1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CodeGenFunction.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Frontend/CodeGenOptions.h" 20 #include "llvm/Type.h" 21 #include "llvm/Target/TargetData.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/Support/raw_ostream.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 28 llvm::Value *Array, 29 llvm::Value *Value, 30 unsigned FirstIndex, 31 unsigned LastIndex) { 32 // Alternatively, we could emit this as a loop in the source. 33 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 34 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 35 Builder.CreateStore(Value, Cell); 36 } 37 } 38 39 static bool isAggregateTypeForABI(QualType T) { 40 return CodeGenFunction::hasAggregateLLVMType(T) || 41 T->isMemberFunctionPointerType(); 42 } 43 44 ABIInfo::~ABIInfo() {} 45 46 ASTContext &ABIInfo::getContext() const { 47 return CGT.getContext(); 48 } 49 50 llvm::LLVMContext &ABIInfo::getVMContext() const { 51 return CGT.getLLVMContext(); 52 } 53 54 const llvm::TargetData &ABIInfo::getTargetData() const { 55 return CGT.getTargetData(); 56 } 57 58 59 void ABIArgInfo::dump() const { 60 raw_ostream &OS = llvm::errs(); 61 OS << "(ABIArgInfo Kind="; 62 switch (TheKind) { 63 case Direct: 64 OS << "Direct Type="; 65 if (llvm::Type *Ty = getCoerceToType()) 66 Ty->print(OS); 67 else 68 OS << "null"; 69 break; 70 case Extend: 71 OS << "Extend"; 72 break; 73 case Ignore: 74 OS << "Ignore"; 75 break; 76 case Indirect: 77 OS << "Indirect Align=" << getIndirectAlign() 78 << " ByVal=" << getIndirectByVal() 79 << " Realign=" << getIndirectRealign(); 80 break; 81 case Expand: 82 OS << "Expand"; 83 break; 84 } 85 OS << ")\n"; 86 } 87 88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 89 90 // If someone can figure out a general rule for this, that would be great. 91 // It's probably just doomed to be platform-dependent, though. 92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 93 // Verified for: 94 // x86-64 FreeBSD, Linux, Darwin 95 // x86-32 FreeBSD, Linux, Darwin 96 // PowerPC Linux, Darwin 97 // ARM Darwin (*not* EABI) 98 return 32; 99 } 100 101 bool TargetCodeGenInfo::isNoProtoCallVariadic( 102 const CodeGen::CGFunctionInfo &) const { 103 // The following conventions are known to require this to be false: 104 // x86_stdcall 105 // MIPS 106 // For everything else, we just prefer false unless we opt out. 107 return false; 108 } 109 110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 111 112 /// isEmptyField - Return true iff a the field is "empty", that is it 113 /// is an unnamed bit-field or an (array of) empty record(s). 114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 115 bool AllowArrays) { 116 if (FD->isUnnamedBitfield()) 117 return true; 118 119 QualType FT = FD->getType(); 120 121 // Constant arrays of empty records count as empty, strip them off. 122 // Constant arrays of zero length always count as empty. 123 if (AllowArrays) 124 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 125 if (AT->getSize() == 0) 126 return true; 127 FT = AT->getElementType(); 128 } 129 130 const RecordType *RT = FT->getAs<RecordType>(); 131 if (!RT) 132 return false; 133 134 // C++ record fields are never empty, at least in the Itanium ABI. 135 // 136 // FIXME: We should use a predicate for whether this behavior is true in the 137 // current ABI. 138 if (isa<CXXRecordDecl>(RT->getDecl())) 139 return false; 140 141 return isEmptyRecord(Context, FT, AllowArrays); 142 } 143 144 /// isEmptyRecord - Return true iff a structure contains only empty 145 /// fields. Note that a structure with a flexible array member is not 146 /// considered empty. 147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 148 const RecordType *RT = T->getAs<RecordType>(); 149 if (!RT) 150 return 0; 151 const RecordDecl *RD = RT->getDecl(); 152 if (RD->hasFlexibleArrayMember()) 153 return false; 154 155 // If this is a C++ record, check the bases first. 156 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 157 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 158 e = CXXRD->bases_end(); i != e; ++i) 159 if (!isEmptyRecord(Context, i->getType(), true)) 160 return false; 161 162 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 163 i != e; ++i) 164 if (!isEmptyField(Context, *i, AllowArrays)) 165 return false; 166 return true; 167 } 168 169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either 170 /// a non-trivial destructor or a non-trivial copy constructor. 171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) { 172 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 173 if (!RD) 174 return false; 175 176 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor(); 177 } 178 179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is 180 /// a record type with either a non-trivial destructor or a non-trivial copy 181 /// constructor. 182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) { 183 const RecordType *RT = T->getAs<RecordType>(); 184 if (!RT) 185 return false; 186 187 return hasNonTrivialDestructorOrCopyConstructor(RT); 188 } 189 190 /// isSingleElementStruct - Determine if a structure is a "single 191 /// element struct", i.e. it has exactly one non-empty field or 192 /// exactly one field which is itself a single element 193 /// struct. Structures with flexible array members are never 194 /// considered single element structs. 195 /// 196 /// \return The field declaration for the single non-empty field, if 197 /// it exists. 198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 199 const RecordType *RT = T->getAsStructureType(); 200 if (!RT) 201 return 0; 202 203 const RecordDecl *RD = RT->getDecl(); 204 if (RD->hasFlexibleArrayMember()) 205 return 0; 206 207 const Type *Found = 0; 208 209 // If this is a C++ record, check the bases first. 210 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 211 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 212 e = CXXRD->bases_end(); i != e; ++i) { 213 // Ignore empty records. 214 if (isEmptyRecord(Context, i->getType(), true)) 215 continue; 216 217 // If we already found an element then this isn't a single-element struct. 218 if (Found) 219 return 0; 220 221 // If this is non-empty and not a single element struct, the composite 222 // cannot be a single element struct. 223 Found = isSingleElementStruct(i->getType(), Context); 224 if (!Found) 225 return 0; 226 } 227 } 228 229 // Check for single element. 230 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 231 i != e; ++i) { 232 const FieldDecl *FD = *i; 233 QualType FT = FD->getType(); 234 235 // Ignore empty fields. 236 if (isEmptyField(Context, FD, true)) 237 continue; 238 239 // If we already found an element then this isn't a single-element 240 // struct. 241 if (Found) 242 return 0; 243 244 // Treat single element arrays as the element. 245 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 246 if (AT->getSize().getZExtValue() != 1) 247 break; 248 FT = AT->getElementType(); 249 } 250 251 if (!isAggregateTypeForABI(FT)) { 252 Found = FT.getTypePtr(); 253 } else { 254 Found = isSingleElementStruct(FT, Context); 255 if (!Found) 256 return 0; 257 } 258 } 259 260 // We don't consider a struct a single-element struct if it has 261 // padding beyond the element type. 262 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 263 return 0; 264 265 return Found; 266 } 267 268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 269 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 270 !Ty->isAnyComplexType() && !Ty->isEnumeralType() && 271 !Ty->isBlockPointerType()) 272 return false; 273 274 uint64_t Size = Context.getTypeSize(Ty); 275 return Size == 32 || Size == 64; 276 } 277 278 /// canExpandIndirectArgument - Test whether an argument type which is to be 279 /// passed indirectly (on the stack) would have the equivalent layout if it was 280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 281 /// inhibiting optimizations. 282 /// 283 // FIXME: This predicate is missing many cases, currently it just follows 284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 285 // should probably make this smarter, or better yet make the LLVM backend 286 // capable of handling it. 287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 288 // We can only expand structure types. 289 const RecordType *RT = Ty->getAs<RecordType>(); 290 if (!RT) 291 return false; 292 293 // We can only expand (C) structures. 294 // 295 // FIXME: This needs to be generalized to handle classes as well. 296 const RecordDecl *RD = RT->getDecl(); 297 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 298 return false; 299 300 uint64_t Size = 0; 301 302 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 303 i != e; ++i) { 304 const FieldDecl *FD = *i; 305 306 if (!is32Or64BitBasicType(FD->getType(), Context)) 307 return false; 308 309 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 310 // how to expand them yet, and the predicate for telling if a bitfield still 311 // counts as "basic" is more complicated than what we were doing previously. 312 if (FD->isBitField()) 313 return false; 314 315 Size += Context.getTypeSize(FD->getType()); 316 } 317 318 // Make sure there are not any holes in the struct. 319 if (Size != Context.getTypeSize(Ty)) 320 return false; 321 322 return true; 323 } 324 325 namespace { 326 /// DefaultABIInfo - The default implementation for ABI specific 327 /// details. This implementation provides information which results in 328 /// self-consistent and sensible LLVM IR generation, but does not 329 /// conform to any particular ABI. 330 class DefaultABIInfo : public ABIInfo { 331 public: 332 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 333 334 ABIArgInfo classifyReturnType(QualType RetTy) const; 335 ABIArgInfo classifyArgumentType(QualType RetTy) const; 336 337 virtual void computeInfo(CGFunctionInfo &FI) const { 338 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 339 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 340 it != ie; ++it) 341 it->info = classifyArgumentType(it->type); 342 } 343 344 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 345 CodeGenFunction &CGF) const; 346 }; 347 348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 349 public: 350 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 351 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 352 }; 353 354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 355 CodeGenFunction &CGF) const { 356 return 0; 357 } 358 359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 360 if (isAggregateTypeForABI(Ty)) { 361 // Records with non trivial destructors/constructors should not be passed 362 // by value. 363 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 364 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 365 366 return ABIArgInfo::getIndirect(0); 367 } 368 369 // Treat an enum type as its underlying type. 370 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 371 Ty = EnumTy->getDecl()->getIntegerType(); 372 373 return (Ty->isPromotableIntegerType() ? 374 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 375 } 376 377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 378 if (RetTy->isVoidType()) 379 return ABIArgInfo::getIgnore(); 380 381 if (isAggregateTypeForABI(RetTy)) 382 return ABIArgInfo::getIndirect(0); 383 384 // Treat an enum type as its underlying type. 385 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 386 RetTy = EnumTy->getDecl()->getIntegerType(); 387 388 return (RetTy->isPromotableIntegerType() ? 389 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 390 } 391 392 /// UseX86_MMXType - Return true if this is an MMX type that should use the 393 /// special x86_mmx type. 394 bool UseX86_MMXType(llvm::Type *IRType) { 395 // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the 396 // special x86_mmx type. 397 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 398 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 399 IRType->getScalarSizeInBits() != 64; 400 } 401 402 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 403 StringRef Constraint, 404 llvm::Type* Ty) { 405 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) 406 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 407 return Ty; 408 } 409 410 //===----------------------------------------------------------------------===// 411 // X86-32 ABI Implementation 412 //===----------------------------------------------------------------------===// 413 414 /// X86_32ABIInfo - The X86-32 ABI information. 415 class X86_32ABIInfo : public ABIInfo { 416 static const unsigned MinABIStackAlignInBytes = 4; 417 418 bool IsDarwinVectorABI; 419 bool IsSmallStructInRegABI; 420 bool IsMMXDisabled; 421 bool IsWin32FloatStructABI; 422 423 static bool isRegisterSize(unsigned Size) { 424 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 425 } 426 427 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); 428 429 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 430 /// such that the argument will be passed in memory. 431 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const; 432 433 /// \brief Return the alignment to use for the given type on the stack. 434 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 435 436 public: 437 438 ABIArgInfo classifyReturnType(QualType RetTy) const; 439 ABIArgInfo classifyArgumentType(QualType RetTy) const; 440 441 virtual void computeInfo(CGFunctionInfo &FI) const { 442 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 443 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 444 it != ie; ++it) 445 it->info = classifyArgumentType(it->type); 446 } 447 448 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 449 CodeGenFunction &CGF) const; 450 451 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w) 452 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 453 IsMMXDisabled(m), IsWin32FloatStructABI(w) {} 454 }; 455 456 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 457 public: 458 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 459 bool d, bool p, bool m, bool w) 460 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w)) {} 461 462 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 463 CodeGen::CodeGenModule &CGM) const; 464 465 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 466 // Darwin uses different dwarf register numbers for EH. 467 if (CGM.isTargetDarwin()) return 5; 468 469 return 4; 470 } 471 472 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 473 llvm::Value *Address) const; 474 475 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 476 StringRef Constraint, 477 llvm::Type* Ty) const { 478 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 479 } 480 481 }; 482 483 } 484 485 /// shouldReturnTypeInRegister - Determine if the given type should be 486 /// passed in a register (for the Darwin ABI). 487 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 488 ASTContext &Context) { 489 uint64_t Size = Context.getTypeSize(Ty); 490 491 // Type must be register sized. 492 if (!isRegisterSize(Size)) 493 return false; 494 495 if (Ty->isVectorType()) { 496 // 64- and 128- bit vectors inside structures are not returned in 497 // registers. 498 if (Size == 64 || Size == 128) 499 return false; 500 501 return true; 502 } 503 504 // If this is a builtin, pointer, enum, complex type, member pointer, or 505 // member function pointer it is ok. 506 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 507 Ty->isAnyComplexType() || Ty->isEnumeralType() || 508 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 509 return true; 510 511 // Arrays are treated like records. 512 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 513 return shouldReturnTypeInRegister(AT->getElementType(), Context); 514 515 // Otherwise, it must be a record type. 516 const RecordType *RT = Ty->getAs<RecordType>(); 517 if (!RT) return false; 518 519 // FIXME: Traverse bases here too. 520 521 // Structure types are passed in register if all fields would be 522 // passed in a register. 523 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), 524 e = RT->getDecl()->field_end(); i != e; ++i) { 525 const FieldDecl *FD = *i; 526 527 // Empty fields are ignored. 528 if (isEmptyField(Context, FD, true)) 529 continue; 530 531 // Check fields recursively. 532 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 533 return false; 534 } 535 536 return true; 537 } 538 539 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const { 540 if (RetTy->isVoidType()) 541 return ABIArgInfo::getIgnore(); 542 543 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 544 // On Darwin, some vectors are returned in registers. 545 if (IsDarwinVectorABI) { 546 uint64_t Size = getContext().getTypeSize(RetTy); 547 548 // 128-bit vectors are a special case; they are returned in 549 // registers and we need to make sure to pick a type the LLVM 550 // backend will like. 551 if (Size == 128) 552 return ABIArgInfo::getDirect(llvm::VectorType::get( 553 llvm::Type::getInt64Ty(getVMContext()), 2)); 554 555 // Always return in register if it fits in a general purpose 556 // register, or if it is 64 bits and has a single element. 557 if ((Size == 8 || Size == 16 || Size == 32) || 558 (Size == 64 && VT->getNumElements() == 1)) 559 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 560 Size)); 561 562 return ABIArgInfo::getIndirect(0); 563 } 564 565 return ABIArgInfo::getDirect(); 566 } 567 568 if (isAggregateTypeForABI(RetTy)) { 569 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 570 // Structures with either a non-trivial destructor or a non-trivial 571 // copy constructor are always indirect. 572 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 573 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 574 575 // Structures with flexible arrays are always indirect. 576 if (RT->getDecl()->hasFlexibleArrayMember()) 577 return ABIArgInfo::getIndirect(0); 578 } 579 580 // If specified, structs and unions are always indirect. 581 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 582 return ABIArgInfo::getIndirect(0); 583 584 // Small structures which are register sized are generally returned 585 // in a register. 586 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) { 587 uint64_t Size = getContext().getTypeSize(RetTy); 588 589 // As a special-case, if the struct is a "single-element" struct, and 590 // the field is of type "float" or "double", return it in a 591 // floating-point register. (MSVC does not apply this special case.) 592 // We apply a similar transformation for pointer types to improve the 593 // quality of the generated IR. 594 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 595 if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType()) 596 || SeltTy->hasPointerRepresentation()) 597 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 598 599 // FIXME: We should be able to narrow this integer in cases with dead 600 // padding. 601 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 602 } 603 604 return ABIArgInfo::getIndirect(0); 605 } 606 607 // Treat an enum type as its underlying type. 608 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 609 RetTy = EnumTy->getDecl()->getIntegerType(); 610 611 return (RetTy->isPromotableIntegerType() ? 612 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 613 } 614 615 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 616 const RecordType *RT = Ty->getAs<RecordType>(); 617 if (!RT) 618 return 0; 619 const RecordDecl *RD = RT->getDecl(); 620 621 // If this is a C++ record, check the bases first. 622 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 623 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 624 e = CXXRD->bases_end(); i != e; ++i) 625 if (!isRecordWithSSEVectorType(Context, i->getType())) 626 return false; 627 628 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 629 i != e; ++i) { 630 QualType FT = i->getType(); 631 632 if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128) 633 return true; 634 635 if (isRecordWithSSEVectorType(Context, FT)) 636 return true; 637 } 638 639 return false; 640 } 641 642 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 643 unsigned Align) const { 644 // Otherwise, if the alignment is less than or equal to the minimum ABI 645 // alignment, just use the default; the backend will handle this. 646 if (Align <= MinABIStackAlignInBytes) 647 return 0; // Use default alignment. 648 649 // On non-Darwin, the stack type alignment is always 4. 650 if (!IsDarwinVectorABI) { 651 // Set explicit alignment, since we may need to realign the top. 652 return MinABIStackAlignInBytes; 653 } 654 655 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 656 if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty)) 657 return 16; 658 659 return MinABIStackAlignInBytes; 660 } 661 662 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const { 663 if (!ByVal) 664 return ABIArgInfo::getIndirect(0, false); 665 666 // Compute the byval alignment. 667 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 668 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 669 if (StackAlign == 0) 670 return ABIArgInfo::getIndirect(4); 671 672 // If the stack alignment is less than the type alignment, realign the 673 // argument. 674 if (StackAlign < TypeAlign) 675 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, 676 /*Realign=*/true); 677 678 return ABIArgInfo::getIndirect(StackAlign); 679 } 680 681 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const { 682 // FIXME: Set alignment on indirect arguments. 683 if (isAggregateTypeForABI(Ty)) { 684 // Structures with flexible arrays are always indirect. 685 if (const RecordType *RT = Ty->getAs<RecordType>()) { 686 // Structures with either a non-trivial destructor or a non-trivial 687 // copy constructor are always indirect. 688 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 689 return getIndirectResult(Ty, /*ByVal=*/false); 690 691 if (RT->getDecl()->hasFlexibleArrayMember()) 692 return getIndirectResult(Ty); 693 } 694 695 // Ignore empty structs/unions. 696 if (isEmptyRecord(getContext(), Ty, true)) 697 return ABIArgInfo::getIgnore(); 698 699 // Expand small (<= 128-bit) record types when we know that the stack layout 700 // of those arguments will match the struct. This is important because the 701 // LLVM backend isn't smart enough to remove byval, which inhibits many 702 // optimizations. 703 if (getContext().getTypeSize(Ty) <= 4*32 && 704 canExpandIndirectArgument(Ty, getContext())) 705 return ABIArgInfo::getExpand(); 706 707 return getIndirectResult(Ty); 708 } 709 710 if (const VectorType *VT = Ty->getAs<VectorType>()) { 711 // On Darwin, some vectors are passed in memory, we handle this by passing 712 // it as an i8/i16/i32/i64. 713 if (IsDarwinVectorABI) { 714 uint64_t Size = getContext().getTypeSize(Ty); 715 if ((Size == 8 || Size == 16 || Size == 32) || 716 (Size == 64 && VT->getNumElements() == 1)) 717 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 718 Size)); 719 } 720 721 llvm::Type *IRType = CGT.ConvertType(Ty); 722 if (UseX86_MMXType(IRType)) { 723 if (IsMMXDisabled) 724 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 725 64)); 726 ABIArgInfo AAI = ABIArgInfo::getDirect(IRType); 727 AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext())); 728 return AAI; 729 } 730 731 return ABIArgInfo::getDirect(); 732 } 733 734 735 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 736 Ty = EnumTy->getDecl()->getIntegerType(); 737 738 return (Ty->isPromotableIntegerType() ? 739 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 740 } 741 742 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 743 CodeGenFunction &CGF) const { 744 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 745 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 746 747 CGBuilderTy &Builder = CGF.Builder; 748 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 749 "ap"); 750 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 751 752 // Compute if the address needs to be aligned 753 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 754 Align = getTypeStackAlignInBytes(Ty, Align); 755 Align = std::max(Align, 4U); 756 if (Align > 4) { 757 // addr = (addr + align - 1) & -align; 758 llvm::Value *Offset = 759 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 760 Addr = CGF.Builder.CreateGEP(Addr, Offset); 761 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 762 CGF.Int32Ty); 763 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 764 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 765 Addr->getType(), 766 "ap.cur.aligned"); 767 } 768 769 llvm::Type *PTy = 770 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 771 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 772 773 uint64_t Offset = 774 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 775 llvm::Value *NextAddr = 776 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 777 "ap.next"); 778 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 779 780 return AddrTyped; 781 } 782 783 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 784 llvm::GlobalValue *GV, 785 CodeGen::CodeGenModule &CGM) const { 786 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 787 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 788 // Get the LLVM function. 789 llvm::Function *Fn = cast<llvm::Function>(GV); 790 791 // Now add the 'alignstack' attribute with a value of 16. 792 Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16)); 793 } 794 } 795 } 796 797 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 798 CodeGen::CodeGenFunction &CGF, 799 llvm::Value *Address) const { 800 CodeGen::CGBuilderTy &Builder = CGF.Builder; 801 llvm::LLVMContext &Context = CGF.getLLVMContext(); 802 803 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 804 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 805 806 // 0-7 are the eight integer registers; the order is different 807 // on Darwin (for EH), but the range is the same. 808 // 8 is %eip. 809 AssignToArrayRange(Builder, Address, Four8, 0, 8); 810 811 if (CGF.CGM.isTargetDarwin()) { 812 // 12-16 are st(0..4). Not sure why we stop at 4. 813 // These have size 16, which is sizeof(long double) on 814 // platforms with 8-byte alignment for that type. 815 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 816 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 817 818 } else { 819 // 9 is %eflags, which doesn't get a size on Darwin for some 820 // reason. 821 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 822 823 // 11-16 are st(0..5). Not sure why we stop at 5. 824 // These have size 12, which is sizeof(long double) on 825 // platforms with 4-byte alignment for that type. 826 llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12); 827 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 828 } 829 830 return false; 831 } 832 833 //===----------------------------------------------------------------------===// 834 // X86-64 ABI Implementation 835 //===----------------------------------------------------------------------===// 836 837 838 namespace { 839 /// X86_64ABIInfo - The X86_64 ABI information. 840 class X86_64ABIInfo : public ABIInfo { 841 enum Class { 842 Integer = 0, 843 SSE, 844 SSEUp, 845 X87, 846 X87Up, 847 ComplexX87, 848 NoClass, 849 Memory 850 }; 851 852 /// merge - Implement the X86_64 ABI merging algorithm. 853 /// 854 /// Merge an accumulating classification \arg Accum with a field 855 /// classification \arg Field. 856 /// 857 /// \param Accum - The accumulating classification. This should 858 /// always be either NoClass or the result of a previous merge 859 /// call. In addition, this should never be Memory (the caller 860 /// should just return Memory for the aggregate). 861 static Class merge(Class Accum, Class Field); 862 863 /// postMerge - Implement the X86_64 ABI post merging algorithm. 864 /// 865 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 866 /// final MEMORY or SSE classes when necessary. 867 /// 868 /// \param AggregateSize - The size of the current aggregate in 869 /// the classification process. 870 /// 871 /// \param Lo - The classification for the parts of the type 872 /// residing in the low word of the containing object. 873 /// 874 /// \param Hi - The classification for the parts of the type 875 /// residing in the higher words of the containing object. 876 /// 877 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 878 879 /// classify - Determine the x86_64 register classes in which the 880 /// given type T should be passed. 881 /// 882 /// \param Lo - The classification for the parts of the type 883 /// residing in the low word of the containing object. 884 /// 885 /// \param Hi - The classification for the parts of the type 886 /// residing in the high word of the containing object. 887 /// 888 /// \param OffsetBase - The bit offset of this type in the 889 /// containing object. Some parameters are classified different 890 /// depending on whether they straddle an eightbyte boundary. 891 /// 892 /// If a word is unused its result will be NoClass; if a type should 893 /// be passed in Memory then at least the classification of \arg Lo 894 /// will be Memory. 895 /// 896 /// The \arg Lo class will be NoClass iff the argument is ignored. 897 /// 898 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 899 /// also be ComplexX87. 900 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const; 901 902 llvm::Type *GetByteVectorType(QualType Ty) const; 903 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 904 unsigned IROffset, QualType SourceTy, 905 unsigned SourceOffset) const; 906 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 907 unsigned IROffset, QualType SourceTy, 908 unsigned SourceOffset) const; 909 910 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 911 /// such that the argument will be returned in memory. 912 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 913 914 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 915 /// such that the argument will be passed in memory. 916 ABIArgInfo getIndirectResult(QualType Ty) const; 917 918 ABIArgInfo classifyReturnType(QualType RetTy) const; 919 920 ABIArgInfo classifyArgumentType(QualType Ty, 921 unsigned &neededInt, 922 unsigned &neededSSE) const; 923 924 bool IsIllegalVectorType(QualType Ty) const; 925 926 /// The 0.98 ABI revision clarified a lot of ambiguities, 927 /// unfortunately in ways that were not always consistent with 928 /// certain previous compilers. In particular, platforms which 929 /// required strict binary compatibility with older versions of GCC 930 /// may need to exempt themselves. 931 bool honorsRevision0_98() const { 932 return !getContext().getTargetInfo().getTriple().isOSDarwin(); 933 } 934 935 bool HasAVX; 936 937 public: 938 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 939 ABIInfo(CGT), HasAVX(hasavx) {} 940 941 virtual void computeInfo(CGFunctionInfo &FI) const; 942 943 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 944 CodeGenFunction &CGF) const; 945 }; 946 947 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 948 class WinX86_64ABIInfo : public ABIInfo { 949 950 ABIArgInfo classify(QualType Ty) const; 951 952 public: 953 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 954 955 virtual void computeInfo(CGFunctionInfo &FI) const; 956 957 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 958 CodeGenFunction &CGF) const; 959 }; 960 961 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 962 public: 963 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 964 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 965 966 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 967 return 7; 968 } 969 970 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 971 llvm::Value *Address) const { 972 CodeGen::CGBuilderTy &Builder = CGF.Builder; 973 llvm::LLVMContext &Context = CGF.getLLVMContext(); 974 975 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 976 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 977 978 // 0-15 are the 16 integer registers. 979 // 16 is %rip. 980 AssignToArrayRange(Builder, Address, Eight8, 0, 16); 981 982 return false; 983 } 984 985 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 986 StringRef Constraint, 987 llvm::Type* Ty) const { 988 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 989 } 990 991 bool isNoProtoCallVariadic(const CodeGen::CGFunctionInfo &FI) const { 992 // The default CC on x86-64 sets %al to the number of SSA 993 // registers used, and GCC sets this when calling an unprototyped 994 // function, so we override the default behavior. However, don't do 995 // that when AVX types are involved: the ABI explicitly states it is 996 // undefined, and it doesn't work in practice because of how the ABI 997 // defines varargs anyway. 998 if (FI.getCallingConvention() == llvm::CallingConv::C) { 999 bool HasAVXType = false; 1000 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1001 ie = FI.arg_end(); 1002 it != ie; ++it) { 1003 if (it->info.isDirect()) { 1004 llvm::Type *Ty = it->info.getCoerceToType(); 1005 if (llvm::VectorType *VTy = dyn_cast_or_null<llvm::VectorType>(Ty)) { 1006 if (VTy->getBitWidth() > 128) { 1007 HasAVXType = true; 1008 break; 1009 } 1010 } 1011 } 1012 } 1013 if (!HasAVXType) 1014 return true; 1015 } 1016 1017 return TargetCodeGenInfo::isNoProtoCallVariadic(FI); 1018 } 1019 1020 }; 1021 1022 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1023 public: 1024 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1025 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1026 1027 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 1028 return 7; 1029 } 1030 1031 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1032 llvm::Value *Address) const { 1033 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1034 llvm::LLVMContext &Context = CGF.getLLVMContext(); 1035 1036 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 1037 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 1038 1039 // 0-15 are the 16 integer registers. 1040 // 16 is %rip. 1041 AssignToArrayRange(Builder, Address, Eight8, 0, 16); 1042 1043 return false; 1044 } 1045 }; 1046 1047 } 1048 1049 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1050 Class &Hi) const { 1051 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1052 // 1053 // (a) If one of the classes is Memory, the whole argument is passed in 1054 // memory. 1055 // 1056 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1057 // memory. 1058 // 1059 // (c) If the size of the aggregate exceeds two eightbytes and the first 1060 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1061 // argument is passed in memory. NOTE: This is necessary to keep the 1062 // ABI working for processors that don't support the __m256 type. 1063 // 1064 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1065 // 1066 // Some of these are enforced by the merging logic. Others can arise 1067 // only with unions; for example: 1068 // union { _Complex double; unsigned; } 1069 // 1070 // Note that clauses (b) and (c) were added in 0.98. 1071 // 1072 if (Hi == Memory) 1073 Lo = Memory; 1074 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1075 Lo = Memory; 1076 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1077 Lo = Memory; 1078 if (Hi == SSEUp && Lo != SSE) 1079 Hi = SSE; 1080 } 1081 1082 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1083 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1084 // classified recursively so that always two fields are 1085 // considered. The resulting class is calculated according to 1086 // the classes of the fields in the eightbyte: 1087 // 1088 // (a) If both classes are equal, this is the resulting class. 1089 // 1090 // (b) If one of the classes is NO_CLASS, the resulting class is 1091 // the other class. 1092 // 1093 // (c) If one of the classes is MEMORY, the result is the MEMORY 1094 // class. 1095 // 1096 // (d) If one of the classes is INTEGER, the result is the 1097 // INTEGER. 1098 // 1099 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1100 // MEMORY is used as class. 1101 // 1102 // (f) Otherwise class SSE is used. 1103 1104 // Accum should never be memory (we should have returned) or 1105 // ComplexX87 (because this cannot be passed in a structure). 1106 assert((Accum != Memory && Accum != ComplexX87) && 1107 "Invalid accumulated classification during merge."); 1108 if (Accum == Field || Field == NoClass) 1109 return Accum; 1110 if (Field == Memory) 1111 return Memory; 1112 if (Accum == NoClass) 1113 return Field; 1114 if (Accum == Integer || Field == Integer) 1115 return Integer; 1116 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1117 Accum == X87 || Accum == X87Up) 1118 return Memory; 1119 return SSE; 1120 } 1121 1122 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1123 Class &Lo, Class &Hi) const { 1124 // FIXME: This code can be simplified by introducing a simple value class for 1125 // Class pairs with appropriate constructor methods for the various 1126 // situations. 1127 1128 // FIXME: Some of the split computations are wrong; unaligned vectors 1129 // shouldn't be passed in registers for example, so there is no chance they 1130 // can straddle an eightbyte. Verify & simplify. 1131 1132 Lo = Hi = NoClass; 1133 1134 Class &Current = OffsetBase < 64 ? Lo : Hi; 1135 Current = Memory; 1136 1137 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1138 BuiltinType::Kind k = BT->getKind(); 1139 1140 if (k == BuiltinType::Void) { 1141 Current = NoClass; 1142 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1143 Lo = Integer; 1144 Hi = Integer; 1145 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1146 Current = Integer; 1147 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 1148 Current = SSE; 1149 } else if (k == BuiltinType::LongDouble) { 1150 Lo = X87; 1151 Hi = X87Up; 1152 } 1153 // FIXME: _Decimal32 and _Decimal64 are SSE. 1154 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1155 return; 1156 } 1157 1158 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1159 // Classify the underlying integer type. 1160 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi); 1161 return; 1162 } 1163 1164 if (Ty->hasPointerRepresentation()) { 1165 Current = Integer; 1166 return; 1167 } 1168 1169 if (Ty->isMemberPointerType()) { 1170 if (Ty->isMemberFunctionPointerType()) 1171 Lo = Hi = Integer; 1172 else 1173 Current = Integer; 1174 return; 1175 } 1176 1177 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1178 uint64_t Size = getContext().getTypeSize(VT); 1179 if (Size == 32) { 1180 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1181 // float> as integer. 1182 Current = Integer; 1183 1184 // If this type crosses an eightbyte boundary, it should be 1185 // split. 1186 uint64_t EB_Real = (OffsetBase) / 64; 1187 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1188 if (EB_Real != EB_Imag) 1189 Hi = Lo; 1190 } else if (Size == 64) { 1191 // gcc passes <1 x double> in memory. :( 1192 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1193 return; 1194 1195 // gcc passes <1 x long long> as INTEGER. 1196 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1197 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1198 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1199 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1200 Current = Integer; 1201 else 1202 Current = SSE; 1203 1204 // If this type crosses an eightbyte boundary, it should be 1205 // split. 1206 if (OffsetBase && OffsetBase != 64) 1207 Hi = Lo; 1208 } else if (Size == 128 || (HasAVX && Size == 256)) { 1209 // Arguments of 256-bits are split into four eightbyte chunks. The 1210 // least significant one belongs to class SSE and all the others to class 1211 // SSEUP. The original Lo and Hi design considers that types can't be 1212 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1213 // This design isn't correct for 256-bits, but since there're no cases 1214 // where the upper parts would need to be inspected, avoid adding 1215 // complexity and just consider Hi to match the 64-256 part. 1216 Lo = SSE; 1217 Hi = SSEUp; 1218 } 1219 return; 1220 } 1221 1222 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1223 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1224 1225 uint64_t Size = getContext().getTypeSize(Ty); 1226 if (ET->isIntegralOrEnumerationType()) { 1227 if (Size <= 64) 1228 Current = Integer; 1229 else if (Size <= 128) 1230 Lo = Hi = Integer; 1231 } else if (ET == getContext().FloatTy) 1232 Current = SSE; 1233 else if (ET == getContext().DoubleTy) 1234 Lo = Hi = SSE; 1235 else if (ET == getContext().LongDoubleTy) 1236 Current = ComplexX87; 1237 1238 // If this complex type crosses an eightbyte boundary then it 1239 // should be split. 1240 uint64_t EB_Real = (OffsetBase) / 64; 1241 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1242 if (Hi == NoClass && EB_Real != EB_Imag) 1243 Hi = Lo; 1244 1245 return; 1246 } 1247 1248 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1249 // Arrays are treated like structures. 1250 1251 uint64_t Size = getContext().getTypeSize(Ty); 1252 1253 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1254 // than four eightbytes, ..., it has class MEMORY. 1255 if (Size > 256) 1256 return; 1257 1258 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1259 // fields, it has class MEMORY. 1260 // 1261 // Only need to check alignment of array base. 1262 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1263 return; 1264 1265 // Otherwise implement simplified merge. We could be smarter about 1266 // this, but it isn't worth it and would be harder to verify. 1267 Current = NoClass; 1268 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1269 uint64_t ArraySize = AT->getSize().getZExtValue(); 1270 1271 // The only case a 256-bit wide vector could be used is when the array 1272 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1273 // to work for sizes wider than 128, early check and fallback to memory. 1274 if (Size > 128 && EltSize != 256) 1275 return; 1276 1277 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1278 Class FieldLo, FieldHi; 1279 classify(AT->getElementType(), Offset, FieldLo, FieldHi); 1280 Lo = merge(Lo, FieldLo); 1281 Hi = merge(Hi, FieldHi); 1282 if (Lo == Memory || Hi == Memory) 1283 break; 1284 } 1285 1286 postMerge(Size, Lo, Hi); 1287 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1288 return; 1289 } 1290 1291 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1292 uint64_t Size = getContext().getTypeSize(Ty); 1293 1294 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1295 // than four eightbytes, ..., it has class MEMORY. 1296 if (Size > 256) 1297 return; 1298 1299 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1300 // copy constructor or a non-trivial destructor, it is passed by invisible 1301 // reference. 1302 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 1303 return; 1304 1305 const RecordDecl *RD = RT->getDecl(); 1306 1307 // Assume variable sized types are passed in memory. 1308 if (RD->hasFlexibleArrayMember()) 1309 return; 1310 1311 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1312 1313 // Reset Lo class, this will be recomputed. 1314 Current = NoClass; 1315 1316 // If this is a C++ record, classify the bases first. 1317 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1318 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1319 e = CXXRD->bases_end(); i != e; ++i) { 1320 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1321 "Unexpected base class!"); 1322 const CXXRecordDecl *Base = 1323 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1324 1325 // Classify this field. 1326 // 1327 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1328 // single eightbyte, each is classified separately. Each eightbyte gets 1329 // initialized to class NO_CLASS. 1330 Class FieldLo, FieldHi; 1331 uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base); 1332 classify(i->getType(), Offset, FieldLo, FieldHi); 1333 Lo = merge(Lo, FieldLo); 1334 Hi = merge(Hi, FieldHi); 1335 if (Lo == Memory || Hi == Memory) 1336 break; 1337 } 1338 } 1339 1340 // Classify the fields one at a time, merging the results. 1341 unsigned idx = 0; 1342 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1343 i != e; ++i, ++idx) { 1344 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1345 bool BitField = i->isBitField(); 1346 1347 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1348 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1349 // 1350 // The only case a 256-bit wide vector could be used is when the struct 1351 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1352 // to work for sizes wider than 128, early check and fallback to memory. 1353 // 1354 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1355 Lo = Memory; 1356 return; 1357 } 1358 // Note, skip this test for bit-fields, see below. 1359 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1360 Lo = Memory; 1361 return; 1362 } 1363 1364 // Classify this field. 1365 // 1366 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1367 // exceeds a single eightbyte, each is classified 1368 // separately. Each eightbyte gets initialized to class 1369 // NO_CLASS. 1370 Class FieldLo, FieldHi; 1371 1372 // Bit-fields require special handling, they do not force the 1373 // structure to be passed in memory even if unaligned, and 1374 // therefore they can straddle an eightbyte. 1375 if (BitField) { 1376 // Ignore padding bit-fields. 1377 if (i->isUnnamedBitfield()) 1378 continue; 1379 1380 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1381 uint64_t Size = i->getBitWidthValue(getContext()); 1382 1383 uint64_t EB_Lo = Offset / 64; 1384 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1385 FieldLo = FieldHi = NoClass; 1386 if (EB_Lo) { 1387 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1388 FieldLo = NoClass; 1389 FieldHi = Integer; 1390 } else { 1391 FieldLo = Integer; 1392 FieldHi = EB_Hi ? Integer : NoClass; 1393 } 1394 } else 1395 classify(i->getType(), Offset, FieldLo, FieldHi); 1396 Lo = merge(Lo, FieldLo); 1397 Hi = merge(Hi, FieldHi); 1398 if (Lo == Memory || Hi == Memory) 1399 break; 1400 } 1401 1402 postMerge(Size, Lo, Hi); 1403 } 1404 } 1405 1406 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1407 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1408 // place naturally. 1409 if (!isAggregateTypeForABI(Ty)) { 1410 // Treat an enum type as its underlying type. 1411 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1412 Ty = EnumTy->getDecl()->getIntegerType(); 1413 1414 return (Ty->isPromotableIntegerType() ? 1415 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1416 } 1417 1418 return ABIArgInfo::getIndirect(0); 1419 } 1420 1421 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1422 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1423 uint64_t Size = getContext().getTypeSize(VecTy); 1424 unsigned LargestVector = HasAVX ? 256 : 128; 1425 if (Size <= 64 || Size > LargestVector) 1426 return true; 1427 } 1428 1429 return false; 1430 } 1431 1432 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const { 1433 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1434 // place naturally. 1435 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1436 // Treat an enum type as its underlying type. 1437 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1438 Ty = EnumTy->getDecl()->getIntegerType(); 1439 1440 return (Ty->isPromotableIntegerType() ? 1441 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1442 } 1443 1444 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 1445 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 1446 1447 // Compute the byval alignment. We specify the alignment of the byval in all 1448 // cases so that the mid-level optimizer knows the alignment of the byval. 1449 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1450 return ABIArgInfo::getIndirect(Align); 1451 } 1452 1453 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1454 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1455 /// vector register. 1456 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1457 llvm::Type *IRType = CGT.ConvertType(Ty); 1458 1459 // Wrapper structs that just contain vectors are passed just like vectors, 1460 // strip them off if present. 1461 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1462 while (STy && STy->getNumElements() == 1) { 1463 IRType = STy->getElementType(0); 1464 STy = dyn_cast<llvm::StructType>(IRType); 1465 } 1466 1467 // If the preferred type is a 16-byte vector, prefer to pass it. 1468 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1469 llvm::Type *EltTy = VT->getElementType(); 1470 unsigned BitWidth = VT->getBitWidth(); 1471 if ((BitWidth >= 128 && BitWidth <= 256) && 1472 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1473 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1474 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1475 EltTy->isIntegerTy(128))) 1476 return VT; 1477 } 1478 1479 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1480 } 1481 1482 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1483 /// is known to either be off the end of the specified type or being in 1484 /// alignment padding. The user type specified is known to be at most 128 bits 1485 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1486 /// classification that put one of the two halves in the INTEGER class. 1487 /// 1488 /// It is conservatively correct to return false. 1489 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1490 unsigned EndBit, ASTContext &Context) { 1491 // If the bytes being queried are off the end of the type, there is no user 1492 // data hiding here. This handles analysis of builtins, vectors and other 1493 // types that don't contain interesting padding. 1494 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1495 if (TySize <= StartBit) 1496 return true; 1497 1498 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1499 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1500 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1501 1502 // Check each element to see if the element overlaps with the queried range. 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 // If the element is after the span we care about, then we're done.. 1505 unsigned EltOffset = i*EltSize; 1506 if (EltOffset >= EndBit) break; 1507 1508 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1509 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1510 EndBit-EltOffset, Context)) 1511 return false; 1512 } 1513 // If it overlaps no elements, then it is safe to process as padding. 1514 return true; 1515 } 1516 1517 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1518 const RecordDecl *RD = RT->getDecl(); 1519 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1520 1521 // If this is a C++ record, check the bases first. 1522 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1523 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1524 e = CXXRD->bases_end(); i != e; ++i) { 1525 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1526 "Unexpected base class!"); 1527 const CXXRecordDecl *Base = 1528 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1529 1530 // If the base is after the span we care about, ignore it. 1531 unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base); 1532 if (BaseOffset >= EndBit) continue; 1533 1534 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1535 if (!BitsContainNoUserData(i->getType(), BaseStart, 1536 EndBit-BaseOffset, Context)) 1537 return false; 1538 } 1539 } 1540 1541 // Verify that no field has data that overlaps the region of interest. Yes 1542 // this could be sped up a lot by being smarter about queried fields, 1543 // however we're only looking at structs up to 16 bytes, so we don't care 1544 // much. 1545 unsigned idx = 0; 1546 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1547 i != e; ++i, ++idx) { 1548 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 1549 1550 // If we found a field after the region we care about, then we're done. 1551 if (FieldOffset >= EndBit) break; 1552 1553 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 1554 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 1555 Context)) 1556 return false; 1557 } 1558 1559 // If nothing in this record overlapped the area of interest, then we're 1560 // clean. 1561 return true; 1562 } 1563 1564 return false; 1565 } 1566 1567 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 1568 /// float member at the specified offset. For example, {int,{float}} has a 1569 /// float at offset 4. It is conservatively correct for this routine to return 1570 /// false. 1571 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 1572 const llvm::TargetData &TD) { 1573 // Base case if we find a float. 1574 if (IROffset == 0 && IRType->isFloatTy()) 1575 return true; 1576 1577 // If this is a struct, recurse into the field at the specified offset. 1578 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1579 const llvm::StructLayout *SL = TD.getStructLayout(STy); 1580 unsigned Elt = SL->getElementContainingOffset(IROffset); 1581 IROffset -= SL->getElementOffset(Elt); 1582 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 1583 } 1584 1585 // If this is an array, recurse into the field at the specified offset. 1586 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 1587 llvm::Type *EltTy = ATy->getElementType(); 1588 unsigned EltSize = TD.getTypeAllocSize(EltTy); 1589 IROffset -= IROffset/EltSize*EltSize; 1590 return ContainsFloatAtOffset(EltTy, IROffset, TD); 1591 } 1592 1593 return false; 1594 } 1595 1596 1597 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 1598 /// low 8 bytes of an XMM register, corresponding to the SSE class. 1599 llvm::Type *X86_64ABIInfo:: 1600 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 1601 QualType SourceTy, unsigned SourceOffset) const { 1602 // The only three choices we have are either double, <2 x float>, or float. We 1603 // pass as float if the last 4 bytes is just padding. This happens for 1604 // structs that contain 3 floats. 1605 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 1606 SourceOffset*8+64, getContext())) 1607 return llvm::Type::getFloatTy(getVMContext()); 1608 1609 // We want to pass as <2 x float> if the LLVM IR type contains a float at 1610 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 1611 // case. 1612 if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) && 1613 ContainsFloatAtOffset(IRType, IROffset+4, getTargetData())) 1614 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 1615 1616 return llvm::Type::getDoubleTy(getVMContext()); 1617 } 1618 1619 1620 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 1621 /// an 8-byte GPR. This means that we either have a scalar or we are talking 1622 /// about the high or low part of an up-to-16-byte struct. This routine picks 1623 /// the best LLVM IR type to represent this, which may be i64 or may be anything 1624 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 1625 /// etc). 1626 /// 1627 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 1628 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 1629 /// the 8-byte value references. PrefType may be null. 1630 /// 1631 /// SourceTy is the source level type for the entire argument. SourceOffset is 1632 /// an offset into this that we're processing (which is always either 0 or 8). 1633 /// 1634 llvm::Type *X86_64ABIInfo:: 1635 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 1636 QualType SourceTy, unsigned SourceOffset) const { 1637 // If we're dealing with an un-offset LLVM IR type, then it means that we're 1638 // returning an 8-byte unit starting with it. See if we can safely use it. 1639 if (IROffset == 0) { 1640 // Pointers and int64's always fill the 8-byte unit. 1641 if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64)) 1642 return IRType; 1643 1644 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 1645 // goodness in the source type is just tail padding. This is allowed to 1646 // kick in for struct {double,int} on the int, but not on 1647 // struct{double,int,int} because we wouldn't return the second int. We 1648 // have to do this analysis on the source type because we can't depend on 1649 // unions being lowered a specific way etc. 1650 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 1651 IRType->isIntegerTy(32)) { 1652 unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth(); 1653 1654 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 1655 SourceOffset*8+64, getContext())) 1656 return IRType; 1657 } 1658 } 1659 1660 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1661 // If this is a struct, recurse into the field at the specified offset. 1662 const llvm::StructLayout *SL = getTargetData().getStructLayout(STy); 1663 if (IROffset < SL->getSizeInBytes()) { 1664 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 1665 IROffset -= SL->getElementOffset(FieldIdx); 1666 1667 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 1668 SourceTy, SourceOffset); 1669 } 1670 } 1671 1672 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 1673 llvm::Type *EltTy = ATy->getElementType(); 1674 unsigned EltSize = getTargetData().getTypeAllocSize(EltTy); 1675 unsigned EltOffset = IROffset/EltSize*EltSize; 1676 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 1677 SourceOffset); 1678 } 1679 1680 // Okay, we don't have any better idea of what to pass, so we pass this in an 1681 // integer register that isn't too big to fit the rest of the struct. 1682 unsigned TySizeInBytes = 1683 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 1684 1685 assert(TySizeInBytes != SourceOffset && "Empty field?"); 1686 1687 // It is always safe to classify this as an integer type up to i64 that 1688 // isn't larger than the structure. 1689 return llvm::IntegerType::get(getVMContext(), 1690 std::min(TySizeInBytes-SourceOffset, 8U)*8); 1691 } 1692 1693 1694 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 1695 /// be used as elements of a two register pair to pass or return, return a 1696 /// first class aggregate to represent them. For example, if the low part of 1697 /// a by-value argument should be passed as i32* and the high part as float, 1698 /// return {i32*, float}. 1699 static llvm::Type * 1700 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 1701 const llvm::TargetData &TD) { 1702 // In order to correctly satisfy the ABI, we need to the high part to start 1703 // at offset 8. If the high and low parts we inferred are both 4-byte types 1704 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 1705 // the second element at offset 8. Check for this: 1706 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 1707 unsigned HiAlign = TD.getABITypeAlignment(Hi); 1708 unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign); 1709 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 1710 1711 // To handle this, we have to increase the size of the low part so that the 1712 // second element will start at an 8 byte offset. We can't increase the size 1713 // of the second element because it might make us access off the end of the 1714 // struct. 1715 if (HiStart != 8) { 1716 // There are only two sorts of types the ABI generation code can produce for 1717 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 1718 // Promote these to a larger type. 1719 if (Lo->isFloatTy()) 1720 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 1721 else { 1722 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 1723 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 1724 } 1725 } 1726 1727 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 1728 1729 1730 // Verify that the second element is at an 8-byte offset. 1731 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 1732 "Invalid x86-64 argument pair!"); 1733 return Result; 1734 } 1735 1736 ABIArgInfo X86_64ABIInfo:: 1737 classifyReturnType(QualType RetTy) const { 1738 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 1739 // classification algorithm. 1740 X86_64ABIInfo::Class Lo, Hi; 1741 classify(RetTy, 0, Lo, Hi); 1742 1743 // Check some invariants. 1744 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 1745 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 1746 1747 llvm::Type *ResType = 0; 1748 switch (Lo) { 1749 case NoClass: 1750 if (Hi == NoClass) 1751 return ABIArgInfo::getIgnore(); 1752 // If the low part is just padding, it takes no register, leave ResType 1753 // null. 1754 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 1755 "Unknown missing lo part"); 1756 break; 1757 1758 case SSEUp: 1759 case X87Up: 1760 llvm_unreachable("Invalid classification for lo word."); 1761 1762 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 1763 // hidden argument. 1764 case Memory: 1765 return getIndirectReturnResult(RetTy); 1766 1767 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 1768 // available register of the sequence %rax, %rdx is used. 1769 case Integer: 1770 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 1771 1772 // If we have a sign or zero extended integer, make sure to return Extend 1773 // so that the parameter gets the right LLVM IR attributes. 1774 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 1775 // Treat an enum type as its underlying type. 1776 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1777 RetTy = EnumTy->getDecl()->getIntegerType(); 1778 1779 if (RetTy->isIntegralOrEnumerationType() && 1780 RetTy->isPromotableIntegerType()) 1781 return ABIArgInfo::getExtend(); 1782 } 1783 break; 1784 1785 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 1786 // available SSE register of the sequence %xmm0, %xmm1 is used. 1787 case SSE: 1788 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 1789 break; 1790 1791 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 1792 // returned on the X87 stack in %st0 as 80-bit x87 number. 1793 case X87: 1794 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 1795 break; 1796 1797 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 1798 // part of the value is returned in %st0 and the imaginary part in 1799 // %st1. 1800 case ComplexX87: 1801 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 1802 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 1803 llvm::Type::getX86_FP80Ty(getVMContext()), 1804 NULL); 1805 break; 1806 } 1807 1808 llvm::Type *HighPart = 0; 1809 switch (Hi) { 1810 // Memory was handled previously and X87 should 1811 // never occur as a hi class. 1812 case Memory: 1813 case X87: 1814 llvm_unreachable("Invalid classification for hi word."); 1815 1816 case ComplexX87: // Previously handled. 1817 case NoClass: 1818 break; 1819 1820 case Integer: 1821 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 1822 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 1823 return ABIArgInfo::getDirect(HighPart, 8); 1824 break; 1825 case SSE: 1826 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 1827 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 1828 return ABIArgInfo::getDirect(HighPart, 8); 1829 break; 1830 1831 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 1832 // is passed in the next available eightbyte chunk if the last used 1833 // vector register. 1834 // 1835 // SSEUP should always be preceded by SSE, just widen. 1836 case SSEUp: 1837 assert(Lo == SSE && "Unexpected SSEUp classification."); 1838 ResType = GetByteVectorType(RetTy); 1839 break; 1840 1841 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 1842 // returned together with the previous X87 value in %st0. 1843 case X87Up: 1844 // If X87Up is preceded by X87, we don't need to do 1845 // anything. However, in some cases with unions it may not be 1846 // preceded by X87. In such situations we follow gcc and pass the 1847 // extra bits in an SSE reg. 1848 if (Lo != X87) { 1849 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 1850 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 1851 return ABIArgInfo::getDirect(HighPart, 8); 1852 } 1853 break; 1854 } 1855 1856 // If a high part was specified, merge it together with the low part. It is 1857 // known to pass in the high eightbyte of the result. We do this by forming a 1858 // first class struct aggregate with the high and low part: {low, high} 1859 if (HighPart) 1860 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData()); 1861 1862 return ABIArgInfo::getDirect(ResType); 1863 } 1864 1865 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt, 1866 unsigned &neededSSE) const { 1867 X86_64ABIInfo::Class Lo, Hi; 1868 classify(Ty, 0, Lo, Hi); 1869 1870 // Check some invariants. 1871 // FIXME: Enforce these by construction. 1872 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 1873 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 1874 1875 neededInt = 0; 1876 neededSSE = 0; 1877 llvm::Type *ResType = 0; 1878 switch (Lo) { 1879 case NoClass: 1880 if (Hi == NoClass) 1881 return ABIArgInfo::getIgnore(); 1882 // If the low part is just padding, it takes no register, leave ResType 1883 // null. 1884 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 1885 "Unknown missing lo part"); 1886 break; 1887 1888 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 1889 // on the stack. 1890 case Memory: 1891 1892 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 1893 // COMPLEX_X87, it is passed in memory. 1894 case X87: 1895 case ComplexX87: 1896 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 1897 ++neededInt; 1898 return getIndirectResult(Ty); 1899 1900 case SSEUp: 1901 case X87Up: 1902 llvm_unreachable("Invalid classification for lo word."); 1903 1904 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 1905 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 1906 // and %r9 is used. 1907 case Integer: 1908 ++neededInt; 1909 1910 // Pick an 8-byte type based on the preferred type. 1911 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 1912 1913 // If we have a sign or zero extended integer, make sure to return Extend 1914 // so that the parameter gets the right LLVM IR attributes. 1915 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 1916 // Treat an enum type as its underlying type. 1917 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1918 Ty = EnumTy->getDecl()->getIntegerType(); 1919 1920 if (Ty->isIntegralOrEnumerationType() && 1921 Ty->isPromotableIntegerType()) 1922 return ABIArgInfo::getExtend(); 1923 } 1924 1925 break; 1926 1927 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 1928 // available SSE register is used, the registers are taken in the 1929 // order from %xmm0 to %xmm7. 1930 case SSE: { 1931 llvm::Type *IRType = CGT.ConvertType(Ty); 1932 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 1933 ++neededSSE; 1934 break; 1935 } 1936 } 1937 1938 llvm::Type *HighPart = 0; 1939 switch (Hi) { 1940 // Memory was handled previously, ComplexX87 and X87 should 1941 // never occur as hi classes, and X87Up must be preceded by X87, 1942 // which is passed in memory. 1943 case Memory: 1944 case X87: 1945 case ComplexX87: 1946 llvm_unreachable("Invalid classification for hi word."); 1947 1948 case NoClass: break; 1949 1950 case Integer: 1951 ++neededInt; 1952 // Pick an 8-byte type based on the preferred type. 1953 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 1954 1955 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 1956 return ABIArgInfo::getDirect(HighPart, 8); 1957 break; 1958 1959 // X87Up generally doesn't occur here (long double is passed in 1960 // memory), except in situations involving unions. 1961 case X87Up: 1962 case SSE: 1963 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 1964 1965 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 1966 return ABIArgInfo::getDirect(HighPart, 8); 1967 1968 ++neededSSE; 1969 break; 1970 1971 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 1972 // eightbyte is passed in the upper half of the last used SSE 1973 // register. This only happens when 128-bit vectors are passed. 1974 case SSEUp: 1975 assert(Lo == SSE && "Unexpected SSEUp classification"); 1976 ResType = GetByteVectorType(Ty); 1977 break; 1978 } 1979 1980 // If a high part was specified, merge it together with the low part. It is 1981 // known to pass in the high eightbyte of the result. We do this by forming a 1982 // first class struct aggregate with the high and low part: {low, high} 1983 if (HighPart) 1984 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData()); 1985 1986 return ABIArgInfo::getDirect(ResType); 1987 } 1988 1989 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1990 1991 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 1992 1993 // Keep track of the number of assigned registers. 1994 unsigned freeIntRegs = 6, freeSSERegs = 8; 1995 1996 // If the return value is indirect, then the hidden argument is consuming one 1997 // integer register. 1998 if (FI.getReturnInfo().isIndirect()) 1999 --freeIntRegs; 2000 2001 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2002 // get assigned (in left-to-right order) for passing as follows... 2003 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2004 it != ie; ++it) { 2005 unsigned neededInt, neededSSE; 2006 it->info = classifyArgumentType(it->type, neededInt, neededSSE); 2007 2008 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2009 // eightbyte of an argument, the whole argument is passed on the 2010 // stack. If registers have already been assigned for some 2011 // eightbytes of such an argument, the assignments get reverted. 2012 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2013 freeIntRegs -= neededInt; 2014 freeSSERegs -= neededSSE; 2015 } else { 2016 it->info = getIndirectResult(it->type); 2017 } 2018 } 2019 } 2020 2021 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2022 QualType Ty, 2023 CodeGenFunction &CGF) { 2024 llvm::Value *overflow_arg_area_p = 2025 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2026 llvm::Value *overflow_arg_area = 2027 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2028 2029 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2030 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2031 // It isn't stated explicitly in the standard, but in practice we use 2032 // alignment greater than 16 where necessary. 2033 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2034 if (Align > 8) { 2035 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2036 llvm::Value *Offset = 2037 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2038 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2039 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2040 CGF.Int64Ty); 2041 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2042 overflow_arg_area = 2043 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2044 overflow_arg_area->getType(), 2045 "overflow_arg_area.align"); 2046 } 2047 2048 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2049 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2050 llvm::Value *Res = 2051 CGF.Builder.CreateBitCast(overflow_arg_area, 2052 llvm::PointerType::getUnqual(LTy)); 2053 2054 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2055 // l->overflow_arg_area + sizeof(type). 2056 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2057 // an 8 byte boundary. 2058 2059 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2060 llvm::Value *Offset = 2061 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2062 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2063 "overflow_arg_area.next"); 2064 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2065 2066 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2067 return Res; 2068 } 2069 2070 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2071 CodeGenFunction &CGF) const { 2072 llvm::LLVMContext &VMContext = CGF.getLLVMContext(); 2073 2074 // Assume that va_list type is correct; should be pointer to LLVM type: 2075 // struct { 2076 // i32 gp_offset; 2077 // i32 fp_offset; 2078 // i8* overflow_arg_area; 2079 // i8* reg_save_area; 2080 // }; 2081 unsigned neededInt, neededSSE; 2082 2083 Ty = CGF.getContext().getCanonicalType(Ty); 2084 ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE); 2085 2086 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2087 // in the registers. If not go to step 7. 2088 if (!neededInt && !neededSSE) 2089 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2090 2091 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2092 // general purpose registers needed to pass type and num_fp to hold 2093 // the number of floating point registers needed. 2094 2095 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2096 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2097 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2098 // 2099 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2100 // register save space). 2101 2102 llvm::Value *InRegs = 0; 2103 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 2104 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 2105 if (neededInt) { 2106 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2107 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2108 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2109 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2110 } 2111 2112 if (neededSSE) { 2113 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2114 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2115 llvm::Value *FitsInFP = 2116 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2117 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2118 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2119 } 2120 2121 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2122 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2123 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2124 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2125 2126 // Emit code to load the value if it was passed in registers. 2127 2128 CGF.EmitBlock(InRegBlock); 2129 2130 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2131 // an offset of l->gp_offset and/or l->fp_offset. This may require 2132 // copying to a temporary location in case the parameter is passed 2133 // in different register classes or requires an alignment greater 2134 // than 8 for general purpose registers and 16 for XMM registers. 2135 // 2136 // FIXME: This really results in shameful code when we end up needing to 2137 // collect arguments from different places; often what should result in a 2138 // simple assembling of a structure from scattered addresses has many more 2139 // loads than necessary. Can we clean this up? 2140 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2141 llvm::Value *RegAddr = 2142 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2143 "reg_save_area"); 2144 if (neededInt && neededSSE) { 2145 // FIXME: Cleanup. 2146 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2147 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2148 llvm::Value *Tmp = CGF.CreateTempAlloca(ST); 2149 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2150 llvm::Type *TyLo = ST->getElementType(0); 2151 llvm::Type *TyHi = ST->getElementType(1); 2152 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2153 "Unexpected ABI info for mixed regs"); 2154 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2155 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2156 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2157 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2158 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; 2159 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; 2160 llvm::Value *V = 2161 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2162 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2163 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2164 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2165 2166 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2167 llvm::PointerType::getUnqual(LTy)); 2168 } else if (neededInt) { 2169 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2170 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2171 llvm::PointerType::getUnqual(LTy)); 2172 } else if (neededSSE == 1) { 2173 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2174 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2175 llvm::PointerType::getUnqual(LTy)); 2176 } else { 2177 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2178 // SSE registers are spaced 16 bytes apart in the register save 2179 // area, we need to collect the two eightbytes together. 2180 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2181 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2182 llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext); 2183 llvm::Type *DblPtrTy = 2184 llvm::PointerType::getUnqual(DoubleTy); 2185 llvm::StructType *ST = llvm::StructType::get(DoubleTy, 2186 DoubleTy, NULL); 2187 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); 2188 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2189 DblPtrTy)); 2190 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2191 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2192 DblPtrTy)); 2193 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2194 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2195 llvm::PointerType::getUnqual(LTy)); 2196 } 2197 2198 // AMD64-ABI 3.5.7p5: Step 5. Set: 2199 // l->gp_offset = l->gp_offset + num_gp * 8 2200 // l->fp_offset = l->fp_offset + num_fp * 16. 2201 if (neededInt) { 2202 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2203 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2204 gp_offset_p); 2205 } 2206 if (neededSSE) { 2207 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2208 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2209 fp_offset_p); 2210 } 2211 CGF.EmitBranch(ContBlock); 2212 2213 // Emit code to load the value if it was passed in memory. 2214 2215 CGF.EmitBlock(InMemBlock); 2216 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2217 2218 // Return the appropriate result. 2219 2220 CGF.EmitBlock(ContBlock); 2221 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2222 "vaarg.addr"); 2223 ResAddr->addIncoming(RegAddr, InRegBlock); 2224 ResAddr->addIncoming(MemAddr, InMemBlock); 2225 return ResAddr; 2226 } 2227 2228 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const { 2229 2230 if (Ty->isVoidType()) 2231 return ABIArgInfo::getIgnore(); 2232 2233 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2234 Ty = EnumTy->getDecl()->getIntegerType(); 2235 2236 uint64_t Size = getContext().getTypeSize(Ty); 2237 2238 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2239 if (hasNonTrivialDestructorOrCopyConstructor(RT) || 2240 RT->getDecl()->hasFlexibleArrayMember()) 2241 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2242 2243 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2244 if (Size == 128 && 2245 getContext().getTargetInfo().getTriple().getOS() 2246 == llvm::Triple::MinGW32) 2247 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2248 Size)); 2249 2250 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2251 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2252 if (Size <= 64 && 2253 (Size & (Size - 1)) == 0) 2254 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2255 Size)); 2256 2257 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2258 } 2259 2260 if (Ty->isPromotableIntegerType()) 2261 return ABIArgInfo::getExtend(); 2262 2263 return ABIArgInfo::getDirect(); 2264 } 2265 2266 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2267 2268 QualType RetTy = FI.getReturnType(); 2269 FI.getReturnInfo() = classify(RetTy); 2270 2271 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2272 it != ie; ++it) 2273 it->info = classify(it->type); 2274 } 2275 2276 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2277 CodeGenFunction &CGF) const { 2278 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 2279 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 2280 2281 CGBuilderTy &Builder = CGF.Builder; 2282 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2283 "ap"); 2284 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2285 llvm::Type *PTy = 2286 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2287 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2288 2289 uint64_t Offset = 2290 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2291 llvm::Value *NextAddr = 2292 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2293 "ap.next"); 2294 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2295 2296 return AddrTyped; 2297 } 2298 2299 // PowerPC-32 2300 2301 namespace { 2302 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2303 public: 2304 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2305 2306 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2307 // This is recovered from gcc output. 2308 return 1; // r1 is the dedicated stack pointer 2309 } 2310 2311 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2312 llvm::Value *Address) const; 2313 }; 2314 2315 } 2316 2317 bool 2318 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2319 llvm::Value *Address) const { 2320 // This is calculated from the LLVM and GCC tables and verified 2321 // against gcc output. AFAIK all ABIs use the same encoding. 2322 2323 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2324 llvm::LLVMContext &Context = CGF.getLLVMContext(); 2325 2326 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 2327 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2328 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2329 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2330 2331 // 0-31: r0-31, the 4-byte general-purpose registers 2332 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2333 2334 // 32-63: fp0-31, the 8-byte floating-point registers 2335 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2336 2337 // 64-76 are various 4-byte special-purpose registers: 2338 // 64: mq 2339 // 65: lr 2340 // 66: ctr 2341 // 67: ap 2342 // 68-75 cr0-7 2343 // 76: xer 2344 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2345 2346 // 77-108: v0-31, the 16-byte vector registers 2347 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2348 2349 // 109: vrsave 2350 // 110: vscr 2351 // 111: spe_acc 2352 // 112: spefscr 2353 // 113: sfp 2354 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2355 2356 return false; 2357 } 2358 2359 2360 //===----------------------------------------------------------------------===// 2361 // ARM ABI Implementation 2362 //===----------------------------------------------------------------------===// 2363 2364 namespace { 2365 2366 class ARMABIInfo : public ABIInfo { 2367 public: 2368 enum ABIKind { 2369 APCS = 0, 2370 AAPCS = 1, 2371 AAPCS_VFP 2372 }; 2373 2374 private: 2375 ABIKind Kind; 2376 2377 public: 2378 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {} 2379 2380 bool isEABI() const { 2381 StringRef Env = 2382 getContext().getTargetInfo().getTriple().getEnvironmentName(); 2383 return (Env == "gnueabi" || Env == "eabi" || Env == "androideabi"); 2384 } 2385 2386 private: 2387 ABIKind getABIKind() const { return Kind; } 2388 2389 ABIArgInfo classifyReturnType(QualType RetTy) const; 2390 ABIArgInfo classifyArgumentType(QualType RetTy) const; 2391 2392 virtual void computeInfo(CGFunctionInfo &FI) const; 2393 2394 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2395 CodeGenFunction &CGF) const; 2396 }; 2397 2398 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 2399 public: 2400 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 2401 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 2402 2403 const ARMABIInfo &getABIInfo() const { 2404 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2405 } 2406 2407 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2408 return 13; 2409 } 2410 2411 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 2412 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 2413 } 2414 2415 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2416 llvm::Value *Address) const { 2417 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2418 llvm::LLVMContext &Context = CGF.getLLVMContext(); 2419 2420 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 2421 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2422 2423 // 0-15 are the 16 integer registers. 2424 AssignToArrayRange(Builder, Address, Four8, 0, 15); 2425 2426 return false; 2427 } 2428 2429 unsigned getSizeOfUnwindException() const { 2430 if (getABIInfo().isEABI()) return 88; 2431 return TargetCodeGenInfo::getSizeOfUnwindException(); 2432 } 2433 }; 2434 2435 } 2436 2437 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 2438 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2439 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2440 it != ie; ++it) 2441 it->info = classifyArgumentType(it->type); 2442 2443 // Always honor user-specified calling convention. 2444 if (FI.getCallingConvention() != llvm::CallingConv::C) 2445 return; 2446 2447 // Calling convention as default by an ABI. 2448 llvm::CallingConv::ID DefaultCC; 2449 if (isEABI()) 2450 DefaultCC = llvm::CallingConv::ARM_AAPCS; 2451 else 2452 DefaultCC = llvm::CallingConv::ARM_APCS; 2453 2454 // If user did not ask for specific calling convention explicitly (e.g. via 2455 // pcs attribute), set effective calling convention if it's different than ABI 2456 // default. 2457 switch (getABIKind()) { 2458 case APCS: 2459 if (DefaultCC != llvm::CallingConv::ARM_APCS) 2460 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS); 2461 break; 2462 case AAPCS: 2463 if (DefaultCC != llvm::CallingConv::ARM_AAPCS) 2464 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS); 2465 break; 2466 case AAPCS_VFP: 2467 if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP) 2468 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP); 2469 break; 2470 } 2471 } 2472 2473 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 2474 /// aggregate. If HAMembers is non-null, the number of base elements 2475 /// contained in the type is returned through it; this is used for the 2476 /// recursive calls that check aggregate component types. 2477 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 2478 ASTContext &Context, 2479 uint64_t *HAMembers = 0) { 2480 uint64_t Members; 2481 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2482 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 2483 return false; 2484 Members *= AT->getSize().getZExtValue(); 2485 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 2486 const RecordDecl *RD = RT->getDecl(); 2487 if (RD->isUnion() || RD->hasFlexibleArrayMember()) 2488 return false; 2489 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2490 if (!CXXRD->isAggregate()) 2491 return false; 2492 } 2493 Members = 0; 2494 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2495 i != e; ++i) { 2496 const FieldDecl *FD = *i; 2497 uint64_t FldMembers; 2498 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 2499 return false; 2500 Members += FldMembers; 2501 } 2502 } else { 2503 Members = 1; 2504 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2505 Members = 2; 2506 Ty = CT->getElementType(); 2507 } 2508 2509 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 2510 // double, or 64-bit or 128-bit vectors. 2511 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2512 if (BT->getKind() != BuiltinType::Float && 2513 BT->getKind() != BuiltinType::Double) 2514 return false; 2515 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 2516 unsigned VecSize = Context.getTypeSize(VT); 2517 if (VecSize != 64 && VecSize != 128) 2518 return false; 2519 } else { 2520 return false; 2521 } 2522 2523 // The base type must be the same for all members. Vector types of the 2524 // same total size are treated as being equivalent here. 2525 const Type *TyPtr = Ty.getTypePtr(); 2526 if (!Base) 2527 Base = TyPtr; 2528 if (Base != TyPtr && 2529 (!Base->isVectorType() || !TyPtr->isVectorType() || 2530 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr))) 2531 return false; 2532 } 2533 2534 // Homogeneous Aggregates can have at most 4 members of the base type. 2535 if (HAMembers) 2536 *HAMembers = Members; 2537 return (Members <= 4); 2538 } 2539 2540 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const { 2541 if (!isAggregateTypeForABI(Ty)) { 2542 // Treat an enum type as its underlying type. 2543 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2544 Ty = EnumTy->getDecl()->getIntegerType(); 2545 2546 return (Ty->isPromotableIntegerType() ? 2547 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2548 } 2549 2550 // Ignore empty records. 2551 if (isEmptyRecord(getContext(), Ty, true)) 2552 return ABIArgInfo::getIgnore(); 2553 2554 // Structures with either a non-trivial destructor or a non-trivial 2555 // copy constructor are always indirect. 2556 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 2557 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2558 2559 if (getABIKind() == ARMABIInfo::AAPCS_VFP) { 2560 // Homogeneous Aggregates need to be expanded. 2561 const Type *Base = 0; 2562 if (isHomogeneousAggregate(Ty, Base, getContext())) 2563 return ABIArgInfo::getExpand(); 2564 } 2565 2566 // Otherwise, pass by coercing to a structure of the appropriate size. 2567 // 2568 // FIXME: This is kind of nasty... but there isn't much choice because the ARM 2569 // backend doesn't support byval. 2570 // FIXME: This doesn't handle alignment > 64 bits. 2571 llvm::Type* ElemTy; 2572 unsigned SizeRegs; 2573 if (getContext().getTypeAlign(Ty) > 32) { 2574 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 2575 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 2576 } else { 2577 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 2578 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 2579 } 2580 2581 llvm::Type *STy = 2582 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 2583 return ABIArgInfo::getDirect(STy); 2584 } 2585 2586 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 2587 llvm::LLVMContext &VMContext) { 2588 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 2589 // is called integer-like if its size is less than or equal to one word, and 2590 // the offset of each of its addressable sub-fields is zero. 2591 2592 uint64_t Size = Context.getTypeSize(Ty); 2593 2594 // Check that the type fits in a word. 2595 if (Size > 32) 2596 return false; 2597 2598 // FIXME: Handle vector types! 2599 if (Ty->isVectorType()) 2600 return false; 2601 2602 // Float types are never treated as "integer like". 2603 if (Ty->isRealFloatingType()) 2604 return false; 2605 2606 // If this is a builtin or pointer type then it is ok. 2607 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 2608 return true; 2609 2610 // Small complex integer types are "integer like". 2611 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 2612 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 2613 2614 // Single element and zero sized arrays should be allowed, by the definition 2615 // above, but they are not. 2616 2617 // Otherwise, it must be a record type. 2618 const RecordType *RT = Ty->getAs<RecordType>(); 2619 if (!RT) return false; 2620 2621 // Ignore records with flexible arrays. 2622 const RecordDecl *RD = RT->getDecl(); 2623 if (RD->hasFlexibleArrayMember()) 2624 return false; 2625 2626 // Check that all sub-fields are at offset 0, and are themselves "integer 2627 // like". 2628 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2629 2630 bool HadField = false; 2631 unsigned idx = 0; 2632 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2633 i != e; ++i, ++idx) { 2634 const FieldDecl *FD = *i; 2635 2636 // Bit-fields are not addressable, we only need to verify they are "integer 2637 // like". We still have to disallow a subsequent non-bitfield, for example: 2638 // struct { int : 0; int x } 2639 // is non-integer like according to gcc. 2640 if (FD->isBitField()) { 2641 if (!RD->isUnion()) 2642 HadField = true; 2643 2644 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 2645 return false; 2646 2647 continue; 2648 } 2649 2650 // Check if this field is at offset 0. 2651 if (Layout.getFieldOffset(idx) != 0) 2652 return false; 2653 2654 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 2655 return false; 2656 2657 // Only allow at most one field in a structure. This doesn't match the 2658 // wording above, but follows gcc in situations with a field following an 2659 // empty structure. 2660 if (!RD->isUnion()) { 2661 if (HadField) 2662 return false; 2663 2664 HadField = true; 2665 } 2666 } 2667 2668 return true; 2669 } 2670 2671 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { 2672 if (RetTy->isVoidType()) 2673 return ABIArgInfo::getIgnore(); 2674 2675 // Large vector types should be returned via memory. 2676 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 2677 return ABIArgInfo::getIndirect(0); 2678 2679 if (!isAggregateTypeForABI(RetTy)) { 2680 // Treat an enum type as its underlying type. 2681 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2682 RetTy = EnumTy->getDecl()->getIntegerType(); 2683 2684 return (RetTy->isPromotableIntegerType() ? 2685 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2686 } 2687 2688 // Structures with either a non-trivial destructor or a non-trivial 2689 // copy constructor are always indirect. 2690 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy)) 2691 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2692 2693 // Are we following APCS? 2694 if (getABIKind() == APCS) { 2695 if (isEmptyRecord(getContext(), RetTy, false)) 2696 return ABIArgInfo::getIgnore(); 2697 2698 // Complex types are all returned as packed integers. 2699 // 2700 // FIXME: Consider using 2 x vector types if the back end handles them 2701 // correctly. 2702 if (RetTy->isAnyComplexType()) 2703 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2704 getContext().getTypeSize(RetTy))); 2705 2706 // Integer like structures are returned in r0. 2707 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 2708 // Return in the smallest viable integer type. 2709 uint64_t Size = getContext().getTypeSize(RetTy); 2710 if (Size <= 8) 2711 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 2712 if (Size <= 16) 2713 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 2714 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 2715 } 2716 2717 // Otherwise return in memory. 2718 return ABIArgInfo::getIndirect(0); 2719 } 2720 2721 // Otherwise this is an AAPCS variant. 2722 2723 if (isEmptyRecord(getContext(), RetTy, true)) 2724 return ABIArgInfo::getIgnore(); 2725 2726 // Check for homogeneous aggregates with AAPCS-VFP. 2727 if (getABIKind() == AAPCS_VFP) { 2728 const Type *Base = 0; 2729 if (isHomogeneousAggregate(RetTy, Base, getContext())) 2730 // Homogeneous Aggregates are returned directly. 2731 return ABIArgInfo::getDirect(); 2732 } 2733 2734 // Aggregates <= 4 bytes are returned in r0; other aggregates 2735 // are returned indirectly. 2736 uint64_t Size = getContext().getTypeSize(RetTy); 2737 if (Size <= 32) { 2738 // Return in the smallest viable integer type. 2739 if (Size <= 8) 2740 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 2741 if (Size <= 16) 2742 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 2743 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 2744 } 2745 2746 return ABIArgInfo::getIndirect(0); 2747 } 2748 2749 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2750 CodeGenFunction &CGF) const { 2751 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 2752 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 2753 2754 CGBuilderTy &Builder = CGF.Builder; 2755 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2756 "ap"); 2757 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2758 // Handle address alignment for type alignment > 32 bits 2759 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 2760 if (TyAlign > 4) { 2761 assert((TyAlign & (TyAlign - 1)) == 0 && 2762 "Alignment is not power of 2!"); 2763 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 2764 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 2765 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 2766 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 2767 } 2768 llvm::Type *PTy = 2769 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2770 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2771 2772 uint64_t Offset = 2773 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 2774 llvm::Value *NextAddr = 2775 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2776 "ap.next"); 2777 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2778 2779 return AddrTyped; 2780 } 2781 2782 //===----------------------------------------------------------------------===// 2783 // PTX ABI Implementation 2784 //===----------------------------------------------------------------------===// 2785 2786 namespace { 2787 2788 class PTXABIInfo : public ABIInfo { 2789 public: 2790 PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 2791 2792 ABIArgInfo classifyReturnType(QualType RetTy) const; 2793 ABIArgInfo classifyArgumentType(QualType Ty) const; 2794 2795 virtual void computeInfo(CGFunctionInfo &FI) const; 2796 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2797 CodeGenFunction &CFG) const; 2798 }; 2799 2800 class PTXTargetCodeGenInfo : public TargetCodeGenInfo { 2801 public: 2802 PTXTargetCodeGenInfo(CodeGenTypes &CGT) 2803 : TargetCodeGenInfo(new PTXABIInfo(CGT)) {} 2804 2805 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2806 CodeGen::CodeGenModule &M) const; 2807 }; 2808 2809 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const { 2810 if (RetTy->isVoidType()) 2811 return ABIArgInfo::getIgnore(); 2812 if (isAggregateTypeForABI(RetTy)) 2813 return ABIArgInfo::getIndirect(0); 2814 return ABIArgInfo::getDirect(); 2815 } 2816 2817 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const { 2818 if (isAggregateTypeForABI(Ty)) 2819 return ABIArgInfo::getIndirect(0); 2820 2821 return ABIArgInfo::getDirect(); 2822 } 2823 2824 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 2825 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2826 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2827 it != ie; ++it) 2828 it->info = classifyArgumentType(it->type); 2829 2830 // Always honor user-specified calling convention. 2831 if (FI.getCallingConvention() != llvm::CallingConv::C) 2832 return; 2833 2834 // Calling convention as default by an ABI. 2835 llvm::CallingConv::ID DefaultCC; 2836 const LangOptions &LangOpts = getContext().getLangOptions(); 2837 if (LangOpts.OpenCL || LangOpts.CUDA) { 2838 // If we are in OpenCL or CUDA mode, then default to device functions 2839 DefaultCC = llvm::CallingConv::PTX_Device; 2840 } else { 2841 // If we are in standard C/C++ mode, use the triple to decide on the default 2842 StringRef Env = 2843 getContext().getTargetInfo().getTriple().getEnvironmentName(); 2844 if (Env == "device") 2845 DefaultCC = llvm::CallingConv::PTX_Device; 2846 else 2847 DefaultCC = llvm::CallingConv::PTX_Kernel; 2848 } 2849 FI.setEffectiveCallingConvention(DefaultCC); 2850 2851 } 2852 2853 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2854 CodeGenFunction &CFG) const { 2855 llvm_unreachable("PTX does not support varargs"); 2856 } 2857 2858 void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D, 2859 llvm::GlobalValue *GV, 2860 CodeGen::CodeGenModule &M) const{ 2861 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 2862 if (!FD) return; 2863 2864 llvm::Function *F = cast<llvm::Function>(GV); 2865 2866 // Perform special handling in OpenCL mode 2867 if (M.getLangOptions().OpenCL) { 2868 // Use OpenCL function attributes to set proper calling conventions 2869 // By default, all functions are device functions 2870 if (FD->hasAttr<OpenCLKernelAttr>()) { 2871 // OpenCL __kernel functions get a kernel calling convention 2872 F->setCallingConv(llvm::CallingConv::PTX_Kernel); 2873 // And kernel functions are not subject to inlining 2874 F->addFnAttr(llvm::Attribute::NoInline); 2875 } 2876 } 2877 2878 // Perform special handling in CUDA mode. 2879 if (M.getLangOptions().CUDA) { 2880 // CUDA __global__ functions get a kernel calling convention. Since 2881 // __global__ functions cannot be called from the device, we do not 2882 // need to set the noinline attribute. 2883 if (FD->getAttr<CUDAGlobalAttr>()) 2884 F->setCallingConv(llvm::CallingConv::PTX_Kernel); 2885 } 2886 } 2887 2888 } 2889 2890 //===----------------------------------------------------------------------===// 2891 // MBlaze ABI Implementation 2892 //===----------------------------------------------------------------------===// 2893 2894 namespace { 2895 2896 class MBlazeABIInfo : public ABIInfo { 2897 public: 2898 MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 2899 2900 bool isPromotableIntegerType(QualType Ty) const; 2901 2902 ABIArgInfo classifyReturnType(QualType RetTy) const; 2903 ABIArgInfo classifyArgumentType(QualType RetTy) const; 2904 2905 virtual void computeInfo(CGFunctionInfo &FI) const { 2906 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2907 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2908 it != ie; ++it) 2909 it->info = classifyArgumentType(it->type); 2910 } 2911 2912 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2913 CodeGenFunction &CGF) const; 2914 }; 2915 2916 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo { 2917 public: 2918 MBlazeTargetCodeGenInfo(CodeGenTypes &CGT) 2919 : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {} 2920 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2921 CodeGen::CodeGenModule &M) const; 2922 }; 2923 2924 } 2925 2926 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const { 2927 // MBlaze ABI requires all 8 and 16 bit quantities to be extended. 2928 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2929 switch (BT->getKind()) { 2930 case BuiltinType::Bool: 2931 case BuiltinType::Char_S: 2932 case BuiltinType::Char_U: 2933 case BuiltinType::SChar: 2934 case BuiltinType::UChar: 2935 case BuiltinType::Short: 2936 case BuiltinType::UShort: 2937 return true; 2938 default: 2939 return false; 2940 } 2941 return false; 2942 } 2943 2944 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2945 CodeGenFunction &CGF) const { 2946 // FIXME: Implement 2947 return 0; 2948 } 2949 2950 2951 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const { 2952 if (RetTy->isVoidType()) 2953 return ABIArgInfo::getIgnore(); 2954 if (isAggregateTypeForABI(RetTy)) 2955 return ABIArgInfo::getIndirect(0); 2956 2957 return (isPromotableIntegerType(RetTy) ? 2958 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2959 } 2960 2961 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const { 2962 if (isAggregateTypeForABI(Ty)) 2963 return ABIArgInfo::getIndirect(0); 2964 2965 return (isPromotableIntegerType(Ty) ? 2966 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2967 } 2968 2969 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D, 2970 llvm::GlobalValue *GV, 2971 CodeGen::CodeGenModule &M) 2972 const { 2973 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 2974 if (!FD) return; 2975 2976 llvm::CallingConv::ID CC = llvm::CallingConv::C; 2977 if (FD->hasAttr<MBlazeInterruptHandlerAttr>()) 2978 CC = llvm::CallingConv::MBLAZE_INTR; 2979 else if (FD->hasAttr<MBlazeSaveVolatilesAttr>()) 2980 CC = llvm::CallingConv::MBLAZE_SVOL; 2981 2982 if (CC != llvm::CallingConv::C) { 2983 // Handle 'interrupt_handler' attribute: 2984 llvm::Function *F = cast<llvm::Function>(GV); 2985 2986 // Step 1: Set ISR calling convention. 2987 F->setCallingConv(CC); 2988 2989 // Step 2: Add attributes goodness. 2990 F->addFnAttr(llvm::Attribute::NoInline); 2991 } 2992 2993 // Step 3: Emit _interrupt_handler alias. 2994 if (CC == llvm::CallingConv::MBLAZE_INTR) 2995 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 2996 "_interrupt_handler", GV, &M.getModule()); 2997 } 2998 2999 3000 //===----------------------------------------------------------------------===// 3001 // MSP430 ABI Implementation 3002 //===----------------------------------------------------------------------===// 3003 3004 namespace { 3005 3006 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 3007 public: 3008 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 3009 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 3010 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3011 CodeGen::CodeGenModule &M) const; 3012 }; 3013 3014 } 3015 3016 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 3017 llvm::GlobalValue *GV, 3018 CodeGen::CodeGenModule &M) const { 3019 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3020 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 3021 // Handle 'interrupt' attribute: 3022 llvm::Function *F = cast<llvm::Function>(GV); 3023 3024 // Step 1: Set ISR calling convention. 3025 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 3026 3027 // Step 2: Add attributes goodness. 3028 F->addFnAttr(llvm::Attribute::NoInline); 3029 3030 // Step 3: Emit ISR vector alias. 3031 unsigned Num = attr->getNumber() + 0xffe0; 3032 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 3033 "vector_" + Twine::utohexstr(Num), 3034 GV, &M.getModule()); 3035 } 3036 } 3037 } 3038 3039 //===----------------------------------------------------------------------===// 3040 // MIPS ABI Implementation. This works for both little-endian and 3041 // big-endian variants. 3042 //===----------------------------------------------------------------------===// 3043 3044 namespace { 3045 class MipsABIInfo : public ABIInfo { 3046 bool IsO32; 3047 unsigned MinABIStackAlignInBytes; 3048 llvm::Type* HandleAggregates(QualType Ty) const; 3049 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 3050 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 3051 public: 3052 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 3053 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {} 3054 3055 ABIArgInfo classifyReturnType(QualType RetTy) const; 3056 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 3057 virtual void computeInfo(CGFunctionInfo &FI) const; 3058 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3059 CodeGenFunction &CGF) const; 3060 }; 3061 3062 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 3063 unsigned SizeOfUnwindException; 3064 public: 3065 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 3066 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 3067 SizeOfUnwindException(IsO32 ? 24 : 32) {} 3068 3069 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 3070 return 29; 3071 } 3072 3073 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3074 llvm::Value *Address) const; 3075 3076 unsigned getSizeOfUnwindException() const { 3077 return SizeOfUnwindException; 3078 } 3079 }; 3080 } 3081 3082 // In N32/64, an aligned double precision floating point field is passed in 3083 // a register. 3084 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty) const { 3085 if (IsO32) 3086 return 0; 3087 3088 if (Ty->isComplexType()) 3089 return CGT.ConvertType(Ty); 3090 3091 const RecordType *RT = Ty->getAsStructureType(); 3092 3093 if (!RT) 3094 return 0; 3095 3096 const RecordDecl *RD = RT->getDecl(); 3097 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3098 uint64_t StructSize = getContext().getTypeSize(Ty); 3099 assert(!(StructSize % 8) && "Size of structure must be multiple of 8."); 3100 3101 uint64_t LastOffset = 0; 3102 unsigned idx = 0; 3103 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 3104 SmallVector<llvm::Type*, 8> ArgList; 3105 3106 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3107 i != e; ++i, ++idx) { 3108 const QualType Ty = (*i)->getType(); 3109 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3110 3111 if (!BT || BT->getKind() != BuiltinType::Double) 3112 continue; 3113 3114 uint64_t Offset = Layout.getFieldOffset(idx); 3115 if (Offset % 64) // Ignore doubles that are not aligned. 3116 continue; 3117 3118 // Add ((Offset - LastOffset) / 64) args of type i64. 3119 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 3120 ArgList.push_back(I64); 3121 3122 // Add double type. 3123 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 3124 LastOffset = Offset + 64; 3125 } 3126 3127 // This structure doesn't have an aligned double field. 3128 if (!LastOffset) 3129 return 0; 3130 3131 // Add ((StructSize - LastOffset) / 64) args of type i64. 3132 for (unsigned N = (StructSize - LastOffset) / 64; N; --N) 3133 ArgList.push_back(I64); 3134 3135 // If the size of the remainder is not zero, add one more integer type to 3136 // ArgList. 3137 unsigned R = (StructSize - LastOffset) % 64; 3138 if (R) 3139 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 3140 3141 return llvm::StructType::get(getVMContext(), ArgList); 3142 } 3143 3144 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const { 3145 // Padding is inserted only for N32/64. 3146 if (IsO32) 3147 return 0; 3148 3149 assert(Align <= 16 && "Alignment larger than 16 not handled."); 3150 return (Align == 16 && Offset & 0xf) ? 3151 llvm::IntegerType::get(getVMContext(), 64) : 0; 3152 } 3153 3154 ABIArgInfo 3155 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 3156 uint64_t OrigOffset = Offset; 3157 uint64_t TySize = 3158 llvm::RoundUpToAlignment(getContext().getTypeSize(Ty), 64) / 8; 3159 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 3160 Offset = llvm::RoundUpToAlignment(Offset, std::max(Align, (uint64_t)8)); 3161 Offset += TySize; 3162 3163 if (isAggregateTypeForABI(Ty)) { 3164 // Ignore empty aggregates. 3165 if (TySize == 0) 3166 return ABIArgInfo::getIgnore(); 3167 3168 // Records with non trivial destructors/constructors should not be passed 3169 // by value. 3170 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) { 3171 Offset = OrigOffset + 8; 3172 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3173 } 3174 3175 // If we have reached here, aggregates are passed either indirectly via a 3176 // byval pointer or directly by coercing to another structure type. In the 3177 // latter case, padding is inserted if the offset of the aggregate is 3178 // unaligned. 3179 llvm::Type *ResType = HandleAggregates(Ty); 3180 3181 if (!ResType) 3182 return ABIArgInfo::getIndirect(0); 3183 3184 return ABIArgInfo::getDirect(ResType, 0, getPaddingType(Align, OrigOffset)); 3185 } 3186 3187 // Treat an enum type as its underlying type. 3188 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3189 Ty = EnumTy->getDecl()->getIntegerType(); 3190 3191 if (Ty->isPromotableIntegerType()) 3192 return ABIArgInfo::getExtend(); 3193 3194 return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset)); 3195 } 3196 3197 llvm::Type* 3198 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 3199 const RecordType *RT = RetTy->getAsStructureType(); 3200 SmallVector<llvm::Type*, 2> RTList; 3201 3202 if (RT) { 3203 const RecordDecl *RD = RT->getDecl(); 3204 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(), i; 3205 3206 for (i = b; (i != e) && (std::distance(b, i) < 2); ++i) { 3207 const BuiltinType *BT = (*i)->getType()->getAs<BuiltinType>(); 3208 3209 if (!BT || !BT->isFloatingPoint()) 3210 break; 3211 3212 RTList.push_back(CGT.ConvertType((*i)->getType())); 3213 } 3214 3215 if (i == e) 3216 return llvm::StructType::get(getVMContext(), RTList, 3217 RD->hasAttr<PackedAttr>()); 3218 3219 RTList.clear(); 3220 } 3221 3222 RTList.push_back(llvm::IntegerType::get(getVMContext(), 3223 std::min(Size, (uint64_t)64))); 3224 if (Size > 64) 3225 RTList.push_back(llvm::IntegerType::get(getVMContext(), Size - 64)); 3226 3227 return llvm::StructType::get(getVMContext(), RTList); 3228 } 3229 3230 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 3231 uint64_t Size = getContext().getTypeSize(RetTy); 3232 3233 if (RetTy->isVoidType() || Size == 0) 3234 return ABIArgInfo::getIgnore(); 3235 3236 if (isAggregateTypeForABI(RetTy)) { 3237 if (Size <= 128) { 3238 if (RetTy->isAnyComplexType()) 3239 return ABIArgInfo::getDirect(); 3240 3241 if (!IsO32) 3242 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 3243 } 3244 3245 return ABIArgInfo::getIndirect(0); 3246 } 3247 3248 // Treat an enum type as its underlying type. 3249 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3250 RetTy = EnumTy->getDecl()->getIntegerType(); 3251 3252 return (RetTy->isPromotableIntegerType() ? 3253 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3254 } 3255 3256 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 3257 ABIArgInfo &RetInfo = FI.getReturnInfo(); 3258 RetInfo = classifyReturnType(FI.getReturnType()); 3259 3260 // Check if a pointer to an aggregate is passed as a hidden argument. 3261 uint64_t Offset = RetInfo.isIndirect() ? 8 : 0; 3262 3263 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3264 it != ie; ++it) 3265 it->info = classifyArgumentType(it->type, Offset); 3266 } 3267 3268 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3269 CodeGenFunction &CGF) const { 3270 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3271 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3272 3273 CGBuilderTy &Builder = CGF.Builder; 3274 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3275 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3276 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 3277 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3278 llvm::Value *AddrTyped; 3279 unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0); 3280 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 3281 3282 if (TypeAlign > MinABIStackAlignInBytes) { 3283 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 3284 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 3285 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 3286 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 3287 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 3288 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 3289 } 3290 else 3291 AddrTyped = Builder.CreateBitCast(Addr, PTy); 3292 3293 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 3294 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 3295 uint64_t Offset = 3296 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 3297 llvm::Value *NextAddr = 3298 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 3299 "ap.next"); 3300 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3301 3302 return AddrTyped; 3303 } 3304 3305 bool 3306 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3307 llvm::Value *Address) const { 3308 // This information comes from gcc's implementation, which seems to 3309 // as canonical as it gets. 3310 3311 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3312 llvm::LLVMContext &Context = CGF.getLLVMContext(); 3313 3314 // Everything on MIPS is 4 bytes. Double-precision FP registers 3315 // are aliased to pairs of single-precision FP registers. 3316 llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 3317 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3318 3319 // 0-31 are the general purpose registers, $0 - $31. 3320 // 32-63 are the floating-point registers, $f0 - $f31. 3321 // 64 and 65 are the multiply/divide registers, $hi and $lo. 3322 // 66 is the (notional, I think) register for signal-handler return. 3323 AssignToArrayRange(Builder, Address, Four8, 0, 65); 3324 3325 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 3326 // They are one bit wide and ignored here. 3327 3328 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 3329 // (coprocessor 1 is the FP unit) 3330 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 3331 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 3332 // 176-181 are the DSP accumulator registers. 3333 AssignToArrayRange(Builder, Address, Four8, 80, 181); 3334 3335 return false; 3336 } 3337 3338 //===----------------------------------------------------------------------===// 3339 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 3340 // Currently subclassed only to implement custom OpenCL C function attribute 3341 // handling. 3342 //===----------------------------------------------------------------------===// 3343 3344 namespace { 3345 3346 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3347 public: 3348 TCETargetCodeGenInfo(CodeGenTypes &CGT) 3349 : DefaultTargetCodeGenInfo(CGT) {} 3350 3351 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3352 CodeGen::CodeGenModule &M) const; 3353 }; 3354 3355 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 3356 llvm::GlobalValue *GV, 3357 CodeGen::CodeGenModule &M) const { 3358 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3359 if (!FD) return; 3360 3361 llvm::Function *F = cast<llvm::Function>(GV); 3362 3363 if (M.getLangOptions().OpenCL) { 3364 if (FD->hasAttr<OpenCLKernelAttr>()) { 3365 // OpenCL C Kernel functions are not subject to inlining 3366 F->addFnAttr(llvm::Attribute::NoInline); 3367 3368 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 3369 3370 // Convert the reqd_work_group_size() attributes to metadata. 3371 llvm::LLVMContext &Context = F->getContext(); 3372 llvm::NamedMDNode *OpenCLMetadata = 3373 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 3374 3375 SmallVector<llvm::Value*, 5> Operands; 3376 Operands.push_back(F); 3377 3378 Operands.push_back(llvm::Constant::getIntegerValue( 3379 llvm::Type::getInt32Ty(Context), 3380 llvm::APInt( 3381 32, 3382 FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim()))); 3383 Operands.push_back(llvm::Constant::getIntegerValue( 3384 llvm::Type::getInt32Ty(Context), 3385 llvm::APInt( 3386 32, 3387 FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim()))); 3388 Operands.push_back(llvm::Constant::getIntegerValue( 3389 llvm::Type::getInt32Ty(Context), 3390 llvm::APInt( 3391 32, 3392 FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim()))); 3393 3394 // Add a boolean constant operand for "required" (true) or "hint" (false) 3395 // for implementing the work_group_size_hint attr later. Currently 3396 // always true as the hint is not yet implemented. 3397 Operands.push_back(llvm::ConstantInt::getTrue(llvm::Type::getInt1Ty(Context))); 3398 3399 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 3400 } 3401 } 3402 } 3403 } 3404 3405 } 3406 3407 //===----------------------------------------------------------------------===// 3408 // Hexagon ABI Implementation 3409 //===----------------------------------------------------------------------===// 3410 3411 namespace { 3412 3413 class HexagonABIInfo : public ABIInfo { 3414 3415 3416 public: 3417 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 3418 3419 private: 3420 3421 ABIArgInfo classifyReturnType(QualType RetTy) const; 3422 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3423 3424 virtual void computeInfo(CGFunctionInfo &FI) const; 3425 3426 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3427 CodeGenFunction &CGF) const; 3428 }; 3429 3430 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 3431 public: 3432 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 3433 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 3434 3435 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 3436 return 29; 3437 } 3438 }; 3439 3440 } 3441 3442 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 3443 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3444 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3445 it != ie; ++it) 3446 it->info = classifyArgumentType(it->type); 3447 } 3448 3449 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 3450 if (!isAggregateTypeForABI(Ty)) { 3451 // Treat an enum type as its underlying type. 3452 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3453 Ty = EnumTy->getDecl()->getIntegerType(); 3454 3455 return (Ty->isPromotableIntegerType() ? 3456 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3457 } 3458 3459 // Ignore empty records. 3460 if (isEmptyRecord(getContext(), Ty, true)) 3461 return ABIArgInfo::getIgnore(); 3462 3463 // Structures with either a non-trivial destructor or a non-trivial 3464 // copy constructor are always indirect. 3465 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 3466 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3467 3468 uint64_t Size = getContext().getTypeSize(Ty); 3469 if (Size > 64) 3470 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 3471 // Pass in the smallest viable integer type. 3472 else if (Size > 32) 3473 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 3474 else if (Size > 16) 3475 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 3476 else if (Size > 8) 3477 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 3478 else 3479 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3480 } 3481 3482 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 3483 if (RetTy->isVoidType()) 3484 return ABIArgInfo::getIgnore(); 3485 3486 // Large vector types should be returned via memory. 3487 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 3488 return ABIArgInfo::getIndirect(0); 3489 3490 if (!isAggregateTypeForABI(RetTy)) { 3491 // Treat an enum type as its underlying type. 3492 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3493 RetTy = EnumTy->getDecl()->getIntegerType(); 3494 3495 return (RetTy->isPromotableIntegerType() ? 3496 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3497 } 3498 3499 // Structures with either a non-trivial destructor or a non-trivial 3500 // copy constructor are always indirect. 3501 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy)) 3502 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3503 3504 if (isEmptyRecord(getContext(), RetTy, true)) 3505 return ABIArgInfo::getIgnore(); 3506 3507 // Aggregates <= 8 bytes are returned in r0; other aggregates 3508 // are returned indirectly. 3509 uint64_t Size = getContext().getTypeSize(RetTy); 3510 if (Size <= 64) { 3511 // Return in the smallest viable integer type. 3512 if (Size <= 8) 3513 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3514 if (Size <= 16) 3515 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 3516 if (Size <= 32) 3517 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 3518 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 3519 } 3520 3521 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 3522 } 3523 3524 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3525 CodeGenFunction &CGF) const { 3526 // FIXME: Need to handle alignment 3527 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3528 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3529 3530 CGBuilderTy &Builder = CGF.Builder; 3531 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3532 "ap"); 3533 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3534 llvm::Type *PTy = 3535 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3536 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3537 3538 uint64_t Offset = 3539 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 3540 llvm::Value *NextAddr = 3541 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3542 "ap.next"); 3543 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3544 3545 return AddrTyped; 3546 } 3547 3548 3549 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 3550 if (TheTargetCodeGenInfo) 3551 return *TheTargetCodeGenInfo; 3552 3553 const llvm::Triple &Triple = getContext().getTargetInfo().getTriple(); 3554 switch (Triple.getArch()) { 3555 default: 3556 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 3557 3558 case llvm::Triple::mips: 3559 case llvm::Triple::mipsel: 3560 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 3561 3562 case llvm::Triple::mips64: 3563 case llvm::Triple::mips64el: 3564 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 3565 3566 case llvm::Triple::arm: 3567 case llvm::Triple::thumb: 3568 { 3569 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 3570 3571 if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0) 3572 Kind = ARMABIInfo::APCS; 3573 else if (CodeGenOpts.FloatABI == "hard") 3574 Kind = ARMABIInfo::AAPCS_VFP; 3575 3576 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 3577 } 3578 3579 case llvm::Triple::ppc: 3580 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 3581 3582 case llvm::Triple::ptx32: 3583 case llvm::Triple::ptx64: 3584 return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types)); 3585 3586 case llvm::Triple::mblaze: 3587 return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types)); 3588 3589 case llvm::Triple::msp430: 3590 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 3591 3592 case llvm::Triple::tce: 3593 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 3594 3595 case llvm::Triple::x86: { 3596 bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0; 3597 3598 if (Triple.isOSDarwin()) 3599 return *(TheTargetCodeGenInfo = 3600 new X86_32TargetCodeGenInfo( 3601 Types, true, true, DisableMMX, false)); 3602 3603 switch (Triple.getOS()) { 3604 case llvm::Triple::Cygwin: 3605 case llvm::Triple::MinGW32: 3606 case llvm::Triple::AuroraUX: 3607 case llvm::Triple::DragonFly: 3608 case llvm::Triple::FreeBSD: 3609 case llvm::Triple::OpenBSD: 3610 return *(TheTargetCodeGenInfo = 3611 new X86_32TargetCodeGenInfo( 3612 Types, false, true, DisableMMX, false)); 3613 3614 case llvm::Triple::Win32: 3615 return *(TheTargetCodeGenInfo = 3616 new X86_32TargetCodeGenInfo( 3617 Types, false, true, DisableMMX, true)); 3618 3619 default: 3620 return *(TheTargetCodeGenInfo = 3621 new X86_32TargetCodeGenInfo( 3622 Types, false, false, DisableMMX, false)); 3623 } 3624 } 3625 3626 case llvm::Triple::x86_64: { 3627 bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0; 3628 3629 switch (Triple.getOS()) { 3630 case llvm::Triple::Win32: 3631 case llvm::Triple::MinGW32: 3632 case llvm::Triple::Cygwin: 3633 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 3634 default: 3635 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 3636 HasAVX)); 3637 } 3638 } 3639 case llvm::Triple::hexagon: 3640 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 3641 } 3642 } 3643