1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::TargetData &ABIInfo::getTargetData() const {
55   return CGT.getTargetData();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
101 bool TargetCodeGenInfo::isNoProtoCallVariadic(
102                                        const CodeGen::CGFunctionInfo &) const {
103   // The following conventions are known to require this to be false:
104   //   x86_stdcall
105   //   MIPS
106   // For everything else, we just prefer false unless we opt out.
107   return false;
108 }
109 
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111 
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                          bool AllowArrays) {
116   if (FD->isUnnamedBitfield())
117     return true;
118 
119   QualType FT = FD->getType();
120 
121   // Constant arrays of empty records count as empty, strip them off.
122   // Constant arrays of zero length always count as empty.
123   if (AllowArrays)
124     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125       if (AT->getSize() == 0)
126         return true;
127       FT = AT->getElementType();
128     }
129 
130   const RecordType *RT = FT->getAs<RecordType>();
131   if (!RT)
132     return false;
133 
134   // C++ record fields are never empty, at least in the Itanium ABI.
135   //
136   // FIXME: We should use a predicate for whether this behavior is true in the
137   // current ABI.
138   if (isa<CXXRecordDecl>(RT->getDecl()))
139     return false;
140 
141   return isEmptyRecord(Context, FT, AllowArrays);
142 }
143 
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148   const RecordType *RT = T->getAs<RecordType>();
149   if (!RT)
150     return 0;
151   const RecordDecl *RD = RT->getDecl();
152   if (RD->hasFlexibleArrayMember())
153     return false;
154 
155   // If this is a C++ record, check the bases first.
156   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158            e = CXXRD->bases_end(); i != e; ++i)
159       if (!isEmptyRecord(Context, i->getType(), true))
160         return false;
161 
162   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163          i != e; ++i)
164     if (!isEmptyField(Context, *i, AllowArrays))
165       return false;
166   return true;
167 }
168 
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173   if (!RD)
174     return false;
175 
176   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178 
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183   const RecordType *RT = T->getAs<RecordType>();
184   if (!RT)
185     return false;
186 
187   return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189 
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199   const RecordType *RT = T->getAsStructureType();
200   if (!RT)
201     return 0;
202 
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return 0;
206 
207   const Type *Found = 0;
208 
209   // If this is a C++ record, check the bases first.
210   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212            e = CXXRD->bases_end(); i != e; ++i) {
213       // Ignore empty records.
214       if (isEmptyRecord(Context, i->getType(), true))
215         continue;
216 
217       // If we already found an element then this isn't a single-element struct.
218       if (Found)
219         return 0;
220 
221       // If this is non-empty and not a single element struct, the composite
222       // cannot be a single element struct.
223       Found = isSingleElementStruct(i->getType(), Context);
224       if (!Found)
225         return 0;
226     }
227   }
228 
229   // Check for single element.
230   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231          i != e; ++i) {
232     const FieldDecl *FD = *i;
233     QualType FT = FD->getType();
234 
235     // Ignore empty fields.
236     if (isEmptyField(Context, FD, true))
237       continue;
238 
239     // If we already found an element then this isn't a single-element
240     // struct.
241     if (Found)
242       return 0;
243 
244     // Treat single element arrays as the element.
245     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246       if (AT->getSize().getZExtValue() != 1)
247         break;
248       FT = AT->getElementType();
249     }
250 
251     if (!isAggregateTypeForABI(FT)) {
252       Found = FT.getTypePtr();
253     } else {
254       Found = isSingleElementStruct(FT, Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // We don't consider a struct a single-element struct if it has
261   // padding beyond the element type.
262   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263     return 0;
264 
265   return Found;
266 }
267 
268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271       !Ty->isBlockPointerType())
272     return false;
273 
274   uint64_t Size = Context.getTypeSize(Ty);
275   return Size == 32 || Size == 64;
276 }
277 
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288   // We can only expand structure types.
289   const RecordType *RT = Ty->getAs<RecordType>();
290   if (!RT)
291     return false;
292 
293   // We can only expand (C) structures.
294   //
295   // FIXME: This needs to be generalized to handle classes as well.
296   const RecordDecl *RD = RT->getDecl();
297   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298     return false;
299 
300   uint64_t Size = 0;
301 
302   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303          i != e; ++i) {
304     const FieldDecl *FD = *i;
305 
306     if (!is32Or64BitBasicType(FD->getType(), Context))
307       return false;
308 
309     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310     // how to expand them yet, and the predicate for telling if a bitfield still
311     // counts as "basic" is more complicated than what we were doing previously.
312     if (FD->isBitField())
313       return false;
314 
315     Size += Context.getTypeSize(FD->getType());
316   }
317 
318   // Make sure there are not any holes in the struct.
319   if (Size != Context.getTypeSize(Ty))
320     return false;
321 
322   return true;
323 }
324 
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
332   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333 
334   ABIArgInfo classifyReturnType(QualType RetTy) const;
335   ABIArgInfo classifyArgumentType(QualType RetTy) const;
336 
337   virtual void computeInfo(CGFunctionInfo &FI) const {
338     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340          it != ie; ++it)
341       it->info = classifyArgumentType(it->type);
342   }
343 
344   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                  CodeGenFunction &CGF) const;
346 };
347 
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
350   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353 
354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                        CodeGenFunction &CGF) const {
356   return 0;
357 }
358 
359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360   if (isAggregateTypeForABI(Ty)) {
361     // Records with non trivial destructors/constructors should not be passed
362     // by value.
363     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365 
366     return ABIArgInfo::getIndirect(0);
367   }
368 
369   // Treat an enum type as its underlying type.
370   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371     Ty = EnumTy->getDecl()->getIntegerType();
372 
373   return (Ty->isPromotableIntegerType() ?
374           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376 
377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378   if (RetTy->isVoidType())
379     return ABIArgInfo::getIgnore();
380 
381   if (isAggregateTypeForABI(RetTy))
382     return ABIArgInfo::getIndirect(0);
383 
384   // Treat an enum type as its underlying type.
385   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386     RetTy = EnumTy->getDecl()->getIntegerType();
387 
388   return (RetTy->isPromotableIntegerType() ?
389           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391 
392 /// UseX86_MMXType - Return true if this is an MMX type that should use the
393 /// special x86_mmx type.
394 bool UseX86_MMXType(llvm::Type *IRType) {
395   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
396   // special x86_mmx type.
397   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
398     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
399     IRType->getScalarSizeInBits() != 64;
400 }
401 
402 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
403                                           StringRef Constraint,
404                                           llvm::Type* Ty) {
405   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
406     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
407   return Ty;
408 }
409 
410 //===----------------------------------------------------------------------===//
411 // X86-32 ABI Implementation
412 //===----------------------------------------------------------------------===//
413 
414 /// X86_32ABIInfo - The X86-32 ABI information.
415 class X86_32ABIInfo : public ABIInfo {
416   static const unsigned MinABIStackAlignInBytes = 4;
417 
418   bool IsDarwinVectorABI;
419   bool IsSmallStructInRegABI;
420   bool IsMMXDisabled;
421   bool IsWin32FloatStructABI;
422 
423   static bool isRegisterSize(unsigned Size) {
424     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
425   }
426 
427   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
428 
429   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
430   /// such that the argument will be passed in memory.
431   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
432 
433   /// \brief Return the alignment to use for the given type on the stack.
434   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
435 
436 public:
437 
438   ABIArgInfo classifyReturnType(QualType RetTy) const;
439   ABIArgInfo classifyArgumentType(QualType RetTy) const;
440 
441   virtual void computeInfo(CGFunctionInfo &FI) const {
442     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
443     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
444          it != ie; ++it)
445       it->info = classifyArgumentType(it->type);
446   }
447 
448   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
449                                  CodeGenFunction &CGF) const;
450 
451   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w)
452     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
453       IsMMXDisabled(m), IsWin32FloatStructABI(w) {}
454 };
455 
456 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
457 public:
458   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
459       bool d, bool p, bool m, bool w)
460     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w)) {}
461 
462   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
463                            CodeGen::CodeGenModule &CGM) const;
464 
465   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
466     // Darwin uses different dwarf register numbers for EH.
467     if (CGM.isTargetDarwin()) return 5;
468 
469     return 4;
470   }
471 
472   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
473                                llvm::Value *Address) const;
474 
475   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
476                                   StringRef Constraint,
477                                   llvm::Type* Ty) const {
478     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
479   }
480 
481 };
482 
483 }
484 
485 /// shouldReturnTypeInRegister - Determine if the given type should be
486 /// passed in a register (for the Darwin ABI).
487 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
488                                                ASTContext &Context) {
489   uint64_t Size = Context.getTypeSize(Ty);
490 
491   // Type must be register sized.
492   if (!isRegisterSize(Size))
493     return false;
494 
495   if (Ty->isVectorType()) {
496     // 64- and 128- bit vectors inside structures are not returned in
497     // registers.
498     if (Size == 64 || Size == 128)
499       return false;
500 
501     return true;
502   }
503 
504   // If this is a builtin, pointer, enum, complex type, member pointer, or
505   // member function pointer it is ok.
506   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
507       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
508       Ty->isBlockPointerType() || Ty->isMemberPointerType())
509     return true;
510 
511   // Arrays are treated like records.
512   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
513     return shouldReturnTypeInRegister(AT->getElementType(), Context);
514 
515   // Otherwise, it must be a record type.
516   const RecordType *RT = Ty->getAs<RecordType>();
517   if (!RT) return false;
518 
519   // FIXME: Traverse bases here too.
520 
521   // Structure types are passed in register if all fields would be
522   // passed in a register.
523   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
524          e = RT->getDecl()->field_end(); i != e; ++i) {
525     const FieldDecl *FD = *i;
526 
527     // Empty fields are ignored.
528     if (isEmptyField(Context, FD, true))
529       continue;
530 
531     // Check fields recursively.
532     if (!shouldReturnTypeInRegister(FD->getType(), Context))
533       return false;
534   }
535 
536   return true;
537 }
538 
539 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
540   if (RetTy->isVoidType())
541     return ABIArgInfo::getIgnore();
542 
543   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
544     // On Darwin, some vectors are returned in registers.
545     if (IsDarwinVectorABI) {
546       uint64_t Size = getContext().getTypeSize(RetTy);
547 
548       // 128-bit vectors are a special case; they are returned in
549       // registers and we need to make sure to pick a type the LLVM
550       // backend will like.
551       if (Size == 128)
552         return ABIArgInfo::getDirect(llvm::VectorType::get(
553                   llvm::Type::getInt64Ty(getVMContext()), 2));
554 
555       // Always return in register if it fits in a general purpose
556       // register, or if it is 64 bits and has a single element.
557       if ((Size == 8 || Size == 16 || Size == 32) ||
558           (Size == 64 && VT->getNumElements() == 1))
559         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
560                                                             Size));
561 
562       return ABIArgInfo::getIndirect(0);
563     }
564 
565     return ABIArgInfo::getDirect();
566   }
567 
568   if (isAggregateTypeForABI(RetTy)) {
569     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
570       // Structures with either a non-trivial destructor or a non-trivial
571       // copy constructor are always indirect.
572       if (hasNonTrivialDestructorOrCopyConstructor(RT))
573         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
574 
575       // Structures with flexible arrays are always indirect.
576       if (RT->getDecl()->hasFlexibleArrayMember())
577         return ABIArgInfo::getIndirect(0);
578     }
579 
580     // If specified, structs and unions are always indirect.
581     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
582       return ABIArgInfo::getIndirect(0);
583 
584     // Small structures which are register sized are generally returned
585     // in a register.
586     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
587       uint64_t Size = getContext().getTypeSize(RetTy);
588 
589       // As a special-case, if the struct is a "single-element" struct, and
590       // the field is of type "float" or "double", return it in a
591       // floating-point register. (MSVC does not apply this special case.)
592       // We apply a similar transformation for pointer types to improve the
593       // quality of the generated IR.
594       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
595         if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
596             || SeltTy->hasPointerRepresentation())
597           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
598 
599       // FIXME: We should be able to narrow this integer in cases with dead
600       // padding.
601       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
602     }
603 
604     return ABIArgInfo::getIndirect(0);
605   }
606 
607   // Treat an enum type as its underlying type.
608   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
609     RetTy = EnumTy->getDecl()->getIntegerType();
610 
611   return (RetTy->isPromotableIntegerType() ?
612           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
613 }
614 
615 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
616   const RecordType *RT = Ty->getAs<RecordType>();
617   if (!RT)
618     return 0;
619   const RecordDecl *RD = RT->getDecl();
620 
621   // If this is a C++ record, check the bases first.
622   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
623     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
624            e = CXXRD->bases_end(); i != e; ++i)
625       if (!isRecordWithSSEVectorType(Context, i->getType()))
626         return false;
627 
628   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
629        i != e; ++i) {
630     QualType FT = i->getType();
631 
632     if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128)
633       return true;
634 
635     if (isRecordWithSSEVectorType(Context, FT))
636       return true;
637   }
638 
639   return false;
640 }
641 
642 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
643                                                  unsigned Align) const {
644   // Otherwise, if the alignment is less than or equal to the minimum ABI
645   // alignment, just use the default; the backend will handle this.
646   if (Align <= MinABIStackAlignInBytes)
647     return 0; // Use default alignment.
648 
649   // On non-Darwin, the stack type alignment is always 4.
650   if (!IsDarwinVectorABI) {
651     // Set explicit alignment, since we may need to realign the top.
652     return MinABIStackAlignInBytes;
653   }
654 
655   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
656   if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty))
657     return 16;
658 
659   return MinABIStackAlignInBytes;
660 }
661 
662 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
663   if (!ByVal)
664     return ABIArgInfo::getIndirect(0, false);
665 
666   // Compute the byval alignment.
667   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
668   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
669   if (StackAlign == 0)
670     return ABIArgInfo::getIndirect(4);
671 
672   // If the stack alignment is less than the type alignment, realign the
673   // argument.
674   if (StackAlign < TypeAlign)
675     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
676                                    /*Realign=*/true);
677 
678   return ABIArgInfo::getIndirect(StackAlign);
679 }
680 
681 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
682   // FIXME: Set alignment on indirect arguments.
683   if (isAggregateTypeForABI(Ty)) {
684     // Structures with flexible arrays are always indirect.
685     if (const RecordType *RT = Ty->getAs<RecordType>()) {
686       // Structures with either a non-trivial destructor or a non-trivial
687       // copy constructor are always indirect.
688       if (hasNonTrivialDestructorOrCopyConstructor(RT))
689         return getIndirectResult(Ty, /*ByVal=*/false);
690 
691       if (RT->getDecl()->hasFlexibleArrayMember())
692         return getIndirectResult(Ty);
693     }
694 
695     // Ignore empty structs/unions.
696     if (isEmptyRecord(getContext(), Ty, true))
697       return ABIArgInfo::getIgnore();
698 
699     // Expand small (<= 128-bit) record types when we know that the stack layout
700     // of those arguments will match the struct. This is important because the
701     // LLVM backend isn't smart enough to remove byval, which inhibits many
702     // optimizations.
703     if (getContext().getTypeSize(Ty) <= 4*32 &&
704         canExpandIndirectArgument(Ty, getContext()))
705       return ABIArgInfo::getExpand();
706 
707     return getIndirectResult(Ty);
708   }
709 
710   if (const VectorType *VT = Ty->getAs<VectorType>()) {
711     // On Darwin, some vectors are passed in memory, we handle this by passing
712     // it as an i8/i16/i32/i64.
713     if (IsDarwinVectorABI) {
714       uint64_t Size = getContext().getTypeSize(Ty);
715       if ((Size == 8 || Size == 16 || Size == 32) ||
716           (Size == 64 && VT->getNumElements() == 1))
717         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
718                                                             Size));
719     }
720 
721     llvm::Type *IRType = CGT.ConvertType(Ty);
722     if (UseX86_MMXType(IRType)) {
723       if (IsMMXDisabled)
724         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
725                                                             64));
726       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
727       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
728       return AAI;
729     }
730 
731     return ABIArgInfo::getDirect();
732   }
733 
734 
735   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
736     Ty = EnumTy->getDecl()->getIntegerType();
737 
738   return (Ty->isPromotableIntegerType() ?
739           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
740 }
741 
742 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
743                                       CodeGenFunction &CGF) const {
744   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
745   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
746 
747   CGBuilderTy &Builder = CGF.Builder;
748   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
749                                                        "ap");
750   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
751 
752   // Compute if the address needs to be aligned
753   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
754   Align = getTypeStackAlignInBytes(Ty, Align);
755   Align = std::max(Align, 4U);
756   if (Align > 4) {
757     // addr = (addr + align - 1) & -align;
758     llvm::Value *Offset =
759       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
760     Addr = CGF.Builder.CreateGEP(Addr, Offset);
761     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
762                                                     CGF.Int32Ty);
763     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
764     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
765                                       Addr->getType(),
766                                       "ap.cur.aligned");
767   }
768 
769   llvm::Type *PTy =
770     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
771   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
772 
773   uint64_t Offset =
774     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
775   llvm::Value *NextAddr =
776     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
777                       "ap.next");
778   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
779 
780   return AddrTyped;
781 }
782 
783 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
784                                                   llvm::GlobalValue *GV,
785                                             CodeGen::CodeGenModule &CGM) const {
786   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
787     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
788       // Get the LLVM function.
789       llvm::Function *Fn = cast<llvm::Function>(GV);
790 
791       // Now add the 'alignstack' attribute with a value of 16.
792       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
793     }
794   }
795 }
796 
797 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
798                                                CodeGen::CodeGenFunction &CGF,
799                                                llvm::Value *Address) const {
800   CodeGen::CGBuilderTy &Builder = CGF.Builder;
801   llvm::LLVMContext &Context = CGF.getLLVMContext();
802 
803   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
804   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
805 
806   // 0-7 are the eight integer registers;  the order is different
807   //   on Darwin (for EH), but the range is the same.
808   // 8 is %eip.
809   AssignToArrayRange(Builder, Address, Four8, 0, 8);
810 
811   if (CGF.CGM.isTargetDarwin()) {
812     // 12-16 are st(0..4).  Not sure why we stop at 4.
813     // These have size 16, which is sizeof(long double) on
814     // platforms with 8-byte alignment for that type.
815     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
816     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
817 
818   } else {
819     // 9 is %eflags, which doesn't get a size on Darwin for some
820     // reason.
821     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
822 
823     // 11-16 are st(0..5).  Not sure why we stop at 5.
824     // These have size 12, which is sizeof(long double) on
825     // platforms with 4-byte alignment for that type.
826     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
827     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
828   }
829 
830   return false;
831 }
832 
833 //===----------------------------------------------------------------------===//
834 // X86-64 ABI Implementation
835 //===----------------------------------------------------------------------===//
836 
837 
838 namespace {
839 /// X86_64ABIInfo - The X86_64 ABI information.
840 class X86_64ABIInfo : public ABIInfo {
841   enum Class {
842     Integer = 0,
843     SSE,
844     SSEUp,
845     X87,
846     X87Up,
847     ComplexX87,
848     NoClass,
849     Memory
850   };
851 
852   /// merge - Implement the X86_64 ABI merging algorithm.
853   ///
854   /// Merge an accumulating classification \arg Accum with a field
855   /// classification \arg Field.
856   ///
857   /// \param Accum - The accumulating classification. This should
858   /// always be either NoClass or the result of a previous merge
859   /// call. In addition, this should never be Memory (the caller
860   /// should just return Memory for the aggregate).
861   static Class merge(Class Accum, Class Field);
862 
863   /// postMerge - Implement the X86_64 ABI post merging algorithm.
864   ///
865   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
866   /// final MEMORY or SSE classes when necessary.
867   ///
868   /// \param AggregateSize - The size of the current aggregate in
869   /// the classification process.
870   ///
871   /// \param Lo - The classification for the parts of the type
872   /// residing in the low word of the containing object.
873   ///
874   /// \param Hi - The classification for the parts of the type
875   /// residing in the higher words of the containing object.
876   ///
877   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
878 
879   /// classify - Determine the x86_64 register classes in which the
880   /// given type T should be passed.
881   ///
882   /// \param Lo - The classification for the parts of the type
883   /// residing in the low word of the containing object.
884   ///
885   /// \param Hi - The classification for the parts of the type
886   /// residing in the high word of the containing object.
887   ///
888   /// \param OffsetBase - The bit offset of this type in the
889   /// containing object.  Some parameters are classified different
890   /// depending on whether they straddle an eightbyte boundary.
891   ///
892   /// If a word is unused its result will be NoClass; if a type should
893   /// be passed in Memory then at least the classification of \arg Lo
894   /// will be Memory.
895   ///
896   /// The \arg Lo class will be NoClass iff the argument is ignored.
897   ///
898   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
899   /// also be ComplexX87.
900   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
901 
902   llvm::Type *GetByteVectorType(QualType Ty) const;
903   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
904                                  unsigned IROffset, QualType SourceTy,
905                                  unsigned SourceOffset) const;
906   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
907                                      unsigned IROffset, QualType SourceTy,
908                                      unsigned SourceOffset) const;
909 
910   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
911   /// such that the argument will be returned in memory.
912   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
913 
914   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
915   /// such that the argument will be passed in memory.
916   ABIArgInfo getIndirectResult(QualType Ty) const;
917 
918   ABIArgInfo classifyReturnType(QualType RetTy) const;
919 
920   ABIArgInfo classifyArgumentType(QualType Ty,
921                                   unsigned &neededInt,
922                                   unsigned &neededSSE) const;
923 
924   bool IsIllegalVectorType(QualType Ty) const;
925 
926   /// The 0.98 ABI revision clarified a lot of ambiguities,
927   /// unfortunately in ways that were not always consistent with
928   /// certain previous compilers.  In particular, platforms which
929   /// required strict binary compatibility with older versions of GCC
930   /// may need to exempt themselves.
931   bool honorsRevision0_98() const {
932     return !getContext().getTargetInfo().getTriple().isOSDarwin();
933   }
934 
935   bool HasAVX;
936 
937 public:
938   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
939       ABIInfo(CGT), HasAVX(hasavx) {}
940 
941   virtual void computeInfo(CGFunctionInfo &FI) const;
942 
943   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
944                                  CodeGenFunction &CGF) const;
945 };
946 
947 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
948 class WinX86_64ABIInfo : public ABIInfo {
949 
950   ABIArgInfo classify(QualType Ty) const;
951 
952 public:
953   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
954 
955   virtual void computeInfo(CGFunctionInfo &FI) const;
956 
957   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
958                                  CodeGenFunction &CGF) const;
959 };
960 
961 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
962 public:
963   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
964     : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
965 
966   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
967     return 7;
968   }
969 
970   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
971                                llvm::Value *Address) const {
972     CodeGen::CGBuilderTy &Builder = CGF.Builder;
973     llvm::LLVMContext &Context = CGF.getLLVMContext();
974 
975     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
976     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
977 
978     // 0-15 are the 16 integer registers.
979     // 16 is %rip.
980     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
981 
982     return false;
983   }
984 
985   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
986                                   StringRef Constraint,
987                                   llvm::Type* Ty) const {
988     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
989   }
990 
991   bool isNoProtoCallVariadic(const CodeGen::CGFunctionInfo &FI) const {
992     // The default CC on x86-64 sets %al to the number of SSA
993     // registers used, and GCC sets this when calling an unprototyped
994     // function, so we override the default behavior.  However, don't do
995     // that when AVX types are involved: the ABI explicitly states it is
996     // undefined, and it doesn't work in practice because of how the ABI
997     // defines varargs anyway.
998     if (FI.getCallingConvention() == llvm::CallingConv::C) {
999       bool HasAVXType = false;
1000       for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1001                                               ie = FI.arg_end();
1002            it != ie; ++it) {
1003         if (it->info.isDirect()) {
1004           llvm::Type *Ty = it->info.getCoerceToType();
1005           if (llvm::VectorType *VTy = dyn_cast_or_null<llvm::VectorType>(Ty)) {
1006             if (VTy->getBitWidth() > 128) {
1007               HasAVXType = true;
1008               break;
1009             }
1010           }
1011         }
1012       }
1013       if (!HasAVXType)
1014         return true;
1015     }
1016 
1017     return TargetCodeGenInfo::isNoProtoCallVariadic(FI);
1018   }
1019 
1020 };
1021 
1022 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1023 public:
1024   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1025     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1026 
1027   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1028     return 7;
1029   }
1030 
1031   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1032                                llvm::Value *Address) const {
1033     CodeGen::CGBuilderTy &Builder = CGF.Builder;
1034     llvm::LLVMContext &Context = CGF.getLLVMContext();
1035 
1036     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1037     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1038 
1039     // 0-15 are the 16 integer registers.
1040     // 16 is %rip.
1041     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
1042 
1043     return false;
1044   }
1045 };
1046 
1047 }
1048 
1049 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1050                               Class &Hi) const {
1051   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1052   //
1053   // (a) If one of the classes is Memory, the whole argument is passed in
1054   //     memory.
1055   //
1056   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1057   //     memory.
1058   //
1059   // (c) If the size of the aggregate exceeds two eightbytes and the first
1060   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1061   //     argument is passed in memory. NOTE: This is necessary to keep the
1062   //     ABI working for processors that don't support the __m256 type.
1063   //
1064   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1065   //
1066   // Some of these are enforced by the merging logic.  Others can arise
1067   // only with unions; for example:
1068   //   union { _Complex double; unsigned; }
1069   //
1070   // Note that clauses (b) and (c) were added in 0.98.
1071   //
1072   if (Hi == Memory)
1073     Lo = Memory;
1074   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1075     Lo = Memory;
1076   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1077     Lo = Memory;
1078   if (Hi == SSEUp && Lo != SSE)
1079     Hi = SSE;
1080 }
1081 
1082 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1083   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1084   // classified recursively so that always two fields are
1085   // considered. The resulting class is calculated according to
1086   // the classes of the fields in the eightbyte:
1087   //
1088   // (a) If both classes are equal, this is the resulting class.
1089   //
1090   // (b) If one of the classes is NO_CLASS, the resulting class is
1091   // the other class.
1092   //
1093   // (c) If one of the classes is MEMORY, the result is the MEMORY
1094   // class.
1095   //
1096   // (d) If one of the classes is INTEGER, the result is the
1097   // INTEGER.
1098   //
1099   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1100   // MEMORY is used as class.
1101   //
1102   // (f) Otherwise class SSE is used.
1103 
1104   // Accum should never be memory (we should have returned) or
1105   // ComplexX87 (because this cannot be passed in a structure).
1106   assert((Accum != Memory && Accum != ComplexX87) &&
1107          "Invalid accumulated classification during merge.");
1108   if (Accum == Field || Field == NoClass)
1109     return Accum;
1110   if (Field == Memory)
1111     return Memory;
1112   if (Accum == NoClass)
1113     return Field;
1114   if (Accum == Integer || Field == Integer)
1115     return Integer;
1116   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1117       Accum == X87 || Accum == X87Up)
1118     return Memory;
1119   return SSE;
1120 }
1121 
1122 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1123                              Class &Lo, Class &Hi) const {
1124   // FIXME: This code can be simplified by introducing a simple value class for
1125   // Class pairs with appropriate constructor methods for the various
1126   // situations.
1127 
1128   // FIXME: Some of the split computations are wrong; unaligned vectors
1129   // shouldn't be passed in registers for example, so there is no chance they
1130   // can straddle an eightbyte. Verify & simplify.
1131 
1132   Lo = Hi = NoClass;
1133 
1134   Class &Current = OffsetBase < 64 ? Lo : Hi;
1135   Current = Memory;
1136 
1137   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1138     BuiltinType::Kind k = BT->getKind();
1139 
1140     if (k == BuiltinType::Void) {
1141       Current = NoClass;
1142     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1143       Lo = Integer;
1144       Hi = Integer;
1145     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1146       Current = Integer;
1147     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1148       Current = SSE;
1149     } else if (k == BuiltinType::LongDouble) {
1150       Lo = X87;
1151       Hi = X87Up;
1152     }
1153     // FIXME: _Decimal32 and _Decimal64 are SSE.
1154     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1155     return;
1156   }
1157 
1158   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1159     // Classify the underlying integer type.
1160     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1161     return;
1162   }
1163 
1164   if (Ty->hasPointerRepresentation()) {
1165     Current = Integer;
1166     return;
1167   }
1168 
1169   if (Ty->isMemberPointerType()) {
1170     if (Ty->isMemberFunctionPointerType())
1171       Lo = Hi = Integer;
1172     else
1173       Current = Integer;
1174     return;
1175   }
1176 
1177   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1178     uint64_t Size = getContext().getTypeSize(VT);
1179     if (Size == 32) {
1180       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1181       // float> as integer.
1182       Current = Integer;
1183 
1184       // If this type crosses an eightbyte boundary, it should be
1185       // split.
1186       uint64_t EB_Real = (OffsetBase) / 64;
1187       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1188       if (EB_Real != EB_Imag)
1189         Hi = Lo;
1190     } else if (Size == 64) {
1191       // gcc passes <1 x double> in memory. :(
1192       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1193         return;
1194 
1195       // gcc passes <1 x long long> as INTEGER.
1196       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1197           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1198           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1199           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1200         Current = Integer;
1201       else
1202         Current = SSE;
1203 
1204       // If this type crosses an eightbyte boundary, it should be
1205       // split.
1206       if (OffsetBase && OffsetBase != 64)
1207         Hi = Lo;
1208     } else if (Size == 128 || (HasAVX && Size == 256)) {
1209       // Arguments of 256-bits are split into four eightbyte chunks. The
1210       // least significant one belongs to class SSE and all the others to class
1211       // SSEUP. The original Lo and Hi design considers that types can't be
1212       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1213       // This design isn't correct for 256-bits, but since there're no cases
1214       // where the upper parts would need to be inspected, avoid adding
1215       // complexity and just consider Hi to match the 64-256 part.
1216       Lo = SSE;
1217       Hi = SSEUp;
1218     }
1219     return;
1220   }
1221 
1222   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1223     QualType ET = getContext().getCanonicalType(CT->getElementType());
1224 
1225     uint64_t Size = getContext().getTypeSize(Ty);
1226     if (ET->isIntegralOrEnumerationType()) {
1227       if (Size <= 64)
1228         Current = Integer;
1229       else if (Size <= 128)
1230         Lo = Hi = Integer;
1231     } else if (ET == getContext().FloatTy)
1232       Current = SSE;
1233     else if (ET == getContext().DoubleTy)
1234       Lo = Hi = SSE;
1235     else if (ET == getContext().LongDoubleTy)
1236       Current = ComplexX87;
1237 
1238     // If this complex type crosses an eightbyte boundary then it
1239     // should be split.
1240     uint64_t EB_Real = (OffsetBase) / 64;
1241     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1242     if (Hi == NoClass && EB_Real != EB_Imag)
1243       Hi = Lo;
1244 
1245     return;
1246   }
1247 
1248   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1249     // Arrays are treated like structures.
1250 
1251     uint64_t Size = getContext().getTypeSize(Ty);
1252 
1253     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1254     // than four eightbytes, ..., it has class MEMORY.
1255     if (Size > 256)
1256       return;
1257 
1258     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1259     // fields, it has class MEMORY.
1260     //
1261     // Only need to check alignment of array base.
1262     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1263       return;
1264 
1265     // Otherwise implement simplified merge. We could be smarter about
1266     // this, but it isn't worth it and would be harder to verify.
1267     Current = NoClass;
1268     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1269     uint64_t ArraySize = AT->getSize().getZExtValue();
1270 
1271     // The only case a 256-bit wide vector could be used is when the array
1272     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1273     // to work for sizes wider than 128, early check and fallback to memory.
1274     if (Size > 128 && EltSize != 256)
1275       return;
1276 
1277     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1278       Class FieldLo, FieldHi;
1279       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1280       Lo = merge(Lo, FieldLo);
1281       Hi = merge(Hi, FieldHi);
1282       if (Lo == Memory || Hi == Memory)
1283         break;
1284     }
1285 
1286     postMerge(Size, Lo, Hi);
1287     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1288     return;
1289   }
1290 
1291   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1292     uint64_t Size = getContext().getTypeSize(Ty);
1293 
1294     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1295     // than four eightbytes, ..., it has class MEMORY.
1296     if (Size > 256)
1297       return;
1298 
1299     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1300     // copy constructor or a non-trivial destructor, it is passed by invisible
1301     // reference.
1302     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1303       return;
1304 
1305     const RecordDecl *RD = RT->getDecl();
1306 
1307     // Assume variable sized types are passed in memory.
1308     if (RD->hasFlexibleArrayMember())
1309       return;
1310 
1311     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1312 
1313     // Reset Lo class, this will be recomputed.
1314     Current = NoClass;
1315 
1316     // If this is a C++ record, classify the bases first.
1317     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1318       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1319              e = CXXRD->bases_end(); i != e; ++i) {
1320         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1321                "Unexpected base class!");
1322         const CXXRecordDecl *Base =
1323           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1324 
1325         // Classify this field.
1326         //
1327         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1328         // single eightbyte, each is classified separately. Each eightbyte gets
1329         // initialized to class NO_CLASS.
1330         Class FieldLo, FieldHi;
1331         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1332         classify(i->getType(), Offset, FieldLo, FieldHi);
1333         Lo = merge(Lo, FieldLo);
1334         Hi = merge(Hi, FieldHi);
1335         if (Lo == Memory || Hi == Memory)
1336           break;
1337       }
1338     }
1339 
1340     // Classify the fields one at a time, merging the results.
1341     unsigned idx = 0;
1342     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1343            i != e; ++i, ++idx) {
1344       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1345       bool BitField = i->isBitField();
1346 
1347       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1348       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1349       //
1350       // The only case a 256-bit wide vector could be used is when the struct
1351       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1352       // to work for sizes wider than 128, early check and fallback to memory.
1353       //
1354       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1355         Lo = Memory;
1356         return;
1357       }
1358       // Note, skip this test for bit-fields, see below.
1359       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1360         Lo = Memory;
1361         return;
1362       }
1363 
1364       // Classify this field.
1365       //
1366       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1367       // exceeds a single eightbyte, each is classified
1368       // separately. Each eightbyte gets initialized to class
1369       // NO_CLASS.
1370       Class FieldLo, FieldHi;
1371 
1372       // Bit-fields require special handling, they do not force the
1373       // structure to be passed in memory even if unaligned, and
1374       // therefore they can straddle an eightbyte.
1375       if (BitField) {
1376         // Ignore padding bit-fields.
1377         if (i->isUnnamedBitfield())
1378           continue;
1379 
1380         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1381         uint64_t Size = i->getBitWidthValue(getContext());
1382 
1383         uint64_t EB_Lo = Offset / 64;
1384         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1385         FieldLo = FieldHi = NoClass;
1386         if (EB_Lo) {
1387           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1388           FieldLo = NoClass;
1389           FieldHi = Integer;
1390         } else {
1391           FieldLo = Integer;
1392           FieldHi = EB_Hi ? Integer : NoClass;
1393         }
1394       } else
1395         classify(i->getType(), Offset, FieldLo, FieldHi);
1396       Lo = merge(Lo, FieldLo);
1397       Hi = merge(Hi, FieldHi);
1398       if (Lo == Memory || Hi == Memory)
1399         break;
1400     }
1401 
1402     postMerge(Size, Lo, Hi);
1403   }
1404 }
1405 
1406 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1407   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1408   // place naturally.
1409   if (!isAggregateTypeForABI(Ty)) {
1410     // Treat an enum type as its underlying type.
1411     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1412       Ty = EnumTy->getDecl()->getIntegerType();
1413 
1414     return (Ty->isPromotableIntegerType() ?
1415             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1416   }
1417 
1418   return ABIArgInfo::getIndirect(0);
1419 }
1420 
1421 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1422   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1423     uint64_t Size = getContext().getTypeSize(VecTy);
1424     unsigned LargestVector = HasAVX ? 256 : 128;
1425     if (Size <= 64 || Size > LargestVector)
1426       return true;
1427   }
1428 
1429   return false;
1430 }
1431 
1432 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1433   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1434   // place naturally.
1435   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1436     // Treat an enum type as its underlying type.
1437     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1438       Ty = EnumTy->getDecl()->getIntegerType();
1439 
1440     return (Ty->isPromotableIntegerType() ?
1441             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1442   }
1443 
1444   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1445     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1446 
1447   // Compute the byval alignment. We specify the alignment of the byval in all
1448   // cases so that the mid-level optimizer knows the alignment of the byval.
1449   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1450   return ABIArgInfo::getIndirect(Align);
1451 }
1452 
1453 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1454 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1455 /// vector register.
1456 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1457   llvm::Type *IRType = CGT.ConvertType(Ty);
1458 
1459   // Wrapper structs that just contain vectors are passed just like vectors,
1460   // strip them off if present.
1461   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1462   while (STy && STy->getNumElements() == 1) {
1463     IRType = STy->getElementType(0);
1464     STy = dyn_cast<llvm::StructType>(IRType);
1465   }
1466 
1467   // If the preferred type is a 16-byte vector, prefer to pass it.
1468   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1469     llvm::Type *EltTy = VT->getElementType();
1470     unsigned BitWidth = VT->getBitWidth();
1471     if ((BitWidth >= 128 && BitWidth <= 256) &&
1472         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1473          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1474          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1475          EltTy->isIntegerTy(128)))
1476       return VT;
1477   }
1478 
1479   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1480 }
1481 
1482 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1483 /// is known to either be off the end of the specified type or being in
1484 /// alignment padding.  The user type specified is known to be at most 128 bits
1485 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1486 /// classification that put one of the two halves in the INTEGER class.
1487 ///
1488 /// It is conservatively correct to return false.
1489 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1490                                   unsigned EndBit, ASTContext &Context) {
1491   // If the bytes being queried are off the end of the type, there is no user
1492   // data hiding here.  This handles analysis of builtins, vectors and other
1493   // types that don't contain interesting padding.
1494   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1495   if (TySize <= StartBit)
1496     return true;
1497 
1498   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1499     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1500     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1501 
1502     // Check each element to see if the element overlaps with the queried range.
1503     for (unsigned i = 0; i != NumElts; ++i) {
1504       // If the element is after the span we care about, then we're done..
1505       unsigned EltOffset = i*EltSize;
1506       if (EltOffset >= EndBit) break;
1507 
1508       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1509       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1510                                  EndBit-EltOffset, Context))
1511         return false;
1512     }
1513     // If it overlaps no elements, then it is safe to process as padding.
1514     return true;
1515   }
1516 
1517   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1518     const RecordDecl *RD = RT->getDecl();
1519     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1520 
1521     // If this is a C++ record, check the bases first.
1522     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1523       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1524            e = CXXRD->bases_end(); i != e; ++i) {
1525         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1526                "Unexpected base class!");
1527         const CXXRecordDecl *Base =
1528           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1529 
1530         // If the base is after the span we care about, ignore it.
1531         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1532         if (BaseOffset >= EndBit) continue;
1533 
1534         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1535         if (!BitsContainNoUserData(i->getType(), BaseStart,
1536                                    EndBit-BaseOffset, Context))
1537           return false;
1538       }
1539     }
1540 
1541     // Verify that no field has data that overlaps the region of interest.  Yes
1542     // this could be sped up a lot by being smarter about queried fields,
1543     // however we're only looking at structs up to 16 bytes, so we don't care
1544     // much.
1545     unsigned idx = 0;
1546     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1547          i != e; ++i, ++idx) {
1548       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1549 
1550       // If we found a field after the region we care about, then we're done.
1551       if (FieldOffset >= EndBit) break;
1552 
1553       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1554       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1555                                  Context))
1556         return false;
1557     }
1558 
1559     // If nothing in this record overlapped the area of interest, then we're
1560     // clean.
1561     return true;
1562   }
1563 
1564   return false;
1565 }
1566 
1567 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1568 /// float member at the specified offset.  For example, {int,{float}} has a
1569 /// float at offset 4.  It is conservatively correct for this routine to return
1570 /// false.
1571 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1572                                   const llvm::TargetData &TD) {
1573   // Base case if we find a float.
1574   if (IROffset == 0 && IRType->isFloatTy())
1575     return true;
1576 
1577   // If this is a struct, recurse into the field at the specified offset.
1578   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1579     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1580     unsigned Elt = SL->getElementContainingOffset(IROffset);
1581     IROffset -= SL->getElementOffset(Elt);
1582     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1583   }
1584 
1585   // If this is an array, recurse into the field at the specified offset.
1586   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1587     llvm::Type *EltTy = ATy->getElementType();
1588     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1589     IROffset -= IROffset/EltSize*EltSize;
1590     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1591   }
1592 
1593   return false;
1594 }
1595 
1596 
1597 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1598 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1599 llvm::Type *X86_64ABIInfo::
1600 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1601                    QualType SourceTy, unsigned SourceOffset) const {
1602   // The only three choices we have are either double, <2 x float>, or float. We
1603   // pass as float if the last 4 bytes is just padding.  This happens for
1604   // structs that contain 3 floats.
1605   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1606                             SourceOffset*8+64, getContext()))
1607     return llvm::Type::getFloatTy(getVMContext());
1608 
1609   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1610   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1611   // case.
1612   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1613       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1614     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1615 
1616   return llvm::Type::getDoubleTy(getVMContext());
1617 }
1618 
1619 
1620 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1621 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1622 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1623 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1624 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1625 /// etc).
1626 ///
1627 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1628 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1629 /// the 8-byte value references.  PrefType may be null.
1630 ///
1631 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1632 /// an offset into this that we're processing (which is always either 0 or 8).
1633 ///
1634 llvm::Type *X86_64ABIInfo::
1635 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1636                        QualType SourceTy, unsigned SourceOffset) const {
1637   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1638   // returning an 8-byte unit starting with it.  See if we can safely use it.
1639   if (IROffset == 0) {
1640     // Pointers and int64's always fill the 8-byte unit.
1641     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1642       return IRType;
1643 
1644     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1645     // goodness in the source type is just tail padding.  This is allowed to
1646     // kick in for struct {double,int} on the int, but not on
1647     // struct{double,int,int} because we wouldn't return the second int.  We
1648     // have to do this analysis on the source type because we can't depend on
1649     // unions being lowered a specific way etc.
1650     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1651         IRType->isIntegerTy(32)) {
1652       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1653 
1654       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1655                                 SourceOffset*8+64, getContext()))
1656         return IRType;
1657     }
1658   }
1659 
1660   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1661     // If this is a struct, recurse into the field at the specified offset.
1662     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1663     if (IROffset < SL->getSizeInBytes()) {
1664       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1665       IROffset -= SL->getElementOffset(FieldIdx);
1666 
1667       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1668                                     SourceTy, SourceOffset);
1669     }
1670   }
1671 
1672   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1673     llvm::Type *EltTy = ATy->getElementType();
1674     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1675     unsigned EltOffset = IROffset/EltSize*EltSize;
1676     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1677                                   SourceOffset);
1678   }
1679 
1680   // Okay, we don't have any better idea of what to pass, so we pass this in an
1681   // integer register that isn't too big to fit the rest of the struct.
1682   unsigned TySizeInBytes =
1683     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1684 
1685   assert(TySizeInBytes != SourceOffset && "Empty field?");
1686 
1687   // It is always safe to classify this as an integer type up to i64 that
1688   // isn't larger than the structure.
1689   return llvm::IntegerType::get(getVMContext(),
1690                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1691 }
1692 
1693 
1694 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1695 /// be used as elements of a two register pair to pass or return, return a
1696 /// first class aggregate to represent them.  For example, if the low part of
1697 /// a by-value argument should be passed as i32* and the high part as float,
1698 /// return {i32*, float}.
1699 static llvm::Type *
1700 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1701                            const llvm::TargetData &TD) {
1702   // In order to correctly satisfy the ABI, we need to the high part to start
1703   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1704   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1705   // the second element at offset 8.  Check for this:
1706   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1707   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1708   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1709   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1710 
1711   // To handle this, we have to increase the size of the low part so that the
1712   // second element will start at an 8 byte offset.  We can't increase the size
1713   // of the second element because it might make us access off the end of the
1714   // struct.
1715   if (HiStart != 8) {
1716     // There are only two sorts of types the ABI generation code can produce for
1717     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1718     // Promote these to a larger type.
1719     if (Lo->isFloatTy())
1720       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1721     else {
1722       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1723       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1724     }
1725   }
1726 
1727   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1728 
1729 
1730   // Verify that the second element is at an 8-byte offset.
1731   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1732          "Invalid x86-64 argument pair!");
1733   return Result;
1734 }
1735 
1736 ABIArgInfo X86_64ABIInfo::
1737 classifyReturnType(QualType RetTy) const {
1738   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1739   // classification algorithm.
1740   X86_64ABIInfo::Class Lo, Hi;
1741   classify(RetTy, 0, Lo, Hi);
1742 
1743   // Check some invariants.
1744   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1745   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1746 
1747   llvm::Type *ResType = 0;
1748   switch (Lo) {
1749   case NoClass:
1750     if (Hi == NoClass)
1751       return ABIArgInfo::getIgnore();
1752     // If the low part is just padding, it takes no register, leave ResType
1753     // null.
1754     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1755            "Unknown missing lo part");
1756     break;
1757 
1758   case SSEUp:
1759   case X87Up:
1760     llvm_unreachable("Invalid classification for lo word.");
1761 
1762     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1763     // hidden argument.
1764   case Memory:
1765     return getIndirectReturnResult(RetTy);
1766 
1767     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1768     // available register of the sequence %rax, %rdx is used.
1769   case Integer:
1770     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1771 
1772     // If we have a sign or zero extended integer, make sure to return Extend
1773     // so that the parameter gets the right LLVM IR attributes.
1774     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1775       // Treat an enum type as its underlying type.
1776       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1777         RetTy = EnumTy->getDecl()->getIntegerType();
1778 
1779       if (RetTy->isIntegralOrEnumerationType() &&
1780           RetTy->isPromotableIntegerType())
1781         return ABIArgInfo::getExtend();
1782     }
1783     break;
1784 
1785     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1786     // available SSE register of the sequence %xmm0, %xmm1 is used.
1787   case SSE:
1788     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1789     break;
1790 
1791     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1792     // returned on the X87 stack in %st0 as 80-bit x87 number.
1793   case X87:
1794     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1795     break;
1796 
1797     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1798     // part of the value is returned in %st0 and the imaginary part in
1799     // %st1.
1800   case ComplexX87:
1801     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1802     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1803                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1804                                     NULL);
1805     break;
1806   }
1807 
1808   llvm::Type *HighPart = 0;
1809   switch (Hi) {
1810     // Memory was handled previously and X87 should
1811     // never occur as a hi class.
1812   case Memory:
1813   case X87:
1814     llvm_unreachable("Invalid classification for hi word.");
1815 
1816   case ComplexX87: // Previously handled.
1817   case NoClass:
1818     break;
1819 
1820   case Integer:
1821     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1822     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1823       return ABIArgInfo::getDirect(HighPart, 8);
1824     break;
1825   case SSE:
1826     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1827     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1828       return ABIArgInfo::getDirect(HighPart, 8);
1829     break;
1830 
1831     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1832     // is passed in the next available eightbyte chunk if the last used
1833     // vector register.
1834     //
1835     // SSEUP should always be preceded by SSE, just widen.
1836   case SSEUp:
1837     assert(Lo == SSE && "Unexpected SSEUp classification.");
1838     ResType = GetByteVectorType(RetTy);
1839     break;
1840 
1841     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1842     // returned together with the previous X87 value in %st0.
1843   case X87Up:
1844     // If X87Up is preceded by X87, we don't need to do
1845     // anything. However, in some cases with unions it may not be
1846     // preceded by X87. In such situations we follow gcc and pass the
1847     // extra bits in an SSE reg.
1848     if (Lo != X87) {
1849       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1850       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1851         return ABIArgInfo::getDirect(HighPart, 8);
1852     }
1853     break;
1854   }
1855 
1856   // If a high part was specified, merge it together with the low part.  It is
1857   // known to pass in the high eightbyte of the result.  We do this by forming a
1858   // first class struct aggregate with the high and low part: {low, high}
1859   if (HighPart)
1860     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1861 
1862   return ABIArgInfo::getDirect(ResType);
1863 }
1864 
1865 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1866                                                unsigned &neededSSE) const {
1867   X86_64ABIInfo::Class Lo, Hi;
1868   classify(Ty, 0, Lo, Hi);
1869 
1870   // Check some invariants.
1871   // FIXME: Enforce these by construction.
1872   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1873   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1874 
1875   neededInt = 0;
1876   neededSSE = 0;
1877   llvm::Type *ResType = 0;
1878   switch (Lo) {
1879   case NoClass:
1880     if (Hi == NoClass)
1881       return ABIArgInfo::getIgnore();
1882     // If the low part is just padding, it takes no register, leave ResType
1883     // null.
1884     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1885            "Unknown missing lo part");
1886     break;
1887 
1888     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1889     // on the stack.
1890   case Memory:
1891 
1892     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1893     // COMPLEX_X87, it is passed in memory.
1894   case X87:
1895   case ComplexX87:
1896     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1897       ++neededInt;
1898     return getIndirectResult(Ty);
1899 
1900   case SSEUp:
1901   case X87Up:
1902     llvm_unreachable("Invalid classification for lo word.");
1903 
1904     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1905     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1906     // and %r9 is used.
1907   case Integer:
1908     ++neededInt;
1909 
1910     // Pick an 8-byte type based on the preferred type.
1911     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1912 
1913     // If we have a sign or zero extended integer, make sure to return Extend
1914     // so that the parameter gets the right LLVM IR attributes.
1915     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1916       // Treat an enum type as its underlying type.
1917       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1918         Ty = EnumTy->getDecl()->getIntegerType();
1919 
1920       if (Ty->isIntegralOrEnumerationType() &&
1921           Ty->isPromotableIntegerType())
1922         return ABIArgInfo::getExtend();
1923     }
1924 
1925     break;
1926 
1927     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1928     // available SSE register is used, the registers are taken in the
1929     // order from %xmm0 to %xmm7.
1930   case SSE: {
1931     llvm::Type *IRType = CGT.ConvertType(Ty);
1932     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1933     ++neededSSE;
1934     break;
1935   }
1936   }
1937 
1938   llvm::Type *HighPart = 0;
1939   switch (Hi) {
1940     // Memory was handled previously, ComplexX87 and X87 should
1941     // never occur as hi classes, and X87Up must be preceded by X87,
1942     // which is passed in memory.
1943   case Memory:
1944   case X87:
1945   case ComplexX87:
1946     llvm_unreachable("Invalid classification for hi word.");
1947 
1948   case NoClass: break;
1949 
1950   case Integer:
1951     ++neededInt;
1952     // Pick an 8-byte type based on the preferred type.
1953     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1954 
1955     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1956       return ABIArgInfo::getDirect(HighPart, 8);
1957     break;
1958 
1959     // X87Up generally doesn't occur here (long double is passed in
1960     // memory), except in situations involving unions.
1961   case X87Up:
1962   case SSE:
1963     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1964 
1965     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1966       return ABIArgInfo::getDirect(HighPart, 8);
1967 
1968     ++neededSSE;
1969     break;
1970 
1971     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1972     // eightbyte is passed in the upper half of the last used SSE
1973     // register.  This only happens when 128-bit vectors are passed.
1974   case SSEUp:
1975     assert(Lo == SSE && "Unexpected SSEUp classification");
1976     ResType = GetByteVectorType(Ty);
1977     break;
1978   }
1979 
1980   // If a high part was specified, merge it together with the low part.  It is
1981   // known to pass in the high eightbyte of the result.  We do this by forming a
1982   // first class struct aggregate with the high and low part: {low, high}
1983   if (HighPart)
1984     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1985 
1986   return ABIArgInfo::getDirect(ResType);
1987 }
1988 
1989 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1990 
1991   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1992 
1993   // Keep track of the number of assigned registers.
1994   unsigned freeIntRegs = 6, freeSSERegs = 8;
1995 
1996   // If the return value is indirect, then the hidden argument is consuming one
1997   // integer register.
1998   if (FI.getReturnInfo().isIndirect())
1999     --freeIntRegs;
2000 
2001   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2002   // get assigned (in left-to-right order) for passing as follows...
2003   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2004        it != ie; ++it) {
2005     unsigned neededInt, neededSSE;
2006     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
2007 
2008     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2009     // eightbyte of an argument, the whole argument is passed on the
2010     // stack. If registers have already been assigned for some
2011     // eightbytes of such an argument, the assignments get reverted.
2012     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2013       freeIntRegs -= neededInt;
2014       freeSSERegs -= neededSSE;
2015     } else {
2016       it->info = getIndirectResult(it->type);
2017     }
2018   }
2019 }
2020 
2021 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2022                                         QualType Ty,
2023                                         CodeGenFunction &CGF) {
2024   llvm::Value *overflow_arg_area_p =
2025     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2026   llvm::Value *overflow_arg_area =
2027     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2028 
2029   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2030   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2031   // It isn't stated explicitly in the standard, but in practice we use
2032   // alignment greater than 16 where necessary.
2033   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2034   if (Align > 8) {
2035     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2036     llvm::Value *Offset =
2037       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2038     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2039     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2040                                                     CGF.Int64Ty);
2041     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2042     overflow_arg_area =
2043       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2044                                  overflow_arg_area->getType(),
2045                                  "overflow_arg_area.align");
2046   }
2047 
2048   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2049   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2050   llvm::Value *Res =
2051     CGF.Builder.CreateBitCast(overflow_arg_area,
2052                               llvm::PointerType::getUnqual(LTy));
2053 
2054   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2055   // l->overflow_arg_area + sizeof(type).
2056   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2057   // an 8 byte boundary.
2058 
2059   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2060   llvm::Value *Offset =
2061       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2062   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2063                                             "overflow_arg_area.next");
2064   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2065 
2066   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2067   return Res;
2068 }
2069 
2070 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2071                                       CodeGenFunction &CGF) const {
2072   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
2073 
2074   // Assume that va_list type is correct; should be pointer to LLVM type:
2075   // struct {
2076   //   i32 gp_offset;
2077   //   i32 fp_offset;
2078   //   i8* overflow_arg_area;
2079   //   i8* reg_save_area;
2080   // };
2081   unsigned neededInt, neededSSE;
2082 
2083   Ty = CGF.getContext().getCanonicalType(Ty);
2084   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
2085 
2086   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2087   // in the registers. If not go to step 7.
2088   if (!neededInt && !neededSSE)
2089     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2090 
2091   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2092   // general purpose registers needed to pass type and num_fp to hold
2093   // the number of floating point registers needed.
2094 
2095   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2096   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2097   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2098   //
2099   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2100   // register save space).
2101 
2102   llvm::Value *InRegs = 0;
2103   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2104   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2105   if (neededInt) {
2106     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2107     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2108     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2109     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2110   }
2111 
2112   if (neededSSE) {
2113     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2114     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2115     llvm::Value *FitsInFP =
2116       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2117     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2118     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2119   }
2120 
2121   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2122   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2123   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2124   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2125 
2126   // Emit code to load the value if it was passed in registers.
2127 
2128   CGF.EmitBlock(InRegBlock);
2129 
2130   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2131   // an offset of l->gp_offset and/or l->fp_offset. This may require
2132   // copying to a temporary location in case the parameter is passed
2133   // in different register classes or requires an alignment greater
2134   // than 8 for general purpose registers and 16 for XMM registers.
2135   //
2136   // FIXME: This really results in shameful code when we end up needing to
2137   // collect arguments from different places; often what should result in a
2138   // simple assembling of a structure from scattered addresses has many more
2139   // loads than necessary. Can we clean this up?
2140   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2141   llvm::Value *RegAddr =
2142     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2143                            "reg_save_area");
2144   if (neededInt && neededSSE) {
2145     // FIXME: Cleanup.
2146     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2147     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2148     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2149     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2150     llvm::Type *TyLo = ST->getElementType(0);
2151     llvm::Type *TyHi = ST->getElementType(1);
2152     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2153            "Unexpected ABI info for mixed regs");
2154     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2155     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2156     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2157     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2158     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2159     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2160     llvm::Value *V =
2161       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2162     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2163     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2164     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2165 
2166     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2167                                         llvm::PointerType::getUnqual(LTy));
2168   } else if (neededInt) {
2169     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2170     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2171                                         llvm::PointerType::getUnqual(LTy));
2172   } else if (neededSSE == 1) {
2173     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2174     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2175                                         llvm::PointerType::getUnqual(LTy));
2176   } else {
2177     assert(neededSSE == 2 && "Invalid number of needed registers!");
2178     // SSE registers are spaced 16 bytes apart in the register save
2179     // area, we need to collect the two eightbytes together.
2180     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2181     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2182     llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2183     llvm::Type *DblPtrTy =
2184       llvm::PointerType::getUnqual(DoubleTy);
2185     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2186                                                        DoubleTy, NULL);
2187     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2188     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2189                                                          DblPtrTy));
2190     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2191     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2192                                                          DblPtrTy));
2193     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2194     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2195                                         llvm::PointerType::getUnqual(LTy));
2196   }
2197 
2198   // AMD64-ABI 3.5.7p5: Step 5. Set:
2199   // l->gp_offset = l->gp_offset + num_gp * 8
2200   // l->fp_offset = l->fp_offset + num_fp * 16.
2201   if (neededInt) {
2202     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2203     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2204                             gp_offset_p);
2205   }
2206   if (neededSSE) {
2207     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2208     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2209                             fp_offset_p);
2210   }
2211   CGF.EmitBranch(ContBlock);
2212 
2213   // Emit code to load the value if it was passed in memory.
2214 
2215   CGF.EmitBlock(InMemBlock);
2216   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2217 
2218   // Return the appropriate result.
2219 
2220   CGF.EmitBlock(ContBlock);
2221   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2222                                                  "vaarg.addr");
2223   ResAddr->addIncoming(RegAddr, InRegBlock);
2224   ResAddr->addIncoming(MemAddr, InMemBlock);
2225   return ResAddr;
2226 }
2227 
2228 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2229 
2230   if (Ty->isVoidType())
2231     return ABIArgInfo::getIgnore();
2232 
2233   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2234     Ty = EnumTy->getDecl()->getIntegerType();
2235 
2236   uint64_t Size = getContext().getTypeSize(Ty);
2237 
2238   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2239     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2240         RT->getDecl()->hasFlexibleArrayMember())
2241       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2242 
2243     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2244     if (Size == 128 &&
2245         getContext().getTargetInfo().getTriple().getOS()
2246           == llvm::Triple::MinGW32)
2247       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2248                                                           Size));
2249 
2250     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2251     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2252     if (Size <= 64 &&
2253         (Size & (Size - 1)) == 0)
2254       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2255                                                           Size));
2256 
2257     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2258   }
2259 
2260   if (Ty->isPromotableIntegerType())
2261     return ABIArgInfo::getExtend();
2262 
2263   return ABIArgInfo::getDirect();
2264 }
2265 
2266 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2267 
2268   QualType RetTy = FI.getReturnType();
2269   FI.getReturnInfo() = classify(RetTy);
2270 
2271   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2272        it != ie; ++it)
2273     it->info = classify(it->type);
2274 }
2275 
2276 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2277                                       CodeGenFunction &CGF) const {
2278   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2279   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2280 
2281   CGBuilderTy &Builder = CGF.Builder;
2282   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2283                                                        "ap");
2284   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2285   llvm::Type *PTy =
2286     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2287   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2288 
2289   uint64_t Offset =
2290     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2291   llvm::Value *NextAddr =
2292     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2293                       "ap.next");
2294   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2295 
2296   return AddrTyped;
2297 }
2298 
2299 // PowerPC-32
2300 
2301 namespace {
2302 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2303 public:
2304   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2305 
2306   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2307     // This is recovered from gcc output.
2308     return 1; // r1 is the dedicated stack pointer
2309   }
2310 
2311   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2312                                llvm::Value *Address) const;
2313 };
2314 
2315 }
2316 
2317 bool
2318 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2319                                                 llvm::Value *Address) const {
2320   // This is calculated from the LLVM and GCC tables and verified
2321   // against gcc output.  AFAIK all ABIs use the same encoding.
2322 
2323   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2324   llvm::LLVMContext &Context = CGF.getLLVMContext();
2325 
2326   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2327   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2328   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2329   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2330 
2331   // 0-31: r0-31, the 4-byte general-purpose registers
2332   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2333 
2334   // 32-63: fp0-31, the 8-byte floating-point registers
2335   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2336 
2337   // 64-76 are various 4-byte special-purpose registers:
2338   // 64: mq
2339   // 65: lr
2340   // 66: ctr
2341   // 67: ap
2342   // 68-75 cr0-7
2343   // 76: xer
2344   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2345 
2346   // 77-108: v0-31, the 16-byte vector registers
2347   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2348 
2349   // 109: vrsave
2350   // 110: vscr
2351   // 111: spe_acc
2352   // 112: spefscr
2353   // 113: sfp
2354   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2355 
2356   return false;
2357 }
2358 
2359 
2360 //===----------------------------------------------------------------------===//
2361 // ARM ABI Implementation
2362 //===----------------------------------------------------------------------===//
2363 
2364 namespace {
2365 
2366 class ARMABIInfo : public ABIInfo {
2367 public:
2368   enum ABIKind {
2369     APCS = 0,
2370     AAPCS = 1,
2371     AAPCS_VFP
2372   };
2373 
2374 private:
2375   ABIKind Kind;
2376 
2377 public:
2378   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2379 
2380   bool isEABI() const {
2381     StringRef Env =
2382       getContext().getTargetInfo().getTriple().getEnvironmentName();
2383     return (Env == "gnueabi" || Env == "eabi" || Env == "androideabi");
2384   }
2385 
2386 private:
2387   ABIKind getABIKind() const { return Kind; }
2388 
2389   ABIArgInfo classifyReturnType(QualType RetTy) const;
2390   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2391 
2392   virtual void computeInfo(CGFunctionInfo &FI) const;
2393 
2394   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2395                                  CodeGenFunction &CGF) const;
2396 };
2397 
2398 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2399 public:
2400   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2401     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2402 
2403   const ARMABIInfo &getABIInfo() const {
2404     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2405   }
2406 
2407   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2408     return 13;
2409   }
2410 
2411   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2412     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2413   }
2414 
2415   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2416                                llvm::Value *Address) const {
2417     CodeGen::CGBuilderTy &Builder = CGF.Builder;
2418     llvm::LLVMContext &Context = CGF.getLLVMContext();
2419 
2420     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2421     llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2422 
2423     // 0-15 are the 16 integer registers.
2424     AssignToArrayRange(Builder, Address, Four8, 0, 15);
2425 
2426     return false;
2427   }
2428 
2429   unsigned getSizeOfUnwindException() const {
2430     if (getABIInfo().isEABI()) return 88;
2431     return TargetCodeGenInfo::getSizeOfUnwindException();
2432   }
2433 };
2434 
2435 }
2436 
2437 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2438   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2439   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2440        it != ie; ++it)
2441     it->info = classifyArgumentType(it->type);
2442 
2443   // Always honor user-specified calling convention.
2444   if (FI.getCallingConvention() != llvm::CallingConv::C)
2445     return;
2446 
2447   // Calling convention as default by an ABI.
2448   llvm::CallingConv::ID DefaultCC;
2449   if (isEABI())
2450     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2451   else
2452     DefaultCC = llvm::CallingConv::ARM_APCS;
2453 
2454   // If user did not ask for specific calling convention explicitly (e.g. via
2455   // pcs attribute), set effective calling convention if it's different than ABI
2456   // default.
2457   switch (getABIKind()) {
2458   case APCS:
2459     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2460       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2461     break;
2462   case AAPCS:
2463     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2464       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2465     break;
2466   case AAPCS_VFP:
2467     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2468       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2469     break;
2470   }
2471 }
2472 
2473 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2474 /// aggregate.  If HAMembers is non-null, the number of base elements
2475 /// contained in the type is returned through it; this is used for the
2476 /// recursive calls that check aggregate component types.
2477 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2478                                    ASTContext &Context,
2479                                    uint64_t *HAMembers = 0) {
2480   uint64_t Members;
2481   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2482     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2483       return false;
2484     Members *= AT->getSize().getZExtValue();
2485   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2486     const RecordDecl *RD = RT->getDecl();
2487     if (RD->isUnion() || RD->hasFlexibleArrayMember())
2488       return false;
2489     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2490       if (!CXXRD->isAggregate())
2491         return false;
2492     }
2493     Members = 0;
2494     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2495          i != e; ++i) {
2496       const FieldDecl *FD = *i;
2497       uint64_t FldMembers;
2498       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2499         return false;
2500       Members += FldMembers;
2501     }
2502   } else {
2503     Members = 1;
2504     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2505       Members = 2;
2506       Ty = CT->getElementType();
2507     }
2508 
2509     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2510     // double, or 64-bit or 128-bit vectors.
2511     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2512       if (BT->getKind() != BuiltinType::Float &&
2513           BT->getKind() != BuiltinType::Double)
2514         return false;
2515     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2516       unsigned VecSize = Context.getTypeSize(VT);
2517       if (VecSize != 64 && VecSize != 128)
2518         return false;
2519     } else {
2520       return false;
2521     }
2522 
2523     // The base type must be the same for all members.  Vector types of the
2524     // same total size are treated as being equivalent here.
2525     const Type *TyPtr = Ty.getTypePtr();
2526     if (!Base)
2527       Base = TyPtr;
2528     if (Base != TyPtr &&
2529         (!Base->isVectorType() || !TyPtr->isVectorType() ||
2530          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2531       return false;
2532   }
2533 
2534   // Homogeneous Aggregates can have at most 4 members of the base type.
2535   if (HAMembers)
2536     *HAMembers = Members;
2537   return (Members <= 4);
2538 }
2539 
2540 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2541   if (!isAggregateTypeForABI(Ty)) {
2542     // Treat an enum type as its underlying type.
2543     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2544       Ty = EnumTy->getDecl()->getIntegerType();
2545 
2546     return (Ty->isPromotableIntegerType() ?
2547             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2548   }
2549 
2550   // Ignore empty records.
2551   if (isEmptyRecord(getContext(), Ty, true))
2552     return ABIArgInfo::getIgnore();
2553 
2554   // Structures with either a non-trivial destructor or a non-trivial
2555   // copy constructor are always indirect.
2556   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2557     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2558 
2559   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2560     // Homogeneous Aggregates need to be expanded.
2561     const Type *Base = 0;
2562     if (isHomogeneousAggregate(Ty, Base, getContext()))
2563       return ABIArgInfo::getExpand();
2564   }
2565 
2566   // Otherwise, pass by coercing to a structure of the appropriate size.
2567   //
2568   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2569   // backend doesn't support byval.
2570   // FIXME: This doesn't handle alignment > 64 bits.
2571   llvm::Type* ElemTy;
2572   unsigned SizeRegs;
2573   if (getContext().getTypeAlign(Ty) > 32) {
2574     ElemTy = llvm::Type::getInt64Ty(getVMContext());
2575     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2576   } else {
2577     ElemTy = llvm::Type::getInt32Ty(getVMContext());
2578     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2579   }
2580 
2581   llvm::Type *STy =
2582     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2583   return ABIArgInfo::getDirect(STy);
2584 }
2585 
2586 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2587                               llvm::LLVMContext &VMContext) {
2588   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2589   // is called integer-like if its size is less than or equal to one word, and
2590   // the offset of each of its addressable sub-fields is zero.
2591 
2592   uint64_t Size = Context.getTypeSize(Ty);
2593 
2594   // Check that the type fits in a word.
2595   if (Size > 32)
2596     return false;
2597 
2598   // FIXME: Handle vector types!
2599   if (Ty->isVectorType())
2600     return false;
2601 
2602   // Float types are never treated as "integer like".
2603   if (Ty->isRealFloatingType())
2604     return false;
2605 
2606   // If this is a builtin or pointer type then it is ok.
2607   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2608     return true;
2609 
2610   // Small complex integer types are "integer like".
2611   if (const ComplexType *CT = Ty->getAs<ComplexType>())
2612     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2613 
2614   // Single element and zero sized arrays should be allowed, by the definition
2615   // above, but they are not.
2616 
2617   // Otherwise, it must be a record type.
2618   const RecordType *RT = Ty->getAs<RecordType>();
2619   if (!RT) return false;
2620 
2621   // Ignore records with flexible arrays.
2622   const RecordDecl *RD = RT->getDecl();
2623   if (RD->hasFlexibleArrayMember())
2624     return false;
2625 
2626   // Check that all sub-fields are at offset 0, and are themselves "integer
2627   // like".
2628   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2629 
2630   bool HadField = false;
2631   unsigned idx = 0;
2632   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2633        i != e; ++i, ++idx) {
2634     const FieldDecl *FD = *i;
2635 
2636     // Bit-fields are not addressable, we only need to verify they are "integer
2637     // like". We still have to disallow a subsequent non-bitfield, for example:
2638     //   struct { int : 0; int x }
2639     // is non-integer like according to gcc.
2640     if (FD->isBitField()) {
2641       if (!RD->isUnion())
2642         HadField = true;
2643 
2644       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2645         return false;
2646 
2647       continue;
2648     }
2649 
2650     // Check if this field is at offset 0.
2651     if (Layout.getFieldOffset(idx) != 0)
2652       return false;
2653 
2654     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2655       return false;
2656 
2657     // Only allow at most one field in a structure. This doesn't match the
2658     // wording above, but follows gcc in situations with a field following an
2659     // empty structure.
2660     if (!RD->isUnion()) {
2661       if (HadField)
2662         return false;
2663 
2664       HadField = true;
2665     }
2666   }
2667 
2668   return true;
2669 }
2670 
2671 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2672   if (RetTy->isVoidType())
2673     return ABIArgInfo::getIgnore();
2674 
2675   // Large vector types should be returned via memory.
2676   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2677     return ABIArgInfo::getIndirect(0);
2678 
2679   if (!isAggregateTypeForABI(RetTy)) {
2680     // Treat an enum type as its underlying type.
2681     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2682       RetTy = EnumTy->getDecl()->getIntegerType();
2683 
2684     return (RetTy->isPromotableIntegerType() ?
2685             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2686   }
2687 
2688   // Structures with either a non-trivial destructor or a non-trivial
2689   // copy constructor are always indirect.
2690   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2691     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2692 
2693   // Are we following APCS?
2694   if (getABIKind() == APCS) {
2695     if (isEmptyRecord(getContext(), RetTy, false))
2696       return ABIArgInfo::getIgnore();
2697 
2698     // Complex types are all returned as packed integers.
2699     //
2700     // FIXME: Consider using 2 x vector types if the back end handles them
2701     // correctly.
2702     if (RetTy->isAnyComplexType())
2703       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2704                                               getContext().getTypeSize(RetTy)));
2705 
2706     // Integer like structures are returned in r0.
2707     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2708       // Return in the smallest viable integer type.
2709       uint64_t Size = getContext().getTypeSize(RetTy);
2710       if (Size <= 8)
2711         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2712       if (Size <= 16)
2713         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2714       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2715     }
2716 
2717     // Otherwise return in memory.
2718     return ABIArgInfo::getIndirect(0);
2719   }
2720 
2721   // Otherwise this is an AAPCS variant.
2722 
2723   if (isEmptyRecord(getContext(), RetTy, true))
2724     return ABIArgInfo::getIgnore();
2725 
2726   // Check for homogeneous aggregates with AAPCS-VFP.
2727   if (getABIKind() == AAPCS_VFP) {
2728     const Type *Base = 0;
2729     if (isHomogeneousAggregate(RetTy, Base, getContext()))
2730       // Homogeneous Aggregates are returned directly.
2731       return ABIArgInfo::getDirect();
2732   }
2733 
2734   // Aggregates <= 4 bytes are returned in r0; other aggregates
2735   // are returned indirectly.
2736   uint64_t Size = getContext().getTypeSize(RetTy);
2737   if (Size <= 32) {
2738     // Return in the smallest viable integer type.
2739     if (Size <= 8)
2740       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2741     if (Size <= 16)
2742       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2743     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2744   }
2745 
2746   return ABIArgInfo::getIndirect(0);
2747 }
2748 
2749 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2750                                    CodeGenFunction &CGF) const {
2751   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2752   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2753 
2754   CGBuilderTy &Builder = CGF.Builder;
2755   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2756                                                        "ap");
2757   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2758   // Handle address alignment for type alignment > 32 bits
2759   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2760   if (TyAlign > 4) {
2761     assert((TyAlign & (TyAlign - 1)) == 0 &&
2762            "Alignment is not power of 2!");
2763     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2764     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2765     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2766     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2767   }
2768   llvm::Type *PTy =
2769     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2770   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2771 
2772   uint64_t Offset =
2773     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2774   llvm::Value *NextAddr =
2775     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2776                       "ap.next");
2777   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2778 
2779   return AddrTyped;
2780 }
2781 
2782 //===----------------------------------------------------------------------===//
2783 // PTX ABI Implementation
2784 //===----------------------------------------------------------------------===//
2785 
2786 namespace {
2787 
2788 class PTXABIInfo : public ABIInfo {
2789 public:
2790   PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2791 
2792   ABIArgInfo classifyReturnType(QualType RetTy) const;
2793   ABIArgInfo classifyArgumentType(QualType Ty) const;
2794 
2795   virtual void computeInfo(CGFunctionInfo &FI) const;
2796   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2797                                  CodeGenFunction &CFG) const;
2798 };
2799 
2800 class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2801 public:
2802   PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2803     : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2804 
2805   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2806                                    CodeGen::CodeGenModule &M) const;
2807 };
2808 
2809 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2810   if (RetTy->isVoidType())
2811     return ABIArgInfo::getIgnore();
2812   if (isAggregateTypeForABI(RetTy))
2813     return ABIArgInfo::getIndirect(0);
2814   return ABIArgInfo::getDirect();
2815 }
2816 
2817 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2818   if (isAggregateTypeForABI(Ty))
2819     return ABIArgInfo::getIndirect(0);
2820 
2821   return ABIArgInfo::getDirect();
2822 }
2823 
2824 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2825   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2826   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2827        it != ie; ++it)
2828     it->info = classifyArgumentType(it->type);
2829 
2830   // Always honor user-specified calling convention.
2831   if (FI.getCallingConvention() != llvm::CallingConv::C)
2832     return;
2833 
2834   // Calling convention as default by an ABI.
2835   llvm::CallingConv::ID DefaultCC;
2836   const LangOptions &LangOpts = getContext().getLangOptions();
2837   if (LangOpts.OpenCL || LangOpts.CUDA) {
2838     // If we are in OpenCL or CUDA mode, then default to device functions
2839     DefaultCC = llvm::CallingConv::PTX_Device;
2840   } else {
2841     // If we are in standard C/C++ mode, use the triple to decide on the default
2842     StringRef Env =
2843       getContext().getTargetInfo().getTriple().getEnvironmentName();
2844     if (Env == "device")
2845       DefaultCC = llvm::CallingConv::PTX_Device;
2846     else
2847       DefaultCC = llvm::CallingConv::PTX_Kernel;
2848   }
2849   FI.setEffectiveCallingConvention(DefaultCC);
2850 
2851 }
2852 
2853 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2854                                    CodeGenFunction &CFG) const {
2855   llvm_unreachable("PTX does not support varargs");
2856 }
2857 
2858 void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2859                                                llvm::GlobalValue *GV,
2860                                                CodeGen::CodeGenModule &M) const{
2861   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2862   if (!FD) return;
2863 
2864   llvm::Function *F = cast<llvm::Function>(GV);
2865 
2866   // Perform special handling in OpenCL mode
2867   if (M.getLangOptions().OpenCL) {
2868     // Use OpenCL function attributes to set proper calling conventions
2869     // By default, all functions are device functions
2870     if (FD->hasAttr<OpenCLKernelAttr>()) {
2871       // OpenCL __kernel functions get a kernel calling convention
2872       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2873       // And kernel functions are not subject to inlining
2874       F->addFnAttr(llvm::Attribute::NoInline);
2875     }
2876   }
2877 
2878   // Perform special handling in CUDA mode.
2879   if (M.getLangOptions().CUDA) {
2880     // CUDA __global__ functions get a kernel calling convention.  Since
2881     // __global__ functions cannot be called from the device, we do not
2882     // need to set the noinline attribute.
2883     if (FD->getAttr<CUDAGlobalAttr>())
2884       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2885   }
2886 }
2887 
2888 }
2889 
2890 //===----------------------------------------------------------------------===//
2891 // MBlaze ABI Implementation
2892 //===----------------------------------------------------------------------===//
2893 
2894 namespace {
2895 
2896 class MBlazeABIInfo : public ABIInfo {
2897 public:
2898   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2899 
2900   bool isPromotableIntegerType(QualType Ty) const;
2901 
2902   ABIArgInfo classifyReturnType(QualType RetTy) const;
2903   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2904 
2905   virtual void computeInfo(CGFunctionInfo &FI) const {
2906     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2907     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2908          it != ie; ++it)
2909       it->info = classifyArgumentType(it->type);
2910   }
2911 
2912   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2913                                  CodeGenFunction &CGF) const;
2914 };
2915 
2916 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2917 public:
2918   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2919     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2920   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2921                            CodeGen::CodeGenModule &M) const;
2922 };
2923 
2924 }
2925 
2926 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2927   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2928   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2929     switch (BT->getKind()) {
2930     case BuiltinType::Bool:
2931     case BuiltinType::Char_S:
2932     case BuiltinType::Char_U:
2933     case BuiltinType::SChar:
2934     case BuiltinType::UChar:
2935     case BuiltinType::Short:
2936     case BuiltinType::UShort:
2937       return true;
2938     default:
2939       return false;
2940     }
2941   return false;
2942 }
2943 
2944 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2945                                       CodeGenFunction &CGF) const {
2946   // FIXME: Implement
2947   return 0;
2948 }
2949 
2950 
2951 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2952   if (RetTy->isVoidType())
2953     return ABIArgInfo::getIgnore();
2954   if (isAggregateTypeForABI(RetTy))
2955     return ABIArgInfo::getIndirect(0);
2956 
2957   return (isPromotableIntegerType(RetTy) ?
2958           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2959 }
2960 
2961 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2962   if (isAggregateTypeForABI(Ty))
2963     return ABIArgInfo::getIndirect(0);
2964 
2965   return (isPromotableIntegerType(Ty) ?
2966           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2967 }
2968 
2969 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2970                                                   llvm::GlobalValue *GV,
2971                                                   CodeGen::CodeGenModule &M)
2972                                                   const {
2973   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2974   if (!FD) return;
2975 
2976   llvm::CallingConv::ID CC = llvm::CallingConv::C;
2977   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2978     CC = llvm::CallingConv::MBLAZE_INTR;
2979   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2980     CC = llvm::CallingConv::MBLAZE_SVOL;
2981 
2982   if (CC != llvm::CallingConv::C) {
2983       // Handle 'interrupt_handler' attribute:
2984       llvm::Function *F = cast<llvm::Function>(GV);
2985 
2986       // Step 1: Set ISR calling convention.
2987       F->setCallingConv(CC);
2988 
2989       // Step 2: Add attributes goodness.
2990       F->addFnAttr(llvm::Attribute::NoInline);
2991   }
2992 
2993   // Step 3: Emit _interrupt_handler alias.
2994   if (CC == llvm::CallingConv::MBLAZE_INTR)
2995     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2996                           "_interrupt_handler", GV, &M.getModule());
2997 }
2998 
2999 
3000 //===----------------------------------------------------------------------===//
3001 // MSP430 ABI Implementation
3002 //===----------------------------------------------------------------------===//
3003 
3004 namespace {
3005 
3006 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3007 public:
3008   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3009     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3010   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3011                            CodeGen::CodeGenModule &M) const;
3012 };
3013 
3014 }
3015 
3016 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3017                                                   llvm::GlobalValue *GV,
3018                                              CodeGen::CodeGenModule &M) const {
3019   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3020     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3021       // Handle 'interrupt' attribute:
3022       llvm::Function *F = cast<llvm::Function>(GV);
3023 
3024       // Step 1: Set ISR calling convention.
3025       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3026 
3027       // Step 2: Add attributes goodness.
3028       F->addFnAttr(llvm::Attribute::NoInline);
3029 
3030       // Step 3: Emit ISR vector alias.
3031       unsigned Num = attr->getNumber() + 0xffe0;
3032       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3033                             "vector_" + Twine::utohexstr(Num),
3034                             GV, &M.getModule());
3035     }
3036   }
3037 }
3038 
3039 //===----------------------------------------------------------------------===//
3040 // MIPS ABI Implementation.  This works for both little-endian and
3041 // big-endian variants.
3042 //===----------------------------------------------------------------------===//
3043 
3044 namespace {
3045 class MipsABIInfo : public ABIInfo {
3046   bool IsO32;
3047   unsigned MinABIStackAlignInBytes;
3048   llvm::Type* HandleAggregates(QualType Ty) const;
3049   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3050   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3051 public:
3052   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3053     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {}
3054 
3055   ABIArgInfo classifyReturnType(QualType RetTy) const;
3056   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3057   virtual void computeInfo(CGFunctionInfo &FI) const;
3058   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3059                                  CodeGenFunction &CGF) const;
3060 };
3061 
3062 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3063   unsigned SizeOfUnwindException;
3064 public:
3065   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3066     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3067       SizeOfUnwindException(IsO32 ? 24 : 32) {}
3068 
3069   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3070     return 29;
3071   }
3072 
3073   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3074                                llvm::Value *Address) const;
3075 
3076   unsigned getSizeOfUnwindException() const {
3077     return SizeOfUnwindException;
3078   }
3079 };
3080 }
3081 
3082 // In N32/64, an aligned double precision floating point field is passed in
3083 // a register.
3084 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty) const {
3085   if (IsO32)
3086     return 0;
3087 
3088   if (Ty->isComplexType())
3089     return CGT.ConvertType(Ty);
3090 
3091   const RecordType *RT = Ty->getAsStructureType();
3092 
3093   if (!RT)
3094     return 0;
3095 
3096   const RecordDecl *RD = RT->getDecl();
3097   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3098   uint64_t StructSize = getContext().getTypeSize(Ty);
3099   assert(!(StructSize % 8) && "Size of structure must be multiple of 8.");
3100 
3101   uint64_t LastOffset = 0;
3102   unsigned idx = 0;
3103   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3104   SmallVector<llvm::Type*, 8> ArgList;
3105 
3106   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3107        i != e; ++i, ++idx) {
3108     const QualType Ty = (*i)->getType();
3109     const BuiltinType *BT = Ty->getAs<BuiltinType>();
3110 
3111     if (!BT || BT->getKind() != BuiltinType::Double)
3112       continue;
3113 
3114     uint64_t Offset = Layout.getFieldOffset(idx);
3115     if (Offset % 64) // Ignore doubles that are not aligned.
3116       continue;
3117 
3118     // Add ((Offset - LastOffset) / 64) args of type i64.
3119     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3120       ArgList.push_back(I64);
3121 
3122     // Add double type.
3123     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3124     LastOffset = Offset + 64;
3125   }
3126 
3127   // This structure doesn't have an aligned double field.
3128   if (!LastOffset)
3129     return 0;
3130 
3131   // Add ((StructSize - LastOffset) / 64) args of type i64.
3132   for (unsigned N = (StructSize - LastOffset) / 64; N; --N)
3133     ArgList.push_back(I64);
3134 
3135   // If the size of the remainder is not zero, add one more integer type to
3136   // ArgList.
3137   unsigned R = (StructSize - LastOffset) % 64;
3138   if (R)
3139     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3140 
3141   return llvm::StructType::get(getVMContext(), ArgList);
3142 }
3143 
3144 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3145   // Padding is inserted only for N32/64.
3146   if (IsO32)
3147     return 0;
3148 
3149   assert(Align <= 16 && "Alignment larger than 16 not handled.");
3150   return (Align == 16 && Offset & 0xf) ?
3151     llvm::IntegerType::get(getVMContext(), 64) : 0;
3152 }
3153 
3154 ABIArgInfo
3155 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3156   uint64_t OrigOffset = Offset;
3157   uint64_t TySize =
3158     llvm::RoundUpToAlignment(getContext().getTypeSize(Ty), 64) / 8;
3159   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3160   Offset = llvm::RoundUpToAlignment(Offset, std::max(Align, (uint64_t)8));
3161   Offset += TySize;
3162 
3163   if (isAggregateTypeForABI(Ty)) {
3164     // Ignore empty aggregates.
3165     if (TySize == 0)
3166       return ABIArgInfo::getIgnore();
3167 
3168     // Records with non trivial destructors/constructors should not be passed
3169     // by value.
3170     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3171       Offset = OrigOffset + 8;
3172       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3173     }
3174 
3175     // If we have reached here, aggregates are passed either indirectly via a
3176     // byval pointer or directly by coercing to another structure type. In the
3177     // latter case, padding is inserted if the offset of the aggregate is
3178     // unaligned.
3179     llvm::Type *ResType = HandleAggregates(Ty);
3180 
3181     if (!ResType)
3182       return ABIArgInfo::getIndirect(0);
3183 
3184     return ABIArgInfo::getDirect(ResType, 0, getPaddingType(Align, OrigOffset));
3185   }
3186 
3187   // Treat an enum type as its underlying type.
3188   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3189     Ty = EnumTy->getDecl()->getIntegerType();
3190 
3191   if (Ty->isPromotableIntegerType())
3192     return ABIArgInfo::getExtend();
3193 
3194   return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3195 }
3196 
3197 llvm::Type*
3198 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3199   const RecordType *RT = RetTy->getAsStructureType();
3200   SmallVector<llvm::Type*, 2> RTList;
3201 
3202   if (RT) {
3203     const RecordDecl *RD = RT->getDecl();
3204     RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(), i;
3205 
3206     for (i = b; (i != e) && (std::distance(b, i) < 2); ++i) {
3207       const BuiltinType *BT = (*i)->getType()->getAs<BuiltinType>();
3208 
3209       if (!BT || !BT->isFloatingPoint())
3210         break;
3211 
3212       RTList.push_back(CGT.ConvertType((*i)->getType()));
3213     }
3214 
3215     if (i == e)
3216       return llvm::StructType::get(getVMContext(), RTList,
3217                                    RD->hasAttr<PackedAttr>());
3218 
3219     RTList.clear();
3220   }
3221 
3222   RTList.push_back(llvm::IntegerType::get(getVMContext(),
3223                                           std::min(Size, (uint64_t)64)));
3224   if (Size > 64)
3225     RTList.push_back(llvm::IntegerType::get(getVMContext(), Size - 64));
3226 
3227   return llvm::StructType::get(getVMContext(), RTList);
3228 }
3229 
3230 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3231   uint64_t Size = getContext().getTypeSize(RetTy);
3232 
3233   if (RetTy->isVoidType() || Size == 0)
3234     return ABIArgInfo::getIgnore();
3235 
3236   if (isAggregateTypeForABI(RetTy)) {
3237     if (Size <= 128) {
3238       if (RetTy->isAnyComplexType())
3239         return ABIArgInfo::getDirect();
3240 
3241       if (!IsO32)
3242         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3243     }
3244 
3245     return ABIArgInfo::getIndirect(0);
3246   }
3247 
3248   // Treat an enum type as its underlying type.
3249   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3250     RetTy = EnumTy->getDecl()->getIntegerType();
3251 
3252   return (RetTy->isPromotableIntegerType() ?
3253           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3254 }
3255 
3256 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3257   ABIArgInfo &RetInfo = FI.getReturnInfo();
3258   RetInfo = classifyReturnType(FI.getReturnType());
3259 
3260   // Check if a pointer to an aggregate is passed as a hidden argument.
3261   uint64_t Offset = RetInfo.isIndirect() ? 8 : 0;
3262 
3263   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3264        it != ie; ++it)
3265     it->info = classifyArgumentType(it->type, Offset);
3266 }
3267 
3268 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3269                                     CodeGenFunction &CGF) const {
3270   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3271   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3272 
3273   CGBuilderTy &Builder = CGF.Builder;
3274   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3275   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3276   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3277   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3278   llvm::Value *AddrTyped;
3279   unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3280   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3281 
3282   if (TypeAlign > MinABIStackAlignInBytes) {
3283     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3284     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3285     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3286     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3287     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3288     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3289   }
3290   else
3291     AddrTyped = Builder.CreateBitCast(Addr, PTy);
3292 
3293   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3294   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3295   uint64_t Offset =
3296     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3297   llvm::Value *NextAddr =
3298     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3299                       "ap.next");
3300   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3301 
3302   return AddrTyped;
3303 }
3304 
3305 bool
3306 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3307                                                llvm::Value *Address) const {
3308   // This information comes from gcc's implementation, which seems to
3309   // as canonical as it gets.
3310 
3311   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3312   llvm::LLVMContext &Context = CGF.getLLVMContext();
3313 
3314   // Everything on MIPS is 4 bytes.  Double-precision FP registers
3315   // are aliased to pairs of single-precision FP registers.
3316   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
3317   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3318 
3319   // 0-31 are the general purpose registers, $0 - $31.
3320   // 32-63 are the floating-point registers, $f0 - $f31.
3321   // 64 and 65 are the multiply/divide registers, $hi and $lo.
3322   // 66 is the (notional, I think) register for signal-handler return.
3323   AssignToArrayRange(Builder, Address, Four8, 0, 65);
3324 
3325   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3326   // They are one bit wide and ignored here.
3327 
3328   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3329   // (coprocessor 1 is the FP unit)
3330   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3331   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3332   // 176-181 are the DSP accumulator registers.
3333   AssignToArrayRange(Builder, Address, Four8, 80, 181);
3334 
3335   return false;
3336 }
3337 
3338 //===----------------------------------------------------------------------===//
3339 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3340 // Currently subclassed only to implement custom OpenCL C function attribute
3341 // handling.
3342 //===----------------------------------------------------------------------===//
3343 
3344 namespace {
3345 
3346 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3347 public:
3348   TCETargetCodeGenInfo(CodeGenTypes &CGT)
3349     : DefaultTargetCodeGenInfo(CGT) {}
3350 
3351   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3352                                    CodeGen::CodeGenModule &M) const;
3353 };
3354 
3355 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3356                                                llvm::GlobalValue *GV,
3357                                                CodeGen::CodeGenModule &M) const {
3358   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3359   if (!FD) return;
3360 
3361   llvm::Function *F = cast<llvm::Function>(GV);
3362 
3363   if (M.getLangOptions().OpenCL) {
3364     if (FD->hasAttr<OpenCLKernelAttr>()) {
3365       // OpenCL C Kernel functions are not subject to inlining
3366       F->addFnAttr(llvm::Attribute::NoInline);
3367 
3368       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3369 
3370         // Convert the reqd_work_group_size() attributes to metadata.
3371         llvm::LLVMContext &Context = F->getContext();
3372         llvm::NamedMDNode *OpenCLMetadata =
3373             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3374 
3375         SmallVector<llvm::Value*, 5> Operands;
3376         Operands.push_back(F);
3377 
3378         Operands.push_back(llvm::Constant::getIntegerValue(
3379                              llvm::Type::getInt32Ty(Context),
3380                              llvm::APInt(
3381                                32,
3382                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3383         Operands.push_back(llvm::Constant::getIntegerValue(
3384                              llvm::Type::getInt32Ty(Context),
3385                              llvm::APInt(
3386                                32,
3387                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3388         Operands.push_back(llvm::Constant::getIntegerValue(
3389                              llvm::Type::getInt32Ty(Context),
3390                              llvm::APInt(
3391                                32,
3392                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3393 
3394         // Add a boolean constant operand for "required" (true) or "hint" (false)
3395         // for implementing the work_group_size_hint attr later. Currently
3396         // always true as the hint is not yet implemented.
3397         Operands.push_back(llvm::ConstantInt::getTrue(llvm::Type::getInt1Ty(Context)));
3398 
3399         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3400       }
3401     }
3402   }
3403 }
3404 
3405 }
3406 
3407 //===----------------------------------------------------------------------===//
3408 // Hexagon ABI Implementation
3409 //===----------------------------------------------------------------------===//
3410 
3411 namespace {
3412 
3413 class HexagonABIInfo : public ABIInfo {
3414 
3415 
3416 public:
3417   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3418 
3419 private:
3420 
3421   ABIArgInfo classifyReturnType(QualType RetTy) const;
3422   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3423 
3424   virtual void computeInfo(CGFunctionInfo &FI) const;
3425 
3426   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3427                                  CodeGenFunction &CGF) const;
3428 };
3429 
3430 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3431 public:
3432   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3433     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3434 
3435   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3436     return 29;
3437   }
3438 };
3439 
3440 }
3441 
3442 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3443   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3444   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3445        it != ie; ++it)
3446     it->info = classifyArgumentType(it->type);
3447 }
3448 
3449 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3450   if (!isAggregateTypeForABI(Ty)) {
3451     // Treat an enum type as its underlying type.
3452     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3453       Ty = EnumTy->getDecl()->getIntegerType();
3454 
3455     return (Ty->isPromotableIntegerType() ?
3456             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3457   }
3458 
3459   // Ignore empty records.
3460   if (isEmptyRecord(getContext(), Ty, true))
3461     return ABIArgInfo::getIgnore();
3462 
3463   // Structures with either a non-trivial destructor or a non-trivial
3464   // copy constructor are always indirect.
3465   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3466     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3467 
3468   uint64_t Size = getContext().getTypeSize(Ty);
3469   if (Size > 64)
3470     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3471     // Pass in the smallest viable integer type.
3472   else if (Size > 32)
3473       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3474   else if (Size > 16)
3475       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3476   else if (Size > 8)
3477       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3478   else
3479       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3480 }
3481 
3482 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3483   if (RetTy->isVoidType())
3484     return ABIArgInfo::getIgnore();
3485 
3486   // Large vector types should be returned via memory.
3487   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3488     return ABIArgInfo::getIndirect(0);
3489 
3490   if (!isAggregateTypeForABI(RetTy)) {
3491     // Treat an enum type as its underlying type.
3492     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3493       RetTy = EnumTy->getDecl()->getIntegerType();
3494 
3495     return (RetTy->isPromotableIntegerType() ?
3496             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3497   }
3498 
3499   // Structures with either a non-trivial destructor or a non-trivial
3500   // copy constructor are always indirect.
3501   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3502     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3503 
3504   if (isEmptyRecord(getContext(), RetTy, true))
3505     return ABIArgInfo::getIgnore();
3506 
3507   // Aggregates <= 8 bytes are returned in r0; other aggregates
3508   // are returned indirectly.
3509   uint64_t Size = getContext().getTypeSize(RetTy);
3510   if (Size <= 64) {
3511     // Return in the smallest viable integer type.
3512     if (Size <= 8)
3513       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3514     if (Size <= 16)
3515       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3516     if (Size <= 32)
3517       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3518     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3519   }
3520 
3521   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3522 }
3523 
3524 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3525                                    CodeGenFunction &CGF) const {
3526   // FIXME: Need to handle alignment
3527   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3528   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3529 
3530   CGBuilderTy &Builder = CGF.Builder;
3531   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3532                                                        "ap");
3533   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3534   llvm::Type *PTy =
3535     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3536   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3537 
3538   uint64_t Offset =
3539     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3540   llvm::Value *NextAddr =
3541     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3542                       "ap.next");
3543   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3544 
3545   return AddrTyped;
3546 }
3547 
3548 
3549 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3550   if (TheTargetCodeGenInfo)
3551     return *TheTargetCodeGenInfo;
3552 
3553   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3554   switch (Triple.getArch()) {
3555   default:
3556     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3557 
3558   case llvm::Triple::mips:
3559   case llvm::Triple::mipsel:
3560     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3561 
3562   case llvm::Triple::mips64:
3563   case llvm::Triple::mips64el:
3564     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3565 
3566   case llvm::Triple::arm:
3567   case llvm::Triple::thumb:
3568     {
3569       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3570 
3571       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3572         Kind = ARMABIInfo::APCS;
3573       else if (CodeGenOpts.FloatABI == "hard")
3574         Kind = ARMABIInfo::AAPCS_VFP;
3575 
3576       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3577     }
3578 
3579   case llvm::Triple::ppc:
3580     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3581 
3582   case llvm::Triple::ptx32:
3583   case llvm::Triple::ptx64:
3584     return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3585 
3586   case llvm::Triple::mblaze:
3587     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3588 
3589   case llvm::Triple::msp430:
3590     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3591 
3592   case llvm::Triple::tce:
3593     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3594 
3595   case llvm::Triple::x86: {
3596     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3597 
3598     if (Triple.isOSDarwin())
3599       return *(TheTargetCodeGenInfo =
3600                new X86_32TargetCodeGenInfo(
3601                  Types, true, true, DisableMMX, false));
3602 
3603     switch (Triple.getOS()) {
3604     case llvm::Triple::Cygwin:
3605     case llvm::Triple::MinGW32:
3606     case llvm::Triple::AuroraUX:
3607     case llvm::Triple::DragonFly:
3608     case llvm::Triple::FreeBSD:
3609     case llvm::Triple::OpenBSD:
3610       return *(TheTargetCodeGenInfo =
3611                new X86_32TargetCodeGenInfo(
3612                  Types, false, true, DisableMMX, false));
3613 
3614     case llvm::Triple::Win32:
3615       return *(TheTargetCodeGenInfo =
3616                new X86_32TargetCodeGenInfo(
3617                  Types, false, true, DisableMMX, true));
3618 
3619     default:
3620       return *(TheTargetCodeGenInfo =
3621                new X86_32TargetCodeGenInfo(
3622                  Types, false, false, DisableMMX, false));
3623     }
3624   }
3625 
3626   case llvm::Triple::x86_64: {
3627     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3628 
3629     switch (Triple.getOS()) {
3630     case llvm::Triple::Win32:
3631     case llvm::Triple::MinGW32:
3632     case llvm::Triple::Cygwin:
3633       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3634     default:
3635       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3636                                                                   HasAVX));
3637     }
3638   }
3639   case llvm::Triple::hexagon:
3640     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3641   }
3642 }
3643