // Complex Long Double Type is passed in Memory when Regcall 3605 // calling convention is used. 3606 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3607 if (getContext().getCanonicalType(CT->getElementType()) == 3608 getContext().LongDoubleTy) 3609 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3610 } else 3611 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3612 } 3613 3614 // If the return value is indirect, then the hidden argument is consuming one 3615 // integer register. 3616 if (FI.getReturnInfo().isIndirect()) 3617 --FreeIntRegs; 3618 3619 // The chain argument effectively gives us another free register. 3620 if (FI.isChainCall()) 3621 ++FreeIntRegs; 3622 3623 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3624 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3625 // get assigned (in left-to-right order) for passing as follows... 3626 unsigned ArgNo = 0; 3627 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3628 it != ie; ++it, ++ArgNo) { 3629 bool IsNamedArg = ArgNo < NumRequiredArgs; 3630 3631 if (IsRegCall && it->type->isStructureOrClassType()) 3632 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3633 else 3634 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3635 NeededSSE, IsNamedArg); 3636 3637 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3638 // eightbyte of an argument, the whole argument is passed on the 3639 // stack. If registers have already been assigned for some 3640 // eightbytes of such an argument, the assignments get reverted. 3641 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3642 FreeIntRegs -= NeededInt; 3643 FreeSSERegs -= NeededSSE; 3644 } else { 3645 it->info = getIndirectResult(it->type, FreeIntRegs); 3646 } 3647 } 3648 } 3649 3650 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3651 Address VAListAddr, QualType Ty) { 3652 Address overflow_arg_area_p = 3653 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3654 llvm::Value *overflow_arg_area = 3655 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3656 3657 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3658 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3659 // It isn't stated explicitly in the standard, but in practice we use 3660 // alignment greater than 16 where necessary. 3661 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3662 if (Align > CharUnits::fromQuantity(8)) { 3663 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3664 Align); 3665 } 3666 3667 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3668 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3669 llvm::Value *Res = 3670 CGF.Builder.CreateBitCast(overflow_arg_area, 3671 llvm::PointerType::getUnqual(LTy)); 3672 3673 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3674 // l->overflow_arg_area + sizeof(type). 3675 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3676 // an 8 byte boundary. 3677 3678 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3679 llvm::Value *Offset = 3680 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3681 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3682 "overflow_arg_area.next"); 3683 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3684 3685 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3686 return Address(Res, Align); 3687 } 3688 3689 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3690 QualType Ty) const { 3691 // Assume that va_list type is correct; should be pointer to LLVM type: 3692 // struct { 3693 // i32 gp_offset; 3694 // i32 fp_offset; 3695 // i8* overflow_arg_area; 3696 // i8* reg_save_area; 3697 // }; 3698 unsigned neededInt, neededSSE; 3699 3700 Ty = getContext().getCanonicalType(Ty); 3701 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3702 /*isNamedArg*/false); 3703 3704 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3705 // in the registers. If not go to step 7. 3706 if (!neededInt && !neededSSE) 3707 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3708 3709 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3710 // general purpose registers needed to pass type and num_fp to hold 3711 // the number of floating point registers needed. 3712 3713 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3714 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3715 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3716 // 3717 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3718 // register save space). 3719 3720 llvm::Value *InRegs = nullptr; 3721 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3722 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3723 if (neededInt) { 3724 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3725 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3726 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3727 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3728 } 3729 3730 if (neededSSE) { 3731 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3732 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3733 llvm::Value *FitsInFP = 3734 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3735 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3736 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3737 } 3738 3739 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3740 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3741 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3742 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3743 3744 // Emit code to load the value if it was passed in registers. 3745 3746 CGF.EmitBlock(InRegBlock); 3747 3748 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3749 // an offset of l->gp_offset and/or l->fp_offset. This may require 3750 // copying to a temporary location in case the parameter is passed 3751 // in different register classes or requires an alignment greater 3752 // than 8 for general purpose registers and 16 for XMM registers. 3753 // 3754 // FIXME: This really results in shameful code when we end up needing to 3755 // collect arguments from different places; often what should result in a 3756 // simple assembling of a structure from scattered addresses has many more 3757 // loads than necessary. Can we clean this up? 3758 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3759 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3760 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3761 3762 Address RegAddr = Address::invalid(); 3763 if (neededInt && neededSSE) { 3764 // FIXME: Cleanup. 3765 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3766 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3767 Address Tmp = CGF.CreateMemTemp(Ty); 3768 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3769 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3770 llvm::Type *TyLo = ST->getElementType(0); 3771 llvm::Type *TyHi = ST->getElementType(1); 3772 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3773 "Unexpected ABI info for mixed regs"); 3774 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3775 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3776 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3777 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3778 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3779 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3780 3781 // Copy the first element. 3782 // FIXME: Our choice of alignment here and below is probably pessimistic. 3783 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3784 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3785 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3786 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3787 3788 // Copy the second element. 3789 V = CGF.Builder.CreateAlignedLoad( 3790 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3791 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3792 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3793 3794 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3795 } else if (neededInt) { 3796 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3797 CharUnits::fromQuantity(8)); 3798 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3799 3800 // Copy to a temporary if necessary to ensure the appropriate alignment. 3801 std::pair<CharUnits, CharUnits> SizeAlign = 3802 getContext().getTypeInfoInChars(Ty); 3803 uint64_t TySize = SizeAlign.first.getQuantity(); 3804 CharUnits TyAlign = SizeAlign.second; 3805 3806 // Copy into a temporary if the type is more aligned than the 3807 // register save area. 3808 if (TyAlign.getQuantity() > 8) { 3809 Address Tmp = CGF.CreateMemTemp(Ty); 3810 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3811 RegAddr = Tmp; 3812 } 3813 3814 } else if (neededSSE == 1) { 3815 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3816 CharUnits::fromQuantity(16)); 3817 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3818 } else { 3819 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3820 // SSE registers are spaced 16 bytes apart in the register save 3821 // area, we need to collect the two eightbytes together. 3822 // The ABI isn't explicit about this, but it seems reasonable 3823 // to assume that the slots are 16-byte aligned, since the stack is 3824 // naturally 16-byte aligned and the prologue is expected to store 3825 // all the SSE registers to the RSA. 3826 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3827 CharUnits::fromQuantity(16)); 3828 Address RegAddrHi = 3829 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3830 CharUnits::fromQuantity(16)); 3831 llvm::Type *ST = AI.canHaveCoerceToType() 3832 ? AI.getCoerceToType() 3833 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3834 llvm::Value *V; 3835 Address Tmp = CGF.CreateMemTemp(Ty); 3836 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3837 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3838 RegAddrLo, ST->getStructElementType(0))); 3839 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3840 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3841 RegAddrHi, ST->getStructElementType(1))); 3842 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3843 3844 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3845 } 3846 3847 // AMD64-ABI 3.5.7p5: Step 5. Set: 3848 // l->gp_offset = l->gp_offset + num_gp * 8 3849 // l->fp_offset = l->fp_offset + num_fp * 16. 3850 if (neededInt) { 3851 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3852 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3853 gp_offset_p); 3854 } 3855 if (neededSSE) { 3856 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3857 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3858 fp_offset_p); 3859 } 3860 CGF.EmitBranch(ContBlock); 3861 3862 // Emit code to load the value if it was passed in memory. 3863 3864 CGF.EmitBlock(InMemBlock); 3865 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3866 3867 // Return the appropriate result. 3868 3869 CGF.EmitBlock(ContBlock); 3870 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3871 "vaarg.addr"); 3872 return ResAddr; 3873 } 3874 3875 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3876 QualType Ty) const { 3877 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3878 CGF.getContext().getTypeInfoInChars(Ty), 3879 CharUnits::fromQuantity(8), 3880 /*allowHigherAlign*/ false); 3881 } 3882 3883 ABIArgInfo 3884 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3885 const ABIArgInfo ¤t) const { 3886 // Assumes vectorCall calling convention. 3887 const Type *Base = nullptr; 3888 uint64_t NumElts = 0; 3889 3890 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3891 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3892 FreeSSERegs -= NumElts; 3893 return getDirectX86Hva(); 3894 } 3895 return current; 3896 } 3897 3898 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3899 bool IsReturnType, bool IsVectorCall, 3900 bool IsRegCall) const { 3901 3902 if (Ty->isVoidType()) 3903 return ABIArgInfo::getIgnore(); 3904 3905 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3906 Ty = EnumTy->getDecl()->getIntegerType(); 3907 3908 TypeInfo Info = getContext().getTypeInfo(Ty); 3909 uint64_t Width = Info.Width; 3910 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3911 3912 const RecordType *RT = Ty->getAs<RecordType>(); 3913 if (RT) { 3914 if (!IsReturnType) { 3915 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3916 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3917 } 3918 3919 if (RT->getDecl()->hasFlexibleArrayMember()) 3920 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3921 3922 } 3923 3924 const Type *Base = nullptr; 3925 uint64_t NumElts = 0; 3926 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3927 // other targets. 3928 if ((IsVectorCall || IsRegCall) && 3929 isHomogeneousAggregate(Ty, Base, NumElts)) { 3930 if (IsRegCall) { 3931 if (FreeSSERegs >= NumElts) { 3932 FreeSSERegs -= NumElts; 3933 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3934 return ABIArgInfo::getDirect(); 3935 return ABIArgInfo::getExpand(); 3936 } 3937 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3938 } else if (IsVectorCall) { 3939 if (FreeSSERegs >= NumElts && 3940 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3941 FreeSSERegs -= NumElts; 3942 return ABIArgInfo::getDirect(); 3943 } else if (IsReturnType) { 3944 return ABIArgInfo::getExpand(); 3945 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3946 // HVAs are delayed and reclassified in the 2nd step. 3947 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3948 } 3949 } 3950 } 3951 3952 if (Ty->isMemberPointerType()) { 3953 // If the member pointer is represented by an LLVM int or ptr, pass it 3954 // directly. 3955 llvm::Type *LLTy = CGT.ConvertType(Ty); 3956 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3957 return ABIArgInfo::getDirect(); 3958 } 3959 3960 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3961 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3962 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3963 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3964 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3965 3966 // Otherwise, coerce it to a small integer. 3967 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3968 } 3969 3970 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3971 switch (BT->getKind()) { 3972 case BuiltinType::Bool: 3973 // Bool type is always extended to the ABI, other builtin types are not 3974 // extended. 3975 return ABIArgInfo::getExtend(Ty); 3976 3977 case BuiltinType::LongDouble: 3978 // Mingw64 GCC uses the old 80 bit extended precision floating point 3979 // unit. It passes them indirectly through memory. 3980 if (IsMingw64) { 3981 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3982 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3983 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3984 } 3985 break; 3986 3987 case BuiltinType::Int128: 3988 case BuiltinType::UInt128: 3989 // If it's a parameter type, the normal ABI rule is that arguments larger 3990 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3991 // even though it isn't particularly efficient. 3992 if (!IsReturnType) 3993 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3994 3995 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3996 // Clang matches them for compatibility. 3997 return ABIArgInfo::getDirect( 3998 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 3999 4000 default: 4001 break; 4002 } 4003 } 4004 4005 return ABIArgInfo::getDirect(); 4006 } 4007 4008 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4009 unsigned FreeSSERegs, 4010 bool IsVectorCall, 4011 bool IsRegCall) const { 4012 unsigned Count = 0; 4013 for (auto &I : FI.arguments()) { 4014 // Vectorcall in x64 only permits the first 6 arguments to be passed 4015 // as XMM/YMM registers. 4016 if (Count < VectorcallMaxParamNumAsReg) 4017 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4018 else { 4019 // Since these cannot be passed in registers, pretend no registers 4020 // are left. 4021 unsigned ZeroSSERegsAvail = 0; 4022 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4023 IsVectorCall, IsRegCall); 4024 } 4025 ++Count; 4026 } 4027 4028 for (auto &I : FI.arguments()) { 4029 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4030 } 4031 } 4032 4033 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4034 bool IsVectorCall = 4035 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 4036 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 4037 4038 unsigned FreeSSERegs = 0; 4039 if (IsVectorCall) { 4040 // We can use up to 4 SSE return registers with vectorcall. 4041 FreeSSERegs = 4; 4042 } else if (IsRegCall) { 4043 // RegCall gives us 16 SSE registers. 4044 FreeSSERegs = 16; 4045 } 4046 4047 if (!getCXXABI().classifyReturnType(FI)) 4048 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4049 IsVectorCall, IsRegCall); 4050 4051 if (IsVectorCall) { 4052 // We can use up to 6 SSE register parameters with vectorcall. 4053 FreeSSERegs = 6; 4054 } else if (IsRegCall) { 4055 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4056 FreeSSERegs = 16; 4057 } 4058 4059 if (IsVectorCall) { 4060 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4061 } else { 4062 for (auto &I : FI.arguments()) 4063 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4064 } 4065 4066 } 4067 4068 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4069 QualType Ty) const { 4070 4071 bool IsIndirect = false; 4072 4073 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4074 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4075 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4076 uint64_t Width = getContext().getTypeSize(Ty); 4077 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4078 } 4079 4080 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4081 CGF.getContext().getTypeInfoInChars(Ty), 4082 CharUnits::fromQuantity(8), 4083 /*allowHigherAlign*/ false); 4084 } 4085 4086 // PowerPC-32 4087 namespace { 4088 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4089 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4090 bool IsSoftFloatABI; 4091 4092 CharUnits getParamTypeAlignment(QualType Ty) const; 4093 4094 public: 4095 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4096 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4097 4098 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4099 QualType Ty) const override; 4100 }; 4101 4102 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4103 public: 4104 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4105 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4106 4107 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4108 // This is recovered from gcc output. 4109 return 1; // r1 is the dedicated stack pointer 4110 } 4111 4112 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4113 llvm::Value *Address) const override; 4114 }; 4115 } 4116 4117 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4118 // Complex types are passed just like their elements 4119 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4120 Ty = CTy->getElementType(); 4121 4122 if (Ty->isVectorType()) 4123 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4124 : 4); 4125 4126 // For single-element float/vector structs, we consider the whole type 4127 // to have the same alignment requirements as its single element. 4128 const Type *AlignTy = nullptr; 4129 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4130 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4131 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4132 (BT && BT->isFloatingPoint())) 4133 AlignTy = EltType; 4134 } 4135 4136 if (AlignTy) 4137 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4138 return CharUnits::fromQuantity(4); 4139 } 4140 4141 // TODO: this implementation is now likely redundant with 4142 // DefaultABIInfo::EmitVAArg. 4143 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4144 QualType Ty) const { 4145 if (getTarget().getTriple().isOSDarwin()) { 4146 auto TI = getContext().getTypeInfoInChars(Ty); 4147 TI.second = getParamTypeAlignment(Ty); 4148 4149 CharUnits SlotSize = CharUnits::fromQuantity(4); 4150 return emitVoidPtrVAArg(CGF, VAList, Ty, 4151 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4152 /*AllowHigherAlign=*/true); 4153 } 4154 4155 const unsigned OverflowLimit = 8; 4156 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4157 // TODO: Implement this. For now ignore. 4158 (void)CTy; 4159 return Address::invalid(); // FIXME? 4160 } 4161 4162 // struct __va_list_tag { 4163 // unsigned char gpr; 4164 // unsigned char fpr; 4165 // unsigned short reserved; 4166 // void *overflow_arg_area; 4167 // void *reg_save_area; 4168 // }; 4169 4170 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4171 bool isInt = 4172 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4173 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4174 4175 // All aggregates are passed indirectly? That doesn't seem consistent 4176 // with the argument-lowering code. 4177 bool isIndirect = Ty->isAggregateType(); 4178 4179 CGBuilderTy &Builder = CGF.Builder; 4180 4181 // The calling convention either uses 1-2 GPRs or 1 FPR. 4182 Address NumRegsAddr = Address::invalid(); 4183 if (isInt || IsSoftFloatABI) { 4184 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4185 } else { 4186 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4187 } 4188 4189 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4190 4191 // "Align" the register count when TY is i64. 4192 if (isI64 || (isF64 && IsSoftFloatABI)) { 4193 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4194 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4195 } 4196 4197 llvm::Value *CC = 4198 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4199 4200 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4201 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4202 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4203 4204 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4205 4206 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4207 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4208 4209 // Case 1: consume registers. 4210 Address RegAddr = Address::invalid(); 4211 { 4212 CGF.EmitBlock(UsingRegs); 4213 4214 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4215 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4216 CharUnits::fromQuantity(8)); 4217 assert(RegAddr.getElementType() == CGF.Int8Ty); 4218 4219 // Floating-point registers start after the general-purpose registers. 4220 if (!(isInt || IsSoftFloatABI)) { 4221 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4222 CharUnits::fromQuantity(32)); 4223 } 4224 4225 // Get the address of the saved value by scaling the number of 4226 // registers we've used by the number of 4227 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4228 llvm::Value *RegOffset = 4229 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4230 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4231 RegAddr.getPointer(), RegOffset), 4232 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4233 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4234 4235 // Increase the used-register count. 4236 NumRegs = 4237 Builder.CreateAdd(NumRegs, 4238 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4239 Builder.CreateStore(NumRegs, NumRegsAddr); 4240 4241 CGF.EmitBranch(Cont); 4242 } 4243 4244 // Case 2: consume space in the overflow area. 4245 Address MemAddr = Address::invalid(); 4246 { 4247 CGF.EmitBlock(UsingOverflow); 4248 4249 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4250 4251 // Everything in the overflow area is rounded up to a size of at least 4. 4252 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4253 4254 CharUnits Size; 4255 if (!isIndirect) { 4256 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4257 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4258 } else { 4259 Size = CGF.getPointerSize(); 4260 } 4261 4262 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4263 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4264 OverflowAreaAlign); 4265 // Round up address of argument to alignment 4266 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4267 if (Align > OverflowAreaAlign) { 4268 llvm::Value *Ptr = OverflowArea.getPointer(); 4269 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4270 Align); 4271 } 4272 4273 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4274 4275 // Increase the overflow area. 4276 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4277 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4278 CGF.EmitBranch(Cont); 4279 } 4280 4281 CGF.EmitBlock(Cont); 4282 4283 // Merge the cases with a phi. 4284 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4285 "vaarg.addr"); 4286 4287 // Load the pointer if the argument was passed indirectly. 4288 if (isIndirect) { 4289 Result = Address(Builder.CreateLoad(Result, "aggr"), 4290 getContext().getTypeAlignInChars(Ty)); 4291 } 4292 4293 return Result; 4294 } 4295 4296 bool 4297 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4298 llvm::Value *Address) const { 4299 // This is calculated from the LLVM and GCC tables and verified 4300 // against gcc output. AFAIK all ABIs use the same encoding. 4301 4302 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4303 4304 llvm::IntegerType *i8 = CGF.Int8Ty; 4305 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4306 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4307 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4308 4309 // 0-31: r0-31, the 4-byte general-purpose registers 4310 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4311 4312 // 32-63: fp0-31, the 8-byte floating-point registers 4313 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4314 4315 // 64-76 are various 4-byte special-purpose registers: 4316 // 64: mq 4317 // 65: lr 4318 // 66: ctr 4319 // 67: ap 4320 // 68-75 cr0-7 4321 // 76: xer 4322 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4323 4324 // 77-108: v0-31, the 16-byte vector registers 4325 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4326 4327 // 109: vrsave 4328 // 110: vscr 4329 // 111: spe_acc 4330 // 112: spefscr 4331 // 113: sfp 4332 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4333 4334 return false; 4335 } 4336 4337 // PowerPC-64 4338 4339 namespace { 4340 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4341 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4342 public: 4343 enum ABIKind { 4344 ELFv1 = 0, 4345 ELFv2 4346 }; 4347 4348 private: 4349 static const unsigned GPRBits = 64; 4350 ABIKind Kind; 4351 bool HasQPX; 4352 bool IsSoftFloatABI; 4353 4354 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4355 // will be passed in a QPX register. 4356 bool IsQPXVectorTy(const Type *Ty) const { 4357 if (!HasQPX) 4358 return false; 4359 4360 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4361 unsigned NumElements = VT->getNumElements(); 4362 if (NumElements == 1) 4363 return false; 4364 4365 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4366 if (getContext().getTypeSize(Ty) <= 256) 4367 return true; 4368 } else if (VT->getElementType()-> 4369 isSpecificBuiltinType(BuiltinType::Float)) { 4370 if (getContext().getTypeSize(Ty) <= 128) 4371 return true; 4372 } 4373 } 4374 4375 return false; 4376 } 4377 4378 bool IsQPXVectorTy(QualType Ty) const { 4379 return IsQPXVectorTy(Ty.getTypePtr()); 4380 } 4381 4382 public: 4383 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4384 bool SoftFloatABI) 4385 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4386 IsSoftFloatABI(SoftFloatABI) {} 4387 4388 bool isPromotableTypeForABI(QualType Ty) const; 4389 CharUnits getParamTypeAlignment(QualType Ty) const; 4390 4391 ABIArgInfo classifyReturnType(QualType RetTy) const; 4392 ABIArgInfo classifyArgumentType(QualType Ty) const; 4393 4394 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4395 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4396 uint64_t Members) const override; 4397 4398 // TODO: We can add more logic to computeInfo to improve performance. 4399 // Example: For aggregate arguments that fit in a register, we could 4400 // use getDirectInReg (as is done below for structs containing a single 4401 // floating-point value) to avoid pushing them to memory on function 4402 // entry. This would require changing the logic in PPCISelLowering 4403 // when lowering the parameters in the caller and args in the callee. 4404 void computeInfo(CGFunctionInfo &FI) const override { 4405 if (!getCXXABI().classifyReturnType(FI)) 4406 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4407 for (auto &I : FI.arguments()) { 4408 // We rely on the default argument classification for the most part. 4409 // One exception: An aggregate containing a single floating-point 4410 // or vector item must be passed in a register if one is available. 4411 const Type *T = isSingleElementStruct(I.type, getContext()); 4412 if (T) { 4413 const BuiltinType *BT = T->getAs<BuiltinType>(); 4414 if (IsQPXVectorTy(T) || 4415 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4416 (BT && BT->isFloatingPoint())) { 4417 QualType QT(T, 0); 4418 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4419 continue; 4420 } 4421 } 4422 I.info = classifyArgumentType(I.type); 4423 } 4424 } 4425 4426 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4427 QualType Ty) const override; 4428 4429 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4430 bool asReturnValue) const override { 4431 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4432 } 4433 4434 bool isSwiftErrorInRegister() const override { 4435 return false; 4436 } 4437 }; 4438 4439 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4440 4441 public: 4442 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4443 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4444 bool SoftFloatABI) 4445 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4446 SoftFloatABI)) {} 4447 4448 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4449 // This is recovered from gcc output. 4450 return 1; // r1 is the dedicated stack pointer 4451 } 4452 4453 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4454 llvm::Value *Address) const override; 4455 }; 4456 4457 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4458 public: 4459 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4460 4461 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4462 // This is recovered from gcc output. 4463 return 1; // r1 is the dedicated stack pointer 4464 } 4465 4466 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4467 llvm::Value *Address) const override; 4468 }; 4469 4470 } 4471 4472 // Return true if the ABI requires Ty to be passed sign- or zero- 4473 // extended to 64 bits. 4474 bool 4475 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4476 // Treat an enum type as its underlying type. 4477 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4478 Ty = EnumTy->getDecl()->getIntegerType(); 4479 4480 // Promotable integer types are required to be promoted by the ABI. 4481 if (Ty->isPromotableIntegerType()) 4482 return true; 4483 4484 // In addition to the usual promotable integer types, we also need to 4485 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4486 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4487 switch (BT->getKind()) { 4488 case BuiltinType::Int: 4489 case BuiltinType::UInt: 4490 return true; 4491 default: 4492 break; 4493 } 4494 4495 return false; 4496 } 4497 4498 /// isAlignedParamType - Determine whether a type requires 16-byte or 4499 /// higher alignment in the parameter area. Always returns at least 8. 4500 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4501 // Complex types are passed just like their elements. 4502 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4503 Ty = CTy->getElementType(); 4504 4505 // Only vector types of size 16 bytes need alignment (larger types are 4506 // passed via reference, smaller types are not aligned). 4507 if (IsQPXVectorTy(Ty)) { 4508 if (getContext().getTypeSize(Ty) > 128) 4509 return CharUnits::fromQuantity(32); 4510 4511 return CharUnits::fromQuantity(16); 4512 } else if (Ty->isVectorType()) { 4513 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4514 } 4515 4516 // For single-element float/vector structs, we consider the whole type 4517 // to have the same alignment requirements as its single element. 4518 const Type *AlignAsType = nullptr; 4519 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4520 if (EltType) { 4521 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4522 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4523 getContext().getTypeSize(EltType) == 128) || 4524 (BT && BT->isFloatingPoint())) 4525 AlignAsType = EltType; 4526 } 4527 4528 // Likewise for ELFv2 homogeneous aggregates. 4529 const Type *Base = nullptr; 4530 uint64_t Members = 0; 4531 if (!AlignAsType && Kind == ELFv2 && 4532 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4533 AlignAsType = Base; 4534 4535 // With special case aggregates, only vector base types need alignment. 4536 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4537 if (getContext().getTypeSize(AlignAsType) > 128) 4538 return CharUnits::fromQuantity(32); 4539 4540 return CharUnits::fromQuantity(16); 4541 } else if (AlignAsType) { 4542 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4543 } 4544 4545 // Otherwise, we only need alignment for any aggregate type that 4546 // has an alignment requirement of >= 16 bytes. 4547 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4548 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4549 return CharUnits::fromQuantity(32); 4550 return CharUnits::fromQuantity(16); 4551 } 4552 4553 return CharUnits::fromQuantity(8); 4554 } 4555 4556 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4557 /// aggregate. Base is set to the base element type, and Members is set 4558 /// to the number of base elements. 4559 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4560 uint64_t &Members) const { 4561 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4562 uint64_t NElements = AT->getSize().getZExtValue(); 4563 if (NElements == 0) 4564 return false; 4565 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4566 return false; 4567 Members *= NElements; 4568 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4569 const RecordDecl *RD = RT->getDecl(); 4570 if (RD->hasFlexibleArrayMember()) 4571 return false; 4572 4573 Members = 0; 4574 4575 // If this is a C++ record, check the bases first. 4576 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4577 for (const auto &I : CXXRD->bases()) { 4578 // Ignore empty records. 4579 if (isEmptyRecord(getContext(), I.getType(), true)) 4580 continue; 4581 4582 uint64_t FldMembers; 4583 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4584 return false; 4585 4586 Members += FldMembers; 4587 } 4588 } 4589 4590 for (const auto *FD : RD->fields()) { 4591 // Ignore (non-zero arrays of) empty records. 4592 QualType FT = FD->getType(); 4593 while (const ConstantArrayType *AT = 4594 getContext().getAsConstantArrayType(FT)) { 4595 if (AT->getSize().getZExtValue() == 0) 4596 return false; 4597 FT = AT->getElementType(); 4598 } 4599 if (isEmptyRecord(getContext(), FT, true)) 4600 continue; 4601 4602 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4603 if (getContext().getLangOpts().CPlusPlus && 4604 FD->isZeroLengthBitField(getContext())) 4605 continue; 4606 4607 uint64_t FldMembers; 4608 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4609 return false; 4610 4611 Members = (RD->isUnion() ? 4612 std::max(Members, FldMembers) : Members + FldMembers); 4613 } 4614 4615 if (!Base) 4616 return false; 4617 4618 // Ensure there is no padding. 4619 if (getContext().getTypeSize(Base) * Members != 4620 getContext().getTypeSize(Ty)) 4621 return false; 4622 } else { 4623 Members = 1; 4624 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4625 Members = 2; 4626 Ty = CT->getElementType(); 4627 } 4628 4629 // Most ABIs only support float, double, and some vector type widths. 4630 if (!isHomogeneousAggregateBaseType(Ty)) 4631 return false; 4632 4633 // The base type must be the same for all members. Types that 4634 // agree in both total size and mode (float vs. vector) are 4635 // treated as being equivalent here. 4636 const Type *TyPtr = Ty.getTypePtr(); 4637 if (!Base) { 4638 Base = TyPtr; 4639 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4640 // so make sure to widen it explicitly. 4641 if (const VectorType *VT = Base->getAs<VectorType>()) { 4642 QualType EltTy = VT->getElementType(); 4643 unsigned NumElements = 4644 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4645 Base = getContext() 4646 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4647 .getTypePtr(); 4648 } 4649 } 4650 4651 if (Base->isVectorType() != TyPtr->isVectorType() || 4652 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4653 return false; 4654 } 4655 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4656 } 4657 4658 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4659 // Homogeneous aggregates for ELFv2 must have base types of float, 4660 // double, long double, or 128-bit vectors. 4661 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4662 if (BT->getKind() == BuiltinType::Float || 4663 BT->getKind() == BuiltinType::Double || 4664 BT->getKind() == BuiltinType::LongDouble || 4665 (getContext().getTargetInfo().hasFloat128Type() && 4666 (BT->getKind() == BuiltinType::Float128))) { 4667 if (IsSoftFloatABI) 4668 return false; 4669 return true; 4670 } 4671 } 4672 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4673 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4674 return true; 4675 } 4676 return false; 4677 } 4678 4679 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4680 const Type *Base, uint64_t Members) const { 4681 // Vector and fp128 types require one register, other floating point types 4682 // require one or two registers depending on their size. 4683 uint32_t NumRegs = 4684 ((getContext().getTargetInfo().hasFloat128Type() && 4685 Base->isFloat128Type()) || 4686 Base->isVectorType()) ? 1 4687 : (getContext().getTypeSize(Base) + 63) / 64; 4688 4689 // Homogeneous Aggregates may occupy at most 8 registers. 4690 return Members * NumRegs <= 8; 4691 } 4692 4693 ABIArgInfo 4694 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4695 Ty = useFirstFieldIfTransparentUnion(Ty); 4696 4697 if (Ty->isAnyComplexType()) 4698 return ABIArgInfo::getDirect(); 4699 4700 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4701 // or via reference (larger than 16 bytes). 4702 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4703 uint64_t Size = getContext().getTypeSize(Ty); 4704 if (Size > 128) 4705 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4706 else if (Size < 128) { 4707 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4708 return ABIArgInfo::getDirect(CoerceTy); 4709 } 4710 } 4711 4712 if (isAggregateTypeForABI(Ty)) { 4713 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4714 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4715 4716 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4717 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4718 4719 // ELFv2 homogeneous aggregates are passed as array types. 4720 const Type *Base = nullptr; 4721 uint64_t Members = 0; 4722 if (Kind == ELFv2 && 4723 isHomogeneousAggregate(Ty, Base, Members)) { 4724 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4725 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4726 return ABIArgInfo::getDirect(CoerceTy); 4727 } 4728 4729 // If an aggregate may end up fully in registers, we do not 4730 // use the ByVal method, but pass the aggregate as array. 4731 // This is usually beneficial since we avoid forcing the 4732 // back-end to store the argument to memory. 4733 uint64_t Bits = getContext().getTypeSize(Ty); 4734 if (Bits > 0 && Bits <= 8 * GPRBits) { 4735 llvm::Type *CoerceTy; 4736 4737 // Types up to 8 bytes are passed as integer type (which will be 4738 // properly aligned in the argument save area doubleword). 4739 if (Bits <= GPRBits) 4740 CoerceTy = 4741 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4742 // Larger types are passed as arrays, with the base type selected 4743 // according to the required alignment in the save area. 4744 else { 4745 uint64_t RegBits = ABIAlign * 8; 4746 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4747 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4748 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4749 } 4750 4751 return ABIArgInfo::getDirect(CoerceTy); 4752 } 4753 4754 // All other aggregates are passed ByVal. 4755 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4756 /*ByVal=*/true, 4757 /*Realign=*/TyAlign > ABIAlign); 4758 } 4759 4760 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4761 : ABIArgInfo::getDirect()); 4762 } 4763 4764 ABIArgInfo 4765 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4766 if (RetTy->isVoidType()) 4767 return ABIArgInfo::getIgnore(); 4768 4769 if (RetTy->isAnyComplexType()) 4770 return ABIArgInfo::getDirect(); 4771 4772 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4773 // or via reference (larger than 16 bytes). 4774 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4775 uint64_t Size = getContext().getTypeSize(RetTy); 4776 if (Size > 128) 4777 return getNaturalAlignIndirect(RetTy); 4778 else if (Size < 128) { 4779 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4780 return ABIArgInfo::getDirect(CoerceTy); 4781 } 4782 } 4783 4784 if (isAggregateTypeForABI(RetTy)) { 4785 // ELFv2 homogeneous aggregates are returned as array types. 4786 const Type *Base = nullptr; 4787 uint64_t Members = 0; 4788 if (Kind == ELFv2 && 4789 isHomogeneousAggregate(RetTy, Base, Members)) { 4790 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4791 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4792 return ABIArgInfo::getDirect(CoerceTy); 4793 } 4794 4795 // ELFv2 small aggregates are returned in up to two registers. 4796 uint64_t Bits = getContext().getTypeSize(RetTy); 4797 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4798 if (Bits == 0) 4799 return ABIArgInfo::getIgnore(); 4800 4801 llvm::Type *CoerceTy; 4802 if (Bits > GPRBits) { 4803 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4804 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4805 } else 4806 CoerceTy = 4807 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4808 return ABIArgInfo::getDirect(CoerceTy); 4809 } 4810 4811 // All other aggregates are returned indirectly. 4812 return getNaturalAlignIndirect(RetTy); 4813 } 4814 4815 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4816 : ABIArgInfo::getDirect()); 4817 } 4818 4819 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4820 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4821 QualType Ty) const { 4822 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4823 TypeInfo.second = getParamTypeAlignment(Ty); 4824 4825 CharUnits SlotSize = CharUnits::fromQuantity(8); 4826 4827 // If we have a complex type and the base type is smaller than 8 bytes, 4828 // the ABI calls for the real and imaginary parts to be right-adjusted 4829 // in separate doublewords. However, Clang expects us to produce a 4830 // pointer to a structure with the two parts packed tightly. So generate 4831 // loads of the real and imaginary parts relative to the va_list pointer, 4832 // and store them to a temporary structure. 4833 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4834 CharUnits EltSize = TypeInfo.first / 2; 4835 if (EltSize < SlotSize) { 4836 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4837 SlotSize * 2, SlotSize, 4838 SlotSize, /*AllowHigher*/ true); 4839 4840 Address RealAddr = Addr; 4841 Address ImagAddr = RealAddr; 4842 if (CGF.CGM.getDataLayout().isBigEndian()) { 4843 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4844 SlotSize - EltSize); 4845 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4846 2 * SlotSize - EltSize); 4847 } else { 4848 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4849 } 4850 4851 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4852 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4853 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4854 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4855 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4856 4857 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4858 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4859 /*init*/ true); 4860 return Temp; 4861 } 4862 } 4863 4864 // Otherwise, just use the general rule. 4865 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4866 TypeInfo, SlotSize, /*AllowHigher*/ true); 4867 } 4868 4869 static bool 4870 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4871 llvm::Value *Address) { 4872 // This is calculated from the LLVM and GCC tables and verified 4873 // against gcc output. AFAIK all ABIs use the same encoding. 4874 4875 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4876 4877 llvm::IntegerType *i8 = CGF.Int8Ty; 4878 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4879 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4880 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4881 4882 // 0-31: r0-31, the 8-byte general-purpose registers 4883 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4884 4885 // 32-63: fp0-31, the 8-byte floating-point registers 4886 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4887 4888 // 64-67 are various 8-byte special-purpose registers: 4889 // 64: mq 4890 // 65: lr 4891 // 66: ctr 4892 // 67: ap 4893 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4894 4895 // 68-76 are various 4-byte special-purpose registers: 4896 // 68-75 cr0-7 4897 // 76: xer 4898 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4899 4900 // 77-108: v0-31, the 16-byte vector registers 4901 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4902 4903 // 109: vrsave 4904 // 110: vscr 4905 // 111: spe_acc 4906 // 112: spefscr 4907 // 113: sfp 4908 // 114: tfhar 4909 // 115: tfiar 4910 // 116: texasr 4911 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4912 4913 return false; 4914 } 4915 4916 bool 4917 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4918 CodeGen::CodeGenFunction &CGF, 4919 llvm::Value *Address) const { 4920 4921 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4922 } 4923 4924 bool 4925 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4926 llvm::Value *Address) const { 4927 4928 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4929 } 4930 4931 //===----------------------------------------------------------------------===// 4932 // AArch64 ABI Implementation 4933 //===----------------------------------------------------------------------===// 4934 4935 namespace { 4936 4937 class AArch64ABIInfo : public SwiftABIInfo { 4938 public: 4939 enum ABIKind { 4940 AAPCS = 0, 4941 DarwinPCS, 4942 Win64 4943 }; 4944 4945 private: 4946 ABIKind Kind; 4947 4948 public: 4949 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4950 : SwiftABIInfo(CGT), Kind(Kind) {} 4951 4952 private: 4953 ABIKind getABIKind() const { return Kind; } 4954 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4955 4956 ABIArgInfo classifyReturnType(QualType RetTy) const; 4957 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4958 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4959 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4960 uint64_t Members) const override; 4961 4962 bool isIllegalVectorType(QualType Ty) const; 4963 4964 void computeInfo(CGFunctionInfo &FI) const override { 4965 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4966 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4967 4968 for (auto &it : FI.arguments()) 4969 it.info = classifyArgumentType(it.type); 4970 } 4971 4972 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4973 CodeGenFunction &CGF) const; 4974 4975 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4976 CodeGenFunction &CGF) const; 4977 4978 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4979 QualType Ty) const override { 4980 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4981 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4982 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4983 } 4984 4985 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4986 QualType Ty) const override; 4987 4988 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4989 bool asReturnValue) const override { 4990 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4991 } 4992 bool isSwiftErrorInRegister() const override { 4993 return true; 4994 } 4995 4996 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4997 unsigned elts) const override; 4998 }; 4999 5000 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5001 public: 5002 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5003 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5004 5005 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5006 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5007 } 5008 5009 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5010 return 31; 5011 } 5012 5013 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5014 5015 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5016 CodeGen::CodeGenModule &CGM) const override { 5017 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5018 if (!FD) 5019 return; 5020 llvm::Function *Fn = cast<llvm::Function>(GV); 5021 5022 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 5023 if (Kind != CodeGenOptions::SignReturnAddressScope::None) { 5024 Fn->addFnAttr("sign-return-address", 5025 Kind == CodeGenOptions::SignReturnAddressScope::All 5026 ? "all" 5027 : "non-leaf"); 5028 5029 auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5030 Fn->addFnAttr("sign-return-address-key", 5031 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5032 ? "a_key" 5033 : "b_key"); 5034 } 5035 5036 if (CGM.getCodeGenOpts().BranchTargetEnforcement) 5037 Fn->addFnAttr("branch-target-enforcement"); 5038 } 5039 }; 5040 5041 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5042 public: 5043 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5044 : AArch64TargetCodeGenInfo(CGT, K) {} 5045 5046 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5047 CodeGen::CodeGenModule &CGM) const override; 5048 5049 void getDependentLibraryOption(llvm::StringRef Lib, 5050 llvm::SmallString<24> &Opt) const override { 5051 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5052 } 5053 5054 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5055 llvm::SmallString<32> &Opt) const override { 5056 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5057 } 5058 }; 5059 5060 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5061 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5062 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5063 if (GV->isDeclaration()) 5064 return; 5065 addStackProbeTargetAttributes(D, GV, CGM); 5066 } 5067 } 5068 5069 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5070 Ty = useFirstFieldIfTransparentUnion(Ty); 5071 5072 // Handle illegal vector types here. 5073 if (isIllegalVectorType(Ty)) { 5074 uint64_t Size = getContext().getTypeSize(Ty); 5075 // Android promotes <2 x i8> to i16, not i32 5076 if (isAndroid() && (Size <= 16)) { 5077 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5078 return ABIArgInfo::getDirect(ResType); 5079 } 5080 if (Size <= 32) { 5081 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5082 return ABIArgInfo::getDirect(ResType); 5083 } 5084 if (Size == 64) { 5085 llvm::Type *ResType = 5086 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5087 return ABIArgInfo::getDirect(ResType); 5088 } 5089 if (Size == 128) { 5090 llvm::Type *ResType = 5091 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5092 return ABIArgInfo::getDirect(ResType); 5093 } 5094 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5095 } 5096 5097 if (!isAggregateTypeForABI(Ty)) { 5098 // Treat an enum type as its underlying type. 5099 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5100 Ty = EnumTy->getDecl()->getIntegerType(); 5101 5102 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5103 ? ABIArgInfo::getExtend(Ty) 5104 : ABIArgInfo::getDirect()); 5105 } 5106 5107 // Structures with either a non-trivial destructor or a non-trivial 5108 // copy constructor are always indirect. 5109 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5110 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5111 CGCXXABI::RAA_DirectInMemory); 5112 } 5113 5114 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5115 // elsewhere for GNU compatibility. 5116 uint64_t Size = getContext().getTypeSize(Ty); 5117 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5118 if (IsEmpty || Size == 0) { 5119 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5120 return ABIArgInfo::getIgnore(); 5121 5122 // GNU C mode. The only argument that gets ignored is an empty one with size 5123 // 0. 5124 if (IsEmpty && Size == 0) 5125 return ABIArgInfo::getIgnore(); 5126 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5127 } 5128 5129 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5130 const Type *Base = nullptr; 5131 uint64_t Members = 0; 5132 if (isHomogeneousAggregate(Ty, Base, Members)) { 5133 return ABIArgInfo::getDirect( 5134 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5135 } 5136 5137 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5138 if (Size <= 128) { 5139 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5140 // same size and alignment. 5141 if (getTarget().isRenderScriptTarget()) { 5142 return coerceToIntArray(Ty, getContext(), getVMContext()); 5143 } 5144 unsigned Alignment; 5145 if (Kind == AArch64ABIInfo::AAPCS) { 5146 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5147 Alignment = Alignment < 128 ? 64 : 128; 5148 } else { 5149 Alignment = getContext().getTypeAlign(Ty); 5150 } 5151 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5152 5153 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5154 // For aggregates with 16-byte alignment, we use i128. 5155 if (Alignment < 128 && Size == 128) { 5156 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5157 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5158 } 5159 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5160 } 5161 5162 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5163 } 5164 5165 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5166 if (RetTy->isVoidType()) 5167 return ABIArgInfo::getIgnore(); 5168 5169 // Large vector types should be returned via memory. 5170 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5171 return getNaturalAlignIndirect(RetTy); 5172 5173 if (!isAggregateTypeForABI(RetTy)) { 5174 // Treat an enum type as its underlying type. 5175 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5176 RetTy = EnumTy->getDecl()->getIntegerType(); 5177 5178 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5179 ? ABIArgInfo::getExtend(RetTy) 5180 : ABIArgInfo::getDirect()); 5181 } 5182 5183 uint64_t Size = getContext().getTypeSize(RetTy); 5184 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5185 return ABIArgInfo::getIgnore(); 5186 5187 const Type *Base = nullptr; 5188 uint64_t Members = 0; 5189 if (isHomogeneousAggregate(RetTy, Base, Members)) 5190 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5191 return ABIArgInfo::getDirect(); 5192 5193 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5194 if (Size <= 128) { 5195 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5196 // same size and alignment. 5197 if (getTarget().isRenderScriptTarget()) { 5198 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5199 } 5200 unsigned Alignment = getContext().getTypeAlign(RetTy); 5201 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5202 5203 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5204 // For aggregates with 16-byte alignment, we use i128. 5205 if (Alignment < 128 && Size == 128) { 5206 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5207 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5208 } 5209 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5210 } 5211 5212 return getNaturalAlignIndirect(RetTy); 5213 } 5214 5215 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5216 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5217 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5218 // Check whether VT is legal. 5219 unsigned NumElements = VT->getNumElements(); 5220 uint64_t Size = getContext().getTypeSize(VT); 5221 // NumElements should be power of 2. 5222 if (!llvm::isPowerOf2_32(NumElements)) 5223 return true; 5224 return Size != 64 && (Size != 128 || NumElements == 1); 5225 } 5226 return false; 5227 } 5228 5229 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5230 llvm::Type *eltTy, 5231 unsigned elts) const { 5232 if (!llvm::isPowerOf2_32(elts)) 5233 return false; 5234 if (totalSize.getQuantity() != 8 && 5235 (totalSize.getQuantity() != 16 || elts == 1)) 5236 return false; 5237 return true; 5238 } 5239 5240 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5241 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5242 // point type or a short-vector type. This is the same as the 32-bit ABI, 5243 // but with the difference that any floating-point type is allowed, 5244 // including __fp16. 5245 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5246 if (BT->isFloatingPoint()) 5247 return true; 5248 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5249 unsigned VecSize = getContext().getTypeSize(VT); 5250 if (VecSize == 64 || VecSize == 128) 5251 return true; 5252 } 5253 return false; 5254 } 5255 5256 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5257 uint64_t Members) const { 5258 return Members <= 4; 5259 } 5260 5261 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5262 QualType Ty, 5263 CodeGenFunction &CGF) const { 5264 ABIArgInfo AI = classifyArgumentType(Ty); 5265 bool IsIndirect = AI.isIndirect(); 5266 5267 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5268 if (IsIndirect) 5269 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5270 else if (AI.getCoerceToType()) 5271 BaseTy = AI.getCoerceToType(); 5272 5273 unsigned NumRegs = 1; 5274 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5275 BaseTy = ArrTy->getElementType(); 5276 NumRegs = ArrTy->getNumElements(); 5277 } 5278 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5279 5280 // The AArch64 va_list type and handling is specified in the Procedure Call 5281 // Standard, section B.4: 5282 // 5283 // struct { 5284 // void *__stack; 5285 // void *__gr_top; 5286 // void *__vr_top; 5287 // int __gr_offs; 5288 // int __vr_offs; 5289 // }; 5290 5291 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5292 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5293 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5294 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5295 5296 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5297 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5298 5299 Address reg_offs_p = Address::invalid(); 5300 llvm::Value *reg_offs = nullptr; 5301 int reg_top_index; 5302 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5303 if (!IsFPR) { 5304 // 3 is the field number of __gr_offs 5305 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5306 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5307 reg_top_index = 1; // field number for __gr_top 5308 RegSize = llvm::alignTo(RegSize, 8); 5309 } else { 5310 // 4 is the field number of __vr_offs. 5311 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5312 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5313 reg_top_index = 2; // field number for __vr_top 5314 RegSize = 16 * NumRegs; 5315 } 5316 5317 //======================================= 5318 // Find out where argument was passed 5319 //======================================= 5320 5321 // If reg_offs >= 0 we're already using the stack for this type of 5322 // argument. We don't want to keep updating reg_offs (in case it overflows, 5323 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5324 // whatever they get). 5325 llvm::Value *UsingStack = nullptr; 5326 UsingStack = CGF.Builder.CreateICmpSGE( 5327 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5328 5329 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5330 5331 // Otherwise, at least some kind of argument could go in these registers, the 5332 // question is whether this particular type is too big. 5333 CGF.EmitBlock(MaybeRegBlock); 5334 5335 // Integer arguments may need to correct register alignment (for example a 5336 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5337 // align __gr_offs to calculate the potential address. 5338 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5339 int Align = TyAlign.getQuantity(); 5340 5341 reg_offs = CGF.Builder.CreateAdd( 5342 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5343 "align_regoffs"); 5344 reg_offs = CGF.Builder.CreateAnd( 5345 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5346 "aligned_regoffs"); 5347 } 5348 5349 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5350 // The fact that this is done unconditionally reflects the fact that 5351 // allocating an argument to the stack also uses up all the remaining 5352 // registers of the appropriate kind. 5353 llvm::Value *NewOffset = nullptr; 5354 NewOffset = CGF.Builder.CreateAdd( 5355 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5356 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5357 5358 // Now we're in a position to decide whether this argument really was in 5359 // registers or not. 5360 llvm::Value *InRegs = nullptr; 5361 InRegs = CGF.Builder.CreateICmpSLE( 5362 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5363 5364 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5365 5366 //======================================= 5367 // Argument was in registers 5368 //======================================= 5369 5370 // Now we emit the code for if the argument was originally passed in 5371 // registers. First start the appropriate block: 5372 CGF.EmitBlock(InRegBlock); 5373 5374 llvm::Value *reg_top = nullptr; 5375 Address reg_top_p = 5376 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5377 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5378 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5379 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5380 Address RegAddr = Address::invalid(); 5381 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5382 5383 if (IsIndirect) { 5384 // If it's been passed indirectly (actually a struct), whatever we find from 5385 // stored registers or on the stack will actually be a struct **. 5386 MemTy = llvm::PointerType::getUnqual(MemTy); 5387 } 5388 5389 const Type *Base = nullptr; 5390 uint64_t NumMembers = 0; 5391 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5392 if (IsHFA && NumMembers > 1) { 5393 // Homogeneous aggregates passed in registers will have their elements split 5394 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5395 // qN+1, ...). We reload and store into a temporary local variable 5396 // contiguously. 5397 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5398 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5399 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5400 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5401 Address Tmp = CGF.CreateTempAlloca(HFATy, 5402 std::max(TyAlign, BaseTyInfo.second)); 5403 5404 // On big-endian platforms, the value will be right-aligned in its slot. 5405 int Offset = 0; 5406 if (CGF.CGM.getDataLayout().isBigEndian() && 5407 BaseTyInfo.first.getQuantity() < 16) 5408 Offset = 16 - BaseTyInfo.first.getQuantity(); 5409 5410 for (unsigned i = 0; i < NumMembers; ++i) { 5411 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5412 Address LoadAddr = 5413 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5414 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5415 5416 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5417 5418 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5419 CGF.Builder.CreateStore(Elem, StoreAddr); 5420 } 5421 5422 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5423 } else { 5424 // Otherwise the object is contiguous in memory. 5425 5426 // It might be right-aligned in its slot. 5427 CharUnits SlotSize = BaseAddr.getAlignment(); 5428 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5429 (IsHFA || !isAggregateTypeForABI(Ty)) && 5430 TySize < SlotSize) { 5431 CharUnits Offset = SlotSize - TySize; 5432 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5433 } 5434 5435 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5436 } 5437 5438 CGF.EmitBranch(ContBlock); 5439 5440 //======================================= 5441 // Argument was on the stack 5442 //======================================= 5443 CGF.EmitBlock(OnStackBlock); 5444 5445 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5446 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5447 5448 // Again, stack arguments may need realignment. In this case both integer and 5449 // floating-point ones might be affected. 5450 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5451 int Align = TyAlign.getQuantity(); 5452 5453 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5454 5455 OnStackPtr = CGF.Builder.CreateAdd( 5456 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5457 "align_stack"); 5458 OnStackPtr = CGF.Builder.CreateAnd( 5459 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5460 "align_stack"); 5461 5462 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5463 } 5464 Address OnStackAddr(OnStackPtr, 5465 std::max(CharUnits::fromQuantity(8), TyAlign)); 5466 5467 // All stack slots are multiples of 8 bytes. 5468 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5469 CharUnits StackSize; 5470 if (IsIndirect) 5471 StackSize = StackSlotSize; 5472 else 5473 StackSize = TySize.alignTo(StackSlotSize); 5474 5475 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5476 llvm::Value *NewStack = 5477 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5478 5479 // Write the new value of __stack for the next call to va_arg 5480 CGF.Builder.CreateStore(NewStack, stack_p); 5481 5482 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5483 TySize < StackSlotSize) { 5484 CharUnits Offset = StackSlotSize - TySize; 5485 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5486 } 5487 5488 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5489 5490 CGF.EmitBranch(ContBlock); 5491 5492 //======================================= 5493 // Tidy up 5494 //======================================= 5495 CGF.EmitBlock(ContBlock); 5496 5497 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5498 OnStackAddr, OnStackBlock, "vaargs.addr"); 5499 5500 if (IsIndirect) 5501 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5502 TyAlign); 5503 5504 return ResAddr; 5505 } 5506 5507 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5508 CodeGenFunction &CGF) const { 5509 // The backend's lowering doesn't support va_arg for aggregates or 5510 // illegal vector types. Lower VAArg here for these cases and use 5511 // the LLVM va_arg instruction for everything else. 5512 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5513 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5514 5515 CharUnits SlotSize = CharUnits::fromQuantity(8); 5516 5517 // Empty records are ignored for parameter passing purposes. 5518 if (isEmptyRecord(getContext(), Ty, true)) { 5519 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5520 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5521 return Addr; 5522 } 5523 5524 // The size of the actual thing passed, which might end up just 5525 // being a pointer for indirect types. 5526 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5527 5528 // Arguments bigger than 16 bytes which aren't homogeneous 5529 // aggregates should be passed indirectly. 5530 bool IsIndirect = false; 5531 if (TyInfo.first.getQuantity() > 16) { 5532 const Type *Base = nullptr; 5533 uint64_t Members = 0; 5534 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5535 } 5536 5537 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5538 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5539 } 5540 5541 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5542 QualType Ty) const { 5543 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5544 CGF.getContext().getTypeInfoInChars(Ty), 5545 CharUnits::fromQuantity(8), 5546 /*allowHigherAlign*/ false); 5547 } 5548 5549 //===----------------------------------------------------------------------===// 5550 // ARM ABI Implementation 5551 //===----------------------------------------------------------------------===// 5552 5553 namespace { 5554 5555 class ARMABIInfo : public SwiftABIInfo { 5556 public: 5557 enum ABIKind { 5558 APCS = 0, 5559 AAPCS = 1, 5560 AAPCS_VFP = 2, 5561 AAPCS16_VFP = 3, 5562 }; 5563 5564 private: 5565 ABIKind Kind; 5566 5567 public: 5568 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5569 : SwiftABIInfo(CGT), Kind(_Kind) { 5570 setCCs(); 5571 } 5572 5573 bool isEABI() const { 5574 switch (getTarget().getTriple().getEnvironment()) { 5575 case llvm::Triple::Android: 5576 case llvm::Triple::EABI: 5577 case llvm::Triple::EABIHF: 5578 case llvm::Triple::GNUEABI: 5579 case llvm::Triple::GNUEABIHF: 5580 case llvm::Triple::MuslEABI: 5581 case llvm::Triple::MuslEABIHF: 5582 return true; 5583 default: 5584 return false; 5585 } 5586 } 5587 5588 bool isEABIHF() const { 5589 switch (getTarget().getTriple().getEnvironment()) { 5590 case llvm::Triple::EABIHF: 5591 case llvm::Triple::GNUEABIHF: 5592 case llvm::Triple::MuslEABIHF: 5593 return true; 5594 default: 5595 return false; 5596 } 5597 } 5598 5599 ABIKind getABIKind() const { return Kind; } 5600 5601 private: 5602 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5603 unsigned functionCallConv) const; 5604 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5605 unsigned functionCallConv) const; 5606 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5607 uint64_t Members) const; 5608 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5609 bool isIllegalVectorType(QualType Ty) const; 5610 5611 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5612 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5613 uint64_t Members) const override; 5614 5615 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5616 5617 void computeInfo(CGFunctionInfo &FI) const override; 5618 5619 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5620 QualType Ty) const override; 5621 5622 llvm::CallingConv::ID getLLVMDefaultCC() const; 5623 llvm::CallingConv::ID getABIDefaultCC() const; 5624 void setCCs(); 5625 5626 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5627 bool asReturnValue) const override { 5628 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5629 } 5630 bool isSwiftErrorInRegister() const override { 5631 return true; 5632 } 5633 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5634 unsigned elts) const override; 5635 }; 5636 5637 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5638 public: 5639 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5640 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5641 5642 const ARMABIInfo &getABIInfo() const { 5643 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5644 } 5645 5646 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5647 return 13; 5648 } 5649 5650 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5651 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5652 } 5653 5654 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5655 llvm::Value *Address) const override { 5656 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5657 5658 // 0-15 are the 16 integer registers. 5659 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5660 return false; 5661 } 5662 5663 unsigned getSizeOfUnwindException() const override { 5664 if (getABIInfo().isEABI()) return 88; 5665 return TargetCodeGenInfo::getSizeOfUnwindException(); 5666 } 5667 5668 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5669 CodeGen::CodeGenModule &CGM) const override { 5670 if (GV->isDeclaration()) 5671 return; 5672 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5673 if (!FD) 5674 return; 5675 5676 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5677 if (!Attr) 5678 return; 5679 5680 const char *Kind; 5681 switch (Attr->getInterrupt()) { 5682 case ARMInterruptAttr::Generic: Kind = ""; break; 5683 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5684 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5685 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5686 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5687 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5688 } 5689 5690 llvm::Function *Fn = cast<llvm::Function>(GV); 5691 5692 Fn->addFnAttr("interrupt", Kind); 5693 5694 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5695 if (ABI == ARMABIInfo::APCS) 5696 return; 5697 5698 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5699 // however this is not necessarily true on taking any interrupt. Instruct 5700 // the backend to perform a realignment as part of the function prologue. 5701 llvm::AttrBuilder B; 5702 B.addStackAlignmentAttr(8); 5703 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5704 } 5705 }; 5706 5707 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5708 public: 5709 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5710 : ARMTargetCodeGenInfo(CGT, K) {} 5711 5712 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5713 CodeGen::CodeGenModule &CGM) const override; 5714 5715 void getDependentLibraryOption(llvm::StringRef Lib, 5716 llvm::SmallString<24> &Opt) const override { 5717 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5718 } 5719 5720 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5721 llvm::SmallString<32> &Opt) const override { 5722 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5723 } 5724 }; 5725 5726 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5727 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5728 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5729 if (GV->isDeclaration()) 5730 return; 5731 addStackProbeTargetAttributes(D, GV, CGM); 5732 } 5733 } 5734 5735 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5736 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5737 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5738 FI.getCallingConvention()); 5739 5740 for (auto &I : FI.arguments()) 5741 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5742 FI.getCallingConvention()); 5743 5744 5745 // Always honor user-specified calling convention. 5746 if (FI.getCallingConvention() != llvm::CallingConv::C) 5747 return; 5748 5749 llvm::CallingConv::ID cc = getRuntimeCC(); 5750 if (cc != llvm::CallingConv::C) 5751 FI.setEffectiveCallingConvention(cc); 5752 } 5753 5754 /// Return the default calling convention that LLVM will use. 5755 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5756 // The default calling convention that LLVM will infer. 5757 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5758 return llvm::CallingConv::ARM_AAPCS_VFP; 5759 else if (isEABI()) 5760 return llvm::CallingConv::ARM_AAPCS; 5761 else 5762 return llvm::CallingConv::ARM_APCS; 5763 } 5764 5765 /// Return the calling convention that our ABI would like us to use 5766 /// as the C calling convention. 5767 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5768 switch (getABIKind()) { 5769 case APCS: return llvm::CallingConv::ARM_APCS; 5770 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5771 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5772 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5773 } 5774 llvm_unreachable("bad ABI kind"); 5775 } 5776 5777 void ARMABIInfo::setCCs() { 5778 assert(getRuntimeCC() == llvm::CallingConv::C); 5779 5780 // Don't muddy up the IR with a ton of explicit annotations if 5781 // they'd just match what LLVM will infer from the triple. 5782 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5783 if (abiCC != getLLVMDefaultCC()) 5784 RuntimeCC = abiCC; 5785 } 5786 5787 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5788 uint64_t Size = getContext().getTypeSize(Ty); 5789 if (Size <= 32) { 5790 llvm::Type *ResType = 5791 llvm::Type::getInt32Ty(getVMContext()); 5792 return ABIArgInfo::getDirect(ResType); 5793 } 5794 if (Size == 64 || Size == 128) { 5795 llvm::Type *ResType = llvm::VectorType::get( 5796 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5797 return ABIArgInfo::getDirect(ResType); 5798 } 5799 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5800 } 5801 5802 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5803 const Type *Base, 5804 uint64_t Members) const { 5805 assert(Base && "Base class should be set for homogeneous aggregate"); 5806 // Base can be a floating-point or a vector. 5807 if (const VectorType *VT = Base->getAs<VectorType>()) { 5808 // FP16 vectors should be converted to integer vectors 5809 if (!getTarget().hasLegalHalfType() && 5810 (VT->getElementType()->isFloat16Type() || 5811 VT->getElementType()->isHalfType())) { 5812 uint64_t Size = getContext().getTypeSize(VT); 5813 llvm::Type *NewVecTy = llvm::VectorType::get( 5814 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5815 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5816 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5817 } 5818 } 5819 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5820 } 5821 5822 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5823 unsigned functionCallConv) const { 5824 // 6.1.2.1 The following argument types are VFP CPRCs: 5825 // A single-precision floating-point type (including promoted 5826 // half-precision types); A double-precision floating-point type; 5827 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5828 // with a Base Type of a single- or double-precision floating-point type, 5829 // 64-bit containerized vectors or 128-bit containerized vectors with one 5830 // to four Elements. 5831 // Variadic functions should always marshal to the base standard. 5832 bool IsAAPCS_VFP = 5833 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5834 5835 Ty = useFirstFieldIfTransparentUnion(Ty); 5836 5837 // Handle illegal vector types here. 5838 if (isIllegalVectorType(Ty)) 5839 return coerceIllegalVector(Ty); 5840 5841 // _Float16 and __fp16 get passed as if it were an int or float, but with 5842 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5843 // half type natively, and does not need to interwork with AAPCS code. 5844 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5845 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5846 llvm::Type *ResType = IsAAPCS_VFP ? 5847 llvm::Type::getFloatTy(getVMContext()) : 5848 llvm::Type::getInt32Ty(getVMContext()); 5849 return ABIArgInfo::getDirect(ResType); 5850 } 5851 5852 if (!isAggregateTypeForABI(Ty)) { 5853 // Treat an enum type as its underlying type. 5854 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5855 Ty = EnumTy->getDecl()->getIntegerType(); 5856 } 5857 5858 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5859 : ABIArgInfo::getDirect()); 5860 } 5861 5862 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5863 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5864 } 5865 5866 // Ignore empty records. 5867 if (isEmptyRecord(getContext(), Ty, true)) 5868 return ABIArgInfo::getIgnore(); 5869 5870 if (IsAAPCS_VFP) { 5871 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5872 // into VFP registers. 5873 const Type *Base = nullptr; 5874 uint64_t Members = 0; 5875 if (isHomogeneousAggregate(Ty, Base, Members)) 5876 return classifyHomogeneousAggregate(Ty, Base, Members); 5877 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5878 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5879 // this convention even for a variadic function: the backend will use GPRs 5880 // if needed. 5881 const Type *Base = nullptr; 5882 uint64_t Members = 0; 5883 if (isHomogeneousAggregate(Ty, Base, Members)) { 5884 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5885 llvm::Type *Ty = 5886 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5887 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5888 } 5889 } 5890 5891 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5892 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5893 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5894 // bigger than 128-bits, they get placed in space allocated by the caller, 5895 // and a pointer is passed. 5896 return ABIArgInfo::getIndirect( 5897 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5898 } 5899 5900 // Support byval for ARM. 5901 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5902 // most 8-byte. We realign the indirect argument if type alignment is bigger 5903 // than ABI alignment. 5904 uint64_t ABIAlign = 4; 5905 uint64_t TyAlign; 5906 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5907 getABIKind() == ARMABIInfo::AAPCS) { 5908 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5909 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5910 } else { 5911 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5912 } 5913 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5914 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5915 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5916 /*ByVal=*/true, 5917 /*Realign=*/TyAlign > ABIAlign); 5918 } 5919 5920 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5921 // same size and alignment. 5922 if (getTarget().isRenderScriptTarget()) { 5923 return coerceToIntArray(Ty, getContext(), getVMContext()); 5924 } 5925 5926 // Otherwise, pass by coercing to a structure of the appropriate size. 5927 llvm::Type* ElemTy; 5928 unsigned SizeRegs; 5929 // FIXME: Try to match the types of the arguments more accurately where 5930 // we can. 5931 if (TyAlign <= 4) { 5932 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5933 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5934 } else { 5935 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5936 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5937 } 5938 5939 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5940 } 5941 5942 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5943 llvm::LLVMContext &VMContext) { 5944 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5945 // is called integer-like if its size is less than or equal to one word, and 5946 // the offset of each of its addressable sub-fields is zero. 5947 5948 uint64_t Size = Context.getTypeSize(Ty); 5949 5950 // Check that the type fits in a word. 5951 if (Size > 32) 5952 return false; 5953 5954 // FIXME: Handle vector types! 5955 if (Ty->isVectorType()) 5956 return false; 5957 5958 // Float types are never treated as "integer like". 5959 if (Ty->isRealFloatingType()) 5960 return false; 5961 5962 // If this is a builtin or pointer type then it is ok. 5963 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5964 return true; 5965 5966 // Small complex integer types are "integer like". 5967 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5968 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5969 5970 // Single element and zero sized arrays should be allowed, by the definition 5971 // above, but they are not. 5972 5973 // Otherwise, it must be a record type. 5974 const RecordType *RT = Ty->getAs<RecordType>(); 5975 if (!RT) return false; 5976 5977 // Ignore records with flexible arrays. 5978 const RecordDecl *RD = RT->getDecl(); 5979 if (RD->hasFlexibleArrayMember()) 5980 return false; 5981 5982 // Check that all sub-fields are at offset 0, and are themselves "integer 5983 // like". 5984 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5985 5986 bool HadField = false; 5987 unsigned idx = 0; 5988 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5989 i != e; ++i, ++idx) { 5990 const FieldDecl *FD = *i; 5991 5992 // Bit-fields are not addressable, we only need to verify they are "integer 5993 // like". We still have to disallow a subsequent non-bitfield, for example: 5994 // struct { int : 0; int x } 5995 // is non-integer like according to gcc. 5996 if (FD->isBitField()) { 5997 if (!RD->isUnion()) 5998 HadField = true; 5999 6000 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6001 return false; 6002 6003 continue; 6004 } 6005 6006 // Check if this field is at offset 0. 6007 if (Layout.getFieldOffset(idx) != 0) 6008 return false; 6009 6010 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6011 return false; 6012 6013 // Only allow at most one field in a structure. This doesn't match the 6014 // wording above, but follows gcc in situations with a field following an 6015 // empty structure. 6016 if (!RD->isUnion()) { 6017 if (HadField) 6018 return false; 6019 6020 HadField = true; 6021 } 6022 } 6023 6024 return true; 6025 } 6026 6027 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6028 unsigned functionCallConv) const { 6029 6030 // Variadic functions should always marshal to the base standard. 6031 bool IsAAPCS_VFP = 6032 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6033 6034 if (RetTy->isVoidType()) 6035 return ABIArgInfo::getIgnore(); 6036 6037 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6038 // Large vector types should be returned via memory. 6039 if (getContext().getTypeSize(RetTy) > 128) 6040 return getNaturalAlignIndirect(RetTy); 6041 // FP16 vectors should be converted to integer vectors 6042 if (!getTarget().hasLegalHalfType() && 6043 (VT->getElementType()->isFloat16Type() || 6044 VT->getElementType()->isHalfType())) 6045 return coerceIllegalVector(RetTy); 6046 } 6047 6048 // _Float16 and __fp16 get returned as if it were an int or float, but with 6049 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6050 // half type natively, and does not need to interwork with AAPCS code. 6051 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6052 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6053 llvm::Type *ResType = IsAAPCS_VFP ? 6054 llvm::Type::getFloatTy(getVMContext()) : 6055 llvm::Type::getInt32Ty(getVMContext()); 6056 return ABIArgInfo::getDirect(ResType); 6057 } 6058 6059 if (!isAggregateTypeForABI(RetTy)) { 6060 // Treat an enum type as its underlying type. 6061 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6062 RetTy = EnumTy->getDecl()->getIntegerType(); 6063 6064 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6065 : ABIArgInfo::getDirect(); 6066 } 6067 6068 // Are we following APCS? 6069 if (getABIKind() == APCS) { 6070 if (isEmptyRecord(getContext(), RetTy, false)) 6071 return ABIArgInfo::getIgnore(); 6072 6073 // Complex types are all returned as packed integers. 6074 // 6075 // FIXME: Consider using 2 x vector types if the back end handles them 6076 // correctly. 6077 if (RetTy->isAnyComplexType()) 6078 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6079 getVMContext(), getContext().getTypeSize(RetTy))); 6080 6081 // Integer like structures are returned in r0. 6082 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6083 // Return in the smallest viable integer type. 6084 uint64_t Size = getContext().getTypeSize(RetTy); 6085 if (Size <= 8) 6086 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6087 if (Size <= 16) 6088 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6089 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6090 } 6091 6092 // Otherwise return in memory. 6093 return getNaturalAlignIndirect(RetTy); 6094 } 6095 6096 // Otherwise this is an AAPCS variant. 6097 6098 if (isEmptyRecord(getContext(), RetTy, true)) 6099 return ABIArgInfo::getIgnore(); 6100 6101 // Check for homogeneous aggregates with AAPCS-VFP. 6102 if (IsAAPCS_VFP) { 6103 const Type *Base = nullptr; 6104 uint64_t Members = 0; 6105 if (isHomogeneousAggregate(RetTy, Base, Members)) 6106 return classifyHomogeneousAggregate(RetTy, Base, Members); 6107 } 6108 6109 // Aggregates <= 4 bytes are returned in r0; other aggregates 6110 // are returned indirectly. 6111 uint64_t Size = getContext().getTypeSize(RetTy); 6112 if (Size <= 32) { 6113 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6114 // same size and alignment. 6115 if (getTarget().isRenderScriptTarget()) { 6116 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6117 } 6118 if (getDataLayout().isBigEndian()) 6119 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6120 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6121 6122 // Return in the smallest viable integer type. 6123 if (Size <= 8) 6124 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6125 if (Size <= 16) 6126 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6127 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6128 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6129 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6130 llvm::Type *CoerceTy = 6131 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6132 return ABIArgInfo::getDirect(CoerceTy); 6133 } 6134 6135 return getNaturalAlignIndirect(RetTy); 6136 } 6137 6138 /// isIllegalVector - check whether Ty is an illegal vector type. 6139 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6140 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6141 // On targets that don't support FP16, FP16 is expanded into float, and we 6142 // don't want the ABI to depend on whether or not FP16 is supported in 6143 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6144 if (!getTarget().hasLegalHalfType() && 6145 (VT->getElementType()->isFloat16Type() || 6146 VT->getElementType()->isHalfType())) 6147 return true; 6148 if (isAndroid()) { 6149 // Android shipped using Clang 3.1, which supported a slightly different 6150 // vector ABI. The primary differences were that 3-element vector types 6151 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6152 // accepts that legacy behavior for Android only. 6153 // Check whether VT is legal. 6154 unsigned NumElements = VT->getNumElements(); 6155 // NumElements should be power of 2 or equal to 3. 6156 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6157 return true; 6158 } else { 6159 // Check whether VT is legal. 6160 unsigned NumElements = VT->getNumElements(); 6161 uint64_t Size = getContext().getTypeSize(VT); 6162 // NumElements should be power of 2. 6163 if (!llvm::isPowerOf2_32(NumElements)) 6164 return true; 6165 // Size should be greater than 32 bits. 6166 return Size <= 32; 6167 } 6168 } 6169 return false; 6170 } 6171 6172 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6173 llvm::Type *eltTy, 6174 unsigned numElts) const { 6175 if (!llvm::isPowerOf2_32(numElts)) 6176 return false; 6177 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6178 if (size > 64) 6179 return false; 6180 if (vectorSize.getQuantity() != 8 && 6181 (vectorSize.getQuantity() != 16 || numElts == 1)) 6182 return false; 6183 return true; 6184 } 6185 6186 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6187 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6188 // double, or 64-bit or 128-bit vectors. 6189 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6190 if (BT->getKind() == BuiltinType::Float || 6191 BT->getKind() == BuiltinType::Double || 6192 BT->getKind() == BuiltinType::LongDouble) 6193 return true; 6194 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6195 unsigned VecSize = getContext().getTypeSize(VT); 6196 if (VecSize == 64 || VecSize == 128) 6197 return true; 6198 } 6199 return false; 6200 } 6201 6202 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6203 uint64_t Members) const { 6204 return Members <= 4; 6205 } 6206 6207 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6208 bool acceptHalf) const { 6209 // Give precedence to user-specified calling conventions. 6210 if (callConvention != llvm::CallingConv::C) 6211 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6212 else 6213 return (getABIKind() == AAPCS_VFP) || 6214 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6215 } 6216 6217 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6218 QualType Ty) const { 6219 CharUnits SlotSize = CharUnits::fromQuantity(4); 6220 6221 // Empty records are ignored for parameter passing purposes. 6222 if (isEmptyRecord(getContext(), Ty, true)) { 6223 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6224 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6225 return Addr; 6226 } 6227 6228 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6229 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6230 6231 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6232 bool IsIndirect = false; 6233 const Type *Base = nullptr; 6234 uint64_t Members = 0; 6235 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6236 IsIndirect = true; 6237 6238 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6239 // allocated by the caller. 6240 } else if (TySize > CharUnits::fromQuantity(16) && 6241 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6242 !isHomogeneousAggregate(Ty, Base, Members)) { 6243 IsIndirect = true; 6244 6245 // Otherwise, bound the type's ABI alignment. 6246 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6247 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6248 // Our callers should be prepared to handle an under-aligned address. 6249 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6250 getABIKind() == ARMABIInfo::AAPCS) { 6251 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6252 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6253 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6254 // ARMv7k allows type alignment up to 16 bytes. 6255 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6256 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6257 } else { 6258 TyAlignForABI = CharUnits::fromQuantity(4); 6259 } 6260 6261 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6262 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6263 SlotSize, /*AllowHigherAlign*/ true); 6264 } 6265 6266 //===----------------------------------------------------------------------===// 6267 // NVPTX ABI Implementation 6268 //===----------------------------------------------------------------------===// 6269 6270 namespace { 6271 6272 class NVPTXABIInfo : public ABIInfo { 6273 public: 6274 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6275 6276 ABIArgInfo classifyReturnType(QualType RetTy) const; 6277 ABIArgInfo classifyArgumentType(QualType Ty) const; 6278 6279 void computeInfo(CGFunctionInfo &FI) const override; 6280 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6281 QualType Ty) const override; 6282 }; 6283 6284 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6285 public: 6286 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6287 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6288 6289 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6290 CodeGen::CodeGenModule &M) const override; 6291 bool shouldEmitStaticExternCAliases() const override; 6292 6293 private: 6294 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6295 // resulting MDNode to the nvvm.annotations MDNode. 6296 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6297 }; 6298 6299 /// Checks if the type is unsupported directly by the current target. 6300 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6301 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6302 return true; 6303 if (!Context.getTargetInfo().hasFloat128Type() && T->isFloat128Type()) 6304 return true; 6305 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6306 Context.getTypeSize(T) > 64) 6307 return true; 6308 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6309 return isUnsupportedType(Context, AT->getElementType()); 6310 const auto *RT = T->getAs<RecordType>(); 6311 if (!RT) 6312 return false; 6313 const RecordDecl *RD = RT->getDecl(); 6314 6315 // If this is a C++ record, check the bases first. 6316 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6317 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6318 if (isUnsupportedType(Context, I.getType())) 6319 return true; 6320 6321 for (const FieldDecl *I : RD->fields()) 6322 if (isUnsupportedType(Context, I->getType())) 6323 return true; 6324 return false; 6325 } 6326 6327 /// Coerce the given type into an array with maximum allowed size of elements. 6328 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6329 llvm::LLVMContext &LLVMContext, 6330 unsigned MaxSize) { 6331 // Alignment and Size are measured in bits. 6332 const uint64_t Size = Context.getTypeSize(Ty); 6333 const uint64_t Alignment = Context.getTypeAlign(Ty); 6334 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6335 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6336 const uint64_t NumElements = (Size + Div - 1) / Div; 6337 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6338 } 6339 6340 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6341 if (RetTy->isVoidType()) 6342 return ABIArgInfo::getIgnore(); 6343 6344 if (getContext().getLangOpts().OpenMP && 6345 getContext().getLangOpts().OpenMPIsDevice && 6346 isUnsupportedType(getContext(), RetTy)) 6347 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6348 6349 // note: this is different from default ABI 6350 if (!RetTy->isScalarType()) 6351 return ABIArgInfo::getDirect(); 6352 6353 // Treat an enum type as its underlying type. 6354 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6355 RetTy = EnumTy->getDecl()->getIntegerType(); 6356 6357 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6358 : ABIArgInfo::getDirect()); 6359 } 6360 6361 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6362 // Treat an enum type as its underlying type. 6363 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6364 Ty = EnumTy->getDecl()->getIntegerType(); 6365 6366 // Return aggregates type as indirect by value 6367 if (isAggregateTypeForABI(Ty)) 6368 return getNaturalAlignIndirect(Ty, /* byval */ true); 6369 6370 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6371 : ABIArgInfo::getDirect()); 6372 } 6373 6374 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6375 if (!getCXXABI().classifyReturnType(FI)) 6376 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6377 for (auto &I : FI.arguments()) 6378 I.info = classifyArgumentType(I.type); 6379 6380 // Always honor user-specified calling convention. 6381 if (FI.getCallingConvention() != llvm::CallingConv::C) 6382 return; 6383 6384 FI.setEffectiveCallingConvention(getRuntimeCC()); 6385 } 6386 6387 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6388 QualType Ty) const { 6389 llvm_unreachable("NVPTX does not support varargs"); 6390 } 6391 6392 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6393 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6394 if (GV->isDeclaration()) 6395 return; 6396 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6397 if (!FD) return; 6398 6399 llvm::Function *F = cast<llvm::Function>(GV); 6400 6401 // Perform special handling in OpenCL mode 6402 if (M.getLangOpts().OpenCL) { 6403 // Use OpenCL function attributes to check for kernel functions 6404 // By default, all functions are device functions 6405 if (FD->hasAttr<OpenCLKernelAttr>()) { 6406 // OpenCL __kernel functions get kernel metadata 6407 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6408 addNVVMMetadata(F, "kernel", 1); 6409 // And kernel functions are not subject to inlining 6410 F->addFnAttr(llvm::Attribute::NoInline); 6411 } 6412 } 6413 6414 // Perform special handling in CUDA mode. 6415 if (M.getLangOpts().CUDA) { 6416 // CUDA __global__ functions get a kernel metadata entry. Since 6417 // __global__ functions cannot be called from the device, we do not 6418 // need to set the noinline attribute. 6419 if (FD->hasAttr<CUDAGlobalAttr>()) { 6420 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6421 addNVVMMetadata(F, "kernel", 1); 6422 } 6423 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6424 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6425 llvm::APSInt MaxThreads(32); 6426 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6427 if (MaxThreads > 0) 6428 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6429 6430 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6431 // not specified in __launch_bounds__ or if the user specified a 0 value, 6432 // we don't have to add a PTX directive. 6433 if (Attr->getMinBlocks()) { 6434 llvm::APSInt MinBlocks(32); 6435 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6436 if (MinBlocks > 0) 6437 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6438 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6439 } 6440 } 6441 } 6442 } 6443 6444 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6445 int Operand) { 6446 llvm::Module *M = F->getParent(); 6447 llvm::LLVMContext &Ctx = M->getContext(); 6448 6449 // Get "nvvm.annotations" metadata node 6450 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6451 6452 llvm::Metadata *MDVals[] = { 6453 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6454 llvm::ConstantAsMetadata::get( 6455 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6456 // Append metadata to nvvm.annotations 6457 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6458 } 6459 6460 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6461 return false; 6462 } 6463 } 6464 6465 //===----------------------------------------------------------------------===// 6466 // SystemZ ABI Implementation 6467 //===----------------------------------------------------------------------===// 6468 6469 namespace { 6470 6471 class SystemZABIInfo : public SwiftABIInfo { 6472 bool HasVector; 6473 6474 public: 6475 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6476 : SwiftABIInfo(CGT), HasVector(HV) {} 6477 6478 bool isPromotableIntegerType(QualType Ty) const; 6479 bool isCompoundType(QualType Ty) const; 6480 bool isVectorArgumentType(QualType Ty) const; 6481 bool isFPArgumentType(QualType Ty) const; 6482 QualType GetSingleElementType(QualType Ty) const; 6483 6484 ABIArgInfo classifyReturnType(QualType RetTy) const; 6485 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6486 6487 void computeInfo(CGFunctionInfo &FI) const override { 6488 if (!getCXXABI().classifyReturnType(FI)) 6489 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6490 for (auto &I : FI.arguments()) 6491 I.info = classifyArgumentType(I.type); 6492 } 6493 6494 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6495 QualType Ty) const override; 6496 6497 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6498 bool asReturnValue) const override { 6499 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6500 } 6501 bool isSwiftErrorInRegister() const override { 6502 return false; 6503 } 6504 }; 6505 6506 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6507 public: 6508 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6509 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6510 }; 6511 6512 } 6513 6514 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6515 // Treat an enum type as its underlying type. 6516 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6517 Ty = EnumTy->getDecl()->getIntegerType(); 6518 6519 // Promotable integer types are required to be promoted by the ABI. 6520 if (Ty->isPromotableIntegerType()) 6521 return true; 6522 6523 // 32-bit values must also be promoted. 6524 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6525 switch (BT->getKind()) { 6526 case BuiltinType::Int: 6527 case BuiltinType::UInt: 6528 return true; 6529 default: 6530 return false; 6531 } 6532 return false; 6533 } 6534 6535 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6536 return (Ty->isAnyComplexType() || 6537 Ty->isVectorType() || 6538 isAggregateTypeForABI(Ty)); 6539 } 6540 6541 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6542 return (HasVector && 6543 Ty->isVectorType() && 6544 getContext().getTypeSize(Ty) <= 128); 6545 } 6546 6547 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6548 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6549 switch (BT->getKind()) { 6550 case BuiltinType::Float: 6551 case BuiltinType::Double: 6552 return true; 6553 default: 6554 return false; 6555 } 6556 6557 return false; 6558 } 6559 6560 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6561 if (const RecordType *RT = Ty->getAsStructureType()) { 6562 const RecordDecl *RD = RT->getDecl(); 6563 QualType Found; 6564 6565 // If this is a C++ record, check the bases first. 6566 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6567 for (const auto &I : CXXRD->bases()) { 6568 QualType Base = I.getType(); 6569 6570 // Empty bases don't affect things either way. 6571 if (isEmptyRecord(getContext(), Base, true)) 6572 continue; 6573 6574 if (!Found.isNull()) 6575 return Ty; 6576 Found = GetSingleElementType(Base); 6577 } 6578 6579 // Check the fields. 6580 for (const auto *FD : RD->fields()) { 6581 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6582 // Unlike isSingleElementStruct(), empty structure and array fields 6583 // do count. So do anonymous bitfields that aren't zero-sized. 6584 if (getContext().getLangOpts().CPlusPlus && 6585 FD->isZeroLengthBitField(getContext())) 6586 continue; 6587 6588 // Unlike isSingleElementStruct(), arrays do not count. 6589 // Nested structures still do though. 6590 if (!Found.isNull()) 6591 return Ty; 6592 Found = GetSingleElementType(FD->getType()); 6593 } 6594 6595 // Unlike isSingleElementStruct(), trailing padding is allowed. 6596 // An 8-byte aligned struct s { float f; } is passed as a double. 6597 if (!Found.isNull()) 6598 return Found; 6599 } 6600 6601 return Ty; 6602 } 6603 6604 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6605 QualType Ty) const { 6606 // Assume that va_list type is correct; should be pointer to LLVM type: 6607 // struct { 6608 // i64 __gpr; 6609 // i64 __fpr; 6610 // i8 *__overflow_arg_area; 6611 // i8 *__reg_save_area; 6612 // }; 6613 6614 // Every non-vector argument occupies 8 bytes and is passed by preference 6615 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6616 // always passed on the stack. 6617 Ty = getContext().getCanonicalType(Ty); 6618 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6619 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6620 llvm::Type *DirectTy = ArgTy; 6621 ABIArgInfo AI = classifyArgumentType(Ty); 6622 bool IsIndirect = AI.isIndirect(); 6623 bool InFPRs = false; 6624 bool IsVector = false; 6625 CharUnits UnpaddedSize; 6626 CharUnits DirectAlign; 6627 if (IsIndirect) { 6628 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6629 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6630 } else { 6631 if (AI.getCoerceToType()) 6632 ArgTy = AI.getCoerceToType(); 6633 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6634 IsVector = ArgTy->isVectorTy(); 6635 UnpaddedSize = TyInfo.first; 6636 DirectAlign = TyInfo.second; 6637 } 6638 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6639 if (IsVector && UnpaddedSize > PaddedSize) 6640 PaddedSize = CharUnits::fromQuantity(16); 6641 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6642 6643 CharUnits Padding = (PaddedSize - UnpaddedSize); 6644 6645 llvm::Type *IndexTy = CGF.Int64Ty; 6646 llvm::Value *PaddedSizeV = 6647 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6648 6649 if (IsVector) { 6650 // Work out the address of a vector argument on the stack. 6651 // Vector arguments are always passed in the high bits of a 6652 // single (8 byte) or double (16 byte) stack slot. 6653 Address OverflowArgAreaPtr = 6654 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6655 Address OverflowArgArea = 6656 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6657 TyInfo.second); 6658 Address MemAddr = 6659 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6660 6661 // Update overflow_arg_area_ptr pointer 6662 llvm::Value *NewOverflowArgArea = 6663 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6664 "overflow_arg_area"); 6665 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6666 6667 return MemAddr; 6668 } 6669 6670 assert(PaddedSize.getQuantity() == 8); 6671 6672 unsigned MaxRegs, RegCountField, RegSaveIndex; 6673 CharUnits RegPadding; 6674 if (InFPRs) { 6675 MaxRegs = 4; // Maximum of 4 FPR arguments 6676 RegCountField = 1; // __fpr 6677 RegSaveIndex = 16; // save offset for f0 6678 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6679 } else { 6680 MaxRegs = 5; // Maximum of 5 GPR arguments 6681 RegCountField = 0; // __gpr 6682 RegSaveIndex = 2; // save offset for r2 6683 RegPadding = Padding; // values are passed in the low bits of a GPR 6684 } 6685 6686 Address RegCountPtr = 6687 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6688 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6689 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6690 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6691 "fits_in_regs"); 6692 6693 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6694 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6695 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6696 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6697 6698 // Emit code to load the value if it was passed in registers. 6699 CGF.EmitBlock(InRegBlock); 6700 6701 // Work out the address of an argument register. 6702 llvm::Value *ScaledRegCount = 6703 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6704 llvm::Value *RegBase = 6705 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6706 + RegPadding.getQuantity()); 6707 llvm::Value *RegOffset = 6708 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6709 Address RegSaveAreaPtr = 6710 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6711 llvm::Value *RegSaveArea = 6712 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6713 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6714 "raw_reg_addr"), 6715 PaddedSize); 6716 Address RegAddr = 6717 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6718 6719 // Update the register count 6720 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6721 llvm::Value *NewRegCount = 6722 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6723 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6724 CGF.EmitBranch(ContBlock); 6725 6726 // Emit code to load the value if it was passed in memory. 6727 CGF.EmitBlock(InMemBlock); 6728 6729 // Work out the address of a stack argument. 6730 Address OverflowArgAreaPtr = 6731 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6732 Address OverflowArgArea = 6733 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6734 PaddedSize); 6735 Address RawMemAddr = 6736 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6737 Address MemAddr = 6738 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6739 6740 // Update overflow_arg_area_ptr pointer 6741 llvm::Value *NewOverflowArgArea = 6742 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6743 "overflow_arg_area"); 6744 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6745 CGF.EmitBranch(ContBlock); 6746 6747 // Return the appropriate result. 6748 CGF.EmitBlock(ContBlock); 6749 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6750 MemAddr, InMemBlock, "va_arg.addr"); 6751 6752 if (IsIndirect) 6753 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6754 TyInfo.second); 6755 6756 return ResAddr; 6757 } 6758 6759 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6760 if (RetTy->isVoidType()) 6761 return ABIArgInfo::getIgnore(); 6762 if (isVectorArgumentType(RetTy)) 6763 return ABIArgInfo::getDirect(); 6764 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6765 return getNaturalAlignIndirect(RetTy); 6766 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6767 : ABIArgInfo::getDirect()); 6768 } 6769 6770 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6771 // Handle the generic C++ ABI. 6772 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6773 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6774 6775 // Integers and enums are extended to full register width. 6776 if (isPromotableIntegerType(Ty)) 6777 return ABIArgInfo::getExtend(Ty); 6778 6779 // Handle vector types and vector-like structure types. Note that 6780 // as opposed to float-like structure types, we do not allow any 6781 // padding for vector-like structures, so verify the sizes match. 6782 uint64_t Size = getContext().getTypeSize(Ty); 6783 QualType SingleElementTy = GetSingleElementType(Ty); 6784 if (isVectorArgumentType(SingleElementTy) && 6785 getContext().getTypeSize(SingleElementTy) == Size) 6786 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6787 6788 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6789 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6790 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6791 6792 // Handle small structures. 6793 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6794 // Structures with flexible arrays have variable length, so really 6795 // fail the size test above. 6796 const RecordDecl *RD = RT->getDecl(); 6797 if (RD->hasFlexibleArrayMember()) 6798 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6799 6800 // The structure is passed as an unextended integer, a float, or a double. 6801 llvm::Type *PassTy; 6802 if (isFPArgumentType(SingleElementTy)) { 6803 assert(Size == 32 || Size == 64); 6804 if (Size == 32) 6805 PassTy = llvm::Type::getFloatTy(getVMContext()); 6806 else 6807 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6808 } else 6809 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6810 return ABIArgInfo::getDirect(PassTy); 6811 } 6812 6813 // Non-structure compounds are passed indirectly. 6814 if (isCompoundType(Ty)) 6815 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6816 6817 return ABIArgInfo::getDirect(nullptr); 6818 } 6819 6820 //===----------------------------------------------------------------------===// 6821 // MSP430 ABI Implementation 6822 //===----------------------------------------------------------------------===// 6823 6824 namespace { 6825 6826 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6827 public: 6828 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6829 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6830 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6831 CodeGen::CodeGenModule &M) const override; 6832 }; 6833 6834 } 6835 6836 void MSP430TargetCodeGenInfo::setTargetAttributes( 6837 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6838 if (GV->isDeclaration()) 6839 return; 6840 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6841 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6842 if (!InterruptAttr) 6843 return; 6844 6845 // Handle 'interrupt' attribute: 6846 llvm::Function *F = cast<llvm::Function>(GV); 6847 6848 // Step 1: Set ISR calling convention. 6849 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6850 6851 // Step 2: Add attributes goodness. 6852 F->addFnAttr(llvm::Attribute::NoInline); 6853 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6854 } 6855 } 6856 6857 //===----------------------------------------------------------------------===// 6858 // MIPS ABI Implementation. This works for both little-endian and 6859 // big-endian variants. 6860 //===----------------------------------------------------------------------===// 6861 6862 namespace { 6863 class MipsABIInfo : public ABIInfo { 6864 bool IsO32; 6865 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6866 void CoerceToIntArgs(uint64_t TySize, 6867 SmallVectorImpl<llvm::Type *> &ArgList) const; 6868 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6869 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6870 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6871 public: 6872 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6873 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6874 StackAlignInBytes(IsO32 ? 8 : 16) {} 6875 6876 ABIArgInfo classifyReturnType(QualType RetTy) const; 6877 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6878 void computeInfo(CGFunctionInfo &FI) const override; 6879 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6880 QualType Ty) const override; 6881 ABIArgInfo extendType(QualType Ty) const; 6882 }; 6883 6884 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6885 unsigned SizeOfUnwindException; 6886 public: 6887 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6888 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6889 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6890 6891 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6892 return 29; 6893 } 6894 6895 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6896 CodeGen::CodeGenModule &CGM) const override { 6897 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6898 if (!FD) return; 6899 llvm::Function *Fn = cast<llvm::Function>(GV); 6900 6901 if (FD->hasAttr<MipsLongCallAttr>()) 6902 Fn->addFnAttr("long-call"); 6903 else if (FD->hasAttr<MipsShortCallAttr>()) 6904 Fn->addFnAttr("short-call"); 6905 6906 // Other attributes do not have a meaning for declarations. 6907 if (GV->isDeclaration()) 6908 return; 6909 6910 if (FD->hasAttr<Mips16Attr>()) { 6911 Fn->addFnAttr("mips16"); 6912 } 6913 else if (FD->hasAttr<NoMips16Attr>()) { 6914 Fn->addFnAttr("nomips16"); 6915 } 6916 6917 if (FD->hasAttr<MicroMipsAttr>()) 6918 Fn->addFnAttr("micromips"); 6919 else if (FD->hasAttr<NoMicroMipsAttr>()) 6920 Fn->addFnAttr("nomicromips"); 6921 6922 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6923 if (!Attr) 6924 return; 6925 6926 const char *Kind; 6927 switch (Attr->getInterrupt()) { 6928 case MipsInterruptAttr::eic: Kind = "eic"; break; 6929 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6930 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6931 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6932 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6933 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6934 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6935 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6936 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6937 } 6938 6939 Fn->addFnAttr("interrupt", Kind); 6940 6941 } 6942 6943 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6944 llvm::Value *Address) const override; 6945 6946 unsigned getSizeOfUnwindException() const override { 6947 return SizeOfUnwindException; 6948 } 6949 }; 6950 } 6951 6952 void MipsABIInfo::CoerceToIntArgs( 6953 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6954 llvm::IntegerType *IntTy = 6955 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6956 6957 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6958 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6959 ArgList.push_back(IntTy); 6960 6961 // If necessary, add one more integer type to ArgList. 6962 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6963 6964 if (R) 6965 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6966 } 6967 6968 // In N32/64, an aligned double precision floating point field is passed in 6969 // a register. 6970 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6971 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6972 6973 if (IsO32) { 6974 CoerceToIntArgs(TySize, ArgList); 6975 return llvm::StructType::get(getVMContext(), ArgList); 6976 } 6977 6978 if (Ty->isComplexType()) 6979 return CGT.ConvertType(Ty); 6980 6981 const RecordType *RT = Ty->getAs<RecordType>(); 6982 6983 // Unions/vectors are passed in integer registers. 6984 if (!RT || !RT->isStructureOrClassType()) { 6985 CoerceToIntArgs(TySize, ArgList); 6986 return llvm::StructType::get(getVMContext(), ArgList); 6987 } 6988 6989 const RecordDecl *RD = RT->getDecl(); 6990 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6991 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6992 6993 uint64_t LastOffset = 0; 6994 unsigned idx = 0; 6995 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6996 6997 // Iterate over fields in the struct/class and check if there are any aligned 6998 // double fields. 6999 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7000 i != e; ++i, ++idx) { 7001 const QualType Ty = i->getType(); 7002 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7003 7004 if (!BT || BT->getKind() != BuiltinType::Double) 7005 continue; 7006 7007 uint64_t Offset = Layout.getFieldOffset(idx); 7008 if (Offset % 64) // Ignore doubles that are not aligned. 7009 continue; 7010 7011 // Add ((Offset - LastOffset) / 64) args of type i64. 7012 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7013 ArgList.push_back(I64); 7014 7015 // Add double type. 7016 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7017 LastOffset = Offset + 64; 7018 } 7019 7020 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7021 ArgList.append(IntArgList.begin(), IntArgList.end()); 7022 7023 return llvm::StructType::get(getVMContext(), ArgList); 7024 } 7025 7026 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7027 uint64_t Offset) const { 7028 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7029 return nullptr; 7030 7031 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7032 } 7033 7034 ABIArgInfo 7035 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7036 Ty = useFirstFieldIfTransparentUnion(Ty); 7037 7038 uint64_t OrigOffset = Offset; 7039 uint64_t TySize = getContext().getTypeSize(Ty); 7040 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7041 7042 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7043 (uint64_t)StackAlignInBytes); 7044 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7045 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7046 7047 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7048 // Ignore empty aggregates. 7049 if (TySize == 0) 7050 return ABIArgInfo::getIgnore(); 7051 7052 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7053 Offset = OrigOffset + MinABIStackAlignInBytes; 7054 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7055 } 7056 7057 // If we have reached here, aggregates are passed directly by coercing to 7058 // another structure type. Padding is inserted if the offset of the 7059 // aggregate is unaligned. 7060 ABIArgInfo ArgInfo = 7061 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7062 getPaddingType(OrigOffset, CurrOffset)); 7063 ArgInfo.setInReg(true); 7064 return ArgInfo; 7065 } 7066 7067 // Treat an enum type as its underlying type. 7068 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7069 Ty = EnumTy->getDecl()->getIntegerType(); 7070 7071 // All integral types are promoted to the GPR width. 7072 if (Ty->isIntegralOrEnumerationType()) 7073 return extendType(Ty); 7074 7075 return ABIArgInfo::getDirect( 7076 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7077 } 7078 7079 llvm::Type* 7080 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7081 const RecordType *RT = RetTy->getAs<RecordType>(); 7082 SmallVector<llvm::Type*, 8> RTList; 7083 7084 if (RT && RT->isStructureOrClassType()) { 7085 const RecordDecl *RD = RT->getDecl(); 7086 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7087 unsigned FieldCnt = Layout.getFieldCount(); 7088 7089 // N32/64 returns struct/classes in floating point registers if the 7090 // following conditions are met: 7091 // 1. The size of the struct/class is no larger than 128-bit. 7092 // 2. The struct/class has one or two fields all of which are floating 7093 // point types. 7094 // 3. The offset of the first field is zero (this follows what gcc does). 7095 // 7096 // Any other composite results are returned in integer registers. 7097 // 7098 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7099 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7100 for (; b != e; ++b) { 7101 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7102 7103 if (!BT || !BT->isFloatingPoint()) 7104 break; 7105 7106 RTList.push_back(CGT.ConvertType(b->getType())); 7107 } 7108 7109 if (b == e) 7110 return llvm::StructType::get(getVMContext(), RTList, 7111 RD->hasAttr<PackedAttr>()); 7112 7113 RTList.clear(); 7114 } 7115 } 7116 7117 CoerceToIntArgs(Size, RTList); 7118 return llvm::StructType::get(getVMContext(), RTList); 7119 } 7120 7121 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7122 uint64_t Size = getContext().getTypeSize(RetTy); 7123 7124 if (RetTy->isVoidType()) 7125 return ABIArgInfo::getIgnore(); 7126 7127 // O32 doesn't treat zero-sized structs differently from other structs. 7128 // However, N32/N64 ignores zero sized return values. 7129 if (!IsO32 && Size == 0) 7130 return ABIArgInfo::getIgnore(); 7131 7132 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7133 if (Size <= 128) { 7134 if (RetTy->isAnyComplexType()) 7135 return ABIArgInfo::getDirect(); 7136 7137 // O32 returns integer vectors in registers and N32/N64 returns all small 7138 // aggregates in registers. 7139 if (!IsO32 || 7140 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7141 ABIArgInfo ArgInfo = 7142 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7143 ArgInfo.setInReg(true); 7144 return ArgInfo; 7145 } 7146 } 7147 7148 return getNaturalAlignIndirect(RetTy); 7149 } 7150 7151 // Treat an enum type as its underlying type. 7152 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7153 RetTy = EnumTy->getDecl()->getIntegerType(); 7154 7155 if (RetTy->isPromotableIntegerType()) 7156 return ABIArgInfo::getExtend(RetTy); 7157 7158 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7159 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7160 return ABIArgInfo::getSignExtend(RetTy); 7161 7162 return ABIArgInfo::getDirect(); 7163 } 7164 7165 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7166 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7167 if (!getCXXABI().classifyReturnType(FI)) 7168 RetInfo = classifyReturnType(FI.getReturnType()); 7169 7170 // Check if a pointer to an aggregate is passed as a hidden argument. 7171 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7172 7173 for (auto &I : FI.arguments()) 7174 I.info = classifyArgumentType(I.type, Offset); 7175 } 7176 7177 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7178 QualType OrigTy) const { 7179 QualType Ty = OrigTy; 7180 7181 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7182 // Pointers are also promoted in the same way but this only matters for N32. 7183 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7184 unsigned PtrWidth = getTarget().getPointerWidth(0); 7185 bool DidPromote = false; 7186 if ((Ty->isIntegerType() && 7187 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7188 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7189 DidPromote = true; 7190 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7191 Ty->isSignedIntegerType()); 7192 } 7193 7194 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7195 7196 // The alignment of things in the argument area is never larger than 7197 // StackAlignInBytes. 7198 TyInfo.second = 7199 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7200 7201 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7202 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7203 7204 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7205 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7206 7207 7208 // If there was a promotion, "unpromote" into a temporary. 7209 // TODO: can we just use a pointer into a subset of the original slot? 7210 if (DidPromote) { 7211 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7212 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7213 7214 // Truncate down to the right width. 7215 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7216 : CGF.IntPtrTy); 7217 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7218 if (OrigTy->isPointerType()) 7219 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7220 7221 CGF.Builder.CreateStore(V, Temp); 7222 Addr = Temp; 7223 } 7224 7225 return Addr; 7226 } 7227 7228 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7229 int TySize = getContext().getTypeSize(Ty); 7230 7231 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7232 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7233 return ABIArgInfo::getSignExtend(Ty); 7234 7235 return ABIArgInfo::getExtend(Ty); 7236 } 7237 7238 bool 7239 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7240 llvm::Value *Address) const { 7241 // This information comes from gcc's implementation, which seems to 7242 // as canonical as it gets. 7243 7244 // Everything on MIPS is 4 bytes. Double-precision FP registers 7245 // are aliased to pairs of single-precision FP registers. 7246 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7247 7248 // 0-31 are the general purpose registers, $0 - $31. 7249 // 32-63 are the floating-point registers, $f0 - $f31. 7250 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7251 // 66 is the (notional, I think) register for signal-handler return. 7252 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7253 7254 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7255 // They are one bit wide and ignored here. 7256 7257 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7258 // (coprocessor 1 is the FP unit) 7259 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7260 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7261 // 176-181 are the DSP accumulator registers. 7262 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7263 return false; 7264 } 7265 7266 //===----------------------------------------------------------------------===// 7267 // AVR ABI Implementation. 7268 //===----------------------------------------------------------------------===// 7269 7270 namespace { 7271 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7272 public: 7273 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7274 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7275 7276 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7277 CodeGen::CodeGenModule &CGM) const override { 7278 if (GV->isDeclaration()) 7279 return; 7280 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7281 if (!FD) return; 7282 auto *Fn = cast<llvm::Function>(GV); 7283 7284 if (FD->getAttr<AVRInterruptAttr>()) 7285 Fn->addFnAttr("interrupt"); 7286 7287 if (FD->getAttr<AVRSignalAttr>()) 7288 Fn->addFnAttr("signal"); 7289 } 7290 }; 7291 } 7292 7293 //===----------------------------------------------------------------------===// 7294 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7295 // Currently subclassed only to implement custom OpenCL C function attribute 7296 // handling. 7297 //===----------------------------------------------------------------------===// 7298 7299 namespace { 7300 7301 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7302 public: 7303 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7304 : DefaultTargetCodeGenInfo(CGT) {} 7305 7306 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7307 CodeGen::CodeGenModule &M) const override; 7308 }; 7309 7310 void TCETargetCodeGenInfo::setTargetAttributes( 7311 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7312 if (GV->isDeclaration()) 7313 return; 7314 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7315 if (!FD) return; 7316 7317 llvm::Function *F = cast<llvm::Function>(GV); 7318 7319 if (M.getLangOpts().OpenCL) { 7320 if (FD->hasAttr<OpenCLKernelAttr>()) { 7321 // OpenCL C Kernel functions are not subject to inlining 7322 F->addFnAttr(llvm::Attribute::NoInline); 7323 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7324 if (Attr) { 7325 // Convert the reqd_work_group_size() attributes to metadata. 7326 llvm::LLVMContext &Context = F->getContext(); 7327 llvm::NamedMDNode *OpenCLMetadata = 7328 M.getModule().getOrInsertNamedMetadata( 7329 "opencl.kernel_wg_size_info"); 7330 7331 SmallVector<llvm::Metadata *, 5> Operands; 7332 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7333 7334 Operands.push_back( 7335 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7336 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7337 Operands.push_back( 7338 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7339 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7340 Operands.push_back( 7341 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7342 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7343 7344 // Add a boolean constant operand for "required" (true) or "hint" 7345 // (false) for implementing the work_group_size_hint attr later. 7346 // Currently always true as the hint is not yet implemented. 7347 Operands.push_back( 7348 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7349 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7350 } 7351 } 7352 } 7353 } 7354 7355 } 7356 7357 //===----------------------------------------------------------------------===// 7358 // Hexagon ABI Implementation 7359 //===----------------------------------------------------------------------===// 7360 7361 namespace { 7362 7363 class HexagonABIInfo : public ABIInfo { 7364 7365 7366 public: 7367 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7368 7369 private: 7370 7371 ABIArgInfo classifyReturnType(QualType RetTy) const; 7372 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7373 7374 void computeInfo(CGFunctionInfo &FI) const override; 7375 7376 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7377 QualType Ty) const override; 7378 }; 7379 7380 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7381 public: 7382 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7383 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7384 7385 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7386 return 29; 7387 } 7388 }; 7389 7390 } 7391 7392 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7393 if (!getCXXABI().classifyReturnType(FI)) 7394 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7395 for (auto &I : FI.arguments()) 7396 I.info = classifyArgumentType(I.type); 7397 } 7398 7399 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7400 if (!isAggregateTypeForABI(Ty)) { 7401 // Treat an enum type as its underlying type. 7402 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7403 Ty = EnumTy->getDecl()->getIntegerType(); 7404 7405 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7406 : ABIArgInfo::getDirect()); 7407 } 7408 7409 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7410 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7411 7412 // Ignore empty records. 7413 if (isEmptyRecord(getContext(), Ty, true)) 7414 return ABIArgInfo::getIgnore(); 7415 7416 uint64_t Size = getContext().getTypeSize(Ty); 7417 if (Size > 64) 7418 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7419 // Pass in the smallest viable integer type. 7420 else if (Size > 32) 7421 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7422 else if (Size > 16) 7423 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7424 else if (Size > 8) 7425 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7426 else 7427 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7428 } 7429 7430 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7431 if (RetTy->isVoidType()) 7432 return ABIArgInfo::getIgnore(); 7433 7434 // Large vector types should be returned via memory. 7435 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7436 return getNaturalAlignIndirect(RetTy); 7437 7438 if (!isAggregateTypeForABI(RetTy)) { 7439 // Treat an enum type as its underlying type. 7440 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7441 RetTy = EnumTy->getDecl()->getIntegerType(); 7442 7443 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7444 : ABIArgInfo::getDirect()); 7445 } 7446 7447 if (isEmptyRecord(getContext(), RetTy, true)) 7448 return ABIArgInfo::getIgnore(); 7449 7450 // Aggregates <= 8 bytes are returned in r0; other aggregates 7451 // are returned indirectly. 7452 uint64_t Size = getContext().getTypeSize(RetTy); 7453 if (Size <= 64) { 7454 // Return in the smallest viable integer type. 7455 if (Size <= 8) 7456 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7457 if (Size <= 16) 7458 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7459 if (Size <= 32) 7460 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7461 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7462 } 7463 7464 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7465 } 7466 7467 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7468 QualType Ty) const { 7469 // FIXME: Someone needs to audit that this handle alignment correctly. 7470 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7471 getContext().getTypeInfoInChars(Ty), 7472 CharUnits::fromQuantity(4), 7473 /*AllowHigherAlign*/ true); 7474 } 7475 7476 //===----------------------------------------------------------------------===// 7477 // Lanai ABI Implementation 7478 //===----------------------------------------------------------------------===// 7479 7480 namespace { 7481 class LanaiABIInfo : public DefaultABIInfo { 7482 public: 7483 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7484 7485 bool shouldUseInReg(QualType Ty, CCState &State) const; 7486 7487 void computeInfo(CGFunctionInfo &FI) const override { 7488 CCState State(FI.getCallingConvention()); 7489 // Lanai uses 4 registers to pass arguments unless the function has the 7490 // regparm attribute set. 7491 if (FI.getHasRegParm()) { 7492 State.FreeRegs = FI.getRegParm(); 7493 } else { 7494 State.FreeRegs = 4; 7495 } 7496 7497 if (!getCXXABI().classifyReturnType(FI)) 7498 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7499 for (auto &I : FI.arguments()) 7500 I.info = classifyArgumentType(I.type, State); 7501 } 7502 7503 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7504 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7505 }; 7506 } // end anonymous namespace 7507 7508 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7509 unsigned Size = getContext().getTypeSize(Ty); 7510 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7511 7512 if (SizeInRegs == 0) 7513 return false; 7514 7515 if (SizeInRegs > State.FreeRegs) { 7516 State.FreeRegs = 0; 7517 return false; 7518 } 7519 7520 State.FreeRegs -= SizeInRegs; 7521 7522 return true; 7523 } 7524 7525 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7526 CCState &State) const { 7527 if (!ByVal) { 7528 if (State.FreeRegs) { 7529 --State.FreeRegs; // Non-byval indirects just use one pointer. 7530 return getNaturalAlignIndirectInReg(Ty); 7531 } 7532 return getNaturalAlignIndirect(Ty, false); 7533 } 7534 7535 // Compute the byval alignment. 7536 const unsigned MinABIStackAlignInBytes = 4; 7537 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7538 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7539 /*Realign=*/TypeAlign > 7540 MinABIStackAlignInBytes); 7541 } 7542 7543 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7544 CCState &State) const { 7545 // Check with the C++ ABI first. 7546 const RecordType *RT = Ty->getAs<RecordType>(); 7547 if (RT) { 7548 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7549 if (RAA == CGCXXABI::RAA_Indirect) { 7550 return getIndirectResult(Ty, /*ByVal=*/false, State); 7551 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7552 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7553 } 7554 } 7555 7556 if (isAggregateTypeForABI(Ty)) { 7557 // Structures with flexible arrays are always indirect. 7558 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7559 return getIndirectResult(Ty, /*ByVal=*/true, State); 7560 7561 // Ignore empty structs/unions. 7562 if (isEmptyRecord(getContext(), Ty, true)) 7563 return ABIArgInfo::getIgnore(); 7564 7565 llvm::LLVMContext &LLVMContext = getVMContext(); 7566 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7567 if (SizeInRegs <= State.FreeRegs) { 7568 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7569 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7570 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7571 State.FreeRegs -= SizeInRegs; 7572 return ABIArgInfo::getDirectInReg(Result); 7573 } else { 7574 State.FreeRegs = 0; 7575 } 7576 return getIndirectResult(Ty, true, State); 7577 } 7578 7579 // Treat an enum type as its underlying type. 7580 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7581 Ty = EnumTy->getDecl()->getIntegerType(); 7582 7583 bool InReg = shouldUseInReg(Ty, State); 7584 if (Ty->isPromotableIntegerType()) { 7585 if (InReg) 7586 return ABIArgInfo::getDirectInReg(); 7587 return ABIArgInfo::getExtend(Ty); 7588 } 7589 if (InReg) 7590 return ABIArgInfo::getDirectInReg(); 7591 return ABIArgInfo::getDirect(); 7592 } 7593 7594 namespace { 7595 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7596 public: 7597 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7598 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7599 }; 7600 } 7601 7602 //===----------------------------------------------------------------------===// 7603 // AMDGPU ABI Implementation 7604 //===----------------------------------------------------------------------===// 7605 7606 namespace { 7607 7608 class AMDGPUABIInfo final : public DefaultABIInfo { 7609 private: 7610 static const unsigned MaxNumRegsForArgsRet = 16; 7611 7612 unsigned numRegsForType(QualType Ty) const; 7613 7614 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7615 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7616 uint64_t Members) const override; 7617 7618 public: 7619 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7620 DefaultABIInfo(CGT) {} 7621 7622 ABIArgInfo classifyReturnType(QualType RetTy) const; 7623 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7624 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7625 7626 void computeInfo(CGFunctionInfo &FI) const override; 7627 }; 7628 7629 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7630 return true; 7631 } 7632 7633 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7634 const Type *Base, uint64_t Members) const { 7635 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7636 7637 // Homogeneous Aggregates may occupy at most 16 registers. 7638 return Members * NumRegs <= MaxNumRegsForArgsRet; 7639 } 7640 7641 /// Estimate number of registers the type will use when passed in registers. 7642 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7643 unsigned NumRegs = 0; 7644 7645 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7646 // Compute from the number of elements. The reported size is based on the 7647 // in-memory size, which includes the padding 4th element for 3-vectors. 7648 QualType EltTy = VT->getElementType(); 7649 unsigned EltSize = getContext().getTypeSize(EltTy); 7650 7651 // 16-bit element vectors should be passed as packed. 7652 if (EltSize == 16) 7653 return (VT->getNumElements() + 1) / 2; 7654 7655 unsigned EltNumRegs = (EltSize + 31) / 32; 7656 return EltNumRegs * VT->getNumElements(); 7657 } 7658 7659 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7660 const RecordDecl *RD = RT->getDecl(); 7661 assert(!RD->hasFlexibleArrayMember()); 7662 7663 for (const FieldDecl *Field : RD->fields()) { 7664 QualType FieldTy = Field->getType(); 7665 NumRegs += numRegsForType(FieldTy); 7666 } 7667 7668 return NumRegs; 7669 } 7670 7671 return (getContext().getTypeSize(Ty) + 31) / 32; 7672 } 7673 7674 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7675 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7676 7677 if (!getCXXABI().classifyReturnType(FI)) 7678 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7679 7680 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7681 for (auto &Arg : FI.arguments()) { 7682 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7683 Arg.info = classifyKernelArgumentType(Arg.type); 7684 } else { 7685 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7686 } 7687 } 7688 } 7689 7690 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7691 if (isAggregateTypeForABI(RetTy)) { 7692 // Records with non-trivial destructors/copy-constructors should not be 7693 // returned by value. 7694 if (!getRecordArgABI(RetTy, getCXXABI())) { 7695 // Ignore empty structs/unions. 7696 if (isEmptyRecord(getContext(), RetTy, true)) 7697 return ABIArgInfo::getIgnore(); 7698 7699 // Lower single-element structs to just return a regular value. 7700 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7701 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7702 7703 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7704 const RecordDecl *RD = RT->getDecl(); 7705 if (RD->hasFlexibleArrayMember()) 7706 return DefaultABIInfo::classifyReturnType(RetTy); 7707 } 7708 7709 // Pack aggregates <= 4 bytes into single VGPR or pair. 7710 uint64_t Size = getContext().getTypeSize(RetTy); 7711 if (Size <= 16) 7712 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7713 7714 if (Size <= 32) 7715 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7716 7717 if (Size <= 64) { 7718 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7719 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7720 } 7721 7722 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7723 return ABIArgInfo::getDirect(); 7724 } 7725 } 7726 7727 // Otherwise just do the default thing. 7728 return DefaultABIInfo::classifyReturnType(RetTy); 7729 } 7730 7731 /// For kernels all parameters are really passed in a special buffer. It doesn't 7732 /// make sense to pass anything byval, so everything must be direct. 7733 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7734 Ty = useFirstFieldIfTransparentUnion(Ty); 7735 7736 // TODO: Can we omit empty structs? 7737 7738 // Coerce single element structs to its element. 7739 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7740 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7741 7742 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7743 // individual elements, which confuses the Clover OpenCL backend; therefore we 7744 // have to set it to false here. Other args of getDirect() are just defaults. 7745 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7746 } 7747 7748 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7749 unsigned &NumRegsLeft) const { 7750 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7751 7752 Ty = useFirstFieldIfTransparentUnion(Ty); 7753 7754 if (isAggregateTypeForABI(Ty)) { 7755 // Records with non-trivial destructors/copy-constructors should not be 7756 // passed by value. 7757 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7758 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7759 7760 // Ignore empty structs/unions. 7761 if (isEmptyRecord(getContext(), Ty, true)) 7762 return ABIArgInfo::getIgnore(); 7763 7764 // Lower single-element structs to just pass a regular value. TODO: We 7765 // could do reasonable-size multiple-element structs too, using getExpand(), 7766 // though watch out for things like bitfields. 7767 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7768 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7769 7770 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7771 const RecordDecl *RD = RT->getDecl(); 7772 if (RD->hasFlexibleArrayMember()) 7773 return DefaultABIInfo::classifyArgumentType(Ty); 7774 } 7775 7776 // Pack aggregates <= 8 bytes into single VGPR or pair. 7777 uint64_t Size = getContext().getTypeSize(Ty); 7778 if (Size <= 64) { 7779 unsigned NumRegs = (Size + 31) / 32; 7780 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7781 7782 if (Size <= 16) 7783 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7784 7785 if (Size <= 32) 7786 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7787 7788 // XXX: Should this be i64 instead, and should the limit increase? 7789 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7790 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7791 } 7792 7793 if (NumRegsLeft > 0) { 7794 unsigned NumRegs = numRegsForType(Ty); 7795 if (NumRegsLeft >= NumRegs) { 7796 NumRegsLeft -= NumRegs; 7797 return ABIArgInfo::getDirect(); 7798 } 7799 } 7800 } 7801 7802 // Otherwise just do the default thing. 7803 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7804 if (!ArgInfo.isIndirect()) { 7805 unsigned NumRegs = numRegsForType(Ty); 7806 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7807 } 7808 7809 return ArgInfo; 7810 } 7811 7812 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7813 public: 7814 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7815 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7816 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7817 CodeGen::CodeGenModule &M) const override; 7818 unsigned getOpenCLKernelCallingConv() const override; 7819 7820 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7821 llvm::PointerType *T, QualType QT) const override; 7822 7823 LangAS getASTAllocaAddressSpace() const override { 7824 return getLangASFromTargetAS( 7825 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7826 } 7827 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7828 const VarDecl *D) const override; 7829 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 7830 SyncScope Scope, 7831 llvm::AtomicOrdering Ordering, 7832 llvm::LLVMContext &Ctx) const override; 7833 llvm::Function * 7834 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7835 llvm::Function *BlockInvokeFunc, 7836 llvm::Value *BlockLiteral) const override; 7837 bool shouldEmitStaticExternCAliases() const override; 7838 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7839 }; 7840 } 7841 7842 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 7843 llvm::GlobalValue *GV) { 7844 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 7845 return false; 7846 7847 return D->hasAttr<OpenCLKernelAttr>() || 7848 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 7849 (isa<VarDecl>(D) && 7850 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())); 7851 } 7852 7853 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7854 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7855 if (requiresAMDGPUProtectedVisibility(D, GV)) { 7856 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 7857 GV->setDSOLocal(true); 7858 } 7859 7860 if (GV->isDeclaration()) 7861 return; 7862 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7863 if (!FD) 7864 return; 7865 7866 llvm::Function *F = cast<llvm::Function>(GV); 7867 7868 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7869 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7870 7871 if (((M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>()) || 7872 (M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>())) && 7873 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7874 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7875 7876 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7877 if (ReqdWGS || FlatWGS) { 7878 unsigned Min = 0; 7879 unsigned Max = 0; 7880 if (FlatWGS) { 7881 Min = FlatWGS->getMin() 7882 ->EvaluateKnownConstInt(M.getContext()) 7883 .getExtValue(); 7884 Max = FlatWGS->getMax() 7885 ->EvaluateKnownConstInt(M.getContext()) 7886 .getExtValue(); 7887 } 7888 if (ReqdWGS && Min == 0 && Max == 0) 7889 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7890 7891 if (Min != 0) { 7892 assert(Min <= Max && "Min must be less than or equal Max"); 7893 7894 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7895 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7896 } else 7897 assert(Max == 0 && "Max must be zero"); 7898 } 7899 7900 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7901 unsigned Min = 7902 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 7903 unsigned Max = Attr->getMax() ? Attr->getMax() 7904 ->EvaluateKnownConstInt(M.getContext()) 7905 .getExtValue() 7906 : 0; 7907 7908 if (Min != 0) { 7909 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7910 7911 std::string AttrVal = llvm::utostr(Min); 7912 if (Max != 0) 7913 AttrVal = AttrVal + "," + llvm::utostr(Max); 7914 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7915 } else 7916 assert(Max == 0 && "Max must be zero"); 7917 } 7918 7919 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7920 unsigned NumSGPR = Attr->getNumSGPR(); 7921 7922 if (NumSGPR != 0) 7923 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7924 } 7925 7926 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7927 uint32_t NumVGPR = Attr->getNumVGPR(); 7928 7929 if (NumVGPR != 0) 7930 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7931 } 7932 } 7933 7934 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7935 return llvm::CallingConv::AMDGPU_KERNEL; 7936 } 7937 7938 // Currently LLVM assumes null pointers always have value 0, 7939 // which results in incorrectly transformed IR. Therefore, instead of 7940 // emitting null pointers in private and local address spaces, a null 7941 // pointer in generic address space is emitted which is casted to a 7942 // pointer in local or private address space. 7943 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7944 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7945 QualType QT) const { 7946 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7947 return llvm::ConstantPointerNull::get(PT); 7948 7949 auto &Ctx = CGM.getContext(); 7950 auto NPT = llvm::PointerType::get(PT->getElementType(), 7951 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7952 return llvm::ConstantExpr::getAddrSpaceCast( 7953 llvm::ConstantPointerNull::get(NPT), PT); 7954 } 7955 7956 LangAS 7957 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7958 const VarDecl *D) const { 7959 assert(!CGM.getLangOpts().OpenCL && 7960 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7961 "Address space agnostic languages only"); 7962 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7963 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7964 if (!D) 7965 return DefaultGlobalAS; 7966 7967 LangAS AddrSpace = D->getType().getAddressSpace(); 7968 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7969 if (AddrSpace != LangAS::Default) 7970 return AddrSpace; 7971 7972 if (CGM.isTypeConstant(D->getType(), false)) { 7973 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7974 return ConstAS.getValue(); 7975 } 7976 return DefaultGlobalAS; 7977 } 7978 7979 llvm::SyncScope::ID 7980 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 7981 SyncScope Scope, 7982 llvm::AtomicOrdering Ordering, 7983 llvm::LLVMContext &Ctx) const { 7984 std::string Name; 7985 switch (Scope) { 7986 case SyncScope::OpenCLWorkGroup: 7987 Name = "workgroup"; 7988 break; 7989 case SyncScope::OpenCLDevice: 7990 Name = "agent"; 7991 break; 7992 case SyncScope::OpenCLAllSVMDevices: 7993 Name = ""; 7994 break; 7995 case SyncScope::OpenCLSubGroup: 7996 Name = "wavefront"; 7997 } 7998 7999 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8000 if (!Name.empty()) 8001 Name = Twine(Twine(Name) + Twine("-")).str(); 8002 8003 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8004 } 8005 8006 return Ctx.getOrInsertSyncScopeID(Name); 8007 } 8008 8009 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8010 return false; 8011 } 8012 8013 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8014 const FunctionType *&FT) const { 8015 FT = getABIInfo().getContext().adjustFunctionType( 8016 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8017 } 8018 8019 //===----------------------------------------------------------------------===// 8020 // SPARC v8 ABI Implementation. 8021 // Based on the SPARC Compliance Definition version 2.4.1. 8022 // 8023 // Ensures that complex values are passed in registers. 8024 // 8025 namespace { 8026 class SparcV8ABIInfo : public DefaultABIInfo { 8027 public: 8028 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8029 8030 private: 8031 ABIArgInfo classifyReturnType(QualType RetTy) const; 8032 void computeInfo(CGFunctionInfo &FI) const override; 8033 }; 8034 } // end anonymous namespace 8035 8036 8037 ABIArgInfo 8038 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8039 if (Ty->isAnyComplexType()) { 8040 return ABIArgInfo::getDirect(); 8041 } 8042 else { 8043 return DefaultABIInfo::classifyReturnType(Ty); 8044 } 8045 } 8046 8047 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8048 8049 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8050 for (auto &Arg : FI.arguments()) 8051 Arg.info = classifyArgumentType(Arg.type); 8052 } 8053 8054 namespace { 8055 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8056 public: 8057 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8058 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8059 }; 8060 } // end anonymous namespace 8061 8062 //===----------------------------------------------------------------------===// 8063 // SPARC v9 ABI Implementation. 8064 // Based on the SPARC Compliance Definition version 2.4.1. 8065 // 8066 // Function arguments a mapped to a nominal "parameter array" and promoted to 8067 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8068 // the array, structs larger than 16 bytes are passed indirectly. 8069 // 8070 // One case requires special care: 8071 // 8072 // struct mixed { 8073 // int i; 8074 // float f; 8075 // }; 8076 // 8077 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8078 // parameter array, but the int is passed in an integer register, and the float 8079 // is passed in a floating point register. This is represented as two arguments 8080 // with the LLVM IR inreg attribute: 8081 // 8082 // declare void f(i32 inreg %i, float inreg %f) 8083 // 8084 // The code generator will only allocate 4 bytes from the parameter array for 8085 // the inreg arguments. All other arguments are allocated a multiple of 8 8086 // bytes. 8087 // 8088 namespace { 8089 class SparcV9ABIInfo : public ABIInfo { 8090 public: 8091 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8092 8093 private: 8094 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8095 void computeInfo(CGFunctionInfo &FI) const override; 8096 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8097 QualType Ty) const override; 8098 8099 // Coercion type builder for structs passed in registers. The coercion type 8100 // serves two purposes: 8101 // 8102 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8103 // in registers. 8104 // 2. Expose aligned floating point elements as first-level elements, so the 8105 // code generator knows to pass them in floating point registers. 8106 // 8107 // We also compute the InReg flag which indicates that the struct contains 8108 // aligned 32-bit floats. 8109 // 8110 struct CoerceBuilder { 8111 llvm::LLVMContext &Context; 8112 const llvm::DataLayout &DL; 8113 SmallVector<llvm::Type*, 8> Elems; 8114 uint64_t Size; 8115 bool InReg; 8116 8117 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8118 : Context(c), DL(dl), Size(0), InReg(false) {} 8119 8120 // Pad Elems with integers until Size is ToSize. 8121 void pad(uint64_t ToSize) { 8122 assert(ToSize >= Size && "Cannot remove elements"); 8123 if (ToSize == Size) 8124 return; 8125 8126 // Finish the current 64-bit word. 8127 uint64_t Aligned = llvm::alignTo(Size, 64); 8128 if (Aligned > Size && Aligned <= ToSize) { 8129 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8130 Size = Aligned; 8131 } 8132 8133 // Add whole 64-bit words. 8134 while (Size + 64 <= ToSize) { 8135 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8136 Size += 64; 8137 } 8138 8139 // Final in-word padding. 8140 if (Size < ToSize) { 8141 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8142 Size = ToSize; 8143 } 8144 } 8145 8146 // Add a floating point element at Offset. 8147 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8148 // Unaligned floats are treated as integers. 8149 if (Offset % Bits) 8150 return; 8151 // The InReg flag is only required if there are any floats < 64 bits. 8152 if (Bits < 64) 8153 InReg = true; 8154 pad(Offset); 8155 Elems.push_back(Ty); 8156 Size = Offset + Bits; 8157 } 8158 8159 // Add a struct type to the coercion type, starting at Offset (in bits). 8160 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8161 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8162 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8163 llvm::Type *ElemTy = StrTy->getElementType(i); 8164 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8165 switch (ElemTy->getTypeID()) { 8166 case llvm::Type::StructTyID: 8167 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8168 break; 8169 case llvm::Type::FloatTyID: 8170 addFloat(ElemOffset, ElemTy, 32); 8171 break; 8172 case llvm::Type::DoubleTyID: 8173 addFloat(ElemOffset, ElemTy, 64); 8174 break; 8175 case llvm::Type::FP128TyID: 8176 addFloat(ElemOffset, ElemTy, 128); 8177 break; 8178 case llvm::Type::PointerTyID: 8179 if (ElemOffset % 64 == 0) { 8180 pad(ElemOffset); 8181 Elems.push_back(ElemTy); 8182 Size += 64; 8183 } 8184 break; 8185 default: 8186 break; 8187 } 8188 } 8189 } 8190 8191 // Check if Ty is a usable substitute for the coercion type. 8192 bool isUsableType(llvm::StructType *Ty) const { 8193 return llvm::makeArrayRef(Elems) == Ty->elements(); 8194 } 8195 8196 // Get the coercion type as a literal struct type. 8197 llvm::Type *getType() const { 8198 if (Elems.size() == 1) 8199 return Elems.front(); 8200 else 8201 return llvm::StructType::get(Context, Elems); 8202 } 8203 }; 8204 }; 8205 } // end anonymous namespace 8206 8207 ABIArgInfo 8208 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8209 if (Ty->isVoidType()) 8210 return ABIArgInfo::getIgnore(); 8211 8212 uint64_t Size = getContext().getTypeSize(Ty); 8213 8214 // Anything too big to fit in registers is passed with an explicit indirect 8215 // pointer / sret pointer. 8216 if (Size > SizeLimit) 8217 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8218 8219 // Treat an enum type as its underlying type. 8220 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8221 Ty = EnumTy->getDecl()->getIntegerType(); 8222 8223 // Integer types smaller than a register are extended. 8224 if (Size < 64 && Ty->isIntegerType()) 8225 return ABIArgInfo::getExtend(Ty); 8226 8227 // Other non-aggregates go in registers. 8228 if (!isAggregateTypeForABI(Ty)) 8229 return ABIArgInfo::getDirect(); 8230 8231 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8232 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8233 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8234 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8235 8236 // This is a small aggregate type that should be passed in registers. 8237 // Build a coercion type from the LLVM struct type. 8238 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8239 if (!StrTy) 8240 return ABIArgInfo::getDirect(); 8241 8242 CoerceBuilder CB(getVMContext(), getDataLayout()); 8243 CB.addStruct(0, StrTy); 8244 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8245 8246 // Try to use the original type for coercion. 8247 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8248 8249 if (CB.InReg) 8250 return ABIArgInfo::getDirectInReg(CoerceTy); 8251 else 8252 return ABIArgInfo::getDirect(CoerceTy); 8253 } 8254 8255 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8256 QualType Ty) const { 8257 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8258 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8259 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8260 AI.setCoerceToType(ArgTy); 8261 8262 CharUnits SlotSize = CharUnits::fromQuantity(8); 8263 8264 CGBuilderTy &Builder = CGF.Builder; 8265 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8266 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8267 8268 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8269 8270 Address ArgAddr = Address::invalid(); 8271 CharUnits Stride; 8272 switch (AI.getKind()) { 8273 case ABIArgInfo::Expand: 8274 case ABIArgInfo::CoerceAndExpand: 8275 case ABIArgInfo::InAlloca: 8276 llvm_unreachable("Unsupported ABI kind for va_arg"); 8277 8278 case ABIArgInfo::Extend: { 8279 Stride = SlotSize; 8280 CharUnits Offset = SlotSize - TypeInfo.first; 8281 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8282 break; 8283 } 8284 8285 case ABIArgInfo::Direct: { 8286 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8287 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8288 ArgAddr = Addr; 8289 break; 8290 } 8291 8292 case ABIArgInfo::Indirect: 8293 Stride = SlotSize; 8294 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8295 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8296 TypeInfo.second); 8297 break; 8298 8299 case ABIArgInfo::Ignore: 8300 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8301 } 8302 8303 // Update VAList. 8304 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8305 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8306 8307 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8308 } 8309 8310 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8311 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8312 for (auto &I : FI.arguments()) 8313 I.info = classifyType(I.type, 16 * 8); 8314 } 8315 8316 namespace { 8317 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8318 public: 8319 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8320 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8321 8322 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8323 return 14; 8324 } 8325 8326 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8327 llvm::Value *Address) const override; 8328 }; 8329 } // end anonymous namespace 8330 8331 bool 8332 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8333 llvm::Value *Address) const { 8334 // This is calculated from the LLVM and GCC tables and verified 8335 // against gcc output. AFAIK all ABIs use the same encoding. 8336 8337 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8338 8339 llvm::IntegerType *i8 = CGF.Int8Ty; 8340 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8341 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8342 8343 // 0-31: the 8-byte general-purpose registers 8344 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8345 8346 // 32-63: f0-31, the 4-byte floating-point registers 8347 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8348 8349 // Y = 64 8350 // PSR = 65 8351 // WIM = 66 8352 // TBR = 67 8353 // PC = 68 8354 // NPC = 69 8355 // FSR = 70 8356 // CSR = 71 8357 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8358 8359 // 72-87: d0-15, the 8-byte floating-point registers 8360 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8361 8362 return false; 8363 } 8364 8365 // ARC ABI implementation. 8366 namespace { 8367 8368 class ARCABIInfo : public DefaultABIInfo { 8369 public: 8370 using DefaultABIInfo::DefaultABIInfo; 8371 8372 private: 8373 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8374 QualType Ty) const override; 8375 8376 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8377 if (!State.FreeRegs) 8378 return; 8379 if (Info.isIndirect() && Info.getInReg()) 8380 State.FreeRegs--; 8381 else if (Info.isDirect() && Info.getInReg()) { 8382 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8383 if (sz < State.FreeRegs) 8384 State.FreeRegs -= sz; 8385 else 8386 State.FreeRegs = 0; 8387 } 8388 } 8389 8390 void computeInfo(CGFunctionInfo &FI) const override { 8391 CCState State(FI.getCallingConvention()); 8392 // ARC uses 8 registers to pass arguments. 8393 State.FreeRegs = 8; 8394 8395 if (!getCXXABI().classifyReturnType(FI)) 8396 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8397 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8398 for (auto &I : FI.arguments()) { 8399 I.info = classifyArgumentType(I.type, State.FreeRegs); 8400 updateState(I.info, I.type, State); 8401 } 8402 } 8403 8404 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8405 ABIArgInfo getIndirectByValue(QualType Ty) const; 8406 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8407 ABIArgInfo classifyReturnType(QualType RetTy) const; 8408 }; 8409 8410 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8411 public: 8412 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8413 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8414 }; 8415 8416 8417 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8418 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8419 getNaturalAlignIndirect(Ty, false); 8420 } 8421 8422 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8423 // Compute the byval alignment. 8424 const unsigned MinABIStackAlignInBytes = 4; 8425 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8426 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8427 TypeAlign > MinABIStackAlignInBytes); 8428 } 8429 8430 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8431 QualType Ty) const { 8432 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8433 getContext().getTypeInfoInChars(Ty), 8434 CharUnits::fromQuantity(4), true); 8435 } 8436 8437 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8438 uint8_t FreeRegs) const { 8439 // Handle the generic C++ ABI. 8440 const RecordType *RT = Ty->getAs<RecordType>(); 8441 if (RT) { 8442 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8443 if (RAA == CGCXXABI::RAA_Indirect) 8444 return getIndirectByRef(Ty, FreeRegs > 0); 8445 8446 if (RAA == CGCXXABI::RAA_DirectInMemory) 8447 return getIndirectByValue(Ty); 8448 } 8449 8450 // Treat an enum type as its underlying type. 8451 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8452 Ty = EnumTy->getDecl()->getIntegerType(); 8453 8454 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8455 8456 if (isAggregateTypeForABI(Ty)) { 8457 // Structures with flexible arrays are always indirect. 8458 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8459 return getIndirectByValue(Ty); 8460 8461 // Ignore empty structs/unions. 8462 if (isEmptyRecord(getContext(), Ty, true)) 8463 return ABIArgInfo::getIgnore(); 8464 8465 llvm::LLVMContext &LLVMContext = getVMContext(); 8466 8467 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8468 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8469 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8470 8471 return FreeRegs >= SizeInRegs ? 8472 ABIArgInfo::getDirectInReg(Result) : 8473 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8474 } 8475 8476 return Ty->isPromotableIntegerType() ? 8477 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8478 ABIArgInfo::getExtend(Ty)) : 8479 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8480 ABIArgInfo::getDirect()); 8481 } 8482 8483 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8484 if (RetTy->isAnyComplexType()) 8485 return ABIArgInfo::getDirectInReg(); 8486 8487 // Arguments of size > 4 registers are indirect. 8488 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8489 if (RetSize > 4) 8490 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8491 8492 return DefaultABIInfo::classifyReturnType(RetTy); 8493 } 8494 8495 } // End anonymous namespace. 8496 8497 //===----------------------------------------------------------------------===// 8498 // XCore ABI Implementation 8499 //===----------------------------------------------------------------------===// 8500 8501 namespace { 8502 8503 /// A SmallStringEnc instance is used to build up the TypeString by passing 8504 /// it by reference between functions that append to it. 8505 typedef llvm::SmallString<128> SmallStringEnc; 8506 8507 /// TypeStringCache caches the meta encodings of Types. 8508 /// 8509 /// The reason for caching TypeStrings is two fold: 8510 /// 1. To cache a type's encoding for later uses; 8511 /// 2. As a means to break recursive member type inclusion. 8512 /// 8513 /// A cache Entry can have a Status of: 8514 /// NonRecursive: The type encoding is not recursive; 8515 /// Recursive: The type encoding is recursive; 8516 /// Incomplete: An incomplete TypeString; 8517 /// IncompleteUsed: An incomplete TypeString that has been used in a 8518 /// Recursive type encoding. 8519 /// 8520 /// A NonRecursive entry will have all of its sub-members expanded as fully 8521 /// as possible. Whilst it may contain types which are recursive, the type 8522 /// itself is not recursive and thus its encoding may be safely used whenever 8523 /// the type is encountered. 8524 /// 8525 /// A Recursive entry will have all of its sub-members expanded as fully as 8526 /// possible. The type itself is recursive and it may contain other types which 8527 /// are recursive. The Recursive encoding must not be used during the expansion 8528 /// of a recursive type's recursive branch. For simplicity the code uses 8529 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8530 /// 8531 /// An Incomplete entry is always a RecordType and only encodes its 8532 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8533 /// are placed into the cache during type expansion as a means to identify and 8534 /// handle recursive inclusion of types as sub-members. If there is recursion 8535 /// the entry becomes IncompleteUsed. 8536 /// 8537 /// During the expansion of a RecordType's members: 8538 /// 8539 /// If the cache contains a NonRecursive encoding for the member type, the 8540 /// cached encoding is used; 8541 /// 8542 /// If the cache contains a Recursive encoding for the member type, the 8543 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8544 /// 8545 /// If the member is a RecordType, an Incomplete encoding is placed into the 8546 /// cache to break potential recursive inclusion of itself as a sub-member; 8547 /// 8548 /// Once a member RecordType has been expanded, its temporary incomplete 8549 /// entry is removed from the cache. If a Recursive encoding was swapped out 8550 /// it is swapped back in; 8551 /// 8552 /// If an incomplete entry is used to expand a sub-member, the incomplete 8553 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8554 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8555 /// 8556 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8557 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8558 /// Else the member is part of a recursive type and thus the recursion has 8559 /// been exited too soon for the encoding to be correct for the member. 8560 /// 8561 class TypeStringCache { 8562 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8563 struct Entry { 8564 std::string Str; // The encoded TypeString for the type. 8565 enum Status State; // Information about the encoding in 'Str'. 8566 std::string Swapped; // A temporary place holder for a Recursive encoding 8567 // during the expansion of RecordType's members. 8568 }; 8569 std::map<const IdentifierInfo *, struct Entry> Map; 8570 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8571 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8572 public: 8573 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8574 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8575 bool removeIncomplete(const IdentifierInfo *ID); 8576 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8577 bool IsRecursive); 8578 StringRef lookupStr(const IdentifierInfo *ID); 8579 }; 8580 8581 /// TypeString encodings for enum & union fields must be order. 8582 /// FieldEncoding is a helper for this ordering process. 8583 class FieldEncoding { 8584 bool HasName; 8585 std::string Enc; 8586 public: 8587 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8588 StringRef str() { return Enc; } 8589 bool operator<(const FieldEncoding &rhs) const { 8590 if (HasName != rhs.HasName) return HasName; 8591 return Enc < rhs.Enc; 8592 } 8593 }; 8594 8595 class XCoreABIInfo : public DefaultABIInfo { 8596 public: 8597 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8598 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8599 QualType Ty) const override; 8600 }; 8601 8602 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8603 mutable TypeStringCache TSC; 8604 public: 8605 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8606 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8607 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8608 CodeGen::CodeGenModule &M) const override; 8609 }; 8610 8611 } // End anonymous namespace. 8612 8613 // TODO: this implementation is likely now redundant with the default 8614 // EmitVAArg. 8615 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8616 QualType Ty) const { 8617 CGBuilderTy &Builder = CGF.Builder; 8618 8619 // Get the VAList. 8620 CharUnits SlotSize = CharUnits::fromQuantity(4); 8621 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8622 8623 // Handle the argument. 8624 ABIArgInfo AI = classifyArgumentType(Ty); 8625 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8626 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8627 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8628 AI.setCoerceToType(ArgTy); 8629 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8630 8631 Address Val = Address::invalid(); 8632 CharUnits ArgSize = CharUnits::Zero(); 8633 switch (AI.getKind()) { 8634 case ABIArgInfo::Expand: 8635 case ABIArgInfo::CoerceAndExpand: 8636 case ABIArgInfo::InAlloca: 8637 llvm_unreachable("Unsupported ABI kind for va_arg"); 8638 case ABIArgInfo::Ignore: 8639 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8640 ArgSize = CharUnits::Zero(); 8641 break; 8642 case ABIArgInfo::Extend: 8643 case ABIArgInfo::Direct: 8644 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8645 ArgSize = CharUnits::fromQuantity( 8646 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8647 ArgSize = ArgSize.alignTo(SlotSize); 8648 break; 8649 case ABIArgInfo::Indirect: 8650 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8651 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8652 ArgSize = SlotSize; 8653 break; 8654 } 8655 8656 // Increment the VAList. 8657 if (!ArgSize.isZero()) { 8658 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8659 Builder.CreateStore(APN.getPointer(), VAListAddr); 8660 } 8661 8662 return Val; 8663 } 8664 8665 /// During the expansion of a RecordType, an incomplete TypeString is placed 8666 /// into the cache as a means to identify and break recursion. 8667 /// If there is a Recursive encoding in the cache, it is swapped out and will 8668 /// be reinserted by removeIncomplete(). 8669 /// All other types of encoding should have been used rather than arriving here. 8670 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8671 std::string StubEnc) { 8672 if (!ID) 8673 return; 8674 Entry &E = Map[ID]; 8675 assert( (E.Str.empty() || E.State == Recursive) && 8676 "Incorrectly use of addIncomplete"); 8677 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8678 E.Swapped.swap(E.Str); // swap out the Recursive 8679 E.Str.swap(StubEnc); 8680 E.State = Incomplete; 8681 ++IncompleteCount; 8682 } 8683 8684 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8685 /// must be removed from the cache. 8686 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8687 /// Returns true if the RecordType was defined recursively. 8688 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8689 if (!ID) 8690 return false; 8691 auto I = Map.find(ID); 8692 assert(I != Map.end() && "Entry not present"); 8693 Entry &E = I->second; 8694 assert( (E.State == Incomplete || 8695 E.State == IncompleteUsed) && 8696 "Entry must be an incomplete type"); 8697 bool IsRecursive = false; 8698 if (E.State == IncompleteUsed) { 8699 // We made use of our Incomplete encoding, thus we are recursive. 8700 IsRecursive = true; 8701 --IncompleteUsedCount; 8702 } 8703 if (E.Swapped.empty()) 8704 Map.erase(I); 8705 else { 8706 // Swap the Recursive back. 8707 E.Swapped.swap(E.Str); 8708 E.Swapped.clear(); 8709 E.State = Recursive; 8710 } 8711 --IncompleteCount; 8712 return IsRecursive; 8713 } 8714 8715 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8716 /// Recursive (viz: all sub-members were expanded as fully as possible). 8717 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8718 bool IsRecursive) { 8719 if (!ID || IncompleteUsedCount) 8720 return; // No key or it is is an incomplete sub-type so don't add. 8721 Entry &E = Map[ID]; 8722 if (IsRecursive && !E.Str.empty()) { 8723 assert(E.State==Recursive && E.Str.size() == Str.size() && 8724 "This is not the same Recursive entry"); 8725 // The parent container was not recursive after all, so we could have used 8726 // this Recursive sub-member entry after all, but we assumed the worse when 8727 // we started viz: IncompleteCount!=0. 8728 return; 8729 } 8730 assert(E.Str.empty() && "Entry already present"); 8731 E.Str = Str.str(); 8732 E.State = IsRecursive? Recursive : NonRecursive; 8733 } 8734 8735 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8736 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8737 /// encoding is Recursive, return an empty StringRef. 8738 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8739 if (!ID) 8740 return StringRef(); // We have no key. 8741 auto I = Map.find(ID); 8742 if (I == Map.end()) 8743 return StringRef(); // We have no encoding. 8744 Entry &E = I->second; 8745 if (E.State == Recursive && IncompleteCount) 8746 return StringRef(); // We don't use Recursive encodings for member types. 8747 8748 if (E.State == Incomplete) { 8749 // The incomplete type is being used to break out of recursion. 8750 E.State = IncompleteUsed; 8751 ++IncompleteUsedCount; 8752 } 8753 return E.Str; 8754 } 8755 8756 /// The XCore ABI includes a type information section that communicates symbol 8757 /// type information to the linker. The linker uses this information to verify 8758 /// safety/correctness of things such as array bound and pointers et al. 8759 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8760 /// This type information (TypeString) is emitted into meta data for all global 8761 /// symbols: definitions, declarations, functions & variables. 8762 /// 8763 /// The TypeString carries type, qualifier, name, size & value details. 8764 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8765 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8766 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8767 /// 8768 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8769 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8770 8771 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8772 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8773 CodeGen::CodeGenModule &CGM) const { 8774 SmallStringEnc Enc; 8775 if (getTypeString(Enc, D, CGM, TSC)) { 8776 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8777 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8778 llvm::MDString::get(Ctx, Enc.str())}; 8779 llvm::NamedMDNode *MD = 8780 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8781 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8782 } 8783 } 8784 8785 //===----------------------------------------------------------------------===// 8786 // SPIR ABI Implementation 8787 //===----------------------------------------------------------------------===// 8788 8789 namespace { 8790 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8791 public: 8792 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8793 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8794 unsigned getOpenCLKernelCallingConv() const override; 8795 }; 8796 8797 } // End anonymous namespace. 8798 8799 namespace clang { 8800 namespace CodeGen { 8801 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8802 DefaultABIInfo SPIRABI(CGM.getTypes()); 8803 SPIRABI.computeInfo(FI); 8804 } 8805 } 8806 } 8807 8808 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8809 return llvm::CallingConv::SPIR_KERNEL; 8810 } 8811 8812 static bool appendType(SmallStringEnc &Enc, QualType QType, 8813 const CodeGen::CodeGenModule &CGM, 8814 TypeStringCache &TSC); 8815 8816 /// Helper function for appendRecordType(). 8817 /// Builds a SmallVector containing the encoded field types in declaration 8818 /// order. 8819 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8820 const RecordDecl *RD, 8821 const CodeGen::CodeGenModule &CGM, 8822 TypeStringCache &TSC) { 8823 for (const auto *Field : RD->fields()) { 8824 SmallStringEnc Enc; 8825 Enc += "m("; 8826 Enc += Field->getName(); 8827 Enc += "){"; 8828 if (Field->isBitField()) { 8829 Enc += "b("; 8830 llvm::raw_svector_ostream OS(Enc); 8831 OS << Field->getBitWidthValue(CGM.getContext()); 8832 Enc += ':'; 8833 } 8834 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8835 return false; 8836 if (Field->isBitField()) 8837 Enc += ')'; 8838 Enc += '}'; 8839 FE.emplace_back(!Field->getName().empty(), Enc); 8840 } 8841 return true; 8842 } 8843 8844 /// Appends structure and union types to Enc and adds encoding to cache. 8845 /// Recursively calls appendType (via extractFieldType) for each field. 8846 /// Union types have their fields ordered according to the ABI. 8847 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8848 const CodeGen::CodeGenModule &CGM, 8849 TypeStringCache &TSC, const IdentifierInfo *ID) { 8850 // Append the cached TypeString if we have one. 8851 StringRef TypeString = TSC.lookupStr(ID); 8852 if (!TypeString.empty()) { 8853 Enc += TypeString; 8854 return true; 8855 } 8856 8857 // Start to emit an incomplete TypeString. 8858 size_t Start = Enc.size(); 8859 Enc += (RT->isUnionType()? 'u' : 's'); 8860 Enc += '('; 8861 if (ID) 8862 Enc += ID->getName(); 8863 Enc += "){"; 8864 8865 // We collect all encoded fields and order as necessary. 8866 bool IsRecursive = false; 8867 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8868 if (RD && !RD->field_empty()) { 8869 // An incomplete TypeString stub is placed in the cache for this RecordType 8870 // so that recursive calls to this RecordType will use it whilst building a 8871 // complete TypeString for this RecordType. 8872 SmallVector<FieldEncoding, 16> FE; 8873 std::string StubEnc(Enc.substr(Start).str()); 8874 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8875 TSC.addIncomplete(ID, std::move(StubEnc)); 8876 if (!extractFieldType(FE, RD, CGM, TSC)) { 8877 (void) TSC.removeIncomplete(ID); 8878 return false; 8879 } 8880 IsRecursive = TSC.removeIncomplete(ID); 8881 // The ABI requires unions to be sorted but not structures. 8882 // See FieldEncoding::operator< for sort algorithm. 8883 if (RT->isUnionType()) 8884 llvm::sort(FE); 8885 // We can now complete the TypeString. 8886 unsigned E = FE.size(); 8887 for (unsigned I = 0; I != E; ++I) { 8888 if (I) 8889 Enc += ','; 8890 Enc += FE[I].str(); 8891 } 8892 } 8893 Enc += '}'; 8894 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8895 return true; 8896 } 8897 8898 /// Appends enum types to Enc and adds the encoding to the cache. 8899 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8900 TypeStringCache &TSC, 8901 const IdentifierInfo *ID) { 8902 // Append the cached TypeString if we have one. 8903 StringRef TypeString = TSC.lookupStr(ID); 8904 if (!TypeString.empty()) { 8905 Enc += TypeString; 8906 return true; 8907 } 8908 8909 size_t Start = Enc.size(); 8910 Enc += "e("; 8911 if (ID) 8912 Enc += ID->getName(); 8913 Enc += "){"; 8914 8915 // We collect all encoded enumerations and order them alphanumerically. 8916 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8917 SmallVector<FieldEncoding, 16> FE; 8918 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8919 ++I) { 8920 SmallStringEnc EnumEnc; 8921 EnumEnc += "m("; 8922 EnumEnc += I->getName(); 8923 EnumEnc += "){"; 8924 I->getInitVal().toString(EnumEnc); 8925 EnumEnc += '}'; 8926 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8927 } 8928 llvm::sort(FE); 8929 unsigned E = FE.size(); 8930 for (unsigned I = 0; I != E; ++I) { 8931 if (I) 8932 Enc += ','; 8933 Enc += FE[I].str(); 8934 } 8935 } 8936 Enc += '}'; 8937 TSC.addIfComplete(ID, Enc.substr(Start), false); 8938 return true; 8939 } 8940 8941 /// Appends type's qualifier to Enc. 8942 /// This is done prior to appending the type's encoding. 8943 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8944 // Qualifiers are emitted in alphabetical order. 8945 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8946 int Lookup = 0; 8947 if (QT.isConstQualified()) 8948 Lookup += 1<<0; 8949 if (QT.isRestrictQualified()) 8950 Lookup += 1<<1; 8951 if (QT.isVolatileQualified()) 8952 Lookup += 1<<2; 8953 Enc += Table[Lookup]; 8954 } 8955 8956 /// Appends built-in types to Enc. 8957 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8958 const char *EncType; 8959 switch (BT->getKind()) { 8960 case BuiltinType::Void: 8961 EncType = "0"; 8962 break; 8963 case BuiltinType::Bool: 8964 EncType = "b"; 8965 break; 8966 case BuiltinType::Char_U: 8967 EncType = "uc"; 8968 break; 8969 case BuiltinType::UChar: 8970 EncType = "uc"; 8971 break; 8972 case BuiltinType::SChar: 8973 EncType = "sc"; 8974 break; 8975 case BuiltinType::UShort: 8976 EncType = "us"; 8977 break; 8978 case BuiltinType::Short: 8979 EncType = "ss"; 8980 break; 8981 case BuiltinType::UInt: 8982 EncType = "ui"; 8983 break; 8984 case BuiltinType::Int: 8985 EncType = "si"; 8986 break; 8987 case BuiltinType::ULong: 8988 EncType = "ul"; 8989 break; 8990 case BuiltinType::Long: 8991 EncType = "sl"; 8992 break; 8993 case BuiltinType::ULongLong: 8994 EncType = "ull"; 8995 break; 8996 case BuiltinType::LongLong: 8997 EncType = "sll"; 8998 break; 8999 case BuiltinType::Float: 9000 EncType = "ft"; 9001 break; 9002 case BuiltinType::Double: 9003 EncType = "d"; 9004 break; 9005 case BuiltinType::LongDouble: 9006 EncType = "ld"; 9007 break; 9008 default: 9009 return false; 9010 } 9011 Enc += EncType; 9012 return true; 9013 } 9014 9015 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9016 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9017 const CodeGen::CodeGenModule &CGM, 9018 TypeStringCache &TSC) { 9019 Enc += "p("; 9020 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9021 return false; 9022 Enc += ')'; 9023 return true; 9024 } 9025 9026 /// Appends array encoding to Enc before calling appendType for the element. 9027 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9028 const ArrayType *AT, 9029 const CodeGen::CodeGenModule &CGM, 9030 TypeStringCache &TSC, StringRef NoSizeEnc) { 9031 if (AT->getSizeModifier() != ArrayType::Normal) 9032 return false; 9033 Enc += "a("; 9034 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9035 CAT->getSize().toStringUnsigned(Enc); 9036 else 9037 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9038 Enc += ':'; 9039 // The Qualifiers should be attached to the type rather than the array. 9040 appendQualifier(Enc, QT); 9041 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9042 return false; 9043 Enc += ')'; 9044 return true; 9045 } 9046 9047 /// Appends a function encoding to Enc, calling appendType for the return type 9048 /// and the arguments. 9049 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9050 const CodeGen::CodeGenModule &CGM, 9051 TypeStringCache &TSC) { 9052 Enc += "f{"; 9053 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9054 return false; 9055 Enc += "}("; 9056 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9057 // N.B. we are only interested in the adjusted param types. 9058 auto I = FPT->param_type_begin(); 9059 auto E = FPT->param_type_end(); 9060 if (I != E) { 9061 do { 9062 if (!appendType(Enc, *I, CGM, TSC)) 9063 return false; 9064 ++I; 9065 if (I != E) 9066 Enc += ','; 9067 } while (I != E); 9068 if (FPT->isVariadic()) 9069 Enc += ",va"; 9070 } else { 9071 if (FPT->isVariadic()) 9072 Enc += "va"; 9073 else 9074 Enc += '0'; 9075 } 9076 } 9077 Enc += ')'; 9078 return true; 9079 } 9080 9081 /// Handles the type's qualifier before dispatching a call to handle specific 9082 /// type encodings. 9083 static bool appendType(SmallStringEnc &Enc, QualType QType, 9084 const CodeGen::CodeGenModule &CGM, 9085 TypeStringCache &TSC) { 9086 9087 QualType QT = QType.getCanonicalType(); 9088 9089 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9090 // The Qualifiers should be attached to the type rather than the array. 9091 // Thus we don't call appendQualifier() here. 9092 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9093 9094 appendQualifier(Enc, QT); 9095 9096 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9097 return appendBuiltinType(Enc, BT); 9098 9099 if (const PointerType *PT = QT->getAs<PointerType>()) 9100 return appendPointerType(Enc, PT, CGM, TSC); 9101 9102 if (const EnumType *ET = QT->getAs<EnumType>()) 9103 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9104 9105 if (const RecordType *RT = QT->getAsStructureType()) 9106 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9107 9108 if (const RecordType *RT = QT->getAsUnionType()) 9109 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9110 9111 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9112 return appendFunctionType(Enc, FT, CGM, TSC); 9113 9114 return false; 9115 } 9116 9117 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9118 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9119 if (!D) 9120 return false; 9121 9122 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9123 if (FD->getLanguageLinkage() != CLanguageLinkage) 9124 return false; 9125 return appendType(Enc, FD->getType(), CGM, TSC); 9126 } 9127 9128 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9129 if (VD->getLanguageLinkage() != CLanguageLinkage) 9130 return false; 9131 QualType QT = VD->getType().getCanonicalType(); 9132 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9133 // Global ArrayTypes are given a size of '*' if the size is unknown. 9134 // The Qualifiers should be attached to the type rather than the array. 9135 // Thus we don't call appendQualifier() here. 9136 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9137 } 9138 return appendType(Enc, QT, CGM, TSC); 9139 } 9140 return false; 9141 } 9142 9143 //===----------------------------------------------------------------------===// 9144 // RISCV ABI Implementation 9145 //===----------------------------------------------------------------------===// 9146 9147 namespace { 9148 class RISCVABIInfo : public DefaultABIInfo { 9149 private: 9150 unsigned XLen; // Size of the integer ('x') registers in bits. 9151 static const int NumArgGPRs = 8; 9152 9153 public: 9154 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9155 : DefaultABIInfo(CGT), XLen(XLen) {} 9156 9157 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9158 // non-virtual, but computeInfo is virtual, so we overload it. 9159 void computeInfo(CGFunctionInfo &FI) const override; 9160 9161 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 9162 int &ArgGPRsLeft) const; 9163 ABIArgInfo classifyReturnType(QualType RetTy) const; 9164 9165 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9166 QualType Ty) const override; 9167 9168 ABIArgInfo extendType(QualType Ty) const; 9169 }; 9170 } // end anonymous namespace 9171 9172 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9173 QualType RetTy = FI.getReturnType(); 9174 if (!getCXXABI().classifyReturnType(FI)) 9175 FI.getReturnInfo() = classifyReturnType(RetTy); 9176 9177 // IsRetIndirect is true if classifyArgumentType indicated the value should 9178 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9179 // is passed direct in LLVM IR, relying on the backend lowering code to 9180 // rewrite the argument list and pass indirectly on RV32. 9181 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9182 getContext().getTypeSize(RetTy) > (2 * XLen); 9183 9184 // We must track the number of GPRs used in order to conform to the RISC-V 9185 // ABI, as integer scalars passed in registers should have signext/zeroext 9186 // when promoted, but are anyext if passed on the stack. As GPR usage is 9187 // different for variadic arguments, we must also track whether we are 9188 // examining a vararg or not. 9189 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9190 int NumFixedArgs = FI.getNumRequiredArgs(); 9191 9192 int ArgNum = 0; 9193 for (auto &ArgInfo : FI.arguments()) { 9194 bool IsFixed = ArgNum < NumFixedArgs; 9195 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 9196 ArgNum++; 9197 } 9198 } 9199 9200 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9201 int &ArgGPRsLeft) const { 9202 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9203 Ty = useFirstFieldIfTransparentUnion(Ty); 9204 9205 // Structures with either a non-trivial destructor or a non-trivial 9206 // copy constructor are always passed indirectly. 9207 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9208 if (ArgGPRsLeft) 9209 ArgGPRsLeft -= 1; 9210 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9211 CGCXXABI::RAA_DirectInMemory); 9212 } 9213 9214 // Ignore empty structs/unions. 9215 if (isEmptyRecord(getContext(), Ty, true)) 9216 return ABIArgInfo::getIgnore(); 9217 9218 uint64_t Size = getContext().getTypeSize(Ty); 9219 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9220 bool MustUseStack = false; 9221 // Determine the number of GPRs needed to pass the current argument 9222 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9223 // register pairs, so may consume 3 registers. 9224 int NeededArgGPRs = 1; 9225 if (!IsFixed && NeededAlign == 2 * XLen) 9226 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9227 else if (Size > XLen && Size <= 2 * XLen) 9228 NeededArgGPRs = 2; 9229 9230 if (NeededArgGPRs > ArgGPRsLeft) { 9231 MustUseStack = true; 9232 NeededArgGPRs = ArgGPRsLeft; 9233 } 9234 9235 ArgGPRsLeft -= NeededArgGPRs; 9236 9237 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9238 // Treat an enum type as its underlying type. 9239 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9240 Ty = EnumTy->getDecl()->getIntegerType(); 9241 9242 // All integral types are promoted to XLen width, unless passed on the 9243 // stack. 9244 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9245 return extendType(Ty); 9246 } 9247 9248 return ABIArgInfo::getDirect(); 9249 } 9250 9251 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9252 // so coerce to integers. 9253 if (Size <= 2 * XLen) { 9254 unsigned Alignment = getContext().getTypeAlign(Ty); 9255 9256 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9257 // required, and a 2-element XLen array if only XLen alignment is required. 9258 if (Size <= XLen) { 9259 return ABIArgInfo::getDirect( 9260 llvm::IntegerType::get(getVMContext(), XLen)); 9261 } else if (Alignment == 2 * XLen) { 9262 return ABIArgInfo::getDirect( 9263 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9264 } else { 9265 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9266 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9267 } 9268 } 9269 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9270 } 9271 9272 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9273 if (RetTy->isVoidType()) 9274 return ABIArgInfo::getIgnore(); 9275 9276 int ArgGPRsLeft = 2; 9277 9278 // The rules for return and argument types are the same, so defer to 9279 // classifyArgumentType. 9280 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 9281 } 9282 9283 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9284 QualType Ty) const { 9285 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9286 9287 // Empty records are ignored for parameter passing purposes. 9288 if (isEmptyRecord(getContext(), Ty, true)) { 9289 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9290 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9291 return Addr; 9292 } 9293 9294 std::pair<CharUnits, CharUnits> SizeAndAlign = 9295 getContext().getTypeInfoInChars(Ty); 9296 9297 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9298 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9299 9300 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9301 SlotSize, /*AllowHigherAlign=*/true); 9302 } 9303 9304 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9305 int TySize = getContext().getTypeSize(Ty); 9306 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9307 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9308 return ABIArgInfo::getSignExtend(Ty); 9309 return ABIArgInfo::getExtend(Ty); 9310 } 9311 9312 namespace { 9313 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9314 public: 9315 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9316 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9317 9318 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9319 CodeGen::CodeGenModule &CGM) const override { 9320 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9321 if (!FD) return; 9322 9323 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9324 if (!Attr) 9325 return; 9326 9327 const char *Kind; 9328 switch (Attr->getInterrupt()) { 9329 case RISCVInterruptAttr::user: Kind = "user"; break; 9330 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9331 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9332 } 9333 9334 auto *Fn = cast<llvm::Function>(GV); 9335 9336 Fn->addFnAttr("interrupt", Kind); 9337 } 9338 }; 9339 } // namespace 9340 9341 //===----------------------------------------------------------------------===// 9342 // Driver code 9343 //===----------------------------------------------------------------------===// 9344 9345 bool CodeGenModule::supportsCOMDAT() const { 9346 return getTriple().supportsCOMDAT(); 9347 } 9348 9349 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9350 if (TheTargetCodeGenInfo) 9351 return *TheTargetCodeGenInfo; 9352 9353 // Helper to set the unique_ptr while still keeping the return value. 9354 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9355 this->TheTargetCodeGenInfo.reset(P); 9356 return *P; 9357 }; 9358 9359 const llvm::Triple &Triple = getTarget().getTriple(); 9360 switch (Triple.getArch()) { 9361 default: 9362 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9363 9364 case llvm::Triple::le32: 9365 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9366 case llvm::Triple::mips: 9367 case llvm::Triple::mipsel: 9368 if (Triple.getOS() == llvm::Triple::NaCl) 9369 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9370 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9371 9372 case llvm::Triple::mips64: 9373 case llvm::Triple::mips64el: 9374 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9375 9376 case llvm::Triple::avr: 9377 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9378 9379 case llvm::Triple::aarch64: 9380 case llvm::Triple::aarch64_be: { 9381 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9382 if (getTarget().getABI() == "darwinpcs") 9383 Kind = AArch64ABIInfo::DarwinPCS; 9384 else if (Triple.isOSWindows()) 9385 return SetCGInfo( 9386 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9387 9388 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9389 } 9390 9391 case llvm::Triple::wasm32: 9392 case llvm::Triple::wasm64: 9393 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9394 9395 case llvm::Triple::arm: 9396 case llvm::Triple::armeb: 9397 case llvm::Triple::thumb: 9398 case llvm::Triple::thumbeb: { 9399 if (Triple.getOS() == llvm::Triple::Win32) { 9400 return SetCGInfo( 9401 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9402 } 9403 9404 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9405 StringRef ABIStr = getTarget().getABI(); 9406 if (ABIStr == "apcs-gnu") 9407 Kind = ARMABIInfo::APCS; 9408 else if (ABIStr == "aapcs16") 9409 Kind = ARMABIInfo::AAPCS16_VFP; 9410 else if (CodeGenOpts.FloatABI == "hard" || 9411 (CodeGenOpts.FloatABI != "soft" && 9412 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9413 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9414 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9415 Kind = ARMABIInfo::AAPCS_VFP; 9416 9417 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9418 } 9419 9420 case llvm::Triple::ppc: 9421 return SetCGInfo( 9422 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9423 case llvm::Triple::ppc64: 9424 if (Triple.isOSBinFormatELF()) { 9425 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9426 if (getTarget().getABI() == "elfv2") 9427 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9428 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9429 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9430 9431 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9432 IsSoftFloat)); 9433 } else 9434 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9435 case llvm::Triple::ppc64le: { 9436 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9437 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9438 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9439 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9440 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9441 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9442 9443 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9444 IsSoftFloat)); 9445 } 9446 9447 case llvm::Triple::nvptx: 9448 case llvm::Triple::nvptx64: 9449 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9450 9451 case llvm::Triple::msp430: 9452 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9453 9454 case llvm::Triple::riscv32: 9455 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9456 case llvm::Triple::riscv64: 9457 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9458 9459 case llvm::Triple::systemz: { 9460 bool HasVector = getTarget().getABI() == "vector"; 9461 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9462 } 9463 9464 case llvm::Triple::tce: 9465 case llvm::Triple::tcele: 9466 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9467 9468 case llvm::Triple::x86: { 9469 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9470 bool RetSmallStructInRegABI = 9471 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9472 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9473 9474 if (Triple.getOS() == llvm::Triple::Win32) { 9475 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9476 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9477 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9478 } else { 9479 bool EnableMMX = getContext().getTargetInfo().getABI() != "no-mmx"; 9480 return SetCGInfo(new X86_32TargetCodeGenInfo( 9481 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9482 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9483 CodeGenOpts.FloatABI == "soft", EnableMMX)); 9484 } 9485 } 9486 9487 case llvm::Triple::x86_64: { 9488 StringRef ABI = getTarget().getABI(); 9489 X86AVXABILevel AVXLevel = 9490 (ABI == "avx512" 9491 ? X86AVXABILevel::AVX512 9492 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9493 9494 switch (Triple.getOS()) { 9495 case llvm::Triple::Win32: 9496 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9497 default: 9498 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9499 } 9500 } 9501 case llvm::Triple::hexagon: 9502 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9503 case llvm::Triple::lanai: 9504 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9505 case llvm::Triple::r600: 9506 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9507 case llvm::Triple::amdgcn: 9508 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9509 case llvm::Triple::sparc: 9510 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9511 case llvm::Triple::sparcv9: 9512 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9513 case llvm::Triple::xcore: 9514 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9515 case llvm::Triple::arc: 9516 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9517 case llvm::Triple::spir: 9518 case llvm::Triple::spir64: 9519 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9520 } 9521 } 9522 9523 /// Create an OpenCL kernel for an enqueued block. 9524 /// 9525 /// The kernel has the same function type as the block invoke function. Its 9526 /// name is the name of the block invoke function postfixed with "_kernel". 9527 /// It simply calls the block invoke function then returns. 9528 llvm::Function * 9529 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9530 llvm::Function *Invoke, 9531 llvm::Value *BlockLiteral) const { 9532 auto *InvokeFT = Invoke->getFunctionType(); 9533 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9534 for (auto &P : InvokeFT->params()) 9535 ArgTys.push_back(P); 9536 auto &C = CGF.getLLVMContext(); 9537 std::string Name = Invoke->getName().str() + "_kernel"; 9538 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9539 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9540 &CGF.CGM.getModule()); 9541 auto IP = CGF.Builder.saveIP(); 9542 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9543 auto &Builder = CGF.Builder; 9544 Builder.SetInsertPoint(BB); 9545 llvm::SmallVector<llvm::Value *, 2> Args; 9546 for (auto &A : F->args()) 9547 Args.push_back(&A); 9548 Builder.CreateCall(Invoke, Args); 9549 Builder.CreateRetVoid(); 9550 Builder.restoreIP(IP); 9551 return F; 9552 } 9553 9554 /// Create an OpenCL kernel for an enqueued block. 9555 /// 9556 /// The type of the first argument (the block literal) is the struct type 9557 /// of the block literal instead of a pointer type. The first argument 9558 /// (block literal) is passed directly by value to the kernel. The kernel 9559 /// allocates the same type of struct on stack and stores the block literal 9560 /// to it and passes its pointer to the block invoke function. The kernel 9561 /// has "enqueued-block" function attribute and kernel argument metadata. 9562 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9563 CodeGenFunction &CGF, llvm::Function *Invoke, 9564 llvm::Value *BlockLiteral) const { 9565 auto &Builder = CGF.Builder; 9566 auto &C = CGF.getLLVMContext(); 9567 9568 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9569 auto *InvokeFT = Invoke->getFunctionType(); 9570 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9571 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9572 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9573 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9574 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9575 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9576 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9577 9578 ArgTys.push_back(BlockTy); 9579 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9580 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9581 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9582 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9583 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9584 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9585 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9586 ArgTys.push_back(InvokeFT->getParamType(I)); 9587 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9588 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9589 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9590 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9591 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9592 ArgNames.push_back( 9593 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9594 } 9595 std::string Name = Invoke->getName().str() + "_kernel"; 9596 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9597 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9598 &CGF.CGM.getModule()); 9599 F->addFnAttr("enqueued-block"); 9600 auto IP = CGF.Builder.saveIP(); 9601 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9602 Builder.SetInsertPoint(BB); 9603 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9604 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9605 BlockPtr->setAlignment(BlockAlign); 9606 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9607 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9608 llvm::SmallVector<llvm::Value *, 2> Args; 9609 Args.push_back(Cast); 9610 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9611 Args.push_back(I); 9612 Builder.CreateCall(Invoke, Args); 9613 Builder.CreateRetVoid(); 9614 Builder.restoreIP(IP); 9615 9616 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9617 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9618 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9619 F->setMetadata("kernel_arg_base_type", 9620 llvm::MDNode::get(C, ArgBaseTypeNames)); 9621 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9622 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9623 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9624 9625 return F; 9626 } 9627